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ELEMENTARY TOPOSES

A, Kock and G.C. Wraith

Introduction

The notion of topos embodies in it two aspects of mathe-

matics, the one a geometric, the other a logical aspect. Toposes

were introduced by the circle around Grothendieck as a general-

ization of the notion of topological space, for purposes in

algebraic geometry. To a topological space is associated a topos,

namely the category of set-valued sheaves over it.

Later, Lawvere maintained that the notion of topos could be

viewed as a conceptual form of the notion of higher order language,

or alternatively, as a world in which higher order notions could

be interpreted (the germ of this viewpoint is found in [13] and

[1#]); it was substantiated by the work of Lawvere and Tierney

[17] on elementary toposes (culminating in an independence proof

of the continuum hypothesis). The notion of elementary topos, as

defined by these authors, frees the notion of topos from any

external form of infinities; for instance, an elementary topos

1s not required to have arbitrary (infinite) limits or colimits.

This finitary-ness of the theory of elementary toposes conforms

with the idea that an elementary topos also has the features of

a syntactic object ("a language"). On the other hand, a language,

though of finitary nature, should be able to "speak about" infini-

tary and higher order ideas. Elementary toposes have that feature.



In particular, the idea of "power set formation" exists inside

an elementary topos, in the sense that there is an object

L) (or 2) so that to each object X there exists an object

-X

(in our notes denoted XM{l) whose "elements" index the "subsets"

of X.

The specific aims of these notes are first to develop part

of the "classical" (Grothendieck-Verdier) theory of toposes in

the setting of elementary toposes; in particular, the notion of

"morphisme de topos", [9], what Lawvere- Tierney call geometric

morphisms. Secondly to illustrate the logical aspects of elementary

toposes, by developing the notion of "small category-object" and

"topological space objeét" inside an arbitrary elementary topos,

and carry out certain constructions related to such objects

("sheaf reflection for a presheaf object on a topological space

object"), thereby producing new elementary toposes (generalizing

the way classical sheaf theory out of a topological space produced

a (classical) topos). To carry out this program, we lean heavily

on techniques of the first four chapters (factorization of topos

morphisms).

The main example of an elementary topos is 53, the category

of sets. A "topological space object in 8" is just a topological

space. Lawvere has pointed out that "an important technique is to

1lift constructions first understood for 'the" category S of

abstract sets to an arbitrary topos".This is true primarily for

"logical" concepts, which in these notes occur mainly in Chapter 1

and Chapter 5. The reader should for every construction carried

out in these chapters in his mind specialize the constructions to

8 in order to see which constructions in S actually are being
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The source we have used for Chapter 1 and Chapter 3 is

Tierney's lectures in Halifax, 1969-1970, in a joint seminar

with Lawvere. The ideas of the remaining chapters are also large-

ly due to Lawvere and Tierney (the results of Chapter 5 are thus

stated in [16]), but we had to supply the relevant constructions

ourselves.

We are also in debt to Julian Cole and Chr. Juul Mikkelsen

for supplying ideas, examples, and curiosity, during the seminar

which produced these notes (November 1970- May 1971).

Conventions and Notation

We use almost entirely standard notation. Maps are composed

the 'algebraic' way: 'f.g' means: f followed by g. Functors

and other things that are applied on the left of their argument

(like F(A), 3.(X), etc.), however, often are composed the

other way.

As usual, F 4 G 1indicates that F 1is left adjoint to G.

We use ) to denote passage (either way) along the adjointness

isomorphism for exponential adjointness

hom(AxB,C) ~ hom(4,C®) = hom(4,BMC)

(BMC being used for CB for typographical reasons). Some

concepts have double notation, like

t: 1 =20, true: 1 —>0);

likewise 'A~»' and '"—>' means the same (used when a set

theoretic mapping is defined elementwise). 'Colimits' and 'Right

limits' are used for the same; a reflection functor is a left



1, Fxactness properties

We study exactness properties which categories E have,

if they satisfy¥* axioms T1 -T3 below; such categories we shall

here call elementary toposes, or just toposes, [16], [8].

TM E has finite limits and finite colimits

T2 E has exponentiation

T3 E has a subobject classifier 1 —£¥€s() .

T2 means that for any A€ |E|, -xA: E—> E has a right

adjoint, denoted A/- or (-)A. The end-adjunction for the

ad jointness is denoted ev:

(AAB)< A € B,

T3 means the following: 1 denotes the terminal object.

1L is an object equipped with a map -L%fl so that:

for any monomorphism f: A'>—>A in E, there is

a unique @: A —> L) ("characteristic function of f")

making

A ¥ >{L

fI * true
A!' —>1

a pull-back,

* Since limits, colimits, exponentials, and also subobject classi-

fiers are unique (up to unique isomorphisms) when they exist, it

makes sense to say that a categoryis a topos, rather than "it is

equipped with topos structure". (For the uniqueness of\fl, see

Remark 1.38 at the end of this chapter). For notational convenience,

however, we assume that a definite choice of limits, colimits, expo-

nentiation, and subobject classifier hoc hann —-23-



6.

Note. Since 1 1is terminal a) the map A' —> 1 does not

have to be specified further; b) any map with domain 1 1is a

monomorphismy in particular, 'true' is monic. Pulling a monic back

along a map gives a monic; so a pull-back diagram of the form *

above necessarily has f monic. We call (the equivalence class

of) such f defined by the pull-back * '"the subobject of A

classified by ¢".

The following concepts make sense in any category:

(1.1) monomorphism equalizer

epimorphism coequalizer

as well as

(1.2) equivalence relation kernel pair

coequivalence relation cokernel pair

The ones in block (1.1) are well known. For block (1.2):

Definition 1.1. An equivalence relation in a category ¢ is

a Jjointly monic pair

K ———>A

k1
so that for any XE€ |€|,

hom (X,K) - hom(X,A)x hom(X,A)
hom(1,k) ,hom(1,k,)

describes an equivalence relation on the set hom(X,A).

(ko,kp
Note. If £ has products, K > AxA 1is necessarily

monic. If Kk_,k, 1is an equivalence relation, we shall abuse

language and call the single map '<ko,k§> an equivalence relation,

Definition_1.2. A kernel pair for amap f: A —>B in G
------ X

. 0] .

is a pair of maps K-——;—».A, so that k_ .f = k,.f, and which

is universal with this property.



Note. k k1 may be obtained by the pull-back

K

k1L

A

o’

Ko

o
< H

—

F

converse of the proposition holds:

Proposition1.4%. Assuming T1 and T3, any monomorphism is

an equalizer,

Proof. Let f: A'>-> A be monic, let ¢ be its character-

istic function. The pull-back diagram

f—2 Q0
\

T I 1true

At ———1

_ . - true
shows that f 1is the equalizer of ¢ and A —> 1 ===() .

Theorem 1.5. Assuming T1,T2, and . T3, every equivalence

relation is a kernel pair.

Before proving it, we develop some concepts for catcgories K

satisfying T1-T3 (these axioms will be in force from now on).

Let P- A -—>Q., Call cpé v if the subobject of A

classified by @ 1is smaller than the subobject of A classified

by W‘(usual ordering of subobjects).

Proposition 1.6. In order that P<LY: A—>(, 1t is necess

ary and sufficient that for all Xe lEl and a11 +. Vv —



(x.¢ = truey) => (x.y= truey),

where 'truex' denotes the map X — 1 EEQ%Q.

Proof. Easy.

Note.If @,y A—>() and ¢ <Y and Yg¢9, then

¢ =y (the corresponding thing for monomorphisms into A only

holds up to isomorphism).

Proof of Theorem 1.5. Let > Dbe characteristic function for

(ko kD
K>-94;>A2<A, where k ,k,;: K —3yA 1s an equivalence relation,

We shall see that ko,k1 in

k /\

(1.3) K —=> A “>A/h§1

is a kernel pair of Q

First we prove that (1.3) commutes. By exponential adjointnes:

it suffices to prove commutativity of

K »1
.

KxA —2—> AxA > ().
k1x1 :

By the Note above, it suffices to see kox 1 .)&_(_k1 x 1,4, and the

opposite inequality. |

Let X be arbitrary in |E|. Denote the equivalence relatio

on the set hom(X,A) given by k ,k; by ~s. Let X Q—’Q—? KxA

have

Left hand side is just <r.k_ ,a>.n = true, so r.k_ ~a. Since

r.koflJr.k1, we get r.k,~a, whence



{rya) .k, =1.®= true.

Proposition 1.6 now gives the desired inequality.

To see the universal property of (1.3), let a,,8;: X—>A

have aO.Q = a, ?t Passing to exponential adjoints, the two maps

aix1 v

Xnf —=—> AxA —> () i = 0,1

are equal. So for any b: X —>A )

<ao,b>.x.= <a1,b).>u

e

X —1— A xA Q.

So for every b €hom(X,A), a ~b iff a,~Db, whence a, n~a4,

i.e. <La_,aqy."= true, i.e. <a,,a;> factors through

&k, k.S

K»—2015 aAwa.

1e notion of graph, and related notions.

Let f: A —>B be any map in E. Define l-;_. ("graph of

f") to be the map

4,0
r}: A > A xB,

It is clearly monic. Its characteristic function

'Xf: AxB—> )

is denoted ¥-+ We then have

§}: A > B AL,

N

In case f = 1,, there is special notation for f},if, and Y
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AV A —=—> AxA ("diagonal")

A <A > (L ("Kronecker-a")

A

S =L} : A > A hH L{L ("singleton").

O is kernel pair for {.}. From the universal property of that

kernel pair:

1 {.}
A—-1—-\-' A——>>A hNhM)

clearly follows: {.]} is monic.

(gTM|

The -construction”TM

Let £: (AHQ) A —>K) be characteristic function for

A C{.¥.1?
> (A PL) x4,

N

Let A Dbe the equalizer

~ 1Ar—— Amn—é——» AhCQl.

We shall see that {.}: A —> AN(L factors through e, so

75that there is a map A > K with

7 .e = 1LY

We must prove

LJF= L)
Pass by exponential adjointness to



1dx1.§= 8: A»A—Q),

To prove this equality, we must prove that these two maps in

SY classify the "same" (up to equivalence) subobject of A=

A
By definition, O classifies A>—> AxA, To see what ¢

classifiesy form the pull-back

AxA S HO) <A K] - ()
A A AN

* ¥* %

a RTE true

= A 1

we have used here that we pull back along a composite by pull

back along the parts; ** 1is a pull-back by definition of 3

¥ is a pull-back because {.} is monic (Proposition 1.7).

This produces

rVA: A —> 7(.

Theorem_1.8. To any pair of maps (d,f) as in the pictu

below (d monic), there is a unique T: A —> B making t

diagram into a pull-back:

f N

A - - 1o s B

A
N.B. d 1"73

A —> B .

("f classifies the partial map (d,f): A ---> B"),

It is monic since A4d' is., Let K(d £) be its characteristic
?

function A >~B —>({), and take its exponential adjoint
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¥: A—> BMQO. If we can prove

(1.4%) % =%°§,
AJ A

then by definition of B — BNI{) as an equalizer, ¥ can

written T.e for a unique T: A —B. To prove (1.4), pass

adjoints; so we must prove

(1.5) ¥gqp = ¥1.5 axB—Q.

To prove this equality, we must prove that these two maps into

1 classify the "same" subobject of A =B, By definition, the

left hand side classifies <d,f?; to see that the right hand sic

also does, pull back in two steps; we are through with the proof

of (1.5) if we can prove that the left hand square in the diagra

below 1s a pull-back:

3
AxB > B Al=B > 0

A N

<4, Y 9 D T true
Al > B > 1

The fact that the left hand square is a pull-back is an immediat

consequence of

Lemma_ 1.9. The diagram

A

X
A > BMM(L
M

a -y
A

Al T > B

» A °
is a pull-back (where ¥ 1is the exponential adjoint of the chara

teristic map ¥ of <d,f>: A'>—A x R\
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Pass to adjoints; we get that the square¥*(below) commutes

Y,
axp—d0 5 O

q\ /M

{a,b) axi * D

X xB T > B/xB

1 )
(1,6 <b,b> A

A\

X 5 -> .

All the rest obviously commutes. Since Y classifies 2\,

/A.S factors through 1 true,rmy ; therefore (a,b).ZS(d,f)

factors through true. But ‘X(d,f) classifies the subobject

A —5§4§2—> A xB, whence <a,b> Tfactors through <d,f>. This

proves the lemma.

So we know (1.4) is valid, and T: A —>B exists with
A A

T.c = ¥. Since both ¥ and fi.l factor through e (as T and

7%, respectively), and e is monic, we get immediately from the

Lemma 1.9 that the diagram N.B., is a pull-back, as desired.

Finally, we must prove uniqueness of such T. Suppose both

the diagrams

il ~
(1.6,) A 2 — B

T f'1 1&

d 7@ 1 = 041
A

Al 7 B

are pull-backs. Consider f,.e: A —> BN (i=0,1), and

the two maps corresponding to them under exponential adjointness
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A xB — .

By symmetry, it suffices to prove

1.6. Let <a,b’:

foéf1 . We apply Proposition

X —> A »B have <a,b>.fo = truey. Then

truey = <{a,b>.f_ = 1,02.(ax1.f) =

ayby.(a.f)

Pa

since fo factors as

N

To.e

fo.§

(by construction of f_ = from TO),

N

= f_ (3 defined on page 10); so the equation continues

<1,b7.(a.f.} = {1,b).ax1.f «1.F

(a,b>.fox1. 3 (a.?o,b).§.

Since F classifies <{{.},1D, we get from this

(1.7) a.’fo = b.{.).

Since (1.6)) is a pull-back and B—> BAS) is monic, also
N

f
A O

> B h N

/N

%

Al
F B

is a pull-back, so from (1.7) follows existence of an a': X —>A"

a'.f = b.

From commutativity of f“%), we now conclude

a.l, = b.g.
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Multiplying on the right by e gives

a.fy = b.d}: X——> BAQ,

Passing to exponential adjoints gives

a x1.f1 =bx1,39

and thus

(a,b>.f; = <1,b).a x1.£, = {1,B).bx 1.4,

but the right-hand side here obviously is truex. By Proposition

1.6 we conclude that f ¢ f,. Similarly f1<_fo; thus f_ =1,

N - -

thus fo==i,:1 and fo:=f1. This proves the uniqueness of £

Theorem 1.8 is proved.

i
Remark. Since 7g 1s monic, given A > B, we can, by

puiling ’75 back along T, produce a pair (4,f):

("a partial map" A --> B")

So the Theorem actually asserts the existence of a 1-1 correspond-

ence between maps A —>B and "equivalence classes of partial
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The uniqueness of T has as a standard consequence that TM

actually becomes a functor L —>E, and % a natural transform-

NI

ation 1dp ==3

If Part(A,B) denotes the set of equivalence classes of partial

maps A --> B, the one-to-one correspondence A mentioned in the

above remark has naturality properties, for example, for

3 £C

Part(A,B) Part(A,C)

Q\t> p S
v

hom(4, B) hom (T 8) hom(A{E),

with top map "composing by g" 1in an obvious sense, commutes.

