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1. Introduction

Classical electromagnetism is a well-established discipline. However, there remains some
confusions andmisunderstandings with respect to its basic structures and interpretations. For
example, there is a long-lasting controversy on the choice of unit systems. There are also the
intricate disputes over the so-called EH or EB formulations. In some textbooks, the authors
respect the fields E and B as fundamental quantities and understate D and H as auxiliary
quantities. Sometimes the roles of D and H in a vacuum are totally neglected.

These confusions mainly come from the conventional formalism of electromagnetism and
also from the use of the old unit systems, in which distinction between E and D, or B and
H is blurred, especially in vacuum. The standard scalar-vector formalism, mainly due to
Heaviside, greatly simplifies the electromagnetic (EM) theory compared with the original
formalism developed by Maxwell. There, the field quantities are classified according to the
number of components: vectors with three components and scalars with single component.
But this classification is rather superficial. From a modern mathematical point of view, the
field quantities must be classified according to the tensorial order. The field quantities D and
B are the 2nd-order tensors (or 2 forms), while E and H are the 1st-order tensors (1 forms).
(The anti-symmetric tensors of order n are called n-forms.)

The constitutive relations are usually considered as simple proportional relations between E
and D, and between B and H. But in terms of differential forms, they associate the conversion
of tensorial order, which is known as the Hodge dual operation. In spite of the simple
appearance, the constitutive relations, even for the case of vacuum, are the non-trivial part
of the EM theory. By introducing relativistic field variables and the vacuum impedance, the
constitutive relation can be unified into a single equation.

The EM theory has the symmetry with respect to the space inversion, therefore, each field
quantity has a definite parity, even or odd. In the conventional scalar-vector notation, the
parity is assigned rather by hand not from the first principle: the odd vectors E and D
are named the polar vectors and the even vectors B and H are named the axial vectors.
With respect to differential forms, the parity is determined by the tensorial order and
the pseudoness (twisted or untwisted). The pseudoness is flipped under the Hodge dual
operation. The way of parity assignment in the framework of differential forms is quite
natural in geometrical point of view.
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2 Electromagnetic Theory

It is well understood that the Maxwell equations can be formulated more naturally in the
four dimensional spatio-temporal (Minkowski) space. However, the conventional expression
with tensor components (with superscripts or subscripts) is somewhat abstract and hard to
read out its geometrical or physical meaning. Here it will be shown that the four-dimensional
differential forms are the most suitable method for expressing the structure of the EM theory.
We introduce two fundamental, relativistic 2-forms, which are related by the four-dimensional
Hodge’s dual operation and the vacuum impedance.

In this book chapter, we reformulate the EM theory with the differential forms by taking care
of physical perspective, the unit systems (physical dimensions), and geometric aspects, and
thereby provide a unified and clear view of the solid and beautiful theory.

Here we introduce notation for dimensional consideration. When the ratio of two quantities
X and Y is dimensionless (just a pure number), we write X SI∼ Y and read “X and Y are
dimensionally equivalent (in SI).” For example, we have c0t SI∼ x. If a quantity X can be
measured in a unit u, we can write X SI∼ u. For example, for d = 2.5m we can write d SI∼ m.

2. The vacuum impedance as a fundamental constant

The vacuum impedance was first introduced explicitly in late 1930’s (Schelkunoff (1938)) in
the study of EM wave propagation. It is defined as the amplitude ratio of the electric and
magnetic fields of plane waves in vacuum, Z0 = E/H, which has the dimension of electrical
resistance.

It is also called the characteristic impedance of vacuum or the wave resistance of vacuum. Due
to the historical reasons, it has been recognized as a special parameter for engineers rather
than a universal physical constant. Compared with the famous formula (Maxwell (1865))
representing the velocity of light c0 in terms of the vacuum permittivity ε0 and the vacuum
permeability μ0,

c0 =
1√

μ0ε0
, (1)

the expression for the vacuum impedance

Z0 =

√
μ0
ε0

, (2)

is used far less often. In fact the term is rarely found in index pages of textbooks on
electromagnetism.

As we will see, the pair of constants (c0, Z0) can be conveniently used in stead of the pair
(ε0, μ0) for many cases. However, conventionally the asymmetric pairs (c0, μ0) or (c0, ε0) are
often used and SI equations become less memorable.

In this section, we reexamine the structure of electromagnetism in view of the SI system (The
International System of Units) and find that Z0 plays very important roles as a universal
constant.

Recent development of new type of media called metamaterials demands the reconsideration
of wave impedance. In metamaterials (Pendry & Smith (2004)), both permittivity ε and
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Reformulation of Electromagnetism with Differential Forms 3

permeability μ can be varied from values for vacuum and thereby the phase velocity vph =

1/
√

εμ and the wave impedance Z =
√

μ/ε can be adjusted independently. With the control
of wave impedance the reflection at the interfaces of media can be reduced or suppressed.

2.1 Roles of the vacuum impedance

In this section, we show some examples for which Z0 plays important roles (Kitano (2009)).
The impedance (resistance) is a physical quantity by which voltage and current are related.
In the SI system, the unit for voltage is V(= J/C) (volt) and the unit for current is A(=
C/s) (ampere). We should note that the latter is proportional to and the former is inversely
proportional to the unit of charge, C (coulomb). Basic quantities in electromagnetism can be
classified into two categories as

φ, A, E, B Force quantities ∝ V,

D, H, P, M, �, J Source quantities ∝ A. (3)

The quantities in the former categories contain V in their units and are related to
electromagnetic forces. On the other hand, the quantities in the latter contain A and are
related to electromagnetic sources. The vacuum impedance Z0 (or the vacuum admittance
Y0 = 1/Z0) plays the role to connect the quantities of the two categories.

2.1.1 Constitutive relation

The constitutive relations for vacuum, D = ε0E and H = μ−1
0 B, can be simplified by using

the relativistic pairs of variables as [
E

c0B

]
= Z0

[
c0D
H

]
. (4)

The electric relation and magnetic relation are united under the sole parameter Z0.

