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1 Introduction

This PRS Transfer report looks at recently proposed categorical frameworks
that characterize entropy as well as accommodate both classical and quan-
tum probability theory [23] [24]. We identify common categorical compo-
nents and propose further directions this approach could take.

Entangled quantum states work as a means of communication. Entropy
is a measurement of information content [12]. Entropy works as a measure
of information, although there are other measures [26]. In this report, it is
proposed to relate quantum entanglement and entropy in an abstract man-
ner within the categorical quantum mechanics framework. Following this
objective, we try to incorporate compression as a quintessential information-
theoretical trait that ought to be captured categorically when studying en-
tropy, since entropy is precisely a quantification of compression.

More in the software engineering direction, a work plan for the docu-
mentation of the Quantomatic software is proposed.

This report uses [23] and [24] as seminal papers. Regarding the require-
ments of the PRS Transfer Report, section 2 and 3 conform the bulk of the
progress report and literature review. Sections 4 and 5 conform the thesis
proposal.
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2 Overview of CQM

2.1 Symmetric Monoidal Compact Closed Categories

In [23] a diagrammatic framework is stated in the graphical language of
symmetric monoidal categories with compact structures and Frobenius structures.
A description of what each of these structures adds to the general idea of
category is given next.

Monoidal

A monoidal structure on a category provides an internal (bi-)functor and
an identity object, as well as associativity for this bi-functor. The idea of
having a bi-functor with same domain and codomain suggests an abstrac-
tion for an algebraic operation.

More precisely, a monoidal category is a structure (C,⊗, I, a, l, r) where
C is a category, ⊗ : C × C is the internal functor, I is the identity object and
a, l, r are natural isomorphisms defined as so:

aA,B,C : A ⊗ (B ⊗ C)
∼= // (A ⊗ B) ⊗ C (1)

lA : I ⊗ A
∼= // A rA : A ⊗ I

∼= // A (2)

such that lI = rI and :

A ⊗ (I ⊗ B)
a //

id⊗l

��

(A ⊗ I) ⊗ B

r⊗idvvmmmmmmmmmmmm

A ⊗ B

(3)

(A ⊗ B) ⊗ (C ⊗ D)
a

**UUUUUUUUUUUUUUUUU

A ⊗ (B ⊗ (C ⊗ D))

a
44iiiiiiiiiiiiiiiii

id⊗a

��

((A ⊗ B) ⊗ C) ⊗ D

A ⊗ ((B ⊗ C) ⊗ D)
a //(A ⊗ (B ⊗ C)) ⊗ D

a⊗id

OO

(4)
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Symmetric

The symmetric structure provides commutativity to the monoidal bi-functor,
namely a natural isomorphism

sA,B : A ⊗ B
∼= // B ⊗ A (5)

such that sB,A = s−1
A,B and the following two diagrams commute:

A ⊗ I
r

$$JJJJJJJJJJ

s // I ⊗ A

l

��
A

A ⊗ (B ⊗ C)

a

��

id⊗s //A ⊗ (C ⊗ B)
a //(A ⊗ C) ⊗ B

s⊗id

��
(A ⊗ B) ⊗ C

s
//C ⊗ (A ⊗ B)

a
//(C ⊗ A) ⊗ B

(6)

Closed

A closed structure identifies the Symmetric Monoidal Categories C whose
hom-sets C(A,B) have the same structure as the objects of the category.
Formally this means that for every object the Hom-functor

F := ⊗ A : C → C

lands on a newly defined object

XA := F (X) ∈ |C|, ∀X ∈ |C|

provided by the closed structure. In other words, there is an object BA and
a morphism

evA,B : BA ⊗ A −→ B

for every pair of objects A,B, such that for every morphism f : C⊗A −→ B

there is a unique morphism Λ(f) : C → BA that satisfies

evA,B ◦ (Λ(f) ⊗ idA) = f

graphically:

BA ⊗ A
evA,B //B

C ⊗ A
f

66lllllllllllllll

Λ(f)⊗idA

OO (7)
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Compact

A compact structure provides the dual object, a generalization of dual of a
vector space. In more detail, a compact structure in any Symmetric Monoidal
Closed Category C is a quadruple (A,A∗, ǫ, η) where the pairing ǫ : A ⊗
A∗ → I and co-pairing ǫ : I → A ⊗ A∗ make the following diagrams com-
mute:

A∗

id

%%KKKKKKKKKKKKKKKKKKKK

η⊗A∗

//A ⊗ A∗ ⊗ A

A∗⊗ǫ

��
A∗

A
id //

A⊗η

��

A

A ⊗ A∗ ⊗ A

ǫ⊗A

99ssssssssssssssssssss

(8)

Dagger

A dagger category is a category equipped with an involutive functor which
inverts the direction of each morphism and leaves the objects intact.

