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Levin-Wen model and tensor categories

Alexei Kitaev a, Liang Kong b,
a California Institute of Technology, Pasadena, CA, 91125, USA

b Institute for Advanced Study, Tsinghua University, Beijing, 100084, China.

Topological order is an important subject in condensed matter physics every since the discovery
of fractional quantum Hall effect. It also has applications in topological quantum computing. We
will focus on a large class of non-chiral topological order in this talk and show that the representation
theory of tensor category enters the study of topological order at its full strength.

Relations between the bulk and the boundary have proved important for the understanding of
quantum Hall states. For example, the bulk electron wave function for the Moore-Read state [MR91]
is constructed using conformal blocks of a certain conformal field theory, which also describes
the edge modes (under suitable boundary conditions). Based on the success of this and similar
theories, one might erroneously conclude that the bulk-boundary correspondence is one-to-one. It
is, however, known that the boundary properties are generally richer than those of the bulk; in
particular, the same bulk can have different boundaries. This phenomenon appears in its basic form
when both the bulk and the boundary are gapped1, but it should be relevant to some quantum
Hall states as well.

A simple example of a topological phase that admits a gapped boundary is a Z2 gauge theory.
Its Hamiltonian realizations include certain dimer models [MS00, MSP02]. Read and Chakraborty
[RC89] studied the quasiparticle statistics and other topological properties of the Z2 phase. An
exactly solvable Hamiltonian in this universality class (the “toric code” model) was proposed by
the first author [K97]. Already in this simple example, as shown by Bravyi and Kitaev [BK98], the
bulk “toric code” system has two topologically distinct boundary types.

An analogue of the toric code for an arbitrary finite group G was also proposed in [K97]. Levin
and Wen [LW04] went even further, replacing the group (or, rather, its representation theory) by a
unitary tensor category2. Both models may be viewed as Hamiltonian realizations of certain TQFTs
(or state sums in the sense of Turaev and Viro [TV92]), which were originally introduced to define
3-manifold invariants. Thus, the Kitaev model corresponds to a special case of the Kuperberg
invariant [Ku91] (the general case was considered in [BMCA10]), whereas the Levin-Wen model
corresponds to the Barrett-Westbury invariant [BW93].

Boundaries for the Kitaev model have been studied recently [BSW10]. In this paper, we will
outline our constructions of all possible boundaries and defects in Levin-Wen models. We cannot
readily defend the word “all” in this claim since our method is limited to a particular class of models.
As a parallel development, boundary conditions for Abelian Chern-Simons theories have also been
characterized [KS10a, KS10b]. However, an alternative approach is possible, where one postulates
some general properties (such as the fusion of quasiparticles) and studies algebraic structures defined
by those axioms. This idea has long been implemented for bulk 2d systems [FRS89, FG90], with the
conclusion that the quasiparticles are characterized by a unitary modular category (see Appendix E
in Ref. [K05] for review). A similar theory of gapped boundaries has been contemplated by the
first author and will appear in a separate paper.

1A Hamiltonian is called “gapped” if the smallest excitation energy, i.e. the difference between the two lowest
eigenvalues, is bounded from below by a constant that is independent of the system size.

2More exactly, a unitary finite spherical fusion category.
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In the Levin-Wen model associated with a unitary tensor category C, the bulk excitations
are objects of the unitary modular category Z(C), the monoidal center of C (a generalization of
Drinfeld’s double). This result follows from the original analysis by Levin and Wen, but we will
derive it from a theory of excitations on a domain wall between two phases. Indeed, bulk excitations
may be viewed as excitations on a trivial domain wall between two regions of the same phase. In the
simpler case of a standard boundary between the Levin-Wen model and vacuum, the excitations
are objects of the category C. Thus, the boundary theory uniquely determines the bulk theory
by taking the monoidal center. On the other hand, the bulk can not completely determine the
boundary because the same modular category may be realized as the center of different tensor
categories, say, C and D. Nevertheless, the bulk theory uniquely determines the boundary theory
up to Morita equivalence. This is the full content of the bulk-boundary duality in the framework
of Levin-Wen models. We will explicitly construct a D boundary for the C Levin-Wen model using
the notion of a module over a tensor category.