2.1.2 Source-field relation

We know that the scalar potential Δφ induced by a charge Δq = �Δv is

Δφ =
1

4πε0

�Δv
r

, (5)

where r is the distance between the source and the point of observation. The charge is
presented as a product of charge density � and a small volume Δv. Similarly a current moment
(current times length) JΔv generates the vector potential

ΔA =
μ0
4π

JΔv
r

. (6)

The relations (5) and (6) are unified as

Δ
[

φ
c0A

]
=

Z0
4πr

[
c0�

J

]
Δv. (7)

We see that the vacuum impedance Z0 plays the role to relate the source (J, c0�)Δv and the
resultant fields Δ(φ, c0A) in a unified manner.
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4 Electromagnetic Theory

2.1.3 Plane waves

We know that for linearly polarized plane waves propagating in one direction in vacuum, a
simple relation E = c0B holds. If we introduce H (= μ−1

0 B) instead of B, we have E = Z0H.
This relation was introduced by Schelkunoff (Schelkunoff (1938)). The reason why H is used
instead of B is as follows. A dispersive medium is characterized by its permittivity ε and
and permeability μ. The monochromatic plane wave solution satisfies E = vB, H = vD, and
E/H = B/D = Z, where v = 1/

√
εμ and Z =

√
μ/ε. The boundary conditions for magnetic

fields at the interface of media 1 and 2 are H1t = H2t (tangential) and B1n = B2n (normal).
For the case of normal incidence, which is most important practically, the latter condition
becomes trivial and cannot be used. Therefore the pair of E and H is used more conveniently.
The energy flow is easily derived from E and H with the Poynting vector S = E × H. In
the problems of EM waves, the mixed use of the quantities (E and H) of the force and source
quantities invites Z0.

2.1.4 Magnetic monopole

Let us compare the force between electric charges q ( SI∼ As = C) and that between magnetic
monopoles g ( SI∼ V s = Wb). If these forces are the same for equal distance, r, i.e.,
q2/(4πε0r2) = g2/(4πμ0r2), we have the relation g = Z0q. This means that a charge of
1C corresponds to a magnetic charge of Z0 × 1C ∼ 377Wb.

With this relation in mind, the Dirac monopole g0 (Sakurai (1993)), whose quantization
condition is g0e = h, can be beautifully expressed in terms of the elementary charge e as

g0 =
h
e
=

h
Z0e2

(Z0e) =
Z0e
2α

, (8)

where h = 2πh̄ is Planck’s constant. The dimensionless parameter α = Z0e2/2h =
e2/4πε0h̄c0 ∼ 1/137 is called the fine-structure constant, whose value is independent of unit
systems and characterizes the strength of electromagnetic interaction.

2.1.5 The fine-structure constant

We have seen that the fine-structure constant itself can be represented more simply with the
use of Z0. Further, by introducing the von Klitzing constant (the quantized Hall resistance)
(Klitzing et al. (1980)) RK = h/e2, the fine-structure constant can be expressed as α = Z0/2RK
(Hehl & Obukhov (2005)). We have learned that the use of Z0 helps to keep SI-formulae in
simple forms.

3. Dual space and differential forms

3.1 Covector and dual space

We represent a (tangential) vector at position r as

x = x1e1 + x2e2 + x3e3
SI∼ m, (9)
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which represents a small spatial displacement from r to r + x. We have chosen an arbitrary
orthonormal basis {e1, e2, e3} with inner products (ei, ej) = δij, where

δij =

{
1 (i = j)
0 (i �= j)

(10)

is Kronecker’s delta. We note that xi
SI∼ m and ei

SI∼ 1.

Such vectors form a linear space which is called a tangential space at r. The inner product of
vectors x and y is (x, y) = x1y1 + x2y2 + x3y3

SI∼ m2.

We consider a linear function φ(x) on the tangential space. For any c1, c2 ∈ R, and any vectors
x1 and x2, φ(c1x1 + c2x2) = c1φ(x1) + c1φ(x2) is satisfied. Such linear functions form a linear
space, because the (weighted) sum of two functions d1φ1 + d2φ2 with d1, d2 ∈ R defined with

(d1φ1 + d2φ2)(x) = d1φ1(x) + d2φ2(x) (11)

is also a linear function. This linear space is called a dual space. The dimension of the dual
space is three. In general, the dimension of dual space is the same that for the original linear
space. We can introduce a basis {ν1, ν2, ν3}, satisfying νi(ej) = δij. Such a basis, which is
dependent on the choice of the original basis, is called a dual basis. Using the dual basis, the
action of a dual vector φ( ) = a1ν1( ) + a2ν2( ) + a3ν3( ), a1, a2, a3 ∈ R can be written simply as

φ(x) = (a1ν1 + a2ν2 + a3ν3)(x1e1 + x2e2 + x3e3) (12)

=
3

∑
i=1

3

∑
j=1

aixjνi(ej) = x1a1 + x2a2 + x3a3. (13)

Here we designate an element of dual space with vector notation as a rather as a function φ( )
in order to emphasize its vectorial nature, i.e.,

a · x = φ(x). (14)

We call a as a dual vector or a covector. The dual basis {ν1, ν2, ν3} are rewritten as {n1, n2, n3}
with ni · ej = δij. The dot product a · x and the inner product (x, y) should be distinguished.
Here bold-face letters x, y, z, and e represent tangential vectors and other bold-face letters
represent covectors.

A covector a can be related to a vector z uniquely using the relation, a · x = (z, x) for any
x. The vector z and the covector a are called conjugate each other and we write z = a� and
a = z�. In terms of components, namely for a = ∑i aini and z = ∑i ziei, ai = zi (i = 1, 2, 3)
are satisfied

For the case of orthonormal basis, we note that n�
i = ei, e�i = ni. Due to these incidental

relations, we tend to identify ni with ei. Thus a covector a is identified with its conjugate a�
mostly. However, we should distinguish a covector as a different object from vectors since it
bears different functions and geometrical presentation (Weinreich (1998)).

The inner product for covectors are defined with conjugates as (a, b) = (a�, b�). We note the
dual basis is also orthonormal, since (ni, nj) = (n�

i , n�
j ) = (ei, ej) = δij.
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6 Electromagnetic Theory

A good example of covector is the electric field at a point r. The electric field is determined
through the gained work W when an electric test charge q at r is displaced by x. A function
φ ·· x �→ W/q is linear with respect to x if |x| is small enough. Therefore φ( ) is considered as
a covector and normally written as E, i.e., φ(x) = E · x SI∼ V. Thus the electric field vector can
be understood as a covector rather than a vector. It should be expanded with the dual basis as

E = E1n1 + E2n2 + E3n3
SI∼ V/m. (15)

The norm is given as ||E|| = (E, E)1/2 =
√

E2
1 + E2

2 + E2
3. We note that ni

SI∼ 1 and Ei
SI∼ V/m.

3.2 Higher order tensors

Now we introduce a tensor product of two covectors a and b as T = ab, which acts on two
vectors and yield a scalar as

T ·· xy = (ab) ·· xy = (a · x)(b · y). (16)

It can be considered as a bi-linear functions of vectors, i.e., T ·· xy = Φ(x, y) with

Φ(c1x1 + c2x2, y) = c1Φ(x1, y) + c1Φ(x2, y),

Φ(x, c1y + c2y2) = c1Φ(x, y1) + c1Φ(x, y2), (17)

where c1, c2 ∈ R. We call it a bi-covector.

