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ELEMENTARY TOPOSES

A, Kock and G.C. Wraith

Introduction

The notion of topos embodies in it two aspects of mathe-
matics, the one a geometric, the other a logical aspect. Toposes
were introduced by the circle around Grothendieck as a general-
ization of the notion of topological space, for purposes in
algebraic geometry. To a topological space is associated a topos,
namely the category of set-valued sheaves over it.

Later, Lawvere maintained that the notion of topos could be
viewed as a conceptual form of the notion of higher order language,
or alternatively, as a world in which higher order notions could
be interpreted (the germ of this viewpoint is found in [13] and
[14]); it was substantiated by the work of Lawvere and Tierney
[17] on elementary toposes (culminating in an independence proof
of the continuum hypothesis). The notion of elementary topos, as
defined by these authors, frees the notion of topos from any
external form of infinities; for instance, an elementary topos
is not required to have arbitrary (infinite) limits or colimits.
This finitary-ness of the theory of elementary toposes conforms
with the idea that an elementary topos also has the features of
a syntactic object ("a language"). On the other hand, a language,
though of finitary nature, should be able to "speak about" infini-

tary and higher order ideas. Elementary toposes have that feature.



In particular, the idea of "power set formation" exists inside
an elementary topos, in the sense that there is an object

£) (or 2) so that to each object X there exists an object
X

(in our notes denoted XA{)) whose "elements" index the "subsets"
of X.

The specific aims of these notes are first to develop part
of the "classical" (Grothendieck-Verdier) theory of toposes in
the setting of elementary toposes; in particular, the notion of
"morphisme de topos", [9], what Lawvere - Tierney call geometric
morphisms. Secondly to illustrate the logical aspects of elementary
toposes, by developing the notion of '"small category-object" and
"topological space objeét" inside an arbitrary elementary topos,
and carry out certain constructions related to such objects
("sheaf reflection for a presheaf object on a topological space
object"), thereby producing new elementary toposes (generalizing
the way classical sheaf theory out of a topological space produced
a (classical) topos). To carry out this program, we lean heavily
on techniques of the first four chapters (factorization of topos
morphisms).

The main example of an elementary topos is 53, the category
of sets. A "topological space object in 8" is just a topological
space. Lawvere has pointed out that "an important technique is to
1lift constructions first understood for '"the" category S of
abstract sets to an arbitrary topos".This is true primarily for
"logical" concepts, which in these notes occur mainly in Chapter 1
and Chapter 5. The reader should for every construction carried

out in these chapters in his mind specialize the constructions to

53 in order to see which constructions in S actually are being



4

The source we have used for Chapter 1 and Chapter 3 is
Tierney's lectures in Halifax, 1969-1970, in a joint seminar
with Lawvere. The ideas of the remaining chapters are also large-
ly due to Lawvere and Tierney (the results of Chapter 5 are thus
stated in [16]), but we had to supply the relevant constructions

ourselves.

We are also in debt to Julian Cole and Chr. Juul Mikkelsen
for supplying ideas, examples, and curiosity, during the seminar

which produced these notes (November 1970 - May 1971).

Conventions and Notation

We use almost entirely standard notation. Maps are composed
the 'algebraic' way: 'f.g' means: f followed by g. Functors
and other things that are applied on the left of their argument
(like F(4), 3p(X), etc.), however, often are composed the
other way.

As usual, F 4 G 1indicates that F 1is left adjoint to G.
We use to denote passage (either way) along the adjointness

isomorphism for exponential adjointness
hom(AxB,C) ~ hon(4,CP) = hom(a,BMc)

(BAC Dbeing used for cB for typographical reasons). Some

concepts have double notation, like
t: 1 =0, true: 1 —>0);

likewise 'A~' and '"—> ' means the same (used when a set
theoretic mapping is defined elementwise). 'Colimits' and 'Right

limits' are used for the same; a reflection functor is a left



1, Exactness properties

We study exactness properties which categories E have,

if they satisfy* axioms T1 -T3 below; such categories we shall

here call glementary toposes, or just toposes, [16], [8].

™ E has finite limits and finite colimits
T2 E has exponentiation

T3 has a subobject classifier 1 -§£B§€>f3..

3

T2 means that for any A€ |E|, -xA: E—> E has a right
adjoint, denoted A/ - or (-)A. The end-adjunction for the

adjointness is denoted ev:
(AhB) < A =L B,

T3 means the following: 1 denotes the terminal object.

L is an object equipped with a map 1 U8 ) 5o that:
for any monomorphism f: A'>—>» A in E, there is

a unique @: A —> Q) ("characteristic function of f")
making

a pull-back,

* Since limits, colimits, exponentials, and also subobject classi-
fiers are unique (up to unique isomorphisms) when they exist, it
makes sense to say that a category is a topos, rather than "it is
equipped with topos structure". (For the uniqueness of.fl, see
Remark 1.38 at the end of this chapter). For notational convenience,

however, we assume that a definite choice of limits, colimits, expo-

nentiation, and subobject classifier hac hamm —-3-
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Note. Since 1 1is terminal a) the map A' —> 1 does not
have to be specified further; b) any map with domain 1 is a
monomorphism; in particular, 'true' is monic. Pulling a monic back
along a map gives a monic; so a pull-back diagram of the form *
above necessarily has f monic. We call (the equivalence class
of) such f defined by the pull-back * '"the subobject of A
classified by ¢".

The following concepts make sense in any category:

(1.1) monomorphism equalizer

epimorphism coequalizer

as well as

(1.2) equivalence relation kernel pair

coequivalence relation  cokernel pair

The ones in block (1.1) are well known. For block (1.2):

a Jjointly monic pair

K..__Q__;A
k
1

so that for any Xe€ |€],

hom(X,K) > hom(X,A) x hom(X,A)
hom(1,k ) ,hom(1,k,)

describes an equivalence relation on the set hom(X,A).
<k_,k>
Note. If £ has products, K —T 1 5 axa s necessarily

monic, If Kk ,k, 1is an equivalence relation, we shall abuse

language and call the single map <ko,kg> an equivalence relation.

Definitigg ‘I.g. A kernel pair for amap f: A —>B in C

%o

is a pair of maps K ——:—?»A, so that ko.f = k1.f, and which

is universal with this property.



Note. k ,'k1 may be obtained by the pull-back

K
k1L
A

%

W<
H

—
F

converse of the proposition holds:

Proposition_1.%. Assuming T1 and T3, any monomorphism is

an equalizer,

Proof. Let f: A'>—> A be monic, let ¢ be its character-

istic function. The pull-back diagram

A —2 Q0

\
f ‘[ 1 true

At —— 1
. . true
shows that f is the equalizer of ¢ and A —> 1 =>() .

Theorem_1.5. Assuming T1,T2, and . T3, every equivalence

relation is a kernel pair.

Before proving it, we develop some concepts for categories K
satisfying T1-T3 (these axioms will be in force from now on).

Let @oyi- A-—>0. Call cpé V) if the subobject of A
classified by P 1is smaller than the subobject of A classified
by WY ‘(usual ordering of subobjects).

Proposition 1.6. In order that @ ¢y: A —>0Q, it is necess

ary and sufficient that for all Xe [El and 211 . v —2



(x.¢ = truex) = (x.y= truex),

where 'truey' denotes the map X —>1 true,

Note. If @,y: A —>() and ¢ <Yy and Ygg@, then
¢ =7 (the corresponding thing for monomorphisms into A only

holds up to isomorphism).

Proof of_ Theorem 1.5. Let % be characteristic function for

(ko kD
Krﬁ—t}A?‘A, where ko,k.': K —>A is an equivalence relation.

We shall see that ko,k1 in

k ra)
(1.3) K—2s a2 5 2/ Q

is a kernel pair of Q

First we prove that (1.3) commutes. By exponential adjointnes:
it suffices to prove commutativity of

Kxh o2 s axa —2 5 Q).
e

By the Note above, it suffices to see k =1.x{ky;x1.X, and the
opposite inequality. |

Let X be arbitrary in |E|. Denote the equivalence relatio:
on the set hom(X,A) given by k,,k; by ~s. Let XQ-’QZ-P K~A

have

<P,a>.Ko* 1.K= tI‘ue.

Left hand side is just <r.k ,a>.% = true, so r.k ~a. Since

r.kowr.k“ we get r.k,~a, whence



{r,a) -k, % 1.%= true.

Proposition 1.6 now gives the desired inequality.
To see the universal property of (1.3), let a 2yt X—>A
have aO.Q = a, Q Passing to exponential adjoints, the two maps

aix1

Xxp —=— Axa —25Q i=0,1

are equal. So for any b: X —>A

<a0,b> A= <a1 ,b) .M:

.4

X —25 axp —5Q).

So for every b €hom(X,A), a ~b iff a,~b, whence ajn~ay,
i.e. <aj,aq) . M= true, i.e. <a,,a;d factors through

kLK
K 0! S12) AxA.

he notion of graph, and related notions.

Let f: A —>B be any map in E. Define I-;. ("graph of
f'") to be the map

[p: A SIS e AR

It is clearly monic. Its characteristic function
‘a’f: AxB—> )

is denoted 2(f. We then have
A

N
In case f = 1,, there is special notation for [;,¥,, and Yt
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AA: A ﬁ-‘llb Ax A ("diagonal")
A xpA——> (0 ("Kronecker-3")
A
S =L} A—> A hH L1 ("singleton").

Proposition 1.7. {.}: A —> A N {L is monic.

A is kernel pair for {.}. From the universal property of that

kernel pair:

A 1\AI.‘: >a AN

clearly follows: {.} is monic.

"~

The -construction™

Let $: (AAHQ) <A —>KY bve characteristic function for
>
a LY Dy s,
N
Let A Dbe the equalizer
Ar——— A NQ——— ANQ.

We shall see that {.}: A —> A (L factors through e, so

)
A > ¥ with

that there is a map A

1]

e = 1LY

We must prove

LY.F= A

Pass by exponential adjointness to



13«1, f=8: Ax»A—Q.

To prove this equality, we must prove that these two maps in

Y classify the "same" (up to equivalence) subobject of A=
A

By definition, d classifies A>—> AxA, To see what <

classifies, form the pull-back

AXAL\—'J— (i fh(‘))xA —;Q
* * ¥
& SN true
A A 1

we have used here that we pull back along a composite by pull
back along the parts; ** 1is a pull-back by definition of E

* is a pull-back because {.} is monic (Proposition 1.7).

This produces

f7A: A-—_? Tv

Theorem_1.8. To any pair of maps (d4,f) as in the pictu

below (d monic), there is a unique T: A —> B making t.

diagram into a pull-back:

I‘ ~J
A==l s B
” N
N.B. d 1’73
Al —> B .

(" classifies the partial map (d4,f): A ---> B"),

It is monic since 4d' is. Let K(d £) be its characteristic
9

function A =B —>{), and take its exponential adjoint



A
¥: A—> BhQ. If we can prove

(1.4) % =X°§’

~ A
then by definition of B -5 Brhf{) as an equalizer, ¥ can

written T.e for a unique T: A ——)?3‘ To prove (1.4), pass

adjoints; so we must prove

f
1. = ¥x1, %: AXB — .
(1.5) a1 5 £

To prove this equality, we must prove that these two maps into
) classify the "same" subobject of A =B, By definition, the
left hand side classifies <d,f?; to see that the right hand si¢
also does, pull back in two steps; we are through with the proof
of (1.5) if we can prove that the left hand square in the diagra

below is a pull-back:

AxB —mm—> Bd\Q*B—-—E—-‘;D

{d,f T &Y 1>T T true

A > B —> 1

The fact that the left hand square is a pull-back is an immediat:

consequence of

~
h

A > BN (L

a 1}

A T > B

» A .
is a pull-back (where ¥ is the exponential adjoint of the chara

teristic map ¥ of <d4,fY: A'>— A xR
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~
Proof. Let X —2> 4, X —2> B have a.¥=b.[}.

Pass to adjoints; we get that the square*(below) commutes

Y,

n mn
{a,b) ax1 * )
X xB PYvE > B xB
A A
(1,0 <b,b)> AN
Vay
X b 7 3

All the rest obviously commutes. Since 6 classifies A\ ,
A.S factors through 1 true,ry ; therefore <a,b>.5(d,f)
factors through true. But \s(d,f) classifies the subobject

A' ——<i=—f2—-> A xB, whence <a,b> factors through <d,f>. This

proves the lemma.

So we know (1.4) is valid, and T: A —> B exists with
T.c = ¥. Since both ? and {.} factor through e (as T and
’VB, respectively), and e 1is monic, we get immediately from the
Lemma 1.9 that the diagram N.B, is a pull-back, as desired.
Finally, we must prove uniqueness of such f. Suppose both
the diagrams

T ~
(1.65) A 0 2 B

T i =0,1

A!

t
f B

are pull-backs. Consider T,.e: A—> BhHh N (1=0,1), and

the two maps corresponding to them under exponential adjointness
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A xB — O

By symmetry, it suffices to prove foéf1 . We apply Proposition

1.6. Let €a,b): X —> A %B have <a,b>.f = truey. Then

truey = {a,b>.f = <i,0).(ax1.f ) =

Gyt

since fo factors as T .e (by construction of £ from £,
AA
?O.E = £, (3 defined on page 10); so the equation continues

<,pv.(a.F %)
(a,b>.f 1. §

,bY.axl .fov‘l - 5
(a.fo,b).§.

Since F classifies d{.},1), we get from this
)
(107) aofo =bo{o)o

Since (1.6,) is a pull-back and B—> BAS)  is monic, also

N

£
A = >BhHhQO

d LY

At T B

is a pull-back, so from (1.7) follows existence of an a': X —>A'

with a',d = a, a'.f =b.

From commutativity of (1@), we now conclude

a.r-l = b'7B.
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Multiplying on the right by e gives
a.fy = b.{.}t X—— BAHO,
Passing to exponential adjoints gives
axl.f, =bx1.%
and thus
Ca,b>.f; = <1,b).a 1.0, = <1, b= 1.4,

but the right-hand side here obviously is truex. By Proposition
1.6 we conclude that f,¢fy. Similarly f£,{f ; thus f_ =f,,

N A
thus f =f, and T =%,. This proves the uniqueness of fj

Theorem 1.8 is proved.

i

Remark. Since 7B is monic, given A > B, we can, by

puiling ’7B back along T, produce a pair (4,f):

("a partial map" A --> B")

So the Theorem actually asserts the existence of a 1-1 correspond-

ence between maps A —> B and "equivalence classes of partial

maps A --3 B",
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The uniqueness of T has as a standard consequence that ™~
actually becomes a functor E —> E, and ’7 a2 natural transform-
ation idp ==3 " .

