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1. Introduction. Let X be a topological space and Sp be the polar-
ized £-sphere with a fixed poleyo. Following G. W. Whitehead [lO],we
shall denote by GP(X) the mapping space Xs", which is the totality
of (continuous) maps of Sp into X endowed with compact-open topol-
ogy. Let 7r:G*(X)->X be defined by 7r(/)=/(y0), (/GO(X)), and
let PP(X, x) =7T~1(x) for each xGX. Consider now the mapping space
P(X) consisting of all the maps of y o into X. There is a natural map
£: G"(X)-kB(X) defined by £(/) =/|y0 for every/GG"(X). It is well
known (cf. [3, pp. 83-84]) that £ has the path lifting property.
Clearly, the space X can be identified with P(X) in a natural way.
The map ir is then identified with £. Consequently w. GpiX)—*X is a
fibre map of GP(X) onto X having the absolute covering homotopy
property [3, p. 82]. For each xGX, the fibre in GP(X) over x is
FpiX, x). The arc components of PP(X, x) are elements of the £th
homotopy group irp(X, x) of X at x. Denote by G£(X) the arc com-
ponent of GpiX) which contains a = F£(X, x)Gttp(X) (cf. [lO]). If X
is arcwise connected, then G£(X) is also a fibre space over X. The
restriction ^„ = ^1 G£(X) is a fibre map of G«(X) onto X. The homo-
topy properties of the various components G£(X) of GP(X) have been
studied by M. Abe (Jap. J. Math. vol. 16 (1940) pp. 169-176),
G. W. Whitehead [lO] and S. T. Hu [2]. The present note may be
regarded as a continuation of these studies.

2. 77-space and 77*-space. In what follows, we shall denote G"(X)
by Gp and PP(X, x) by Fp whenever no confusion is likely to arise.

Let X be a topological space which admits a continuous multiplica-
tion pix, x') =x-x'. If/: 5—>X is a map of a space 5 into X, we denote
by x-/the transformation defined by (x ■/) (s) = x -fis) for each 5 G S.
Clearly x-f is a map (i.e. it is continuous).

By an 77-space we mean a topological space X with a given con-
tinuous multiplication which has a homotopy unit eCX (see e.g.
[3, pp. 80-81]).

Received by the editors February 17, 1960.
1 The writer held an assistantship under the Air Force Contract AF 49 (638)-179.

896
License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



homotopy properties of the mapping SPACE Xs' 897

(2.1) Theorem. If X is an arcwise connected H-space, then GP(X)
and Gja(X) have the same homotopy type for arbitrary a and ß in 7rp(X),
£èl.

Proof. It suffices to prove that GJ(X) and Gg(X) have the same
homotopy type, for any «Eîrf(I). According to [lO], it remains to
prove that G£(X) admits a (global) cross-section. Choose an element
fCGar\FpiX, e). Then wa(f)=e. Define^: X->GP by 0(x) =x-/. Then
0(e) =e-/~/GG£. Since X is arcwise connected, we have <p: X—*Ga.
Now, Ttaiq>ix)) =7T„(x-/) =x-e, therefore 7ra<£~idx. Since ira has the
absolute covering homotopy property, there exists a covering homo-
topy, in particular, there is a map xp: X—>GP such that 7r„i^ = idz- This
proves (2.1).

Following H. Wada [9], we call a topological space X an 77*-space
if the following conditions are satisfied:

(i) A continuous multiplication ju(x, x')=x-x' is defined for each
pair of elements x, x' in X.

(ii) There is a fixed element e in X, satisfying

x-e = x, for all x G X.

(iii) To each xGX, there is an inverse x_1GX, defined continu-
ously by x, such that

x-x~l = e, for all x G X.

(iv) For each pair of elements x, x' in X, we have

x-1-(x-x') = x'.

With these conditions Wada was able to prove that
(ii') e is unique,
(iii') x_1 is uniquely defined by x and x-1-x = e,
(v) (x_1)_1 = x and, consequently, x-(x_1-x') =x', for arbitrary x

and x' in X.
We remark that an 77*-space need not to be an 77-space.
The following theorem resembles a construction of Wada [9], where

he deals with mapping space of an 77*-space into itself.

(2.2) Theorem. Let X be an H-space. The mapping space GP(X) is
homeomorphic to XXPP(X, e) for each £è 1.