In fact

Exercise. Define a category Part with objects the same as

the objects of E, and with hom-sets Part(A,B). Define a

func tor ‘E-—l4> Part (identity on objects). Define a functor

Part —» E. Then i 47; the front adjunction is 7.

Corollary 1.10, (Push-out Theorem). The pushout of a mono by

something is a mono, and the resulting diagram is a pull-back also.

f

Proof. Let the pushout diagram be the inner square in

—_—A

d I 2
B > C_

r "

\_/;D

Q
€
&

-"
Y
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Construct the pull-back diagram containing the partial map

(d,f): B -=> D. Now the theorem easily follovs.

IFor each pair of maps with common codomain choose a pull-back

diagram for that pair. Then, for f: A —> B, "pulling back along

f* gives in fact a functor f*: E/B——>E/A (where E/B is

the (usual) comma-category: objects are maps C: Z —>B to B;

a morphism from gO: Z, —» B to §1: 2, —>B 1is a commutative

triangle

Z N
2 > 2,

go \ /g‘]
B

Likewise, composing with f gives a functor the other way, denoted

2,

).

E/A—> E/B,

Proposition 1.11. For any f: A —> B, Zf - f¥,

Proof. An ecasy diagram chase. (In fact, this proposition holds

just assuming axiom T1),

The MAIN THEOREM of this chapter says that f* has a right

adjoint also,

Theorem 1.12. For any f: A —> B, f*: E/B—> E/A has

a right adjoint IT.: E/A —> E/B.

object of E/A. Let @ be so that the diagram
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> A>,

'a

is a pull-back (using Theorem 1.8). Let 2? be its exponential

adjoint. Form the pull-back of 1 fhE along 39; this we define

as TT%(E), i.e.

fl;(x) 5. AAYX

TT}{S) p.b. 111\}?

\/
B 5 > AN .

It depends in an obvious functorial way on j; €E/A.

S
(ii) Verification (sketch). Let Z —B be an object in

E/B. We produce a 1-1 correspondence

hogE/B<§;r§<§>>

o/ homg/, (£*(, ¥)

by means of the following string of bijections; the bijection (a)

is by the defining pull-back diagram for TT}(g), (b) by exponential

adjointnessy, (¢) by Theorem 1.8 and the naturality statement on

page 16 ; (d) is obvious; (e) is by multiplying (d,k) on the left

=1
by J ¢

[P
,

homp /5(Cs TT(¥))
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o~ ~ > A

(2) {h: Z—>AMIX | h.i mg=§. ¢ }

-y ~ A T
(b) {p: Z =A —>X | hfg ::<}1.? }

A

(c) -{classes of partial maps ZxA

Id
D __k._.§ X

with (d,k.g) equivalent to the partial map

Z %A

QI
f*7 ff§;> A ——> A, where e 1is the canonical .

inclusion of the pull-back-object f*Z into Zx=A

(d) {(dok) | d: D—>ZxA, %k: D-—>X so that there

cxists isomorphism j: D—> f*¥Z with

jie=d and J.0%7 =K. F }

-

(e) {k't f*¥Z —> X with k'.E:f*C

The naturality of the correspondences is left to the reader.

O
gemma 1.13. The obvicus functor E/A 2 > K preserves

colimits, and preserves and reflects epimorphisms.

Proof. 50 may be written E/A -f% E/1 ~ E, where
_____ ] A~

k: A —>1 1is the only such map. Since ik is a left adjoint

by Proposition 1.11, the preservation is immediate; ao reflects

epics since it is faithful.

Alternative Proof. Obvious by inspection.
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Theorem 1.1%, (Pull-back theorem). If ¢ is epic and the

X S Z

£l pov. | £

v \
A——> B

2 S 5 B
g\ /15

B .

Since f* has a right adjoint, it takes epics in E/B to epics

in E/A. The theorem now easily follows.

Since, by T2, Ax- and -xA have right adjoints (in

both cases A/MN-), it follows that

A, —> Q.;¢ ' ] r i1i=0,T_________ 3 5 ; 1s epic fo s 1,

then

Qo> Q13 Ag=Ap = Q xQ,

is epic.
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Definition 1.16. Let x_,x,: X —>Q and q: A —> Q.

Then a Jjoint-pull-back of (xo,x1) along q 1is a pairwisc

commutative diagram

a

(1.8) Z Q > A

a4

t q

\L’ xg ‘b
X ' > 0

X, -

(i.e. a;.q =t.x; for i =0,1), which is universal with this

property, i.e., if

aé Iy

Z'—-T_?A’ ' ——> X

a
1

has aj.q = t'.x; for i = 0,7, then therc is a unique

h.ai ] Q
o

= i o w_
_l

and h.t tt,

Note. The two squares forming (1.8) will not in general be

pull-back diagrams in the ordinary sense.

maps a_,21,t in (1.8) can be constructed by forming the pull-back

diagram (in the ordinary sense)

<a_,a.»
4 o’ | > A «xA

t axq

\/ \/

X > QxQ.<xo,x1>
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———--——————————

— D CEED GNED CEEp cmts GUID GEED CEED SRS THIE CED G G S

is called exact if g 1is a coequalizer of ko’k1’ and ko’kT

is a kernel pair of q.

Definition 1.16, Proposition 1,17 and Definition 1.18 refer

to any catcgory satisfying just Ti1. Returning to categories with

T1,T2 and T3, we have

Proposition 1.19. Any map f can be factored as an epic
—— S GEE W S D R I G D e G D S D S

followed by a monic, Such a factorization is unique up to a unique

commuting isomorrhism,

Proof. Let k_ ,k; be a kernel pair of f, and q 1its

coequalizer. Then it is clear that k,,k;5q4 1is cxact, and that

f factors as q.1 in the diagram below., We shall prove i monic.

k

/\/

%
Suppose xo.i = x1.i. Let * be formed as joint-pull-back. We

have
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whence there is an h: Z —> K with h.k, =a, (i =0,1).

Then

= a4.0 = t.x1.

Byt by Proposition 1.17 and Proposition 1.15, and the pull-back

theorem, t _is epic, whence X, = Xq. This proves 1 monic.

If q'.i' 1is another epi-mono factorization of f, it is

easy to produce 2z with gq.2 = q' and z.i' =1i. Then 2z is

monic and epic. Using Proposition 1.4, it is easy to concludc that

z 1s actually then an isomorphism. - Because q 1s epic, 1t is

the only possible map with q.z = q'. This proves Proposition 1.19,

The proof actually gave also (taking account again of Proposition

1.4)

Proposition_1,20. Every map can be factored as an coequalizer

followed by an equalizcr. Any epic map is a coequalizer, any monic

map is an equalizer.

The Grothendieck-school (who first studied exactness proper-

ties in a non-additive setting) calls an equivalence relation

effectiveif it has a coequalizer. By Theorem 1.5, all equivalence

relations in a topos are cffective. Also, they call things universal

if they are preserved by pulling back. The joint-pull-back (Defin-

ition 1.16) of an cquivalernce rclation is an equivalence relation

for fairly trivial reasons, so that one might state that equivalence

relations are universal and effective. The main exactness-property

for toposes, however, is that equivalence relations are universally

cffective, that is the whole exact diagram, into which an equivalence

relation (by effectivity) can be embedded, is preserved by pull-back.,
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The formal statement of this is the following theorem of which

the first part is a restatement of Theorem 1.5.

k

be an equivalence relation,

Then:

can be embedded in an exact diagram

k
2 N —9 .,

Ky

("effectivity of equivalence relations'"); and

is any map, there exists a diagram with

(1) k_,k,

(ii) if f: Q@ — Q

exact columns

— "

K LN

RO¢/R1 kO k1

_\_ 4
(1.10) A o S A

q q
\/ \/

Q > Q

with the bottom square a pull-back and each of the squares

r—L 5

0,1

v
A

\._

7

)
A &

a pull-back (Muniversality of the effectivity of an equivalence

relation").
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K—If——> k
v\

AWEAN E

NE\iq1 ko k1

ON_ \ A 4

(1.12) b A -T) A

q * q

Y ¥
3 ——> 4

where the right-hand column 1s exact, the square * is a pull-back

and where the outer square is a pull-back (of f along ko.q==k1.q).

For i = 0,1, construct k,: K—>A so that

k;.q =1

and

IRi ' = " 'ki

which is possible since * 1is a pull-back. We then have the

desired diagram in so far as the commutativities go. We must prove

that (1.111) is a pull-back, and that the constructed left-hand

column is exact. To prove, for example, that (1.110) is a pull-back,

let there be given

a: X—>14 and k: X—>K

with

(1.13) a.f' = k.k

Then

so since the outer diagram in (1,12) is a pull-back, there exists

E: X—>K with
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(1.14) k.b i O
}

e
}

and

(1.19) k.f" = k.

To prove that R.ko = a, it suffices, by the universal property

of the pull-back diagram ¥, to prove

~
1

=1 Q
i 1 o Q
|

and

R.E_.£1= 3.0,i

The first is immediate from (1.,14). For the second,

RE .£' = K"k, = k.k, = 3.f",

using (1.15) and the assumption (1.13). - The uniqueness of k

is clear from the fact that the outer diagram in (1.12) is a pull-

back. - To prove that the left-hand column is exact: First, ¢

is epic, by the Pull-back Theorem. To prove that k_,k; 1s the

kernel pair for k, 1let X, : X—>A (i=0,1) have

X,.q = X,.q.

Then

X,f'.q = x,.'.q,

so since Kk _,k;, 15 kernel pair for q, we get y: X—>K with

y.ky = %557 (i=0,7). Now x_.q and y match up so as to give

a map 2z: X —>K (the outer diagram being a pull-back);

and z .=

To prove that z.Ei = X, (1 =0,1), it suffices (again

because * 1is a pull-back) to prove the equations
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1
]

X .d = z.Eo.q

|
xo.f K.I N

] AX1 e4

X .f' =z .17:1 g1,

They are all proved in a straightfcrward way from previous

equations; the proof of the third uses xo.a = x1.§ and

Eo.a = k,.3. - This proves the theorem.

Proposition 1.22. The Iritial object @ (existing by T1) is

strict initial, i.e., any map f: A —>@ is an isomorphism,

Proof. Clearly @ —>B 1is initial in E/B , for any B.

By Main Theorem, 1.12, pulling back preserves initial objects.

In particular

Q
S

£*(14)
/

Y

l%
)

is a pull-back. But clearly, "pulling back" preserves isomorphisms,

—_

f 5>

Since 1y is iso, f*(1¢) is iso. Since f*(1¢).f = 1g (what

else could it be) f is the inverse for f*(1¢).

Corollary 1.23. Any map @ —>» B is monic.

Proof. For any A, there is at most one map A —>@, namely

the inverse for the only map @ —>A (if it has an inverse).

For any A,B, the diagram (existing by T1)
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is a pushout. By Push-out Theorem (Corollary 1.10) and by

Corollary 1.23, inclA, inclB are monic, and the diagram is a

pull-back. So

Proposition_1.24. The inclusions into a sum are monic, and

their intersection is @ ("Sums (coproducts) are disjoint").

Since pulling-back has a right adjoint, pulling back a coproduct

diagram gives a coproduct diagram, so: COPRODUCTS ARE DISJOINT

AND UNIVERSAL.

Theorem 1.25. For any A<|E|, E/A 1is again a topos

(satisfies T1,T2,T3).

Proof. 0,

neconstructs them", so E/A has finite colimits. Equalizers are

E/A —> E not only preserves colimits, but

constructed the same way. A —lé—% A is clearly a terminal object

in E/A, and pulling back over A gives binary categorical pro-

ducts in E/A. So T1 1is verified.

To verify T2, let £: X-—>A be an object in E/A. The

functor fx-= E/A —> E/A can be described as the composite
*

E/A RN E/X 25 E/A.

Both of the functors in this composite have right adjoints, by

Proposition 1.11 and MAIN THEOREM 1,12, Hence the composite has

a right adjoint.
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To verify T3, check that §>>‘A~B£91e»A is a subobject

classifier in E/A ovorovided we let 'true' be the map in E/A:

1%j tTUEx1pAoy

N

Definition 1.26. An open object in E is an object U whose

(unique!) map to 1 1is monic.

Clearly U 1is open if and only if:

(1.16) For ANY X € |E|, THERE IS AT MOST ONE MAP X —> U,

Any map U —> Y where U is open is monic. Let C% denote

the full subcategory of open objects, It is a preordered class, by

(1.16) the ordering being given by: U U' iff there exists a

map U—>U' 1in E. The subcategory 0}3 of E 1is closed under

forming products and exponentials in .Q,.—as is easily seen, using

(1.1A)In particular, it satisfies T2. It also has coproducts:

If U and V are open, form U+V in E, and take the image of

the canonical map U+V —> 1. 8o 0E satisfies T1. (Only in

trivial cases T3 is satisfied).

A partially ordered set satisfying Tt and T2 1is called a

Hevting-algebraor a Brouwerian lattice, or a pseudo-boolean

algebra. E?entifying isomorphic objects of /Ué gives a Heyting-

algebra (?fi, since (S% is preordered and satisfies T1,T2.

(Clearly, (55 1s a set, namely being isomorphic to homE(1,§1),

by T3). Conventional notation: in a Heyting algebra
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AMB is denoted A > B,

A =B is denoted A ~ B,

A + B is denoted A v B,

Proposition 1.27. Denote by P(L) the preordered class of

subobjects of A. Then

FB)=2 Ogyy-

Proof. Obvious.

In view of this and Theorem 1.25, we have

Proposition_1.28. For any A € |E|, JEL(A) is a Heyting

algebra. CEL(A) denoting.fa(A) modulo identification of iso-

morphic objects).

By slight abuse of language, we shall talk about 70(A)

jtself as a Heyting algebra.

Let ,E-—E‘>,§' be a right adjoint functor. Then it preserves

terminal object and monic maps, hence defines a functor by re-

striction &, —>@,,. 1In particular, for f: A —>3B, the

functors TTf: E/A—>EMB and f*: L/B—> E/A (which are

right adjoints by Theorem 1.12 and Proposition 1.11) define, by

restriction, functors \'/f: E/AA@E/B and f-1:0§/B 90_@_/1&’

that is, functors with this notation in the big diagram below (p. 32).