If é;rt(A,B) denotes the set of equivalence classes of partial
maps A --» B, the one-to-one correspondence A mentioned in the

above remark has naturality properties, for example, for

3 —E> C

Part(A,B) —————— Part(4,C)

'51,) 2=
i

hom(A,,ﬁ) hom(1,8) hom(A,?f),

with top map "composing by g" in an obvious sense, commutes.

In fact

Exercise. Define a category Part with objects the same as
the objects of E, and with hom-sets Part(A,B). Define a
functor ‘E-—l4> Part (identity on objects). Define a functor

Part —> E. Then i 47; the front adjunction is 7.

Corollary 1.10. (Push-out Theorem). The pushout of a mono by

something is a mono, and thc resulting diagram is a pull-back also.

Proof. Let the pushout diagram be the inner square in

A
dI
B

f

7p

Q€ yuy

~

~
\$N

-4 >
—_—
i
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Construct the pull-back diagram containing the partial map
(d,f): B -= D. Now the theorem e¢asily follows.

For each pair of maps with common codomain choose a pull-back
diagram for that pair. Then, for f: A —> B, "pulling back along
f" gives in fact a functor f*: E/B——> E/A (where E/B is
the (usual) comma-category: objects are maps &: Z —>B to B;
a morphism from < : Z, — B to §'1: Z, —>»B 1is a commutative

triangle

Z S
Svo \ /§1
B
Likewise, composing with f gives a functor the other way, denoted

2,

).

Proposition 1.11. For any f: A —>B, Zf 4 f*,

Proof. An easy diagram chase. (In fact, this proposition holds

just assuming axiom T1).
The MAIN THEOREM of this chapter says that f* has a right

adjoint also,

Theorem_1.12. For any f: A —> B, f*: E/B—> E/A has

a right adjoint Tf}: E/A —> E/B.

object of E/A. Let @ be so that the diagram
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A
>
A4

o y—— 35
oY

}
A
is a pull-back (using Theorem 1.8). Let @ be its exponential
adjoint. Form the pull-back of 1 along & ; this we define
as TTf(g), i.e.

.0 > ah¥
TH(D p.b. 1AE
B 3 > Ak .

It depends in an obvious functorial way on ~§ €E/A.

<

(ii) Verification (sketch). Let Z —>B be an object in

E/B. We produce a 1-1 correspondence

¥ homgy (2, D

by means of the following string of bijections; the bijection (a)

is by the defining pull-back diagram for TT}(g), (b) by exponential
adjointness, (c¢) by Theorem 1.8 and the naturality statement on
page 16 ; (d) is obvious; (e) is by multiplying (d,k) on the left

=1
by J ¢

hom_E/B(g, m(g)) =



™I

(

~~
g

(c)

19.

{h: z—AMX | h.a 4\§={- % }
{h: Z=A—>%X | ’ﬁ."\g = Tx1. g )
{classes of partial maps ZxA

Id

D —£-> X

with (d,k.g) equivalent to the partial map

Z x<A

]

£*Z

f*§> A ——> A, where e is the canonical

2
inclusion of the pull-back-object f*Z into ZxA |

{(d,k) | d: D—>2ZxA, k: D—>X so that there
exists isomorphism j: D—> f*Z with

j.e=d and J.0*7=k.F -}
{k': f*¥Z —> X with k"§= f*g
= homE/A(f*g,E) .

The naturality of the correspondences is left to the reader.

Lemma_1.13. The obviocus functor E/A 2 > E preserves

colimits,

and preserves and reflects epimorphisms.

Proof. 50 may be written E/A —-Z—% E/1 ~ E, where
k =

k: A—>
by Proposi

epics sinc

1 is the only such map. Since Ek is a left adjoint

tion 1.11, the preservation is immediate; ao reflects

e it is faithful.

Alternative Proof. Obvious by inspection.
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Theorem_1.14%. (Pull-back theorem). If € 1is epic and the

diagram below is a pull-back, then § 1is epic.
X — S 72
£ oo Lz
v \%
A ——f-—€> B

"PULLING BACK AN EPIC GIVES AN EPIC",

Proof. By Lemma 1.13, £ gives rise to an cpimorphism in

2 -5 5 5
e\, [/
B .

Since f* has a right adjoint, it takes epics in E/B to epics
in E/A. The theorem now easily follows.

Since, by T2, Ax- and -xA have right adjoints (in
both cases A/N-), it follows that

Proposition 1.15. If qq: A; —>Q; 1is epic for i=0,1,

U= q9:  Agx Ay —> Q= Qy

is epic.
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Definition 1.16. Let x_,x;: X —>Q and q: A —>Q.

Then a joint-pull-back of (xo,xi) along q 1is a pairwisec

commutative diagram

(1.8) yA L 3 A
a4
t q
X
X 2 > Q
X, -

(i.e. aj.q =t.x; for i =0,1), which is universal with this

property, i.e., if
!

a
20 =23 4, 2’ —Lt> x
a
=

has al.q = t'.x; for i =0,7, then therc is a unique

h: 2' —>7Z with

h.a; = ay i=0,1,

and h.t = t'.

Note. The two squares forming (1.8) will not in general be

pull-back diagrams in the ordinary sense.

Proposition_1.17. With notation as in Definition 1.16, the

maps ag,aq,t 1in (1.8) can be constructed by forming the pull-back

diagram (in the ordinary sense)

a_,a.»>
o 1 5 Awa
t qQxq
/
X > QxQ.

<x0,x1>
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Definition 1.18. A diagram

K—2> A —9— g

is called exact if q 1s a coequalizer of ko’k1’ and ko,k1

is a kernel pair of q.

Definition 1.16, Proposition 1,17 and Definition 1.18 refer
to any category satisfying just T1. Returning to categories with

T1,T2 and T3, we have

Proposition 1.19. Any map f can be factored as an epic

followed by a monic, Such a factorization is unique up to a unique

commuting isomorphism.

roof. Let ko,k1 be a kernel pair of f, and q 1its
coequalizer. Then it is clear that k ,ki5q is cxact, and that

f factors as q.1 in the diagram below. We shall prove i monic.

K e

AN
N

Suppose xo.i = x1.i. Let * be formed as joint-pull-back. We

have

ao'f aooqti = t-xooi = t.X.' oi

a1 .q.i = 8.1 of’
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whence there is an h: Z —3> K with huk, =a, (1 =0,1).

Then

t.x = aorq hokooq = h.k1 Oq

a,.q = t.x1.

Byt by Proposition 1,17 and Proposition 1.15, and the pull-back

theorem, t is epic, whence x_ = Xq. This proves 1 monic,

o
If q'.i' 1is another epi-mono factorization of f, it is
easy to produce 2z vwith q.z2 =q' and z.i' =1, Then 2z 1is
monic and epic. Using Proposition 1.4, it is easy to concludc that
z 1is actually then an isomorphism. - Because q 1s epic, it is
the only possible map with q.z = q'. This proves Proposition 1.19.

The proof actually gave also (taking account again of Proposition

1.4)

Proposition 1.20. Every map can be factored as an coequalizer

followed by an equalizer. Any epic map is a coequalizer, any monic

map is an equalizer.

The Grothendieck-school (who first studied exactness proper-
ties in a non-additive setting) calls an equivalence relation
cffective if it has a coequalizer. By Theorem 1.5, all equivalence
relations in a topos arc cffective. Also, they call things universal
if they are preserved by pulling back., The joint-pull-back (Defin-
ition 1.16) of an cquivalernce rclation is an equivalence relation
for fairly trivial reasons, so that one might state that equivalence
relations are universal and effective. The main exactness-property
for toposes, however, is that equivalence relations are universally
cffective, that is the whole exact diagram, into which an equivalence

relation (by effectivity) can be embedded, is preserved by pull-back.
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The formal statement of this is the following theorem of which

the first part is a restatement of Theorem 1.59.

k
I§§8£2§=15§l° Let K ;9——# A be an equivalence relation,
Then 1
(1) k,,k; can be embedded in an exact diagram
k
o a
K A > Q
kq

("effectivity of equivalence relations"); and

(ii) if f: Q@ —> Q is any map, there exists a diagram with

exact columns

f"

K
lv

(1.10) 1 i
Q

o >
Ne]

4

with the bottom square a pull-back and each of the squares

f"

\ 4
~

(1.111) k.

'_.l
> €— R|
=
[Y
o
I
o
‘.—!

h 4
>

f'

a pull-back ('universality of the effectivity of an equivalence

relation").
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Proof of (ii). Consider the diagram

F—I——>«
v\
\ o\ E
v K k Kk
]
Ko Ou
lﬁ * l q
e > Q

where the right-hand column is exact, the square * is a pull-back
and where the outer square is a pull-back (of f along k, .q=k,.q).
For i =0,1, construct EK,: K —> X so that

b

=
'_J-
o
1

and

which is possible since * 1is a pull-back. We then have the
desired diagram in so far as the commutativities go. We must prove
that (1.111) is a pull-back, and that the constructed left-hand
column is exact, To prove, for example, that (1.110) is a pull-back,

let there be given
a: X—>14 and k: X—>K

with

(1.13) a.f' = k.k_.

Then

aoa.f = a.f'.q = k.kooq,

so since the outer diagram in (1,12) is a pull-back, there exists

E: X—> K with
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(1.14) E.b = a.q
and

(1.15) k.f" = k.

1}
V]
.

Ke]

To prove that R.ko =a, it suffices, by the universal property

of the pull-back diagram *, to prove

and

RQEOOf‘z a.f'.
The first is immediate from (1.,14). For the second,

K. .f' = Kok = k., = a.f',

using (1.15) and the assumption (1.13). - The uniqueness of k
is clear from the fact that the outer diagram in (1.12) is a pull-
back. - To prove that the left-hand column is exact: First, q
is epic, by the Pull-back Theorem. To prove that Kk ,k; 1s the

kernel pair for K, let x;: X—>1A (i=0,1) have

1}

Xo .q x1 lql
Then

xo.f'.q

x1 of' oq,

so since ko’k1 is kernel pair for q, we get y: X—>K with
vy = x50 (i=0,1). Now X,-@ and y match up so as to give

amap 2z: X —>K (the outer diagram being a pull-back);

z.b = X,q

and z.f"= y.

To prove that z.k; = x; (1=0,1), it suffices (again

because * is a pull-back) to prove the equations
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~)

Xo.a = Z.Rooa

xo.f' z.ko.f'
.X1 .i = Z -E1 oa

K1.f'=Z.E1.f'.

They are all proved in a straightfcrward way from previous
equations; the proof of the third uses x_.q = %,.q and

Eo.a = k,.3. - This proves the theorem.

Proposition_1.22. Trhe Znitial object @ (existing by T1) is

strict initial, i.e., any map f: A —>@ is an isomorphism,

Proof. Clearly # —>B is initial in [E/B , for any B.

By Main Theorem, 1.12, pulling back preserves initial objects.

In particular

g

g —
*
o) I
A—F— 0
is a pull-back. But clearly, '"pulling back" preserves isomorphisms.

Since 1¢ is iso, f*(1¢) is iso. Since f*(1¢).f = 1¢ (what

else could it be) f is the inverse for f*(1¢).

Corollary 1.23. Any map @ —>» B is monic.

Proof. For any A, there is at most one map A —> @, namely

the inverse for the only map @ —> A (if it has an inverse).

For any A,B, the diagram (existing by T1)
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|

B e/

inclA

o ¥/

—_—>

+B
1nclB

is a pushout. By Push-out Theorem (Corollary 1.10) and by
Corollary 1.23, inclA, inclB are monic, and the diagram is a

pull-back. So

Proposition_1.24. The inclusions into a sum are monic, and

their intersection is @ ("Sums (coproducts) are disjoint").
Since pulling-back has a right adjoint, pulling back a coproduct
diagram gives a coproduct diagram, so: COPRODUCTS ARE DISJOINT
AND UNIVERSAL.

Theorem_1.25. For any A< |E|, E/A 1is again a topos
(satisfies T1,T2,T3).

Proof. ¢

Proof. 0 : E/A —> E not only preserves colimits, but

nconstructs them", so E/A has finite colimits. Equalizers are
1
constructed the same way. A ‘—JLﬁ> A is clearly a terminal object
in E/A, and pulling back over A gives binary categorical pro-
ducts in E/A. So T1 1is verified.
To verify T2, let g: X—> A be an object in E/A. The
functor fx-: E/A —> E/A can be described as the composite
*
5 2
E/A —> E/X =55 m/A.
Both of the functors in this composite have right adjoints, by
Proposition 1.11 and MAIN THEOREM 1,12, Hence the composite has

a right adjoint.
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To verify T3, check that C2xA BE®l, p is a subobject

classifier in E/A ovrovided we let 'true' be the map in E/A:

1 g LTuexlp uexTA o n

\ AC’"A

Definition 1.26. An open object in E is an object U whose

(unique!) map to 1 1is monic.

Clearly U is open if and only if:
(1.16) For ANY Xe¢€ |E|, THERE IS AT MOST ONE MAP X —> U.

Any map U —> Y where U 1is open is monic. Let OE. denote
the full subcategory of open objects, It is a preordered class, by
(1.16) the ordering being given by: UL U' iff there exists a
map U—>7U' in E. The subcategory 0}3 of E 1is closed under
forming products and exponentials in E, _as is easily seen, using
(1.16)In particular, it satisfies T2. It also has coproducts:

If U and V are open, form U+V in E, and take the image of
the canonical map U+V —> 1, So 0E satisfies T1. (Only in
trivial cases T3 1is satisfied). B

A partially ordered set satisfying Tt and T2 1is called a
Heyting-algebra or a Brouwerian lattice, or a pseudo-boolean
algebra. ’Ijentifying isomorphic objects of (OE gives a Heyting-
algebra @E’ since 0E is preordered and satisfies T1,T2.
(Clearly, 52 is a set, namely being isomorphic to homE(1,D.),

by T3). Conventional notation: in a Heyting algebra
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ANB is denoted A > B,
A B is denoted A N~ B,
A+ B is denoted A v B.

Proposition_1.27. Denote by _P(A) the preordered class of
subobjects of A. Then

P8) =2 Ogyp -

Proof. Obvious.

In view of thils and Theorem 1.25, we have

Proposition_1.28. For any A€ |E|, J2,(A) is a Heyting

algebra. 2.A) denoting 72(A) modulo identification of iso-
morphic objects).

By slight abuse of language, we shall talk about 7°(n)
itself as a Heyting algebra.

