NOTE ON THE HOMOTOPY PROPERTIES OF THE COMPONENTS OF THE MAPPING SPACE X^{s^p}

S. S. KOH¹

1. Introduction. Let X be a topological space and S^p be the polarized p-sphere with a fixed pole y_0 . Following G. W. Whitehead [10], we shall denote by $G^{p}(X)$ the mapping space $X^{S^{p}}$, which is the totality of (continuous) maps of S^p into X endowed with compact-open topology. Let $\pi: G^p(X) \to X$ be defined by $\pi(f) = f(y_0), (f \in G^p(X)),$ and let $F^p(X, x) = \pi^{-1}(x)$ for each $x \in X$. Consider now the mapping space B(X) consisting of all the maps of y_0 into X. There is a natural map $p: G^p(X) \to B(X)$ defined by $p(f) = f | y_0$ for every $f \in G^p(X)$. It is well known (cf. [3, pp. 83–84]) that p has the path lifting property. Clearly, the space X can be identified with B(X) in a natural way. The map π is then identified with p. Consequently $\pi: G^p(X) \to X$ is a fibre map of $G^{p}(X)$ onto X having the absolute covering homotopy property [3, p. 82]. For each $x \in X$, the fibre in $G^{p}(X)$ over x is $F^{p}(X, x)$. The arc components of $F^{p}(X, x)$ are elements of the pth homotopy group $\pi_p(X, x)$ of X at x. Denote by $G^p_{\alpha}(X)$ the arc component of $G^p(X)$ which contains $\alpha = F^p_{\alpha}(X, x) \in \pi_p(X)$ (cf. [10]). If X is arcwise connected, then $G^{p}_{\alpha}(X)$ is also a fibre space over X. The restriction $\pi_{\alpha} = \pi | G^{p}_{\alpha}(X)$ is a fibre map of $G^{p}_{\alpha}(X)$ onto X. The homotopy properties of the various components $G^p_{\alpha}(X)$ of $G^p(X)$ have been studied by M. Abe (Jap. J. Math. vol. 16 (1940) pp. 169-176), G. W. Whitehead [10] and S. T. Hu [2]. The present note may be regarded as a continuation of these studies.

2. *H*-space and H_* -space. In what follows, we shall denote $G^p(X)$ by G^p and $F^p(X, x)$ by F^p whenever no confusion is likely to arise.

Let X be a topological space which admits a continuous multiplication $\mu(x, x') = x \cdot x'$. If $f: S \to X$ is a map of a space S into X, we denote by $x \cdot f$ the transformation defined by $(x \cdot f)(s) = x \cdot f(s)$ for each $s \in S$. Clearly $x \cdot f$ is a map (i.e. it is continuous).

By an *H*-space we mean a topological space X with a given continuous multiplication which has a homotopy unit $e \in X$ (see e.g. [3, pp. 80-81]).

Received by the editors February 17, 1960.

¹ The writer held an assistantship under the Air Force Contract AF 49 (638)-179.

(2.1) THEOREM. If X is an arcwise connected H-space, then $G^{p}_{\alpha}(X)$ and $G^{p}_{\beta}(X)$ have the same homotopy type for arbitrary α and β in $\pi_{p}(X)$, $p \ge 1$.

PROOF. It suffices to prove that $G_{\alpha}^{p}(X)$ and $G_{0}^{p}(X)$ have the same homotopy type, for any $\alpha \in \pi_{p}(X)$. According to [10], it remains to prove that $G_{\alpha}^{p}(X)$ admits a (global) cross-section. Choose an element $f \in G_{\alpha}^{p} \cap F^{p}(X, e)$. Then $\pi_{\alpha}(f) = e$. Define $\phi: X \to G^{p}$ by $\phi(x) = x \cdot f$. Then $\phi(e) = e \cdot f \simeq f \subseteq G_{\alpha}^{p}$. Since X is arcwise connected, we have $\phi: X \to G_{\alpha}^{p}$. Now, $\pi_{\alpha}(\phi(x)) = \pi_{\alpha}(x \cdot f) = x \cdot e$, therefore $\pi_{\alpha} \phi \simeq \operatorname{id}_{X}$. Since π_{α} has the absolute covering homotopy property, there exists a covering homotopy, in particular, there is a map $\psi: X \to G_{\alpha}^{p}$ such that $\pi_{\alpha} \psi = \operatorname{id}_{X}$. This proves (2.1).