We can define a weighted sum of bi-covectors T = d1T1 + d2T2, d1, d2 ∈ R, which is not
necessarily written as a tensor product of two covectors but can be written as a sum of tensor
products. Especially, it can be represented with the dual basis as

T =
3

∑
i=1

3

∑
j=1

Tijninj, (18)

where Tij = T ·· eiej is the (i, j)-component of T .

Similarly we can construct a tensor product of three covectors as T = abc, which acts on three
vectors linearly as T ·· xyz. Weighted sums of such products form a linear space, an element
of which is called a tri-covector. Using a tensor product of n covectors, a multi-covector or an
n-covector is defined.

3.3 Anti-symmetric multi-covectors — n-forms

If a bicovector T satisfies T ·· yx = −T ·· xy for any vectors x and y, then it is called
antisymmetric. Anti-symmetric bicovectors form a subspace of the bicovector space.
Namely, a weighted sum of anti-symmetric bicovector is anti-symmetric. It contains an
anti-symmetrized tensor product, a ∧ b := ab − ba, which is called a wedge product. In terms
of basis, we have

a ∧ b =
3

∑
i=1

aini ∧
3

∑
j=1

bjnj = ∑
(i,j)

(aibj − ajbi)ni ∧ nj, (19)
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where the last sum is taken for (i, j) = (1, 2), (2, 3), (3, 1). A general anti-symmetric bicovector
can be written as

T = ∑
(i,j)

Tijni ∧ nj. (20)

We see that the 2-form has three independent components; T12 = −T21, T23 = −T32, T31 =
−T13, and others are zero. The norm of T is ||T || = (T ,T )1/2 = ∑(i,j) TijTij.

If a bicovector T satisfies T ·· xx = 0 for any x, then it is anti-symmetric. It is easily seen from
the relation: 0 = T ·· (x + y)(x + y) = T ·· xx +T ·· xy +T ·· yx +T ·· yy.

An anti-symmetric multi-covector of order n are often called an n-form. A scalar and a
covector are called a 0-form and a 1-form, respectively. The order n is bounded by the
dimension of the vector space, d = 3, in our case. An n-form with n > d vanishes due to
the anti-symmetries.

Geometrical interpretations of n-forms are given in the articles (Misner et al. (1973); Weinreich
(1998)).

3.4 Field quantities as n-forms

Field quantities in electromagnetism can be naturally represented as differential forms (Burke
(1985); Deschamps (1981); Flanders (1989); Frankel (2004); Hehl & Obukhov (2003)). A good
example of 2-form is the current density. Let us consider a distribution of current that flows
through a parallelogram spanned by two tangential vectors x and y at r. The current I(x, y)
is bilinearly dependent on x and y. The antisymmetric relation I(y, x) = −I(x, y) can
understood naturally considering the orientation of parallelograms with respect to the current
flow. Thus the current density can be represented by a 2-form J as

J ·· xy = I(x, y) SI∼ A, J = ∑
(i,j)

Jijni ∧ nj
SI∼ A/m2. (21)

The charge density can be represented by a 3-form R. The charge Q contained in a
parallelepipedon spanned by three tangential vectors x, y, and z:

R ·· xyz = Q(x, y, z) SI∼ C, R = R123n1 ∧ n2 ∧ n3
SI∼ C/m3. (22)

Thus electromagnetic field quantities are represented as n-forms (n = 0, 1, 2, 3) as shown in
Table 1, while in the conventional formalism they are classified into two categories, scalars and
vectors, according to the number of components. We notice that a quantity that is represented
n-form contains physical dimension with m−n in SI. An n-form takes n tangential vectors,
each of which has dimension of length and is measured in m (meters).

In this article, 1-forms are represented by bold-face letters, 2-forms sans-serif letters, and
3-forms calligraphic letters as shown in Table 1.

3.5 Exterior derivative

The nabla operator∇ can be considered as a kind of covector because a directional derivative
∇ · u, which is a scalar, is derived with a tangential vector u. It acts as a differential operator
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8 Electromagnetic Theory

rank quantities (unit) scalar/vector
0-form φ (V) scalar
1-form A (Wb/m), E (V/m), H (A/m), M (A/m) vector
2-form B (Wb/m2), D (C/m2), P (C/m2), J (A/m2) vector
3-form R (C/m3) scalar

Table 1. Electromagnetic field quantities as n-forms

and also as a covector. Therefore it can be written as

∇ = n1
∂

∂x1
+ n2

∂

∂x2
+ n3

∂

∂x3
SI∼ 1/m. (23)

The wedge product of the nabla ∇ and a 1-form E yields a 2-form;

∇ ∧ E = ∑
(i,j)

(
∂Ej

∂xi
− ∂Ei

∂xj

)
ni ∧ nj, (24)

which corresponds to ∇ × E in the scalar-vector formalism. Similarly a 2-form J are
transformed into a 3-form as

∇ ∧ J =

(
∂J23
∂x1

+
∂J31
∂x2

+
∂J12
∂x3

)
n1 ∧ n2 ∧ n3, (25)

which corresponds to ∇ · J.

3.6 Volume form and Hodge duality

We introduce a 3-form, called the volume form, as

E = n1 ∧ n2 ∧ n3 =
3

∑
i=1

3

∑
j=1

3

∑
k=1

εijkninjnk
SI∼ 1, (26)

where

εijk =

⎧⎪⎨
⎪⎩
1 (i, j, k : cyclic)
−1 (anti-cyclic)
0 (others)

. (27)

It gives the volume of parallelepipedon spanned by x, y, and z;

V(x, y, z) = E ··· xyz SI∼ m3. (28)

Using the volume form we can define a relation between n-forms and (d − n)-forms, which
is call the Hodge dual relation. First we note that n-forms and (d − n)-forms have the same
degrees of freedom (the number of independent components), dCn = dCd−n, and there could
be a one-to-one correspondence between them. In our case of d = 3, there are two cases:
(n, d − n) = (0, 3) and (1, 2). We consider the latter case. With a 1-form E and a 2-form D, we
can make a 3-form E ∧D = f (E,D)E . The scalar factor f (E,D) is bilinearly dependent on E
and D. Therefore, we can find a covector (a 1-form) D that satisfies (E, D) = f (E,D) for any
E. Then, D is called the Hodge dual of D and we write D = ∗D or D = ∗D using a unary
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0-form

1-form

2-form

3-form00

0

φ

E HA

DB

R

J

dd

ddd

d

∂t

∂t

−d

−∂t

−∂t

ε0∗

μ−1
0 ∗

Fig. 1. Relations of electromagnetic field forms in three dimension

operator “∗” called the Hodge star operator. In terms of components, D1 = D23, D2 = D31,
D3 = D12 for D = ∗D with D = ∑i Dini and D = ∑(i,j) Dijni ∧ nj.