Let Q—R—-> E' Dbe a right adjoint functor. Then it preserves
terminal object and monic maps, hence defines a functor by re-
striction & —>@;,. In particular, for f: A—>3B, the
functors Tl'f: E/A—>EB and f*: LE/B—> E/A (which are
right adjoints by Theorem 1.12 and Proposition 1.11) define, by
restriction, functors V/.: @_E_:/A _A@E./B and £ : OQ/B %@E/A’

that is, functors with this notation in the big diagram below (p. 32).

Proposition 1.29. f7':

left adjoint EJf .

A ——» 3 (4 >——>

be a (chosen) epi-mono factorization of a.f.
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Let (B'>2>B) € 2(B). If 3.(A')¢B', it is straight-
forward to produce a map A' ——9~f'1(B') since f'1(B‘) is

defined as a pull-back. Conversely, if
! =1 t
At (B,

we mus prove gf(Aﬂ) { B' by constructing h: 3J.(i') —> B!
so that h.b equals ‘Qf(A')>——9 B. Since q 1is cpic, this
equation is equivalent to q.h.b = a.f. But the composite map
k from A' via f ' (B') to B! coequalizes the kernel pair
of a.f, since b 1is monic,and the coequalizer of that kernel

pair is precisely gq, by the construction of epi-mono factori-

zation; from this the existence of the desired h follows.

Proposition 1.30. The inclusion i: ;< E has a left

adjoint @ ; O preserves products.

Proof. Let X €E, Let X 3&:\>>cx>———-§ 1 be an epi-mono
factorization of the unique map X —> 1, It is easy to see that
ﬁ& (being coequalizer of the kernel pair of X —> 1) has the
universal property required for a front adjunction. The last
statement is a conscquence of Proposition 1.15: A product of epis
is epi.

By Propositions 1.27 and 1.30, the canonical functor

also has a left adjoint, denoted G-, which also preserves products.

Putting things together, we have the
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DOCTRINAL DIAGRAM FOR f: A —> B:

/A T« > E/B

~N__ 7
/& Trf

9

with

equations hold up to isomorphism:

(1.17) AP = Zf. G
(1.18) ‘v'f.i = i.Tli.
(1.19) 1% = 14
(1.20) el - px o

Proof.(1.18) and (1.19) hold by construction of 'Vf, £

(1.17) follows by taking left adjoints on both sides of (1.19);

(1.20) follows by taking left adjoints on both sides of (1.18).

522225:153%' If f: A>»—> B is a monic map, let

ch(f): B —>L2 denote its characteristic map. Let g: D —>B

be arbitrary. Then

chig™' (£)) = g.ch(f).
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some notation which is natural when one has the main example

E = (category of sets) in mind:

AA: A —> Axp
S Axh = U
{o): A——> 4 b,

The €-relation itself comes the following way: Let evy denote

the end-adjunction for the adjointness -xA -4 A -; in particular
ev,: AMhD)xa—0Q .

The subobject of (A N{)) x A characterized by ev, will be denoted

Remark_1.3%. Let r: R>—> XxA be a monic map (we may in
the set-case think of r as a relation from X to Aj; this
viewpoint will be important later on). Let ch(r) be the character-
istic map of r. The exponential adjoint of ch(r) is a map

A
ch(r): X — A DD,
and so ch/(\r) x1 1is a map
A
ch(r)x1: Xxp—> (AN xA,
Then

A
(ch(r)x1)*(€,) = r;

this follows easily from the fact that we can get the pull-back
diagram defining ch(r) in two steps using

A
ch(r) = ch(r) x1.ev.
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Remark 1.35. We may (by Remarx 1.32) view Z, as a contra-

variant functor from E to sets represented by (L. Hence, by

the Eckmann-Hilton version of the Yoneda lemma, whatever alge-
braic structure can be put naturally on the /?,(A) 's, can be put
on L) itself. This we carry out here; however, we must put the
structure ' =2 ':(Q0*xQ —>() on [L by other means, since we do
not know on beforehand that £4 is natural; this will rather
be the conclusion of our making ) into a Heyting algsbra object

which we now proceed to do. First we produce
(i.21) A Q00— O

as characteristic function of <true,trued: 1 —> 0= .

Then, for X>— A and Y>> A elements in 72 (A) we have that
{ch(X),ch(Y)? .A = ch(XnY).

So ~ makes () into a lower-semi-lattice object (with true:

1 —> ) as maximal "element"). The "order relation" @ on

) is defined as the equalizer

/N
(:)>‘—9£)¥f) — ()
proj
Let A be an object and X>»>>A, Y>—> A two subobjects
thereof. Define a subobjsct X = Y of A by the pull-back

diagram

00

‘[‘ '[ <ch(X),ch(Y)>

X=Y—A



We claim that X 43 Y 1is the same subobject as X =Y
defined in connection with the Heyting algebra struicture on

)EXA); to prove this we must prove that for any z: Z>—> A

iff
ZAX< Y.

If 2< X 3> Y, it follows that z.¢h(X),ch(¥)> factors across
(g); this means (essentially by Remark 1.32) that

ZAX £ Z~Y ¢ Y.

If ZnX< Y, we conversely have that z.<ch(X),ch(Y)> factors
across (:), whence we have 2z that factors across the pullback
of <ch(X),ch(Y)> with @, which is X = Y. This proves the
claim.

If we now denote the characteristic map of (E) by ' = ':
>
(1.22) Q~0—> 0
it follows that

ch(X 3Y) = ch(X 3 ¥) =&h(X),ch(Y)>. = .

The maps (1.21) and (1.22) (together with easily defined minimal

element and join-operation) make (1 into a Heyting algebra-object,

The reason why it is easy to get n: MN— 0 representing
tintersection' in JJ(A) is that for f: B — A,
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-1‘

=1 D) — 2 ()

clearly preserves intersection. The same is not obvious for =
in the subobject lattices. However, now that we have produced a

representing operation (1.22), we can conclude from this that

(1.23) x>y = e,

Remark_1.36. ("Beck condition" in the terminology of [157]).

Let
e
£! f
v /
B'—-b—§B
be a pull-back. Let r: R»— A EJ&XA). Then

™ (3,(r)) = 3, (2™ (r))

in f£(H). To prove this again uses the "pulling back in two

steps-technique", and Proposition 1,31,

f: B—> 4, let X>—>A e/ (A) oand let Z> Be/2(B). Then

-1
This is a consequence of (1.23), together with the adjointnesses:

L4 cAx4axs -
and

Al At > - .
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morphism). For, suppose true: 1 —>(1 and true': 1 —()!
are both subobject classifiers. Being maps out of a terminal
object, both "true" and "true'" are monic maps; in particular
true': 1 —>f)' has a characteristic map Y —Q, similarly,
true: 1 —> {1 has a characteristic map < —>0'. These

two characteristic maps are easily seen to be mutually inverse
(using the fact that id: \—>() is characteristic map for
true: 1 —> Q).

The following Corollary of a recent embedding theorem of

Barr will be of great use in Chapter 5.

exists a small category € and a functor

n: E—>8°

(where &Y genotes the category of functors from € to the

category S of sets) which satisfies

(1) R is full and faithful
(ii) /3 Preserves and reflects finite inverse limit diagrams
(iii) /3 Preserves and reflects exact diagrams (Definition 1.,%8).

Proof. Every map has a kernel pair by T1; every equivalence
relation (and so every kernel pair) has a coequalizer by Theorem
1.5 (and Proposition 1.3). Pull-backs of epic maprs are epic meps
by the Pull-back Theorem 1.14, and epic maps are coequalizers, by
Proposition 1.20. Thus E is an exact category in the sense of

Barr [ 1 )], and by his embedding theorem for exact categories



38.

([ 1 ], Section 3, Corollary), there exists a functor A with
the properties (i) - (iii).

The force of Theorem 1.39 lies in Statement (iii) since (i)
and (ii) (except for smallness of £) can be accomplished by the
Yoneda embedding. Note that (iii) does not say that (5 preserves

arbitrary coequalizer diagrams

A f;B 45> Q
g

but it says that € will preserve this coequalizer diagram

provided f,g 1is an equivalence relation.

In particular, we can easily conclude that /3 will preserve
epi-mono factorizations. The Frobenius reciprocity (Remark 1.37),

for instance, can also be proved by this technique.
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2, left exact cotriples

In this chapter we shall give a methed of constructing

elementary toposes. Let E Dbe an elementary topcs, and let
C = (Cyeyy)

be a left exact cotriple on E. (By saying that € 1is left
exact we just mean that the functor part C: E —> E 1is a left
exact functor, i.e. commutes with finite inverse limits. The

notion of cotriple is as in Eilenberg-Mocre [5 ], t: C — 1
2

E

denoting the co-unit and w: C —>C the cemultiplication.)

We denote by gm the categery of (€-co-algebras and their homo-

morphism (the "universal cogenerator" for C in the terminology
of [51).

We have a functor
Axi E—>Egr Y (CY,w) £ +> Cf
which has a left adjoint
X*: Ep — E: (X,}) —> X.
Lemma 2,1. The category E; has right limits.

Eroof. Let = = (X ,¥) be a diagram in Eg, and let P
(-3

be the canonical map
li?i (X)) — C(lim X).

Then (l%?*xﬂ, 13@a§;r0 is a €-coalgebra and is a right limit
of the diagram in gc.
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Lemma_2.2. The category gc has finite left limits,

Proof. Let &« +—> (xd,gg) be a finite diagram in EC’

As € 1is left exact, we have a canonical isomcrphism

Nt

C(lim X, ) > Lim C (X).

Then (élim Xy Elimg T)'J) is a @&-coalgebra and is a left limit
ot
E L]

of the diagram in Ep

Corollary 2.3. The functor X\*:

—> E 1is left exact.

ADJ

For any X and Y ih E we have a map

Gy vi C(XAANY) —> CXidhCY
X,Y

adjoint to
C(X b ¥) x X —2— c((xhy) -x) —L&¥)y oy,

where the first map is the canonical isomorphism given by the

left exactness of C. It is clear that G-

X.Y gives a natural
b

map.
For any two €-coalgebras (A,«) and (B’f)’ define
(B,P)r1\(A,a) by the requirement that

(B ) N (8320 — (CBAR), ¥ p,) =23 (CCBHCA), ¥ g 4, o)

be an equalizer diagram in Eg, where © and 6' are the homo-

morphisms given by

Cliz o)
C(B b 4) —B > C(B N CA)

and
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Cprligy)

¥ C(oy ,)
C(Brh A) —BDAS 205 ) —Bshs (0B h ca) ——EB5 c(arhoa)

respectively.

In this way we get a functor (=) (-): EOF « E¢ — Eg.

Lemma_2.%. E; 1is Cartesian closed.

DxB —£> A be a map with exponential adjoint D —=> BrbA. Let

g denote the composite

é A
D —> ¢ <L ¢(Brh a).

Then g 1is a homomorphism (D,3) —> (C(Brh 4), wahA ). We
propose to show that f is a homomcrphism if and only if g
equalizes © and ©', i.e. g factors through the canonical
map

by (D,é) —h—> (B,s) M (A,«) 1let us say. Then h will be the
exponential adjoint of f in EC
Now f 15 a homomorphism if and only if the diagram

DxB —i—3 2

e I

C(D x B) —ﬁ-——> CA

comeziites., We have omitted reference to the canonical isomorphisms
expressing left exactness of C. We denote the composites f.«
and (8>p).Cf by @ and @' respectively. Their exponential

A A
adjoints, @ and @' are given by
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1Br|‘. ol

B Ca

g: D Ls Bra

and

" oD @) inher

g': D25 B (DxB) B——— B (CDrCB) B—— Brhca
where the first map u is the front adjunction for exponential

adjointness.

Consider the commutative diagram

D —> B (DxB) 15 (&)
TP @ x12)
B B
é \V4
B\ (CDxB)

/ ! r‘h(1(:]5"(3)
. \\ B rh (CDCE)

\ CB /h (CD<CB) T Vepxcy
ct
Togher | 1Brh cf
Y “B.A M ORI
C(BhA) ——=2 5 (B~ cA — BAYCA

(The lower left-hand square commutes, using naturality of G and

an easily deduced equation between u, ,6 and the canonical iso-

morphism C(DxB) ~ CD xCB.)
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A A
. = -
We deduce that @ A.Cf.o;a’A.((erwCA).
Now f 1is a homomorphism if and only if ¢ = ¢g' if and

A

A
only if @ = @' if and only if the homcmorphisms

g AN
D < cp <2 ¢(Brhca)
and D —3scp <413 5(hca)

agree. But this is precisely the condition that g equalizes

8 and ¢6'. This proves the Lemma.

>
Let CQYy—> ) classify 1>—q£)$CD. Since the diagram

p .
ch —& 5 2n L2 5 cn
v o |
—ll ~t)C.'Q\L Rz
2
ctn L2 5 30 L2 20

commutes, we have a homomorphism

(cQ, ) —2C2 5 (6 ).

Define (Q’w) —> (CQ, pﬂ) to be the equalizer of '\fﬂ.Ck
and 1CQ'

Lemma_2.5. The C-ccalgebra (Q,w) 1is a subocbject classi-

Procf. First note that 1 -—CLL)—> Cfl equalizes 'lpﬂ.CK

caL and so lifts to a homomorphism
1 (@,w).

Suppose (X',S')>—1—> (X,¥) 1is a monic in E¢y and let
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X' > X be classified by X —> {1 in E. Define ¢ tc be

the composite

3
X - cx —2£5 cn

v
P
so that we have a homomorphism (X,§) —3 (C}, ¢, ). Now we

show that ¢ equalizes VY,-CX and Ton i-

Consider the commutative diagram

X! _-'L> CX' >

1
(2.1) il ci Ct]/ t
oo

The right-hand two sgquares are pullbacks. Now we show that the

left-hand square is also :-

Consider the diagram

i_) cxXt _CS'__> 02Xl

W
X' I
y A\

033 2+
————
X —_— X C™X.

¥x
The rows are equalizer diagrams, split by the co-units. Let

y £5%, ¥ -B>CX' be maps in E such that £.§ = g.Cl.



Y
\ g
\\h
Sy j' cx! C3 _ 5 2x
f VX,
i ci 23
v \
¥ > 2
X — > CX =3 X,
Yy

Since Czi is menic, g equalizes C§' and Vv Hence

Xt
there exists Y B> X' such that h.g' = g. As } is monic
hi = f. Because i is monic, h 1is unique with this property.
Hence the left-hand square is a pullback.

Tc return to the diagram (2.1), we see that ¥.Cq.X and @
beth classify the same subobject of X and nence are equal. This
gives us that ¢ equalizes y}iCFR and .y and hence lifts

A

tc a homcmorphism

X,5) —— G,

which we shall show is the classifying map of (X',3') — {X,7)
in Eg.

