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CHAPTER 1

Introduction and motivation

This book is intended to provide a basic introduction to some of the fundamental
ideas and results of representation theory. In this preliminary chapter, we start with
some motivating remarks and provide a general overview of the rest of the text; we also
include some notes on the prerequisites – which are not uniform for all parts of the notes
– and discuss the basic notation that we use.

In writing this text, the objective has never been to give the shortest or slickest proof.
To the extent that the author’s knowledge makes this possible, the goal is rather to
explain the ideas and the mechanism of thought that can lead to an understanding of
“why” something is true, and not simply to the quickest line-by-line check that it holds.

The point of view is that representation theory is a fundamental theory, both for
its own sake and as a tool in many other fields of mathematics; the more one knows,
understands and breathes representation theory, the better. This style (or its most ideal
form) is perhaps best summarized by P. Sarnak’s advice in the Princeton Companion to
Mathematics [22, p. 1008]:

One of the troubles with recent accounts of certain topics is that they
can become too slick. As each new author finds cleverer proofs or treat-
ments of a theory, the treatment evolves toward the one that contains
the “shortest proofs.” Unfortunately, these are often in a form that
causes the new student to ponder, “How did anyone think of this?”
By going back to the original sources one can usually see the subject
evolving naturally and understand how it has reached its modern form.
(There will remain those unexpected and brilliant steps at which one
can only marvel at the genius of the inventor, but there are far fewer
of these than you might think.) As an example, I usually recommend
reading Weyl’s original papers on the representation theory of compact
Lie groups and the derivation of his character formula, alongside one of
the many modern treatments.

So the text sometimes gives two proofs of the same result, even in cases where the
arguments are fairly closely related; one may be easy to motivate (“how would one try to
prove such a thing?”), while the other may recover the result by a slicker exploitation of
the formalism of representation theory. To give an example, we first consider Burnside’s
irreducibility criterion, and its developments, using an argument roughly similar to the
original one, before showing how Frobenius reciprocity leads to a quicker line of reasoning
(see Sections 2.7.3 and 2.7.4).

Acknowledgments. The notes were prepared in parallel with the course “Represen-
tation Theory” that I taught at ETH Zürich during the Spring Semester 2011. Thanks
are obviously due to all the students who attended the course for their remarks and inter-
est, in particular M. Lüthy, M Rüst, I. Schwabacher, M. Scheuss, and M. Tornier, and to
the assistants in charge of the exercise sessions, in particular J. Ditchen who coordinated
those. Thanks also to “Anonymous Rex” for a comment on a blog post, to U. Schapira
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for his comments and questions during the class, and to A. Venkatesh for showing me his
own notes for a (more advanced) representation theory class, from which I derived much
insight.

Thanks to the reviewers for the original book proposal for suggestions and comments
– in particular for some well-deserved critical comments concerning certain of the choices
of notation in the first version of the text, and for pointing out that Proposition 2.3.21
is false over non-algebraically closed fields.

1.1. Presentation

A (linear) representation of a group G is, to begin with, simply a homomorphism

% : G ÝÑ GLpEq

where E is a vector space over some field k and GLpEq is the group of invertible k-linear
maps on E. Thus one can guess that this should be a useful notion by noting how it
involves the simplest and most ubiquitous algebraic structure, that of a group, with the
powerful and flexible tools of linear algebra. Or, in other words, such a map attempts to
“represent” the elements of G as symmetries of the vector space E (note that % might
fail to be injective, so that G is not mapped to an isomorphic group).

But even a first guess would probably not lead to imagine how widespread and in-
fluential the concepts of representation theory turn out to be in current mathematics.
Few fields of mathematics, or of mathematical physics (or chemistry), do not make use
of these ideas, and many depend on representations in an essential way. We will try to
illustrate this wide influence with examples, taken in particular from number theory and
from basic quantum mechanics; already in Section 1.2 below we state four results, where
representation theory does not appear in the statements although it is a fundamental
tool in the proofs. Moreover, it should be said that representation theory is now a field
of mathematics in its own right, which can be pursued without having immediate appli-
cations in mind; it does not require external influences to expand with new questions,
results and concepts – but we will barely scratch such aspects.

The next chapter starts by presenting the fundamental vocabulary that is the foun-
dation of representation theory, and by illustrating it with examples. In Chapter 3, we
then present a number of short sections concerning variants of the definition of repre-
sentations: restrictions can be imposed on the group G, on the type of fields or vector
spaces E allowed, or additional regularity assumptions may be imposed on % when this
makes sense. One can also replace groups by other objects: we will mention associative
algebras and Lie algebras. These variants are all important topics in their own right, but
some will only reappear briefly in the rest of the book.

Continuing, Chapter 4 is an introduction to the simplest case of representation theory:
the linear representations of finite groups in finite-dimensional complex vector spaces.
This is also historically the first case that was studied in depth by Dirichlet (for finite
abelian groups), then Frobenius, Schur, Burnside, and many others. It is a beautiful
theory, and has many important applications. It can also serve as “blueprint” to many
generalizations: various facts, which are extremely elementary for finite groups, remain
valid, when properly framed, for important classes of infinite groups.

Among these, the compact topological groups are undoubtedly those closest to finite
groups, and we consider them in the following chapter. Then another chapter presents
some concrete examples of applications involving compact Lie groups (compact matrix
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groups, such as unitary groups UnpCq) – the most important being maybe the way rep-
resentation theory explains a lot about the way the most basic atom, Hydrogen, behaves
in the real world...

The final chapter has again a survey flavor, and is intended to serve as introduction
to two other important classes of groups: algebraic groups, on the one hand, and non-
compact locally compact groups, on the other hand. This last case is illustrated through
the fundamental example of the group SL2pRq of two-by-two real matrices with determi-
nant 1. We use it primarily to illustrate some of the striking new phenomena that arise
when compactness is missing.

In an Appendix, we have gathered statements and sketches of proofs for certain
facts, especially the Spectral Theorem for compact self-adjoint linear operators, which
are needed for rigorous treatments of unitary representations of topological groups.

Throughout, we also present some examples by means of exercises. These are usually
not particularly difficult, but we hope they will help the reader to get acquainted with
the way of thinking that representation theory often suggests for certain problems.

1.2. Four motivating statements

Below are four results, taken in very different fields, which we will discuss again later
(or sometimes only sketch when very different ideas are also needed). The statements
do not mention representation theory, in fact two of them do not even mention groups
explicitly. Yet they are proved using these tools, and they serve as striking illustrations
of what can be done using representation theory.

Example 1.2.1 (Primes in arithmetic progressions). Historically, the first triumph of
representation theory is the proof by Dirichlet of the existence of infinitely many prime
numbers in an arithmetic progression, whenever this is not clearly impossible:

Theorem 1.2.2 (Dirichlet). Let q ě 1 be an integer and let a ě 1 be an integer
coprime with q. Then there exist infinitely many prime numbers p such that

p ” a pmod qq,

i.e., such that p is of the form p “ nq ` a for some n ě 1.

For instance, taking q “ 10k to be a power of 10, we can say that, for whichever ending
pattern of digits d “ d1d2 ¨ ¨ ¨ dk´1 we might choose, with di P t0, 1, 2, 3, 4, 5, 6, 7, 8, 9u,
provided the last digit dk´1 is not one of t0, 2, 4, 5, 6, 8u, there exist infinitely many prime
numbers p with a decimal expansion where d are the final digits. To illustrate, taking
q “ 1000, d “ 237, we find

1237, 2237, 5237, 7237, 8237, 19237, 25237, 26237, 31237, 32237,

38237, 40237, 43237, 46237, 47237, 52237, 56237, 58237, 64237,

70237, 71237, 73237, 77237, 82237, 85237, 88237, 89237, 91237, 92237

to be those prime numbers ending with 237 which are ď 100000.
We will present the idea of the proof of this theorem in Chapter 4. As we will see,

a crucial ingredient (but not the only one) is the simplest type of representation theory:
that of groups which are both finite and commutative. In some sense, there is no better
example to guess the power of representation theory than to see how even the simplest
instance leads to such remarkable results.
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Example 1.2.3 (The hydrogen atom). According to current knowledge, about 75%
of the observable weight of the universe is accounted for by hydrogen atoms. In quantum
mechanics, the possible states of an (isolated) hydrogen atom are described in terms of
combinations of “pure” states, and the latter are determined by discrete data, tradition-
ally called “quantum numbers” – so that the possible energy values of the system, for
instance, form a discrete set of numbers, rather than a continuous interval.

Precisely, in the non-relativistic theory, there are four quantum numbers for a given
pure state of hydrogen, denoted pn, `,m, sq – “principal”, “angular momentum”, “mag-
netic” and “spin” are their usual names – which are all integers, except for s, with the
restrictions

n ě 1, 0 ď ` ď n´ 1, ´` ď m ď `, s P t´1{2, 1{2u.

It is rather striking that much of this quantum-mechanical model of the hydrogen
atom can be “explained” qualitatively by an analysis of the representation theory of
the underlying symmetry group (see [59] or [53]), leading in particular to a natural
explanation of the intricate structure of these four quantum numbers! We will attempt
to explain the easiest part of this story, which only involves the magnetic and angular
momentum quantum numbers, in Section 6.4.

Example 1.2.4 (“Word” problems). For a prime number p, consider the finite group
SL2pFpq of square matrices of size 2 with determinant 1, and with coefficients in the finite
field Fp “ Z{pZ. This group is generated by the two elements

(1.1) s1 “

ˆ

1 1
0 1

˙

, s2 “

ˆ

1 0
1 1

˙

,

(this is a fairly easy fact from elementary group theory, see, e.g., [46, Th. 8.8] for
K “ Fp or Exercise 4.6.20.) Certainly the group is also generated by the elements of the
set S “ ts1, s

´1
1 , s2, s

´1
2 u, and in particular, for any g P SL2pFpq, there exists an integer

k ě 1 and elements g1, . . . , gk, each of which belongs to S, such that

g “ g1 ¨ ¨ ¨ gk.

One may ask, how large can k be, at worse? The following result gives an answer:

Theorem 1.2.5 (Selberg, Brooks, Burger). There exists a constant C ě 0, indepen-
dent of p and g, such that, with notation as above, we have

k ď C log p

in all cases.

All proofs of this result depend crucially on ideas of representation theory, among
other tools. And while it may seem to be rather simple and not particularly worth
notice, the following open question should suggest that there is something very subtle
here:

Problem. Find an efficient algorithm that, given p and g P SL2pFpq, explicitly gives
k ď C log p and a sequence pg1, . . . , gkq in S such that

g “ g1 ¨ ¨ ¨ gk.

For instance, how would you do with

g “

ˆ

1 pp´ 1q{2
0 1

˙
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(for p ě 3)? Of course, one can take k “ pp ´ 1q{2 and gi “ s1 for all i, but when p is
large, this is much larger than what the theorem claims to be possible!

We will not prove Theorem 1.2.5, nor really say much more about the known proofs.
However, in Section 4.7.1, we present more elementary results of Gowers [21] (and
Nikolov–Pyber [43]) which are much in the same spirit, and use the same crucial in-
gredient concerning representations of SL2pFpq. The book [12] of Davidoff, Sarnak and
Valette gives a complete elementary proof, and is fully accessible to readers of this book.

In these three first examples, it turns out that representation theory appears in a
similar manner: it is used to analyze functions on a group, in a way which is close to the
theory of Fourier series or Fourier integrals – indeed, both of these can also be understood
in terms of representation theory for the groups R{Z and R, respectively (see Section 7.3).
The next motivating example is purely algebraic:

Example 1.2.6 (Burnside’s paqb theorem). Recall that a group G is called solvable if
there is an increasing sequence of subgroups

1ŸGk ŸGk´1 Ÿ ¨ ¨ ¨ ŸG1 ŸG “ G0,

each normal in the next (but not necessarily in G), such that each successive quotient
Gk{Gk`1 is an abelian group.

Theorem 1.2.7 (Burnside). Let G be a finite group. If the order of G is divisible by
at most two distinct prime numbers, then G is solvable.

This beautiful result is sharp in some sense: it is well-known that the symmetric group
S5 of order 5! “ 120 is not solvable, and since 120 is divisible only by the primes 2, 3
and 5, we see that the analogue statement with 2 prime factors replaced with 3 is not
true. (Also it is clear that the converse is not true either: any abelian group is solvable,
and there are such groups of any order.)

This theorem of Burnside will be proved using representation theory of finite groups
in Section 4.7.2 of Chapter 4, in much the same way as Burnside proceeded in the early
20th century. It is only in the late 1960’s that a proof not using representation theory
was found, first by Goldschmidt when the primes p and q are odd, and then by Bender
and Matsuyama independently for the general case. There is a full account of this in [26,
§7D], and although it is not altogether overwhelming in length, the reader who compares
will probably agree that the proof based on representation theory is significantly easier
to digest...

Remark 1.2.8. There are even more striking results, which are much more difficult;
for instance, the famous “Odd-order Theorem” of Feit and Thompson states that if G
has odd order, then G is necessarily solvable.

1.3. Prerequisites and notation

In Chapters 2 and 4, we depend only on the content of a basic graduate course in
algebra: basic group theory, abstract linear algebra over fields, polynomial rings, finite
fields, modules over rings, bilinear forms, and the tensor product and its variants. In
later chapters, other structures are involved: groups are considered with a topology,
measure spaces and integration theory is involved, as well as basic Hilbert space theory
and functional analysis. All these are considered at the level of introductory graduate
courses.

We will use the following notation:

5



(1) For a set X, |X| P r0,`8s denotes its cardinal, with |X| “ 8 if X is infinite.
There is no distinction in this text between the various infinite cardinals.

(2) We denote by R`,ˆ the interval s0,`8r seen as a subgroup of the multiplicative
group Rˆ.

(3) If k is a field and d ě 1 an integer, an element of GLdpkq (or of GLpEq where E
is a finite-dimensional k-vector space) is called unipotent if there exists n ě 1 such that
pu´ Idkq

n “ 0.
(4) Given a ring A, with a unit 1 P A, and A-modules M and N , we denote by

HompM,Nq or HomApM,Nq the space of A-linear maps from M to N .
(5) If E is a vector space over a field k, E 1 denotes the dual space HomkpE, kq. We

often use the duality bracket notation for evaluating linear maps on vectors, i.e., for v P E
and λ P E 1, we write

xλ, vy “ λpvq.

(6) For f : M Ñ N a map of A-modules, Kerpfq and Impfq denote the kernel and
the image of f respectively.

(7) Given A and M , N as above, M b N or M bA N denotes the tensor product of
M and N . Recall that M bN can be characterized up to isomorphism by the existence
of canonical isomorphisms

HomApM bN,N1q » BilpM ˆN,N1q

for any A-module N1, where the right-hand side is the A-module of all A-bilinear maps

β : M ˆN Ñ N1.

In particular, there is a bilinear map

β0 : M ˆN ÝÑM bN

which corresponds to N1 “ M bN and to the identity map in HomApM bN,N1q. One
writes v b w instead of β0pv, wq.

The elements of the type vbw inMbN are called pure tensors. Note that, usually, not
all elements in the tensor product are pure tensors and that one can have vbw “ v1bw1

even if pv, wq ­“ pv1, w1q.
If A “ k is a field, and peiq, pfjq are bases of the k-vector spaces M and N , respectively,

then pei b fjq is a basis of M bN . Moreover, any v PM bN has a unique expression

v “
ÿ

j

vj b fj

with vj PM for all j.
(8) Given a ring A and A-modules given with linear maps

M 1 f
ÝÑM

g
ÝÑM 1,

the sequence is said to be exact if Impfq “ Kerpgq in M . In particular, a sequence

0 ÝÑM 1 f
ÝÑM

is exact if and only if Kerpfq “ 0, which means that f is injective, and a sequence

M
g
ÝÑM2

ÝÑ 0

is exact if and only if Impgq “ Kerp0q “M2, i.e., if and only if g is surjective.
A sequence

0 ÝÑM 1 f
ÝÑM

g
ÝÑM2

ÝÑ 0
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where all three intermediate 3-terms sequences are exact is called a short exact sequence;
this means that f is injective, g is surjective and the image of f coincides with the kernel
of g.

(9) Given a group G, we denote by rG,Gs the commutator group (or derived sub-
group) of G, which is generated by all commutators rg, hs “ ghg´1h´1 (note that not all
elements of rG,Gs are themselves commutators, see Remark 4.4.5 for examples!) The
subgroup rG,Gs is normal in G, and the quotient group G{rG,Gs is abelian; it is called
the abelianization of G.

(10) We denote by Fp the finite field Z{pZ, for p prime, and more generally by Fq a
finite field with q elements, where q “ pn, n ě 1, is a power of p. In Chapter 4, we need
some simple facts about these, in particular the fact that for each n ě 1, there is – up to
isomorphism – a unique extension k{Fp of degree n, i.e., a finite field k of order q “ pn.
An element x P k is in Fp if and only if xp “ x (e.g., because the equation Xp ´X “ 0
has at most p roots, and all x P Fp are roots), and the group homomorphism

N “ Nk{Fp

"

kˆ ÝÑ Fˆp
x ÞÑ

śn´1
j“0 x

pj

(called the norm from k to Fp) is well-defined and surjective (it is well defined because
one checks that Npxqp “ Npxq, and surjective, e.g., because the kernel is defined by a
non-zero polynomial equation of degree at most 1` p` p` ¨ ¨ ¨ ` pn´1 “ ppn´ 1q{pp´ 1q,
and hence contains at most that many elements, so the image has at least p´1 elements.)
Moreover, the kernel of the norm is the set of all x which can be written as y{yp for some
y P kˆ.

Similarly, the homomorphism of abelian groups

Tr “ Trk{Fp

"

Fq ÝÑ Fp

x ÞÑ x` xp ` ¨ ¨ ¨ ` xp
n´1

is well-defined and is surjective; it is called the trace from k to Fp.
(11) When considering a normed vector space E, we usually denote the norm by

}v}, and sometimes write }v}E, when more than one space (or norm) are considered
simultaneously.

(12) When considering a Hilbert space H, we speak synonymously of an inner product
or of a positive-definite hermitian form, which we denote x¨, ¨y, or x¨, ¨yH if more than one
space might be understood. We use the convention that a hermitian form is linear in the
first variable, and conjugate-linear in the other, i.e., we have

xαv, wy “ αxv, wy, xv, αwy “ ᾱxv, wy,

for two vectors v, w and a scalar α P C. We recall that a Hilbert space is separable if it has
a finite or countable orthonormal basis. If T : H1 ÝÑ H2 is a continuous (synonymously,
bounded) linear operator between Hilbert spaces, the adjoint of T is the unique linear
operator T ˚ : H2 ÝÑ H1 such that

xT pv1q, v2yH2 “ xv1, T
˚
pv2qyH1

for all v1 P H1 and v2 P H2. The operator T is called self-adjoint if and only if T ˚ “ T ,
and unitary if and only if TT ˚ “ T ˚T “ Id.