Besides bulk-boundary duality, we also emphasize an interesting correspondence between the
dualities among bulk theories (as braided monoidal equivalences) and “transparent”, or “invertible”
domain walls (or defect lines). In particular, for Morita equivalent C and D, we will construct a
transparent domain wall between the C and D models. One can see explicitly how excitations in
one region tunnel through the wall into the other region, which is just another lattice realization
of the same phase. In the mathematical language, this tunneling process gives a braided monoidal
equivalence between Z(C) and Z(D). Moreover, the correspondence between transparent domain
walls and equivalences of bulk theories is bijective. If C and D are themselves equivalent (as
monoidal categories), the domain wall can terminate, and the transport of excitations around the
endpoint defines an automorphism of Z(C). The possibility of quasiparticles changing their type
due to a transport around a point-like defect was mentioned in [K05]. Such defects were explicitly
constructed and studied by Bombin [B10] under the name of “twists”, though in his interpretation
the associated domain wall is immaterial (like a Dirac string). General domain walls between phases
are not transparent. A particle injected into a foreign phase leaves behind a trace (a superposition
of domain walls). This process is also described using tensor category theory.

Another result of our work is a uniform treatment of different excitation types. As already
mentioned, bulk quasiparticles are equivalent to excitations on the trivial domain wall. A wall
between two models C and D can be regarded as a boundary of a single phase C � D↔ if we
fold the plane. Thus, it is sufficient to consider boundary excitations. We characterize them
as superselection sectors (or irreducible modules) of a local operator algebra. This construction
provides a crucial link between the physically motivated notion of excitation and more abstract
mathematical concepts. We will also show how the properties of boundary excitations can be
translated into tensor-categorical language, which leads to the mathematical notion of a module
functor. This view of excitations also works perfectly well for boundary points between different
types of domain walls. They can be described by more general module functors. A domain wall (also
called a defect line) has codimension 1; an excitation connecting multiple domain walls is a defect of
codimension 2. One can go further to consider defects of codimension 3, which are given by natural
transformations between module functors. The correspondence between physical notions and the
tensor-categorical formalism is summarized in Table 1. A Levin-Wen model together with defects
of codimension 1, 2, 3 provides the physical meaning behinds the so-called extended Turaev-Viro
topological field theory [TV92, L08, KB10, Ka10].

Our constructions also provides a physics background of the so-called extended Turaev-Viro
topological field theory [TV92][BW93][KB10][L08][Ka10], in which the unitary tensor category C
(or even better, the bicategory of C-modules) is assigned to a point, a bimodule is assigned to a
framed interval, the category Z(C) is assigned to a circle, etc. The last step is to assign a number,
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Ingredients of Levin-Wen models Tensor-categorical notions

bulk Levin-Wen model unitary tensor category C
edge labels in the bulk simple objects in C
excitations in the bulk objects in Z(C), the monoidal center of C
boundary type C-module M
edge labels on a CM-boundary simple objects in M
excitations on a CM-boundary objects in the category FunC(M,M) of C-module

functors

bulk excitations fusing into
a CM-boundary

Z(C) = FunC|C(C, C)→ FunC(M,M)

(C F−→ C) 7→ (C �CM
F�idM−−−−−→ C �CM).

domain wall C-D-bimodule N
edge labels on a CND-wall simple objects in N
excitations on a CND-wall objects in the category FunC|D(N ,N ) of C-D-

bimodule functors

fusion of two walls M�D N
invertible CND-wall C and D are Morita equivalent, i.e.

N �D N op ∼= C, N op �C N ∼= D.

defects of codimension 2 (M-N -excitations) objects F ,G ∈ FunC|D(M,N )

defect of codimension 3 C-D-bimodule natural transformation φ : F → G

Table 1: Dictionary between ingredients of Levin-Wen models and tensor-categorical notions.

called the Turaev-Viro invariant to a 3-manifold (possibly, with corners).
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Goals:

to provide a more rigorous and systematic study of Levin-Wen
models;

to enrich Levin-Wen models to include boundaries and defects
of codimension 1,2,3;

to show how the representation theory of tensor category
enters the study of topological order at its full strength;

to provide the physical meaning behind the so-called extended
Turaev-Viro topological field theories;
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1 Kitaev’s Toric Code Model

2 Levin-Wen models

3 Extended Topological Field Theories
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Kitaev’s Toric Code Model

Kitaev’s Toric Code Model is equivalent to Levin-Wen model
associated to the category RepZ2

of representations of Z2.