From the commutative diagram
(X', §) —> 1

i t Ct
- X

(%,8) —E= ([, %) > (cQ,¥,)

V
@



we get that

(X',j') _— > 1

(2.2) ; l lf

X, —— Gw)

commutes. Now we show that it is a pullback diagram. Let
(Y,y) L (X,§) be a homomorphism such that f.¢§ factors through
£. Then f.p’' factors through t, and so there exists a map
Y—h—> X' such that h,i1 =1, But f and 1 are homomorphisms.
Since C(i) 1is monic, h is a homomorphism.

Suppose now that © 1is any homomorphism (X,§) —> (Q,w)
which substituted for ¢ in (2.2) makes (2.2) into a pullback.
Since the forgetful J* preserves pullbacks, the left and square

in (2.3) below is a pullback in E

X! 1 > 1
(2.3) Y LE Lt
X — ﬁ‘_i-) cOY —£—> 0O
L

If we can prove that the right hand square is also a pullback, the
total diagram will be, which means that p.i.é_n_ will classify
X'—> X, whence |O.i.€_Q= ¢. From this it will follow by adjoint-
ness that the homomorphism ’o.i equals the homomorphism QS = ci).i,
and since i is monic, P = ‘F - To prove that the right hand
square is a pullback, is immediate, using that 1 equalizes 1id

and 'w.{.».C}\ so that

1.84 = 1.v.CA.gq
= i.v.ECQ‘k
=1i.A .

Putting together the information in the above lemmas, we have

the theorem:

topos E and let L, deno%e the category of C-coalgebras. Then

g‘,_m is an elementary topos, and there is a functor
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E— E

with a left exact left adjcint (namely the forgetful functor.)
(We shall in Chapter 4 introduce the terminolcgy "map between
toposes" for situations like this.)

We remark that the forgetful functer E¢ —>E reflects
isomorphisms.

We give, withcut proof, an example of a left exact cotriple
on a topos E. Let (X,f) DbYe a topological space, ( (D being
the set of open subsets of X), Let E be the topos S/X
("sheaves over X when equipped with the discrete topolegy").
Each open subset U of X defines an object U —> X in S/X;
let also € denote the full subcategory determined by these.
Then the "density cotriple" or "model induced cotrivle" (see e.g.
[18] o [ 1) for Cg S/X is left evact; the topos arising
out of this situation by Thecrem 2.6 is precisely the category
of sheaves on the topoclogicuzl space X. - We shall return to
this situation in the context of an arbitrary topos instead of

&, in Chapter 5.
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3. Topology on a tovos

Definition 3.1. By a topology on a topos Z is meant a

left-exact, pull-back-natural closure operator on each lattice

of subobjects J2_(A), A€ |E

Explanation. To say that . is a closure sperator on _2(A)
means that for any A'>>A in _2(A)

(A'>—>A) ¢ (B™>=R); (A">4) = (A">—>A4)

(and that A' ¢ A" < A implies that A' L E"; this latter
condition is here implied by left-exactness. To say that | is
left exact means A'AnA" = ATNA"; as usual we write A' for
the element of 7 (&) determined by A'>DA.)

Finally, pull-back-naturality states that for r: A —> B,

the following diagram commutes

-1
2up) L) 24,

FAB) ———— 2,
700
in other words, £=1(3") = £~ 1By

Since here the (contravariant) functor £~ (-): E — &

is represented by the object L1 :

Z(8) T homy(a, 1)

we get, by (the Eckmann-Hilton version of) the Yoneda principle

that the topology is determined by, and determines, a morphism
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j: ) —> () which satisfies

true.j = true: 1 —> ()L
juj = j: Q—— 0
(ixj)en= ~Agg: Sli— 17,

We indicate how the correspondences go, and leave the [urther

details to the reader.

(i) Given the closure operators ., apply . to the subobject
1>tEUe L O of £Y; this gives a new subobject of il ; let j be

its characteristic map.

(i1) Given j; let A'>—> A be a subobject of A with character-
jstic map o«: A —>C:., Take A' to be the subobject of A

. d 3
classified by A —> ) -l

Definition 3.2. A'>—> A 1is called = dense subobject if

A' = A; it is called a glosed subobject if A' = A',
Let J>—() be the subobject of (L classified by ]
(in other words, J is the closure of 1 ALY, () ), Let

(Since j.J = J,

. id
fyjr——AKI be the equalizer of ) m— .

J
one could equivalently define Qi as the image of j).

Proposition 3.3. A'>—> A is dense if and only if its

characteristic map A —>() factors through J. It is closed

if and only if = factors through _Qj.
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1
of B and A, respectively. Then the composite C>L> B>£> 4

is a dense subobject of A.

Proof. Clearly k'1(C)——> Ay = C>—> B in .’/?,(B), Jo)

T B =k (C—>4) =k (C— R),

but C>>B =B since C 1is dense in B. Therefore

B =k (> 1K), in particular B4 k™ (C—> A). Apply the

adjointness 3, 4 k™' to get out of this

BKB { T—1 in  P(a).
Clearly QkB = B> A, so
B>— A £ C>> A.

Since ciosure is monotone, we get
) g

B> A{ C~> A =C>> A

but since B 1is dense in A, the left-hand side is 4, the
largest subobject of A. So also the right-hand side is Aj
this says that C 1is dense in A.

Lemma_3.5. If B>£> 4 is a closed subobject, then

3k: R(B) —> ZAA) commutes with the closure operators.

Proof. Let <> B, Then

C>~~> B = (C>> B)Y"E = (C>> B> A) n(B>>4)

(since - nnB 1is just "pulling back along k" which commutes

with closure). Since B 1is closed in A, this in turn equals
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Crx>> A nR>— i

(C—— 4)A (B> A) Dby left exactness of - .

This clearly is just C>— A4 since C £ B. But C>—> A is

Bk(C)——>B).

Corollary 3.6. Let A'>»—>A ©be a subobject. Then

Definition_3.7. A morphism f: A —> B is called almost

monic with respect to the topology, provided the canonical map

»'  (which is monic) is dense:

N

Ncte that if the topology is trivial (A'>— & = A' »>>A4),

A x A > A —I 5B

then "almost monic" <=>"monic".

Lemma_3.8. Amap f: A — B is almost monic if and only

. . €o . .
if for any pair of maps G T A with go,f = g4 .fy, there is

a dense subobject G'>T>C- with k.go = k.gq.

Proof. Exercise,.

i

with respect to the topologzy provided its image Im(f) >—>B is

Definition 3.9. Amap f: A —>B is called almost epic

densc.

almost epic will be called bidense.
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Note that since a monic map is almost monic, and since it

is almost epic if and only if it iIs dense, we have for monic

maps: bidense ¢ dense. For the trivial topology mentioned above,
a map is bidense if and only if it is epic and monic (i.e. invert-

ible, by Proposition 1.20, essentially).

Let 2] denote the class of bidense maps in E with respect
to the topology. We shall prove that 3, "admits a calculus of
right fractions", meaning that we have a nice way of inverting

them (to be described).

Lemma_3.11. In the following diagram, let s € 2,

P
tl
C

Assume the diagram is a pull-back. Then also te€ 2, ("< IS
STABLE UNDER PULL-BACK").

fl

— \’

o e—— »
]

3 e

factorization (essentially by Theorem 1.1%, "pull-back theorem",
and also preserves the closure operator, it is clear that 's al-
most epic' implies 't almost epic'. To prove t almost monic
apply Lemma 3.8: Suppose g,-t = g;.t (g;: D-—>P). There-

fore g, .f'.s =g,.f'.s; since s 1is almost monic, there is a

dense monic D'>Jiﬁ> D with

d.go.f'

d.g1 .fl L3

Since also d.gy.t = d.gq.t, it follows from uniqueness

of a map into a puli-back that
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d.g, = d.gq.

twice, one easily sees that almost-monic maps compose. It is also
true that almost-epicz maps compose; note first that since the
contravariant functor 72( ) from L to sets is rerresentable:
homE(-,El), it sends epic maps in E into monomorphisms in sets.,

From this we may easily conclude:

(3.1) PULLING BACK ALONG AN EPIC MAP PRESERVES AND
REFLECTS THE NOTION OF DENSITY,

"reflects" means: if q 1is epic and q'1(A') is dense in the
domain of q@ then A' itself already was dense in the codomain
of q.

Suppose that f and g are composable and almost epic;

consider the diagram
_-L— j G
A —> B > C
p1\ )//\pi‘ /2
i
N L
N 1
Py
P3 13
]

with p,,1, epi-mono-factorization of f, P5yi, epi-mono-

factorization of g, and p3,i3 epi-mono factorization of

iy .p,, and with p),1) ~a pull-back diagram for p2,i3.
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Since i1.p2 = p3.i3 we get from the pull-back property
that i, factors through ih' Since 1i; 1is dense and i, S ih’
i), 1is dense. Since i, = p51(i3), we get from (3.7) above that
iy is dense. Since 1, is dense, 13.12 is dense by Lemma 3.4,
Since p1.p3, 13.12 is an epi-mono factorization of f.g, we
conclude that f.g 1is almost epic. Lemma 3.12 1s proved.

Since an invertible map clearly is btidense, we may sum Lemmas

3.8, 3.11 and 3.12 up in:

The class 2: of bidense maps satisfies

(3.2) all isomorphisms are in 2
(3.3) 2. is stable under composition
(3.4%) each diagram
C -—?r—> B
Ts
A

with sE€ 2? may be completed to a commutative

diagram

)]
Q — O

» —> W
wn

wvith s' €L

(3.9) If f,g are morphisms so that f.s = g.s for

some s €2, then there exists a (monic) s'€X

with s'.f = s'.g.

These are the four conditions (dualized) of Gabriel-Zisman,
(61, p.124
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We briefly sketch how the class 23 gives rise to a cate-
gory _E[Z,-1] and a furcter E —= E[Z~'] (a full account
may be found in Gabriel-Zisman).

_E[Z-1] has the same objects as E; the hom "sets" (they
will actually be sets in our case) are defined by letting

hom (A,B) Dbe the set of equivalence classes of pairs (s,f)

B[]

A B

o

with s€ )

under the equivalence relation: (s,f) = (s',f') 1if there exists

a commutative diagram of form
A B
f
S/' S/
D" £

\ A

To prove that this actually is an equivalence relation, one needs

with t.s = t'.s' € 4,.

(3.3)-(3.5). For instance, to prove transitivity, suppose that

besides the relation (s,f) = (s',f') displayed in the diagram

above, we also have (s',f') = (s",f") by means of the diagram
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/

/

with u'.s' = u".s" € 2.
Then use (3.4) to produce a commutative square having t'.s'

and u'.s' as the two "upper" arrows:

t.s/\'s‘
\/

with v.t'.s'

= w.u'.s'e€ Z:.

Then use (3.5) to produce a monic g: G —> F in 2: with
g.v.t' = g.w.u', vhich is possible by (3.1). Finally, by (3.3),

g.v.t'.s'E€ Z:; the pair g.v.t', g.w.u' proves that
(s,f) = (s",f").

Composition in Q[ZTJ] is defined by letting (s',f').(s",f")

be the outer pair of legs in thc diagram
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C

A B
S'T / Ts" fll

D! * o s'Ee€ y, S"E .
tT/
E g

where the square * is fermed according to (3.4), with te Z

and therefore, by (3.3), with t.s'€ 2.

We leave it to the reader to prove well-definedness,

associativity, etc. Finally, the functor
P: E—>E[Z7]
is the identity map on objects; on maps:

(ALB)’;\é A B

1AT ///f/;a

A
(by (3.2), 1,€7'). Note that
(s',£').P(f) = (s',f'.1)

whenever it makes sense.

Everything we have done so far with 2 only depends on the

properties (3.2)-(3.5) of 2, not on the special properties we

assume on E. We quote the following theorem which holds in any

category E (for a 2. with the properties (3.2)-(3.5)):
Theorem (Gabriel Zisman, Prop. I.3.7). The functor
P: E— E[3]

commutes with finite inverse limits ("is left exact"),
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We return to a topos E with a topology =

Definition 3,13. An object Fe€|E[ will be called a gheaf

for the topology if for any dense map X' 3 X, the mapping

of sets
homg, (X, F) BB T)s pop (X1, F)

is bijective. (If it is injective, F will be called a separated
object).

So F 1s a2 sheaf if diagrams

X,}dense X

can be filled out X —> F in a unigue way.

Proposition 3.1%. F is a sheaf if and only if for every

bidense g: A —> B, the set mapping
(3.6) homy (B, F) ————— homy, (A,F)
hem(g, 1)

is bijective.

Proof. = 1s trivial, cince a2 dense monic is bidense. To
prove =» , take an epi-mono factorization of g. This gives.
a factorization of (3.6). Since the monic part of g is dense,
we only have to prove the bijectivity of (3.6) for an epic map

which is almost monic. Let g be a such, and let o be its

kernel pair



1
\O
.

> B

Now A.p .f=1f= A.p.f. By assumption, A: A>>R is
dense. Since f 1is a sheaf, we therefore conclude P .f =p,.f.

Since g 1s a cokernel cf foo'fﬁ’ f factors uniquely across g.

We shall now prove that the sheaves form a reflective sub-
category of E; for that, we can forget all the fraction-calculus
stuff which will be used later to prove that the reflection functor

is left exact.

We first prove a general '"closure-theoretic" lemma.

Lemma_3.13. ("Dense-closed-square"). Suppose we have a

commutative square in E (straight arrows)

. d ~
D > dense 7 X
,/
Ve
a// h
2N
F\ j ~ Y
” closed

with d dense and f closed. Then there is a map X —>F

(broken arrow in the diagram) making both triangles commute.

3@ ¢t

hence by Eh - n?
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& £ 07 ()
nence

A¢n ey =n" (D) = n7 (D)

vsing monctonicity ol closure, nzturality of closure, and

closedness of f. But d =X, since d is dense, soO

whence

So a exists with a.f = h., The other commutativity follows
since { 1is monic., This proves ihe lemma.

Note that

(3.7) If F>—>X' is closed and X' >> X arbitrary
monic, then # X Ax = .

This is an immediate consequence of naturality cf

Lorma 3.16. An object A is separated (Definition 3.13)
if and only if A>3 A x4 is closed, if and only if
A-23 advQ  factors through A M Qj.

Proof. Equivalence of the last two conditions is immediate
from Proposition 3.3 and the definition of 4.} =as the exponential

adjoint of the characteristic map of A . - To prove the two first

s . - Y
conditions eguivalent: Suppose A is separated. Let A Lol 4oy

- Bl AN A N iy
be the closure oi' A ——-> AxA, Then PorPy 2agree on A L A,

which is dense by Corollary 3.6, vhence by separatedness Po= /01,

whence A = K.



61.