(13) We will always consider Hausdorff topological spaces, except if explicitly men-
tioned otherwise (this will only happen in Section 7.1).

(14) A Borel measure on a topological space X is a measure defined on the σ-algebra
of Borel sets. A Radon measure is a Borel measure which is finite on compact subsets of
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X, and which satisfies the regularity conditions

µpAq “ inftµpUq | U Ą A, U openu, for all Borel sets A

µpUq “ suptµpKq | K Ă U, K compactu, for all open sets U

(see, e.g., [17, §7.1]); if X is σ-compact (for instance, if X is a separable metric space)
then in fact these regularity conditions are automatically satisfied (see, e.g., [17, Th.
7.8]).

(15) The support of a Borel measure µ is the set in X defined as the complement of
the union of all open sets U in X such that µpUq “ 0 (this definition is useful if either X
has a countable basis of open sets, for instance X “ R, or if µ is a Radon measure, since
in those cases the support of µ is closed; see, e.g., [17, Exercise 2, p. 208]).

(16) The integral of a non-negative measurable function f , or of an integrable function
f , with respect to µ, is denoted by either of the following

ż

X

fpxqdµpxq “

ż

X

fdµ.

(17) If ϕ : X ÝÑ Y is a measurable map between two measure spaces, and µ is a
measure on X, then the image measure ν “ ϕ˚µ on Y is defined by

νpBq “ µpϕ´1
pBqq

for B Ă Y measurable, or equivalently by the integration formula
ż

Y

fpyqdνpyq “

ż

X

fpϕpxqqdµpxq

for any f : Y ÝÑ C which is integrable (or measurable and ě 0).
(18) Finally, a probability measure µ on an arbitrary measure space X is a measure

such that µpXq “ 1; the measure µpAq of a measurable subset A Ă X is then also called
the probability of A.
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CHAPTER 2

The language of representation theory

2.1. Basic language

We begin by restating formally the definition:

Definition 2.1.1 (Linear representation). Let G be a group and let k be a field. A
linear representation of G, defined over k, is a group homomorphism

% : G ÝÑ GLpEq

where E is a k-vector space. The dimension of E is called the dimension of %, or sometimes
its degree, or rank. We will denote it dimp%q.

Remark 2.1.2. It is also customary to just say that % is a k-representation ofG, and to
omit mentioning the field k if it is clear from context. Similarly, when the homomorphism
% is clear from context, one may say only that “E is a representation of G”. Another
common alternative notation is “let p%, Eq be a k-representation of G”.

Given a representation % : G ÝÑ GLpEq, and an element g P G, we usually write

%pgqv

for the image of v P E under the linear transformation %pgq. Such vectors are also
sometimes called G-translates of v (or simply translates of v, when the context is clear).
Similarly, when % is clearly understood, one may simply write

gv “ %pgqv, or g ¨ v “ %pgqv.

The basic rules that % satisfies are then the relations

%p1qv “ v pghqv “ %pghqv “ %pgqp%phqvq “ gphvq,(2.1)

g´1
pgvq “ %pg´1

qp%pgqvq “ v(2.2)

for all g, h P G and v P E, in addition to the linearity of %pgq for a given g.
This notation emphasizes the fact that % is also the same as a left-action of the group

G on the vector space E, the action being through linear maps (instead of arbitrary
bijections of E). In this viewpoint, one thinks of % as the equivalent data of the map

"

Gˆ E ÝÑ E
pg, vq ÞÑ g ¨ v.

It should be already clear that representations exist in plenty – they are not among
those mathematical objects that are characterized by their rarity. For instance, obviously,
any subgroup G of GLpEq can be thought of as being given with a natural (“tautological”
is the adjective commonly used) representation

G ãÑ GLpEq.

In a different style, for any group G and field k, we can form a vector space, denoted
kpGq, with a basis pegqgPG indexed by the elements of G (i.e., the k-vector space freely
generated by the set G; if G is infinite, note that kpGq is infinite-dimensional). Then we
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may let G act linearly on kpGq by describing a transformation πGpgq through its action
on the basis vectors: we define

(2.3) πGpgqeh “ egh

for all g P G and all basis vectors eh. Then to check that πG is a linear representation of
G on E, it is enough to check (2.1). This is a simple exercise – we give details merely
for completeness, but readers should attempt to perform this check, at least in a first
reading. First, it is clear that πGp1q acts as identity on the basis vectors, and hence is
the identity transformation. Now, given g1, g2 P G and a basis vector eh, its image under
πGpg1g2q is eg1g2h by definition. And since πGpg2qeh is the basis vector eg2h, we also have

πGpg1qpπGpg2qehq “ eg1g2h “ πGpg1g2qeh

which, h being arbitrary, means that πGpg1g2q “ πGpg1qπGpg2q. By taking g2 “ g´1
1 this

confirms that πG is a homomorphism into GLpkpGqq.
Another easily defined representation is the right-regular representation, or simply

regular representation %G of G over k: let1 CkpGq be the space of all functions

f : GÑ k

(with pointwise addition and scalar multiplication of functions; we will often write CpGq
for CkpGq when the field is clear in context). One defines %Gpgq acting on CkpGq by the
rule

%Gpgqfpxq “ fpxgq

for all f P CkpGq, g P G, where x P G is the point at which the new function %Gpgqf P
CkpGq is evaluated. It is again a simple matter – that the reader should attempt, if
only because the order of evaluation might seem to be wrong! – to check that %G is a
representation: for f P E, g, h P G, we get that %Gpghqf maps x to

%Gpghqfpxq “ fpxghq,

while, %Gphqf being the function f1 : y ÞÑ fpyhq, we see that %Gpgq%Gphqf “ %Gpgqf1

maps x to

f1pxgq “ fppxgqhq “ fpxghq,

which completes the check that %Gpghq “ %Gpgq%Gphq.

Exercise 2.1.3. (1) Show that the formula λGpgqfpxq “ fpg´1xq defines also a rep-
resentation of G on CkpGq. It is called the left-regular representation λG of G (over
k).

(2) Show that the formula

%pg, hqfpxq “ fpg´1xhq

defines a representation % of GˆG on CkpGq.

In the previous examples, the representation map % is injective (it is clear in the second
case and easily checked in the third). This is certainly not always the case: indeed, for
any group G and field k, there is also a “trivial” representation of G of degree 1 defined
over k, which simply maps every g P G to 1 P kˆ “ GLpkq. Obviously, this is not injective
unless G “ 1. Note that one shouldn’t dismiss this trivial representation as obviously
uninteresting: as we will see quite soon, it does have an important role to play.

Still we record the names of these two types of representations:

1 The notation is not completely standard.
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Definition 2.1.4 (Faithful and trivial representations). Let G be a group and let k
be a field.

(1) A representation % of G defined over k is faithful if % is injective, i.e., if Kerp%q “ t1u
in G.

(2) A representation % of G on a k-vector space E is trivial if %pgq “ 1 is the identity
map of E for all g P G, i.e., if Kerp%q “ G.

Remark 2.1.5. Sometimes only the representation of degree 1 (with E “ k) mapping
g to 1 P kˆ is called “the” trivial representation. We will denote by 1 this one-dimensional
representation (when G and k are clear in context, or 1G if only k is).

These examples are extremely general. Before continuing, here are others which are
extremely specific – but still very important. We take k “ C; then we have the exponen-
tial z ÞÑ ez, which is a group homomorphism from pC,`q to pCˆ, ¨q, or in other words, to
GL1pCq “ GLpCq. This means the exponential is a 1-dimensional representation (over
C) of the additive group of the complex numbers. One can find variants:

‚ If G “ R or C, then for any s P C, the map

(2.4) χs : x ÞÑ esx

is a one-dimensional representation.
‚ If G “ R{Z, then for any m P Z, the map

(2.5) em : x ÞÑ e2iπmx

is a one-dimensional representation of G (one must check that this is well-defined
on R{Z, but this is the case since e2iπmn “ 1 for any n P Z; indeed, no other
representation χs of R, for s P C, has this property since χsp1q “ 1 means
es “ 1.)

‚ If q ě 1 is an integer and G “ Z{qZ if the additive group of integers modulo q,
then for any m P Z{qZ, the map

(2.6) x ÞÑ e2iπmx{q

is well-defined and it is a one-dimensional representation of G. Indeed, note that
e2iπm̃x{q is independent of the choice of a representative m̃ P Z of m P Z{qZ,
since replacing m̃ by m̃` kq just multiplies the value by e2iπxk “ 1.

More examples, many of which are defined without the intermediate results and lan-
guage, can be found in Section 2.6, and some readers may want to read that section first
(or at least partly) to have some more concrete examples in mind.

Although one can thus see that there are “many” representations in a certain sense,
as soon as we try to “compare” them, the impression emerges that this abundance is –
for given G and field k – of the same type as the abundance of vector spaces (in contrast
with, for instance, the similarly striking abundance of k-algebras): although they may
arise in every corner, many of them are actually the same. In other words, quite often,
the representations of G over k can be classified in a useful way. To go into this, we must
explain how to relate possibly different representations.

Definition 2.1.6 (Morphism of representations). Let G be a group and let k be a
field. A morphism, or homomorphism, between representations %1 and %2 of G, both
defined over k and acting on the vector spaces E1 and E2, respectively, is a k-linear map

Φ : E1 ÝÑ E2

11



such that
Φp%1pgqvq “ %2pgqpΦpvqq P E2,

for all g P G and v P E1. One also says that Φ intertwines %1 and %2, or is an an

intertwining operator, or intertwiner, between them, and one may denote this by %1
Φ
ÝÑ

%2.

This definition is also better visualized as saying that, for all g P G, the square
diagram

E1
Φ
ÝÑ E2

%1pgq Ó Ó %2pgq

E1
Φ
ÝÑ E2

of linear maps commutes, or – even more concisely – by omitting the mention of the
representations and writing

Φpg ¨ vq “ g ¨ Φpvq

for g P G, v P E1.
It is also easy to see that the set of homomorphisms from %1 to %2, as representations

of G, is a k-vector subspace of HompE1, E2q, which we denote HomGp%1, %2q. (This vector
space may of course be reduced to 0.)

The following are simple facts, but they are also of crucial importance:

Proposition 2.1.7 (Functoriality). Let G be a group and k a field.
(1) For any representation % of G and a vector space E, the identity map on E is a

homomorphism % ÝÑ %.
(2) Given representations %1, %2 and %3 on E1, E2 and E3 respectively, and morphisms

E1
Φ1
ÝÑ E2

Φ2
ÝÑ E3,

the composite E1
Φ2˝Φ1
ÝÑ E3 is a morphism between %1 and %3.

Remark 2.1.8 (The category of representations). In the language of category theory
(which we will only use incidentally in remarks in this book), this proposition states that
the representations of a given group G over a given field k are the objects of a category
with morphisms given by the intertwining linear maps.

If a morphism Φ is a bijective linear map, its inverse Φ´1 is also a morphism (between
%2 and %1), and it is therefore justified to call Φ an isomorphism between %1 and %2.
Indeed, using the diagram above, we find that the relation

%2pgq ˝ Φ “ Φ ˝ %1pgq

is equivalent in that case to

Φ´1
˝ %2pgq “ %1pgq ˝ Φ´1,

which is the desired fact that Φ´1 be an intertwining operator between %2 and %1.
As another general example, if a vector subspace F Ă E is stable under all opera-

tors %pgq (i.e., %pgqpF q Ă F for all g P G), then the restriction of %pgq to F defines a
homomorphism

%̃ : G ÝÑ GLpF q,

which is therefore a k-representation of G, and the inclusion linear map

i : F ãÑ E

is a morphism of representations. One speaks, naturally, of a subrepresentation of % or,
if the action is clear in context, of E itself.
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Example 2.1.9 (Trivial subrepresentations). Consider the case where F is the space
of all vectors v P E which are pointwise invariant under G: v P F if and only if

g ¨ v “ v for all g P G.

Because G acts by linear maps on E, this subspace F , also denoted F “ EG, is a
linear subspace of E and a subrepresentation of %. Note that the representation of G on
EG is trivial, in the sense of Definition 2.1.4. This means that if n is the dimension2 of
EG, and if 1n “ kn denotes the k-vector space of dimension n with a trivial action of G,
we have an isomorphism

1n
„
ÝÑ EG

(by fixing any basis of EG). Of course, it is possible – and is frequently the case – that
EG “ 0.

This space of invariants is the largest subrepresentation of E (for inclusion) which is
trivial. More individually, any non-zero vector v P E which is invariant under G defines
a trivial subrepresentation of dimension 1, i.e., an injective morphism

"

1 ãÑ E
t ÞÑ tv

of representations. This gives a k-linear isomorphism

(2.7) EG
» HomGp1, Eq

(the reciprocal map sending Φ : 1 Ñ E to Φp1q).
Because fixed points or invariant vectors of various kinds are often of great importance,

we see here how useful the trivial representation can be. To give a simple – but very useful
– example, the invariant subspace of the regular representation is the one-dimensional
subspace of constant (k-valued) functions on G: if ϕ P CkpGq

G, we have

ϕpxq “ %Gpgqϕpxq “ ϕpxgq

for all x and g, and taking x “ 1 shows that ϕ is constant.
On the other hand, note that kpGqG is zero if G is infinite, and one-dimensional,

generated by
ÿ

gPG

eg P kpGq

if G is finite.

Example 2.1.10 (One-dimensional representations). A one-dimensional k-representation
χ of a group G is simply a homomorphism χ : G ÝÑ kˆ (this is because, for any 1-
dimensional k-vector space, there is a canonical isomorphism kˆ ÝÑ GLpV q, obtained by
mapping λ P kˆ to λId). Generalizing Example 2.1.9, which corresponds to χ “ 1, for an

arbitrary k-representation % : G ÝÑ GLpV q, a non-zero intertwiner χ
Φ
ÝÑ % corresponds

to the data of a non-zero vector v P V such that

Φpgqv “ χpgqv

for all g P G (the reader should check this elementary fact). This means exactly that v is
a common eigenvector for all operators %pgq. For instance, χ itself, if seen as a k-valued
function on G, is an element of CkpGq which corresponds to an intertwiner χ ÝÑ CkpGq,
as the reader should check.

2Ẇhich may be finite or infinite.
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Example 2.1.11 (Invariants under normal subgroups). Consider again a k-representa-
tion % of G, acting on E. The space EG of invariants is a subrepresentation, obviously
trivial, as in Example 2.1.9. A very useful fact is that if we take the vectors invariant
under a normal subgroup of G we still obtain a subrepresentation of E, though not a
trivial one usually.

Lemma 2.1.12 (Invariants under normal subgroups). Let k be a field, let G be a group
and H Ÿ G a normal subgroup. Then for any k-representation % of G acting on E, the
subspace

EH
“ tv P E | %phqv “ v for all h P Hu

is a subrepresentation of %.

Proof. Let v P EH and g P G. We want to check that w “ %pgqv P EH , and for this
we pick h P H and we write simply

%phqw “ %phgqv “ %pgq%pg´1hgqv,

and since h1 “ g´1hg is in H (because H is normal by assumption) and v P EH , we get
%phqw “ %pgqv “ w as desired. �

The reader should look for examples where H is not normal and EH is not stable
under the action of G, as well as for examples where EH is not a trivial representation
of G.

Example 2.1.13 (Regular representation). Consider the two examples of representa-
tions πG and %G associated to a group G and field k that were discussed just after the
Definition 2.1.1. We claim that πG (acting on kpGq) is isomorphic to a subrepresentation
of %G (acting on CpGq). To see this, we define Φ : kpGq Ñ CpGq by mapping a basis
vector eg, g P G, to the characteristic function of the single point g´1, in other words

Φpegqpxq “

#

1 if x “ g´1,

0 otherwise.

The linear map defined in this way is injective – indeed, Φpvq is the function mapping
g P G to the coefficient of the basis element eg´1 in the expression of v, and can only
be identically zero if v is itself 0 in kpGq. We check now that Φ is a morphism of
representations. In kpGq, we have g ¨ eh “ egh, and in CpGq, we find that g ¨ Φpehq “
%GpgqΦpehq maps x to

Φpehqpxgq “

#

1 if xg “ h´1, i.e., if x “ h´1g´1 “ pghq´1,

0 otherwise.

which precisely says that
Φpg ¨ ehq “ g ¨ Φpehq.

The map Φ is an isomorphism if G is finite, but not otherwise; indeed, the image
ImpΦq is always equal to the subspace of functions which are zero except at finitely many
points.

Remark 2.1.14. The last example makes it fairly clear that our basic definitions
will require some adaptations when infinite groups are considered. Typically, if G has a
topological structure – compatible with the group operation – the regular representation
will be restricted to functions with a certain amount of smoothness or regularity. We will
come back to this in Chapter 3 (and later).
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We will now discuss the basic formalism of representation theory – roughly speaking,
how to manipulate some given representation or representations to obtain new ones. This
involves different aspects, as one may try to operate at the level of the vector space E,
or of the group G, or even of the field k. The latter is of less importance in this book,
but we will mention it briefly nevertheless. The other two are, however, of fundamental
importance.

2.2. Formalism: changing the space

This part of the formalism is the most straightforward. The basic philosophy is simply
that essentially any operation of linear or multilinear algebra can be performed on a space
E on which a group G acts in such a way that G has a natural action on the resulting
space. This is particularly transparent when interpreting representations of G as modules
over the group algebra, as explained in Chapter 3, but we will present the basic examples
from scratch. However, before reading further, we suggest to the reader that she try to
come up with the definition of the following objects (where the field k and the group G
are always fixed):
– Quotients of representations, sum and intersection of subrepresentations;
– The kernel and image of a morphism of representations;
– Exact sequences, and in particular, short exact sequences, of representations;
– The direct sum of representations;
– The tensor product of two representations;
– The symmetric powers or alternating powers of a representation;
– Given a representation % acting on E, the dual (also called contragredient) of % acting
on the linear dual space E 1 “ HomkpE,Kq, and the associated representation of G acting
on the space of k-linear maps EndkpEq “ HomkpE,Eq.