Physically, (E, D)
SI∼ J/m3 corresponds to the energy density and can be represented by

the 3-form U = 1
2 E ∧ D = 1

2 (E, D)E , because U ··· xyz is the energy contained in the
parallelepipedon spanned by x, y, and z.

The charge density form can be written as R = �n1 ∧ n2 ∧ n3 = �E with the conventional
scalar charge density �. The relation can be expressed as R = ∗� or � = ∗R. Similarly, we
have E = ∗1 and 1 = ∗E .
Equations (24) and (25) are related to the conventional notations; ∗(∇ ∧ E) = ∇ × E and
∗(∇ ∧ J) = ∇ · J, respectively.

3.7 The Hodge duality and the constitutive equation

In electromagnetism, the Hodge duality and the constitutive relations are closely related. We
know that the electric field E and the electric flux density D are proportional. However we
cannot compare them directly because they have different tensorial orders. Therefore we
utilize the Hodge dual and write D = ε0(∗E). Similarly, the magnetic relation can be written
as H = μ−1

0 (∗B). Generally speaking, the constitutive relations in vacuum are considered to
be trivial relations just describing proportionality. Especially in the Gaussian unit system, they
tend to be considered redundant relations. But in the light of differential forms we understand
that they are the keystones in electromagnetism.

With the polarization P and the magnetization M, the constitutive relations in a medium are
expressed as follows:

D = ε0(∗E) + P , H = μ−1
0 (∗B)− M. (29)
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10 Electromagnetic Theory

4. The Maxwell equations in the differential forms

With differential forms, we can rewrite the Maxwell equations and the constitutive relations
as,

∇ ∧ B = 0, ∇ ∧ E +
∂B

∂t
= 0,

∇ ∧D = R, ∇ ∧ H − ∂D

∂t
= J ,

D = ε0E · E + P , H = 1
2μ−1

0 E : B − M. (30)

In the formalism of differential forms, the spatial derivative ∇ ∧ is simply denoted as d .
Together with the Hodge operator “∗”, Eq. (30) is written in simpler forms;

dB = 0, dE + ∂tB = 0,

dD = R, dH − ∂tD = J ,

D = ε0(∗E) + P , H = μ−1
0 (∗B)− M, (31)

where ∂t = ∂/∂t.

In Fig. 1, we show a diagram corresponding Eq. (31) and related equations (Deschamps
(1981)). The field quantities are arranged according to their tensor order. The exterior
derivative “d” connects a pair of quantities by increasing the tensor order by one, while time
derivative ∂t conserves the tensor order. E (B) is related toD (H) with the Hodge star operator
and the constant ε0 (μ0). The definitions of potentials and the charge conservation law

E = −dφ − ∂t A, B = dA, dJ + ∂tR = 0 (32)

are also shown in Fig. 1. We can see a well-organized, perfect structure. We will see the
relativistic version later (Fig. 2).

5. Twisted forms and parity

5.1 Twist of volume form

We consider two bases Σ = {e1, e2, e3} and Σ′ = {e′1, e′2, e′3}. They can be related as
e′i = ∑j Rijej by a matrix R = [Rij] with Rij = (e′i , ej). It is orthonormal and therefore
det R = ±1. In the case of det R = 1, the two bases have the same orientation and they can be
overlapped by a continuous transformation. On the other hand, for the case of det R = −1,
they have opposite orientation and an operation of reversal, for example, a diagonal matrix
diag(−1, 1, 1) is needed to make them overlapped with rotations. Thus we can classify all
the bases according to the orientation. We denote the two classes by C and C′, each of which
contains all the bases with the same orientation. The two classes are symmetric and there are
no a priori order of precedence, like for i and −i.

We consider a basis Σ = {e1, e2, e3} ∈ C and the reversed basis Σ′ = {e′1, e′2, e′3} =
{−e1,−e2,−e3}, which belongs to C′. The volume form E in Σ is defined so as to satisfy
E ··· e1e2e3 = +1, i.e., the volume of the cube defined by e1, e2, and e3 should be +1.
Similarly, the volume form E′ in Σ′ is defined so as to satisfy E′ ··· e′1e′2e′3 = +1. We note
that E′ ··· e1e2e3 = −E′ ··· e′1e′2e′3 = −1, namely, E′ = −E . Thus we have two kinds of volume
forms E and E′(= −E) and use either of them depending on the orientation of basis.
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Assume that Alice adopts the basis Σ ∈ C and Bob adopts Σ′ ∈ C′. When we pose a
parallelepipedon by specifying an ordered triple of vectors (x, y, z) and ask each of them to
measure its volume, their answers will always be different in the sign. It seems inconvenient
but there is no principle to choose one over the other. It is only a customary practice to use the
right-handed basis to avoid the confusion. Fleming’s left-hand rule (or right-hand rule) seems
to break the symmetry but it implicitly relies upon the use of the right-handed basis.

5.2 Twisted forms

Tensors (or forms) are independent of the choice of basis. For example, a second order tensor
can be expressed in Σ and Σ′ as

B = ∑
i

∑
j

B′
ijn

′
in

′
j = ∑

k
∑

l
Bklnknl , (33)

with the change of components Bkl = ∑i ∑j RikRjl B′
ij. We note the dual basis has been flipped

as n′
i = −ni.

Similarly, in the case of 3-forms, we have

T = T′
123n′

1 ∧ n′
2 ∧ n′

3 = T123n1 ∧ n2 ∧ n3 (34)

with T123 = T′
123. However, for the volume form the components must be changed as

ε123 = (det R)ε′123, (35)

to have E′ = −E in the case of reverse of orientation. Therefore, the volume form is called a
pseudo form in order to distinguish from an ordinary form. The pseudo (normal) form are also
call a twisted (untwisted) form.

In electromagnetism, some quantities are defined in reference to the volume form or to the
Hodge star operator. Therefore, they could be twisted or untwisted. First of all, φ, A, E,
and B are not involved with the volume form, they are all untwisted forms. On the other
hand, H = μ−1

0 (∗B) and D = ε0(∗E) are twisted forms. The Hodge operator transforms an
untwisted (twisted) form to a twisted (untwisted) form.

The quantities M, P , J , and R (charge density), which represent volume densities of
electromagnetic sources, are also twisted as shown below. We have found that the force fields
are untwisted while the source fields are twisted in general.

5.3 Source densities

Here we look into detail why the quantities representing source densities are represented by
twisted forms. As examples, we deal with polarization and charge density. Other quantities
can be treated in the same manner.

5.3.1 Polarization

We consider two tangential vectors dx, dy at a point P. Together with the volume form E , we
can define

dS = E : dxdy SI∼ m2, (36)
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which is a pseudo 1-form. (Conventionally, it is written as dS = x× y.) In fact, for a tangential
vector ζ at P, the volume dS · ζ = E ··· dxdy ζ, spanned by the three vectors is a linear function
of ζ. We choose dz that is perpendicular to the plane spanned by dx and dy, i.e., (dz,dx) =
(dz,dy) = 0. We assume |dz| � |dx| and |dz| � |dy|. dV = dS · dz is the volume of thin
parallelogram plate.