Suppose on the other hand that A : A —>AxA 1is closed.
b
Let X—lé- A (i=0,1) agree on the decnse subobject D>~g—> X

of X. We then have a commutative square

D d > X

[
> AxA 3

v
A

JaY

the result follows from the "dense-closed-square" (Lemma 3.15).

The four main lemmas now are

1 QQ; is a sheaf

11 AhY 1is a sheaf if Y is

I11 The closure of A>2> AxA 1is an equivalence relation
Iv If Y is a sheaf and X>—> Y is closed, then X

is a sheaf.

Proof of I. Let X' >l>x be dense and let ¢: X! ——B'.Qj
be given, ¢ classifies a closed subobject F of X'. Form
'P:(X), which as a closed subobject of X has characteristic
function X-—)QJ. By (3.7) ?(X)r\ X' = F, whence
d.y=¢@. This proves existence of extension of ¢ over de.

To prove uniqueness, let 4.8 =@, w‘r;ere ¥: X —)'Qj classi-
fies the closed subobject Gy»—> X. Since d.¥% =, GnX'="F.

We then have

6 = 50 -TOATH - 7
assumption X' dense left exactness since
on G of closure GnX' =F

which proves uniqueness of ’\V
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Proof_of II. Let X' ,Q,, X be‘dense. Since pulling back

P A N e

a dense monic gives a dense monic (by naturality of closure)

X'~ A %21—9 X xA 1is dense. By naturality of the fundamental

adjointness we have a commutative diagram of sets

homg (X, 4 by ¥) —{ds1) > homg (X', A h ¥)

IR

v \V4 -

Since d x1 is dense and Y 1is a sheaf, the bottom map is a

bijection, hence so is the top map, so AMY is a sheaf.

—_—_——a==m=====

a category" we should prove that for any "test" object X the

relation ~ on homE(X,A) given by

xo x1
(X —= A~ (X — 1)

iff
Cko,x1)
(3.8) X ——> AxA factors through
~ (AxA)
A >/ AxA

is an "ordinary" equivalence relation. We shall procve that (3.8)

is equivalent to

(3.9) X, and x, agree on a dense subobject of X

from wihich it will be immediate that we have an equivalence relation
(transitivity follows from the fact that (by left exactness of
closure) an intersection of two dense subobjects is again a dense
subobject). - To prove the egquivalence of (3.8) and (3.9),

suppose (3.8) holds. Let ¥ below be a pullback
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A XA

<XO,V T

X\AAA
| =
X A

S
7

Since A 1is dense in 4 (Corollary 3.6), d 1is dense, and
by commutativity of the cuter diagram X, and X, agree on
X'. - Conversely, suppose (3.9) holds for Xg1Xqy l.ee X yX,

agree on a dense subobject X', so we have a commutative

X s———> AxA
<xOQX1»

d I closed

X! —34 > &

apply "dense-closed-square-" Lemma 3.15 to get X —> A as

desired.

Proof of IV. Let D>l> Z be dense and let D>»>X be

given. Since Y 1is a sheaf, we can extend D — X —>Y to

Z so as to get a commutative square

yd 5

&= U
K& N

:closed!

now apply "dense-closed-square" Lemma 3.15 to get 2Z —> X.

Uniqueness is clear.
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Proposition 3.17. For any A there 1s an epic and almost

monic map A —>»SA, where ©SA 1is separated.

—.(PO H F‘]»
Proof. Let A ——> A~<A be the clcsure of
ZAA: A>—> AxA., By III, (pP,,p) 1is an equivalence relation;
let q: A —»SA be its ccequalizerj then (p,,P;) 1is the

kernel pair of g, which means thzat

A >, SA
Fo,F> lASA
A x A > SA> SA

qQx>q

is a pull-back. Now qxq 1is epic by Proposition 1.15, and
Qﬁo,fy\ is a closed monic by construction. The proof establish-
ing that "pulling back along an epic map reflects the notion of
density" (3.1) also will give that "pulling back along an epic
reflects the notion of clesedness." Hence Ag, is closed, so

SA 1is separated by Lemma 3.16.

dense monic map S »—> F into a sheaf.

Proof. Since S 1is separated, {-}: S —> S ()2 factors
through S(T\flj by Lemma 3,16, and is monic by Proposition
1.7. By I and II, S’T’f)j is a sheaf. Let S be the closure
of {-): s—»s,fh{)j. By IV, S is a sheaf, and S is

dense in § (by Corollary 3.6). This proves the Proposition.
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category of E determined by the sheaves. Then Sh 1is a

reflective subcategory.

Proof. Let A€ |E| be arbitrary. By Fropositicn 3.17
we have a bidense map from A to a separated object SA =and
by Proposition 3.18 we have a bidense map SA —> SA into a
sheaf, But bidense maps compose, by Lemma 3.12. So we have a
bidense map A -—/jléﬁ where SA 1is a sheaf. If A ——>F is
arbitrary, and F 1is a sheaf, f factors in a unique way over
f» by Proposition 3.1k; thus ©, has the required universal
property.

By the universal property of Fi we can make the assignment

A ~~> 5K into a functor E -B>Sh, with R left adjoint to the

inclusion functor i: §Sh —> E, with P, as front ad junction.

Theorem 3.20. Sh is a reflective subcategory of E; the

reflection functor R 1is left exact; and Sh 1is a topos with

flj as its subobject classifier.

Proof. The first statement we have proved. The idea in the
proof of the left exactness of R is to compare it with

-1 .
p: E—> E[Z"'] which by Gebriel-Zisman's Theorem (page 57

here) is left exact;

Consider the diagram of categories

Sh < R
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Since f: A —> iR(A) is bidense and natural in A, one
casily gets a natural isomorphism of functors R.i.F ~ P, If we
can prove i.P to be an equivalence of categories, left exact-
ness of R will follow from left exactness cf F. To prove
i.P an cquivalence, prcduce a right inverse H fer 1.P Dby

H
A "> R(A)

(se 1)

H
A~ R(s)TVLR(E)

which makes sense, since R applied to a bidense map gives an

isomorphism in Sh - this one can see since the bottom map in

X ———Y homg (Y, F) LD, hong (X, F)
bidense = & =
V
F
a sheaf homg, (RY,F) BT homg, (RX,F)

has to be a bijection, since the vertical cnes are bijections
by adjointness and the top map is a bijection by Proposition 3.4,
Clearly, i.P.H= Tgp- Also, one can use fy to get
H.i.P «~ 15[2?4], proving that i.P 1is an equivalence.

Finally, we prove that Sh is a topos. Since R preserves
finite inverse limits, Sh will have such. Since R preserves

colimits, Sh will have at least as many colimits as E has.
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That Sh has exponentiaticon is sasy from II and the fact that
i: Sh —> E preserves products. (An argument may be found in
Day [ 3 ]). The fact that flj classifies subobjects is seen
as follows.

Suppose F>—> G 1is mecnic in Sh, then it is monic in E,
since the inclusion functer Sh —> E is a right adjoint. Let
¢: G —> (L Dbe the characteristic function. Now F is a
closed subobject of G in Ej for, F>3»F 1is dense, and
F being a sheaf, it has a right inverse, whence F = F inside
G¥) So ¢ factors across S)j S——_ ] (Proposition 3.3).
Conversely, if ¢: G —> Qj is given in Sh, then
G —>Qj —>» {1  classifies a closed subobject of G, by
Proposition 3.3, That subobject is a sheaf, by IV.

This proves the Theorem.

Left exact triples.

Let 1T = ((T,j,r) be a left exact triple on E. We define
a map

i L —> 0
as the composite

Q A TQ chngtruen;Q

(note that T(truc): T(1) — TQL is menic, since T is
left exact).

#) Here we use that G 1is separated.
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Propesiticn_3.21. The map J defines a topology cn E,

which in terms cf closure operaticns to X' >—>» X associates

the upper map in the pull-back

Xt —> ¥

- 17

X' >»——> TX

(the lower map being monic, since T is left exact). We call

this topology the tcpology induced by T.

Proof. We first prove that the map j: (L —> (2
classifies the operation on .jl(x) in (3.10). Let x: X'>»>X
represent a subobject; let its characteristic map be }‘: X — Q.

The map
X —5 (2, g ch(I(tme)) s o

equals

Y)

x —251x DE) g0 eh(T(true)), 0,

to see what subobject of X it classifies, pull true: 1 —>
back along it, which can be done in three steps. In the first
step we get (by definition of ch(T(true))) just

T(true): T(1) — T(Q)). Since

X — O

\

] true
X! 1

is a pull-back, and T is left exact, T(true) pulls back
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along T(3) to T(X') > T(X), which finally pulls back
along Yy to what we in (,) denoted X'.

It is clear that X' ¢ X' in Z£(X). To prove that
X < X' 1is equivalent to proving j.j = j.

Note first that even though

/7
Q S Yol
*¥* true X IT(true)
1 _ > T
Z ‘

is not in general a pull-back, T applied to it is a pull-back,

because T(m»_ ) 1s monic (split monic, in fact, by ). Now
e, ’ ’ Po

consider j.j:

.3 ?cl.ch(T(true)).Zz.r:h(T(true))

ﬁh.T(ZQ.T(ch(T(true))).ch(T(true))

by straightforward naturality arguments. Pulling true back alcng
this composite in four sters yields first T(true), by definition,
then T°(true) since T preserves pull-backs, then T(true)
since T of ** is a pull-back, and finally ﬂz;(T(true)).
This is precisely what we get by pulling true back along
%h:ch(T(true)) = j. So by uniqueness of characteristic maps,
j.i=1.

Finally, we must prove the left exactness of the closure
operator. This is straightforward using the fact that, for

X' >—>X and X">—> X two subobjects of X, we have (by
left cxactness of T) a pull-back
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(X' nX") — IX!

l l

TX" —> TX

which makes it easy to ccnstruct a map X' nX" —> T(X' nX"),
and therefcre also a map X' X" —> X' nX".

This concludes the prcof of Proposition 3.21.

It is well-known that each idempotent triple T’7’V on
a category E (that is, Pa is an isomorphism fcr cach A)
is isomorphic to one arising out of a reflective subcategery
E' of E (as the reflection followed by the inclusion). In
fact, E' may be taken to be the full subcategory cf E deter-
mined by those A fecr which ﬂ?A is an isomorphism.

Surpcse that 7T = (T,),r) is an idempotent and left exact
triple on E; let J be the torology associated tc it by

Propocsition A , and let E' Dbe the reflective subcategery

associated to T as above. Then

Proposition_3,22. The subcategories shy and E' of E
are equal. In particular, each reflective subcategory of E

with exact reflection functor is the category of sheaves for

a suitable topolegy Jj on E.

Proof. We shall prove, first, that A is separated with
respect to j iff 77y, 1s monic. So let A be separated, so
AA: A>> A>A is closed in Z2_(A~A) which means that *

in the following commutative diagram is a pullback
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A 2
7a ¥
TA
T(Ah)
By

Since the canonical map X: T(AxA) —>TA=TA is ah isomorphism,
the outer diagram is a pull-back as well, whence for trivial
diagrammatic reasons %), is monic. Conversely, if %, 1is monic,
the outer diagram in the above is a pull-back, whence * 1is,
whence A, is closed, whence A 1is separated.

We now prove that 4, is an isomorphism iff A isa sheaf
(with respect to j). Let ", Dbe iso. Let f: Y —> A be an
arbitrary map and y: Y>»—>X a dense monic map. We must prove
that f extends cver y. Now, y being dense means that the

square * in the following diagram is a pull-back (for a suit-

able h: X —>T(Y)):

Y
\?\
X — > X

h =

Ty

7)(
Vv \”
T(Y) —» T(X)
T(y)
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It is now easy to prove, using naturality of ‘7, that the

composite
.7-1

x—E sy D5 g —E 5 )
is the desired extension of f over y. (Uniqueness of the
éxtension follows, since we know already that A 1is separated).
Note that in particular every object of the form T(X) 1is a
sheaf (using the idempotency). Conversely, let A be a sheaf.
Since A 1s then separated, <}, 1is monic, whence we can form
the closure A of the subobject % A>—>T(A) of T(4).
Since T(A) is a sheaf and in particular separated, and since
the inclusion i: A>—>A 1is dense, it is easy to conclude

that i 1is an isomorphism. We then remark that we have a

commutative diagram

——-i—,—-\')' T(A)

A
7"‘ ]/ l’?r(A)
A\
T(F) W T2(A)

with the square being a pull-back. By idempotency of T,q,y
T(jh) is an isomorphism, whence 1i' is an isomorphism, whence
7A = 1.i' 1s also an isomorphism. This proves the Proposition.

A triple on a topos, whose functor part commutes with finite
products has already a cartesian closed category as its category
of algebras, according to [10].Even for left exact triples, though,
the algebra category does not seem to be a topos in general. It
is a topos if the triple further is idempotent, by the Propo-
sition just proved. Chr.J, Mikkelsen proved that the coalgebras on

the algebras for a left exact triple T forma topos, equivalent
to shj (J induced by T).
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Left exact triples arise whenever we have morphisms of
toposes (this concept will be defined in the next chapter).
Another type of example is the double-negaticn topology:

For any object A define a map

-~ Ra) —> A[A)

by putting

At =2 > p)

where A'>—> A 1is a subobject of A, @ denotes the minimal
subobject of A (which is represented by the unique map from

the initial object to A), and 2 denotes the exponentiation
in the cartesian closed category J2(A) (compare p. 12).

For general closed-category reasocns
A' =AY (= (A' 2 0) > g)

is a strong triple on the closed category .ZL(A); note, namely,
that the contravariant functor - = X for any X 1is right
adjoint to itself, whence the composite (- =3 X) ® X is a
strong triple; in particular, putting X = @, we get the triple
2~ on 2(A). Since Zi(A) is cartesian closed and partially
ordered, this implies that —1- commutes with A, so is left
exact. Finally it is pull-back natural, by two applications of
(1.23) and the fact that, by Theorem 1.12, @ is preserved by
pullback; so it is a topology.

(Th proof that -1 commutes with A can also be seen by
the usual methods of intuitionistic propositional calculus).