As will be seen, only the last one may be not entirely obvious, and this is because
there are in fact two possible answers (though, as we will explain, one of them is much
more interesting and important).

Here is an abstract presentation of the mechanism at work; although we will give full
details in each case, it is also useful to see that a single process is at work.

Proposition 2.2.1 (Functorial representations). Let k be a field and G a group. Let
T be any covariant functor on the category of k-vector spaces, i.e., any rule assigning a
vector space T pEq to any k-vector space E, and a map

T pfq : T pE1q Ñ T pE2q

to any linear map f : E1 Ñ E2, with the properties that

(2.8)

#

T pf ˝ gq “ T pfq ˝ T pgq,

T p1Eq “ 1T pEq.

Then given a k-representation

% : G ÝÑ GLpEq,

the vector space T pEq has a linear action

π “ T p%q : G ÝÑ GLpT pEqq

given by

πpgq “ T p%pgqq.
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Moreover, for any homomorphism %1
Φ
ÝÑ %2 of representations of G, the k-linear map

T pΦq is a homomorphism T p%1q ÝÑ T p%2q, and this construction is compatible with com-
position and identity. In particular, T p%q depends, up to isomorphism of representations,
only on the isomorphism class of % itself.

This is a direct translation of the “functoriality” property of morphisms of represen-
tations noted in Proposition 2.1.7.

2.2.1. Quotients, kernels, images,. . . We have defined subrepresentations al-
ready. The operation of sum and intersection of subspaces, when applied to subrep-
resentations, lead to other subrepresentations.

Quotients are equally natural objects to consider. Given a representation % of G on
E, and a subspace F Ă E which is a subrepresentation of E, or in other words, such that
%pgq always leaves F invariant, the quotient vector space H “ E{F also has a natural
linear action of G, simply induced by %: given v P H and g P G, the action g ¨ v is the
image in H of %pgqṽ for any ṽ P E mapping to v under the canonical projection map
E Ñ H. This is well-defined because if ṽ1 is another such vector, we have ṽ1 “ ṽ ` w
with w P F , hence

%pgqṽ1 ´ %pgqṽ “ %pgqw

also lies in F , and has image 0 in H.
Another global description of this action is that it is such that the projection map

E ÝÑ H “ E{F

is then a morphism of representations, just like the inclusion map F ÝÑ E is one.
In the same vein, given a morphism

Φ : E1 ÝÑ E2

of k-representations of G, we can see that the standard vector spaces associated to Φ are
all themselves representations of G:
– The kernel KerpΦq Ă E1 is a subrepresentation of E1;
– The image ImpΦq Ă E2 is a subrepresentation of E2;
– The natural linear isomorphism

E1{KerpΦq » ImpΦq

(induced by Φ) is an isomorphism of representations;
– The cokernel CokerpΦq “ E2{ ImpΦq is a representation of G, as quotient of two repre-
sentations.

These facts are consequences of the definitions, and specifically of the linearity of the
actions of G.

2.2.2. Coinvariants. If we go back to Example 2.1.9, and in particular the identi-
fication (2.7) of the homomorphisms from 1 to a representation %, one may ask if there
is a similar description of the space

HomGpE,1q

of homomorphisms from % to the trivial one.

By definition, an element in this space is a k-linear form E
λ
ÝÑ k such that for all

v P E and g P G, we have

λpg ¨ vq “ λpvq.
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This condition is equivalent with kerpλq Ą E1, where E1 is the subspace of E spanned
by all vectors of the form

g ¨ v ´ v, g P G, v P E,

or equivalently it corresponds to a linear form

E{E1 ÝÑ k

“extended” to E by composition E ÝÑ E{E1 ÝÑ k.
Note that E1 is also a subrepresentation of %, since

(2.9) h ¨ pg ¨ v ´ vq “ hg ¨ v ´ h ¨ v “ phgh´1
qv1 ´ v1

with v1 “ h ¨ v. Hence E{E1 has an induced structure of representation of G. In fact,
this action on E{E1 is trivial, since g ¨ v “ v modulo E1 for all g and v.

The space E{E1 is called the space of coinvariants of %, and is denoted EG. It is the
“largest” quotient of % which is a trivial representation of G (like the invariant space, it
may well be zero) and by the above, we can write

HomGp%,1q » HomkpEG, kq,

which identifies the space of homomorphisms to the trivial representation with the linear
dual vector space of the coinvariant space.

Exercise 2.2.2. Show that if H Ÿ G, the H-coinvariant space EH has an induced
structure of representation ofG. (This is the analogue, for the coinvariants, of Lemma 2.1.12.)

2.2.3. Direct sums, exact sequences, irreducibility and semisimplicity. The
simplest operation that can be performed on representations is the direct sum. Given G
and k, as usual, and k-representations %1, %2 of G on E1 and E2, respectively, the direct
sum %1 ‘ %2 is the representation

G ÝÑ GLpE1 ‘ E2q

such that

g ¨ pv1 ` v2q “ %1pgqv1 ` %2pgqv2,

for all v “ v1 ` v2 P E1 ‘ E2, or more suggestively

g ¨ pv1 ` v2q “ g ¨ v1 ` g ¨ v2.

By definition, we see that the subspaces E1, E2 or E “ E1‘E2 are subrepresentations
of %1 ‘ %2, and that

(2.10) p%1 ‘ %2q{%1 » %2,

the corresponding isomorphism being induced by v1 ` v2 ÞÑ v2.
One can consider more than two factors: for an arbitrary family p%iqiPI of k-representa-

tions, with %i acting on Ei, one can define a representation of G on the direct sum

E “
à

iPI

Ei

by linearity again from the actions of G on each subspace Ei of E.
Note the general relations

dimp%1 ‘ %2q “ dimp%1q ` dimp%2q, dimp
à

iPI

%iq “
ÿ

iPI

dimp%iq
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with obvious conventions when the sum is infinite. Equally useful are the natural iso-
morphisms

HomGp%, %1 ‘ %2q » HomGp%, %1q ‘ HomGp%, %2q,

HomGp%1 ‘ %2, %q » HomGp%1, %q ‘ HomGp%2, %q,

and similarly for an arbitrary (finite) number of summands.3

Exercise 2.2.3. Let G be a group, k a field and %1, %2 two k-representations of
G, acting on E1 and E2 respectively. Show that a k-linear map Φ : E1 ÝÑ E2 is a
G-homomorphism if and only if the graph

Γ “ tpv,Φpvqq | v P E1u Ă E1 ‘ E2

of Φ is a subrepresentation of %1 ‘ %2.

Another generalization of the direct sum, based on (2.10), considers any representation
% of G acting on E, with an injection

Φ : %1 ãÑ %

such that

(2.11) %{%1 “ %{ ImpΦq » %2

as k-representations. However, although there exists of course always a subspace E2 Ă E
such that

E “ ImpΦq ‘ E2 » E1 ‘ E2

as k-vector spaces, it is not always the case that E2 can be found as a subrepresentation
of %. When that happens, this subrepresentation on E2 (say π2) is necessarily isomorphic
to %2 (since π2 » p%1 ‘ π2q{%1 » %{%1 » %2, as representations of G). A useful equivalent
criterion for the existence of such a complementary subrepresentation is the following:

Lemma 2.2.4. Let G be a group, k a vector space and % : G ÝÑ GLpEq a represen-
tation.

(1) If E “ E1 ‘ E2 is a decomposition of E such that E1 is a subrepresentation of %,
then E2 is also one if and only if the linear projection map

Φ

"

E ÝÑ E
v “ v1 ` v2 ÞÑ v1

, v1 P E1, v2 P E2,

with image E1 and kernel E2 is an intertwiner, i.e., if Φ P HomGpE,Eq.
(2) If E1 Ă E is a subrepresentation, there exists a linear complement E2 which

is a subrepresentation if and only if there exists an intertwiner in HomGpE,Eq which
is a projection, and such that ImpΦq “ E1. A stable complement E2 is then given by
E2 “ Ker Φ.

Proof. This is elementary, and (2) is of course a consequence of (1), which follows
by noting first that if Φ is an intertwiner, the kernel Ker Φ “ E2 is a subrepresentation,
while conversely, if E2 is a subrepresentation, we get from v “ v1 ` v2 with vi P Ei the
decompositions %pgqv “ %pgqv1 ` %pgqv2 with %pgqvi P Ei again, and hence Φp%pgqvq “
%pgqv2 “ %pgqΦpvq. �

3 Recall that Homkp
À

Ei, Eq is not isomorphic to the direct sums of the HomkpEi, Eq if the index
set is infinite – e.g. for E “ k, the dual of a direct sum is the product of the duals, which is different for
infinitely many factors.
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In certain circumstances, a subrepresentation complementary to %1 always exists (for
instance, for finite groups when k has characteristic 0, as we will discuss in Chapter 4).
Here is a standard example where it fails: consider the additive group G “ R, the field
k “ R, and the representation

(2.12) %

$

&

%

G ÝÑ GL2pRq

x ÞÑ

ˆ

1 x
0 1

˙

(we leave as an exercise to check, if needed, that this is a homomorphism.) In terms of
the canonical basis pe1, e2q of R2, this means that

x ¨ pαe1 ` βe2q “ pα ` xβqe1 ` βe2.

The subspace E1 “ Re1 is a subrepresentation of G, indeed, it is isomorphic to the
trivial representation 1G since e1 is invariant under the action of G (which is obvious
when looking at the matrix representation). We claim that there is no subrepresentation
E2 which is complementary to E1. This can be checked by direct computations (taking a
hypothetical basis vector f “ αe1 ` βe2 of E2), but also more abstractly by noting that
the quotient representation %{E1 (note the slight abuse of notation, which is quite usual)
is itself the trivial representation (this should be checked from the definition; in terms
of the matrix representation, it amounts to the fact that the bottom-right coefficients
of %pxq are all equal to 1). Thus if E2 were to exist, we would have, by the above, an
isomorphism

% » 1G ‘ 1G,

which is a trivial representation of dimension 2. Since % is certainly not trivial, this would
be a contradiction.

Coming back to the general case where (2.11) holds, it is often summarized, as in
linear algebra, by a short exact sequence

0 Ñ %1 ÝÑ %
Φ
ÝÑ %2 Ñ 0.

When there is a morphism %2
Ψ
ÝÑ % such that Φ ˝ Ψ “ Id, one says that the exact

sequence splits. This happens precisely when the space of % contains a subrepresentation
complementary to %1 (necessarily isomorphic to %2), so that % » %1 ‘ %2. More generally,
a sequence of homomorphisms of k-representations of G is exact, if and only if, it is exact
as a sequence of maps of k-vector spaces.

Any time a natural representation can be written (up to isomorphism) as a direct
sum, or even an extension, of smaller representations, this gives very useful information
on the representation. Typically one wishes to perform such decompositions as long as
it is possible. The obvious limitation is that a representation % might not have any non-
trivial subrepresentation to try to “peel off”. This leads to the following very important
definitions:

Definition 2.2.5 (Irreducible, semisimple, isotypic representations). Let G be a
group and k a field.

(1) A k-representation % of G acting on E is irreducible if and only if E ­“ 0 and there
is no subspace of E stable under %, except 0 and E itself (in other words, if there is no
subrepresentation of % except 0 and % itself).

(2) A k-representation % of G is semisimple if it can be written as a direct sum of
subrepresentations, each of which is irreducible:

% »
à

iPI

%i
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for some index set I and some irreducible representations %i (some of the %i may be
isomorphic.)

(3) A semisimple k-representation % of G is isotypic if is a direct sum of irreducible
subrepresentations which are all isomorphic; if these subrepresentations are all isomorphic
to a representation π, then one says that % is π-isotypic.

We will see later that, up to permutation, the irreducible summands of a semisimple
representation are uniquely determined by % (up to isomorphism of representations, of
course): this is part of the Jordan-Hölder-Noether Theorem 2.7.1.

Not all representations of a group are semisimple, but irreducible representations are
still fundamental “building blocks” for representations in general. An essential feature
of irreducible representations, which is formalized in Schur’s Lemma 2.2.6, is that these
“building blocks” are “incommensurable”, in some sense: two non-isomorphic irreducible
representations can have “no interaction”.

Lemma 2.2.6 (Schur’s Lemma, I). Let G be a group and let k be a field.
(1) Given an irreducible k-representation π of G and an arbitrary representation %

of G, any G-homomorphism π ÝÑ % is either 0 or injective, and any G-homomorphism
% ÝÑ π is either 0 or surjective.

(2) Given irreducible k-representations π and % of G, a homomorphism π ÝÑ % is
either 0 or is an isomorphism; in particular, if π and % are not isomorphic, we have

HomGpπ, %q “ 0.

Proof. (1) Given a morphism Φ from π to %, we know that its kernel is a subrepre-
sentation of π; but if π is irreducible, the only possibilities are that the kernel be 0 (then
Φ is injective) or that it is π itself (then Φ is 0). Similarly for a morphism from % to π,
the image is either 0 or π itself.

(2) From (1), if Φ is non-zero and has irreducible source and target, it must be an
isomorphism. (Recalling that, by definition, an irreducible representation is non-zero, we
see that these are exclusive alternatives.) �

Although an arbitrary representation of a group may fail to contain irreducible sub-
representations, we can always find one in a finite-dimensional non-zero representation,
by simply selecting a non-zero subrepresentation of minimal dimension. Hence:

Lemma 2.2.7 (Existence of irreducible subrepresentations). Let G be a group, k a
field and % a non-zero k-representation of G. If % is finite-dimensional, there exists at
least one irreducible subrepresentation of G contained in %.

Remark 2.2.8 (Cyclic vector). It is tempting to suggest a more general argument
by saying that, given a non-zero representation G ÝÑ GLpEq, and given v ­“ 0, the
linear span of the vectors %pgqv, g P G should be irreducible – it is after all the smallest
subrepresentation of G containing v for inclusion (indeed, any F Ă E which is stable
under the action of G and contains v must contain all such vectors, hence also their
linear span). However, in general, this space is not irreducible.

For instance, consider the group G “ Z{pZ with p ě 3 prime, and the representation
on C2 given by

x ¨ pz1, z2q “ pe
2iπx{pz1, e

´2iπx{pz2q.

Since the two axes are invariant under this action, it is of course not irreducible.
However, taking v “ p1, 1q P C2, we see that the span of all x ¨ v contains p1, 1q and

1 ¨ p1, 1q “ pe2iπ{p, e´2iπ{p
q,
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and since
ˇ

ˇ

ˇ

ˇ

1 1
e2iπ{p e´2iπ{p

ˇ

ˇ

ˇ

ˇ

“ ´2i sin
´2π

p

¯

­“ 0,

this vector does “generate” the whole space.
For a given representation % : G ÝÑ GLpEq of a group G, if there exists a non-zero

vector v P E such that its translates span E, it is customary to say that % is a cyclic repre-
sentation and that v is then a cyclic vector (which is far from unique usually). For a given
vector v, the space generated by the vectors %pgqv, which is a cyclic subrepresentation of
%, is called the representation generated by v.

The example above generalizes to any group G and any representation of the type

% “
à

1ďiďk

%i

where the %i are pairwise non-isomorphic irreducible representations of G: taking v “ pviq
in the space of %, where each vi is non-zero, it follows from the linear independence of
matrix coefficients (Theorem 2.7.26 below) that v is a cyclic vector for %.

The simplest examples of irreducible k-representations of G are the 1-dimensional
representations

χ : G ÝÑ GLpEq

where E is a one-dimensional vector space over k. As we noted already, since GLpEq
is canonically isomorphic to kˆ by the homomorphism mapping λ P kˆ to kId, this
homomorphism χ is just a homomorphism χ : G ÝÑ kˆ.

Such homomorphisms are sometimes called characters of G, although this clashes with
the more general notion of character that we will see below in Definition 2.7.34). We use
this terminology in the next easy proposition:

Proposition 2.2.9. Let G be a group and k a field.
(1) A character G ÝÑ kˆ is irreducible.
(2) Two characters χ1, χ2 : G ÝÑ kˆ are isomorphic if and only if they are equal as

functions on G.

We give the argument, but urge the reader to try to check this if the result seems
unclear.

Proof. (1) A one-dimensional vector space contains no non-zero proper subspace at
all, and must therefore be irreducible...

(2) Since GLpEq » GLpkq “ kˆ for any one-dimensional space E, we can assume that
χ1 and χ2 both act by scalar multiplication on k. Then an intertwiner Φ : k ÝÑ k is
given by Φ “ λId for some fixed λ P k, and it is an isomorphism if and only if λ ­“ 0.
The intertwining condition becomes

Φpχ1pgqxq “ χ2pgqΦpxq,

for all x P k, which implies λχ1pgq “ λχ2pgq for all g P G. Clearly, this is possible with
λ ­“ 0 if and only if χ1 “ χ2. �

In particular, the trivial representation 1G is irreducible (and it may well be the only
1-dimensional representation of G). Thus also any trivial representation on a vector space
E is semisimple, since it can be written as a direct sum of trivial one-dimensional trivial
subrepresentations

E »
à

iPI

kei,
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after choosing a basis peiqiPI of E. This shows, in passing, that the decomposition of a
semisimple representation as a sum of irreducible ones is usually not unique, just as the
choice of a basis of a vector space is not unique.

On the other hand, the 2-dimensional representation in (2.12) is not semisimple (this
is intuitively clear, even if it might need some ad-hoc argument to check at this point; from
the Jordan-Hölder-Noether Theorem below, this follows because if it were semisimple, it
would have to be trivial, which it is not.)

The following lemma is also very useful as it shows that semisimple representations
are stable under the operations we have already seen:

Lemma 2.2.10 (Stability of semisimplicity). Let G be a group and let k be a field.
((1) If % is a semisimple k-representation of G, then any subrepresentation of % is

also semisimple, and any quotient representation of % is also semisimple.
(2) If % : G ÝÑ GLpEq is an arbitrary representation of G and if E1, E2 are semisim-

ple subrepresentations of E, then the sum E1 ` E2 is semisimple.

One should be careful that, if % acts on E and we have stable subspaces Ei such that
G acts on Ei via %i and

E “
à

iPI

Ei,

it does not follow that any subrepresentation is of the type
à

iPJ

Ei

for some J Ă I. This is false even for G trivial, where the only irreducible representation
is the trivial one, and writing a decomposition of E amounts to choosing a basis. Then
there are usually many subspaces of E which are not literally direct sums of a subset of
the basis directions (e.g., E “ k ‘ k and F “ tpx, xq | x P ku).