. L - 71 : = =Proposition _;gg. f C?E/B _J/(B).__;jP(A) — QE/A has a

left adjoint ,Bf,

AV —» 1. (4") >——>8

be a (chosen) epi-mono factorization of a.f.
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Let (B' 2> B) € £(B). If J.(A')¢B', it is straight-

forward to produce a map A’ ——9~f-1(B‘) since f-1(B') is

defined as a pull-back. Conversely, if

! P-1 '
At £ £TI(BY),

we mus prove Qf(A') { B' by constructing h: J.(i') —> B!

so that h.b equals J (A')>> B. Since q 1is cpic, this

equation is equivalent to q.h.b = a.f. But the composite map

k from A' vie f'1(B') to B' coequalizes the kernel pair

of a.f, since b 1s monic,2nd the coequalizer of that kernel

pair is precisely q, Dby the construction of epi-mono factori-

zation; from this the existence of the desired h follows.

adjoint@ ; G preserves products.

7

Proof. Let X €E., Let X —&—S5cX>—3>1 be an epi-mono

factorization of the unique map X —>»1, It is easy to see that

‘?& (being coequalizer of the kernel pair of X —>1) has the

universal property required for a front adjuncztion. The last

statement is a conscquence of Proposition 1.15: A product of epis

is epil.

By Propositions 1.27 and 1.30, the canonical functor

(8 - @E/A — E/A

also has a left adjoint, denoted G-, which also preserves products.

Putting things together, we have the
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DOCTRINAL DIAGRAM FOR f: A — B:

3

with

equations hold up to isomorphism:

(1.18) b&ui = i,

(1.19) i.0% L

(1.20) o £ P

Proof.(1.18) and (1.19) hold by construction of ‘Vf, £

(1.17) follows by taking left adjoints on both sides of (1.19);

(1.20) follows by taking left adjoints on both sides of (1.18).

Remark 1.32. If f: A>—> B Is a monic map, let

ch(f): B —>L) denote its characteristic map. Let g: D —>1B

be arbitrary., Then

ch(gTM ' (£)) = g.ch(f).
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Remark 1.33. We have already (prior to Froposition 1.7) given
D S D G c—— —— — G — R

some notation which is natural when one has the main example

E = (category of sets) in mind:

AA: A > A >4}

S A=A —> (L

{} A > Ad\Q.

The €-relation itselfl comes the following way: Let ev, denote

the end-adjunction for the adjointness -xA< A/-; in particular

ev,: AMhDHxa— Q) .

The subobject of (A MY)x A characterized by ev, will be denoted

€,

Remark_1.34. Let r: R>—> XxA be a monic map (we may in

the set-case think of r as a relation from X to Aj; this

viewpoint will be important later on). Let ch(r) be the character-

istic map of r. The exponential adjoint of ch(r) is a map

A

ch(r): X — A h(),
A

and so ch(r) >x1 1is a map

A

ch(r)x1: Xxp — (AP =4,

Then
N

(ch(r)x1)*(EA) = I,

this follows easily from the fact that we can get the pull-back

diagram defining ch(r) in two steps using

A

ch(r) = ch(r)x1 ev,
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Remark 1.35. We may (by Remarkx 1.32) view /2, as a contra-

variant functor from E to sets represented by (L. Hence, by

the Eckmann-Hilton version of the Yoneda lemma, whatever alge-

braic structure can be put naturally on the .2 (&) 's, can be put

on L) itself. This we carry out here; however, we must put the

structure ' §':Q_>‘fl——>fl on f{L by other reans, since we do

not know on beforehand that =2 is natural; this will rather

be the conclusion of our making £) into a Heyting algabra object

which we now proceed to do. First we produce

(i.21) A D — O

as characteristic function of <true,true): 1 —> 0Ox0) .

Then, for X>—A and Y>—A elements in 7,3\,(A) we have that

{ch(X),ch(Y)? .A = ch(XnY).

So » makes () into a lower-semi-lattice object (with true:

1 —> () as maximal "element"). The "order relation" @ on

) is defined as the equalizer

=00 =23 O3

Let A be an object and X>»—>A, Y>—>A two subobjects

thereof. Define a subobjesct X :';, Y of A by the pull-back

diagram

® ——n-0

" <ch(X),ch(Y



We claim that X ;§'Y is the same subobject as X =Y

defined in connection with the Heyting algebra strmicture on

)EKA); to prove this we must prove that for any z: 2Z2>—>A

Z<XY

iff

Z~X < Y.

If 2< X 3 Y, it follows that z.<ch(X),ch(¥Y)» factors across

(g); this means (essentially by Remark 1.32) that

20X< Z~Y¢ Y.

If ZnX< Y, we conversely have that z.<{ch(X),ch(Y)> factors

across (:), whence we have 2z that factors across the pullback

of <{ch(X),ch(Y)> with @, which is X = Y. This proves the

claim.

If we now denote the characteristic map of (i) by ' =2 ':

>

(1.22) O-0—TM0n

it follows that

ch(X 3Y) = ch(X 3 ¥) =&h(X),ch(V)>. = .

The maps (1.21) and (1.22) (together with easily defined minimal

element and join-operation) make ()l into a Heyting algebra-object,

The reason why it is easy to get ~: (I0— 0O representing

tintersection' in J(A) is that for f: B — A,
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-1.

=1 2 (a) —>R (8)

clearly preserves intersection. The same is not obvious for =

in the subobject lattices. However, now that we have produced a

representing operation (1.22), we can conclude from this that

(1.23) xSy =7 .

Remark 1.36. ("Beck condition" in the terminology of [155]).
—— ——— —— T G S— — — —— — —

Let

AY 24

il f

VY N/

B! —‘5—-3 B

be a pull-back. Let r: R>»—> A€ 2 (A). Then

6TM (3.(r)) = 3., (TM' ()

in L(B). To prove this again uses the "pulling back in two

steps-technique", and Proposition 1,31.

Remark 1.37. ("Frobenius reciprocity", [15]). Let

f: B—>A, let X>—>Ae€S(A) and let Z>— Be€/2(B). Then

in (A)

-1
Fp(20f7 (X)) = X~ 3.(2).

This is a consequence of (1.23), together with the adjointnesses:

Bf‘i f-1; -nXA X> -

and

AlI R atieI
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Remark 1.38. A subobject classifier is unique (up to iso-

morphism). For, suppose true: 1 —>¢) and true': 1 —>( X!

are both subobject classifiers. Being maps out of a terminal

object, both "true" and '"true'" are monic maps; in particular

true': 1 —>)' has a characteristic map XY! — ), similarly,

true: 1 —>) has a characteristic map <—>0N'. These

two characteristic maps are easily seen to be mutually inverse

(using the fact that id: 1—> () is characteristic map for

true: 1 —> 0)).

The following Corollary of a recent embedding theorem of

Barr will be of great use in Chapter 5.

Theorem 1.39. Let E be an elementary topos. Then there

exists a small category € and a functor

fn: E—>&°

(where é%m denotes the category of functors from € to the

category O of sets) which satisfies

(1) A 1is full and faithful

(ii) /2 Dpreserves and reflects finite inverse limit diagrams

(iii) (3 preserves and reflects exact diagrams (Definition 1.%8).

Proof. Every map has a kernel pair by T1; every equivalence

relation (and so every kernel pair) has a coequalizer by Theorem

1.5 (and Proposition 1.3). Pull-backs of epic maps are epic meps

by the Pull-back Theorem 1.14, and epic maps are ccequelizers, by

Proposition 1.20. Thus E 1is an exact category in the sense of

Barr [ 1 ], and by his embedding theorem for exact categories
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([1 ], Section 3, Corollary), there exists a functor4 with

the properties (i) - (iii).

The force of Theorem 1.39 lies in Statement (iii) since (i)

and (ii) (except for smallness of T) can be accomplished by the

Yoneda embedding. Note that (iii) does not say that > Ppreserves

arbitrary coequalizer diagrams

A—f—;B 5> Q
g

but it says that (> will preserve this coequalizer diagram

provided f,g 1is an equivalence relation.

In particular, we can easily conclude that /3 will preserve

epi-mono factorizations. The Frobenius reciprocity (Remark 1.37),

for instance, can also be proved by this technique.
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2. Left exact cotriples

In this chapter we shall give a methcod of constructing

elementary toposes. Let E ©be an elementary topcs, and let

C = (Cyeyy)

be a left exact cotriple on E. (By saying that € 1is left

exact we just mean that the functor part C: E —>E 1s a left

exact functor, i.e. commutes with finite inverse limits. The

notion of cotriple is as in Eilenberg-Mocre [5 ], t: C — 1

2

(
A

denoting the co-unit and vy : C —>C“ the cocmultiplication.)

We denote by Eg the categery of (€-co-algebras and thelr homo-

morphism (the "universal cogenerator" for C in the terminology

of [51).

We have a functor

Avi E—>Ee: Y > (CY,w) f —> Cf

which has a left adjoint

2*: Ep —> E: (X,}) —> X.

Lemma_2.1. The category E- has right limits.

Ergof. Let = == (X,,§) be a diagram in E;, and let p
[»&

be the canonical map

1395 C(X<) — C(lim: X,).

Then (;%?éxg, 12@%};40 is a €-coalgebra and is a right limit

of the diagram in gc.
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Lemma_2.2. The category EC has finite left limits,

Proof. Let % +—> (X_,§,) be a finite diagram in E,.

As € 1is left exact, we have a canonical isomcrphism

C(limX,) ——> limC (X,).
o¢

—

Then (élim Xy Elimg T»"J') is a &-coalgebra and is a left limit
(o4

B,of the diagram in Ep

Corollary Z2.3. The functor A*: §€ —> E 1is left exact.

For any X and Y in E we have a map

v v: C(XANY)— CL{hCY
X,Y

adjoint to

CIXA Y) x CX —2—> c((xhY) -x) —Le¥)y ¢y,

where the first map is the canonical isomorphism given by the

left exactness of C. It is clear that Gk,Y gives a natural

map.

For any two C€-coalgebras (A,<) and (B’f)’ define

(B,p)fT\(A,«) by the requirement that

(B ) N (B2 —> (C(BhAY,¥ g ) =53 (CBACA),¥ g 4, p)

be an equalizer diagram in E¢y where 6 and 6' are the homo-

morphisms given by

C(14 M o)
C(Brh A) —B 5 C(Br CA)

and
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HE

CAL c(BANCA)
P C(T ,) C(pr

c(Brh) —BDAY 205 p) —EBsBS c(cBh ca) [

respectively.

In this way we get a functor (=) M (-): Qcépx ‘-E-C —_— EC‘

Lemma_2.,k%. E; 1s Cartesian closed.

Froof. Let (A,x),(B,s) and (D) be C€-coalgebras and let

DxB —>A be a map with expcnential adjcint D L BrbAa. Let

g denote the composite

D -ééCD C1 > C(Brh A).

Then g 1is a homomorphism (D,d) —> (C(Brh 4), q*'BrhA ). We

propose to show that f is a homomerphism if and only if g

equalizes © and ©', i.e. g factors through the canonical

map

(B,P) A (A,«) —> (C(Brh A), WBFQ\A)’

by (D, d) RN (B,p)(TI(A,d) let us say. Then h will be the

exponential adjoint of f in Eg.

Now f 1s a homomorphism if and only if the diagram

DB —I5 3

Ox X

N/ N
C(D x B) __CT__> CA

comarites, We have omitted reference to the canonical isomorphisms

expressing left exactness of C. We denote the composites f.~

and (3xp).Cf by @ and @' respectively. Their exponential
A A

adjoints, @ and @' are given by
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A - 1 fho(
g: D-+> Brha B— 5 ca

and

A f d\(s‘f’) L thf
g': D Ys B (Dxp) -E Brh (CDACB) —=——— Brhca

where the first map u is the front adjunction for exgonential

adjointness.

Consider the commutative diagram

D > B (DxB) 15 D (2<p)

B B

> Y
B (CDxB)

/ '3 ep=p)
CD Bh (CD=CB)

\ CB rh (CD=CB) PP TepxcB
ct

1ogMer L 1Brh cf

\

C(B\r/hA) —ili'—A—fi\ CB h ci Py — Brca

(The lower left-hand square commutes, using naturality of G and

an easilly deduced equation between u, ,G and the canonical iso-

morphism C(DxB) ~ CD < CB.)
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A A
A ~ ! —_We deduce that B.Cf.Gé’A.(pd\1CA).

Now f 1is a homomorphism if and only if ¢ = ¢g' if and

A al

only if @ = @' if and only if the homcmorphisms

g N\

D = cp £ c(Bhca)

and D -3-> CD —=£—3 S(BNCA)

agree. But this is precisely the condition that g equalizes

8 and o', This proves the Lemma.

>
Let C\O\—>({. classify 1>—C—£—tl->CD. Since the diagram

e > 2 L25 ¢cn

L ¢ <L
v n \%

2Y ~

e 3n < 2n

commutes, we have a homomorphism

(CQL,w) w“'ckfi\(cfl,%).

Define (Q'w) —> (CO, 1\"9_) to be the equalizer of flffl.C)\

and Tnq-

Lemma_2.5. The C-ccalgebra (Q,w) is a subcbject classi-

fier for E

Procf. First note that 1 C(t) > Cfl

and 1

equalizes 1§1.CR

coL ) and so lifts to a homomorphism

t -
1T —> (Q,w).

Suppose (X',S')>—1-> (X;¥) is a monic in Eg, and let
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X' >=> X be classified by X —fL in E. Define @ tc be

the composite

3

Vv
P

so that we have a homomorphism (X,§) —3 (€},¢, ). Now we

show that ¢ equalizes 1{Q.C)~ and 1ch:-

Consider the commutative diagram

Y

(2.1) i Ci Ct t

7 ) v \V

C > C\'.\;——J’A €L,

The right-hand two squares are pullbacks. Now we show that the

left-hand square is also

Consider the diagram

X! 3Ly oxe C¥' & 2xe
T W/ v o7 /

Xt

Lo !

X s CX CF__ 5 o°x.
Yoo

The rcws are equalizer dlagrams, split by the co-units. Let

vy £5%, ¥ -B>CX' be maps in E such that £.§ = g.Ci.



y

\ g
\\h

"N
x1 —& cx! C3__ 5 oy

f Yyr o

i o 0
\L V4 \b
X —i > CX =3 %X

Yy

. 2. . :
Since C"i 1is menic, g equalizes C§' and WV HenceNE

there exists XY —hv‘» X' such that h.}' = g. As § is monic

hi = f. Because i is monicy, h 1is unique with this prcperty.

Hence the left-hand square is a pullback.