Dagger compact categories introduced in [1] express quantum mechan-
ical concepts like unitary maps, inner products and projectors [7]. They are
also complete with respect to finite dimensional Hilbert spaces [8].

That said, what physical trait is being captured by the dagger structure
can only be conjectured. Yet it is possible to identify at least two traits that
makes Rel a dagger category and hence a quantum-like category as op-
posed to Set, a non-quantum or classic-like category [11].

A particle in Newtonian physics has a definite and unique trajectory,
whereas photons and subatomic particles behave wave-like, traversing si-
multaneously through multiple trajectories. With this approach, classical
trajectories behave like morphisms from the Set category, and quantum
particles behave like morphisms in Rel. See fig.1.

1 Remark. In this setting, the preimage of a mapping in Mor(Set) in general
doesn’t classify as a valid morphism in Set yet it does as a valid morphism
in Rel. See fig.2.

In this same tenor, classical information processing is inherently irre-
versible, whereas quantum information processing is inherently reversible.
Again surjective maps in Mor(Set) are non-invertible, whereas all relations
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Figure 1: Example of a morphism in Set (left) and a morphism in Rel (right). The latter
can cover all possible set-like maps simultaneously

Figure 2: A preimage (dotted line) of a surjective mapping in Mor(Set) (solid line) is a
multi-valued function, a valid relation in Mor(Rel).

in Mor(Rel) are invertible by definition. Therefore it is possible to assert
that the dagger structure must relate to the preservation of information, as
stated in [10].

Frobenius structure

Frobenius algebras show up in a variety of contexts including computer
science: in circuit diagrams and proof nets. Frobenius structure is an essen-
tially topological structure, meaning that the axioms for a Frobenius algebra
can be given completely in terms of graphs [5].

A Frobenius structure on SMC consists of a multiplication µ : A ⊗ A →
A, a unit η : I → A, a comultiplication δ : A → A⊗A and a counit ε : A → I :

µ := δ := η := ǫ :=
(9)

which satisfy the associative and unit laws for multiplication:

7



= = =
(10)

similarly for co-multiplication:

= = =
(11)

The Frobenius law is depicted in the following diagram:

= =
(12)

Lastly, the commutativity condition is given by the following diagram:

=
(13)
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3 Probability and Entropy

3.1 Probability theory

Probability is used as an extension of logic to cases where deductions can-
not be made [20]. Deductive logic can only deal with certainty, whereas the
rules of probability extend logic to include cases where there is uncertainty
[21]. Inductive reasoning makes use of probability theory as its primary tool
for reasoning, much in the same way that deductive reasoning makes use of
mathematical logic. Inductive reasoning deals with uncertainty as a com-
mon trait.

2 Remark. If the uncertainty contained within a probability is thought of
a multi-valued function in the sense that it refers to multiple possibilities,
then dagger categories like Rel can accommodate probabilistic formalisms
like inductive reasoning, whereas categories like Set can’t, due to the mor-
phisms being mappings and not multi-mappings.

It is possible to perceive the logic behind probability theory with the
help of Venn Diagrams. Parting from A ⊃ B — which is represented in
the first Venn diagram in 3 — what can be deduced from A, ¬B and ¬A

in logic is shown in Eq. 14. If one parts from the second Venn diagram in
fig.3, nothing can be deduced.

A ⊃ B A ⊃ B A ⊃ B

A ¬B ¬A

−−−−−− −−−−−− −−−−−−
B ¬A B ∨ ¬B

(14)

Probability theory has the following axioms.

1. P (A) ≥ 0 for any event A.

2. P (U) = 1. Probability of Universe = 1 i.e. some outcome occurs every
time you conduct an experiment.

3. If A and B are mutually exclusive events, then P (A ∪ B) = P (A) +
P (B). In other words, probability is additive over disjoint events.

The rest of the rules of probability can be proved from these axioms. In
order to understand the nature of function P , the mathematical concept of
measure is needed.

9



Figure 3: The Venn diagram in the left represents ”If A is true then B is true”, hence de-
duction is possible. The one in the right represents ”Sometimes A implies B, sometimes B
implies A, sometimes neither”, making deduction impossible.

