NOTE ON THE HOMOTOPY PROPERTIES OF THE
COMPONENTS OF THE MAPPING SPACE X¥%

S. S. KOH!

1. Introduction. Let X be a topological space and S? be the polar-
ized p-sphere with a fixed pole y,. Following G. W. Whitehead [10], we
shall denote by G?(X) the mapping space X5°, which is the totality
of (continuous) maps of S? into X endowed with compact-open topol-
ogy. Let 7: G*(X)—X be defined by w(f) =f(y0), (fEG?(X)), and
let F?(X, x) =71(x) for each x&€X. Consider now the mapping space
B(X) consisting of all the maps of y, into X. There is a natural map
p: G*(X)—B(X) defined by p(f) =f| ¥, for every fEG?(X). It is well
known (cf. [3, pp. 83-84]) that p has the path lifting property.
Clearly, the space X can be identified with B(X) in a natural way.
The map 7 is then identified with p. Consequently =: G?(X)—X is a
fibre map of G?(X) onto X having the absolute covering homotopy
property [3, p. 82]. For each xE€X, the fibre in G?(X) over x is
Fr(X, x). The arc components of F?(X, x) are elements of the pth
homotopy group 7,(X, x) of X at x. Denote by G%2(X) the arc com-
ponent of G?(X) which contains a= F5(X, x) Em,(X) (cf. [10]). If X
is arcwise connected, then GZ(X) is also a fibre space over X. The
restriction 7ra=1r| G%(X) is a fibre map of G%(X) onto X. The homo-
topy properties of the various components G%(X) of G?(X) have been
studied by M. Abe (Jap. J. Math. vol. 16 (1940) pp. 169-176),
G. W. Whitehead [10] and S. T. Hu [2]. The present note may be
regarded as a continuation of these studies.

2. H-space and H-space. In what follows, we shall denote G?(X)
by G? and F?(X, x) by F? whenever no confusion is likely to arise.

Let X be a topological space which admits a continuous multiplica-
tion u(x, ') =x-x'. If f: S—>X is a map of a space S into X, we denote
by x-f the transformation defined by (x-f)(s) =x-f(s) for each s&S.
Clearly x-f is a map (i.e. it is continuous).

By an H-space we mean a topological space X with a given con-
tinuous multiplication which has a homotopy unit eEX (see e.g.
[3, pp. 80-81])).
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(2.1) TueOREM. If X is an arcwise connected H-space, then G%(X)
and G§(X) have the same homotopy type for arbitrary o and B in w,(X),
p=1.

Proor. It suffices to prove that G%(X) and G§(X) have the same
homotopy type, for any aEr,(X). According to [10], it remains to
prove that G%(X) admits a (global) cross-section. Choose an element
FEGINF?(X, e). Then mo(f) =e. Define ¢: X —G? by ¢(x) =x-f. Then
¢(e) =e-f~fEG?. Since X is arcwise connected, we have ¢: X —G?.
Now, m.(p(x)) =me(x-f) =x-e, therefore mop~idx. Since 7, has the
absolute covering homotopy property, there exists a covering homo-
topy, in particular, there is a map ¥: X—G? such that w. =idx. This
proves (2.1).

Following H. Wada [9], we call a topological space X an Hy-space
if the following conditions are satisfied:

(i) A continuous multiplication u(x, ') =x-x’ is defined for each
pair of elements x, ¥’ in X.

(ii) There is a fixed element e in X, satisfying

xe=x, forall x € X.

(iii)) To each x&EX, there is an inverse x~!€ X, defined continu-
ously by x, such that

x-x7l =g, forall x € X.

(iv) For each pair of elements x, ¥’ in X, we have
1l (x-2) = o,

With these conditions Wada was able to prove that

(ii’) e is unique,

(iii") x~!is uniquely defined by x and x~1-x=e¢,

(v) (xY)~'=x and, consequently, x:(x~!-x’) =«’, for arbitrary x
and «’ in X.

We remark that an Hy-space need not to be an H-space.

The following theorem resembles a construction of Wada [9], where
he deals with mapping space of an Hy-space into itself.

(2.2) THEOREM. Let X be an Hy-space. The mapping space G?(X) is
homeomorphic to X X FP(X, €) for each p=1.