It is the simplest example that can illustrate the general
features of Levin-Wen models.

Liang Kong 2nd Conference of Tsinghua Sanya International Mathematics Forum, Dec. 2011
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Kitaev’s Toric Code Model

H = ⊗e∈all edgesHe ; He = C2.

H = −
∑
v

Av −
∑
p

Bp.

Av = σ1
xσ

2
xσ

3
xσ

4
x ; Bp = σ5

zσ
6
zσ

7
zσ

8
z .
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Vacuum properties of toric code model:

A vacuum state |0〉 is a state satisfying Av |0〉 = |0〉,Bp|0〉 = |0〉
for all v and p.

If surface topology is trivial (a sphere, an infinite plane), the
vacuum is unique.

Vacuum is given by the condensation of closed strings, i.e.

|0〉 =
∑

c∈all closed string configurations

|c〉.

Liang Kong 2nd Conference of Tsinghua Sanya International Mathematics Forum, Dec. 2011
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Excitations

The “set” of excitations determines the topological phase.

An excitation is defined to be super-selection sectors
(irreducible modules) of a local operator algebra.

There are four types of excitations: 1, e,m, ε. We denote the
ground states of these sectors as |0〉, |e〉, |m〉, |ε〉. We have

∃v0, Av0 |e〉 = −|e〉,
∃p0, Bp0 |m〉 = −|m〉,

∃v1, p1, Av1 |ε〉 = −|ε〉, Bp1 |ε〉 = −|ε〉.

Liang Kong 2nd Conference of Tsinghua Sanya International Mathematics Forum, Dec. 2011
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1 = e ⊗ e ∼ σ1
zσ

2
zσ

3
zσ

4
zσ

5
z |0〉,

1 = m ⊗m ∼ σ6
xσ

7
xσ

8
x |0〉,

e ⊗m = ε.

+ 1, e,m, ε are simple objects of a braided tensor category
Z (RepZ2

) which is the monoidal center of RepZ2
.

Liang Kong 2nd Conference of Tsinghua Sanya International Mathematics Forum, Dec. 2011
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A smooth edge

1 −→ 1 e −→ e

m −→ 1 ε −→ e

+ This assignment actually gives a monoidal functor
Z (RepZ2

)→ RepZ2
= FunRepZ2

(RepZ2
,RepZ2

).

Liang Kong 2nd Conference of Tsinghua Sanya International Mathematics Forum, Dec. 2011
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A rough edge

1 −→ 1 m −→ m

e −→ 1 ε −→ m

+ This assignment gives another monoidal functor
Z (RepZ2

)→ RepZ2
= FunRepZ2

(Hilb,Hilb).

Liang Kong 2nd Conference of Tsinghua Sanya International Mathematics Forum, Dec. 2011
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defects of codimension 1, 2

Bp1 = σ7
xσ

3
xσ

2
xσ

5
x ; Bp2 = σ3

xσ
7
xσ

8
xσ

9
x ;

BQ = σ6
xσ

17
y σ

18
z σ

19
z σ

20
z .
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defects of codimension 1

1 7→ 1 7→ 1, e
σ3
z−→ Extdefect3|7,8,9

σ8
x−→ m,

m 7→ Extdefect7|3,2,5 7→ e, ε 7→ Extdefect2,5,7,8,9,3 7→ ε.