Tc return to the diagram (2.1), we see that ¥ .Cq.Xx and @

bcth classify the same subobject of X and nence are equal. This

gives us that é equalizes 'y}fC)\ and 7.5, ani hence lifts

tc a homcmorphism

(X,3) —— (§,0)

which we shall show is the classifying map of (X',3') —{X,1)

in EC'

From the commutative diagram

(X'y§) —

i t Ct

\ = ¥ N
(X,f) -2 (O,w) — (€O, v,)

\_ /

¢



we get that

(X',§') —> 1

(2.2) ; l lf

commutes. Now we show that it 1s a pullback diagram. Let

(Y,y)‘—ié- (X,§) be a homomorphism such that f.§ factors through

t. Then f.?' factors through t, and so there exists a map

vy &> X' such that h.i =1, But f and i are homomorphisms.

Since C(i) 1is monicy, h is a homomorphism.

Suppose now that P is any homomorphism (X,§) g (5,w)

which substituted for ¢ in (2.2) makes (2.2) into a pullback.

Since the forgetful JX* preserves pullbacks, the left and square

in (2.3) below is a pullback in E

X! 1 > 1

(2.3) ¥ LT Lt
X > _i'i.—i) cHy — 0O

€En

If we can prove that the right hand square is also a pullback, the

total diagram will be, which means that p.i.é_n_ will classify

X'—> X, whence ‘O.i.E_Q = ¢. From this it will follow by adjoint-

ness that the homomorphism ’O.i equals the homomorphism &5= cf).i,

and since 1 is monic, ©= @. - To prove that the right hand

square is a pullback, is immediate, using that 1 equalizes 1id

and w.CA so that

id€rl 1.v.CA.gq

i.y.ecfl.k

1.2 .

Putting together the information in the above lemmas, we have

Il

the theorem:

topos E and let -EC deno%e the category of C-coalgebras. Then

.gm is an elementary topos, and there is a functor
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with a left exact left adjcint (namely the forgetful functor.)

(We shall in Chapter 4 introduce the terminolcgy "map between

toposes" for situations like this.)

We remark that the forgetful functer EC —>E reflects

i somorphisms.

We give, withcut proof, an example of a left exact cotriple

on a topos E. Let (X,f) Ye a topological space, ( (0 being

the set of open subssts of X), Let E be the topos /X

("sheaves over X when equipped with the discrete topolegy'").

Each open subset U of X defines an object U —X in S/X;

let also € denote the full subcategery determincd by these.

Then the '"density cotriple" or '"model induced cotriple" (see e.g.

[18] or [ 1) for CS §/X is left exacty; the topes arising

out of this situation by Thecrem 2.6 is pnrecisely the category

of sheaves on the topologicul space X. - We shall return to

this situation in the context of an arbitrary topos instead of

S, in Chapter 5.
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3, Topology on a tovos

Definition 3.1. By a topologyon a topos % 1is meant a

left-exact, pull-back-natural closure operator on each lattice

of subobjects .fv(A), A e |E].

Explanation. To say that . is a closure »>perator on JQXA)

means that for any A'>> A in 2 (A)

(A'>=>A) < (AT>R); (ATM>>A) = (AT>>4)

(and that A' £ A" < A implies that A'L A"; this latter

condition is here implied by left-exactness. Toc say that . 1is

left exact means A'm A" = A'nA"; as usual we write A' for

the element of 7(&) dJdetermined by A'>A.)

Finally, pull-back-naturality states that for 1: A —> B,

the following diagram commutes

in other words, £~ (3') = £7 (B7).

Since here the (contravariant) functor L (-): E — O

is represented by the object L1:

IR (8) §'homE(A,fl)

we get, by (the Eckmann-Hilton version of) the Yoneda principle

that the topology is determined by, and determines, a morphism
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j: ) —> () which satisfies

true.} = true: 1 — ().

(ixj).A= ~NJi: T —

We indicate how the correspondences go, and leave the further

details to the reader.

(i) Given the closure operators ., apply . to the subobject

1 >EUeL O of £Y; this gives a new subobject of L ; let j be

its characteristic map.

(i1) Given Jj; let A'>>A be a subobject of A with character-

istic map &«: A —>C.. Take A' to be the subobject of A
| o ,

classified by A —>O -l 0O,

Definition 3.2. A'>>A is called = dense subobject if

A" = A; it is called a closed subobject if A" = A',

Let J>—() be the subobject of ()L classified by

(in other words, J 1s the closure of 1 ;Elgi*Ifi.). Let

QJ.»—-*Q be the equalizer of Q-—lf‘—-* Y, (Since Jj.j =13,

one could equivalently define (1. as the image of J).
L

Proposition3.3. A'>> A 1is densc if and only if its

characteristic map A —>() factors through J. It is closed

if and only it =~ factors through .IDJ.



50.

Lemma 3.4, Let C>—> B and B>—>A be dense subobjects

1

of B and A, respectively. Then the composite C>-h—> B> A

is a dense subcbject of A.

Proof. Clearly k~ (C>—>» 4) = C>> B in Z22(B), so
— —— e E—— a—

—— e Gp e ——

T>—= B = k" (C—>4) = k- (C— R),

but C»»>>B = B since C is dense in B. Therefore

B -k (Cr— A), in particular BX k" (C—> 4). Apply the

adjointness 3k 41 x" o get out of this

BKB ( T—& in f~(4).

Clearly 4B = B>A, so

B>— 4 £ C>> A.

Since cliosure is monotone, we get

ERe W=

but since B is dense in A, the left-hand side is &, the

largest subobject of A. So also the right-hand side is Aj

this says that C is dense in A.

Lemma 3.5. If B>¥s 4 is a closed subobject, then

Bk’ 7(B) —> JZ(A) commutes with the closure operators.

Proof. Let <> B, Then

C>—>B = (C>=B)"S = (C>> B> A) (B>4)

(since - nnB 1is just "pulling back along k" which commutes

with closure). Since B 1is closed in A, this in turn equals
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Cr=—>A nEBR>—> j

(C>— L)~ (B> A) by left exactness of _ .

This clearly is just C>—A4 since C < B. BPut C>— 1A s

EK(C*’——? B).

|ary 3.6. Let A'»—>A ©be a subobject. Then

A' > A' 135 dense.

Definition 3.7. A morphism f: A —> B 1is called almost

monic with respect to the topology, provided the canonical map

A' (which is monic) is dense:

Ax A =—— A L 53

Ncte that if the topology is trivial (A'>—> A = A' »—>A),

then "almost monic" <>"monic".

Lemma_3.8. Amap f: A — B is almost monic if and only

. . 8o _ .
if for any pair of maps G ——3 & with g,.f = g;.f, there is

a dense subobject G')—k—>C— with k.go = K.gq.

Proof. Exercise,

Definition 3.9. A map f: A —>B is called almost epic

with respect to the topolozy provided its image Im(f) »—>B is

densc.

almost epic will be called bidense.
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Note that since a monic map is almost monic, and since it

is almost epic if and only if it is dense, we have for monic

maps: bidense <dense. For the trivial topology mentioned above,

a map is bidense if and only if it is epic and monic (i.e. invert-

ible, by Proposition 1.20, essentially).

Lot 2, denote the class of bidense maps in E with respect

to the topology. We shall prove that 2, "admits a calculus of

right fractions", meaning that we have a nice way of inverting

them (to be described),.

Lemma_3.11. In the following diagram, let s € 2,

P SN

t S

Vv v
C 7 > B

Assume the diagram is a pull-back. Then also t € J, (" IS

STABLE UNDER PULL-BACK"),

factorization (essentially by Theorem 1.1%, "pull-back theorem",

and also preserves the closure operator, it is clear that 's al-

most epic' dimplies 't almost epic'. To prove t almost monic

apply Lemma 3.8: Supposec z,-t = g;.t (g;: D—>P). There-

fore go.f'.s = Bq.f'.55 since s 1is almost monic there is a
?

dense monic D! >_c_1__> D with

d.go.f' d.g1.f'.

Since also d.g,.t = d.g,.t, it feollows from uniqueness

of a map into a pull-back that
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d.go = d.gq.

twice, one easily sees that almost-monic maps compose. It is also

true that almost-epic maps compose; note first that since the

contravariant functor 2( ) from [ to sets is recresentable:

homE(-,fl), it sends epic maps in E into monomorphisms in sets,

From this we may easily conclude:

(3.1) PULLING BACK ALONG AN EPIC MAP PRESERVES AND

REFLECTS THE NOTION OF DENSITY,

"reflects" means: if q 1is epic and q-1(A') is dense in the

domain of q then A' itself already was dense in the codomain

of q.

Suppose that f and g are composable and almost epicj

consider the diagram

A L B —E& _s¢

P1\ /1// G 15
i

) L \ 1

Py

P3 13

nd|

with p,,1i, epi-mono-factorization of f, Pysl, epi-mono-

factorization of g, and p3,i3 epi-mono factorization of

11.p2, and with p#’ih a pull-back diagram for p2,i3.
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oince 11.p2 = p3.i3 we get from the pull-back property

that i, factors through ih' Since i, 1s dense and 1, S ih'

ih is dense. Since ih = p51(i3), we get from (3.7) above that

13 is dense. Since i, 1is dense, 13.i2 is dense by Lemma 3.4%.

Since p1.p3, 13.12 is an epi-monoc factorization of f.g, we

conclude that f.g is almost epic., Lemma 3.12 is proved.

Since an invertible map clearly is bidense, we may sum Lemmas

3.8, 3.11 and 3.12 up in:

The class 2: of bidense maps satisfies

(3.2) all isomorphisms are in 2.

(3.3) 2% is stable under composition

(3.4) each diagram

C T > B

A

with s E'z: may be completed to a commutative

diagram

c ——3

S'T Ts
C'—F A with s' €]

(3.9) If f,g are morphisms so that f.,s = g.s for

some s € 2, then there exists a (monic) s' € X

with S'.f:s‘.g.

These are the four conditions (dualized) of Gabriel-Zisman,

[6 1, p.12.
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We briefly sketch how the class L, gives rise to a cate-

gory _E._[Z,"1] and a functcr E —E-» _E_[Z'JJ (a full account

may be found in Gabriel-Zisman).

_5[2'1] has the same objects as [E; the hom "sets" (they

will actually be sets in our case) are defined by letting

hom _1.(A,B) be the set of equivalence classes of pairs (s,f)

IS

A B

S f

D with SEZ

under the equivalence relation: (s,f) = (s',f') if there exists

a commutative diagram of form

A B

f

p —" £

\/
To prove that this actually is an equivalence relation, one needs

with t.s = t'.s' EZ.

(3.3)-(3.5). For instance, to prove transitivity, suppose that

besides the relation (s,f) = (s',f') displayed in the diagram

above, we also have (s',f') = (s",f") by means of the diagram
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/
/

with u'.s' = u".s" € 2.

Then use (3.4) to produce a commutative square having t'.s'

and u'.s' as the two "upper" arrows:

af e

\/
with v.t'.s'

= w.u'.s'E€ Z:.

Then use (3.5) to produce a monic g: G —>F in 2. with

g.v.t' = g.w.u', which is possible by (3.1). Finally, by (3.3),

g.v.t'.s'EiZ:; the pair g.v.t', g.w.u' proves that

(s,f) = (s",f").

Compcsition in E[Z”] is defined by letting (s',f').(s",f")

be the outer palr of legs in the diagram
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where the square * is formed according to (3.4), with tEe 2

and therefore, by (3.3), with t.s'e€ 2,.

We leave it to the reader to prove well-definedness,

associativity, etec. Finally, the functor

Y
]

=
]

-1

E— E[Z7]

is the identity map on objects; on maps:

(AJ—B)W A B

A

(by (3.2), 1,€2'). Note that

(s',£'). P(£f) = (s',f'.1)

whenever it makes sense,

Everything we have done so far with 2

properties (3.2)-(3.5) of ),

assume on E,

only depends on the

not on the special prcperties we

We quote the following theorem which holds in any

category E (for a 2. with the properties (3.2)-(3.59)):

P: E—E[5']

commutes with finite inverse limits ("is left exact"),
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We return to a topos E with a topology =

Definition 3,.,13. An object Fe |E| will be called a gheaf

for the topology if for any dense map X' )_@_, X, the mapping

of sets

hom(d, 1
homg (X, F) homg (X', F)

is bijective. (If it is injective, F will be called a separated

object).

So F 1is a sheaf if diagrams

X0 gense . X

can be filled out X —>F in a unigue way.

Proposition 3.14, F is a sheaf if and only if for every

bidense g: A —>B, the set mapping

(3.6) homE(B,F) > homg,(A, F)
hcm(g,1)

is bijective.

Proof. = 1s trivial, cince 2 dense monic is bidense. To

prove = , take an spi-mono factorization of g. This gives

a factorization of (3.6). Since the monic part of g 1is dense,

we only have to prove the bijectivity of (3.6) for an epic map

which is almost monic. Let g be a such, and let o100 be lts

kernel pair



\
J
a

\
O

°

AN 0 g

A>»>>——>R —@8—3A —»B

Now A.p .f=1f= A.p.f. By assumption, A: A>—>R is

dense. Since f 1s a sheaf, we therefore conclude QO .f =p,.1.

Since g 1s a cokernel cf foo‘Ffi’ f factors uniquely across g.

We shall now prove that the sheaves form a reflective sub-

categoryof Ej; for that, we can forget all the fraction-calculus

stuff which will be used later to prove that the reflection functor

is left exact.

We first prove a general "closure-theoretic" lemma.

commutative square in E (straight arrows)

;d Sy
D> dense ,),X

e

e

a// h
A

| \’

“ closed°~

with d dense and f closed. Then there is a map X —>F

(broken arrow in the diagram) making both triangles commute.

3 .(d) ¢ £

hence by 3h -|h'1
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a £ ')

nence

I¢<n ) =n () = (D)

vsing monctonicity ol closure, nzturality of closure, and

closedness of f., But d = X, since 4 1is dense, soO

ynence

So a exists with a.f = h, The other commutativity follows

since f{ 1is monic. This proves ithe lemma.

Note that

(3.7) If F>—3X' is closed and X' >> X arbitrary

monic, then X Ax = P,

This is an immediate consequence of naturality cf

Lorma_3.16. An object A is separated (Definition 3.13)

if and only if A>3 Axi 1is closed, if and only if

A et AN factors through AM Qj‘

Procf. Equivalence of the last two conditions is immediate

from Proposition 3.3 and the definition of <.} as the exponential

ad joint of the characteristic map of A . - To prove the two first

s | 
5 S

conditions eguivalent: Suppose A is separated. Let A LoL1
the closure Of A >——xs Abe the closure of' A -—-> AxA, Then ©_,P, agree on A ( A,

ArA

which is dense by Corollary 3.6, wvhence by separatedness /00==/o1,

whence A = K;
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Suppose on the other hand that A : A —>AxA 1is closed.

X.

Let X —=> A (i=0,1) agree on the dcnse subobject D>I> X

of X. We then have a commutative square

D ) d > X

<Ry RDJ \l"o 1
A A > AxA 3

the result follows from the "dense-closed-square" (Lemma 3.15).