Proor. Let g&EG?(X) be an arbitrary map of S? into X. Then x-g
is defined and continuous. Hence x-g&€G?(X). Clearly g=e-g
=x"1-(x-g)=x-(x"1-g) for any xEX. Let
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¢:G?(X) > X X Fr(X, e),
and
¥: X X Fr(X, e) — G?(X),

be defined as follows: Let ¥, be the pole of S?. For each g&€Gr(X),
let 2=g(yo) €X. Then define

() = (@ "9, (g € Gr(X))
and

¢(x7f) = x-f, (xEX,fEF?’(X, 6)).

(A) ¢ and ¢ are bijective:
For any gEG?(X), we have

vo(g) =¥, 8749 =8 (@ "9 =3
On the other hand,

o(x, f) = ¢(x-f) = ((=-)", (&))" (1))
= (&-f, &) (1)
= (z-¢, (x-)7 - (2-f))
= (x, 27 (%, f))
= (2, /).

Hence both ¢ and ¢ are one-to-one, onto.

(B) ¢ and ¢ are continuous:

Suppose K be a compact set in S? and U an open set in X. We
shall denote by (K, U) be the subset of G?(X) consisting of all map-
pings which send K into U. Let H be an arbitrary neighborhood of
2, 27'-g). Then HO U X [(K1, U)N - - - N(Ka, U,)] for some open
sets Uy, Uy, -+ -, U, in X and compact sets K;, + - -, K, in S7.
Denote g(X;) by K/, then K! is compact, 1=1, 2, - - -, n. Cor-
responding to each kfE K/, there exist open sets W{ containing §—!
and V§ containing %§ such that Wg- Vi C U;, since the multiplication
in X is continuous. The collection { V§} forms an open covering of
K!. There is a finite subcovering { V@&, - - ., Viml} of K!. Let
Wi=N%, Wi and V;=Uj%, V. Then W, is an open neighborhood
of g~1; V; is an open neighborhood of K/ and W,-V;CU..

Let N=(yo, UNWTIN - - - NWHN(Ky, V)N - - - N(Ka, Va),
where Wi denotes, of course, the set {w!|wE& W;}. By the continu-
ity of the inverse, N is a neighborhood of g in G?. It is now readily
seen that ¢(IV) CH. This proves the continuity of ¢.

Next, let U= (K, U1))N(Ks, U) - - - M(Ka, U,) be a basic open
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neighborhood of ¢(x, f) =x-f. Then x-f(K;) CU,. By a similar argu-
ment as above, one proves that there exist open neighborhoods W; of
x and V; of f(K;) such that W,;- V;CU,. Then

YN - NW) X (K, V)N - - N (Kay Va) NFP)] C U

Hence ¢ is continuous and the proof of (2.2) is completed.

(2.3) CoroLLARY. If X is an arcwise connected Hx-space, then G&
and X X F?, are homeomorphic.

PRroOF. Since X is arcwise connected, G? is a fibre space over X. By
replacing G? and G and 7 by =, in the proof of (2.2), we obtain
that G2 is homeomorphic to X Xw;'(¢). Being a component, G? is
connected hence 7. '(¢) contains only one component F2. This proves
(2.3).

As a by-product of the proof of (2.3) we have:

(2.4) CorOLLARY. Every arcwise connected Hy-space is n-simple, for
n=1.

(2.5) CoRrROLLARY. If X is an arcwise connected Hy-space, then GE and
G% have the same homotopy type for arbitrary o and B in w,(X). Further-
more

14(G2) = mpro(X) + mo(X), gz 1).

ProoF. Since G. W. Whitehead [10] proved that F2 and F% have
the same homotopy type for any a and B in 7,(X), the first part of
(2.5) follows from (2.3). The Hurewicz isomorphism my(F2%) =7 p4(X)
(cf. [10]) completes the proof.

(2.6) CorROLLARY. Let X =Sr. Then G is homeomorphic to S X F?,
when r=1, 3 or 7. Conversely, if G, and S* X F§ have the same homotopy
type then r=1, 3 or 1, where 1,€m,(S7) is represented by the identity
map ST—S".

Proor. This follows from Wada [8] and a recent result of Adams
[1].
(2.6) ProrosiTiON. If X is @ H-space, then for each aEmw,(X),
7o(Ga)/Tpra(X) = mo(X),
where 7, o(X) 15, of course, imbedded in w,(GL) isomorphically.