+ This assignment gives an invertible monoidal functor
Z (RepZ2

)→ FunRepZ2
|RepZ2

(Hilb,Hilb)→ Z (RepZ2
).
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defects of codimension 2

BQ = σ6
xσ

17
y σ

18
z σ

19
z σ

20
z

+ Two eigenstates of BQ correspond to two simple
RepZ2

-RepZ2
-bimodule functors Hilb→ RepZ2

.
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Outline

1 Kitaev’s Toric Code Model

2 Levin-Wen models

3 Extended Topological Field Theories
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Basics of unitary tensor category

unitary tensor category C = unitary spherical fusion category

semisimple: every object is a direct sum of simple objects;

finite: there are only finite number of inequivalent simple
objects, i , j , k , l ∈ I, |I| <∞; dim Hom(A,B) <∞.

monoidal: (i ⊗ j)⊗ k ∼= i ⊗ (j ⊗ k); 1 ∈ I, 1⊗ i ∼= i ∼= i ⊗ 1;

the fusion rule: dim Hom(i ⊗ j , k) = Nk
ij <∞;

C is not assumed to be braided.

Theorem (Müger): The monoidal center Z (C) of C is a modular
tensor category.

Liang Kong 2nd Conference of Tsinghua Sanya International Mathematics Forum, Dec. 2011
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Fusion matrices

The associator (i ⊗ j)⊗ k
α−→ i ⊗ (j ⊗ k) induces an isomorphism:

Hom((i ⊗ j)⊗ k , l)
∼=−→ Hom(i ⊗ (j ⊗ k), l)

Writing in basis, we obtain the fusion matrices:

j i

k
m

l

=
∑
n

F ijk;l
mn

j i

k

n

l

(1)

Liang Kong 2nd Conference of Tsinghua Sanya International Mathematics Forum, Dec. 2011
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Levin-Wen models

We fix a unitary tensor category C with simple objects
i , j , k , l ,m, n ∈ I.

s
v

Figure: Levin-Wen model defined on a honeycomb lattice.

Hs = CI , Hv = ⊕i ,j ,kHomC(i ⊗ j , k).

H = ⊗sHs ⊗v Hv .

Liang Kong 2nd Conference of Tsinghua Sanya International Mathematics Forum, Dec. 2011
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Hamiltonian

Chose a basis of H, i , j , k ∈ I and αi ′j ′;k ′ ∈ HomC(i ′ ⊗ j ′, k ′),

i

j
k

α

H = −
∑
v

Av −
∑
p

Bp.

Av |(i , j ; k |αi ′,j ′;k ′)〉 = δi ,i ′δj ,j ′δk,k ′ |(i , j ; k |αi ′,j ′;k ′)〉.

If the spin on v is such that Av acts as 1, then it is called stable.

Liang Kong 2nd Conference of Tsinghua Sanya International Mathematics Forum, Dec. 2011
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The definition of Bp operator

Bp :=
∑
i∈I

di∑
k d

2
k

B i
p

If there are unstable spins around the plaquette p, B i
p act on

the plaquette as zero.

Liang Kong 2nd Conference of Tsinghua Sanya International Mathematics Forum, Dec. 2011
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If all the spins at the corners are stable, then Bk
p is defined as

follow: suppressing all the spin labels,

Bk
p |

i1

i2

i3 i4

i5

i6
j1

j2

j3
j4

j5

j6

〉 = |

i1

i2

i3 i4

i5

i6
j1

j2

j3
j4

j5

j6
k 〉 ,

the right hand side of which is a sum of hexagons (without
the k-loop) obtained by first fusing the k-loop with each
j-edge then evaluating 6 triangles.

Bp is a projector. Av and Bp commute.

Liang Kong 2nd Conference of Tsinghua Sanya International Mathematics Forum, Dec. 2011
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Ground states

Av |0〉 = |0〉, Bp|0〉 = |0〉.

If the model is defined on a surface Σ, then the space of ground
states is exactly given by the TV (Σ). It has been known for a long
time. But only rigorously proved recently by Kirillov Jr. (2011)
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Remark:

Given a unitary tensor category C, we obtain a lattice model.

Conversely, Levin-Wen showed how the axioms of the unitary
tensor category can be derived from the requirement to have a
fix-point wave function of a string-net condensation state.
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Edge theories

If we cut the lattice, we automatically obtain a lattice with a
boundary with all boundary strings labeled by simple objects in C.

i

j

k

l

m

i1

i2

i3

i4

We will call such boundary as a C-boundary or C-edge.