We will deduce the lemma from the following more abstract criterion for semisim-
plicity, which is interesting in its own right – it gives a useful property of semisimple
representations, and it is sometimes easier to check because it does not mention irre-
ducible representations.

Lemma 2.2.11 (Semisimplicity criterion). Let G be a group and let k be a field. A
k-representation

% : G ÝÑ GLpEq

of G is semisimple if and only if, for any subrepresentation F1 Ă E of %, there exists a
complementary subrepresentation, i.e., a G-stable subspace F2 Ă E such that

E “ F1 ‘ F2.

It is useful to give a name to the second property: one says that a representation % is
completely reducible if, for any subrepresentation %1 of %, one can find a complementary
one %2 with

% “ %1 ‘ %2.

Proof of Lemma 2.2.10. (1) Let % act on E, and let F Ă E be a subrepresentation.
We are going to check that the condition of Lemma 2.2.11 applies to F .4 Thus let F1 Ă F
be a subrepresentation of F ; it is also one of E, hence there exists a subrepresentation
F2 Ă E such that

E “ F1 ‘ F2.

4 I.e., a subrepresentation of a completely reducible one is itself completely reducible.
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Now we claim that F “ F1‘pF XF2q, which shows that F1 has also a stable comple-
ment F X F2 in F , and finishes the proof that F is semisimple. Indeed, F1 and pF X F2

are certainly in direct sum, and if v P F and we write v “ v1 ` v2 with v1 P F1, v2 P F2,
we also obtain

v2 “ v ´ v1 P F X F2,

because v1 is also in F . The case of a quotient representation is quite similar and is left
to the reader to puzzle...

(2) The sum E1 ` E2 of two subrepresentations of E is isomorphic to a quotient of
the direct sum E1 ‘ E2, by the surjective linear map

"

E1 ‘ E2 ÝÑ E1 ` E2

pv1, v2q ÞÑ v1 ` v2
.

Since this map is an intertwiner, and the direct sum of semisimple representations is
semisimple (which is easy to see from the definition), it follows from (1) that E1 ` E2 is
also semisimple. �

Proof of Lemma 2.2.11. Neither direction of the equivalence is quite obvious. We
start with a semisimple representation %, acting on E, written as a direct sum

E “
à

iPI

Ei

of stable subspaces Ei, on which G acts irreducibly, and we consider a stable subspace
F . Now we use a standard trick in set-theory: we consider a maximal (for inclusion)
subrepresentation F̃ of E such that F X F̃ “ 0, or in other words, such that F and F̃ are
in direct sum. Observe that, if the conclusion of the lemma is correct, F̃ must be a full
complement of F in E, and we proceed to check this. For every i, consider

pF ‘ F̃ q X Ei Ă Ei.

Since Ei is an irreducible representation of G, this intersection is either 0 or equal to
Ei. In fact, it can not be zero, because this would mean that F̃ ` Ei Ľ F̃ is a larger
subrepresentation in direct sum with F , contradicting the definition of F̃ . Hence we see
that Ei Ă F ‘ F̃ for all i, and this means that F ‘ F̃ “ E.

Now comes the converse: we assume that %, acting on E is non-zero and is completely
reducible. We first claim that E contains at least one irreducible subrepresentation: if E
has finite dimension, this is Lemma 2.2.7, and otherwise it requires some care but can be
done, as explained in Exercise 2.2.13 below.

We consider the sum E1 (not necessarily direct) of all irreducible subrepresentations
of E. It is non-zero, as we just observed. In fact, we must have E1 “ E, because our
assumption implies that E “ E1‘Ẽ1 for some other subrepresentation Ẽ1, and if Ẽ1 were
non-zero, it would also contain an irreducible subrepresentation, which contradicts the
definition of E1. Thus E is a sum of irreducible subrepresentations, say of Ei, i P I; we
proceed to conclude by showing it is a direct sum of pEiqiPJ for some subset J Ă I: let J
be a maximal subset of I such that the sum of the Ei, i P J , is a direct sum, and let F be
the direct sum of those Ei, i P J . For any i R J , the intersection Ei X F can not be zero,
as this would allow us to replace J by J Y tiu, which is larger than J ; hence Ei Ă F for
all i P I, and hence E “ F , which is a direct sum of irreducible subrepresentations. �

Remark 2.2.12. In the finite-dimensional case, the last argument can be replaced by
an easy induction on dimpEq: if E is not irreducible, we use the assumption to write

E “ F ‘ F 1
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for some irreducible subspace F and complementary representation F 1. The proof of
Lemma 2.2.10 really shows that F 1 is also completely reducible, and since dimpF 1q ă
dimpEq, by induction, we get that F 1 is also semisimple, and we are done.

Exercise 2.2.13 (Existence of irreducible subrepresentation). Let G be a group, k a
field, and % : G ÝÑ GLpEq a completely reducible k-representation of G, with E ­“ 0.
We want to show that E contains an irreducible subrepresentation.

(1) Fix a v ­“ 0. Using Zorn’s Lemma, show that there exists a maximal subrepresen-
tation E1 Ă E (for inclusion) such that v R E1.

(2) Write E “ E1‘E2 for some subrepresentation E2, using the complete reducibility
of E. Show that E2 is irreducible. [Hint: If not, show that E2 “ E3‘E4 for some non-zero
subrepresentations of E2, and that v R E1 ‘ E3 or v R E1 ‘ E4.]

2.2.4. Tensor product. An equally important construction is the tensor product.
Given G and k, and representations %1 and %2 of G on k-vector spaces E1 and E2, we
obtain a representation

GÑ GLpE1 bk E2q

by sending g to %1pgq b %2pgq. Thus, by definition, for a pure tensor v bw P E1 bE2, we
have

g ¨ pv b wq “ %1pgqv b %2pgqw,

another pure tensor (but we recall that E1bE2 is not simply the set of such pure tensors,
although they generate the tensor product as k-vector space).

The algebraic (“functorial”) properties of the tensor operation ensure that this is a
group homomorphism. We will denote this representation by %1b%2, or sometimes simply
by E1 b E2 when the actions on the vector spaces are clear from context. For the same
type of general reasons, all the standard isomorphisms between tensor products such as

E1 b E2 » E2 b E1, E1 b pE2 b E3q » pE1 b E2q b E3, E b k » E,

are in fact isomorphisms of representations of G, where k in the last equation represents
the trivial (one-dimensional) representation of G. In particular, one can define, up to
isomorphism, a tensor product involving finitely many factors, which is independent of
the order of the product.5

Similarly, we have

%b
´

à

i

%i

¯

»
à

i

p%b %iq.

If % Ă %1 is a subrepresentation, tensoring with another representation %2 gives a
subrepresentation

%b %2 ãÑ %1 b %2,

but one should be careful that, in general, not all subrepresentations of a tensor product
are of this form (e.g., because of dimension reasons).

Note finally the relation dimp%1 b %2q “ pdim %1qpdim %2q. In particular, if χ1 and χ2

both have dimension 1, so does the tensor product, and in fact, since χ1 and χ2 take values
in kˆ, the tensor product χ1bχ2 is just the product of functions g ÞÑ χ1pgqχ2pgq P k

ˆ. It
is customary to omit the tensor product in the notation in that case, writing just χ1χ2.

5 In the theory of automorphic representations, an important role is played by certain special infinite
tensor products; see [10] or [2].
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Exercise 2.2.14 (Tensor product by a one-dimensional representation). Let % :
G ÝÑ GLpEq be a k-representation of a group G, and let χ : G ÝÑ GLpkq “ kˆ

be a one-dimensional representation.
(1) Show that %b χ is isomorphic to the representation

g ÞÑ χpgq%pgq

of G on the same space E. (One sometimes says that % b χ is obtained by “twisting” %
by χ.)

(2) Show that % b χ is irreducible (resp. semisimple) if and only if % is irreducible
(resp. semisimple).

(3) Show that %bpχ1χ2q » p%bχ1qbχ2 for any two one-dimensional representations
of G.

2.2.5. Multilinear operations. Besides tensor products, all other multilinear con-
structions have the “functoriality” property (Proposition 2.2.1) needed to operate at the
level of representations of a group. Thus, if % : G ÝÑ GLpEq is a k-representation of G,
we can construct:
– The symmetric powers Symm

pEq of E, for m ě 0;
– The alternating powers

ŹmE, for m ě 0.
In each case, the corresponding operation for endomorphisms of E leads to represen-

tations
G ÝÑ GLpSymm

pEqq, G ÝÑ GLp
ľm

Eq,

which are called the m-th symmetric power and m-th alternating power of %, respectively.
Taking direct sums leads to representations of G on the symmetric and alternating alge-
bras

SympEq “
à

mě0

Symm
pEq,

ľ

E “
à

mě0

ľm
E.

From elementary multilinear algebra, we recall that if E has finite dimension, the
symmetric algebra is infinite-dimensional, but the alternating algebra is not – indeed,
ŹmE “ 0 ifm ą dimE. More generally, the dimensions of the symmetric and alternating
powers are given by

dim Symm
pEq “

ˆ

dimpEq `m´ 1

m

˙

, dim
ľm

E “

ˆ

dimE

m

˙

.

For instance, if n “ dimpEq, we have

dim Sym2
pEq “

npn` 1q

2
, dim

ľ2
E “

npn´ 1q

2
.

Remark 2.2.15 (Symmetric powers as coinvariants). Let E be a k-vector space. For
any m ě 1, there is a natural representation of the symmetric group Sm on the tensor
power

Ebm “ E b ¨ ¨ ¨ b E

(with m factors), which is induced by the permutation of the factors, i.e., we have

σ ¨ pv1 b ¨ ¨ ¨ b vmq “ vσp1q b ¨ ¨ ¨ b vσpmq.

The classical definition of the m-th symmetric power is

Symm
pEq “ Ebm{F

where F is the subspace generated by all vectors of the type

pv1 b ¨ ¨ ¨ b vmq ´ pvσp1q b ¨ ¨ ¨ b vσpmqq “ pv1 b ¨ ¨ ¨ b vmq ´ σ ¨ pv1 b ¨ ¨ ¨ b vmq
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where vi P E and σ P Sm. In other words, in the terminology and notation of Sec-
tion 2.2.2, we have

Symm
pEq “ EbmSm

,

the space of coinvariants of Ebm under this action of the symmetric group.

2.2.6. Contragredient, endomorphism spaces. Let % be a k-representation of
G, acting on the vector space E. Using the transpose operation, we can then define
a representation on the dual space E 1 “ HomkpE, kq, which is called the contragredi-
ent q% of %. More precisely, since the transpose reverses the order of composition,6 the
contragredient is defined by the rule

xg ¨ λ, vy “ xλ, g´1
¨ vy,

for g P G, λ P E 1 and v P E, using duality-bracket notation, or in other words the linear
form q%pgqλ is the linear form

v ÞÑ λp%pg´1
qvq.

Remark 2.2.16. One way to remember this is to write the definition in the form of
the equivalent invariance formula

(2.13) xg ¨ λ, g ¨ vy “ xλ, vy

for all λ P E 1 and v P E.

We check explicitly that the contragredient is a representation, to see that the inverse
(which also reverses products) compensates the effect of the transpose:

xgh ¨ λ, vy “ xλ, pghq´1
¨ vy “ xλ, h´1g´1

¨ vy “ xh ¨ λ, g´1
¨ vy “ xg ¨ ph ¨ λq, vy

for all g, h P G and v P E.
The following lemma shows how the contragredient interacts with some of the other

operations previously discussed:

Proposition 2.2.17. Let k be a field, G a group.
(1) The contragredient is functorial: given k-representations %1 and %2 of G, acting

on E1 and E2 respectively, and an intertwiner Φ : %1 ÝÑ %2, the transpose tΦ is an
intertwiner q%1 ÝÑ q%2.

(2) For any finite family of k-representations p%iq of G, we have canonical isomor-
phisms

p
à

i

%iqq»
à

i

q%i.

(3) For any k-representations %1 and %2 of G, we have canonical isomorphisms

p%1 b %2qq» q%1 b q%2.

(4) If a k-representation % of G is such that its contragredient is irreducible, then so
is %. Moreover, if % is finite-dimensional, then the converse is true, and in fact more
generally, if

% : G ÝÑ GLpEq

6 Equivalently, in the language of Proposition 2.2.1, the assignment T pEq “ E1 is a contravariant
functor, which “reverses” arrows in contrast with (2.8), i.e., T pf ˝ gq “ T pgq ˝ T pfq, with T pfq the
transpose.
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is finite-dimensional, there is an inclusion-reversing bijection between subrepresentations

F of % and qF of its contragredient, given by

F ÞÑ FK “ tλ P E 1 | λpF q “ 0u,

qF ÞÑ K
qF “ tx P E | λpxq “ 0 for all λ P qF u.

(5) For any k-representation % of G of finite dimension, we have a canonical isomor-

phism q

q% » %.
(6) If % is one-dimensional, then the contragredient of % is the one-dimensional rep-

resentation given by q%pgq “ %pg´1q “ %pgq´1.

Recall that the transpose in (1) is defined by

x
tΦpλq, vy “ xλ,Φpvqy

for λ P E 12, v P E1.

Proof. Almost all these properties are elementary consequences of linear algebra.
We only give some details concerning (4) and (6). For the former, we observe that
both constructions indicated send, in any case, a subrepresentation of % to one of q% or
conversely: this follows by the definition formula

xq%pgqλ, vy “ xλ, %pg´1
qvy,

e.g., if F Ă E is a subrepresentation of %, this implies that FK is stable under the
contragredient. If % (hence also q%) is finite-dimensional, standard duality of vector spaces
shows that the two operations are inverse to each other. In particular, % is then irreducible
if and only if q% is.

Without the finite-dimension assumption, we can still argue in this manner to show
that if q% is irreducible, the original representation is also: for any subrepresentation F of
%, the subrepresentation FK of q% must be either 0 or all of q%. In the first case, no linear
form vanishes on all of F , and that means that F is the whole space; in the second, all
linear forms vanish, and this means F “ 0. Hence % is irreducible.

Finally, for (6), if % is one-dimensional, then so is the contragredient q%. If we view %
as acting by multiplication on k, then the linear form defined by λpxq “ x (for x P k) is
a basis of k1 and we find that

xq%pgqλ, xy “ λp%pg´1
qxq “ %pg´1

qx,

i.e., that q%pgqλ “ %pg´1qλ, which gives the result.7 �

Remark 2.2.18. The absence of symmetry in some parts of this lemma is not sur-
prising because dual spaces of infinite-dimensional vector spaces do not behave very well
in the absence of topological restrictions (see, e.g., [8, §7, no. 5, th. 6].)

Exercise 2.2.19 (Contragredient and invariants). Let G be a group, k a field, and
% : G ÝÑ GLpEq a k-representation of G.

(1) Show that there exists a natural isomorphism

pE 1qG » pEGq
1,

of k-vector spaces, where the left-hand side is the space of invariants of the contragredient
of % acting on E 1 and the left-hand side is the dual of the coinvariant space of E (see
Section 2.2.2).

7 Note that it is only because a one-dimensional representation takes values in the abelian group kˆ

that g ÞÑ %pg´1q is a homomorphism!
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(2) If dimpEq ă `8, show that there exists a natural isomorphism

pEG
q
1
» pE 1qG,

i.e., the dual of the invariant space is isomorphic to the coinvariants of the contragredient.
[Hint: Use (1) and duality.]

A well-known isomorphism in linear algebra states that for k-vector spaces E and F ,
with dimpF q ă `8, we have

(2.14) HomkpE,F q » E 1 b F,

where the isomorphism is induced by mapping a pure tensor λ b v, with v P F and
λ : E ÝÑ k, to the rank 1 linear map

Aλ,v :

"

E ÝÑ E
w ÞÑ λpwqv “ xλ,wyv

(because the image of this map lies in the space of finite-rank homomorphisms E Ñ F ,
we must assume that F has finite dimension to have an isomorphism).

Thus, if
% : G ÝÑ GLpEq, τ : G ÝÑ GLpF q

are k-representations ofG, it follows that HomkpE,F q also carries a natural representation
of G, defined so that the isomorphism (2.14) is an isomorphism of representations.

It is useful to have a more direct description of this action, and this leads to a definition
which does not require the representations to be finite-dimensional. We state this as a
proposition:

Proposition 2.2.20 (Action on homomorphisms). Let k be a field, let G be a group,
and let

% : G ÝÑ GLpEq, τ : G ÝÑ GLpF q

be k-representations of G. Then G acts on HomkpE,F q by

(2.15) pg ¨ Φq “ τpgqΦ%pgq´1 : E ÝÑ F

for g P G and Φ : E ÝÑ F .
If π denotes this representation, and if dimpτq ă `8, then we have an isomorphism

(2.16) π » q%b τ.

Furthermore, for any % and τ , we have

(2.17) Homkp%, τq
G
“ HomGp%, τq,

the space of intertwiners between % and τ .

Note that the definition of the representation on HomkpE,F q is such that the diagrams

E
Φ
ÝÑ F

%pgq Ó Ó τpgq

E
πpgqΦ
ÝÑ F

commute for all g P G. Concretely, we have thus

(2.18) pg ¨ Φqpvq “ g ¨ Φpg´1
¨ vq

for all v P E. Yet another way to remember this is to write the formula in the form

(2.19) pg ¨ Φqpg ¨ wq “ g ¨ Φpwq

for g P G and v P E.
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Proof. We leave it to the reader to check that (2.15) defines a representation of G.
If we grant this, we note that the important relation (2.17) is an immediate consequence
of the definition.

We now check the isomorphism (2.16), which is in fact the same as (2.14). This means
that we must check that this linear isomorphism is an intertwiner between π and q% b τ .
This is a simple computation, which (again) the reader should attempt before reading on.
Let λb v be a pure tensor in E 1bF , and let A “ Aλ,v be the associated homomorphism.
Then the rank 1 map associated to

g ¨ pv b λq “ g ¨ v b g ¨ λ

is given by

w ÞÑ xg ¨ λ,wypg ¨ vq “ xλ, g´1wypg ¨ vq “ g ¨ pxλ, g´1wyvq “ g ¨ Apg´1wq.

This property exactly states that the linear isomorphism (2.14) is an isomorphism of
representations. �

Remark 2.2.21. The simplest example of the action (2.15) comes from the natural
representation of GLnpkq on kn. It is then the same as the action of GLnpkq on the space
Mnpkq of square matrices of size n by conjugation: g ¨A “ gAg´1 for any g P GLnpkq and
any matrix A.