Following H. Wada [9], we call a topological space X an H_* -space if the following conditions are satisfied:

(i) A continuous multiplication $\mu(x, x') = x \cdot x'$ is defined for each pair of elements x, x' in X.

(ii) There is a fixed element e in X, satisfying

$$x \cdot e = x,$$
 for all $x \in X$.

(iii) To each $x \in X$, there is an inverse $x^{-1} \in X$, defined continuously by x, such that

$$x \cdot x^{-1} = e$$
, for all $x \in X$.

(iv) For each pair of elements x, x' in X, we have

$$x^{-1} \cdot (x \cdot x') = x'.$$

With these conditions Wada was able to prove that

(ii') e is unique,

(iii') x^{-1} is uniquely defined by x and $x^{-1} \cdot x = e$,

(v) $(x^{-1})^{-1} = x$ and, consequently, $x \cdot (x^{-1} \cdot x') = x'$, for arbitrary x and x' in X.

We remark that an H_* -space need not to be an H-space.

The following theorem resembles a construction of Wada [9], where he deals with mapping space of an H_* -space into itself.

(2.2) THEOREM. Let X be an H_* -space. The mapping space $G^p(X)$ is homeomorphic to $X \times F^p(X, e)$ for each $p \ge 1$.

PROOF. Let $g \in G^p(X)$ be an arbitrary map of S^p into X. Then $x \cdot g$ is defined and continuous. Hence $x \cdot g \in G^p(X)$. Clearly $g = e \cdot g = x^{-1} \cdot (x \cdot g) = x \cdot (x^{-1} \cdot g)$ for any $x \in X$. Let

S. S. KOH

 $\phi: G^p(X) \to X \times F^p(X, e),$

and

 $\psi: X \times F^p(X, e) \to G^p(X),$

be defined as follows: Let y_0 be the pole of S^p . For each $g \in G^p(X)$, let $g = g(y_0) \in X$. Then define

$$\phi(g) = (\hat{g}, \, \hat{g}^{-1} \cdot g), \qquad (g \in G^p(X))$$

and

$$\psi(x, f) = x \cdot f,$$
 $(x \in X, f \in F^p(X, e)).$

(A) ϕ and ψ are bijective: For any $g \in G^p(X)$, we have

$$\psi\phi(g) = \psi(\hat{g}, \, \hat{g}^{-1} \cdot g) = \hat{g} \cdot (\hat{g}^{-1} \cdot g) = g.$$

On the other hand,

$$\begin{split} \phi\psi(x,f) &= \phi(x \cdot f) = ((x \cdot f)^{\wedge}, ((x \cdot f)^{\wedge})^{-1} \cdot (x \cdot f)) \\ &= (x \cdot f, (x \cdot f)^{-1} \cdot (x \cdot f)) \\ &= (x \cdot e, (x \cdot e)^{-1} \cdot (x \cdot f)) \\ &= (x, x^{-1} \cdot (x, f)) \\ &= (x, f). \end{split}$$

Hence both ϕ and ψ are one-to-one, onto.