Question: Are there any other possibilities?
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M-edge
It is possible to label the boundary strings by a different finite set
{λ, σ, . . . } which can be viewed as the set of inequivalent simples
objects of another finite unitary semisimple category M.

λ

γ

δ

σ

ρ

i

j

k

l

The requirement of giving a fix-point wave function of string-net
condensation state is equivalent to require that M has a structure
of C-module. We call such boundary an CM-boundary or

CM-edge.
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C-module M:

For i ∈ C, γ, λ ∈M,

i ⊗ γ is an object in M (⊗ : C ×M→M)

dim HomM(i ⊗ γ, λ) = Nλ
i ,γ <∞;

1⊗ γ ∼= γ;

associator (i ⊗ j)⊗ λ α−→ i ⊗ (j ⊗ λ);

fusion matrices:

j i

λ
σ

γ

=
∑
n

F ijk;l
mn

j i

λ

ρ

γ

(2)
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Boundary excitations

p1

p2

p3

∂R̄

For a given region R̄ (with n = 2-external C-legs), R̄ = ∂R̄ ∪ R, an
excitation is given by a Hilbert subspace ImPR̄ ⊂ HR̄ = H∂R̄ ⊗HR

such that the projector PR̄ commutes with the action of ⊗3
i=1Bpi

on the plaquettes immediately outside ∂R̄.
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The action of ⊗3
i=1Bpi on the plaquettes immediately outside ∂R

can be written as
∑

r Q
ext
r ⊗ Q∂R̄

r where Qr
ext acts on Hext and

Qr
∂R on H∂R̄ . The linear independence of Qext

r implies that Qr
∂R̄

commute with PR̄ .
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{Qr
∂R} generate an algebra A

(n)
MM (n=2) spanned by:

Theorem: A boundary excitation = a module over A
(n)
MM.

Theorem: A
(m)
MM and A

(n)
MM are Morita equivalent.
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The case n = 0

Local operator algebra: AMM := A
(0)
MM.

AMM := ⊕i ,λ1,λ2,γ1,γ2HomM(i ⊗ λ2, λ1)⊗ HomM(γ1, i ⊗ γ2).

For ξ ∈ HomM(i ⊗ λ2, λ1) and ζ ∈ HomM(γ1, i ⊗ γ2), the element
ξ ⊗ ζ ∈ AMM can be expressed by the following graph:

ξ ⊗ ζ = i

λ1 λ2ξ

γ1 γ2ζ

for i ∈ C and λ1, λ2, γ1, γ2 ∈M.
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The multiplication AMM ⊗ AMM
•−→ AMM is defined by

i

λ1 λ2ξ

γ1 γ2ζ

• j

λ′1 λ′2ξ′

γ′1 γ′2ζ′

= δλ2λ′2
δγ2γ′2

i j

λ1 λ2 λ3ξ ξ′

γ1 γ2 γ3

ζ ζ′

where the last graph is a linear span of graphs in AMM by
applying F-moves twice and removing bubbles.
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i j

λ1

λ2

λ3

γ3

γ2

γ1

an excitation

Figure: Two elements of local operator algebra AMM act on an edge
excitation (up to an ambiguity of the excited region).
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i

λ1

λ2

ρ

γ2

γ1

=
∑

σ,ξ

λ1

λ2

ρ

σ

ρ

γ2

γ1

i

i

ξ

ξ

AMM is bialgebra with above comultiplication.

Liang Kong 2nd Conference of Tsinghua Sanya International Mathematics Forum, Dec. 2011

Levin-Wen Models and Tensor Categories



Outline Kitaev’s Toric Code Model Levin-Wen models Extended Topological Field Theories

With some small modifications, one can turn AMM into a weak
C ∗-Hopf algebra so that the boundary excitations form a finite
unitary fusion category (Hayashi99, Szlachanyi00; Ostrik01, etc.).

Theorem [Ostrik, Kitaev-K.]:
The category of AMM-modules ∼= FunC(M,M).