The four main lemmas now are

I §)j is a sheaf

11 AMY 1is a sheaf if Y is

ITI The closure of A>2> AxA 1is an equivalence relation

IV If Y 1is a sheaf and X>— Y 1is closed, then X

is a sheaf.

Proofof I, Let X! >i>x be dense and let ¢: X! -—>'Dj

be given. @ classifies a closed subobject F of X'. Form

?(X), which as a closed subobject of X has characteristic

function y: X -—>O.j. By (3.7) ?(X)m X' = F, whence

d.qu:?u This proves existence of extension of @ over de.

To prove uniqueness, let 4.8 =@, where ¥: X ——)-Qj classi-

fies the closed subobject G>»—> X. Since d.% =p, GnX' =TF.

We then have

A A 4} N

assumption X' dense left exactness since

on G of closure GnX' =F

which proves uniqueness of‘fly.
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Proof_of_II. Let X' »3» X be dense. Since pulling back

a dense monic gives a dense monic (by naturality of closure)

X'~ A %i—”% X xA 1is dense. By naturality of the fundamental

ad jointness we have a commutative diagram of sets

homg (X,4 b ¥) —dsB 5 hom (X',A h ¥)

4 4

v Vv

homE‘XxA,Y) @) }homE(X'xA,Y)

Since dx1 1is dense and Y 1s a sheaf, the bottom map 1is a

bijection, hence so is the top map, so AMY is a sheaf,

Proof of III. By definition of '"equivalence relation in

a category" we should prove that for any "test" object X the

relation ~0 on homE(X,A) given by

X, X,

(X —= 8~ (X > A)

iff

<Xo’x1>
(3.8) X —> A=A factors through

N (AxA)

A/ AxA

is an "ordinary" equivalence relation. We shall prove that (3.8)

is equivalent to

(3.9) X, and x, agree on a dense subobject of X

from wnich it will he immediste that we have an equivalence relation

(transitivity follows from the fact that (by left exactness of

closure) an intersection of two dense subobjects is again a dense

subobject). - To prove the eguivalence of (3.8) and (3.9),

suppose (3.8) holds. Let ¢ below be a pullback
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AXA

/
\ >

< ¥ \\\;;

£
, X%

e> v
Since A is dense in A (Corollary 3.6), 4 1is dense, and

by commutativity of the ocuter diagram X, and Xx, agree on

X'. - Conversely, suppcse (3.9) holds for X 9Xqy 1.€. XX,

agree on a dense subobject X', so we have a commutative

X > AxA

d I closed

X! A > A

apply "dense-closed-square-" Lemma 3.15 to get X —>L as

desired.

Proofof IV. Let D>%5 2 be dense and let D>—>X be

given. Since Y is a sheaf, we can extend D —X —>Y tc

Z so as to get a commutative square

X:c:losed! Y )

now apply '"dense-closed-square" Lemma 3.15 to get 2 —> X.

Uniqueness 1s clear.
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Propositicn_3.17. For any A there is an epic and almost

monic map A —>»SA, where ©SA 1is separated.

RN
i c?'

_____ > A><A Dbe the clcsure of

A Ar—>AxA, By III, (pP,,p,) is an equivalence relation;

let q: A —»8A be its ccequalizer; then (p.,P,) 1s the

kernel pair of q, which means that

A >, SA

(f‘:‘o,fiS P \LASA
\

A x A > SA>= SA

qQxq

is a pull-back. Now qxq is epic by Proposition 1.15, and

{P,rf1> 1s a closed monic by construction. The proof establish-

ing that "pulling back along an epic map reflects the notion of

density" (3.1) also wiil give that "pulling back along an epic

reflects the notion of clesedness." Hence Qg, 1is closed, so

SA 1s separated by Lemma 3.16.

Proposition_3.18. For any separated object S there is a

dense monic map S>> F into a sheaf.

Proof. Since S is separated, {-}: S —> sSh() factors

through S<T\flj by Lemma 3,16, and is monic by Proposition

1.7. By 1 and II, S/T!f)j is a sheaf. Let S ©be the closure

of {:}: S — srh.f)j. By IV, S 1is a sheaf, and S is

dense in S (by Corollary 3.6). This proves the Proposition.,
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—— — — A ——— —— — — — N —— — — —

category of E determined by the sheaves. Then Sh 1is a

reflective subcategory.

Proof. Let A€ |E| be arbitrary. By Fropositicn 3.17

we have a bidense map from A to a separated object SA =zand

by Proposition 3.18 we have a bidense map SA —> SA into a

sheaf, But bidense maps compose, by Lemma 3.12. So we have a

/OAv‘_SI where SA is a sheaf. If A —>F isbidense map A

arbitrary, and F 1is a sheaf, f factors in a unique way over

Py Y Proposition 3.14; thus £, has the required universal

property.

By the universal property of Fh we can make the assignment

A ~> 5K into a functor E —2>Sh, with R left adjoint to the

inclusion functor i: Sh — E, with Fh as front adjunction,

Theorem 3.20. ©Sh 1is a reflective subcategory of E; the

reflection functor R 1is left exact; and Sh is a topos with

Slj as its subobject classifier.

Proof. The first statement we have proved. The idea in the

proof of the left exactness of R is to compare it with

-1 :P: E —> E[Z ] which by Gasbriel-Zisman's Theorem (page 57

here) is left exact;

Consider the diagram of categories

Sh «—0uUJ>%Ny, ——
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since ¢ A —> iR(A) 1s bidense and natural in A, one

casily gets a natural isomorphism of functors R.i.F ~ F. If we

can prove 1.P to be an equivalence of categories, left exact-

ness of R will follow from left exactness c¢f P. To prove

i.P an cquivalence, prcduce a right inverse H for 1.P by

H

A D R(A)

(se)

H

A R(s)TLR(E)

which makes sense, since R applied to a bidensc map gives an

isomorphism in Sh - this cne can see since the bottom map in

X L hemg (Y, F) (f‘1)¢homE(X,F)
bidense = = =

¥ 2

\/ \Y
F a sheaf homg, (RY,F) RT3 homSh(RX,F)

has to be a bijection, since the vertical cnes are bijections

by adjointness and the top map is a bijection by Proposition 3.1k,

Clearly, i.P.H*= lgp+ Also, one can use [y to get

H.i.P «~ '15[2_1], proving that 1i.P 1is an equivalence.

Finally, we prove that Sh 1is a topos. Since R preserves

finite inverse limits, Sh will have such. Since R preserves

colimits, Sh will have at least as many colimits as E has.
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That ©Sh has exponentiaticn 1s sasy froam II and the fact that

it Sh —> E preserves products. (An argument may be found in

Day [ 3 ]). The fact that .flj classifies subobjects is seen

as follows.

Suppose F>—>G 1is mcnic in Sh, then it is nmonic in E,

since the inclusion functer Sh —>E is a right adjoint. Let

¢: G —> (L Dbe the characteristic function. Now F 1is a

closed subobject of G in E; for, F>%»F is dense, and

F being a sheaf, it has a right inverse, whence F = F inside

G¥) so ¢ factors across Qj —> () (Proposition 3.3).

Conversely, if ¢: G — Sfilj is given in Sh, then

G ——>flj — Q1 classifies a clcsed subobject of G, by

Proposition 3.3. That subobject is a sheaf, by IV,

This proves the Theorem.

Left exact triples.

Let 7T = ((T,j,r) be a left exact triple on E. We define

a map

jv £ — O

as the composite

Q _ng rq Sh(T(true))¢ ()

(note that T(truc): T(1) —> TQL is menic, since T is

left exact).

#) Here we use that G 1s separated.
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Propcositicn_3.21. The map J defines a tcpology on E,

1
0

which in terms cf clecsure operaticns to X' >> X =zssoclates

the upper map in the pull-back

(3.10)

< Dv </

X' » - TX

(the lower map being monic, since T 1is left exact). We call

this topology the tcpology induced by T,

Proof. We first prove that the map j: 1 —>(1

classifies the operation on .Z{(x) in (3.10)., Let x: X'>>X

represent a subobject; let its charactcristic map be }1: X — Q.

The map

5A —> ) Jfifl';ngL ghii&&lfiéllfiyg).

cquals

x — 51y LE),g eh(T(true))(),

to see what subobject of X it classifies, pull true: 1 —>)

back along it, which can be done in three steps. In the first

step we get (by definition of ch(T(true))) just

T(true): T(1) —T(Q). Since

X > (L

true

is a pull-back, and T 1is left exact, T(true) pulls back
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along T(¥) to T(X') »—>T(X), which finally pulls back

zlong %y to what we in ( ,) dencted X'.

It is clear that X' ¢ X' in Z%(X). To prove that

ifi:g X' is equivalent to proving j.j = J.

Note first that even though

QPG SN
N A\

* % true T(true)

1
R

1 > T
7

is not in general a pull-back, T applied to it is a pull-back,

because T(Qal) is monic (split menic, in fact, by pg ). Now

consider j.J:

jo] Zl.ch(T(true)).Zz.th(T(true))

4ZO.T( 7.0.) .T(ch(T(true))).ch(T(true))

by straightforward naturality arguments. Pulling true back alcng

this composite in four sters yields first T(true), by definition,

then T°(true) since T preserves pull-backs, then T(true)

since T of ** is a pull-back, and finally flzf(T(true)).

This is precisely what we get by pulling true back along

3%fch(T(true)) = j. So by uniqueness of characteristic maps,

j.3 = J.

Finally, we must prove the left exactness of the closure

operator. This is straightforward using the fact that, for

X!'>—>X and X">>X two subobjects of X, we have (by

left exactness of T) a pull-back
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T(X' AX") —> TX!

X" —> TX

which makes it easy to ccnstruct a map X' NX'" —> T(X' nX"),

and therefcre also a map X' nX'" —> X' ~X".

This concludes the prcof of Proposition 3.21.
L4

It is well-known that each idempotent triple T’7’V on

a category E (that is, Pa is an isomorphism fcr cach A)

is isomorphic to one arising out of a reflective subcategcry

E' of E (as the reflecticn followed by the inclusion). In

fact, E' may be taken to be the full subcategory cf E deter-

mined by those A for which ’7A is an isomorphism.

Suppcse that T = (T,)”a) is an idempotent and left exact

triple on E; 1let J be the torology associated tc it by

Propcsition A, and let E' ©be the reflective subcategery

associated to T as above. Then

Proposition_3,22. The subcategories shj and E' of E

are equal. In particular, each reflective subcategory of E

with exact reflection functor is the categery of sheaves for

a sultable topolegy Jj on E.

Proof. We shall prove, first, that A 1s separated with

respect to j 1ff 772, 1is monic. So let A be separated, so

AA: A>> A>A 1is closed in 2, (A~41) which means that *

in the following commutative diagram is a pullback



71.

A A SAxn

7 * TanA \

\ \’ MW7
AT — T(A%A)

‘ATA NI}

TA < TA

Since the canonical map X: T(AxA) —>TA=xTA is an isomorphism,

the outer diagram is a pull-back as well, whence for trivial

diagrammatic reasons ’bk is monic. Conversely, if 'th is monic,

the outer diagram in the above is a pull-back, whence * 1is,

whence A, 1is closed, whence A is separated.

We now prove that ’7A is an isomorphism iff A 1is a sheaf

(with respect to j). Let I be iso. Let f: Y —>A Dbe an

arbitrary map and y: Y>»—X a dense monic map. We must prove

that f extends cver y. Now, y being dense means that the

square * in the following diagram is a pull-back (for a suit-

able h: X —>T(Y)):

Ty
h * 7)(

V

T(Y) —> T(X)
T(y)
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It is now easy to prove, using naturality of ’7, that the

composite

./*7-1

x —4— ry) s ra) —E—

is the desired extension of f over y. (Uniqueness of the

axtension follows, since we know already that A 1is separated).

Note that in particular every object of the form T(X) 1is a

sheaf (using the idempotency). Conversely, let A be a sheaf,

Sirce A 1s then separated, “), 1is monic, whence we can form

the c¢losure A of the subobject % A>—>T(A) of T(a).

Since T(A) 1is a sheaf and in particular separated, and since

the inclusion i: A>—>A 1is dense, it is easy to conclude

that 1 1is an isomorphism. We then remark that we have a

commutative dlagram

T

with the square being a pull-back. By idempotency of Tyyy

T(%,) 1s an isomorphism, whence i' is an isomorphism, whence

7A = 1.,1' 1s also an isomorphism. This proves the Proposition.

A triple on a topos, whose functor part commutes with finite

products has already a cartesian closed category as its category

of algebras, according to [10].Even for left exact triples, though,

the algebra category does not seem to be a topos in general. It

isa topos 1f the triple further is idempotent, by the Propo-

sition just proved. Chr.J. Mikkelsen proved that the coalgebras on

the algebras for a left exact triple T forma topos, equivalent

to shJ (j induced by 7).
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Left exact triples arise whenever we have morphisms of

toposes (this concept will be defined in the next chapter).

Another type of example is the double-negation topology:

For any object A define a map

-~ R(A) —> A(4)

by putting

}A =(A' = ¢)

where A')>—> A 1is a subobject of A, @ denotes the minimal

subobject of A (which is represented by the unique map from

the initial object to A), and 3 denotes the exponentiation

in the cartesian closed category J2.(A) (compare p. 12).

For general closed-category reasons

A' A =AY (= (A' 2 0) > @)

is a strong triple on the closed category .ZL(A); note, namely,

that the contravariant functor - = X for any X 1is right

adjoint to itself, whence the composite (- 3X) & X is a

strong triple; in particular, putting X = @, we get the triple

21 on £Z(a). Since ‘Zi(A) is cartesian closed and partially

ordered, this implies that —1- commutes with A, so is left

exact., Finally it is pull-back natural, by two applications of

(1.23) and the fact that, by Theorem 1.12, @ is preserved by

pullback; so it is a topology.

(Th proof that = commutes with A can also be seen by

the usual methods of intuitionistic propositional calculus).

The category of sheaves for -~ will have its 191 to be

not only a Heyting algebra object, but a Boolean algebra object.

(It 1s not false to say that this is related to Kolmogorotf's

1dea [IQQ] of embedding classical mathematics in intuitonistie
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4, Maps of toposes

If E and E' are elementary toposes, we define a map

(or morphism) of toposes

I S
7E E'

to be a functor f,: E —* E' having a left exact left adjoint

f*: E' —> E. Composition of maps is to be given by composition

of functors. We call f, the direct image part of f, and ¥

the inverse image part of f. In this way we get a 2-category:

the O-cells are elementary toposes, the 1-cells are maps of

toposes, and the 2-cells are natural maps between the direct

image parts. We shall generally only be interested in concepts

"yp to 2-isomorphism" in this 2-category; two elementary toposes

are 2-isomorphic if and only if they are equivalent as categories.