These representations on homomorphism spaces are extremely useful, and are used
in many contexts to “compare” two representations. This arises from the relation (2.17)
which identifies the space HomGp%1, %2q of G-homomorphisms between %1 and %2 with
the invariant space in Homkp%1, %2q. This interpretation makes it possible to under-
stand and study intertwining operators from within representation theory. For instance,
from one of the parts of Schur’s Lemma 2.2.6, we see that Homkpπ, %q

G “ 0 if π and
% are non-isomorphic irreducible representations. We suggest to look at the proof of
Proposition 2.8.2 below for another good illustration of the use of the homomorphism
representation to compare two representations.

Remark 2.2.22 (Another action on homomorphism spaces). Given representations
%1 and %2 of G on E and F , there is another action, say τ , on HomkpE,F q that may
come to mind: for A P HomkpE,F q, simply putting

(2.20) pτpgqAqpwq “ %2pgqpApwqq,

for g P G and w P E, one defines also an action of G on HomkpE,F q. This will turn
out to be useful below in the proof of Burnside’s irreducibility criterion, but it is usually
less important than the one previously described. One can guess why: the formula shows
that this representation really only involves the representation %2, and does not “mix”
intelligently %1 and %2 (a fact that might be obscured from writing the definition in
a short-hand like pg ¨ Aqw “ g ¨ Aw; it is also less clear if %1 “ %2, and we consider
representations on Endkp%1q).

Exercise 2.2.23. Show that the representation τ just described is isomorphic to a
direct sum of dimE copies of %2 (i.e., to a direct sum of dimE representations, each
of which is isomorphic to %2; in particular, if %2 is irreducible, the representation τ is
%2-isotypic.) [Hint: For a basis pwjqjPJ of E, show that the map

(2.21)
à

jPJ

%2 ÝÑ τ
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given by mapping a family pvjq of vectors in F to the unique linear map such that

Apwjq “ vj

is an isomorphism.]

2.3. Formalism: changing the group

Because composites of homomorphisms are homomorphisms, we see that whenever
there exists a group homomorphism

H
φ
ÝÑ G,

it provides a way to associate a k-representation of H to any k-representation

% : GÑ GLpEq

of G, simply by composition

H
%˝φ
ÝÑ GLpEq.

The underlying vector space is therefore unchanged, and the dimension of %˝φ is also
the same as that of %. Moreover, this operation is compatible with intertwining operators
of representations of G (in the language of category theory, it is a functor): whenever

Φ : E1 ÝÑ E2

is a morphism between k-representations %1 and %2 of G on E1 and E2 respectively, the
linear map Φ is also a morphism between %1 ˝ φ and %2 ˝ φ. Since the morphism of rep-
resentations of H attached to a composite Φ1 ˝Φ2 is the corresponding composition, one
can say that this operation from representations of G to those of H is also functorial. In
general, this correspondence has no reason to be injective or surjective: some represen-
tations of H may not “come from” G in this way, and non-isomorphic representations of
G may become isomorphic when “pulled back” to H. The reader is invited to look for
(easy!) examples of both phenomena.

When H is a subgroup of G and φ is the inclusion, the operation is called, naturally
enough, the restriction of representations of G to H. Because of this, one uses the
standard notation ResGHp%q, which we will use even when φ is not of this type (note the
ambiguity due to the fact that this representation depends on φ, which is not present in
the notation).

Example 2.3.1 (Representations of quotients). There is one very common type of
“restriction” associated to a non-injective morphism: if φ : G Ñ H is surjective, or in
other words if H » G{K for some normal subgroup K Ă G. One can then describe
precisely the representations of G obtained by “restriction” (using φ) of those of H:

Proposition 2.3.2 (Representations of a quotient). Let G be a group and H “ G{K
a quotient of G, with quotient map

φ : G ÝÑ H.

For any field k, the map
% ÞÑ % ˝ φ

is a bijection between k-representations % of H and k-representations π of G which are
trivial on K, i.e., such that K Ă Kerpπq.

This is simply a special case of the fact that, for any group Γ, a homomorphism GÑ Γ
factors through K (i.e., is of the form f ˝ φ for some f : G{K Ñ Γ) if and only if it is
trivial on K.
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Exercise 2.3.3 (Semisimplicity of restriction). Let G be a group, k a field and
% : G ÝÑ GLpEq a semisimple k-representation of G. Let H Ă G be a finite-index
normal subgroup of G. Show that ResGHp%q is also semisimple as a representation of H.
[Hint: One can assume that % is irreducible; show that there exists a maximal semisimple
subrepresentation of ResGHp%q.]

The converse of this statement is not true without restrictions, but it is valid when k
has characteristic 0, see Exercise 4.1.2.

One of the most basic and important construction of representation theory, and in
some sense the first notion that may not be immediately related to notions of linear
algebra,8 is the operation of induction. We will now define it and spend a fair amount of
time discussing its basic properties, and it will reappear throughout the book.

This operation proceeds in the direction opposite to restriction: given a homomor-
phism

φ : H ÝÑ G,

it associates – in a functorial way, i.e., in a way that is natural enough to be compatible
with intertwining operators – a k-representation of G to a k-representation of H. When
φ is the inclusion of a subgroup H of G, this means going from a representation of a
subgroup to one of a larger group, which may seem surprising at first. Once more, a
reader who has not seen the definition before might want to stop for a few minutes to
think if she can come up with a possible way to do this. It is also recommended to
read what follows first by assuming φ to be an inclusion map, and removing it from the
notation.

One defines the induced9 representation as follows: given

% : H ÝÑ GLpEq,

we define first the k-vector space

(2.22) F “ tf : GÑ E | fpφphqxq “ %phqfpxq for all h P H, x P Gu,

(which is a vector subspace of the space of functions on G with values in E). In other
words, F is the space of E-valued functions on G which happen to transform “like the
representation % under H acting on the left”. On this vector space F , we now have an
action π of G, namely the restriction π to F of the analogue of the regular representation,
defined by

pπpgqqfpxq “ fpxgq

for f P F , g P G and x P G. Indeed, we need only check that F is stable under the
regular representation of G, which is true, because F is defined using conditions relating
to multiplication on the left by elements of H. Formally, if f1 “ πpgqf , we find that

f1pφphqxq “ fpφphqxgq “ %phqfpxgq “ %phqf1pxq,

for all h P H and x P G, which means that – as desired – we have f1 P F again.
Especially when φ is an inclusion, one writes

π “ IndGHp%q

for this induced representation, but as for restriction, we will use it in the general case
(keeping in mind the ambiguity that comes from not indicating explicitly φ). One may
even drop H and G from the notation when they are clear from the context.

8 It is, however related to certain tensor products.
9 It is unfortunate that the terminology “induced” may clash with the use of the adjective “induced”

in less formal senses, and that “induction” conflicts with, e.g., proofs by induction...
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Remark 2.3.4. If we take h P Kerpφq, the transformation formula in (2.22) for ele-
ments of F gives

fpxq “ %phqfpxq

so that, in fact, any function f P F takes values in the space EKerpφq of invariants of
E under the action of the subgroup Kerpφq through %. However, we do not need to
state it explicitly in the definition of F , and this avoids complicating the notation. It
will reappear in the computation of the dimension of F (Proposition 2.3.10 below). Of
course, when φ is an inclusion (the most important case), the target space is genuinely
E anyway. It is worth observing, however, that as a consequence of Lemma 2.1.12, this
subspace EKerpφq is in fact a subrepresentation of E, so that in the condition

fpφphqxq “ %phqfpxq,

the right-hand side also is always in EKerpφq.

Example 2.3.5 (Elementary examples of induction). (1) By definition of F , and
comparison with the definition of the regular representation, we see that the latter can
be expressed as

(2.23) CkpGq “ IndG1 p1q,

the result of inducing to G the one-dimensional trivial k-representation of the trivial
subgroup 1 ãÑ G.

(2) For further simple orientation, suppose first that φ : G Ñ G is the identity. We
then have

IndGGp%q » %

for any K-representation % : G ÝÑ GLpEq of G, the map F Ñ E giving this isomorphism
being simply

f ÞÑ fp1q P E,

as the reader should make sure to check. (The inverse maps sends v P E to the function
defined by fpgq “ %pgqv.)

(3) More generally, consider the canonical projection φ : G Ñ G{K (the context of
Example 2.3.1). For a representation

% : G ÝÑ GLpEq,

we then claim that we have
IndHG p%q » EK

with the action of G{K induced by % (note that by Lemma 2.1.12, the subspace EK is
a subrepresentation of E.) This isomorphism is again given by f ÞÑ fp1q, which – as we
have remarked – is a vector in EKerpφq “ EK , as the reader is again invited to check.

(4) Suppose now that φ : G Ñ G is an automorphism. Then, for a representation
% of the “source” G, acting on E, the induced representation IndGGp%q is not in general
isomorphic to %; rather it is isomorphic to

φ˚% “ % ˝ φ´1 : G ÝÑ GLpEq.

Indeed, the k-linear isomorphism

Φ

"

F ÝÑ E
f ÞÑ fp1q

satisfies
Φpg ¨ fq “ fpgq “ fp%p%´1

pgqqq “ %pφ´1
pgqqfp1q “ φ˚%pfq,
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i.e., it intertwines the induced representation with the representation %˝φ´1. Incidentally,
using again φ and seeing % as a representation of the target G, one has of course

ResGGp%q “ φ˚% “ % ˝ φ.

Although this looks like a quick way to produce many “new” representations from one,
it is not so efficient in practice because if φ is an inner automorphism (i.e., if φpgq “ xgx´1

for some fixed x P G), then we do have φ˚% » %: by definition, the linear isomorphism
Φ “ %pxq satisfies

Φ ˝ φ˚%pgq “ %pxq%px´1gxq “ %pgqΦ

for all g P G, so that it is an isomorphism φ˚% ÝÑ %.
(5) Finally, one can see from the above how to essentially reduce a general induction to

one computed using an inclusion homomorphism. Indeed, we have always an isomorphism

IndGHp%q » IndGImpφqpφ˚p%
Kerpφq

qq

where the right-hand side is computed using the inclusion homomorphism Impφq Ă G.
This isomorphism is a combination of the previous cases using the factorization

H
φ1
ÝÑ H{Kerpφq » Impφq ãÑ G,

where the first map is a quotient map, the second the isomorphism induced by φ, and
the third an injection. (This is also a special case of “induction in steps”, see Proposi-
tion 2.3.18 below.)

(6) Another important special case of induction occurs when the representation % is
one-dimensional, i.e., is a homomorphism

H ÝÑ kˆ.

In that case, the space F of IndGHp%q is a subspace of the space CkpGq of k-valued
functions on G, and since G acts on this space by the regular representation, the induced
representation is a subrepresentation of CkpGq, characterized as those functions which
transform like % under H:

fpφphqxq “ %phqfpxq

where now %phq is just a (non-zero) scalar in k.
This type of example is significant because of the crucial importance of the regular

representation. Indeed, it is often a good strategy to (attempt to) determine the irre-
ducible k-representations of a group by trying to find them as being either induced by
one-dimensional representations of suitable subgroups, or subrepresentations of such in-
duced representations. We will see this in effect in Chapter 4, in the special case of the
groups GL2pFqq, where Fq is a finite field.

Remark 2.3.6. Although we have given a specific “model” of the induced represen-
tation by writing down a concrete vector space on which G acts, one should attempt to
think of it in a more abstract way. As we will see in the remainder of the book, many
representations constructed differently – or even “given” by nature – turn out to be iso-
morphic to induced representations, even if the vector space does not look like the one
above.

Note also that we have defined induction purely algebraically. As one may expect, in
cases where G is an infinite topological group, this definition may require some changes
to behave reasonably. The model (2.22) is then a good definition as it can immedi-
ately suggest to consider restricted classes of functions on G instead of all of them (see
Example 5.2.10 and Section 7.4.)
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The following two propositions are the most important facts to remember about in-
duction.

Proposition 2.3.7 (Functoriality of induced representations). Let k be a field, φ :

H Ñ G a group homomorphism. For any homomorphism %1
Φ
ÝÑ %2 of k-representations

of H, there is a corresponding homomorphism

IndpΦq : IndGHp%1q ÝÑ IndGHp%2q,

and this is “functorial”: the identity maps to the identity and composites map to com-
posites.

Proposition 2.3.8 (Frobenius reciprocity; adjointness of induction and restriction).
Let k be a field, φ : H Ñ G a group homomorphism. For any k-representation %1 of G
and %2 of H, there is a natural isomorphism of k-vector spaces

(2.24) HomGp%1, IndGHp%2qq » HomHpResGHp%1q, %2q,

where we recall that HomGp¨, ¨q denotes the k-vector space of homomorphism between two
representations of G.

The last isomorphism, or its immediate corollary

(2.25) dim HomGp%1, IndGHp%2qq “ dim HomHpResGHp%1q, %2q,

is called the Frobenius reciprocity formula. As we will see many times, it is an extremely
important result. In fact, in some (precise) sense, it characterizes the induced represen-
tation, and can almost be said to define it (see Remark 2.3.19 for an explanation). We
will use induction and Frobenius reciprocity extensively to analyze the properties and the
decomposition of induced representations.

We also remark that the definition of the induced representation that we chose is the
best for handling situations where rG : Hs can be infinite. If rG : Hs is finite, there is
another natural model (say IndGH) which leads to isomorphisms

(2.26) HomGpIndGHp%1q, %2q » HomHp%1,ResGHp%2qq,

and those are sometimes considered to be the incarnation of Frobenius reciprocity (see
Exercise 2.3.14 and, e.g., [25, Ch. 5]).

Proof of Proposition 2.3.7. The induced homomorphism Φ˚ “ IndpΦq is easy
to define using the model of the induced representation given above: denoting by F1,
F2 the spaces corresponding to IndGHp%1q and IndGHp%2q respectively, we define Φ˚pfq for
f P F1 to be given by

Φ˚pfqpxq “ Φpfpxqq

for x P G. This is a function from G to E2, by definition, and the relation

Φ˚pfqpφphqxq “ Φpfpφphqxqq “ Φp%1phqfpxqq “ %2phqΦpfpxqq

for all h P H shows that Φ˚pfq is in the space F2 of the induced representation of
%2. We leave it to the reader to check that Φ˚ is indeed a homomorphism between the
representations F1 and F2. �

Proof of Proposition 2.3.8. Here also there is little that is difficult, except maybe
a certain bewildering accumulation of notation, especially parentheses, when checking the
details – the reader should however make sure that these checks are done.

34



Assume that G acts on the space F1 through %1, and that H acts on E2 through %2.
Then the “restriction” of %1 acts on F1 through %1 ˝ φ, while the induced representation
of %2 acts on the space F2 defined as in (2.22).

We will describe how to associate to

Φ : F1 ÝÑ F2,

which intertwines %1 and IndGHp%2q, a map

T pΦq : F1 ÝÑ E2

intertwining the restriction of %1 and %2. We will then describe, conversely, how to start
with an intertwiner

Ψ : F1 ÝÑ E2

and construct another one

T̃ pΨq : F1 ÝÑ F2,

and then it will be seen that T ˝ T̃ and T̃ ˝ T are the identity morphism, so that T and
T̃ give the claimed isomorphisms.

The main point to get from this is that both T and T̃ more or less “write themselves”:
they express the simplest way (except for putting zeros everywhere!) to move between
the desired spaces. One must then check various things (e.g., that functions on G with
values in E2 actually lie in F2, that the maps are actually intertwiners, that they are
reciprocal), but at least once this is done, it is quite easy to recover the definitions.

To begin, given Φ as above and a vector v P F1, we must define a map F1 ÝÑ E2;
since Φpvq is in F2, it is a function on G with values in E2, hence it seems natural to
evaluate it somewhere, and the most natural guess is to try to evaluate at the identity
element. In other words, we define T pΦq to be the map

(2.27) T pΦq :

"

F1 ÝÑ E2

v ÞÑ Φpvqp1q.

We can already easily check that Φ̃ “ T pΦq is an H-homomorphism (between the
restriction of %1 and %2): indeed, we have

Φ̃ph ¨ vq “ Φ̃pφphqvq “ Φpφphqvqp1q “ Φpvqpφphqq

where the last equality reflects the fact that Φ intertwines %1 and the induced representa-
tion of %2, the latter acting like the regular representation on F2. Now because Φpvq P F2,
we get

Φpvqpφphqq “ %2phqΦpvqp1q “ %2phqΦ̃pvq

which is what we wanted.
In the other direction, given an H-homomorphism

Ψ : F1 Ñ E2,

we must construct a map Ψ̃ “ T̃ pΨq from F1 to F2. Given v P F1, we need to build a
function on G with values in E2; the function

(2.28) x ÞÑ Ψp%1pxqvq,

is the most natural that comes to mind, since the values of Ψ are elements of E2. Thus
Ψ̃pvq is defined to be this function.
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We now finish checking that these constructions give the Frobenius reciprocity iso-
morphisms. First, we check that f “ Ψ̃pvq is indeed in F2: for all x P G and h P H, we
have

fpφphqxq “ Ψp%1pφphqxqvq “ %2phqΨp%1pxqvq “ %2phqfpxq

(using the fact that Ψ is a homomorphism from ResGHp%1q to %2.)
Next, Ψ̃ intertwines %1 and IndGHp%2q: for g P G, the function Ψ̃p%1pgqvq is

x ÞÑ Ψp%1pxgqvq

and this coincides with

g ¨ Ψ̃pvq “ px ÞÑ Ψ̃pvqpxgqq.

The remaining property we need is that the two constructions are inverse of each
other. If we start with Ψ P HomHpF1, E2q, then construct Ψ̃ “ T̃Ψ, the definitions (2.27)
and (2.28) show that

T T̃Ψpvq “ Ψ̃pvqp1q “ Ψpvq

for all v, i.e., T ˝ T̃ is the identity. If we start with Φ P HomGpF1, F2q, define Ψ “ TΦ and
Φ̃ “ T̃Ψ “ T̃ TΦ, and unravel the definitions again, we obtain the inescapable conclusion
that, given v P F1, the function Φ̃pvq is given by

px ÞÑ Ψp%1pxqvq “ Φp%1pxqvqp1qq,

and this function of x does coincide with Φpvq because

Φp%1pxqvq “ x ¨ Φpvq “ py ÞÑ Φpvqpyxqq.

Thus T̃ ˝ T is also the identity, and the proof is finished. �

Example 2.3.9. Let %1 “ 1 be the trivial (one-dimensional) representation of G.
Then its restriction to H is the trivial representation 1H of H. By Frobenius reciprocity,
we derive

HomGp1G, Indp%2qq » HomHp1H , %2q.