Proof. Let gCGpiX) be an arbitrary map of Sp into X. Then x-g
is defined and continuous. Hence x-gGGp(X). Clearly g = e-g
= x_1-(x-g) =x-(x_1-g) for any xGX. Let
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¿:Gp(X)-+XXFp(X, e),
and

f:lXF'(I,«)-^P(ï),
be defined as follows: Let yo be the pole of Sp. For each gCGpiX),
let g — s(yo)CX. Then define

*(i) - (i, r1-«), (gGGp(x))
and

*(*,/) = x-/, (a: G X,/G Pp(X, e)).

(A) <f> and i/' are bijective:
For any gCGpiX), we have

H(g) = iKl, r'-g) = i'ff'S) = g-
On the other hand,

W(x,f) = 0(x-/) = ((x-/)% ((x-/)^)-i-(x-/))
- (s-/,^-/)-1 ■(*•/))

= (x-e, (x-e)-1 •(*•/))

= (x, #-*•(>,/))

= (x,/).

Hence both <j> and ^ are one-to-one, onto.
(B) (j) and \p are continuous:
Suppose X be a compact set in Sp and U an open set in X. We

shall denote by (X, Í7) be the subset of GP(X) consisting of all map-
pings which send K into U. Let 77/ be an arbitrary neighborhood of
(g, tug)-Then H7JUoX[iKi, Ui)C\ ■ ■ ■ H(Xn, [/„)] for some open
sets Uo, Ui, • ■ ■ , Un in X and compact sets K\, ■ ■ ■ , K~n in Sp.
Denote g(X¿) by K{, then K{ is compact, i=l, 2, ■ ■ ■ , n. Cor-
responding to each k"CK', there exist open sets W" containing g~l
and V" containing k" such that Wf • VfC Ui, since the multiplication
in X is continuous. The collection { V"} forms an open covering of
K(. There is a finite subcovering { V?, ■ • • , V^] of K¡. Let
Wi= r\?¿i W? and F^Ufii V". Then Wt is an open neighborhood
of g~l ; Vi is an open neighborhood of K¡ and Wi ■ F¿ C Ui.

Letx=(y0, u0nwrir\ ■ ■ • rw-^fMXx, Vi)r\ ■ ■ ■ r\(Kn, vn),
where Wt1 denotes, of course, the set {w-1| wCW,). By the continu-
ity of the inverse, A7 is a neighborhood of g in Gp. It is now readily
seen that 4>iN) CH. This proves the continuity of <p.

Next, let U=iKi, Ui)C\iK2, U2)C\ ■ ■ • Pi(X„, Un) be a basic open
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neighborhood of \pix, f) =x-f. Then x-/(X¿) C Ui. By a similar argu-
ment as above, one proves that there exist open neighborhoods Wi of
x and V¡ of/(X¡) such that WrViC Ui. Then

*[iWi r\ • • • r\ wn) x «Ki, Vi) r\ • • • r\ (x„, v«) r\ pp)] c u.
Hence \p is continuous and the proof of (2.2) is completed.

(2.3) Corollary. If X is an arcwise connected H*-space, then Ga
and X X Pa o,re homeomorphic.

Proof. Since X is arcwise connected, Gp is a fibre space over X. By
replacing Gp and Gp and ir by ira in the proof of (2.2), we obtain
that Gp is homeomorphic to XXtt"1^). Being a component, Gp is
connected hence ira"1(e) contains only one component Pa. This proves
(2.3).

As a by-product of the proof of (2.3) we have:

(2.4) Corollary. Every arcwise connected H*-space is n-simple, for
»èl.

(2.5) Corollary. If X is an arcwise connected H*-space, then G„ and
Gß have the same homotopy type for arbitrary a and ß in 7rp(X). Further-
more

^3(G«) « WX) + xa(X), iq^l).

Proof. Since G. W. Whitehead [lO] proved that Pp and F% have
the same homotopy type for any a and ß in •jtp(X), the first part of
(2.5) follows from (2.3). The Hurewicz isomorphism 7rs(Pp) «7tp+s(X)
(cf. [lO]) completes the proof.

(2.6) Corollary. Let X = ST. Then G„ is homeomorphic to 5rXP«
when r = 1, 3 or 7. Conversely, if Gfr and StXFq have the same homotopy
type then r=l, 3 or 7, where irC^riS') is represented by the identity
map Sr^>Sr.

Proof. This follows from Wada [8] and a recent result of Adams
[1].

(2.6) Proposition. If X is a H-space, then for each aCirPiX),

^(GJAp+^X)   «   7T3(X),
where irp+9(X) is, of course, imbedded in 7r8(Gp) isomorphically.