As an example of a map of toposes between elementary topeses

eonsider a map X —oi)Y in an elementary topos E. We have al-

ready seen that the categories E/X and E/Y are elementary

toposes and that the functor "pullback along o<":-

«*¥: E/Y —> E/X

has a left adjoint 2, and a right adjoint TI_. Since o* is

left exact and left adjoint to TT«3 We have a map of toposes

with TEi for direct image and * for inverse image. Strictly

speaking, E/« 1is only defined up to 2-isomorphismj in any case,

we have a pseudo-functor o« +> E/x from E to the 2-category

of elementary toposes,
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If J 1s a topology on an elementary topos E, we have

seen that the inclusion functor shj(g) —>E has a left exact

left adjoint, namely sheafification. This gives us a map of element-

ary toposes shj(E) —> E; which we shall refer to as the canonical

map for the topology J.

Ih§92§2_34;. Let J be a topclogy on an elementary topos

E' and let 1i: shj(E}) —- E' be the cancnical map for Jj. Then

a map of toposes f: E —>E' factors through i if and only

if f* takes J-bidense maps to isomorphisms.

Proof. Let K 85> L be a j-bidense map in E' and let

X be an object of E. We have a commutative diagram

Homp(g, 1 (X))
Homg,(L;f*(X)) Y HomE.(K,f*(X))

\L \V
Hom_ (f*(g),X)

HomE(f*(L),X) — B 5 HomE(f*(K),X)\\
4

in which the vertical maps are adjunction isomorphisms. The top

map, Homg,(g,f,(X)) 1is an isomorphism for all j-bidense maps

g 1f and only if f,(X) 1is a j-sheaf. The bottom map,

HomE(f*(g),X), 1s an isomorphism for all j-bidense maps g if

) -takes j-bidense maps to somorphisms,
Ssuppose I does factor through i, Then f* takes j-bidense

maps to isomorphisms because i* does. Conversely, if f* takes

J-bidense maps to isomorphisms, f_(X) is a j-sheaf for all X

in F, Dby the argument above, Hence there is a functor
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u,: E— shj(E_')

such that f, = i,uy,. Define u*: shj(g') —>E to be the

composite

!

sh, (E') * 5 gr 25 E,

Then u* is left exact because i, and f* are. The natural

bijections

HomShj (E") (Y,u,(X)) v Homp, , (1,(Y),f,(X)) ¢

gHomE(f*i*(Y) s X) gHomE(u*(Y) , X)

show that u* is left adjoint to wu,. Hence we have a factor-

ization

[e
al ',

-Q
J

> E

shj(g')

We recall from Chapter 3 that if T is a left exact triple on

an elementary topos E', with unit 1o 429>T, then the map

Tev ol

is a topology on E', We call this the topology induced by T.

f .
If E—> E' 1s a map of toposes, the composite functor

f
E' _ii_g.'g * > B!

has a natural triple structure. This triple is left exact because

f* and f, both are. Hencewe obtain a_tgpology on E', which

we call the topology on E' induced by £,
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Consider the ccmmutative diagram

¥
N > O

7N Doy J

% f.f¥% \ A S\

f,f*N > £ I*Q) —— O

A N A

N (F) f . f*(true') true'

f f*M > 1 > 1

where A is the characteristic map cof

A £ . f*(true')
1 > £,6%(1) > £ f*(L).

A

The bottom square are both pullbacks, The closure of M>—> N

for the topology Jj has @3 for characteristic map, and so is

given by the pullback of f*f*(P) along My. By hypothesis,

f*({g) is an isomorphism, so (3 is j-dense.

Conversely, suppose M>—@—>N is Jj-dense. Consider the

commutative diagram

f*

pay L2Ps eyt — A2 S pxp px —ERy ey — L 50
fl\ q\ A\ A\ A

f*((E) f*(true') f*f, f*(true') f*(true!') true

f*¥M —— 1 > 1 > 1 > 1

where P is the characteristic map of

The right hand square is a pullback by definition of M the

second square on the left is a pullback because f*/,rl, is monic,
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and the remaining two squares are pullbacks because f* pre-

serves pullbacks. The top row is f*(¢j).r and by hypothesis

¢J is the composite

-l

N —> 1 U

Thus we have pullback diagrams

PAN ——— 1 LE(ue )y £y SN
4\ fl\ A\ A

f*(P) f*(tre!) true

F¥*M ——— 1 1 1

Hence f*q3) is an isomorphism, and the proof is complete.

where E and E' are elementary toposes, has a factorization

E—I——>F

N\ A
F

where b, 1is full and faithful and a¥* reflects isomorphisms.

induced by f, and where b is the canonical map for j. Then

b, 1is full and faithful. By the preceding two theorems, there

exists a map of toposes E —23F such that ba = f. Let g be

a map in F such that a¥*(g) is an isomorphism. Since

a*(g) = f*b,(g), b,(g) 1is j-bidense. Hense g = b*b,(g) 1is
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an isomorphism, and so a¥* reflects isomorphisms.

Note that the topologies on E' induced by f and t are

the same, and that the topology on F induced by a 1is the

trivial one, i.e. every object of F 1is a sheaf for it.

Dually, note that because b*b*§1F’ the cotrirles on E

induced by f and by a coincide, and the cotriple on F 1induced

by b 1is the trivial one, namely Tpe

Lemma 4.4, Let Q-—f—> E' be a map of toposes, where E

and E' are elementary toposes, such that f_, 1is full and

faithful, and f* reflects isomorphisms. Then f{ 1is a 2-isomorphism

(that is, an equivalence).

Proof. For any object X of E', consider the front

adjunction

'7X: X —> £ *X,

Because f, 1s full and faithful, the end adjunction

e: f*fy —>1; 1is an isomorphism, and so f*(%) is an 1so-

morphism. Since f* reflects isomorphisms, Y 1s an isomorphlsm.

Corollary Lk.5. If E and E' are elementary toposes and

E —>E' is a map of toposes such that f, is full and faithful,

then there is an equivalence of categories

ay: E-— Shj(_E.')

such that f, = bya,, where j 1is the topology on E' induced

by f and b, 1is the inclusion of the j-sheaves.

Of course, this Corollary may also be inferred from

Proposition 3.22.
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Corollary L.6. Let E,,E,,E' be elementary toposes, and

let f.: E. —> E' be maps of toposes for i = 1,2

If f,y 1s full and falthful, a necessary and sufficient

condition that £, should factor through f2 is that for every

map < in E' for which f*z*(o() is an isomorprhism, we should

have that f?@x) is an isomorphism.

Theorem 4%.7. Let

a D
1 « 1 ~

E, > > Ej

|

u \A W

l
\L a, \v b

E, —< > F, —=—> E

be a 2-commutative diagram of elementary toposes and maps of

toposes, such that a¥ reflects isomorphisms and Doy is full

and faithful. Then there is a map of toposes F, —> E, making

the whole diagram 2-commutative.

Proof. Let o be a map in E} such that bg@x) is an iso-

morphism. Then u*a§b§&x) is an isomorphism; hence a$b¥w*&x)

is an isomorphism; hence biw¥*() 1is an isomorphism.

Corollary 4.8. Let E and E' be elementary toposes and

let Ey—£€>_§' be a map of toposes. Then the factorization of

f into _E_l—i-> E—b-> E!' where a* reflects isomorphisms and

b, 1s full and faithful, is unique up to 2-isomorphism.

Proof. In the theorem above, take u = gy w=1g, and

suppose that af reflects isomorphisms and b;y is full and

faithful for 1 = 1,2, Then v* reflects isomorphisms, because

a¥v¥* = a¥, and v, 1s full and faithful because b2*v*:=b1*.
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In view of this result, we will refer to the factorization

of a topos map, with the usual abuses of language.

Suppose that X'—Lé'Y is 2 map in an elementary topos KL,

We have seen that we get a map of toposes

E/f: E/X — E/Y.

To study the factorization of this map, we have the following

lemmas.

Lemma 4.9. If f is monic, (E/f), is full and faithful.

Proof. (E/f)* = f* has a left adjoint, 2., given by

composition with f. GSince f 1s monic, the diagram

X 2 . x

1X f

Vs \4
)(._____i;__e, Y

is a pullback, so f* 2. o 1§/X‘ By adjointness, f* [Tn ~ 1_@/}(’

so [lo = (E/f)y 1is full and faithful.

Lemma 4.10. If f 1is epic, f* reflects isomorphisms.

=74

K—> L

N\,
Y

be a map in E/Y such that f*@() is an isomorphism. We have

a commutative diagram
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£%(K) ) 5 £x(L)

WV V

K X S L

f
where the vertical maps, induced by X —>Y, are epic, silnce

pullbacks of epics are epic. Since <f*(x) is an isomorphism, it

follows that & is epic. Let

k
0

R;::::;; K

K

be the kernel pair of . We have a commutative diagram

£ (k)
£%(R) O~ rx(K) —={®)y ru(1,)

(k) >

o

4 ko \/ \V
~ AN

R—=—3 X —> L

in which the squares are pullbacks and the vertical maps are

epics. The top line is an equalizer diagram so. f*(k) = £*(ky);

so Ok, = 6k,. OSince € 1is epic, k_ =k, and so <& 1is an

isomorphism.

jzation of X —> Y in E, then

E/a E/b

E/X ——> E/I > E/Y

is the factorization of E/T.
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Recall that if € is a2 left exact cotriple on a topos I,

thcn by Theorem 2.6 we have a topcs map E — Eg, where Eg is

the category of coalgebras for €,

We remark that because the {forgetful functor EC'_é E reflects

isomorphisms, the topology on EC induced by the topos map

E-—éiEC is the trivial one.

The following Proposition characterizes tcrcs mans that arise

from left exact cotriples (just as Corollary 4.5 charactcrizes topos

maps arising from a topology j).

Proposition 4.12. Let ,§-1§,g' be a map of toposes, such that

f* reflects isomorphisms. Let € be the cotriple on E induced

by the adjoint pair f,,f*, and let E 3—)_}";@ be the canonical map

of toposes, such that 2* is the forgetful functor. Then there

is a 2-isomorphism _E@ -p-):ri' such that the diagram

E —I—»g

=C

commutes.

Proof. Since f* reflects isomorphisms and is left exact the

adjoint pair f ,f* satisfies the conditions for the dual of Beck's

tripleability criterion. The conclusion states precisely that there

is an equivalence of categories b*: E' —>&

Bl —225 £

£§b‘w V//&*
commutes. The functor b¥* takes an object X of E' to the -

C such that the dlagram

coalgebra (f*x’f*VX)’ where idE,-2;>f*f* is the front adjunction.

Proposition L—*:‘lé' If a map of toposes E —f-?E' factorizes

B —->E—-b-$g', where a* reflects isomorphisms and b, is full and

faithful, then, up to natural equivalence, we may interpret the

category F elther as the category of sheaves in E' for the topo-

logy on E' 1induced by f, or as the category of coalgebras in

E for the left exact cotriple on E induced by f.
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5. Category theory in toposes

Let E be a category with 1 and with pull-backj choose

for each pair of maps with commcn codomain one of all the

(isomorphic) pull-back diagrams for that pair, and call the

chosen ones canonical (actually, we cught to have done the same

when defining f* etec.).

For each pair (A,B) of objects of E, we denote by

Span(A,B) the category whose objects are diagrams of form

("spans"):

X

(5.1) Z?// \\(3 (by abuse denoted X)
\

A B

and where a morphism from (5.1) to

X

o(/ \‘{;'

A B

is a map X X5X' with X.5' =3, X' =, C(Clearly, sinse

E has products

Span(A,B) ~ E/A x B,

We construct a functor in two variables denoted X :
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<

Span(4,B) x Span(B,C) > Span(A,C)

by assigning to the pair of objects

X Y

(5.2) fj/// \\<3 fi;/// \\gi
[ N\
A B B C

the outer diagram in

where * 1is the canonical pullback for (;,F). (We leave it to

(5.3)

the reader to define >¥* on morphisms).

By I, we denote the span

A

TA//// \\\;5
\%

A A

more generally, for a map A —£é~B, we denote by [1,f], and

by [f,1] the two spans
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A A

1&/// \\\mf and i;(// \\\N1A
A B B A

respectively (so that I, = [1,,1,]).

.1, X 1is associative up tc cancnical iso-

morphisms, and the I,'s are twc-sided units up to canonieal

isomorphisms. (Further, these isomorphisms are coherent).

This can easily be seen from the universal properties.

Ccherence means just that all diagrams formed out of canonical

iscmorphisms commute.

Froposition_5.2. Every span in Span(A,B) is isomorphin

to one of form [f,1] »¢ [1,g].

=, 1)(-] ”x[’xa nl.

For fixed span X € Span(A,B), and any C, X)%- 1is a

functor:

X¥-: Span(B,C) > Span(A,C).

Similarly -»¢X: Span(C,A) —> Span(C,B).

Proposition5.3. For f: B —>C any map, the following

diagram (in Cat) commutes up to isomorphism

‘82"[1 ,f]
Span (A, B) > Span(4,C)

A

e

\v

E/Ax B — > E/Ax<C

1xf
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both ways round give, up to isomorphism, just

X

°‘/ \{3.1"
L

A C

Propositicn_5.4%. For f: B —>C any map, the following

diagram (in Cat) commutes up to isomorphism

Span(A,C) -—:ngi#ll—%> Span(A,B)

I I
3

\/ W

E/A %C > E/A%B

(1xf)*

Proof. This is somewhat harder, but still a straight-

forward diagram chase with finite left limits. One may, there-

fore, for instance prove it for E = the category of sets, and

then apply the Yoneda embedding. We omit the details.

We now assume that E 1is an (elementary) topcs. Then there

is a right adjoint for (1xf)*, Since any iscmcrphism in Cat

has a right adjoint (= the inverse), we conclude from Propo-

sition 5.4 that for B - C

-»[f,1]: sSpan(A,C) —> Span(4,B)

has a right adjoint. Since Z“f-l(hf)*, also

-»%[1,f]:+ Span(4,B) —>Span(4,C) has a right adjoint. Consider

now an arbitrary span X. By Proposition 5.2, it is isomorphic

to one of the form [f,1]$&[1,g]; thus -2X (by associativity
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(- x£,1]). (-x[1,e]),

and each of the functors in this composite has a right adjoint;

therefore

Theorem_5.5. In a topes E, for any XE€ Span(A,B),

- %¥X: Span(C,A) —>Span(C,B) has a right adjcint. Similarly

XX- has a right adjoint.