The category of sheaves for -~ will have its 0 to be
not only a Heyting algebra object, but a Boolean algebra object.
(It 1s not false to say that this is related to Kolmogorotf's

ldea [ll], of embedding classical mathematics in intuitonistie

madthamadd o\
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L., Maps of toposes

If E and E' are elementary toposes, we define a map

(or morphism) of toposes

E —f___> E‘

to be a functor f,: E —» E' having a left exact left adjoint
f*: E' —> E. Composition of maps is to be given by composition
of functors. We call f, the direct image part of f, and f*

the inverse image part of f. In this way we get a 2-category:

the O-cells are elementary toposes, the 1-cells are maps of
toposes, and the 2-cells are naturazl maps between the direct
image parts. We shall generally only be interested in concepts
"up to 2-isomorphism" in this 2-category; two elementary toposes
are 2-isomorphic if and only if they are equivalent as categories.
As an example of a map of toposes between elementary topeses
eonsider a map X iz%>¥' in an elementary topos E. We have al-
ready seen that the categories E/X and E/Y are elementary
toposes and that the functor '"pullback along o ":-

«*: E/Y —> E/X

has a left adjoint zq and a right adjoint Tl‘o(. Since &«* 1is

left exact and left adjoint to TE;, we have a map of toposes
E/x: E/X —> E/Y

with TC, for direct image and o* for inverse image. Strictly
speaking, E/t 1is only defined up to 2-isomorphism; in any case,
we have a pseudo-functor « +> E/x from E to the 2-category

of elementary toposes.
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If j 1s a topology on an elementary topos E, we have
seen that the inclusion functor shj(g) —> E has a left exact
left adjoint, namely sheafification. This gives us a map of element-

ary toposes shj(E) —> E; which we shall refer to as the canonical

map for the topology Jj.

Theorem 4.1, Let j be a topology on an elementary topos
E' and let 1i: shj(g') — E' Dbe the cancnical map for j. Then
a map of toposes f: E —> E' factors through i if and only

if f* takes j-bidense maps to isomorphisms.

Proof. Let K —5> L be a j-bidense map in E' and let

X be an object of E. We have a commutative diagram

qug(g,f*(x))

\\4

Homg,(L;f*(X)) HomE.(K,f*(X))

l l

HomE(f*(g),X)
Homg, (£*(L),X) = Homg, (£*(X), X)

\y

in which the vertical maps are adjunction isomorphisms. The top
map, Homp,(g,f4(X)) is an isomorphism for all j-bidense maps
g 1if and only if f,(X) is a j-sheaf. The bottom map,
HomE(f*(g),X), is an isomorphism for all j-bidense maps g if
£ —takes j-bidense maps to isomorphisms.

Suppose f does factor through i. Then f* takes j-bidense
maps to isomorphisms because i* does. Conversely, if f* takes
j-bidense maps to isomorphisms, f,(X) is a j-sheaf for all X

in E, Dby the argument above, Hence there is a functor
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u,: E—— shj(E')

such that f, = i,u,. Define u*: shj(g') —>E to be the

composite

i* ¥*
shy(E') ——> E' L= E.

Then u* 1is left exact because i, and ¥ are. The natural

bijections
Homshj(g.)(Y,u*(X)) gHomE, (1,,(Y),T,(X)) =
gHomE(f*i*(Y) ,X) 2 Homg(u*(y) ,X)

show that wu* is left adjoint to wu,. Hence we have a factor-

jzation

N A

> B
i
!
shj(E ) .

We recall from Chapter 3 that if T is a left exact triple on
an elementary topos E', with unit 1g, 5 7, then the map

a T r(qy Tltrue))s ~,

is a topology on E', We call this the topology induced by T.

f .
If E—> E' 1is a map of toposes, the composite functor

g L= fx

E > E > B

has a natural triple structure. This triple is left exact because

f* and f, both are. Hence we obtain a‘t9pology on E', which

we call the topology on E' induced by £,
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Consider the commutative diagram

P
N > o
J

Tx Ve

\ £ % V A N\
f N —— > £ . * Q! ——>

A A

f*f*({;) f, f*(true') true'

£, 0% > 1 > 1

where A is the characteristic map of

A f f*(true!')
1 ——> £ £*(1) > £ .0%(0).

The bottom square are both pullbacks. The closure of M>—,3A, N
for the topology Jj has ¢j for characteristic map, and so is
given by the pullback of f*f*({;) along 7My. By hypothesis,
f*({g) is an isomerphism, so 3 is j-dense.

Conversely, suppose M>—f-$—>N is j-dense. Consider the

commutative diagram
£ Toen ~
e s peqyr — 2 o pup SR px ey 25

f*((s) f*(true') I*f, f*(true') f*(true!') true

f*M

Y

> 1 — > 1

where P is the characteristic map of

1= pa(r) LXru) s en 0,

The right hand square is a pullback by definition of Mo the

second square on the left is a pullback because f*ry‘_ﬁ is monic,
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and the remaining two squares are pullbacks because f* pre-

serves pullbacks. The top row is f*(¢j).f and by hypothesis
¢3 is the composite

-al
N—> 1 e o,

Thus we have pullback diagrams

AN SR . C-."50 NN R I

f*M

-
—

f*(ﬂ) f*(tre!') /T true
|
1 .

Hence f*(P) is an isomorphism, and the proof is complete.

Theorem 4.3. (Factorization Theorem). Every map of toposes

E.-__i—;> E!

where E and E' are elementary toposes, has a factorization
E—LI > §
\ A
F
where b, 1is full and faithful and a* reflects isomorphisms.

Proof . Take E = sh;(E') where j is the topology on E!
induced by f, and where b 1is the canonical map for j. Then
b, 1s full and faithful. By the preceding two theorems, there
exists a map of toposes E i)g such that ba = f, Let g be
a map in F such that a*(g) is an isomorphism. Since

a*(g) = £*b,(g), by(g) 1is j-bidense. Hense g = b*b,(g) is
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an isomorphism, and so a¥* reflects isomorphisms,

Note that the topologies on E' induced by f and bt are
the same, and that the topology on F induced by a 1is the
trivial one, i.e. every object of F 1is a sheaf for it.

Dually, note that because b*b*g1F, the cotrirles on E

induced by f and by a coincide, and the cotriple on F induced

by b 1is the trivial one, namely 1F'

and E' are elementary toposes, such that f, is full and

faithful, and f¥ reflects isomorphisms. Then f 1is a 2-isomorphism

(that is, an equivalence).

Proof. For any object X of E', consider the front

adjunction
VX X —> f %X,

Because f, 1is full and faithful, the end adjunction
€: f*fy, —>1p is an isomorphism, and so f*(%) is an iso-

morphism. Since f* reflects isomorphisms, ’7)( is an isomorphism.

Corollary 4.5. If E and E' are elementary toposes and

E—L)E' is a map of toposes such that f, is full and faithful,

then there is an equivalence of categories
ay: E—— shj(_}:l')

such that f, = bya,, where j 1is the topology on E' induced
by f and b, 1is the inclusion of the j-sheaves.

O0f course, this Corollary may also be inferred from

Proposition 3.22,
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Corollary 4.6. Let E;,E,,E' be elementary toposes, and
let fy: E; —> B' be maps of toposes for i = 1,2

If f,o4 1s full and faithful, a necessary and sufficient
condition that f1 should factor through f2 is that for every
map < in E' for which fg&x) is an isomorphism, we should

have that f%() 1is an isomorphism.

Theorem 4.7. Let

8.1 D

B ——> I ——> B
i
|
u v o w
|
a, \v b,
Eg% F—Z_ﬁ §2'

be a 2-commutative diagram of elementary toposes and maps of

toposes, such that a¥ reflects isomorphisms and b2* is full
. . v .

and faithful. Then there is a map of toposes F, —> E, making

the whole diagram 2-commutative.

Proof. Let o( be a map in E} such that bX(«) 1s an iso-

morphism. Then u*a¥bi(x) 1is an isomorphism; hence a#b?W*&X)

is an isomorphism; hence b?W*(d) is an isomorphism.

Corollary 4.8. Let E and E' be elementary toposes and
let E,—£€>‘§' be a map of toposes. Then the factorization of
f into E S F —b§ E' where a* reflects isomorphisms and

b, 1is full and faithful, is unique up to 2-isomorphism.

Proof. In the theorem above, take u = 1E’ W = 1E' and
suppose that a} reflects isomorphisms and bi* is full and
faithful for 1 =1,2. Then v* reflects isomorphisms, because

a¥v* = a¥, and v, is full and faithful because DoV =Dqy.
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In view of this result, we will refer to the factorization
of a topos map, with the usual abuses of language.
Suppose that X-—gé Y 1is a map in an elementary topos E.

We have seen that we get a map of toposes

E/f: E/X —> E/Y.

To study the factorization of this map, we have the following

lemmas.

Lemma_4.9. If f 1is monic, (E/f), is full and faithful.

Proof. (E/f)* = £* has a left adjoint, 2., given by
composition with f. Since f 1is monic, the diagram

1

X X, x
- lf
x—3L 5 v

is a pullback, so f* . » g/x+ BY adjointness, f*TTe ~ 1g/x,
so Tl = (E/f), is full and faithful.

Lemma 4.10. If f 1is epic, f* reflects isomorphisms.

o<
K—> L

N,

Y

be a map in E/Y such that f*{) is an isomorphism. We have

a commutative diagram
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H<S

N
Id

where the vertical maps, induced by X —29 Y, are epic, since

pullbacks of epics are epic. Since f*(x) 1is an isomorphism, it

follows that & is epic. Let

k
0

R :::::;; K
%
be the kernel pair of . We have a commutative diagram

£%(k )

f*(R) ——=>——> % (K) _ﬁ.ﬂ&)f*(L
f*zk15 > )

k \ \
K D

in which the squares are pullbacks and the vertical maps are
epics. The top line is an equalizer diagram so. f*(k_ ) = £*(ky);
so Ok, = 6k,. Since 8 is epic, k, =k, and so < is an
isomorphism,

ization of X ——> Y in E, then

E/a E/b
E/X —> E/T —> E/Y

is the factorization of E/f.
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Recall that if € is a left exact cotriple on a topos X,
then by Theorem 2.6 we have a topcs map E — Egs where Eg is
the category of coalgebras for €,

We remark that because the forgetful functor EC — E reflects
isomorphisms, the topology on EC induced by thec topos map
E — Eg is the trivial one.

The following Proposition characterizes tcrcs maps that arise
from left exact cotriples (just as Corollary 4.5 charactcrizes topos
maps arising from a topology Jj).

Proposition L.12. Let 'E-l;'g‘ be a map of toposes, such that
f* reflects isomorphisms. Let € be the cotriple on E induced
by the adjoint pair f, ,f*, and let E 3—)134@ be the canonical map
of toposes, such that X* 1is the forgetful functor. Then there

is a 2-isomorphism Eg A>_E_' such that the diagram

;\’Elﬁ?
=C
commutes.

Proof. Since f* reflects isomorphisms and is left exact the
adjoint pair f,,f* satisfies the conditions for the dual of Beck's
tripleability criterion. The conclusion states precisely that there

i1s an equivalence of categories b¥*: E!' —>Eg such that the diagram
b*
E'—>E
C
fﬁb,p et
commutes. The functor b* takes an object X of E' to the €-

coalgebra (f*x’f*VX)’ where idg, jz>f*f* is the front adjunction.

Proposition 4.13. If a map of toposes E —£—>};' factorizes

E-—=>F —E', where a* reflects isomorphisms and b, is full and
faithful, then, up to natural equivalence, we may interpret the

category F either as the category of sheaves in E' for the topo-

logy on E' induced by f, or as the category of coalgebras in

E for the left exact cotriple on E induced by f,



5. Categery theory in toposes

Let E Dbe a category with 1 and with pull-backj; choose
for each pair of maps with commcn codomain one of all the
(isomorphic) pull-back diagrams for that pair, and call the
chosen ones canonical (eactually, we cught to have done the same
when defining f* ete.).

For each pair (A,B) of objects of E, we denote by

Span(A,B) the category whose objects are diagrams of form

("spans"):

X
(5.1) °/ \ & (by abuse denoted X)
\
A B

and where a morphism from (5.1) to

X
o(/ \{;'
A B

is amap X X5 X' with X.

5 =I'3, X.x' =, C(Clearly, sinse
/ .

E has products
Span(A,B) ~ E/A xB,

We construct a functor in two variables denoted ¥ :
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D, 3
Span(4,B) x Span(B,C) ———> Span(A,C)

by assigning to the pair of objects

X Y
(5.2) 0/ \j ﬁ/ k
Vg \!
A B B C

the outer diagram in

/N
NN

where * 1is the canonical pullback for (;,/3'. (We leave it to

(5.3)

the reader to define >¥ on morphisms).

By I, we denote the span
A
'a / YA
T4
A A

more generally, for a map A —f—>-B, we denote by [1,f], and
by [f,1] the two spans



A A
1{/ \f and f/ \M
A B B A

respectively (so that I, = [1,,1,]).

87.

Proposition_5.1. > is associative up tc cancnical iso-

morphisms, and the I,'s are twc-sided units up to canonieal

isomorphisms. (Further, these isomorphisms are coherent).

This can easily be seen from the universal properties.

Ccherence means just that all diagrams formed out of canonical

iscmorphisms commute.

Proposition _5.2. Every span in Span(4,B)

to one of form [f,1] »¢ [1,g].

is isomorphin

Proof. For the span (5.1), say, it suffices to take

ERMES IR

For fixed span XE€ Span(4,B), and any C,

functor:
Similarly -»¢X: Span(C,A) —> Span(C,B).

Proposition 5.3. For f: B —>C any map,

diagram (in Cat) commutes up to isomorphism

‘>§‘[19f]
Span(A,B) - Span(4,C)
E/Ax B > E/Ax<C

Ziqxg

X%- 1is a

the following
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both ways round give, up to isomorphism, just

X
°‘/ \{3.1"
¥

A c

Propesition_5,4%. For f: B —> C any map, the following

diagram (in Cat) commutes up to isomorphism

span(a,c) —=2XE1l 5 goan(a,B)

E/A xC Ty > E/A%B

Proof. This is somewhat harder, but still a straight-
forward diagram chase with finite left limits. One may, there-
fore, for instance prove it for E = the category of sets, and

then apply the Yoneda embedding. We omit the details.

We now assume that E 1is an (elementary) topcs. Then there
is a right adjoint for (1xf)*, Since any iscmcrphism in Cat
has a right adjoint (= the inverse), we conclude from Propo-

sition 5.4 that for B —I» ¢

-»([f,1]: Span(A,C) —> Span(A,B)

has a right adjoint. Since an-i(nf)*, also
-x[1,f]: Span(4,B) —> Span(4,C) has a right adjoint. Consider
now an arbitrary span X. By Proposition 5.2, it is isomorphic

to one of the form [f,1] %[1,g]; thus -%X (by associativity



of %) is isomorphic to a functor of form

(- x{£,1]). (-x[1,e]),

and each of the functors in this composite has a right adjoint;

therefore

Theorem_5.5. In a topes E, for any X€ Span(4,B),
- %X: Span(C,A) —>Span(C,B) has a right adjcint. Similarly
X»- has a right adjoint.