(B) ϕ and ψ are continuous:

Suppose K be a compact set in S^p and U an open set in X. We shall denote by (K, U) be the subset of $G^p(X)$ consisting of all mappings which send K into U. Let H be an arbitrary neighborhood of $(\hat{g}, \hat{g}^{-1} \cdot g)$. Then $H \supseteq U_0 \times [(K_1, U_1) \cap \cdots \cap (K_n, U_n)]$ for some open sets U_0, U_1, \cdots, U_n in X and compact sets K_1, \cdots, K_n in S^p . Denote $g(K_i)$ by K'_i , then K'_i is compact, $i=1, 2, \cdots, n$. Corresponding to each $k^{\alpha}_i \in K'_i$, there exist open sets W^{α}_i containing \hat{g}^{-1} and V^{α}_i containing k^{α}_i such that $W^{\alpha}_i \cdot V^{\alpha}_i \subset U_i$, since the multiplication in X is continuous. The collection $\{V^{\alpha}_i\}$ forms an open covering of K'_i . There is a finite subcovering $\{V^{\alpha}_{i_1}, \cdots, V^{\alpha}_{i_m}\}$ of K'_i . Let $W_i = \bigcap_{j=1}^{m_i} W^{\alpha_j}_i$ and $V_i = \bigcup_{i=1}^{m_i} V^{\alpha_i}$. Then W_i is an open neighborhood of \hat{g}^{-1} ; V_i is an open neighborhood of K'_i and $W_i \cdot V_i \subset U_i$.

Let $N = (y_0, U_0 \cap W_1^{-1} \cap \cdots \cap W_n^{-1}) \cap (K_1, V_1) \cap \cdots \cap (K_n, V_n)$, where W_i^{-1} denotes, of course, the set $\{w^{-1} | w \in W_i\}$. By the continuity of the inverse, N is a neighborhood of g in G^p . It is now readily seen that $\phi(N) \subset H$. This proves the continuity of ϕ .

Next, let $U = (K_1, U_1) \cap (K_2, U_2) \cap \cdots \cap (K_n, U_n)$ be a basic open

898

neighborhood of $\psi(x, f) = x \cdot f$. Then $x \cdot f(K_i) \subset U_i$. By a similar argument as above, one proves that there exist open neighborhoods W_i of x and V_i of $f(K_i)$ such that $W_i \cdot V_i \subset U_i$. Then

 $\psi[(W_1 \cap \cdots \cap W_n) \times ((K_1, V_1) \cap \cdots \cap (K_n, V_n) \cap F^p)] \subset U.$

Hence ψ is continuous and the proof of (2.2) is completed.

(2.3) COROLLARY. If X is an arcwise connected H_* -space, then G^p_{α} and $X \times F^p_{\alpha}$ are homeomorphic.

PROOF. Since X is arcwise connected, G^p_{α} is a fibre space over X. By replacing G^p and G^p_{α} and π by π_{α} in the proof of (2.2), we obtain that G^p_{α} is homeomorphic to $X \times \pi^{-1}_{\alpha}(e)$. Being a component, G^p_{α} is connected hence $\pi^{-1}_{\alpha}(e)$ contains only one component F^p_{α} . This proves (2.3).

As a by-product of the proof of (2.3) we have:

(2.4) COROLLARY. Every arcwise connected H_* -space is n-simple, for $n \ge 1$.

(2.5) COROLLARY. If X is an arcwise connected H_* -space, then G^p_{α} and G^p_{β} have the same homotopy type for arbitrary α and β in $\pi_p(X)$. Furthermore

$$\pi_q(G^p_\alpha) \approx \pi_{p+q}(X) + \pi_q(X), \qquad (q \ge 1).$$

PROOF. Since G. W. Whitehead [10] proved that F_{α}^{p} and F_{β}^{p} have the same homotopy type for any α and β in $\pi_{p}(X)$, the first part of (2.5) follows from (2.3). The Hurewicz isomorphism $\pi_{q}(F_{\alpha}^{p}) \approx \pi_{p+q}(X)$ (cf. [10]) completes the proof.

(2.6) COROLLARY. Let $X = S^r$. Then G^p_{α} is homeomorphic to $S^r \times F^p_{\alpha}$ when r = 1, 3 or 7. Conversely, if $G^p_{r_r}$ and $S^r \times F^p_0$ have the same homotopy type then r = 1, 3 or 7, where $i_r \in \pi_r(S^r)$ is represented by the identity map $S^r \to S^r$.