A physical proof: use the set-up to show that excitations are
classified by closed string operators that commute with the
Hamiltonian (Levin-Wen). It is fairly straightforward to show that
the latter objects are equivalent to C-module functors.
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Close the boundary to a circle, a closed string operator on it is
nothing but a systematic reassignment of boundary string labels
and spin labels:

γ 7→ F (γ) ∈M,

HomM(i ⊗ γ, λ) 7→ HomM(i ⊗ F (γ),F (λ))

This assignment is essentially the same data forming a functor
from M to M. Physical requirements (Levin-Wen) add certain
consistency conditions which turn it into a C-module functor.

Theorem: Excitations on a CM-edge are given by simple objects
in the category FunC(M,M) of C-module functors.
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a defect line or a domain wall

i

j

k

l

λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8

λ9

i ′

j ′

k ′

l ′

i , j , k , l ∈ C, λ1, . . . , λ9 ∈M, i ′, j ′, k ′, l ′ ∈ D. C and D are unitary
tensor categories and M is a C-D-bimodule. We call such defect

CMD-defect line or CMD-wall.
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A M-edge can be viewed as CMHilb-wall.

Conversely, if we fold the system along the CMD-wall, we
obtain a doubled bulk system determined by C �Dop with a
single boundary determined by M which is viewed as a
C �Dop-module.

a CMD-wall = a C�DopM-edge
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Therefore, we have:

CMD-wall excitations = C�DopM-edge excitations

= FunC�Dop(M,M)

= FunC|D(M,M)

FunC|D(M,M) := the category of C-D-bimodule functors.
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As a special case, i , j , k , l , λ1, . . . , λ9, i
′, j ′, k ′, l ′ ∈ C =M = D.

i

j

k

l

λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8

λ9

i ′

j ′

k ′

l ′

a line in C-bulk = a CCC-wall

C-bulk excitations = CCC-wall excitations

= FunC|C(C, C) = Z (C)
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A CMD-wall can fuse with a DNE -wall into a

C(M�D N )E -wall.

CMD-wall (or DNE -wall) excitations can fuse into

C(M�D N )E -wall as follow:

(M F−→M) 7→ (M�D N
F�D idN−−−−−→M�D N )

(N G−→ N ) 7→ (M�D N
idM�DG−−−−−−→M�D N )
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As a special case M = D: we obtain

the fusion of bulk excitations into wall excitations

as a monoidal functor:

(D F−→ D) 7→ (D �D N
F�D idN−−−−−→ D �D N )
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i

j

k

l

λ1

λ2

λ3

λ4

λ5

λ6

λ7

λ8

λ9

i ′

j ′

k ′

l ′

a cospan : Z (C)
LM−−→ FunC|D(M,M)

RM←−− Z (D)

LM : (C F−→ C) 7−→ (M∼= C �CM
F�C idM−−−−−→ C �CM∼=M)

RM : (D G−→ D) 7−→ (M∼=M�D D
idM�DG−−−−−→M�D D ∼=M)
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Definition: If M�D N ∼= C and N �CM∼= D, then M and N
are called invertible; C and D are called Morita equivalent.

Theorem (Müger, Etingof-Nikshych-Ostrik, Kitaev)
C and D are Morita equivalent iff Z (C) is equivalent to Z (D) as
braided tensor categories.

Invertible C-C-defects form a group called Picard group Pic(C).

We denote the auto-equivalence of Z (C) as Aut(Z (C)).

Theorem (Etingof-Nikshych-Ostrik09, Kitaev-K.09):

Aut(Z (C)) ∼= Pic(C).
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Defects of codimension 2

A defect of codimension 2 is a junction between a CMD-wall
and a CND-wall. It corresponds to a module functor
F ∈ FunC|D(M,N ).

Any excitation can be viewed as a defect of codimension 2.

Any defect of codimension 2 is an excitation in the sense that
it can be realized as a super-selection sector of a local
operator algebra AMN .
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Action of AMN on defects of codimension 2

i j

λ1

λ2

λ3

γ3

γ2

γ1

a cod-2 defect

λ1, λ2, λ3 ∈M, γ1, γ2, γ3 ∈ N
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1 The category of AMN -modules = FunC(M,N ).