Proor. According to G. W. Whitehead [10] (see also [11]), we
have the following diagram:
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1 T 3
oo w1 (B S (G B w6 FY S mea(F — - - -

| N\ T

Tpro(X) 7o(X) — mpig-1(X),

Pa

where m« denotes the isomorphism induced by the projection =, H de-
notes the Hurewicz isomorphism and p, is defined by p.(8) = — [, 8].
Since p. is always trivial when X is an H-space, (2.7) follows from
the exactness of the sequence.

3. The sphere S*. Let X =.5", an r-sphere, then we have the follow-
ing exact sequence

Pa ro M 14 7. Pa r. K
B.1) S ape(S) o 7GR = w(S) = TS > - e e

The following propositions are fairly obvious.

(3.2) PrROPOSITION. Let X =57 and aCEw,(S7). Since w,(S) =0 for
g <r we have

7(Ga) = mpio(S), (g<r-—1).
(3.3) COROLLARY. m(GL) =2Z; for r=3.
Since m,42(S") = Z,, for r= 3, we have
(3.4) CoROLLARY. m(G™*Y) =~ Z,, r=3.

Denote the image of pa: 7,(S") =7 py41(S7) by J2*" ! and the kernel
of p. by K2 Denote the image of u: mp44(S")—>7(G%) by P,. Then

(3.5) ProrositioN (HU) [2]. For X =5" and aEm,(S")

(a) mo(G?)/Pi=Kq, (g>1),
(b) 7rp+¢(G£)/JZ+¢ qu, (Q> 1)’
(©) mra(Gh) = wpyra(S7) /T,

(d) r43(GE) has a subgroup Pyt ~m, .5(S7), (rz6),
(€) Tria(GP?) =T piru(S)/JrtrHd, (rz6).

Since for r 27, m,44(S7) =m,1.5(S7) =0. It follows that
(3.6) ProrosITION. If > 7, for each aEw,(S7),
7r-1(G") = 7p—2(G®) = - - - = 0,
And,
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(3.7) ProposITION. For r27, aEm,(S7),
Tr16-p(G?) = mrie—p(S7).

We now proceed to prove the main theorem of this section. Con-
sider the following sequence

» E
(3 . 8) Tr(S') i’ ‘ﬂ'2r—1(sr) - T?r(SH-l)y

where E denotes the Freudenthal suspension. By the delicate suspen-
sion theorem, the kernel of E is a cyclic subgroup generated by
[t, t]. If 7 is even, it is infinite cyclic; if 7 is odd #1, 3, 7, it is cyclic
of order 2.

(3.9) LEMMA (Hvu). For X =352 and aEny(S?), we have
Wl(G:) = Zom,

where m 1s the absolute value of the degree of c.

ProoF. Since e, (S™+1) =74(S?) = Z,. From (3.8) m3(S?)/Ker E = Z,.
Let v be a generator of the free cyclic group 73(S?). Then [i, t]
= +2. We can choose v so that [i, ©]=—2v. Let aEm(S?). By
linearity of the Whitehead product pa.(i)=—[a, t]=—m[u, ]
=2my. In other words J2 is generated by 2my. From (3.5(c)), we
have m1(G2) = Z;,.. This proves (3.9).

(3.10) LEMMA. For X =S* and aEw(SY), we have
73(G) = Zaum + Zs,

where m 1s the absolute value of the degree of a.

PROOF. w2, (S™H1) ~mwg(SP?) = Zy and mwae_1(s7) =m(S%) =Z+Z;;. One
generator of Ker E is determined as follows:
From a theorem of characteristic map [5, p. 121], that

[, ] = 2[g] — E[g],

where e= 11 depends on the convention of orientation, [g] denotes
the homotopy class of the Hopf map ¢: S7—S* and [¢] a generator
of ms(S?) represented by the characteristic map £: S®—.S? of the fibre
bundle Sp(2) over S7 with Sp(1) as fibre. Hence in 73(S*) we have

E2[£] = eZE[QL

(E? denotes the iterated suspension). This implies that wg(S®) has
E[q] as a generator. Hence

17(54)/Kel' E = Zy+ Zia.
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A similar argument as used in (3.9) yields

Ta(G:) =~ Zoum + Z12.
(3.11) LEMMA. For X =S% and aEns(S®), we have

75(Ga) = Zm,
where m is the absolute value of the degree of o.