Definition 5.6. (Benabou, [2]). A bicategory 8 is a

structure of the following kind

(a) a class 030 whose elements are called O-cells,

or objects

(b) for each pair A,BEEGBO a category (EKA,B) whose objects

are called 1-cells, and whose maps are called 2-cells

(¢) for each AECBO, a specified 1-cell IAE[@O(A,A)]

and for each triple A,B,szégo, a functor in two variables,

denoted >

(A(4,B)< (R(B,C) ——= (3(4A,C);

¥ should be associative up to coherent iscmorphisms, and

the I,'s should be units up to isomorphisms (coherent).

A bicategory is called biclosed if for any Xe€ R(A,B) and

any C,

- wX: (R(c,A) ——(R(C,B)

and

X -: (A(B,C) ——>H(4,C)

have right adjoints.
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The spans in E form a bicategery (B with 030 = |E| and

with (A(4,B) = Span(4,B). We dencte it by SPAN(E). Theorem

5.5 says that

if E 1s a topos,

SPAN(E) 1is a biclosed bicategery.

If C e@o in a bicategory @., we shall state

Definition 5.7. A monad in 3 on C is a triple (T,%,p)

where Te (R(C,C) and where

37: Io —>T [ T¥T —> T;

7 and (- are required to satisfy the usual unit- and associative

laws: the following diagrams in (B(C,C) commute

‘131 1 ¥1 %1 =L qgp —2X7 T,

canonical cancnical

&

(TxT)x T —> T %{(T »T)
canonical

f*"”Tl o
V

T % T T &T

If De(5, 1is any object, the functor
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T -: (3(c,D) —> R(c,D)

inherits a triple structure from the monad structure of Tj

denote this triple T-".

We shall be interested in the category of algebras for the

triple T' = T- in the bicategory <¢3= SPAN(E) (E a tcpos).

Since SPAN(E) 1is a biclosed bicategory, the functor part of

the triple T° has a right adjoint T.. It follows from a

theorem cof Eilenberg and Moore ([5f], Proposition 3.3) that T.

carries the structure of a cotriple, and that there is an isc-

morphism ¢ between the category of algebras for T° and the

category of coalgebras for T, and in fact so that commutes

with the two underlying functors. Now T. being a right adjoint

functor is left exact (even left continuous), so the category

of coalgebras for it form a topos, by Theorem 2.5, and in fact

so that the underlying functor is the inverse- image part ef a

topos morphism. Therefore we have, by the isomorphism@, that

the category of algebras for T° form a topos in such a way that

the underlying-functor

d?)(C,D)T. = Span(C,D)T. —> Span(C,D) 2~ E/C =D

is the inverse image part of a topos map.

For D=1 we shall denote Span(C,D)T by the symbol

{-Mod(T) "the category of left T-modules"; an object in this

nategory 1is an object M in Span (C,?) > E/C, enuipped with a

structure map

S TaM > M.

The above arguments give in particular
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Theorem_5.9. Let E be a tcpos, and let Ce |[El; 1let

T,7,P be a monad in SFAN(E) on the object C. Then 1-Mod(T)

is a topos, and the canonical functor

1-Mod(T)—> E/C

is the inverse image part of a topcs map E/C —> 1-Mod(T).

Of course, a similar result is true for "right-modules". Let

us remark that, for E = sets, amonad T on C in SFAN(E)

may be interpreted as a small category € with |C€| = C, and

with total set of morphisms equal to T (do and d, being

interpreted as domain and codomain respectively). Left and right

modules over T then correspond to functors

(P -5, E—>S

respectively. (This way of viewing small categories is due, we

believe, to Benabou). The reader should keep this descriptien »f

functors €°° —> & as left modules over a monad in mind for the

rest of the chapter, for heuristiec purposes.

Having proved that the category of modules over a monad in

SPAN(E) form a topos, we turn to a special class of monads. These

can be described as monads in another bicategory associated to E,

the bisategory of relations which is simpler than the bicategory

of spans:
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Definition_5.10. A relation from A to B 1is a span

Aéf-(—Xf—‘;B so that <o(,!3>: X —>AxB is monic, The full

subcategory of Span(A,B) determined by the relations is denoted

Rel(A,B). Ii i¢ a nrncrdered class (in fact, isomorphic tco

P(AxB)),

We organize the relations into a bicategory, by associating

to the pair of relations (5.2) (assuming they are relations) the

pair of maps

- proj _ prej.
7 -Z3 A xB 0> 4, T &> AxB > 3

where 2: Z —> Ax=B is the monic part of a (chosen) epi-mono

facterization of

A,yD: 2 > A x(

(notation as in (5.3)). So, briefly, the ccmposite of relations

is the image of their composition as spans. It agrees with the

well known composition of relations in the set case. We denote

the composite of relations X,Y by the symbol Xo¥Y. - The unit

spans &re relations, and are units for the composition o . We get

in fact a bicategory REL(E). We write X 4 X' for "there is a

~r

map Irom X to X' in the category (preordered class) Rel(A,B)".

Proposition 5.11. Let T_¢ |E|l, and let TeRel(T,T ). Then

(i) T carries at most one structure as monad in the bicategory

SPAN(E)

(ii) T carries at most one structure as monad in the bicategory

REL(E)

(i1i)T carriecs a struclture as mcnad in SPAN(E) if and only if it

docs in REL(E), which is again the case if and only if the

two given maps from T .o T, make I, 1into a preordered

object.
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Proof. Let the span T be

, O
TO\ T——_\/‘To.

Then (i) and (ii) follow immediately because {t_,t;> 1is monic.

If T 1is made into a REL-monad by pl ToT —> T, then it 1is

made into a SPAN-monad by

TxT L5 ToT £ T

where the epic map q displayed is the one defining Tc¢T. Converse-

ly, suppose T 1s a SPAN-mcnad by means of Mo Tx%T —> T. Denote

the two maps making TXT 1intc a span by ti,ti. Then q 1s co-

equalizer of the kernel pair for (t!,ti1). But

poboytd = Bt

and <to,t{5 is monic, SO r) coequalizes the kernel pair for

(té,t%), thus factors across gq. Next, we should argue for the

unit structure M: I, —>T. These arguments are trivial. Finally,

for the last assertion of the Proposition, note that a map of spans

p: T¥T —» T constructively shows that, for each De |E|

hom(D,t )
S Yhom (D, T)

homZD,t1) 4
hom(D,TO)

defines a transitive relation on the set hom(D,T_). Conversely, if

the relation (to,t1> is a transitive relation, one easily con-

structs a span map T»xT —> T,

Similarly, a map fb: IT —>T expresses the reflexiveness
o) :

of the relation defined by to»t,.
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The proposition illustrates that compositicn cf relations give

a convenient way of describing prcperties of relations. We shall

give a few more examples. Tc a relaticn X from A to B

peS——x —1 _>m

we let X'1 denote the relation frcm B tc A:

X X

B <« X —S—> 1,

In particular, for TeRel(T_ ,T)) as above

T is symmetric iff T T

T 1s reflexive iff I (T

TT 1is transitive iff

Definition 52,12. A TE€Rel(T_,T.) is called a directed

preorder provided T 1is reflexive and transitive, and

(5.4) ToT! ¢ T7 ' oT.

In the set case, interpreting T C I,xT, as an order relaticn

'¢'y (5.4) says: two elements which have a common upper bound have

a eommon lower bound. For sets with a maximal element this is the

usual (downward) directedness. (One way of defining the notion

"T has a maximal element" is by postulating the existence of a

map V: 1 —>T, so that

)

(id: T —>T) £ (T, —>1 — T,)

in the ordering induced by t_,t, on hom(T_,T).)1
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Remark. If T is a monad , then 7' is a monad as well.

One may then view (5.4%) as a distributivity of T over "', Then

it is not surprising that the composite T'1C>T turns out to be

a monad as well, that isy, a preordered object. In fact

Proposition 5.13. Let T be a directed preorder that is

1 S_T-1C)T. Then T'1C>T is zn equivalence relation. It isT OT

minimal among equivalence relations containing T.

Proof. We must prove T 'ofT reflexive, symmetric and

transitive. Reflexive:

T OIT < 71T

since Igp < T-1, Ip. £ T and O 1s monotcne in each of its
0 0

arguments. Symmetric:

GRS ) L LN ¢ Ll LI PN

by the obvious inversion rule for relations: (XCY)'1 =y loxTM?

Finally transitivity (ignoring the non-associativity of o)

r"lotor lor¢ T e oToT ¢ T 0T,

the first ineeuality by directedness (applied tc the two middle

factors), the last inequality by transitivity of T~' and T.

This proves that T-1C>T is an equivalence. An equivalence relat-

jon R containing T contains T'1 as well by symmetry. There-

fore it centailns T'1C>T, by transitivity. This proves the Prope-

sition.
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d

We define TT, of a preordered cbject T = (T1 —2 To)
d o

to be the coequalizer of do,dq. 1

A functor p: E —>E' between toposes which satisfy the

conditions (i)-(iii) of Theorem 1.39 (a B-functor, for short)

takes preordered objects in E to preordered objects in E',

but in general it does not preserve It. However,

Lemma 5.14. Let pg: E —>E' be a B-functor.

Let T be a directed preorder in E. Then (up to isomorphism)

T (B(T) = AT (D).

zations, it preserves composition of relations:

(B(ROS)r= F(R)°F&S).

Since directedness is expressed in terms of composition of relat-

jons, if T 1is directed then so is (Q(T). Therefore, the equi-

valence relations generated by T and p(T), respectively, are

by Proposition 5.13 T"'oT and p(T)'lwe(T). Since (3 Dpreserves

composition of relations, and inversion of relations, we see that

/3 takes the equivalence relation generated by T to the equi-

valence relation generated by (3(T). The main property (iii) of

a B-functor, however, is that it preserves coequalizers of equi-

valence relations. Since the coequalizer of a relation is the

same as the coequalizer of the equivalence relation generated by

it, the lemma follows,

For technical reasons, we need the following description of

the category of left modules over a preordered object

T = (T, dO;f T,). (A similar construction works for right
1



modules; the assumption that the mcnad T 1is a preorder is only

to make things simpler). For such a T we define the categery

S Fib (T) to have for objects diagrams in E of the form

3

M1 ;? 21 Mo

(5.7) g, L | %

T‘I i 2 ;;
I

("split, discrete fibrations over T"), such that

(1) 80,31 makes M_ into a preordered object

. s _ A -(ii) bo.flo = ¢1.do and o,.0, = g,.4,

(111) the diagram §&.,8_; #,,d, 1is a pull-back.

The morphisms in the category S Fib (T) are pairs of maps

M, —>Ml, M, —>M!

compatible with fio and @

S's.

13 Trespectively, as well as with the

Proposition 5.15. There is an equivalence of categaries

S Fib (T) ~ 1-Mod(T).

Pregf. Let an ebject in SFib (T) be given, say the ene

displayed in (5.7). We make M = (M. —%TO) inte a left T-madule,

py noting that by (iii) M., = T3xM;
:

T#M —>M we take O_. The verification that the asseciative

for struetural map

law for the structural map can be deduced from the transitive law

for the preorder relation (56,61) is fairly easy in the set-case,

and it suffices to prove the statement for this case, since qnly
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left limits are involved (in essence by the Yoneda Lemma).

We omit details., (The reader will see the technique illustrated

in the proof of Lemma 5.16). Conversely, let M: M, ——9e>TO

be a left T-module by means of §: T&M —>M. Denote the

underlying object of T %M by M1; M then sits in a pull-back
1

diagram

o

YL)
T1 —a—4>- TO .

Denote the left-hand arrow 91 and the top arrow 51; let éo

denote _’;’ we then have a diagram like (5.7). The transitive

\O,§1 now comes from the associative law for Ef(again~
 
a
0

law for

the verification can take place in the category of sets, by

Yoneda's lemma). The two processes described are clearly mutually

inverse.,

Lemma_5.16. Suppose T 1is a directed preorder (Definition

5.12), and suppose M 1is a left T-module. Then the preorder

structure on M constructed in Proposition 5.15 makes M into

a directed preorder.

Proof. Let us prove it first for the case where E =&, the

category of sets. Suppose we have a diagram (5.7) satisfying

(1)-(iii). We may identify T, with the set of pairs (t,t')

with t { t' (the ordering being the one given by do,d1). Now

M, being a pull-back may be identified by the set of triples:

(t,t'ym) with @ (m) = t' and (t,t') €T,y so we may as well



identify M, with the set of pairs (t,m) with t < fio(m).

Suppose mym' €M have m{ m and m'( m, the ordering here

being the one given on MO by 30,51. For t = fio(m),

t' =g, (m"), T = ¢O(fi), this means that

éo(t,fi) = m

and

N ' ' m 'Cfo(t ,m) =m’,

Also, @ Dbeing order-preserving, we have t{ T and t'(g t;

by directedness of T we therefore have a 1t €T with

t<t and t £ t'.

we have (t,m) €M,, since

t<t=0_(m);

similarly (t,m') € M,.

Both é%(gdm) and éo(g,m') are smaller than m in MJ

since 04(Lym) ¢ §,(tym) = m ¢ @ (similarly for §_(t,m'). Both

éb(fiom) and éo(gdm') go by @, to t. But M, being a pull-

back asserts that there is preciscly one ordered pair n { m in

M, with #.(n) = t. Thus

éo(E,m) = éo(E,m');

and ‘So(iam) {m and 5o(t,m')'§ m'. This proves directedness

of M 1in the set-case. Then it is also easy to prove the assertion

for the case E = é’"’, since all constructions used here "take

place pointwise", Finally for the general casey apply a B-functer

E.——quc just as In Lemma 5.14; such a functor exists by Theorem

1.39,



Fcr any preordered object T we have a functor

Jt('): SFib (T) — E

which to a "fibration" as in (5.7) associates 'TO of the pre-
éo.\

1

ordered <bject M1

Theorem_5.17. Suppose T 1is a directed preorder in E

(Definition 5.12), and suppose tuzat it has a maximal element,

Then frc'): S Fib (T) > [ 1is lelt exzct.

Proof. The theorem is true for E =98, as is well known,

[9] and can easily be checked, therefore alsoc for a category of

form E?m. Take a B-functor p: E —> ]¢ (possible by Theorem

1.39). Then T goes to a preordered object AT, and e get in

fact (just because {5 is left exact) a functor

A

S Fib (T) > SFib((&T),

which is left exact. By Lemma 5.16 and Lemma 5.14 the diagram

o
S Fib (T) > E

P Lfi
A/ C

S I'ib \/3T) f(.‘(') )

commutes up to isomorphism, and the lower ;mg is left exact. But

3 reflects left exactness being a B-functor, whence the upper

j% is left exact. This proves the theoren.