2 If M and N are C-D-walls, then we have the following
commutative diagram:

FunC|D(M,M)

F∗
��

Z (C)

LM
88

LN &&

FunC|D(M,N ) Z (D)

RM
ff

RNxx
FunC|D(N ,N )

F∗

OO
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Defects of codimension 3 (instantons)

If one takes into account the time direction, one can define a
defect of codimension 3 by a natural transformation φ between
module functors.

The Hamiltonian:
H → H + Ht .

where Ht is a local operator defined using φ (an instanton).
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Dictionary 1:

Ingredients in LW-model Tensor-categorical notions

a bulk lattice a unitary tensor category C
string labels in a bulk simple objects in a unitary tensor category

C
excitations in a bulk simple objects in Z (C) the monoidal cen-

ter of C
an edge a C-module M
string labels on an edge simple objects in a C-module M
excitations on a M-edge FunC(M,M): the category of C-module

functors
bulk-excitations fuse into
an M-edge

Z (C) = FunC|C(C, C)→ FunC(M,M)

(C F−→ C) 7→ (C�CM
F�idM−−−−−→ C�CM).
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Dictionary 2:

Ingredients in LW-model Tensor-categorical notions

a domain wall a C-D-bimodule N
string labels on a N -wall simple objects in a C-D-bimodule CND
excitations on a N -wall FunC|D(N ,N ): the category of C-D-

bimodule functors
fusion of two walls M�D N
an invertible CND-wall C and D are Morita equivalent, i.e.

N ⊗D N op ∼= C, N op ⊗C N ∼= D.
bulk-excitation fuse into a Z (C) = FunC|C(C, C)→ FunC|D(N ,N )

CND-wall (C F−→ C) 7→ (C �C N
F�idN−−−−→ C �C N ).

defects of codimension 2: a
M-N -excitation

simple objects F ,G ∈ FunC|D(M,N )

a defect of codimesion 3 a natural transformation φ : F → G
or an instanton
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Outline

1 Kitaev’s Toric Code Model

2 Levin-Wen models

3 Extended Topological Field Theories
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Levin-Wen models enriched by defects of codimension 1,2,3
can be viewed as a categorified theory of
Fröhlich-Fuchs-Runkel-Schweigert’s theory for rational CFTs
with defects of codimension 1, 2.

It provides a physical meaning behind the so-called extended
Turaev-Viro topological field theories.

Algebraic structures appeared in extended Turaev-Viro TQFT
can be summarized as a conjectured boundary-to-bulk (or
holography) functor between two tri-categories as we will
discuss.
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The building blocks of the lattice models:

F

�&

G

x�

φ *4C D

M

��

N

DD

in which 0-1-2-3 cells form a tri-category, or “equivalently”,

ϕ

�&

ϕ′

x�

m *4C-Mod D-Mod

FM

��

FN

DD
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A tri-category of excitations (?):

Z (M)

F∗

��

G∗

��
Z (C)

LM

77

LN

''

Z (M,N )F
Z(φ) // Z (M,N )G Z (D)

RM

gg

RN

ww
Z (N )

F∗

__

G∗

??

Z (M) := FunC|D(M,M), Z (N ) := FunC|D(N ,N ),
F ,G ∈ Z (M,N ) := FunC|D(M,N ).
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Conjecture (Functoriality of Holography): The assignment Z is a
functor between two tricategories.

Remark: It also says that the notion of monoidal center is
functorial.

Liang Kong 2nd Conference of Tsinghua Sanya International Mathematics Forum, Dec. 2011

Levin-Wen Models and Tensor Categories



Outline Kitaev’s Toric Code Model Levin-Wen models Extended Topological Field Theories

General philosophy: for n + 1-dim extended TQFT,

pt 7→ n-category of boundary conditions.

Extended Turaev-Viro (2+1) TQFT: the bicategory of boundary
conditions of LW-models = C-Mod,

pt+,− 7→ C,D or (C-Mod ∼= D-Mod),

an interval 7→ CMD,DNC (invertible)

S1 7→ Tr(C) = Z (C),
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Thank you!
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