Measure

The measure aspect of probability theory can be understood with only a
few concepts, the main one being that of σ-algebra.

3 Definition. Let X be a set. A σ-algebra of subsets of X is a family Σ of
subsets of X such that:

1. ∅ ∈ Σ

2. for every event E ∈ Σ its complement X\E in X belongs to Σ.

3. for every sequence of events En, n ∈ N, its union
⋃

n∈N
En belongs to

Σ.

Noticeably, X is always a member of Σ due to the ∅ ∈ Σ condition. For
examples, take set X = {1, 2, 3, 4}. Two possible σ-algebras are:

Σ = {∅,X, {1, 2, 3}, {4}} , Σ = {∅,X, {1, 2}, {3, 4}}

A sample space X is the set of all possible outcomes. Events {A,B,C, . . .}
are sets of outcomes that conform the σ-algebra Σ. The probability measure
function

P : Σ −→ [0, 1]

specifies the likelihood of each event happening. The triple (X,Σ, P ) de-
fine a probability space, which is a specific case of the more general concept
of measure space.

4 Definition. A measure space is a triple (X,Σ, µ) where X is a sample space,
Σ is a σ-algebra over X and µ is a measure, i.e. a function such that:
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1. µ : Σ −→ [0,∞]

2. µ(∅) = 0

3. if the sequence of events En is disjoint, then µ(
⋃

n∈N
En) =

∑∞
n=0 µ(En)

Hence a probability measure space is a measure space where the codomain
is restricted to the real line between 0 and 1 and µ(X) = 1.

Joint Probability

The joint probability of events A and B is the probability that both events
occur simultaneously, on the same repetition of the random experiment,
i.e. the set of outcomes that are both in event A and event B, the intersection
A ∩ B.

If event A and B are independent, then P (A ∩ B) = P (A) × P (B), the
product of the individual probabilities. If this does not hold then they are
dependent events.

Marginal probability

The probability of only one of the events in the joint probability setting
is called the marginal probability. It is found by summing P (A ∩ B) and
P (A ∩ ¬B), i.e. by summing its disjoint parts:

P (A) := P (A ∩ B) + P (A ∩ ¬B)

Conditional probability

The probability of event B given event A is given by:

P (B|A) =
P (A ∩ B)

P (A)
(15)

The scaling quality of 1
P (A) can be better understood if one considers the

reduced universe. Given that a certain event A has occurred, all the other
outcomes outside A are no longer possible, therefore the reduced universe
Ur = A must have probability P (Ur) = 1 (see fig. 4). The observation of
event A in conditional probability P (B|A) can be thought of as a probability-
preserving mapping in the following sense:

observe(A) := U 7→ Ur, s.t. P (U) = P (Ur) = 1

11



Figure 4: The reduced universe in conditional probability. P (Ur) = 1.

Bayesian inference

Bayesian inference [2] makes use of Bayes rule:

P (A|B) =
P (B|A)P (A)

P (B)
(16)

which describes Bayesian inversion:

P (A|B) 7→ P (B|A)

and viceversa. In Eq.(16) P (A|B) is called the posterior density; P (B|A) is
the sampling density or likelihood; P (A) is the prior density and P (B) is the
normalizing constant.

As opposed to a frequentist approach to statistics, Bayesian statistics
makes use of subjective information e.g. to determine the prior. Bayes’
theorem is a way of updating our uncertainty in the light of new evidence.

3.2 Shannon Entropy

Entropy is a measure of information, although there are other measures
[26]. The concept of entropy in information theory was born from the idea
of information compression [27][12]. Shannon entropy H of a random vari-
able X is calculated making use of probabilities pi ∈ Q:

H(X) = −
n

∑

i=1

pi(xi) logbpi(xi) (17)

where xi are distinct outcomes for random variable X, pi ∈ [0, 1] are the
probabilities for each outcome and b is some basis, normally taken to be 2.
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Given a string s, one does not know the probabilities for each symbol
si in the string, one must calculate (infer) them from the string. Given an
amount H(X) of information, there are many strings that represent the ex-
act same information.

3.3 Kolmogorov complexity and Entropy

Shannon’s entropy measures the amount of information of a generating
source of strings [12]. More precisely, given a random variable X, S(X)
measures the amount of information producible by X (Eq.17). Informa-
tion theory is about processing strings, hence concatenation is an essential
structure. Yet Eq.(17) doesn’t make use of concatenation.