Theorem _5.18. Suppose T is a directed preorder in E, and

supposc 1t has a maximal clement. Then there is a topos morphism
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p: E ——— 1-Mod(T) 2~ S Fib (T)

with p* = 7c(‘).

adjoint p, for X . TFor p, take

py(A) = T = A

with the order-relation given on hom(D,TOxA)

? >
D Stya? Tox A <« D St'yat T_= A

iff t < t, in hom(D,T)) and a = a'., The order preserving

map TO><A ——?vTO is just the projection. This actually produces

a functor E —> SFib (T). The reader may check that it has

the required properties.

Suppose that Z: T' —>T 1is a map of preordered objects,

Then we can produce a functor z=*: SFib(T) —> SFib(T') by

a straightforward pull-back procedure; given an object M in

S Fiw (T):

3

M1 — > Mo
d 4 7

g, g

\Y/ dq Vv ©

T, —> T,
d 4

we produce an object M' in S Fib (T') by letting M! and M(')

we given by the pull-back diagrams, respectively:
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' \

My 4 }'11

)

T! = T,
'L'i 1

Functorality of pulling back gives rise to maps <55, 5{: M; —9-M5,

which the recader may check makes M' intc an object in S Fib (T');

pull-back condition (iii) for M' is verified because of the

general

X

=—_— ./l////'l
l l,q —> Y

= e

in which the two vertical square with Y as vertex are pull-backs

and where one of the vertical squares with X as vertex is a

pull-back. Then also the remaining vertical square is a2 pull-back.

— A S G a—

forward diagram chasing.

We thus get a functor

(5.9) 1-Mod(T) « SFib (T) > S Fib (T') ~ 1-Mod(T').

op
In the set case, where 1-Mod(T) may be identified with ST

(where T 1s T viewed as a preordered set), T* becomes

jdentified with
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N P op

G gh — gTM

This functor is known to have a left as well as a right adjoint

(the so called Kan-extensions along T )., In particular (5.9)

will in this case be the "inverse image" part of a topos-mcrphism

T: 1-Mod(T') —> 1-Mod(T).

We shall in the Appendix sketch that 7% in the case of an

arbitrary topos E also has adjoints cn both sides. The reader

may, however, by diagram chase, verify directly that T* 1is at

least left exact (this is not surprising, since it is defined

by a pull-back procedure).

Consider for a moment the category Ord(E) of preordered

objects in E; 1t eomes with a forgetful functor U to E

(which sends T,—= T to TO) and it is very easy to equip

Ord(E) with finite inverse limits in such a way that U preserves

them (e.g. letting the product of the underlying objects carry

the "product ordering"), Also, if T is a preordered object

T, =T,y and «: S>T,, there is a maximal order-relation

on S making the monic map <« order-preserving. We shall talk

about the ordering induced by T on S via the inclusion «.

The functor U has a left adjoint D,

id

"putting the discrete order-relation on X", The funetor D is

full and faithful, and we omit it from notation.

For any object X € |E|, the object Xh({) carries a

canonical erdering induced by the crdering (é) on {1

(in fact, the functor XD-: E —> E ecarries preordered objects
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to preordered objects, being left exact).

We shall consider the following kind of structures: let

xel|El, and let x: T>> XML be a subobject of XN Y,

that is, in the set case, "a family of subsets of X", We shall

give conditions which in the set case specialize te: " Tis a

basis for a2 (point-set) topclogy cn the set X",

To this end, consider the diagram, where the squarc is o

pull-back:

|l
(5.10) 0 xX =221 (x AQ)~X

proj

P ~

Here €y is as in Chapter 1 the subobject classified by the

evaluation map ev: (XPQ) =X —>O. Let X-h{) carry the

canonical ordering, let X carry the discrete ordcering, and let

(XrhQ)) » X carry the product ordering. Now ¢ is a subobject

of (XN xX, so we can endow it with the ordering induced

from that on (Xh(Q)) x X,

—— Gy G S W S
Definition_5,20. A pair X, @ (where ¢ is a subobject of

x /HsY) will be called a gpace-basis provided

(1) the maximal element of hom(1,X/H1)) (which exists

uniquely) factors through @ — x T Q)

(1i) the ordered object é constructed out of X, > in (5.10)

is a directed preorder.



Note that in the set-case & consists of pairs (U,x)

where XxX€UE @; the ordering cn C is given by

iff

Ueg U! 2nd x = x!',

Two pairs (U,x) and (U',x') have a common upper btocund iff

x = x' (take (X,x)). Sc the directedness conditicn in this

case says: "(xe€U and x€U') implies (JU"(U"¢U and U"cU!

and x€U"))".

In the set case, the conditions in Definition 5.20 thus say:

n (Gis a basis for a topology on X, and Xe(®O".

Consider the left-hand vertical column in (5.10). By con-

struction, it is a map betwecn ordered objects. The ordering on

X Dbeing discrete, implies that the order relation on A may be

viewed as an order relation on {—>X in the topos E/X.

Denote the ordered object thus obtained by (.

Lemma_5.21. Suppose X,® is a space-basis. Then the G‘

obtained by the above procedure is an ordered object in E/X

and satisfies

(1) it has a maximal element

(ii) it is a directed preorder.

Also, the category SFib (5) is isomorphic to the category

s Fib (G') .
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Proof.The first statement is obvious. The maximal element

claimed in (i) is a map X —>¢ which we get (using that the

square in (5.10) is a pull-back), from maps

X —>1 BaXMaly, o x hQ)

and

X —=X,

The remaining statements follow from the fact that the

obvious functor E/X —>E preserves and reflects pull-backs

and epi-mono factorizations, and in particular composition of

relations.

We are now in a position tc describe a functor 1-Mod(0®)

—> E/X which for E = sets, and 7= (set of all open subsets

of a topological space X), specializes to the construction

(Godement [7 ], p. 110); it is the construction which to a pre-

sheaf M over X associates the (underlying set of) the espace

etalé of the sheaf associated to M.

Consider the composite crder-preserving map

é:r—e=69xx.93919-@7,

As in (5.9), we get a left exact functor

(5.11) 1-Mod((l) —> 1-Mod(%) « S Fib (£) ~S Fib (¢'),

using Lemma 5.21. By the same lemma, &' 1is a directed preorder

with maximal element in E/X, whence, by Theorem 5.17, we get

a left exact

(5.12) xi: SFib (g') — E/X.
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Composing (5.11) with (5.12), we get the desired left exact

functor 1-Mcd((®) —> E/X.

By Theorem 5.18, (5.12) has a right adjoint, and by Appendix

the map (5.11) (which is of the form "2z*" (5.9)) has a right

adjoint, whence

_T_I_lggggm_i_,_gg. Let X,® be a space basis (so (9>—> Xh(D).

Then there is a morphism ef toposes

g: E/X —> 1-Mod((®)

(whose inverse image part g* is the composite of (5.11) and (5.12)).

the topos morphism described in Theorem 5.22. Consider the canoni-

cal factorizatien of g; we call the middle category for this

factorizatien the categery of sheaves on X, , denote sh(X.0);

thus we have a diagram of topos morphisms

E/X £ > 1-Mod(().

ya

sh(X,?)

We shall now see that the construction of Definition 5.23

specializes to well-known ones in the case, where E = (sets),

and @ 1s the set of all open subsets of a topological space X,

First, 1-Mod(@)) can, by the remarks after (5.9), be identified

with the category S?gflp of contravariant set-valued functors
from U to 53, that is, the usual category of presheaves on

X. The functer in (5.11) associates te such a presheaf

M: %P —> & the functer
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N —R

given on objects by

N((U,x)) = M(U).

The discrete split fibration P over g' associated to N has

as its PO

which we may view as an ordered object P' in €§/X.

Forming r! of this object in E/X means just that for

each x €X we should identify

m €eM(U) = N(U,x) to m' eM(U') = N(U',x)

if there is an order relation |

(U,x) > (U',x)

so that m "restricts to" m' under this - which just means

that m ‘"restricts to" m' in the original presheaf M. But

this is precisely to say that m and m' define the same germ

at the point x., Thus g* associates to the presheaf M the set

of germs of elements in the M(U)'s (Ue ),

We shall invoke results from the classical foundation of

sheaf theory to prove that sh(X,{) is the same category as the

classical category of sheaves on X, here denoted SH(X,0).

Constructions of classical sheaf theory together with the set

theoretic description of g* given above gives us the diagram
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#(5.12) gg/X‘( 1-Mod ((®)=(Presheaves on X)

Etale(X) «—5— SH(X,0)

in whieh 'Etale(X)' denotes the full subcategory of the categcry

of topological spaces over X consisting of local homeomorphisms,

and where the functor b~ just forgets the topology, and whcre

finally r 41 1is the classical description of the "“assocated dieafTM

functer, The diagram involving 1r commutes up to iscé'mo:g'ism,
in fact, one classically constructs r by the ''germ fufictor':\_
g: 1-Mod(#?) — Etale(X) follocwed by k'1; with this notatici

\-
'-

3

g*¥ 1is just g followed by n.

-

Now, classically, r 1is left exact, whencc, by Progbsiticn

3.22, SH(X,() 1is an elementary topos, and i 1is a full and

faithful topos map. Since g* has a right adjoint g, ,and 1

is full and faithful, one easily gets a right adjciny for hok, and

since k 1s an equivalence, we also get a right adjoint for 53

denote it h,. Finally, one can see that "the forgetful functor"

h* reflects isomorphisms and is left exact, so the diagram (5.12)

of functors is part of a diagram of topos maps

X & > 1-Mod ()

\h fi
Etale (X) _~_> SH(X,0)

with 1 full and faithful and h* reflecting isomorphisms. From

the uniqueness of such factorization (Corollary 4.8) and Definition

5.23 we conclude: sh(X,0) ~SH(X,®).
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space object in a topos E", we have to state (in finite terms)

a property on a space basis (X,0), namely a property which in

the case E = §& specialires itc the property: (? is closed

under arbitrary unions (which is the property distinguishing

the notion: topolegical space from the notion: svace-basis. This

property can be expressed in terms of the "internal union form-

ation for an object X" which 1is a map

v X ha - X DOy

constructed ©y specifying That F : [(X hQ) (1\0_] xX —> {1

should be the characteristic map of that subobject of

[(X D) M) =X which is the image along the map

<proj_,projy: [((XhQ) h)=[XhQ)=x —> [(XhQ) HRY=X

o1 the subobject

(Ex ey N((Xeh) e €,

In fact, one can prove [11] that p is the multiplication part

of a strong and commutative triple structure on a certain covariant

functor whicihh on objects is just - ML
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APPENDIX

The biclosed bicategory of profunctors over a topos E.

Let A and IB be monads in the bicategory SPAN(E), with

underlying spans

O 1
A = (AO = A, -——‘»Ao)

2,3O
B=(BO(—'—B1 >BO),

respectively. A profunctor TM from A to B is an A-IB-

"bimodule", that is, a span

M= (A, ¢—M—> B)

which, as object over A, has a left A-module structure, and

as object cver B0 has a right IB-module structure; these

structures should commute with each other in an obvious sense.

We write Prof(A,IB) for the class of such profuctors M;

it 1s actually a category with A-IB bimodule homomorphisms as

maps. We define a composition of profunctors, denoted ®:

Prof (A,IB) <Prof(1B, €) —> Prof(a,C),

namely we let M@N have as underlying span the coequalizer

in Span(AO,CO):

M¥BEN L3 M3 ——> M@N
g

where the two maps f and g indicate right action of B on

M, and left action of B on N, respectively. Now both f

and g are left A-module homomorphisms, and (essentially
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because A3k~ preserves coequalizers, having a right adjoint),

M®N inherits a left A-module structure from M ¥ N. Simi-

larly, M &N gets a right C-module structure .

In this way, the class of 211 profunctors is organized as

a bicategory PROF(E) (whose objects are the monads, or the

category objects, of E). We claim that PROF(E) is a biclosed

bicategory. This amounts to giving functors

-\\-

(Prof(a,B))°P xProf(A,6) ——> Prof(B,¢)

and

5 -/

Prof(€,B) x (Prof(a,B))°P > Prof(C,A)

where for instance

MN\e: Prof(A,C) —> Prof(1B,C)

should be a right adjoint to M® -), We shall use a similar

notation for the biclosed bicategory structure on SPAN(E)

o -\~
(Span(4,B))°P »Span(4,C) > Span(B,C)

- /-

Span(C,B) = (Span(A,B))°? —— Span(C,A).

Now suppose, for instance, that

K € Prof (A,B) , 1 €Prof (€,1B).

Then I // K € Prof (€,A) 1is defined as the equalizer

L/ K— L/K —L5% 5 1,/(K %B)

y A/

(LB) /(K 3%B)

where A and J¢ are the actions of B on L and K .
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respectively, and where y 1is gotten by the adjointness

- x(K3¥B) H -/(K>3B)

from the map

e

(L/K)% (K%B) —> ((L/K)%K)xB &Y= 5 1 «p

(ev being the end-adjunction for the adjointness -¥K --/K).

We endow the objects in the triangle * with left €-, right

A-module structures in such a way that the maps forming the

triangle become module homomorphisms. (For instance, L/K is

given the right A-module structure

(L/K)¥ A—> L/K

which we get by -%K - -/K adjointness from the map

(L/K) ¥ Ax“K W (L/K) 3K —e';—)‘ L,

w! denoting the A-action on K.) In this way, I/K inherits

a bimodule structure.

All this provides a sketch of how the biclosed structure

on PROF(E) is constructed.

Now let f: A —> 1B be a functor between two category

objects (= monads in SPAN(E)) in E. We have clearly

Prof (A,1) o/ 1-Mod(A) ~~ S-Fib(A)

(and similarly for 1B), where 1 is the trivial category

object 1 —:_; 1. We shall construct a profunctor f € Prof(A,BB)

so that
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S-Fib(B ) ——I——3 S-Fib(a)

o =

Y \/
Prof(B,1) o= 7 Prof(A,1)

commutes (f* Dbeing the functor defined as in (5.9). Since by

biclosedness of PROF(E), f®- has a right adjoint, then so

has f¥*, It remains to produce f. If we display f,A, and

IB as follows

A %,
1 3 —> 0

o

£, £y

a‘l
B, % B,

Bc>
then the desired bimodule f sits in the pull-back diagram

h N
£ 7 Aj

(A.1) kj( £y
oV

O

and f Dbecomes an object in Span(A_,B_) by means of the two

maps h: £ —>A and k.()1= £ —>B, . The right 1B -module

structure on f 1is given as follows: We should produce

I x B1 —>1;

BO

f being a pull-back, it suffices to produce maps from f into
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B 1 and A . The map into A, 1is obvious; the map into B, 1s

Kx1 t

By Bs

'J being the multiplication of the monad I . The left A-module

structure on f 1is constructed in a similar way. - In the set

b € Bo the setcase, I has as fibre over objects a €A,

(A.1)Homp (f(a),b). The reader may check commutativity of

in this case.
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