Definition 5.6. (Benabou, [2]). A bicategory # is a

Pt

structure of the following kind

(a) a class 030 whose elements are called O-cells,

or objects

(b) for each pair A,BE€ 630 a category [J?,(A,B) whose objects

are called 1-cells, and whose maps are called 2-cells

(¢c) for each A€ (BO, a specified 1-cell I, ¢ [G}O(A,A)]

and for each triple A,B,CE€ 030, a functor in two variables,
denoted XX

(A(4,B) < R(B,c) ——= (3(4,C);

¥ should be associative up to coherent iscmorphisms, and

the I,'s should be units up to isomorphisms (coherent).

A bicategory is called biclosed if for any Xe€ R(A,B) and
any C,

- X: ((c,4) ——@R(C,B)
and

X#-: (A(B,C) ——>(A(4,C)
have right adjoints.
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The spans in E form a bicategery (B with 050 = |E|] and
with (A(4,B) = Span(A,B). Ve dencte it by SPAN(E). Theorem
5.5 says that

if E 1is a topos,

SPAN(E) 1is a biclosed bicategery.

If CE@o in a bicategory @, we shall state

where Te (R(C,C) and where

?7: I, —>T [ T¥T —> T;
~ and - are required to satisfy the usual unit- and associative
laws: the following diagrams in (3(C,C) commute

13l T
1T 2o mgr L7 gy

canonical cancnical

&

(T%T)% T ————> T (T ¥T)

canonical
‘U%HT\I/ lTTa«,»

T%T TAT

N

If De (R, 1is any object, the functor
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% -: ((c,0) —>@(c,D)

inherits a triple structure from the monad structure of T;
denote this triple T-".

We shall be interested in the category of algebras for the
triple T' = T - in the bicategory <¢3= SPAN(E) (E a tcpos).
Since SPAN(E) is a biclosed bicategory, the functor part of
the triple T° has a right adjoint T.. It follows from a
theorem of Eilenberg and Moocre ([5], Proposition 3.3) that T
carries the structure of a cotriple, and that there is an isc-
morphism ¢ Dbetween the categcry of algebras for T° and the
category of coalgebras for T., and in fact so that @ commutes
with the two underlying functors. Now T. being a right adjoint
functor is left exact (even left continuous), so the category
of coalgebras for it form a topos, by Theorem 2.5, and in fact
so that the underlying functor is the inverse - image part cf a
topos morphism. Therefore we have, by the isomorphism @, that

the category of algebras for T° form a topos in such a way that

the underlying-functor

CB(C,D)T. = Span(C,D)T. —> Span(C,D) 7~ E/C =D

is the inverse image part of a topos map.

For D = 1 we shall denote Span(C,D)T. by the symbol
{-Mod(T) "the category of left T-modules"; an object in this
nategory is an object M in Span (C,') ~E/C, enuipped with a

structure map

S TaAM—> M

The above arguments give in particular



Theorem_5.9. Let E be a tcpos, and let Cée |El; 1let

T’7’P be a monad in SFAN(E) on the object C. Then 1-Mod(T)

is a topos, and the canonical functor
1-Mod(T) —> E/C

is the inverse image part of a topcs map E/C —> 1-Mcd(T).
Of course, a similar result is true for "right-modules". Let

us remark that, for E = sets, amonad T on C in SFAN(E)

may be interpreted as a small category € with |€] = C, and
with total set of morphisms equal to T (d0 and d1 being
interpreted as domain and codomain respectively). Left and right

modules over T then correspond to functors
P -8, P —> S

respectively. (This way of viewing small categories is due, we
believe, to Benabou). The reader should keep this descriptien »f
functors t°® — &  as left modules over a monad in mind for the

rest of the chapter, for heuristic purposes.

Having proved that the category of modules over a monad in
SPAN(E) form a topos, we turn to a special class of monads. These
can be described as monads in another bicategory associated to E,

the bieategory of relations which is simpler than the bicategory

of spans:
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Definition_5.10. A relation from A to B is a span

Aéﬁ-x-ﬁ—‘;B so that <o(,{3>: X —> AxB is monic. The full

subcategory of Span(A,B) determined by the relations is denoted
Rel(A,B). I ig a »rocrderad class (in fact, isomorphic te
P(AxB)),

We organize the relations into a bicategory, by associating
to the pair of relations (5.2) (assuming they are relations) the

pair of maps

- 2 proj, = 5 prej,
Z ~=3AXB——>4, Z > AxB—>3

where 2: Z —> AxB 1is the monic part of a (chosen) evpi-mono

facterization of

<A,y ¥D: 2 > AxC

(notation as in (5.3)). So, briefly, the ccmposite of relations

is the image of their composition as spans. It agrees with the
well known composition of relations in the set case. We denote

the composite of relations X,Y by the symbol XoY. - The unit
spans &are relations, and are units for the composition o . We get
in fact a bicategory REL(E). We write X & X' for "there is a

map Sfrom X to X' 1in the category (preordered class) Rel(A,B)".

Proposition 5.11. Let T € |E|l, and let T € Rel(T_,T,). Then
(1) T -carries at most one structure as monad in the bicategory

SPAN(E)

(ii) T carries at most one structure as monad in the bicategory
REL(E)

(i1i) T carrics a structure as mcnad in SPAN(E) if and only if it

docs in REL(E), which is again the case if and only if the

two glven maps from T .o TO make To into a preordered

object.
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. O 1 o
To\ T ,To.

Then (i) and (ii) follow immediately because (to,tp is monic.
If T 1is made into a REL-monad by ,p': ToT —> T, then it is
made into a SPAN-monad by

TT S5 ToT £5> T

where the epic map q displayed is the one defining Tc¢T. Converse-
ly, suppose T 1is a SPAN-monad by means of 'J : Tx%T —>T. Denote
the two maps making TxXT intc a span by té,t{. Then q 1s co-

equalizer of the kernel pair for J(tl,ti>. But
p gt = <t

and <to,t1\ is monic, so ‘u coequalizes the kernel pair for

<t('),t1'), thus factors across q. Next, we should argue for the

unit structure ’7: IA —> T. These arguments are trivial. Finally,

for the last assertion of the Proposition, note that a map of spans

p T¥%T —» T constructively shows that, for each D€ |E|
hom(D, t )

hom(D, T) 5> hom(D,T.)
hom(D,t,) ~

defines a transitive relation on the set hom(D,TO). Conversely, if

the relation <t_,t.> 1is a transitive relation, one easily con-

structs a span map TxT —> T,

Similarly, a map lbz IT —> T expresses the reflexiveness
o .
of the relation defined by to,t1.
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The proposition illustrates that composition cf relations give
a convenient way of describing prcperties of relations. We shall
give a few more examples. Tc a relaticn X from A to B

X X
A &S X ——=> 7

b}

we let X'1 denote the relation frem B tc A:

B ¢ X —2—> 4,

In particular, for Te€Rel(T_,T ) as above

T is symmetric iff T =T
T 1is reflexive iff T (T

T 1is transitive iff ToT « T.

Definition 5.12. A Te€Rel(T_,T.)) is called a directed

preorder provided T 1is reflexive and transitive, and
(5.14) ToT ! ¢ T

In the set case, interpreting T g.ToatTo as an order relaticn
'¢'y (5.4) says: two elements which have a common upper bound have
a eommon lower bound. For sets with a maximal element this is the
usual (downward) directedness. (One way of defining the notion

"T has a maximal element" is by postulating the existence of a

map V: 1 —>T  so that
o
(1d: T, —>T)) £ (T, —>1 — 1)

in the ordering induced by to,t1 on hom(TO,TO).)
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Remark. If T 1is a monad , then 7= is a monad as well.
One may then view (5.4) as a distributivity of T over 7', Then

it is not surprising that the composite T'1C>T turns out to be

a monad as well, that is, a preordered object. In fact

Proposition_5.13. Let T ©be a directed preorder that is

T oT™" S,T"1C>T. Then T 'OT is an equivalence relation. It is

minimal among equivalence relations containing T.

transitive. Reflexive:

-1
I =I, 0l, < T of
To To To -

since Ip ¢ T'1, Ip £ T and © 1is monotcne in each of its
0 0

arguments, Symmetric:
(T oy = ot = 1V or

by the obvious inversion rule for relations: (XCY)'1 = Y-1c>)('1

Finally transitivity (ignoring the non-associativity of ©)

T"loTor loT¢ T e 'oTo0T ¢ T 10T,

the first ineeuality by directedness (applied tc the two middle
factors), the last inequality by transitivity of T"1 and T.

=1 . .
This proves that T 'oT is an equivalence. An equivalence relat-

jon R containing T contains T'1 as well by symmetry. There-

fore it centains T'1C>T, by transitivity. This proves the Prope-

sition.
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We define J¢ of a preordered cbject T = (T, 2:03 T,)
to be the coequalizer of d.,,d,. !

A functor p: E —>E' between toposes which satisfy the
conditions (i)-(iii) of Theorem 1.39 (a B-functor, for short)
takes preordered objects in E to preordered objects in E',

but in general it does not preserve JC ., However,

Lemma 5.14. Let g: E-—>E' be a B-functor.

Let T be a directed preorder in E. Then (up to isomorphism)

T (ED) = A (D).

zations, it preserves composition of relations:
(3(RoS) = p(R)=a(8).

Since directedness is expressed in terms of composition of relat-
jons, if T 1is directed then so is P(T)° Therefore, the equi-
valence relations generated by T and p(T), respectively, are
by Proposition 5.13 T'1oT and p(T)“lwe(T). Since (3 preserves
composition of relations, and inversion of relations, we see that
/3 takes the equivalence relation generated by T to the equi-
valence relation generated by (3(T). The main property (iii) of
a B-functor, however, is that it preserves coequalizers of equi-
valence relations. Since the coequalizer of a relation is the

same as the coequalizer of the equivalence relation generated by
it, the lemma follows.

For technical reasons, we need the following description of

the category of left modules over a preordered object

d
9)
Te (T 2= ).
1

(A similar construction works for right



modules; the assumption that the menad T 1is a preorder is only
to make things simpler). For such a T we define the categery

S Fib (T) to have for objects diagrams in E of the form

M

q@n

1 5 (o}
1
(5.7) g, L lﬁo
d
T1—jo——-,> To
1

("split, discrete fibrations over T"), such that

(i) 50,31 makes M, into a preordered object

(11) &8, = €,.d, and O,.f, = £,.4,

(1i1) the diagram &,,f ; #,,d,; 1is a pull-back.

The morphisms in the category S Fib (T) are pairs of maps
My, —> M, M, —>M

compatible with @ and f,, respectively, as well as with the

{S's.

Proposition 5.15. There is an equivalence of categaries

S Fib (T) ~ 1-Mod(T).

Pregaf. Let an ebject in S Fib (T) be given, say the ene
displayed in (5.7). We make M = (M, £5T ) inte a left T-module,
by noting that by (iii) M, = TM; for struetural map
T#M —>M we take O_. The verification that the asseciative
law for the structural map can be deduced from the transitive law
for the preorder relation (50,&1) is fairly easy in the set-case,

and it suffices to prove the statement for this case, since qnly
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left limits are involved (in essence by the Yoneda Lemma).

We omit details. (The reader will see the technique illustrated
in the proof of Lemma 5.16). Conversely, let M: MO ——99~TO

be a left T-module by means of §: T&M —>M. Denote the
underlying object of T %M by M1; M1 then sits in a pull-back

diagram

M

i

1 (¢)

T

-
p:l’
]

Denote the left-hand arrow @, and the top arrcw 51; let éo
denote_§ 3§ we then have a diagram 1ike (5.7). The transitive

law for éo,51 now comes from the associative law for ET(again
the verification can take place in the category of sets, by
Yoneda's lemma). The two processes described are clearly mutually

inverse,

Lemma_5.16. Suppose T is a directed preorder (Definition
5.12), and suppose M 1is a left T-module. Then the preorder
structure on M constructed in Proposition 5.15 makes M into

a directed preorder.

Proof. Let us prove it first for the case where E =&, the
category of sets. Suppose we have a diagram (5.7) satisfying
(1)-(iii). We may identify T, with the set of pairs (t,t!')
with t < t! (the ordering being the one given by do,d1). Now
M1 being a pull-back may be identified by the set of triples

(t,t'ym) with g (m) = t' and (t,t')E’T1, SO we may as well



identify M, with the set of pairs (t,m) with t & g,(m).
Suppose m,m' €M  have m< m and m' ¢ m, the ordering here

being the one given on M_ by ?»O,B.I. For t = g_(m),
t' =g m"), = 5250(13), this means that

é’o(t,x-n) =m
and
3 t'm) = m!
¢ (t'ym) =m'.
Also, @, being order-preserving, we have t{ T and t'<Z ¥

by directedness of T we therefore have a teT, with
t<t and t < t'.

we have (t,m) €M,, since

t < t=0_(m);

similarly (t,m') €M,.

Both éo(z,m) and & (t,m') are smaller than @ in Mg
since 8.(£,m) < 31(3,111) =m{m (similarly for So(g,m'). Both
éo(ﬁym) and BO(E,m') go by @, to t. But M, being a pull-
back asserts that there is preciscly one ordered pair n < m in

M, with g,(n) = t. Thus
do(tym) = _(t,m");

and So(g,m) <{m and 6o(t,m‘) < m'. This proves directedness

of M 1in the set-case., Then it is also easy to prove the assertion
for the case E =8&%, since all constructions used here "take
placc pointwise", Finally for the general casey apply a B-functer
E -—7‘%@ Just as in Lemma 5.14; such a functor exists by Theorem
1.39.



Fcr any preordered object T we have a functor

selt SFib(T) —> E

which to a "fibration" as in (5.7) associates 7’50 of the pre-

ordered <bject M1

Theorem 5.17. Suppose T is a directed preorder in E

(Definition 5.12), and suppose tuat it has a maximal element.

Then 7r}: STFib (T) —> L 1is lelt exzct.

Proof. The theorem is true for E =&, as is well known,

[9] and can easily be checked., therefore also for a category of
form &%, Take a B-functor p: E—> &% (possible by Theorem
1.39). Then T goes to a preordered object /3'1‘, and we get in

fact (just because (5 is left exact) a functor
al
8 Fib (T) ——> SFib (AT,

which is left exact. By Lemma 5.16 and Lemma 5,14 the diagram

S Fib (T) —2 E
: %
S TID { 1) ¢

5

commutes up to isomorphism, and the lower J'L'(') is left exact. But

p reflects left exactness being a B-functor, whence the upper

_;r(') is left exact., This proves the theorem.