Kolmogorov complexity [3] measures the information in a string rather
than of the string-source. It is defined as the length of the shortest effective
(binary) description of X, or generating program. Yet it also provides an
absolute and objective quantification of the amount of information of X [4].

Shannon’s entropy uses probabilities to quantify the information of a
string, hence uncertainty is involved in the conceptualization of this en-
tropy. Kolmogorov complexity is deterministic in the sense that it doesn’t
loose information: it compresses the string to its minimal syntactic expres-
sion K(x), hence inferring a source (program). It then makes sense for these
two measures to relate in some way, and they do: the expected Kolmogorov
Complexity equals Shannon’s entropy [4].

3.4 Measure preserving functions

Given a measure space (X,Σ, µ) one can represent the σ-family of mea-
surements of each event Ei ∈ Σ as column vectors p with components
pi := µ(Ei):

p =









p1

p2

. . .

pn









, |p| = n (18)

It is possible to define a measure preserving function (mpf ) between these
type of vectors f : p → q. A mpf between vectors of the same dimension
are given by permutations, which preserve µ. When going from a smaller
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to a bigger dimension:

f< : p −→ q such that |p| < |q|

one can define f< as the mapping that copies the values of the domain and
fills the rest with |q| − |p| zeros:

f<(p) :=









p1

p2

. . .

pn









7→

























q1

q2

. . .

qm−n−1

qm−n

qm−n+1

. . .

qm

























:=

























0
0
. . .

0
p1

p2

. . .

pn

























, n < m (19)

As mentioned before permutation of the components of the vectors pre-
serves the measure, hence the zeros need not inserted in an orderly manner.
Although |µ(Σ)| changed:

f< : |µ(Σp)| 7→ |µ(Σq)| f< : n 7→ m (20)

the measure µ remained the same, as can be confirmed by summing over
the components:

∑

i

pi =
∑

j

qj (21)

which shows satisfaction for requirement 2 of the measure definition. Re-
quirement 3 is satisfied because jointness and disjointness of events Ei ∈ Σ is
left untouched by the addition with zero.

One can define the measure preserving function going downwards on
the dimension scale as so:

f> : p −→ q such that |p| > |q|

f>(p) :=









q1

q2

. . .

qm









where qj :=
∑

i∈f−1

> (j)

pi (22)
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Since the domain is already a valid measure space and addition of the
measures preserves the jointness and disjointness relations, then this defi-
nition of mpf f> is a valid one.

In conclusion, a mpf f : p → q between measurements of events µ(Ei)
is defined as:

• a permutation if p and q are of the same dimension

• f< as defined in Eq.(19) if p is smaller than q

• f> as defined in Eq.(22) if p is larger than q

3.5 Categories FinProb and FinMeas

Baez et al. [24] define categories FinProb and FinMeas to characterize en-
tropy where objects are the vectors described in section 3.4 and morphisms
are measure preserving functions defined here, but only between dimen-
sions of the same or smaller size. FinProb uses probability measures and
FinMeas uses arbitrary measures.

Compoundness on objects is given by the weighted direct sum:

p ⊗ q := λp ⊕ (1 − λ)q

with λ ∈ [0, 1]. Compoundness on morphisms f : p → p′ and g : q → q′ is
defined as:

f ⊗ g := λf ⊕ (1 − λ)g : λp ⊕ (1 − λ)q −→ λp′ ⊕ (1 − λ)q′

Baez gives a way to characterize the entropy of a single probability mea-
sure as the change in entropy of the unique measure-preserving function onto the
one-point space.

3.6 Classical Bayesian Graphical Calculus

Coecke et al. [23] define a category to accommodate classical Bayesian in-
ference and entropy, where objects are natural numbers and m×n positive
valued matrices, composition is matrix product and tensor product is the
matrix tensor product.

Representations of Frobenius product and coproduct are given anal-
ogous to the mpf f defined in this section, yet constrained to probability
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(rather than arbitrary) measures, and only for cases where |f<(p)| = |p|2

and |p| = |f>(p)|2.

In this same work an abstract characterization of Shannon entropy is
given, namely as inner products between two alternate representations of
the diagrammatical calculus. This same product gives the joint, conditional
and marginal entropies. Besides the aforemention representation in terms
of column vectors p with components measurements of events pi := µ(Ei),
a second representation is given in terms of column vectors s with compo-
nents negative logarithms of probabilities si := −ln(pi), hence the Shannon
entropy S as an inner product is :

S(X) := (p1, p2, . . . , pn)









s1

s2

. . .

sn









= (23)

(s1, s2, . . . , sn)









p1

p2

. . .

pn









=

n
∑

i

pi si =

n
∑

i

pi ln pi (24)
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4 Suggested directions of work

4.1 Entropy related category

5 Suggestion. Although both Baez’s and Coecke’s categories in [24] and
[23] are apparently different, it is conjectured in this report that there is a
more general category that includes both formalisms which should fall within
the categorical quantum mechanics framework.