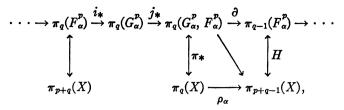
PROOF. This follows from Wada [8] and a recent result of Adams [1].

(2.6) PROPOSITION. If X is a H-space, then for each $\alpha \in \pi_p(X)$,

$$\pi_q(G^{\nu}_{\alpha})/\pi_{p+q}(X) \approx \pi_q(X),$$

where $\pi_{p+q}(X)$ is, of course, imbedded in $\pi_q(G^p_{\alpha})$ isomorphically.

PROOF. According to G. W. Whitehead [10] (see also [11]), we have the following diagram:



where π_* denotes the isomorphism induced by the projection π , H denotes the Hurewicz isomorphism and ρ_{α} is defined by $\rho_{\alpha}(\beta) = -[\alpha, \beta]$. Since ρ_{α} is always trivial when X is an H-space, (2.7) follows from the exactness of the sequence.

3. The sphere S^r. Let $X = S^r$, an r-sphere, then we have the following exact sequence

$$(3.1) \quad \cdots \xrightarrow{\rho_{\alpha}} \pi_{p+q}(S^{r}) \xrightarrow{\mu} \pi_{q}(G_{\alpha}^{p}) \xrightarrow{\nu} \pi_{q}(S^{r}) \xrightarrow{\rho_{\alpha}} \pi_{p+q-1}(S^{r}) \xrightarrow{\mu} \cdots$$

The following propositions are fairly obvious.

(3.2) PROPOSITION. Let $X = S^r$ and $\alpha \in \pi_n(S^r)$. Since $\pi_n(S^r) = 0$ for q < r we have

$$\pi_q(G_{\alpha}^p) \approx \pi_{p+q}(S'), \qquad (q < r-1).$$

(3.3) COROLLARY. $\pi_1(G_{\sigma}^r) \approx Z_2$ for $r \geq 3$.

Since $\pi_{r+2}(S^r) \approx Z_2$, for $r \geq 3$, we have

(3.4) COROLLARY. $\pi_1(G^{r+1}) \approx Z_2, r \geq 3$.

Denote the image of $\rho_{\alpha}: \pi_q(S^r) \to \pi_{p+q-1}(S^r)$ by J^{p+q-1}_{α} and the kernel of ρ_{α} by K_{α}^{p} . Denote the image of $\mu: \pi_{p+q}(S^{r}) \to \pi_{q}(G_{\alpha}^{p})$ by P_{α} . Then

(3.5) PROPOSITION (HU) [2]. For $X = S^r$ and $\alpha \in \pi_n(S^r)$ (a) $\pi_q(G^p)/P^q_{\alpha} \approx K^q_{\alpha}$, (b) $\pi_{\alpha}(G^p)/T^{p+q} \sim D^q$ (q > 1),

(b)
$$\pi_{p+q}(G_a)/J_a^{r} \approx P^q$$
, $(q > 1),$

- (c) $\pi_{r-1}(G^q_{\alpha}) \approx \pi_{p+r-1}(S^r)/J^{p+r-1}_{\alpha}$, (d) $\pi_{r+3}(G^p_{\alpha})$ has a subgroup $P^{r+3}_{\alpha} \approx \pi_{p+r+3}(S^r)$,
- $(r \geq 6),$

(e)
$$\pi_{r+4}(G^p) \approx \pi_{p+r+4}(S^r) / J^{p+r+4}$$
, $(r \ge 6)$.