ProOF. Since wo(S™)=m1p(S) =0 and e _1(S?) =mu(S%) =2Z.
Ker E=J. Hence we can choose the generator vy of m1;(S®) such that
v=—[u, &, consequently p,(is) =m~, or 7s(G%) =~ Z.. by (3.4(c)).

(3.12) LEMMA. For X =S58 and aEws(S?), we have
72(G®) = Zaom + Z120,
where m is the absolute value of the degree of a.

PROOF. g, (S 1) =m15(S%) =~ Zauo and wer—_1(S7) =m15(S8) =~ Z+ Z130.
Since [w, t6]=2[¢’] —€E[£’'], where [¢'] denote the homotopy class
represented by the Hopf map ¢’: S¥—S5® and & €m14(S?) has nonzero
Hopf invariant, we have

E[¢'] = 2E[¢'].
Using the same argument as in (3.10), one proves (3.12).
(3.13) LEMMA. For X =S and aEm10(SY), we have
(G = Zn + Zo+ Zs + Z,,
where m denotes the absolute value of the degree of a.
(3.14) LEMMA. For X =S5" and a€Em2(S™?), we have
711(G'?) = Zpm + Zs + Zo1 + Zn,
where m denotes the absolute value of the degree of a.

The proof of (3.13) follows from the table in Toda [6] the first
row and a similar argument as before; for a proof of (3.14), one uses
the third row of the above mentioned table.

(3.15) LEMMA. For X =S" and a€Emu(SY), we have
Z13(GY) = Zp + Z,,
where m denotes the absolute value of the degree of a.
PROOF. Since m17(S') =~ Z+Z; and m13(S%) = Z; and the suspension
E sends Z into 0 in m15(S™8) (Toda [6]). The proof is immediate.
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(3.16) LEMMA. For X =S5", aEn,(S") and r odd, #1, 3, 7. Then
@) 7r1(G") =m2r—1(S) when a is of even degree,
(b) 7,1(G") = er_1(S7)/Z; when a is of odd degree.

Proor. It suffices to prove that there is a nonzero element in J¥ ™!
when a is of odd degree and r#1, 3, 7. In fact, in this case p.(t.) #0.
(3.16) follows.

(3.17) Lemma (Hvu). Let X be any space. If a, BET,(X), a+8=0.
Then G% and Gj are homeomor phic.

ProoF. Let 6: S»—S? be a homeomorphism which reverses the
orientation and leaves the pole y, fixed. Then a homeomorphism % of
G, onto G} is given by k(f) =f-0 for each fEG].

(3.18) THEOREM. Let X =S5". Let a, BEw,(S7). Then for r=2, 4, 6,
8, 10, 12, 14, the components G, and Gy have the same homotopy type
if and only if a= +B. When r is odd #1, 3, 7, the components G, and
G are of different homotopy type if deg a—deg B is odd.

Proor. The first part of the theorem follows from Lemmas (3.9)
through (3.17). The remaining part follows from the fact that if 7 is
odd then 7,(S") is finite for p>n [4].

(3.19) CorOLLARY. Let X =S8" and a, BE™,(S") are of odd and even
degree respectively. Then:

(Gl = 0, 1r4(G§) ~ Zs,

ws(Go) ~ Zs + Zo, 75(Gp) ~ Za + Zs + Zs,
m10(Ga) = Zs + Zo, 110(Gs) = Zs+ Zs+ Zo,
m13(Ga) = 0, m12(Gs) = Zs,

11(Ga) = Zo+ Zy or Zoy  7u(Gs) = Zu+ Zs.
(3.20) ProrpositioN (HU). When r is even and aEw,(S7), r£0. Then
7(G) =~ 7S /T2
ProoF. Since K7, =0, the result follows from (3.4(a)) and (3.4(b)).

(3.21) PRrOPOSITION. If E: 7,(S")—>mpa(SY) is an injection, then
for g+s=p and ¢g>1

T(Go)/mo(S) = mo(S)),
where w,(S7) is imbedded in 7 (GZ).
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Proor. Since E[ea, 8]=0, J2CKer E=0. From (3.4)(a) and (b),
To(G2) /T 4e(S7) = K%, But K% =my,(S"). This proves (3.21).
For g<r, m,(S") =0, we have 7,(G}) =m,(S7). This reduces to (3.2).

(3.22) COROLLARY. If g+s=p <2r—1, then

7o(G)/75(S)) =~ mo(S).
Proor. This follows from (3.21).
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