Comparing with (2.7), we deduce that there is a (canonical) isomorphism

IndGHp%2q
G
» %H2

of the invariant subspaces of %2 and its induced representation.

We now wish to compute the dimension of an induced representation.

Proposition 2.3.10. Let k be a field, φ : H ÝÑ G a group homomorphism. For a
k-representation % of H, acting on a space E, we have

dimpIndGHp%qq “ rG : Impφqs dimpEKerpφq
q.

In particular, if H is a subgroup of G, we have

dimpIndGHp%qq “ rG : Hs dimp%q.

Proof. The idea is very simple: the definition of the space F on which the induced
representation acts shows that the value of f P F at a point x determines the values at
all other points of the form φphqx, i.e., at all points which are in the same left-coset of G
modulo the image of φ. Thus there should be rG : Impφqs independent values of f ; each
seems to belong to the space E, but as we have observed in Remark 2.3.4, it is in fact
constrained to lie in the possibly smaller space EKerpφq.
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To check this precisely, we select a set R of representatives of ImpφqzG, we let F̃
denote the space of all functions

f̃ : R ÝÑ EKerpφq,

and we consider the obvious k-linear map

F ÝÑ F̃

defined by restricting functions on G to R (using Remark 2.3.4 to see that this is well-
defined). Now we claim that this is an isomorphism of vector spaces, and of course this
implies the formula for the dimension of F .

To check the injectivity, we simply observe that if f P F is identically zero on R, we
have

fpφphqxq “ %phqfpxq “ 0

for all x P R and h P H; since these elements, by definition, cover all of G, we get f “ 0
(this is really the content of the observation at the beginning of the proof).

For surjectivity, for any x P G, we denote by rpxq the element of R equivalent to x,
and we select one hpxq P H such that

x “ φphpxqqrpxq,

with hpxq “ 1 if x P R.

Given an arbitrary function f̃ : RÑ EKerpφq, we then define

fpxq “ fpφphpxqqrpxqq “ %phpxqqf̃prpxqq,

which is a well-defined E-valued function on G. Thus f is equal to f̃ on R; by definition
of F , this is in fact the only possible definition for such a function, but we must check
that f P F to conclude. Consider x P G and h P H; let y “ φphqx, so that we have the
two expressions

y “ φphhpxqqrpxq, y “ φphpyqqrpyq “ φphpyqqrpxq

since y and x are left-equivalent under Impφq. It follows that hhpxq and hpyq differ by an
element (say κ) in Kerpφq. Thus we get

fpyq “ fpφphpyqqrpxqq “ %phpyqqf̃prpxqq

“ %pκq%phhpxqqf̃prpxqq

“ %phq%phpxqqf̃prpxqq

since κ acts trivially on the space EKerpφq, and (as in Lemma 2.1.12) the vector

%phhpxqqf̃prpxqq

does belong to it. We are now done because

fpφphqxq “ fpyq “ %phq%phpxqqf̃prpxqq “ %phqfpxq

finishes the proof that f P F . �

Remark 2.3.11. (1) From the proof we see that one could have defined the induced
representation as the k-vector space of all functions

ImpφqzG ÝÑ EKerpφq,

together with a suitable action of G. However, this “restriction model” of IndGHp%q is not
very convenient because the action of G, by “transport of structure”, is not very explicit.
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(2) See Exercise 4.2.8 for an application to proving a lower-bound for the minimal
index of a proper subgroup of a finite group.

Exercise 2.3.12. Let G be a group, H Ă G a subgroup and % : G ÝÑ GLpEq a
k-representation of H.

(1) Show that if F is a subrepresentation of E, then IndGHpF q is naturally isomorphic
to a subrepresentation of IndGHp%q.

(2) Show that if IndGHp%q is irreducible, then so is %. Is the converse true?

The proof of Proposition 2.3.10 implicitly reveals more information than the dimension
of the induced representation. In particular, we can use it to give one answer to the
question of recognizing when a given representation of a group G is induced from a
subgroup. Not only is this useful in practice (see Proposition 2.8.1, for instance), but it
certainly helps in visualizing what the operation of induction is.

Proposition 2.3.13. Let G be a group and let k be a field. Let % : G ÝÑ GLpEq be a
finite-dimensional k-representation of G. Assume that there exists a finite-index subgroup
H Ă G and a direct sum decomposition

E “
rG:Hs
à

i“1

Ei

where each Ei Ă E is H-stable, such that for any i, we have Ei “ %pg´1
i qE1 for some

gi P G. Then the representation % is isomorphic to the induced representation IndGHpE1q.

Proof. Note that the assumption implies that the dimension of E is rG : Hs dimE1,
which is the dimension of IndGHpE1q, as we have just seen, so the result is certainly
plausible. We will construct an intertwining map

Φ : IndGHpE1q ÝÑ E,

and show that it is injective. Since we also assume that dimE ă `8, this will be enough
to finish the proof.

The definition of Φ is easy: for f in the space F of the induced representation
IndGHpE1q, we define

Φpfq “

rG:Hs
ÿ

i“1

%pg´1
i qfpgiq.

This defines a k-linear map to E, since fpgiq P E1 by definition of F . In fact the
assumption shows that %pg´1

i qfpgiq P Ei for each i, and since these spaces are in direct
sum, we also immediately see that

Ker Φ “ tf P F | fpgiq “ 0 for all iu.

To deduce that Φ is injective, and indeed also to show that Φ is an intertwiner, we
now claim that the pgiq form a set of representatives of left H-cosets in G, i.e., that

G “
ď

i

Hgi,

with the union being disjoint. The number of gi is the right one, so it suffices to prove
that the gi are in distinct H-cosets. But if hgi “ gj for some h P H, we deduce that

%pg´1
i q%phqE1 “ %pg´1

j qE1,

and since E1 is H-stable, this means that Ei “ Ej, which means that i “ j.
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We first apply this to prove injectivity of Φ: f P Ker Φ means that f is zero on a set
of representatives of HzG, and (as in the proof of Proposition 2.3.10), this means that
f “ 0.

We conclude by checking that Φ is an intertwiner. Consider g P G and f P F . Then
the definition gives

Φpg ¨ fq “
ÿ

i

%pg´1
i qfpgigq.

Multiplication on the right by g permutes the left H-cosets: there exists a permutation
σ of the indices such that for each i, we have

(2.29) gig “ hσpiqgσpiq

for some hσpiq P H. Since f P F , we deduce that

Φpg ¨ fq “
ÿ

i

%pg´1
i qfpgigq “

ÿ

i

%pg´1
i hσpiqqfpgσiq.

But (2.29) gives

gg´1
σpiq “ g´1

i hσpiq

so that, rearranging the sum, this this becomes

Φpg ¨ fq “
ÿ

i

%pgg´1
σpiqqfpgσpiqq “ %pgqpΦpfqq,

concluding the proof. �

Exercise 2.3.14. Let G be a group, H Ă G a finite-index subgroup and k a field.
Let tg1, g2, . . . , gku be a set of representatives for right H-cosets in G with g1 “ 1. For a
k-representation % : H ÝÑ GLpEq, define a representation π of G as follows: the space
F of π is

F “
k
à

i“1

giE

where giE denotes a vector space isomorphic to E, and the action is obtained by formally
using the action of H on E (given by %) and the requirement that giE is the translate of
g1E “ E by gi, i.e. if g P G, v P E and

ggi “ gjh

for some j and h P H, we put

g ¨ pgivq “ gjp%phqvq P gjE.

(1) Show that π is indeed a representation of G on F , and that it is isomorphic to
IndGHp%q.

(2) Show that for any k-representation %2 : G ÝÑ GLpF2q, there exists a canonical
isomorphism

HomGpπ, %2q » HomHp%,ResGHp%2qq

(this is the alternate formula (2.26) for Frobenius reciprocity).

The degree relation makes it clear, if needed, that the operations of restriction and
induction are not inverse to each other (as the dimensions of the underlying vector spaces
change). In fact, there is no inverse of restriction in general:
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Exercise 2.3.15. Show that there is no operation inverse of restriction: there exist
subgroups H Ă G and representations of H which are not the restriction of any repre-
sentation of G. [Hint: Even very simple examples will do, and Proposition 2.6.7 below
can help.]

Nevertheless, there are relations between restriction and induction, as we have seen
with the Frobenius reciprocity formula. Here is another one:

Proposition 2.3.16 (Projection formula). Let k be a field, and φ : H Ñ G a group
homomorphism. For a k-representation %1 of G and a k-representation %2 of H, we have
a natural isomorphism

IndGHp%2 b ResGHp%1qq » IndGHp%2q b %1

of representations of G.

As in the case of the Frobenius reciprocity isomorphism (2.24), the proof is not very
difficult as the isomorphism can be described explicitly, but full details are a bit tedious.
The reader should attempt to guess a homomorphism between the two representations (it
is easier to go from right to left here), and after checking that the guess is right, should
also try to verify by herself that it satisfies the required properties.10

Proof. We denote by F1 the space of %1, by E2 that of %2 and by F2 the space (2.22)
of the induced representation IndGHp%2q. Moreover, we denote by τ the representation

τ “ %2 b ResGHp%1q

of H and by F̃2 the space of

IndGHpτq “ IndGHp%2 b ResGHp%1qq,

defined also using (2.22).
The isomorphism of representations of G that is claimed to exist is defined as the

k-linear map

F2 b F1
Φ
ÝÑ F̃2

which extends by linearity the definition

Φpf b vq “ px ÞÑ fpxq b x ¨ vq,

for f P F2 and v P F1.
Note that the right-hand side is indeed a function G ÝÑ E2 b F1, and that E2 b F1

is the space of τ (in this proof, we write x ¨ v for the action of %1 on F1). It is also a
bilinear expression of the arguments f and v. Hence, to see that Φ is well-defined, it is
enough to check that its image does lie in F̃2. But if f̃ “ Φpf b vq, then (using the fact
that f P F2), we obtain

f̃pφphqxq “ fpφphqxq b pφphqxq ¨ v

“ %2phqfpxq b φphqpx ¨ vq

“ τphqtfpxq b x ¨ vu

for all x P G, h P H, which is the property required for a function G ÝÑ E2 b F1 to be
in F̃2.

10 In fact, the details of this and similar proofs are probably not worth trying to read without
attempting such a process of self-discovery of the arguments.
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We will now check that Φ is a G-isomorphism. First, the fact that it is a homo-
morphism is straightforward, as it can be checked on the generating tensors f b v. Let
f̃ “ Φpf b vq and g P G; then we have

pg ¨ f̃qpxq “ f̃pxgq “ fpxgq b pxgq ¨ v

which we can also write as
f1pxq b x ¨ w

where f1pxq “ fpxgq “ g ¨ fpxq and w “ g ¨ v, or in other words as

Φpf1 b wqpxq “ Φpg ¨ pf b vqqpxq,

as desired.
It remains, to conclude, to prove that Φ is a k-linear isomorphism. Here a little trick

is needed, since pure tensors are not enough. We fix a basis pvjq of F1 (it could be infinite,
of course). Then, for any x P G, a vector w of E2bF1 can be written uniquely as a linear
combination

(2.30) w “
ÿ

j

wjpxq b px ¨ vjq

for some wjpxq P E2. This is simply because, for every x, the vectors px ¨ vjqj also form a
basis of F1.

We first show the injectivity of Φ: any element of F2 b F1 can be expressed as
ÿ

j

fj b vj

for some functions fj P F2. Let us assume such an element is in KerpΦq. This means that
for all x P G, we have

ÿ

j

fjpxq b px ¨ vjq “ 0 P E2 b F1.

Thus by the uniqueness of the representations (2.30), we get

fjpxq “ 0

for all j, or in other words fj “ 0 for all j, and this gives KerpΦq “ 0.

We now come to surjectivity. Let f̃ P F̃2 be given. Again by the observation above,
for any x P G, we can write uniquely11

f̃pxq “
ÿ

j

f̃jpxq b px ¨ vjq,

thus defining coefficient functions f̃j : G Ñ E2. We next show that, because f̃ P F̃2,

each f̃j is in fact in F2, which will ensure that

f̃ “
ÿ

j

Φpf̃j b vjq

is in the image of Φ, which is therefore surjective.
The condition f̃ P F̃2 means that

f̃pφphqxq “ τphqf̃pxq

for all h P H and x P G. The left-hand side is
ÿ

j

f̃jpφphqxq b pφphqx ¨ vjq

11 This is the trick: using (2.30) for a varying x, not for a single fixed basis.
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by definition, while the right-hand side is

p%2 b Res %1qphqf̃pxq “
ÿ

j

%2phqf̃jpxq b tφphq ¨ px ¨ vjqu

“
ÿ

j

%2phqf̃jpxq b pφphqx ¨ vjq.

Comparing using the uniqueness of (2.30), with x replaced by φphqx, we find that, for
all j, we have

f̃jpφphqxq “ %2phqf̃jpxq

and this does state that each coefficient function f̃j is in F2. �

Remark 2.3.17. If φ is an injective homomorphism and the groups G and H are finite,
then all spaces involved are finite-dimensional. Since Proposition 2.3.10 shows that both
sides of the projection formula are of degree rG : Hs dimp%1q dimp%2q, the injectivity of Φ
is sufficient to finish the proof.

Yet another property of induction (and restriction), which is quite important, is the
following:

Proposition 2.3.18 (Transitivity). Let k be a field and let

H2
φ2
ÝÑ H1

φ1
ÝÑ G

be group homomorphisms, and let φ “ φ1 ˝ φ2. For any k-representations %2 of H2 and %
of G, we have canonical isomorphisms

ResH1
H2
pResGH1

%q » ResGH2
p%q, IndGH1

pIndH1
H2
%2q » IndGH2

p%2q.

Proof. As far as the restriction is concerned, this is immediate from the definition.
For induction, the argument is pretty much of the same kind as the ones we used before:
defining maps both ways is quite simple and hard to miss, and then one merely needs to
make various checks to make sure that everything works out; we will simplify those by
mostly omitting the homomorphisms φ, φ1, φ2 in the notation.

So here we go again: let E, F1, F2, F denote, respectively, the spaces of the represen-
tations

%2, IndH1
H2
%2, IndGH1

pIndH1
H2
%2q, IndGH2

p%2q,

so that we must define a G-isomorphism

T : F ÝÑ F2.

Note that F is a space of functions from G to E, and F2 a space of functions from
G to F1. We define T as follows: given f P F , a function from G to E, it is natural to
consider

g ¨ f “ px ÞÑ fpxgqq,

the image of f under the regular representation on E-valued functions. Then g ÞÑ g ¨ f
is a function from G to F , so its values are themselves functions from G to E. We want
T pfq P F2, so it must be an F1-valued function on G, i.e., T pfqpgq must be a function
from H1 to E. Hence it seems plausible to define

T pfqpgq “ pg ¨ fq ˝ φ1,

the “restriction” to H1 of the function g ÞÑ g ¨ f on G.
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We can then check that T pfq is, in fact, F1-valued; if we omit the group homomor-
phisms involved, this amounts to letting ψ “ T pfq and writing

ψph2h1q “ g ¨ fph2h1q “ fph2h1gq “ %ph2qfph1gq “ %ph2qψph1q,

for hi P Hi, using of course in the middle the assumption that f is in F (again, this is
unlikely to make much sense until the reader has tried and succeeded independently to
follow the computation.)

Now we should check that T pfq is not only F1-valued, but also lies in F2, i.e., trans-
forms under H1 like the induced representation IndH1

H2
p%q. We leave this to the reader:

this is much helped by the fact that the action of H1 on this induced representation is
also the regular representation.

Next, we must check that T is an intertwining operator; but again, both F and F2

carry actions which are variants of the regular representation, and this should not be
surprising – we therefore omit it...

The final step is the construction of the inverse T̃ of T .12 We now start with ψ P F2

and must define a function from G to E; unraveling in two steps, we set

T̃ pψqpgq “ ψpgqp1q

(ψpgq is an element of F1, i.e., a function from H1 to E, and we evaluate that at the unit
of H1...) Taking g P G and h2 P H2, denoting f “ T̃ pψq, we again let the reader check
that the following

fph2gq “ ψph2gqp1q “ ph2 ¨ ψpgqqp1q “ ψpgqph2q “ %ph2qψpgqp1q “ %ph2qfpgq,

makes sense, and means that T̃ pψq is in F .
Now we see that T̃ T pfq is the function which maps g P G to

pg ¨ fqp1q “ fpgq,

in other words T̃ ˝ T is the identity. Rather more abstrusely, if ψ P F2, f “ T̃ pψq and

ψ̃ “ T pfq, we find for g P G and h1 P H1 that

ψ̃pgqph1q “ pg ¨ fqph1q “ fph1gq

“ ψph1gqp1q “ ph1 ¨ ψpgqqp1q “ ψpgqph1q

(where we use the fact that, on F2, H1 acts through the regular representation), which

indicates that T ˝ T̃ is also the identity (since ψ and ψ̃ are functions on G whose values
are functions from H1 to E...) Thus T and T̃ are reciprocal isomorphisms. �

Remark 2.3.19 (Functoriality saves time). At this point, conscientious readers may
well have become bored and annoyed at this “death of a thousand checks”. And there
are indeed at least two ways to avoid much (if not all) of the computations we have done.
One uses character theory; it is restricted to special sitations, and will be discussed later.
We sketch the second now, since the reader is presumably well motivated to hear about
abstract nonsense if it cuts on the calculations.

The keyword is the adjective “natural” (or “canonical”) that we attributed to the
isomorphisms (2.24) of Frobenius reciprocity. In one sense, this is intuitive enough: the
linear isomorphism

HomGp%1, IndGHp%2qq ÝÑ HomHpResGHp%1q, %2q,

12 If the vector spaces are finite-dimensional and the homomorphisms are inclusions, note that it is
quite easy to check that T is injective, and since the dimensions of F and F2 are both rG : H2s dim %,
this last step can be shortened.
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defined in the proof of Proposition 2.3.8 certainly feels natural. But we now take this
more seriously, and try to give rigorous sense to this sentence.

The point is the following fact: a representation % of G is determined, up to isomor-
phism, by the data of all homomorphism spaces

V pπq “ HomGpπ, %q

where π runs over k-representations of G, together with the data of the maps

V pπq
V pΦq
ÝÑ V pπ1q

associated to any (reversed!) G-homomorphism π1
Φ
ÝÑ π by mapping

pΨ : π Ñ %q P V pπq

to
V pΦqpΨq “ Ψ ˝ Φ.