Since for $r \ge 7$, $\pi_{r+4}(S^r) = \pi_{r+5}(S^r) = 0$. It follows that

(3.6) PROPOSITION. If r > 7, for each $\alpha \in \pi_p(S^r)$,

$$\pi_{r-1}(G^7) \approx \pi_{r-2}(G^8) \approx \cdots \approx 0,$$

And,

(3.7) PROPOSITION. For $r \ge 7$, $\alpha \in \pi_p(S^r)$, $\pi_{r+6-p}(G^p) \approx \pi_{r+6-p}(S^r)$.

We now proceed to prove the main theorem of this section. Consider the following sequence

(3.8)
$$\pi_r(S^r) \xrightarrow{\rho_{\alpha}} \pi_{2r-1}(S^r) \xrightarrow{E} \pi_{2r}(S^{r+1}),$$

where E denotes the Freudenthal suspension. By the delicate suspension theorem, the kernel of E is a cyclic subgroup generated by $[\iota_r, \iota_r]$. If r is even, it is infinite cyclic; if r is odd $\neq 1, 3, 7$, it is cyclic of order 2.

(3.9) LEMMA (Hu). For $X = S^2$ and $\alpha \in \pi_2(S^2)$, we have

$$\pi_1(G_\alpha^2) \approx Z_{2m_2}$$

where m is the absolute value of the degree of α .

PROOF. Since $\pi_{2r}(S^{r+1}) = \pi_4(S^3) \approx Z_2$. From (3.8) $\pi_3(S^2)/\text{Ker } E \approx Z_2$. Let γ be a generator of the free cyclic group $\pi_3(S^2)$. Then $[\iota_2, \iota_2] = \pm 2$. We can choose γ so that $[\iota_2, \iota_2] = -2\gamma$. Let $\alpha \in \pi_2(S^2)$. By linearity of the Whitehead product $\rho_\alpha(\iota_2) = -[\alpha, \iota_2] = -m[\iota_2, \iota_2] = 2m\gamma$. In other words J^3_α is generated by $2m\gamma$. From (3.5(c)), we have $\pi_1(G^2_\alpha) \approx Z_{2m}$. This proves (3.9).

(3.10) LEMMA. For $X = S^4$ and $\alpha \in \pi_4(S^4)$, we have

$$\pi_3(G^{*}_{\alpha}) \approx Z_{24m} + Z_{12},$$

where m is the absolute value of the degree of α .

PROOF. $\pi_{2r}(S^{r+1}) \approx \pi_8(S^5) \approx Z_{24}$ and $\pi_{2r-1}(s^r) = \pi_7(S^4) \approx Z + Z_{12}$. One generator of Ker *E* is determined as follows:

From a theorem of characteristic map [5, p. 121], that

$$[\iota_4, \iota_4] = 2[q] - \epsilon E[\xi],$$

where $\epsilon = \pm 1$ depends on the convention of orientation, [q] denotes the homotopy class of the Hopf map $q: S^7 \rightarrow S^4$ and [ξ] a generator of $\pi_6(S^3)$ represented by the characteristic map $\xi: S^6 \rightarrow S^3$ of the fibre bundle Sp(2) over S^7 with Sp(1) as fibre. Hence in $\pi_8(S^5)$ we have

$$E^2[\boldsymbol{\xi}] = \epsilon 2E[q],$$

 $(E^2$ denotes the iterated suspension). This implies that $\pi_8(S^5)$ has E[q] as a generator. Hence

$$\pi_7(S^4)/\text{Ker }E \approx Z_{24} + Z_{12}.$$

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

901

[December

A similar argument as used in (3.9) yields

$$\pi_3(G_\alpha^4) \approx Z_{24m} + Z_{12}.$$

(3.11) LEMMA. For $X = S^6$ and $\alpha \in \pi_6(S^6)$, we have

$$\pi_5(G^{\circ}_{\alpha}) \approx Z_m,$$

where m is the absolute value of the degree of α .