Proof. According to G W. Whitehead [lO] (see also [ll]), we
have the following diagram :
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ÎT«(Pa) —» TTqiGa) —* 7T5(Ga, Fa)  ~* 5r8_l(PB)

Wp+qiX)

where tt* denotes the isomorphism induced by the projection tt, Tide-
notes the Hurewicz isomorphism and pa is defined by pa(ß) = — [a, ß\.
Since pa is always trivial when X is an 77-space, (2.7) follows from
the exactness of the sequence.

3. The sphere Sr. Let X = Sr, an /--sphere, then we have the follow-
ing exact sequence

(3.1)        •   •   • —> Tp+giS )  -* KqiGa) -» ITqiS ) —» Tp+q-liS ) —»

The following propositions are fairly obvious.

(3.2) Proposition. Let X = Sr and aCirPiSr). Since 7ra(5r)=0 for
q<r we have

T,(Ga)  « TjH-jÍS), (?<»"— !)•

(3.3) Corollary. iri(Ga) ~Z2for r^3.

Since irr+2iSr) ^Z2, for r^3, we have

(3.4) Corollary. t1(Gt+1) «Z2, r^3.

Denote the image of p«: 7r5(5r)-^Tp+a-i(-S''') by 7«+a_1 and the kernel
of pa by Xp. Denote the image of p: wp+qiSr)-*wqiGa) by Pa. Then

(3.5) Proposition (Hu) [2]. For X = Sr and aEirPiSr)
(a) wqiGp)/Pa~Ka, iq>l),
(b) WGS/jT'-p«, te^).
(c) 5r,_1(GS)«irp+f_1(5')/J2+r~1.
(d) 7rr+3(Gp) ÄA5 a subgroup Pa+3 «t^+^S'), (r£6),
(e) ^r+4(Gp)«7rp+r+4(^)/7^+S (r>6).

Since for r^7, irr+tiSr) = 7rr+6(Sr) =0. It follows that

(3.6) Proposition. lir>1, for each aCirPiST),

ITr-liG7) « t^2(G8) «  • • • « 0.

And,
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(3.7) Proposition. For r^7, aC-KPiSr),

7Tr+6-p(Gp)   =*   TTr+6-piSr).

We now proceed to prove the main theorem of this section. Con-
sider the following sequence

(3.8) w/p) * **-i(S0 -* TUS*1),
where £ denotes the Freudenthal suspension. By the delicate suspen-
sion theorem, the kernel of £ is a cyclic subgroup generated by
[ir, i,]. If r is even, it is infinite cyclic; if r is odd ^ 1, 3, 7, it is cyclic
of order 2.

(3.9) Lemma (Hu). For X = S2 and aCir2iS2), we have

Xl(Ga)   «   Z2m,

where m is the absolute value of the degree of a.

Proof. Since ^(S^1) =tt4(.S3) «Z2. From (3.8) 7r3(S2)/Ker £~Z2.
Let 7 be a generator of the free cyclic group 7r3(52). Then [i2, i2]
= ±2. We can choose y so that [i2, i2]= —2y. Let aC^iiS2). By
linearity of the Whitehead product pa(i2) = — [a, i2] = — m[is, i2]
= 2wry. In other words Ja is generated by 2my. From (3.5(c)), we
have iri(G„) ~Z2m. This proves (3.9).

(3.10) Lemma. For X = 54 and aCirtiS4), we have
4

X3(Ga)   «   Z2im + Zl2,

where m is the absolute value of the degree of a.

Proof. 7r2r(5'-+1) «tt8(56) «Z24 and w2r-iis*)=w7iSi) ~Z + Zi2. One
generator of Ker £ is determined as follows :

From a theorem of characteristic map [5, p. 121], that

[h, u] = 2[q] - tE[S],
where e= ±1 depends on the convention of orientation, [q] denotes
the homotopy class of the Hopf map q: S1—>Si and [£] a generator
of TTiiS3) represented by the characteristic map £: S*—>S3 of the fibre
bundle Sp(2) over S7 with Sp(l) as fibre. Hence in 7r8(55) we have

E2[Ç] = e2E[q],

(£2 denotes the iterated suspension). This implies that ir3iSb) has
E[q] as a generator. Hence

TT^/Ker £ « Z24 + Z12.
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A similar argument as used in (3.9) yields
4

TziGa)   w   Zum + Zl2.

(3.11) Lemma. For X = 58 and aCireiS*), we have

TTbiGa)  » Zm,

where m is the absolute value of the degree of a.

Proof. Since ir2r(5r+1) =TniS7) =0 and flv^S8) =tu(S») «Z.
Ker £ = /". Hence we can choose the generator y of 7Tn(56) such that
7= — [le, i6], consequently p«(ie) =my, or 7r6(G„) «Zm by (3.4(c)).