When a charge +q is displaced by l from the other charge −q, they form an electric dipole
p = ql. We consider an electric dipole moment at a point P in dV. The displacement l can be
considered as a tangential vector at P, to which dS acts as dS · l = q−1dS · p. Then

q′ = dS · p
dS · dz

= q
dS · l
dV

(37)

is the surface charge that is contributed by p. In the case of dS · p = 0, there are no surface
charge associated with p. If dz and p are parallel, q′dz = ql = p holds.

Next we consider the case where many electric dipoles pi = qili are spatially distributed. The
total surface charge is given as

Q′ = ∑
i∈dV

q′i = ∑
i∈dV

dS · pi
dV

= (dV)−1 ∑
i∈dV

E · pi : dxdy = P : dxdy, (38)

where the sum is taken over the dipoles contained in dV. The pseudo 2-form

P := (dV)−1 ∑
i∈dV

E · pi
SI∼ C/m2 (39)

corresponds to the polarization (the volume density of electric dipole moments).

5.3.2 Charge density

The volume dV spanned by tangential vectors dx, dy, dz at P is

dV = E ··· dxdydz SI∼ m3. (40)

For distributed charges qi, the total charge in dV is given as

Q = ∑
i∈dV

qi = ∑
i∈dV

qidV
dV

= (dV)−1 ∑
i∈dV

qiE ··· dxdydz = R ··· dxdydz. (41)

The pseudo 3-form

R := (dV)−1 ∑
i∈dV

qiE SI∼ C/m3 (42)

gives the charge density.
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untwist/twist rank quantities parity polar/axial scalar/vector
untwisted 0-form φ even – scalar
untwisted 1-form A, E odd polar vector
untwisted 2-form B even axial vector
twisted 1-form H, M even axial vector
twisted 2-from D, P , J odd polar vector
twisted 3-form R even – scalar

Table 2. Electromagnetic field quantities as twisted and untwisted n-forms

5.4 Parity

Parity is the eigenvalues for a spatial inversion transformation. It takes p = ±1 depending on
the types of quantities. The quantity with eigenvalue of +1 (−1) is called having even (odd)
parity. In the three dimensional case, the spatial inversion can be provided by simply flipping
the basis vectors; Pei = −ei (i = 1, 2, 3). The dual basis covectors are also flipped; Pnj = −nj
(j = 1, 2, 3).

A scalar (0-form) φ is even because Pφ = φ. The electric field E is a 1-form and transforms as

PE = P(∑
i

Eini) = ∑
i

EiPni = −∑
i

Eini = −E, (43)

and, therefore, it is odd. The magnetic flux density B is a 2-form and even since it transforms
as

PB = P(∑
(i,j)

Bijni ∧ nj) = ∑
(i,j)

BijPni ∧ Pnj = B . (44)

It is easy to see that the parity of an n-forms is p = (−1)n.

The volume form is transformed as

PE = P(V123n1 ∧ n2 ∧ n3) = −V123Pn1 ∧ Pn2 ∧ Pn3 = E . (45)

The additional minus sign is due to the change in the orientation of basis. If Σ ∈ C, then
PΣ ∈ C′, and vice versa. The twisted 3-form has even parity. In general, the parity of a twisted
n-form is p = (−1)(n+1).

In the conventional vector-scalar formalism, the parity is introduced rather empirically. We
have found that 1-forms and twisted 2-forms are unified as polar vectors, 2-forms and twisted
1-forms as axial vectors, and 0-forms and twisted 3-forms as scalars. Thus we have unveiled
the real shapes of electromagnetic quantities as twisted and untwisted n-forms.

6. Relativistic formulae

6.1 Metric tensor and dual basis

Combining a three dimensional orthonormal basis {e1, e2, e3} and a unit vector e0
representing the time axis, we have a four-dimensional basis {e0, e1, e2, e3}. With the basis,
a four (tangential) vector can be written

x = (c0t)e0 + xe2 + ye2 + ze3 = xαeα, (46)
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where the summation operator ∑3
α=0 is omitted in the last expression according to the

Einstein summation convention. The vector components are represented with variables with
superscripts. The sum is taken with respect to the Greek index repeated once as superscript
and once as subscript. With the four-dimensional basis, the Lorentz-type inner product can be
represented as

(x, x) = −(c0t)2 + x2 + y2 + z2 = xαxβ(eα, eβ) = xαgαβxβ = xβxβ, (47)

where we set xβ = xαgαβ and (eα, eβ) = gαβ with gαβ = 0 (α �= β), −g00 = gii = 1 (i = 1, 2, 3).

We introduce the corresponding dual basis as {e0, e1, e2, e3} with eμ · eν = δ
μ
ν , where δ

μ
ν = 0

(μ �= ν), δ00 = δi
i = 1 (i = 1, 2, 3). The dual basis covector has a superscript, while the

components have subscripts. A four covector can be expressed with the dual basis as

a = aαeα. (48)

Then the contraction (by dot product) can be expressed systematically as

a · x = aαeα · xβeβ = aαxβ eα · eβ = aαxβδα
β = aαxα. (49)

We note that the dual and the inner product (metric) are independent concepts. Especially the
duality can be introduced without the help of metric.

Customary, tensors which are represented by components with superscripts (subscripts) are
designated as contravariant (covariant) tensors. With this terminology, a vector (covector) is a
contravariant (covariant) tensor.

The symmetric second order tensor g = gαβeαeβ is called a metric tensor. Its components are

gαβ =

⎧⎪⎨
⎪⎩
−1 (α = β = 0)
1 (α = β �= 0)
0 (other cases)

. (50)

For a fixed four vector z, we can find a four covector a = aβeβ that satisfy

a · x = (z, x) (51)

for any x. The left and right hand sides can be written as

a · x = aβxαeβ · eα = aβxαδ
β
α = aβxβ,

(z, x) = zαxβ(eα, eβ) = zαgαβxβ, (52)

respectively. By comparing these, we obtain aβ = zαgαβ. We write this covector a determined
by z as

a = z� = zαgαβeβ = zβeβ, (53)

which is called the conjugate of z. We see that (e0)� = −e0, (ei)
� = ei (i = 1, 2, 3), i.e.,

(eα)� = gαβeβ 1. With gαβ = (eα, eβ), the conjugate of a covector a can be defined similarly
with zα = gαβaβ as z = a�.

1 An equation eα = gαβeβ, which we may write carelessly, is not correct.
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We have (z�)� = z, (a�)� = a, namely, �� = 1.