PROOF. Since $\pi_{2r}(S^{r+1}) = \pi_{12}(S^7) = 0$ and $\pi_{2r-1}(S^6) = \pi_{11}(S^6) \approx Z$. Ker $E = J^{11}_{\alpha}$. Hence we can choose the generator γ of $\pi_{11}(S^6)$ such that $\gamma = -[\iota_6, \iota_6]$, consequently $\rho_{\alpha}(\iota_6) = m\gamma$, or $\pi_5(G^6_{\alpha}) \approx Z_m$ by (3.4(c)).

(3.12) LEMMA. For $X = S^8$ and $\alpha \in \pi_8(S^8)$, we have

 $\pi_7(G^8) \approx Z_{240m} + Z_{120},$

where m is the absolute value of the degree of α .

PROOF. $\pi_{2r}(S^{r+1}) = \pi_{16}(S^9) \approx Z_{240}$ and $\pi_{2r-1}(S^r) = \pi_{15}(S^8) \approx Z + Z_{120}$. Since $[\iota_6, \iota_6] = 2[q'] - \epsilon E[\xi']$, where [q'] denote the homotopy class represented by the Hopf map $q': S^{15} \rightarrow S^8$ and $\xi' \in \pi_{14}(S^7)$ has nonzero Hopf invariant, we have

$$E^2[\xi'] = 2\epsilon E[q'].$$

Using the same argument as in (3.10), one proves (3.12).

(3.13) LEMMA. For $X = S^{10}$ and $\alpha \in \pi_{10}(S^{10})$, we have

$$\pi_9(G^{10}) \approx Z_m + Z_2 + Z_2 + Z_2,$$

where m denotes the absolute value of the degree of α .

(3.14) LEMMA. For $X = S^{12}$ and $\alpha \in \pi_{12}(S^{12})$, we have

$$\pi_{11}(G^{12}) \approx Z_m + Z_8 + Z_{27} + Z_7,$$

where m denotes the absolute value of the degree of α .

The proof of (3.13) follows from the table in Toda [6] the first row and a similar argument as before; for a proof of (3.14), one uses the third row of the above mentioned table.

(3.15) LEMMA. For
$$X = S^{14}$$
 and $\alpha \in \pi_{14}(S^{14})$, we have
 $Z_{13}(G^{14}) \approx Z_m + Z_3$,

where m denotes the absolute value of the degree of α .

PROOF. Since $\pi_{17}(S^{14}) \approx Z + Z_3$ and $\pi_{18}(S^{15}) \approx Z_3$ and the suspension E sends Z into 0 in $\pi_{18}(S^{15})$ (Toda [6]). The proof is immediate.

902

(3.16) LEMMA. For $X = S^r$, $\alpha \in \pi_r(S^r)$ and r odd, $\neq 1, 3, 7$. Then (a) $\pi_{r-1}(G^r) \approx \pi_{2r-1}(S^r)$ when α is of even degree, (b) $\pi_{r-1}(G^r) \approx \pi_{2r-1}(S^r)/Z_2$ when α is of odd degree.

PROOF. It suffices to prove that there is a nonzero element in J_{α}^{2r-1} when α is of odd degree and $r \neq 1$, 3, 7. In fact, in this case $\rho_{\alpha}(\iota_r) \neq 0$. (3.16) follows.

(3.17) LEMMA (Hu). Let X be any space. If α , $\beta \in \pi_p(X)$, $\alpha + \beta = 0$. Then G^p_{α} and G^p_{β} are homeomorphic.

PROOF. Let $\theta: S^p \to S^p$ be a homeomorphism which reverses the orientation and leaves the pole y_0 fixed. Then a homeomorphism h of G^p_{α} onto G^p_{β} is given by $h(f) = f \cdot \theta$ for each $f \in G^p_{\alpha}$.

(3.18) THEOREM. Let $X = S^r$. Let α , $\beta \in \pi_r(S^r)$. Then for r = 2, 4, 6, 8, 10, 12, 14, the components G^r_{α} and G^r_{β} have the same homotopy type if and only if $\alpha = \pm \beta$. When r is odd $\neq 1, 3, 7$, the components G^r_{α} and G^r_{β} are of different homotopy type if deg $\alpha - \deg \beta$ is odd.