(3.12) Lemma. For X = S8 and «GtsCS8), we Aaw

7T7(G8)   «   Z240m + Zl20,

where m is the absolute value of the degree of a.

Proof. w2riS*+1)=TuiS») «Z240 and ir2r_1(5'-) =ir16(S8) «Z+Z120.
Since [le, ie] = 2[g']—e£[£'], where [q'] denote the homotopy class
represented by the Hopf map q': Slb—>SS and £'Giri4(.S7) has nonzero
Hopf invariant, we have

£2[?'] = 2e£[g'].

Using the same argument as in (3.10), one proves (3.12).

(3.13) Lemma. For X = Sl0and aGxioOS10), we have

7r9(G10) « Zm+Z2 + Z2 + Z2,

where m denotes the absolute value of the degree of a.

(3.14) Lemma. For X = S12 and aCirniS12), we have

7Tu(G12) « Zm+ Z8 + Z27 + Z7,

where m denotes the absolute value of the degree of a.

The proof of (3.13) follows from the table in Toda [ô] the first
row and a similar argument as before; for a proof of (3.14), one uses
the third row of the above mentioned table.

(3.15) Lemma. For X = 514 and aCiruiSu), we have
Zi3iGli) « Zm + Z3)

where m denotes the absolute value of the degree of a.

Proof. Since irn(514) ~Z+Z3 and 7Ti8(516) «Z3 and the suspension
£ sends Z into 0 in wuiSn) (Toda [6]). The proof is immediate.
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(3.16) Lemma. For X = Sr, aGirr(5r) and r odd, ^1, 3, 7. Then
(a) 7rr_i(Gr) «7T2l—i(5r) when a is of even degree,
(b) 7rr_i(G'') «7r2r_i(5r)/Z2 when a is of odd degree.

Proof. It suffices to prove that there is a nonzero element in J^_1
when a is of odd degree and rj^l, 3, 7. In fact, in this case pa(ir) 5^0.
(3.16) follows.

(3.17) Lemma (Hu). Let X be any space. If a, /3Gttp(X), «4-/3 = 0.
Then Ga and Gß are homeomorphic.

Proof. Let 6: SP—>SP be a homeomorphism which reverses the
orientation and leaves the pole y0 fixed. Then a homeomorphism h of
Ga onto Gß is given by hif) =f-9 for each/GG«.

(3.18) Theorem. Let X = ST. Let a, ßEirriST). Then for r = 2, 4, 6,
8, 10, 12, 14, the components GTa and Grß have the same homotopy type
if and only if a= +ß. When r is odd y*l, 3, 7, the components GTa and
Gß are of different homotopy type if deg a — deg ß is odd.

Proof. The first part of the theorem follows from Lemmas (3.9)
through (3.17). The remaining part follows from the fact that if r is
odd then 7rp(5r) is finite for p>n [4J.

(3.19) Corollary. Let X = Sr and a, ßCirriSr) are of odd and even
degree respectively. Then:

ITiiGa)  = 0, 7T4(G^)  ~ Z2,
9 9

TsiGa)   »   Z2 + Z2, TsiGß)   ~ Z2 +  Z2 + Z2,

?Tlo(Ga )   «=   Z2 + Zo, 7Tio(G^ )   «   Z2 + Z2 + Zg,

TTuiGa )   =   0, 7ri2(Gf3 )   «   Z2,

Xl4(Ga )   «  Z2 + Z2   Of   Z4, 7Tl4(G¡j )   ~  Zi + Z2.

(3.20) Proposition (Hu). When r is even and aC^riS'), r^0. Then

Tr(Ga)   «   7T2r(5 )/7„ .

Proof. Since X^ = 0, the result follows from (3.4(a)) and (3.4(b)).

(3.21) Proposition. If E:irPiST)-^Tp+iiST+1) is an injection, then
for q-j-s = p and q>l

*t(Ga)/*p(S)   ~  irqiS ),

where irPiSr) is imbedded in irqiGa).
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Proof. Since E[a, ß] = 0, 7pCKer£ = 0. From (3.4)(a) and (b),
WqiGa)/rq+,iS')~Ka. But Ka~irqiS*). This proves (3.21).

For q<r, xa(5r) =0, we have TqiGsa) «7rp(5r)- This reduces to (3.2).

(3.22) Corollary. 7/g+s = £<2r-l, then

TrqiGa)/irPiS) » irqiS).

Proof. This follows from (3.21).
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