We introduce the four dimensional completely anti-symmetric tensor of order 4 as

E = e0 ∧ e1 ∧ e2 ∧ e3

= εαβγδeαeβeγeδ. (54)

The components εαβγδ, which are called the Levi-Civita symbol2 can be written explicitly as

εαβγδ =

⎧⎪⎨
⎪⎩
1 (αβγδ is an even permutation of 0123)
−1 (an odd permutation)
0 (other cases)

. (55)

We note that

E� = (e0)� ∧ (e1)� ∧ (e2)� ∧ (e3)�

= (−e0) ∧ e1 ∧ e2 ∧ e3
= εαβγδgαμgβνgγσgδτeμeνeσeτ

= εμνστeμeνeσeτ , (56)

where we introduced, εμνστ = εαβγδgαμgβνgγσgδτ .

The conjugate of the metric tensor is given by

g� = gαβ(e
α)�(eβ)� = gαβgαμgβνeμeν = gμνeμeν. (57)

6.2 Levi-Civita symbol

Here we will confirm some properties of the completely anti-symmetric tensor of order 4.
From the relation between covariant and contravariant components

εαβγδ = gαμgβνgγσgδτεμνστ , (58)

and g00 = −1, we see that ε0123 = −ε0123 and similar relations hold for other components.
Here we note ε0123 = −1.

With respect to contraction, we have

εαβγδεαβγδ = −24 (= −4!) (59)

εαβγδεαβγτ = −6δδ
τ (60)

εαβγδεαβστ = −2(δγ
σ δδ

τ − δ
γ
τ δδ

σ) = −4δ
γ
[σ

δδ
τ] (61)

εαβγδεανστ = −6δ
β

[ν
δ

γ
σ

δδ
τ]. (62)

where [ ] in the subscript represents the anti-symmetrization with respect to the indices. For
example, we have A[αβBγ] = (AαβBγ + AβγBα + AγαBβ − AβαBγ − AγβBα − AαγBβ)/6. We
note A∧ B = AαβBγeα ∧ eβ ∧ eγ = 6A[αβBγ]e

αeβeγ.

2 In the case of three dimension, the parity of a permutation can simply be discriminated by the cyclic or
anti-cyclic order. In the case of four dimension, the parity of 0ijk follows that of ijk and those of i0jk,
ij0k, ijk0 is opposite to that of ijk.
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6.3 Hodge dual of anti-symmetric 2nd-order tensors

The four-dimensional Hodge dual (∗A)αβ of a second order tensor Aαβ is defined to satisfy

(∗A)[αβBγδ] =
1
2
(AμνBμν)εαβγδ, (63)

for an arbitrary tensor Bγδ of order (d − 2) (Flanders (1989)). This relation is independent of
the basis 3.

Here, we will show that

(∗A)αβ =
1
2

ε
μν

αβ Aμν. (64)

Substituting into the left hand side of Eq. (63) and contracting with εαβγδ, we have

εαβγδ 1
2

Aμνε
μν

[αβ
Bγδ] = 3εαβγδε

μν
αβ AμνBγδ = 3εαβγδεαβμν AμνBγδ = −12AγδBγδ. (65)

With Eq. (59), the right hand side of Eq. (63) yields −12AμνBμν with the same contraction. We
also note

(∗∗A)αβ =
1
4

ε
γδ

αβ ε
μν

γδ Aμν =
1
4

εαβγδεγδμν Aμν

= −1
2
(δα

μδ
β
ν − δα

ν δ
β
μ)Aμν = −1

2
(Aαβ − Aβα) = −Aαβ, (66)

i.e., ∗∗ = −1, which is different from the three dimensional case; ∗∗ = 1.

7. Differential forms in Minkowski spacetime

7.1 Standard formulation

According to Jackson’s textbook (Jackson (1998)), we rearrange the ordinary scalar-vector
form of Maxwell’s equation in three dimension into a relativistic expression. We use the SI
system and pay attention to the dimensions. We start with the source equations

∇× H − ∂

∂(c0t)
(c0D) = J, ∇ · (c0D) = c0�. (67)

Combining field quantities and differential operators as four-dimensional tensors and vectors
as

(G̃αβ) =

⎡
⎢⎢⎣

0 c0Dx c0Dy c0Dz
−c0Dx 0 Hz −Hy
−c0Dy −Hz 0 Hx
−c0Dz Hy −Hx 0

⎤
⎥⎥⎦ SI∼ A/m, (68)

3 With the four-dimensional volume form E = e0 ∧ e1 ∧ e2 ∧ e3, the Hodge dual for p form (p = 1, 2, 3)
can be defined as (∗A) ∧ B = (A, B)E , (∗A) ∧ B = (A,B)E, and (∗A) ∧ B = (A,B)E. The inner
product for p forms is defined as (a1 ∧ · · · ∧ ap, b1 ∧ · · · ∧ bp) = det(ai , bj). (Flanders (1989))
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(∂β) =

⎡
⎢⎢⎣

c−1
0 ∂t
∂x
∂y
∂z

⎤
⎥⎥⎦ SI∼ 1/m, ( J̃α) =

⎡
⎢⎢⎣

c0�
Jx
Jy
Jz

⎤
⎥⎥⎦ SI∼ A/m2, (69)

we have a relativistic equation

∂βG̃αβ = G̃αβ
,β = J̃α. (70)

We append “˜”, by the reason described later. The suffix 0 represents the time component,
and the suffixes 1, 2, 3 correspond to x, y, z-components. The commas in suffixes “,” means the
derivative with respect to the following spatial component, e.g., H2,1 = (∂/∂x1)H2.

On the other hand, the force equations

∇× E +
∂

∂(c0t)
(c0B) = 0, ∇ · (c0B) = 0, (71)

are rearranged with

(F̃αβ) =

⎡
⎢⎢⎣

0 c0Bx c0By c0Bz
−c0Bx 0 −Ez Ey
−c0By Ez 0 −Ex
−c0Bz −Ey Ex 0

⎤
⎥⎥⎦ SI∼ V/m, (72)

as

∂β F̃αβ = F̃αβ
,β = 0. (73)

Thus the four electromagnetic field quantities E, B, D, and H are aggregated into two second
order, antisymmetric tensors F̃αβ, G̃αβ.

In vacuum, the constitutive relations D = ε0E, H = μ−1
0 B hold, therefore, these tensors are

related as

G̃αβ = Y0(∗F̃)αβ, or F̃αβ = −Z0(∗G̃)αβ, (74)

where Z0 = 1/Y0 =
√

μ0/ε0
SI∼ Ω is the vacuum impedance.

The operator ∗ is the four-dimensional Hodge’s star operator. From Eq. (64), the action for a
2nd-order tensor is written as

(∗A)ij = A0k, (∗A)0i = −Ajk, (75)

where i, j, k (i, j = 1, 2, 3) are cyclic. We note that ∗∗ = −1, i.e., ∗−1 = −∗ holds.