To be precise:

Fact. Suppose that %1 and %2 are k-representations of G, and that for any represen-
tation π, there is given a k-linear isomorphism

Ipπq : HomGpπ, %1q ÝÑ HomGpπ, %2q,

in such a way that all diagrams

HomGpπ, %1q
Ipπq
ÝÑ HomGpπ, %2q

Ó Ó

HomGpπ
1, %1q

Ipπ1q
ÝÑ HomGpπ

1, %2q

commute for any Φ : π1 Ñ π, where the vertical arrows, as above, are given by Ψ ÞÑ Ψ˝Φ.
Then %1 and %2 are isomorphic, and in fact there exists a unique isomorphism

%1
I
ÝÑ %2

such that Ipπq is given by Ψ ÞÑ I ˝Ψ for all π.

Let us first see why this is useful. When dealing with induction, the point is that it
tells us that an induced representation IndGHp%q is characterized, up to isomorphism, by
the Frobenius Reciprocity isomorphisms (2.24). Indeed, the latter tells us, simply from
the data of %, what any G-homomorphism space

HomGpπ, IndGHp%qq

is supposed to be. And the fact above says that there can be only one representation
%̃ with “given” homomorphism groups HomGpπ, %̃q which behave “naturally”. Precisely,
the behavior under morphisms must be compatible: we get

Fact bis. Let φ : H Ñ G be a group-homomorphism and let % be a k-representation
ofH. There exists, up to isomorphism of representations ofG, at most one k-representation
%1 of G with k-linear isomorphisms

ipπq : HomGpπ, %
1
q ÝÑ HomHpRespπq, %q

such that the diagrams

HomGpπ, %
1q

ipπq
ÝÑ HomHpRespπq, %q

Ó Ó

HomGpπ
1, %1q

ipπ1q
ÝÑ HomHpRespπ1q, %q
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commute for π1
Φ
ÝÑ π a G-homomorphism, where the vertical arrows are again Ψ ÞÑ Ψ˝Φ,

on the left, and Ψ ÞÑ Ψ ˝ RespΦq on the right (restriction of Φ to H)

Readers are invited to check that the (explicit) isomorphisms

ipπq : HomGpπ, IndGHp%qq ÝÑ HomHpResGHpπq, %q,

that we constructed (based on the explicit model (2.22)) are such that the diagrams

(2.31)
HomGpπ, IndGHp%qq

ipπq
ÝÑ HomHpResGHpπq, %q

Ó Ó

HomGpπ
1, IndGHp%qq

ipπ1q
ÝÑ HomHpResGHpπ

1q, %q

commute (these are the same as the ones above, with %1 “ Indp%q). This is the real content
of the observation that the Frobenius reciprocity isomorphisms are “natural”. Thus the
construction of (2.22) proved the existence of the induced representation characterized
by the abstract property of Frobenius reciprocity.

We can now see that the transitivity of induction is just a reflection of the – clearly
valid – transitivity of restriction. Consider

H2
φ2
ÝÑ H1

φ1
ÝÑ G

as in the transitivity formula, and consider a representation % of H2, as well as

%1 “ IndGH1
pIndH1

H2
p%qq, %2 “ IndGH2

p%q.

According to Frobenius reciprocity applied twice or once, respectively, we have, for
all representations π of G, k-linear isomorphisms

HomGpπ, %1q » HomH1pResGH1
pπq, IndH1

H2
p%qq » HomH2pResH1

H2
pResGH1

pπqq, %q

and

HomGpπ, %2q » HomH2pResGH2
pπq, %q,

hence by comparison and the “obvious” transitivity of restriction, we obtain isomorphisms

Ipπq : HomGpπ, %1q » HomGpπ, %2q.

The reader should easily convince herself (and then check!) that these isomorphisms
satisfy the compatibility required in the claim to deduce that %1 and %2 are isomor-
phic – indeed, this is a “composition” or “tiling” of the corresponding facts for the
diagrams (2.31).

At first sight, this may not seem much simpler than what we did earlier, but a second
look reveals that we did not use anything relating to k-representations of G except the
existence of morphisms, the identity maps and the composition operations! In particular,
there is no need whatsoever to know an explicit model for the induced representation.

We now prove the Fact above, using the notation in that statement. Take π “ %1, so
that we have

HomGpπ, %1q “ HomGp%1, %1q

and Ipπq “ Ip%1q is an isomorphism HomGp%1, %1q ÝÑ HomGp%1, %2q.
We may not know much about the general existence of homomorphisms, but certainly

this space contains the identity of %1. Hence we obtain an element

I “ Ip%1qpId%1q P HomGp%1, %2q.
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Then – this looks like a cheat – this I is the desired isomorphism! To see this – but
first try it! –, we check first that Ipπq is given, as claimed, by pre-composition with I for
any π. Indeed, Ipπq is an isomorphism

HomGpπ, %1q ÝÑ HomGpπ, %2q.

Take an element Φ : π Ñ %1; we can then build the associated commutative square

HomGp%1, %1q
Ip%1q
ÝÑ HomGp%1, %2q

Ó Ó

HomGpπ, %1q
Ipπq
ÝÑ HomGpπ, %2q

.

Take the element Id%1 in the top-left corner. If we follow the right-then-down route,
we get, by definition the element

Ip%1qpId%1|q ˝ Φ “ I ˝ Φ P HomGpπ, %2q.

But if we follow the down-then-right route, we get IpπqpId%1 ˝ Φq “ IpπqpΦq, and
hence the commutativity of these diagrams says that, for all Φ, we have

(2.32) IpπqpΦq “ I ˝ Φ,

which is what we had claimed.
We now check that I is, indeed, an isomorphism, by exhibiting an inverse. The

construction we used strongly suggests that

J “ Ip%2q
´1
pId%2q P HomGp%2, %1q,

should be what we need (where we use that Ip%2q is an isomorphism, by assumption).
Indeed, tautologically, we have

Ip%2qpJq “ Id%2 ,

which translates, from the formula (2.32) we have just seen (applied with π “ %2) to

I ˝ J “ Id%2 .

Now we simply exchange the role of %1 and %2 and replace Ipπq by its inverse; then I
and J are exchanged, and we get also

J ˝ I “ Id%1 .

Why did we not start with this “functorial” language? Partly this is a matter of
personal taste and partly of wanting to show very concretely what happens – especially
if the reader does (or has done...) all computations on her own, part of the spirit of the
game will have seeped in. Moreover, in some of the more down-to-earth applications of
these games with induction and its variants, it may be quite important to know what
the “canonical maps” actually are. The functorial language does usually give a way to
compute them, but it may be more direct to have written them down as directly as we
did.

To conclude with the general properties of induction, we leave the proofs of the fol-
lowing lemma to the reader:

Lemma 2.3.20. Let k be a field, let φ : H ÝÑ G be a group homomorphism with
φpHq of finite index in G. For any finite-dimensional representations % and %i of H, we
have natural isomorphisms

pIndGHp%qqq» IndGHpq%q,
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and
IndGH

´

à

iPI

%i

¯

»
à

iPI

IndGHp%iq

for I finite.

The corresponding statements for the restriction are also valid, and equally easy to
check. On the other hand, although the isomorphism

ResGHp%1 b %2q » ResGHp%1q b ResGHp%2q,

is immediate, it is usually definitely false (say when φ is injective but is not an isomor-
phism) that

IndGHp%1 b %2q, IndGHp%1q b IndGHp%2q,

are isomorphic, for instance because the degrees do not match (from left to right, they
are given by

rG : Hs dimp%1q dimp%2q, rG : Hs2pdim %1qpdim %2q

respectively).
We conclude this longish section with another type of “change of groups”. Fix a field

k and two groups G1 and G2. Given k-representations %1 and %2 of G1 and G2, acting on
E1 and E2 respectively, we can define a representation of the direct product G1 ˆG2 on
the tensor product E1 b E2: for pure tensors v1 b v2 in E1 b E2, we let

p%1 b %2qpg1, g2qpv1 b v2q “ %1pg1qv1 b %2pg2qv2,

which extends by linearity to the desired action, sometimes called the external tensor
product of %1 and %2:

%1 b %2 : G1 ˆG2 ÝÑ GLpE1 b E2q.

Of course, the dimension of this representation is again pdim %1qpdim %2q. In par-
ticular, it is clear that not all representations of G1 ˆ G2 can be of this type, simply
because their dimensions might not factor non-trivially. However, in some cases, irre-
ducible representations must be external tensor products of irreducible representations of
the factors.

Proposition 2.3.21 (Irreducible representations of direct products). Let k be an
algebraically closed field, and let G1, G2 be two groups. If % is a finite-dimensional
irreducible k-representation of G “ G1ˆG2, then there exist irreducible k-representations
%1 of G1 and %2 of G2, respectively, such that

% » %1 b %2 ;

moreover, %1 and %2 are unique, up to isomorphism of representations of their respective
groups.

Conversely, if %1 and %2 are irreducible finite-dimensional k-representations of G1 and
G2, respectively, the external tensor product %1 b %2 is an irreducible representation of
G1 ˆG2.

The proof of this requires some preliminary results, so we defer it to Section 2.7
(Proposition 2.3.21). It is also false in general over non-algebraically closed fields (see
Example 2.7.31.)

Remark 2.3.22 (Relation with the ordinary tensor product). Consider a group G;
there is an injective “diagonal” homomorphism

φ

"

G ÝÑ GˆG
g ÞÑ pg, gq.
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If %1 and %2 are k-representations of G, the definitions show that

ResGˆGG p%1 b %2q “ %1 b %2.

2.4. Formalism: changing the field

We will not say much about changing the field. Clearly, whenever K is an extension
of k, we can turn a k-representation

G ÝÑ GLpEq

into a representation (which we denote % b K) over K, by composing with the group
homomorphism

GLpEq ÝÑ GLpE bk Kq

which, concretely (see the next section also), can be interpreted simply by saying that a
matrix with coefficients in the subfield k of K can be seen as a matrix with coefficients
in K, i.e., by looking at the inclusion

GLnpkq ãÑ GLnpKq.

If % is a representation of G over a field K, and it is isomorphic to a representation
arising in this manner from a k-representation, for some subfield k of K, one customarily
says that % can be defined over k.

Sometimes, given a field extension K{k (for instance, with K algebraically closed),
and certain property Pp%q of a representation %, it may happen that Pp%q does not hold
for a k-representation %, but that Pp% b Kq does (or conversely). If K is an algebraic
closure of k, and if %bK has the desired property, one then says that the k-representation
% “has P absolutely”.

Example 2.4.1. We give here an example of a representation which is irreducible
but not absolutely irreducible. Consider the (infinite) abelian group G “ R{Z, and the
2-dimensional real representation given by

% :

$

’

&

’

%

G ÝÑ GL2pRq

θ ÞÑ

˜

cosp2πθq sinp2πθq

´ sinp2πθq cosp2πθq

¸

,

(which corresponds to the action of R{Z on the real plane by the rotation with angle
2πθ). This makes it clear that this is a homomorphism (which is otherwise easy to check
using trigonometric identities), and it also makes it clear that % is irreducible (there is no
non-zero real subspace of R2 which is stable under all rotations %pθq, except R2 itself.)

However, the irreducibility breaks down when extending the base field to C. Indeed,
on C2, we have

%pθq

ˆ

1
i

˙

“

ˆ

cos θ ` i sin θ
´ sin θ ` i cos θ

˙

“ pcos θ ` i sin θq

ˆ

1
i

˙

,

and

%pθq

ˆ

1
´i

˙

“

ˆ

cos θ ´ i sin θ
sin θ ´ i cos θ

˙

“ pcos θ ´ i sin θq

ˆ

1
´i

˙

,

so that C2, under the action of G through %, splits as a direct sum

C2
“

ˆ

1
i

˙

C‘

ˆ

1
´i

˙

C
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of two complex lines which are both subrepresentations, one of them isomorphic to the
one-dimensional complex representation

#

GÑ GLpCq » Cˆ

θ ÞÑ eiθ

and the other to
#

GÑ Cˆ

θ ÞÑ e´iθ

(its conjugate, in a fairly obvious sense). Thus % is not absolutely irreducible.

Another way to change the field, which may be more confusing, is to apply automor-
phisms of k. Formally, this is not different: we have an automorphism σ : k ÝÑ k, and
we define a representation %pσq by the composition

%pσq : G
%
ÝÑ GLpEq ÝÑ GLpE bk kq,

where we have to be careful to see k, in the second argument of the tensor product, as
given with the k-algebra structure σ. Concretely, Eσ “ Ebk k is the k-vector space with
the same underlying abelian group as E, but with scalar multiplication given by

α ¨ v “ σpαqv P E.

Here again matrix representations may help understand what happens: a basis pviq of
E is still a basis of Eσ but, for any g P G, the matrix representing %pgq in the basis pviq
of Eσ is obtained by applying σ´1 to all coefficients of the matrix that represents %pgq.
Indeed, for any i, we can write

%pgqvi “
ÿ

j

αjvj “
ÿ

j

σ´1
pαjq ¨ vj

for some coefficients αj, so that the pj, iq-th coefficient of the matrix for %pgq is αj, while
it is σ´1pαjq for %pσqpgq.

This operation on representations can be interesting because % and %pσq are usually
not isomorphic as representations, despite the fact that they are closely related. In
particular, there is a bijection between the subrepresentations of E and those of Eσ
(given by F ÞÑ Fσ), and hence % and %pσq are simultaneously irreducible or not irreducible,
semisimple or not semisimple.

Example 2.4.2 (Complex conjugate). Consider k “ C. Although C, considered as
an abstract field, has many automorphisms, the only continuous ones, and therefore the
most important, are the identity and the complex conjugation σ : z ÞÑ z̄. It follows
therefore that any time we have a complex representation G ÝÑ GLpEq, where E is a
C-vector space, there is a naturally associated “conjugate” representation %̄ obtained by
applying the construction above to the complex conjugation. From the basic theory of
characters (Corollary 2.7.35 below), one can see that %̄ is isomorphic to % if and only
if the function g ÞÑ Tr %pgq is real-valued. This can already be checked when % is one-
dimensional, since %̄ is then the conjugate function GÑ C, which equals % if and only if
% is real-valued. In particular, the examples in (2.4), (2.5) or (2.6) lead to many cases of
representations where % and %̄ are not isomorphic.

Field extensions (including automorphisms) are the only morphisms for fields. How-
ever, there are sometimes other possibilities to change fields, which are more subtle.
Suppose for instance that

% : G ÝÑ GLpEq
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is a complex representation of degree d ě 1 of some group G, and that with respect to
some chosen basis of E, the image of % is given by matrices with integral coefficients.
If we then fix a prime number p, we may consider the reduction modulo p (say %̄pgq) of
these matrices, which will be elements in GLdpZ{pZq. The properties of the reduction
modulo p imply that g ÞÑ %̄pgq is a homomorphism from G to GLdpZ{pZq, or in other
words, an Fp-representation of G.

More abstractly, this definition corresponds to the existence of a G-stable lattice M
of E: an abelian group M Ă E such that M bZ C » E and such that %pgqm PM for all
g P G and m P M . We can then define a Fp-representation of G on M{pM , which is a
d-dimensional Fp-vector space, simply because pM is also G-stable (by linearity).

This construction can be extremely useful and important. However, it is delicate:
first of all, it is not always defined (the G-stable lattice M may not exist), and also it
may not be well-defined, in the sense that taking a different G-stable lattice (there is no
uniqueness, since for instance pM works just as well as M) might lead to a non-isomorphic
Fp-representation of G. We refer to [48, §15.2] for further discussion of this theory.

Exercise 2.4.3. Let G “ Z{2Z and let % be the 2-dimensional regular representation
of G on C2, with canonical basis e1, e2. Let f1 “ e1 ` e2, f2 “ e1 ´ e2. Let k “ Z{2Z.

Show that M “ Z2 is a G-stable lattice and that the k-representation of G on M{2M
is not semisimple. On the other hand, show that M 1 “ f1Z ‘ f2Z is another G-stable
lattice, and that the k-representation of G on M 1{2M 1 is trivial, in particular semisimple.

In Exercise 2.6.6, we will see an example of an irreducible representation that reduces
modulo a prime to one which is not.

2.5. Matrix representations

We have emphasized in Definition 2.1.1 the abstract view where a representation is
seen as a linear action of G on a k-vector space E. However, in practice, if one wishes
to compute with representations, one will select a fixed basis of E and express % as the
homomorphism

%m : G ÝÑ GLnpkq, n “ dimpEq,

that maps g to the matrix representing %pgq in the chosen basis. Indeed, this is what we
already did in the cases of the Example in (2.12) and in Example 2.4.1.

Although such matrix representations can be awkward when used exclusively (espe-
cially because of the choice of a basis), it is useful and important to know how to express
in these terms the various operations on representations that we have described previ-
ously. These concrete descriptions may also help clarify these operations, especially for
readers less familiar with abstract algebra. We will explain this here fairly quickly.

For a direct sum %1‘%2, we may concatenate bases pe1, . . . , enq of E1 and pf1, . . . , fmq
of E2 to obtain a basis

pe1, . . . , en, f1, . . . , fmq

in which the representation %1 ‘ %2 takes the form of block-diagonal matrices

g ÞÑ

ˆ

%m1 pgq 0
0 %m2 pgq

˙

of size m` n. Corresponding to a short exact sequence

0 Ñ E1 ÝÑ E
Φ
ÝÑ E2 Ñ 0
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of representations, which may not be split, we select a basis pe1, . . . , enq of the subspace
E1 of E, and we extend it to a basis pe1, . . . , en, f1, . . . , fmq, m “ dimpE2q, of E. Then

pf 11, . . . , f
1
mq “ pΦpf1q, . . . ,Φpfmqq

is a basis of E2 and we get in these bases a block-triangular matrix representation of %
acting on E:

(2.33) g ÞÑ %mpgq “

ˆ

%m1 pgq ‹

0 %m2 pgq

˙

where %m1 is the matrix representation in pe1, . . . , enq and %m2 the one in pf 11, . . . , f
1
mq. The

block denoted ‹ is an important invariant of the short exact sequence; if we view it as a
map

c : G ÝÑ Mn,mpkq

from G to rectangular nˆm matrices with coefficients in k, then c is not a homomorphism,
but writing down the relation

%mpghq “ %mpgq%mphq,

we see that it satisfies instead

cpghq “ %m1 pgqcphq ` cpgq%
m
2 phq

for g, h P G.
In the case of a tensor product % “ %1 b %2, one usually represents it in the basis of

pure tensors δi,j “ ei b fj. If this basis is ordered as follows:

pδ1,1, . . . , δ1,m, δ2,1, . . . , δ2,m, . . . , δn,1, . . . , δn,mq,

and we denote by A “ pai,jq1ďi,jďn the matrix %m1 pgq and by B the matrix %m2 pgq, then
%mpgq is a block matrix with n rows and columns of square blocks of size m, given by

¨

˚

˝

a1,1B a1,2B . . . a1,nB
...