PROOF. The first part of the theorem follows from Lemmas (3.9) through (3.17). The remaining part follows from the fact that if r is odd then $\pi_p(S^r)$ is finite for p > n [4].

(3.19) COROLLARY. Let $X = S^r$ and α , $\beta \in \pi_r(S^r)$ are of odd and even degree respectively. Then:

$\pi_4(G^{5}_{\alpha})=0,$	$\pi_4(G_\beta^5) \approx Z_2,$
$\pi_8(G^9_\alpha)\approx Z_2+Z_2,$	$\pi_8(G_\beta^9)\approx Z_2+Z_2+Z_2,$
$\pi_{10}(G_{\alpha}^{11}) \approx Z_2 + Z_9,$	$\pi_{10}(G_{\beta}^{11}) \approx Z_2 + Z_2 + Z_9,$
$\pi_{12}(G_{\alpha}^{13}) = 0,$	$\pi_{12}(G_\beta^{13}) \approx Z_2,$
$\pi_{14}(G_{\alpha}^{15}) \approx Z_2 + Z_2 \text{ or } Z_4,$	$\pi_{14}(G_{\beta}^{15}) \approx Z_4 + Z_2.$

(3.20) PROPOSITION (Hu). When r is even and $\alpha \in \pi_r(S^r), r \neq 0$. Then

$$\pi_r(G^r_{\alpha}) \approx \pi_{2r}(S^r)/J^{2r}_{\alpha}.$$

PROOF. Since $K'_{\alpha} = 0$, the result follows from (3.4(a)) and (3.4(b)).

(3.21) PROPOSITION. If $E: \pi_p(S^r) \to \pi_{p+1}(S^{r+1})$ is an injection, then for q+s=p and q>1

$$\pi_q(G^s_\alpha)/\pi_p(S^r) \approx \pi_q(S^r),$$

where $\pi_p(S^r)$ is imbedded in $\pi_q(G^s_{\alpha})$.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use

s. s. koh

PROOF. Since $E[\alpha, \beta] = 0$, $J^p_{\alpha} \subset \text{Ker } E = 0$. From (3.4)(a) and (b), $\pi_q(G^s_{\alpha})/\pi_{q+s}(S^r) \approx K^q_{\alpha}$. But $K^q_{\alpha} \approx \pi_q(S^r)$. This proves (3.21). For q < r, $\pi_q(S^r) = 0$, we have $\pi_q(G^s_{\alpha}) \approx \pi_p(S^r)$. This reduces to (3.2).

(3.22) COROLLARY. If q + s = p < 2r - 1, then

$$\pi_q(G^{s}_{\alpha})/\pi_p(S^{r}) \approx \pi_q(S^{r}).$$

PROOF. This follows from (3.21).

BIBLIOGRAPHY

1. J. F. Adams, Bull. Amer. Math. Soc. vol. 64 (1958) pp. 277-282.

2. S. T. Hu, Indag. Math. vol. VII (1946) pp. 621-629.

3. ——, Homotopy theory, New York, Academic Press, 1959.

4. J.-P. Serre, Ann. of Math. vol. 54 (1951) pp. 425-505.

5. N. E. Steenrod, The topology of fibre bundles, Princeton University Press, 1951.

6. H. Toda, C. R. Acad. Sci. Paris vol. 240 (1955) pp. 147-149.

7. — , C. R. Acad. Sci. Paris vol. 241 (1955) pp. 847-850.

8. H. Wada, Ann. of Math. vol. 64 (1956) pp. 420-435.

9. — , Tôhoku Math. J. vol. 10 (1958) pp. 143–145.

10. G. W. Whitehead, Ann. of Math. vol. 47 (1946) pp. 460-475.

11. J. H. C. Whitehead, Ann. of Math. vol. 58 (1953) pp. 418-428.

WAYNE STATE UNIVERSITY