Theorem_3.18. Suppose T is a directed preorder in E, and

supposc it has a maximal clement. Then there is a topos morphism
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p: E —> 1-Mod(T) 2 SFib (T)

with p¥* = 7{'(').

adjoint p, for X!. For p, take
p*(A) = TO"A

with the order-relation given on hom(D,T xA)

tya? <t',a?”

D—=&— 1T ~a ¢ D—=2-T x4

iff t < t, in hom(D,T)) and a = a', The order preserving

map TO><A —?TO is just the projection. This actually produces

a functor E —> SFib (T). The reader may check that it has

the required properties.
Suppose that 7@ T' —> T 1is a map of preordered objects.

Then we can produce a functor z*: SFib(T) —> SFib (T') by

a straightforward pull-back procedure; given an object M in
S Fimk (T):

§
M, =0 3 M,
3y
g, go
Vv d
T, o 2> T,
dy

we produce an object M' in SFib (T') by letting M} and M}

me given by the pull-back diagrams, respectively:
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M
gi % gl (i=17o)o
\ %

Functorality of pulling back gives rise to maps éé, 5%: My =M,
which the reader may check makes M' intoc an object in S Fib (T');

pull-back condition (iii) for M' is verified because of the

general

=
x T 7L
l ;::;_1,» — Y

in which the two vertical square with Y as vertex are pull-backs

and where one of the vertical squares with X as vertex is a

pull-back. Then also the remaining vertical square is a pull-back.

forward diagram chasing.

We thus get a functor

(5.9)  1-Mod(T) « SFib (T) T=> S Fib (T') o 1-Mod(T").

op
In the sct case, where 1-Med(T) may be identified with S?E

(where T 1is T viewed as a preordered set), T*

jdentified with

becomes
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e 3°P T OP
This functor is known to have a left as well as a right adjoint

(the so called Kan-extensions along T )., In particular (5.9)

will in this case be the "inverse image" part of a topos-morphism
T: 1-Mod(T') —> 1-Mod(T).

We shall in the Appendix sketch that 7% in the case of an
arbitrary topos E also has adjoints cn both sides. The reader
may, however, by diagram chase, verify directly that T* is at
least left exact (this is not surprising, since it is decfined
by a pull-back procedure).

Consider for a moment the category Ord(E) of preordered
objects in E; it eomes with a forgetful functer U to E
(which sends T,—= T, to TO) and it is very easy to equip
ord(E) with finite inverse limits in such a way that U preserves
them (e.g. letting the product of the underlying objects carry
the "product ordering"), Also, if T is a preordered object
T1 j, TO, and x: S>> TO, there is a maximal order-relation
on S making the monic map o order-preserving, We shall talk
about the ordering induced by T on S via the inclusion .

The functor U has a left adjoint D,
D(X) = x —22s X

id -

nputting the discrete order-relation on X". The functor D is

full and faithful, and we omit it from notation.
For any object X(5|E|, the object XML carries a
canonical erdering induced by the ordering (é) on (L

(in fact, the functor XN-: E —> E carries preordered objects
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to preordered objects, being left exact).

We shall consider the folloving kind of structures: let
xe|E|, and let x: Ty> XM be a subobject cf XN (Y,
that is, in the set case, "a family of subsets of X", We shall
give conditions which in the set case specialize te: " Tis a
basis for a (point-set) topoclogy cn the set X",

To this end, consider the diagram, where the squarc is a

pull-back:

A

L]

(5.10) 0xx =221 (¥ Q) ~»X
l proj
X

Here eX is as in Chapter 1 the subobject classified by the
evaluation map ev: (XPY) xX —>0O. Let X-h{) carry the
canonical ordering, let X carry the discrete ordering, and let
(XrhQ)) » X carry the product ordering. Now ¢ is a subobject
of (XHQ) =X, so we can endow it with the ordering induced

from that on (Xrh()) xX.

Definition_5.20. A pair X, (? (where @ is a subobject of
X H) will be called a space-basis provided
(1) the maximal element of hom(1,X/H1)) (which exists

uniquely) factors through @ »— Xt ()

(1i)  the ordered object A constructed out of X,  in (5,10)
is a directed preorder.
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Note that in the set-case consists of pairs (U,x)

where ere@; the ordering cn G is given by
(U,x) < (U',x")

iff

Uc’: U* and x = x',.

Two pairs (U,x) and (U',x') have a common upper btcund iff
x = x' (take (X,x)). Sc the directedness conditiocn in this
case says: "(x€U and x€U') implies (3IU"(U"¢U and U"¢U!
and xeU"))".

In the set case, the conditions in Definition 5.20 thus say:
n @Gis a basis for a topology on X, and Xe@®".

Consider the left-hand vertical column in (5.10). By con-
struction, it is a map between ordered objects. The ordering on
X Dbeing discrete, implies that the order relation on 1A may be
viewed as an order relation on {—>X in the topcs E/X.
Denote the ordered object thus obtained by (.

Lemma_5.21. Suppose X,® is a space-basis. Then the ('

obtained by the above procedure is an ordered object in E/X

and satisfies

(1) it has a maximal element

(ii) it is a directed preorder.

Also, the category SFib (6) is isomorphic to the category
S Fib (G").
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ggggg.The first statement is obvious. The maximal element

claimed in (i) is a map X —> ¢ which we get (using that the

square in (5.10) is a pull-back), from maps

X —> Baxmal, 5o x o)
and

X — X,

The remaining statements follow from the fact that the
obvious functor E/X —>E preserves and reflects pull-backs
and epi-mono factorizations, and in particular composition of
relations.

We are now in a position tc describe a functor 1-Mod(®)
—> E/X which for E = sets, and = (set of all open subsets
of a topological space X), specializes to the construction
(Godement [7 ], p. 110); it is the construction which to a pre-

sheaf M over X associates the (underlying set of) the espace

etalé of the sheaf associated to M.

Consider the composite crder-preserving map
é:r—e=€7xx 22919-@7,
As in (5.9), we get a left exact functor
(5.11)  1-Mod(()) —>1-Mod(g) = S Fib (£) ~S Fib (£'),

using Lemma 5.21. By the same lemma, ¢' 1is a directed preorder
with maximal element in E/X, whence, by Theorem 5.17, we get

a left exact

(5.12) xl: SFib (£') — E/X.
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Composing (5.11) with (5.12), we get the desired left exact
functor 1-Mcd((® —> E/X.

By Theorem 5.18, (5.12) has a right adjoint, and by Appendix
the map (5.11) (which is of the form "2z*" (5.9)) has a right

adjoint, whence

Then there is a morphism ef toposes
g: E/X —> 1-Mod((®)

(whose inverse image part g* is the composite of (5.11) and (5.12)).

the topos morphism described in Theorem 5.22. Consider the canoni-
cal factorization of g; we call the middle category for this

factorizatien the categery of sheaves on X, , denote sh(X.0);

thus we have a diagram of topos morphisms

E/X £ > 1-Mod(().

P

sh(X,?)

We shall now see that the construction of Definition 5.23
specializes to well-known ones in the case, where E ='(sets),
and @ is the set of all open subsets of a topolegical space X.
First, 1-Mod(&) can, by the remarks after (5.9), be identified
with the category Smop of contravariant set-valued functors
from U to 5, that is, the usual category of presheaves on

X. The functer in (5.11) associates teo such a presheaf
M: O%°P —> & the functer
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%

N: 6?-——>
given on objects by
N((U,x)) = M(U).

The discrete split fibration P over g' associated to N has

as its Po

which we may view as an ordered object P' in S?/X.
Forming sr! of this object in E/X means just that for

each x €X we should identify
m €eM(U) = N(U,x) to m' eM(U') = N(U',x)
if there is an order relation |
(u,x) > (U',x)

so that m ‘'restricts to" m' under this - which just means

that m 'restricts to" m' in the original presheaf M. But
this is precisely to say that m and m' define the same germ

at the point x, Thus g¥* associates to the presheaf M the set
of germs of elements in the M(U)'s (Ue ).

We shall invoke results from the classical foundation of
sheaf theory to prove that sh(X,@D is the same category as the
classical category of sheaves on X, here denoted SH(X,0).
Constructions of classical sheaf theory together with the set

theoretic description of g* given above gives us the diagram
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(5.12) §§/x < Al 1-Mod ((0)=(Presheaves on X)

N

Btale(X) «—— SH(X,0)

in whieh 'Etale(X)' denotes the full subcategory of the category
of topological spaces over X consisting of local homeomorphisms,
and where the functor b° just forgets the topology, and whcre
finally r 41 1is the classical description of the “assxcfated dieaf"
functrr. The diagram involving r commutes up to isdmo;giism,
in fact, one classically constructs r by the '"germ fuﬁctor;\\

g: 1-Mod(@?) — Etale(X) followed by k'1; with this notatioqK

\.
v

3

g* is just g followed by h.

.

Now, classically, r 1is left exact, whencc, by Progbsiticn
3.22, SH(X,@) 1is an elementary topos, and i is a full and
faithful topos map. Since g* has a right adjoint g, ,and 1
is full and faithful, one easily gets a right adjcinu for ﬁ%k, and
since k 1is an equivalence, we also get a right adjoint for 53
denote it h,. Finally, one can see that "the forgetful functor"
n" reflects isomorphisms and is left exact, so the diagram (5.12)

of functors is part of a diagram of topos maps

X & —> 1-Mod ()

\'h ﬁ
Etale(X) —:—) SH(X,0)
with 1 full and faithful and h* reflecting isomorphisms. From

the uniqueness of such factorization (Corollary %.8) and Definition

5.23 we conclude: sh(X,0) ~ SH(X,®).
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Remark 9.2%. To complete the description of the "topological

space object in a topos E", we have to state (in finite terms)
a property on a space basis (X,(), namely a property which in
the case E = & specializes tc the property: (? is closed
under arbitrary unions (which is the property distinguishing

the notion: topoleogical space from the notion: space-basis. This

property can be expressed in terms of the "internal union form-

ation for an object X" which is a map

p o X)) dO —— X PhO

constructed ty specifying that {+: [(XAHQ)ha] X —>)
should be the characteristic map of that subobject of
[(X hO) (1)9.] »>X which is the image along the map

<proj ,proiy : [(XrhQ) O]« [XhQ)xx —> [(XhQ) hY=x
o1 the subobject

(Ex g N((Xeha) i< €p).

In fact, one can prove [11] that b is the multiplication part
of a strong and commutative triple structure on a certain covariant

functor which on objects is just - ML
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APPENDIX

The biclosed bicategory of profunctors over a topos E.

Let A and B be monads in the bicategory SPAN(E), with

underlying spans

RPN
2% >

respectively. A profunctor ™ from A to 1B is an A-B-

"bimodule", that is, a span
M = (Aoé—" M % BO)

which, as object over AO has a left A-module structure, and
as object cver B0 has a right B -module structure; these
structures should commute with each other in an obvious sense.
We write Prof(A4,1B) for the class of such profuctors M;
it is actually a category with A-IB bimodule homomorphisms as

maps. We define a composition of profunctors, denoted ®:
Prof(A,B) <Prof(IB, €) —> Prof(A,C),

namely we let M@®@N have as underlying span the coequalizer

in Span(Ao,CO):
M¥BAN L3 MaN —— M@ N
g

where the two maps f and g indicate right action of B on
M, and left action of B on N, respectively. Now both f

and g are left A-module homomorphisms, and (essentially
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because A~ preserves coequalizers, having a right adjoint),
M® N inherits a left A-module structure from M ¥ N. Simi-
larly, M &N gets a right C€-module structure .

In this way, the class of 211 profunctors is organized as
a bicategory PROF(E) (whose objects are the monads, or the
category objects, of E). We claim that PROF(E) 1is a biclosed
bicategory. This amounts to giving functors

-\\-
(Prof (A, B ))°P x Prof(a,0) ——> Prof(B,¢)

and

op =7 -
Prof(€,B) x (Prof(a,B))°P ———> Prof(€,A)

where for instance
MN\e: Prof(A,€) —> Prof(IB,C)

should be a right adjoint to M® -), We shall use a similar

notation for the biclosed bicategory structure on SPAN(E)

-\ -

(Span(4,B))°P »Span(4,C) > Span(B,C)

Span(C,B) = (Span(4,B))°P -;-9 Span(C,A).
Now suppose, for instance, that
K € Prof (A,BB) , I €Prof (€,B).
Then 1L // K € Prof (€,A) is defined as the equalizer
L/ EK——3 LK —L5% 5 1/(K %B)
N A
(L¥B) /(K xB)

where A and J are the actions of B on L and K ,
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respectively, and where y 1is gotten by the adjointness

- ¢(K¥B) H -/(K>3B)

from the mep

(L/K) %< (K%B) —=> ((L/K)%K)%B &% 5 [ «p

(ev being the end-adjunction for the adjointness =-3K -{-/K).
We endow the objects in the triangle * with left €-, right
fA-module structures in such a way that the maps forming the
triangle become module homomorphisms. (For instance, L/K 1is

given the right A-module structure
(L/K)» A —> L/
which we get by -3%K - -/K adjointness from the map

(L/K) » AxK W (L/K) 3K v b

w' denoting the A-action on K.) In this way, I /K inherits
a bimodule structure.

All this provides a sketch of how the biclosed structure
on PROF(E) is constructed.

Now let f: A —> B be a functor between two category

objects (= monads in SPAN(E)) in E. We have clearly
Prof(&,1) o/ 1-Mod(A) # S-Fib(A)

(and similarly for 1B), where 1 is the trivial category

object 1 =3 1. We shall construct a profunctor f €Prof(A,B)
so that
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S-Fib(B) ———L5——3 S_Fib(m)
Ay v
Prof(IB,1) oo > Prof(a,1)

commutes (f* Dbeing the functor defined as in (5.9). Since by
biclosedness of PROF(E), f®- has a right adjoint, then so

has f¥*. It remains to produce f. If we display f,A, and
IB as follows

A %, A
— 5
1 /=== A
bo
£, £,
0
)
BO

o
oil/

then the desired bimodule f sits in the pull-back diagram

i —h__ﬁ AO
(A.1) kj/ lfo
T R

and f becomes an object in Span(Ao,Bo) by means of the two
maps h: £ —>A  and k.d;: £—>B_ . The right B -module
structure on f is givpn as follows: We should produce

£ = B1 —>1;

By

L Dbeing a pull-back, it suffices to produce maps from f into
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is obvious; the map into B, 1is

B1 and Ao. The map into A0
f > B, X2l 5 g 5. 5 8
< 3 1 1>§ 1 =7 B
o o

'J being the multiplication of the monad 1B . The left A-module
is constructed in a similar way. - In the set
a€A,, b€B, the set
(A.1)

structure on f
case, f has as fibre over objects

Hom (f(a),b). The reader may check commutativity of

in this case.
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