Equation (74) is a relativistic version of constitutive relations of vacuum and carries two roles.
First it connect dimensionally different tensors G̃ and F̃ with the vacuum impedance Z0.
Secondly it represents the Hodge’s dual relation. The Hodge operator depends both on the
handedness of the basis4 and the metric.
4 We note εαβγδ is a pseudo form rather than a form. Therefore, the Hodge operator makes a form into a
pseudo form, and a pseudo form into a normal form.
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Finally, the Maxwell equations can be simply represented as

∂βG̃αβ = J̃α, ∂β F̃αβ = 0, G̃αβ = Y0(∗F̃)αβ. (76)

This representation, however, is quite unnatural in the view of two points. First of all, the
components of field quantity should be covariant and should have lower indices. Despite of
that, here, all quantities are contravariant and have upper indices in order to contract with
the spatial differential operator ∂α with a lower index. Furthermore, it is unnatural that in
Eqs. (68) and (72), D and B, which are 2-forms with respect to space, have indices of time and
space, and E and H have two spatial indices.

The main reason of this unnaturalness is that we have started with the conventional,
scalar-vector form of Maxwell equations rather than from those in differential forms.

7.2 Bianchi identity

In general textbooks, the one of equations in Eq. (76) is further modified by introducing a
covariant tensor Fαβ = 1

2 εαβγδ F̃γδ. Solving it as F̃αβ = − 1
2 εαβγδFγδ and substituting into

Eq. (73), we have

0 = ∂βεαβγδFγδ = εαβγδ∂βFγδ. (77)

Considering α as a fixed parameter, we have six non-zero terms that are related as

0 = ∂β(Fγδ − Fδγ) + ∂γ(Fδβ − Fβδ) + ∂δ(Fβγ − Fγβ)

= 2
(

∂βFγδ + ∂γFδβ + ∂δFβγ

)
(β,γ, δ = 0, . . . , 3). (78)

Although there aremany combinations of indices, this represents substantially four equations.
To be specific, we introduce the matrix representation of Fαβ as

(Fαβ) =

⎡
⎢⎢⎣

0 −Ex −Ey −Ez
Ex 0 c0Bz −c0By
Ey −c0Bz 0 c0Bx
Ez c0By −c0Bx 0

⎤
⎥⎥⎦ . (79)

Comparing this with G̃αβ in Eq. (68) and considering the constitutive relations, we find that
the signs of components with indices for time “0” are reversed. Therefore, with the metric
tensor, we have

G̃αβ = Y0gαγgβδFγδ = Y0Fαβ. (80)

Substitution into Eq. (70) yields Y0∂βFαβ = J̃α. After all, relativistically, the Maxwell equations
are written as

∂βFαβ = Z0 J̃α, ∂αFβγ + ∂βFγα + ∂γFαβ = 0. (81)

Even though this common expression is simpler than that for the non relativistic version,
symmetry is somewhat impaired. The covariant and contravariant field tensors are mixed.
The reason is that the constitutive relations, which contains the Hodge operator, is eliminated.
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7.3 Differential forms

Here we start with the Maxwell equations (31) in three-dimensional differential forms. We
introduce a basis {e0, e1, e2, e3}, and the corresponding dual basis {e0, e1, e2, e3}, i.e., eμ · eν =

δ
μ
ν . With G = e0 ∧ H + c0D, J = e0 ∧ (−J) + c0R, and ∇ = c−1

0 ∂te0 + ∇, the source
equations

∇ ∧ H − ∂

∂(c0t)
(c0D) = J , ∇ ∧ (c0D) = R, (82)

are unified as

∇ ∧ G = J , (83)

where ∧ represent the anti-symmetric tensor product or the wedge product. In components,
Eq. (83) is

∂[γGαβ] = G[αβ,γ] = Jαβγ/3. (84)

The tensor Gαβ can be written as

(Gαβ) = (G : eαeβ) =

⎡
⎢⎢⎣

0 Hx Hy Hz
−Hx 0 c0Dz −c0Dy
−Hy −c0Dz 0 c0Dx
−Hz c0Dy −c0Dx 0

⎤
⎥⎥⎦ . (85)

The covariant tensors (forms) Gαβ and Jαβγ are related to G̃αβ and J̃α in the previous subsection
as

Gαβ =
1
2

εαβγδG̃γδ, Jαβγ = −εαβγδ J̃δ, or G̃αβ = −1
2

εαβγδGγδ, J̃α =
1
6

εαβγδ Jβγδ. (86)

Similarly,

∇ ∧ E +
∂

∂(c0t)
(c0B) = 0, ∇ ∧ (c0B) = 0, (87)

can be written as

∇ ∧ F = 0, (88)

with F = e0 ∧ (−E) + c0B . In components,

∂[γFαβ] = F[αβ,γ] = 0, (89)

where

(Fαβ) = (F : eαeβ) =

⎡
⎢⎢⎣

0 −Ex −Ey −Ez
Ex 0 c0Bz −c0By
Ey −c0Bz 0 c0Bx
Ez c0By −c0Bx 0

⎤
⎥⎥⎦ . (90)

The covariant tensor (form) Fαβ is related to F̃αβ in the previous subsection as
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twisted/untwisted order quantities
untwisted 1-form V = φe0 + c0(−A)
untwisted 2-form F = e0 ∧ (−E) + c0B
twisted 2-form G = e0 ∧ H + c0D
twisted 2-form I = e0 ∧ (−M) + c0P
twisted 3-form J = e0 ∧ (−J) + c0R

Table 3. Four dimensional electromagnetic field quantities as twisted and untwisted n-forms

Fαβ =
1
2

εαβγδ F̃γδ, or, F̃αβ = −1
2

εαβγδFγδ. (91)

The Hodge operator acts on a four-dimensional two form as

∗(e0 ∧ X + Y ) = e0 ∧ (−(∗Y )) + (∗X) = e0 ∧ (−Y) + X , (92)

where X and Y are a three-dimensional 1-form and a three-dimensional 2-form, and ∗ is the
three-dimensional Hodge operator5. Now the constitutive relations D = ε0(∗E) and H =

μ−1
0 (∗B) are four-dimensionally represented as

G = −Y0(∗F ), or F = Z0(∗G ). (93)

With components, these are represented as

Gαβ = −Y0(∗F)αβ, or Fαβ = Z0(∗G)αβ, (94)

with the action of Hodge’s operator on anti-symmetric tensors of rank 2:

(∗A)αβ =
1
2

ε
γδ

αβ Aγδ =
1
2

gαμgβνεμνγδ Aγδ. (95)

Now we have the Maxwell equations in the four-dimensional forms with components:

∂[γGαβ] = Jαβγ/3, ∂[γFαβ] = 0, Fαβ = Z0(∗G)αβ, (96)

and in basis-free representations:

∇ ∧ G = J , ∇ ∧ F = 0, F = Z0(∗G ), (97)

or

dG = J , dF = 0, F = Z0(∗G ). (98)

with the four-dimensional exterior derivative d = ∇ ∧ . These are much more elegant and
easier to remember compared with Eqs. (76) and (81). A similar type of reformulation has
been given by Sommerfeld (Sommerfeld (1952)).