Baez et al. do not reference the symmetric monoidal categories formal-
ism, nor the corresponding diagrammatic calculus. Since the work there
focuses only on mappings on to the one-point space, an increasing dimen-
sion map like f< is not identified. Since graphical languages are sound with
respect to categories [9], it should be possible to define a graphical calculus
for the category conjectured.

4.2 The functorial nature of entropy

In Set the category of sets, the cardinality | − | : X −→ R of a hom-set
C(A,B) is given by :

|C(A,B)| = |B||A| (25)

That said, the logarithm operation is a way of inferring the cardinality of
the domain given the cardinalities of both the codomain and the hom-set.
In other words, the logarithm calculates the preimage cardinality.

6 Suggestion. It is then possible to propose that whatever information —
if any — the logarithm infers about the domain of the hom-set, should be
contained within a hom-set going in the opposite direction (from codomain
to domain) in some category. Considering remark 1 one can conclude
that since Set and Rel are related by a functor— namely the powerset
functor— the categorical interpretation of logarithm should be dependant
of this powerset functor. Moreover the categorical interpretation of entropy
should depend on the powerset functor, since the definition of entropy
makes use of the logarithm operator.

log|B||C(A,B)| = |A| (26)

7 Suggestion. As per remark 2, if the morphisms of a category abstract
probabilities as part of their definition, then they share the dagger structure
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with quantum-like categories like Rel just as the preimage of mappings
do. Then singling out of classical categorical structures from quantum one
should be done within a dagger category.

4.3 A topology for classical compression

Classical information theory [12], or more precisely, lossless compression
of strings in classical information has a topological structure if one draws
a graph of the information flow for copying/uncopying (fig. 5) and swap-
ping (fig. 6) of bits. An arbitrary string can be created an co-created (i.e. traced
back to its alphabet Σ = {0, 1}) in this way. See fig. 7.

If one considers entropy as a measure of how mixed-up a string is —as it
actually is— it is possible to assert that co-creation codifies entropy in some
way, just as lossless data compression is an estimate of entropy of a block
of data [13].

Figure 5: Bit copying from the binary alphabet Σ = {0, 1} to a binary string.

Figure 6: Bit swapping

As an example, run-length encoding (RLE) —used mainly for com-
pressing images— is a lossless data compression method that uses the logic
described in fig. 7, namely going from step 2 to step 3’. This method works
well when the alphabet of the string to be compressed is small and well
known a priori, which is reflected graphically by the connecting wires be-
tween alphabet an string in pre-processing step 0.

18



Figure 7: Creation and co-creation of an arbitrary bit string through copying, uncopying
and swapping. The white arrow indicates an unknown source of data manipulation that
involves a sequence of unknown swappings.

Next is an example of RLE compression on a string representing a row
of black and white in a fax machine:

RLE(”WWWWWBBBBBBWWWBBBWBWWWWWBBBBB”) = 5W6B3W3B1W1B5W5B (27)

It is possible to use the graphical setting to include arbitrary (finite) al-
phabets Σ e.g. Σ = {a, b, c, . . .}. Binary strings would then generalize
to sentences in formal languages L = Σ∗. The theory of formal languages
[14] possesses its own structures — automata and generating grammars—
that hierarchize classical information processing including the computabil-
ity limit, and identifies where the strings of symbols begin to be under-
standable only by a human being, i.e. strings that belong to natural language
[15]. Formal languages and classical information theory have natural lan-
guage as a common research topic [16].

Continuing in this same venue, non-statistical methods like RLE — the
so-called dictionary based methods [17][18]— require a complete knowledge
of the tokens in the string, which conform the dictionary i.e. the alphabet
Σ of tokens. Dictionaries can be static or non-static, the former meaning
is fixed a priori and continues fixed throughout the compression process.
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The compression depicted in fig.7 has a static dictionary. The mere need of
a dictionary in dictionary-based methods reflects the connecting topology
needed at all times in the graphical representation of compressing and co-
compressing.

Shannon himself makes use of the need of a connecting topology when
defining his compression method in his seminal paper [12], now known as
the Shannon–Fano Method. The first step of this compression algorithm
is to obtain the list of symbols in the string and calculate the frequency of
each, that is, to determine the dictionary or alphabet.

8 Suggestion. Lossless information compression can be thought of as a
surjective map. By definition, the compressed string can re-generate (co-
compress) the original string. This re-generation is a multi-map. A dagger
category should be able to accommodate compression and co-compression
as morphisms and hence relatable categorically to quantum phenomena
(cf. remarks 1 and 2). In this same spirit, any categorical structure — e.g. a
functor— that relates lossy and lossless compression should relate to com-
parable lossy (e.g. quantum measurement) and lossless (e.g. quantum gate)
quantum processes.
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5 Documentation for Quantomatic software

Quantomatics is a 2-tier system for reasoning about graphical languages
within the formalism of monoidal categories. In the “engine” or core — the
logic tier — the functional language ML is used. In the graphical user in-
terface — the presentation tier — the object-oriented language Java is used.

Currently Quantomatic software has a limited amount of documenta-
tion, mainly program source code listings. The documents that are partially
or totally included already in Quantomatic are indicated with an asterisk ∗.
As it grows, a system needs documentation so that users, developers and
architects know how to operate, update/mantain and re-design it, respec-
tively.

It is proposed in this report to add the full set of standard user an system
documentation [28]. Each of these is described next.

5.1 User documentation

For each of the following five types of user document there is a correspond-
ing user:

1. Functional description *.- This document describes the overall function-
ality of the system. The so called system evaluator user should be able
to decide whether to use the software or not from this document.

2. Installation document *.- This is intended for system administrators. It
should provide details of how to install the system and any additional
software or hardware, as well as how to start the system.

3. Introductory manual.- This is intended for novice users. It should pro-
vide an informal introduction to the system, how to get started as
well as describe its normal usage.

4. Reference manual.- This is intended for experienced users. It should de-
scribe the system facilities and their usage, as well as how to recover
from detected errors. Its description should be complete and formal.

5. System administrators guide.- Beside the installation document, sys-
tem administrators need to know any configurations not modifiable
by normal users. These configurations could involve, for instance,
network-related permissions or permissions on other systems which
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the current system interacts with. Also it should describe how to re-
cover from less-well known exceptions.

5.2 System documentation

This documentation includes all the documents that describe the system
itself, at many different levels:

1. Requirements.- Here the requirements made by the end user are ex-
plained. The language in this document involves mainly the business
logic rather than any logic from within the system. It describes the sta-
tus quo ante the system existed, and also where and how the system is
to be implemented.

2. Architecture and design.- This document can be seen as an interme-
diate step between the requirements and the technical details of the
system. It describes how it has been decided (usually by the architect
of the system) that the system will fulfill each of the requirements,
emphasizing the motivation behind the decisions. This document is
low on technicalities and high on explanation.

3. Technical documentation.- Here are contained the details of the code,
namely the description of what each module does, the types of their
inputs and outputs and how each of these modules interact. There
are three levels for technical documentation:

(a) Program.- Both an overall description and a description of the ar-
chitecture of each program. In Quantomatic, this amounts to a
description of — for instance — what each folder and each file
in the core folder is for. See fig. 8.

Figure 8: Folder structure of the core folder

(b) Component *.- Both an overall description and a description of
the architecture of each component. In Quantomatic this amounts
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to a description on the header of each of the .ml files. As indi-
cated by the asterisk, there is currently some documentation of
this sort. See fig. 9.

Figure 9: A piece of existing component code documentation in file
core\matching\match.ML

(c) Source code *.- Descriptions of each function and sub-procedure,
as well as important variables and complex sections of code. For
instance, in fig. 10 an example of current source code documen-
tation (between the “(∗” and the “∗)” symbols) is shown.

Figure 10: A piece of existing source code documentation in file
core\rewriting\ruleset rewriting.ML

4. Validation documents *.- These describe how each program is validated
—e.g. by giving the values used for testing— and how these tests
match the requirements. Currently there are some tests in Quan-
tomatic, an example of which can be seen in fig. 11.

Figure 11: An existing test in file core\theories\ruleset-test.ML

5. System maintenance guide.- Here known problems are described, as
well as pending solutions (the so called to-do’s) to be implemented.
Fig. 12 shows an existing current example of this in Quantomatic.
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Figure 12: A pending implementation in file core\theories\vertex-test.ML
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