5 We note the similarity with the calculation rule for complex numbers: i(X + iY) = −Y + iX. If we can
formally set as G = H + ic0D and F = −E + ic0B, we have G = −iY0F and H = iZ0G.
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7.4 Potentials and the conservation of charge

We introduce a four-dimensional vector potential V = φe0 + c0(−A), i.e.,

(Vα) = (V · eα)

= (φ,−c0Ax,−c0Ay,−c0Az). (99)

Then we have ∇ ∧ V = −F , or

∂[αVβ] = −Fαβ/2, (100)

which is a relation between the potential and the field strength. Utilizing the potential, the
force equation becomes very trivial,

0 = ∇ ∧ (∇ ∧ V) = ∇ ∧ F , (101)

since ∇ ∧∇ = 0 or dd = 0 holds.

The freedom of gauge transformation with a 0-form Λ can easily be understood; V ′ = V + dΛ
gives no difference in the force quantities, i.e., F ′ = F . A similar degree of freedom exist for
the source fields (Hirst (1997)). With a 1-form L, we define the transformation G ′ = G + dL,
which yields J ′ = J .

The conservation of charge is also straightforward;

0 = ∇ ∧∇ ∧ G = ∇ ∧ J

= e0 ∧ (∂tR+∇ ∧ J). (102)

7.5 Relativistic representation of the Lorentz force

Changes in the energy E and momentum p of a charged particle moving at velocity u in an
electromagnetic field are

dE
dt

= qE · u,

dp
dt

= qE + u × B. (103)

By introducing the four dimensional velocity uα =
[
c0γ, ux, uy, uz

]
, and the four dimensional

momentum pα =
[−E/c0, px, py, pz

]
, we have the equation of motion

dpα

dτ
= qFαβuβ, (104)

where dτ = dt/γ the proper time of moving charge, and γ = (1− u2/c20)
−1/2 is the Lorentz

factor. The change in action ΔS can be written

ΔS = pαΔxα = −EΔt + p · Δx. (105)
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F quantities S quantities

V = φe0 − c0A
↓ d Y0

F = −e0 ∧ E + c0B ← ∗ → G = e0 ∧ H + c0D
↓ d Z0 ↓ d

0 J = −e0 ∧ J + c0R
↓ d

0

Fig. 2. Relations of electromagnetic field forms in four dimension

(Z0Gαβ =)F̃αβ G̃αβ(= Y0Fαβ)

Fαβ Gαβ

−∗

∗

∗

−∗

E EE† E†

gg

g†g†

Fig. 3. Various kinds of tensors of order 2 used in the relativistic Maxwell equations

7.6 Summary for relativistic relations

In Fig. 2, the relativistic quantities are arranged as a diagram, the rows of which correspond
to the orders of tensors (n = 1, 2, 3, 4). In the left column, the quantities related to the
electromagnetic forces (F quantities), and in the right column, the quantities related to the
electromagnetic sources (S quantities) are listed. The exterior derivative “d” connects a pair
of quantities by increasing the tensor order by one. These differential relations correspond
to the definition of (scalar and vector) potentials, the Maxwell’s equations, and the charge
conservation (See Fig. 1). Hodge’s star operator “∗” connects two 2-forms: F and G . This
corresponds to the constitutive relations for vacuum and here appears the vacuum impedance
Z0 = 1/Y0 as the proportional factor.

In Fig. 3, various kinds of tensors of order 2 in the relativistic Maxwell equations and their
relations are shown. The left column corresponds to the source fields (D, H), the right column
corresponds to the force fields (E, B). Though not explicitly written, due to the difference in
dimension, the conversions associate the vacuum impedance (or admittance). “E” and “E�”
represent the conversion by Levi-Civita (or by its conjugate), “∗” represents the conversion by
Hodge’s operator. Associated with the diagonal arrows, “g�g�”, and “gg” represent raising
and lowering of the indices with the metric tensors, respectively. The tensors in the upper row
are derived from the scalar-vector formalism and those in the lower row are derived from the
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differential forms. In order to avoid the use of the Hodge operator, the diagonal pair Fαβ, Fαβ

(= Z0G̃αβ) are used conventionally and the symmetry is sacrificed.

8. Conclusion

In this book chapter, we have reformulated the electromagnetic theory. First we have
confirmed the role of vacuum impedance Z0 as a fundamental constant. It characterizes
the electromagnetism as the gravitational constant G characterizes the theory of gravity. The
velocity of light c0 in vacuum is the constant associatedwith space-time, which is a framework
in which electromagnetism and other theories are constructed. Then, Z0 is a single parameter
characterizing electromagnetism, and ε0 = 1/(Z0c0) and μ0 = Z0/c0 are considered derived
parameters.

Next, we have introduced anti-symmetric covariant tensors, or differential forms, in order to
represent EMfield quantitiesmost naturally. It is a significant departure from the conventional
scalar-vector formalism. But we have tried not to be too mathematical by carrying over the
conventional notations as many as possible for continuous transition. In this formalism, the
various field quantities are defined through the volume form, which is the machinery to
calculate the volume of parallelepipedon spanned by three tangential vectors. To be precise,
it is a pseudo (twisted) form, whose sign depends on the orientation of basis.

Even though the constitutive relation seems as a simple proportional relation, it associates
the conversion by the Hodge dual operation and the change in physical dimensions by the
vaccum impedance. We have found that this non-trivial relation is the keystone of the EM
theory.

The EM theory has the symmetry with respect to the space inversion, therefore, each field
quantity has a definite parity, even or odd. We have shown that the parity is determined by
the tensorial order and the pseudoness (twisted or untwisted).

The Maxwell equations can be formulated most naturally in the four dimensional space-time.
However, the conventional expression with tensor components (with superscripts or
subscripts) is somewhat abstract and hard to read out its geometrical or physical meaning.
Moreover, sometimes contravariant tensors are introduced in order to avoid the explicit use
of the Hodge dual with sacrificing the beauty of equations. It has been shown that the
four-dimensional differential forms (anti-symmetric covariant tensors) are the most suitable
tools for expressing the structure of the EM theory.

The structured formulation helps us to advance electromagnetic theories to various areas. For
example, the recent development of new type of media called metamaterials, for which we
have to deal with electric andmagnetic interactions simultaneously, confronts us to reexamine
theoretical frameworks. It may also be helpful to resolve problems on the electromagnetic
momentum within dielectric media.
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