...
...

an,1B . . . . . . an,nB

˛

‹

‚

.

The matrix representation of the contragredient of a representation % is also easy to
describe: we have

q%mpgq “ t%mpgq´1,

the inverse-transpose homomorphism.
The case of the restriction to a subgroup is immediate: the matrices of the restriction

do not change. For induction, the situation is more involved, but we will see some
examples in the next chapters.

2.6. Examples

We collect here some more examples of representations. The first one, in particular,
is very important, and it will reappear frequently in various ways in the rest of the book.
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2.6.1. Binary forms and invariants. Let k be any field. For an integer m ě 0,
we denote by Vm the vector space of polynomials in krX, Y s which are homogeneous of
degree m, i.e., the k-subspace of krX, Y s generated by the monomials

X iY m´i, 0 ď i ď m.

In fact, these monomials are independent, and therefore form of basis of Vm. In
particular dimVm “ m` 1.

If we take G “ SL2pkq, we can let G act on Vm by

p%mpgqfqpX, Y q “ fppX, Y q ¨ gq,

where pX, Y q ¨ g denotes the multiplication of the row vector pX, Y q by the matrix g; in
other words, if

(2.34) g “

ˆ

a b
c d

˙

,

we have

pg ¨ fqpX, Y q “ fpaX ` cY, bX ` dY q

(one just says that G acts on Vm by linear change of variables).
We then have the following theorem:

Theorem 2.6.1 (Irreducible representations of SL2). For k “ C, the representations
%m, for m ě 0, are irreducible representations of SL2pCq. In fact, %m is then an irreducible
representation of the subgroup SU2pCq Ă SL2pCq.

On the other hand, if k is a field of non-zero characteristic p, the representation %p is
not irreducible.

The first part will be proved in Example 2.7.11 and Exercise 2.7.13, but we can explain
the last statement here: if k has characteristic p, consider the subspace W Ă Vp spanned
by the monomials Xp and Y p. Then W ­“ Vp (since dimVp “ p ` 1 ě 3), and Vp is a
subrepresentation. Indeed, for g given by (2.34), we have

pg ¨Xp
q “ paX ` cY qp “ apXp

` cpY p
P W,

pg ¨ Y p
q “ paX ` cY qp “ bpXp

` dpY p,

by the usual properties of the p-th power operation in characteristic p (i.e., the fact that
the binomial coefficients

`

p
j

˘

are divisible by p for 1 ď j ď p´ 1). One can also show that

W Ă Vp does not have a stable complementary subspace, so that Vp is not semisimple in
characteristic p.

We now consider only the case k “ C. It is elementary that %m is isomorphic to
the m-th symmetric power of %1 for all m ě 0. Hence we see here a case where, using
multilinear operations, all irreducible (finite-dimensional) representations of a group are
obtained from a “fundamental” one. We also see here an elementary example of a group
which has irreducible finite-dimensional representations of arbitrarily large dimension. (In
fact, SL2pCq also has many infinite-dimensional representations which are irreducible, in
the sense of representations of topological groups.)

Exercise 2.6.2 (Matrix representation). (1) Compute the matrix representation for
%2 and %3, in the bases pX2, XY, Y 2q and pX3, X2Y,XY 2, Y 3q of V2 and V3, respectively.

(2) Compute the kernel of %2 and %3, and recover the result without using matrix
representations.
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A very nice property of these representations – which turns out to be crucial in
Quantum Mechanics – illustrates another important type of results in representation
theory:

Theorem 2.6.3 (Clebsch-Gordan formula). For any integers m ě n ě 0, the tensor
product %m b %n is semisimple13 and decomposes as

(2.35) %m b %n » %m`n ‘ %m`n´2 ‘ ¨ ¨ ¨ ‘ %m´n.

One point of this formula is to illustrate that, if one knows some irreducible represen-
tations of a group, one may well hope to be able to construct or identify others by trying
to decompose the tensor products of these representations into irreducible components
(if possible); here, supposing one knew only the “obvious” representations %0 “ 1 and
%1 (which is just the tautological inclusion SL2pCq ÝÑ GL2pCq), we see that all other
representations %m arise by taking tensor products iteratively and decomposing them,
e.g.,

%1 b %1 “ %2 ‘ 1, %2 b %1 “ %3 ‘ %1, etc.

Proof. Both sides of the Clebsch-Gordan formula are trivial when m “ 0. Using
induction on m, we then see that it is enough to prove that

(2.36) %m b %n » %m`n ‘ p%m´1 b %n´1q

for m ě n ě 1.
At least a subrepresentation isomorphic to %m´1 b %n´1 is not too difficult to find.

Indeed, first of all, the tensor product %m b %n can be interpreted concretely as a rep-
resentation on the space Vm,n of polynomials in four variables X1, Y1, X2, Y2 which are
homogeneous of degree m with respect to pX1, Y1q, and of degree n with respect to the
other variables, where the group SL2pCq acts by simultaneous linear change of variable
on the two sets of variables, i.e.,

pg ¨ fqpX1, Y1, X2, Y2q “ f ppX1, Y1qg, pX2, Y2qgq

for f P Vm,n. This G-isomorphism

Vm b Vn ÝÑ Vm,n

is induced by
pX iY m´i

q b pXjY n´j
q ÞÑ X i

1Y
m´i

1 Xj
2Y

n´j
2

for the standard basis vectors.
Using this description, we have a linear map

∆

"

Vm´1,n´1 ÝÑ Vm,n
f ÞÑ pX1Y2 ´X2Y1qf

which is a G-homomorphism: if we view the factor X1Y2 ´X2Y1 as a determinant

δ “
ˇ

ˇ

ˇ

X1 X2

Y1 Y2

ˇ

ˇ

ˇ
,

it follows that

δppX1, Y1qg, pX2, Y2qgq “ δpX1, X2, Y1, Y2q detpgq “ δpX1, X2, Y1, Y2q

for g P SL2pCq. Moreover, it should be intuitively obvious that ∆ is injective, but we
check this rigorously: if f ­“ 0, it has degree d ě 0 with respect to some variable, say X1,

13 In fact, any tensor product of finite-dimensional semisimple complex representations is semisimple,
but this result of Chevalley is by no means easy to prove (see Theorem 7.1.11).
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and then X1Y2f has degree d ` 1 with respect to X1, while X2Y1f remains of degree d,
and therefore X1Y2f ­“ X2Y1f .

Now we describe a stable complement to the image of ∆. To justify a bit the solu-
tion, note that Imp∆q only contains polynomials f such that fpX, Y,X, Y q “ 0. Those
for which this property fails must be recovered. We do this by defining W to be the
representation generated by the single vector

e “ Xm
1 X

n
2 ,

i.e., the linear span in Vm,n of the translates g ¨ e. To check that it has the required
property, we look at the linear map “evaluating f when both sets of variables are equal”
suggested by the remark above, restricted to W . This map is given by

T

#

W ÝÑ Vm`n
f ÞÑ fpX, Y,X, Y q

(since a polynomial of the type fpX, Y,X, Y q with f P Vm,n is homogeneous of degree
m` n), and we notice that it is an intertwiner with %m`n. Since e maps to Xm`n which
is non-zero, and %m`n is irreducible (Theorem 2.6.1; although the proof of this will be
given only later, the reader will have no problem checking that there is no circularity),
Schur’s Lemma 2.2.6 proves that T is surjective.

We now examine W more closely. Writing g “

ˆ

a b
c d

˙

, we have

g ¨ e “ paX1 ` bY1q
m
paX2 ` bY2q

n
“

ÿ

0ďjďm`n

ajbm`n´jϕjpX1, Y1, X2, Y2q

for some ϕj P Vm,n. We deduce that the space W , spanned by the vectors g ¨e, is contained
in the span of the ϕj, and hence that dimW ď m`n`1. But since dim %m`n “ m`n`1,
we must have equality, and in particular T is an isomorphism.

Since dimVm´1,n´1`dimW “ mn`m`n`1 “ dimVm,n, there only remains to check
that Vm´1,n´1‘W “ Vm,n to conclude that (2.36) holds. But the intersection Vm´1,n´1XW
is zero, since fpX, Y,X, Y q “ 0 for f P Vm´1,n´1, while fpX, Y,X, Y q “ Tf ­“ 0 for a
non-zero f P W ... �

In Corollary 5.6.3 in Chapter 5, we will see that the Clebsch-Gordan formula for the
subgroup SU2pCq (i.e., seeing each %m as restricted to SU2pCq) can be proved – at least at
the level of existence of an isomorphism! – in a few lines using character theory. However,
the proof above has the advantage that it “explains” the decomposition, and can be used
to describe concretely the subspaces of Vm b Vn corresponding to the subrepresentations
of %m b %n.

Now, in a slightly different direction, during the late 19th and early 20th Century,
a great amount of work was done on the topic called invariant theory, which in the
(important) case of the invariants of SL2pCq can be described as follows: one considers,
for some m ě 0, the algebra SpVmq of all polynomial functions on Vm; the group G acts
on SpVmq according to

pg ¨ φqpfq “ φp%mpg
´1
qfq.

and hence SpVmq is also a representation of G (it is infinite-dimensional, but splits as a
direct sum of the homogeneous components of degree d ě 0, which are finite-dimensional).
Then one tries to understand the subalgebra SpVmq

G of all G-invariant functions on Vm,
in particular, to understand the (finite) dimensions of the homogeneous pieces SpVmq

G
d of

invariant functions of degree d.

54



For instance, if m “ 2, so that V2 is the space of binary quadratic forms, one can
write any f P V2 as

f “ a0X
2
` 2a1XY ` a2Y

2,

and then SpV2q » Cra0, a1, a2s is the polynomial algebra in these coordinates. One
invariant springs to mind: the discriminant

∆pa0, a1, a2q “ a2
1 ´ a0a2

of a binary quadratic form. One can then show that SpV2q
G » Cr∆s is a polynomial

algebra in the discriminant. For m “ 3, with

f “ a0X
3
` 3a1X

2Y ` 3a2XY
2
` a3Y

3,

one can prove that SpV3q
G » Cr∆3s, where

∆3 “ a2
0a

2
3 ´ 6a0a1a2a3 ` 4a0a

3
2 ´ 3a2

1a
2
2 ` 4a3

1a3.

The search for explicit descriptions of the invariant spaces SpVmq
G – and similar ques-

tions for other linear actions of groups like SLmpCq acting on homogeneous polynomials
in more variables – was one of main topics of the classical theory of invariants, which was
extremely popular during the 19-th century (see, e.g., [54, Ch. 3] for a modern presen-
tation). These questions are very hard if one wishes to give concrete answers: currently,
explicit generators of SpVmq

G (as an algebra) seem to be known only for m ď 10. For
m “ 9, one needs 92 invariants to generate SpVmq

G as an algebra (see [9]; these generators
are not algebraically independent).

2.6.2. Permutation representations. At the origin of group theory, a group G
was often seen as a “permutation group”, or in other words, as a subgroup of the group
SX of all bijections of some set X (often finite). Indeed, any group G can be identified
with a subgroup of SG by mapping g P G to the permutation h ÞÑ gh of the underlying
set G (i.e., mapping g to the g-th row of the “multiplication table” of the group law on
G).

More generally, one may consider any action of G on a set X, i.e., any homomorphism
#

G ÝÑ SX

g ÞÑ px ÞÑ g ¨ xq

as a “permutation group” analogue of a linear representation. Such actions, even if X
is not a vector space, are often very useful means of investigating the properties of a
group. There is always an associated linear representation which encapsulates the action
by “linearizing it”: given any field k, denote by kpXq the k-vector space generated by
basis vectors ex indexed by the elements of the set X, and define

% : G ÝÑ GLpkpXqq

by linearity using the rule

%pgqex “ eg¨x

which exploits the action of G on X. Since g ¨ ph ¨ xq “ pghq ¨ x (the crucial defining
condition for an action!), we see that % is, indeed, a representation of G, which is called
the permutation representation associated to the action of G on X. It has dimension
dim % “ |X|, by construction.
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Example 2.6.4. (1) As the choice of notation suggests, the representation πG of G on
the space kpGq spanned by G, defined in (2.3), is simply the permutation representation
associated to the left-action of G on itself by multiplication.

(2) If H Ă G is a subgroup of G, with finite index, and X “ G{H is the finite set of
right cosets of G modulo H, with the action given by

g ¨ pxHq “ gxH P G{H,

the corresponding permutation representation % is isomorphic to the induced representa-
tion

IndGHp1q.

Indeed, the space for this induced representation is given by

F “ tf : G ÝÑ k | fphgq “ fpgq for all h P Hu,

with the action of G given by the regular representation. This space has a basis given by
the functions fx which are the characteristic functions of the left cosets Hx. Moreover

g ¨ fx “ fxg´1

(the left-hand side is non-zero at those y where yg P Hx, i.e., y P Hxg´1), which means
that mapping

fx ÞÑ ex´1

gives a linear isomorphism F ÝÑ kpXq, which is now an intertwiner.

A feature of all permutation representations is that they are never irreducible if X is
finite and |X| ­“ 1: the element

ÿ

xPX

ex P kpXq

is an invariant vector.

Exercise 2.6.5. (1) Let % be the permutation representation over a field k associated
to the action on G{H, for H Ă G of finite index. Show that %G is spanned by this
invariant vector, and explain how to recover it as the image of an explicit element

Φ P HomGp1, %q

constructed using Frobenius reciprocity.
(2) Let X be any finite set with an action of G, and let % be the associated permutation

representation over k. Show that dim %G is equal to the number of orbits of the action of
G on X.

Exercise 2.6.6. Let G “ S3 and consider the permutation representation of dimen-
sion 3 associated to the natural action of G on X “ t1, 2, 3u.

(1) Show that the subspace

E “ tv “ px, y, zq P C3
| x` y ` z “ 0u

is a stable complement of the line spanned by the invariant vector p1, 1, 1q P C3, and that
the representation % of G on E is irreducible.

(2) Show that M “ Z3 Ă C3 and N “ E XM are stable lattices for their respective
representations. Prove that the reduction of % modulo 3 (i.e., the representation of G
over the field Z{3Z induced from N{3N , as in the end of Section 2.4 and Exercise 2.4.3)
is reducible and not semisimple.
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2.6.3. Generators and relations. From an abstract point of view, one may try to
describe representations of a group G by writing down a presentation of G, i.e., a set
g Ă G of generators, together with the set r describing all relations between the elements
of g, relations being seen as (finite) words involving the g P g, a situation which one
summarizes by writing

G » xg | ry

(the relations are complete in the sense that any relation between the generators is a
product of conjugates of some of the given words.)

Then one can see that for a given field k and dimension d ě 1, it is equivalent to give
a d-dimensional (matrix) representation

G ÝÑ GLdpkq

or to give a family

pxgqgPg

of invertible matrices in GLdpkq, such that “all relations in r hold”, i.e., if a given r P r
is given by a word

r “ g1 ¨ ¨ ¨ g`

(with gi in the free group generated by g), we should ensure that

xg1 ¨ ¨ ¨ xg` “ 1

in the matrix group GLdpkq.
This description is usually not very useful for practical purposes if the group G is

given, since it is often the case that there is no particularly natural choice of generators
and relations to use, and since furthermore it might be very difficult to determine when
representations built in this manner are isomorphic or not.

However, this idea does have some purpose. For instance, if we restrict to represen-
tations of dimension d “ 1, since GL1pkq “ kˆ is abelian (and no group GLdpkq has
this property, for any k, when d ě 2), and since for any group G and abelian group
A, there is a canonical bijection between homomorphisms G Ñ A and homomorphisms
G{rG,Gs Ñ A, we derive:

Proposition 2.6.7 (1-dimensional representations). Let G be a group, and let Gab “

G{rG,Gs be the abelianization of G. For any field k, the 1-dimensional representations
of G correspond with the homomorphisms

Gab
ÝÑ kˆ.

In particular, if G is perfect, i.e., if rG,Gs “ G, then any non-trivial representation
of G, over any field k, has dimension at least 2.

The last part of this proposition applies in many cases. For instance, if d ě 2 and
k is any field, SLdpkq is known to be perfect except when d “ 2 and k “ F2 or k “ F3

(see, e.g., [36, Th. 8.3, Th. 9.2]). Thus no such group has a non-trivial one-dimensional
representation.

Remark 2.6.8. There is another interesting well-known case of the use of generators
and relations to define a representation: it is the construction of the Weil representation
of SL2pF q, where F is a field which is either a finite field or R. We refer to [37, Ch.
XI] (for F “ R) or to [10, Prop. 4.1.3] (for finite fields) for full details, as well as to
Exercise 4.6.21.
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One can also make use of this approach to provide more examples of groups with
“a lot” of representations. Indeed, if G is a group where there are no relations at all
between a set g of generators (i.e., a free group), it is equivalent to give a homomorphism
G ÝÑ GLpEq as to give elements xg in GLpEq indexed by the generators g P g. Moreover,
two such representations given by xg P GLpEq and yg P GLpF q are isomorphic if and
only if these elements are (globally) conjugate, i.e., if there exists a linear isomorphism
Φ : E Ñ F such that

xg “ Φ´1ygΦ

for all g P g.
Here is a slight variant that makes this even more concrete. Consider the group

G “ PSL2pZq of matrices of size 2 with integral coefficients and determinant 1, modulo
the subgroup t˘1u. Then G is not free, but it is known to be generated by the (image
modulo t˘1u of the) two elements

g1 “

ˆ

0 ´1
1 0

˙

, g2 “

ˆ

0 ´1
1 1

˙

in such a way that the only relations between the generators are

g2
1 “ 1, g3

2 “ 1

(i.e., G is a free product of Z{2Z and Z{3Z; see [23, II.A, II.B.28] for a proof and more
information.)

Hence it is equivalent to give a representation PSL2pZq ÝÑ GLpEq or to give two
elements x, y P GLpEq such that x2 “ 1 and y3 “ 1.

Yet another use of generators and relations is in showing that there exist groups for
which certain representations do not exist : in that case, it is enough to find some abstract
presentation where the relations are incompatible with matrix groups. Here is a concrete
example:

Theorem 2.6.9 (Higman–Baumslag; an example of a non-linear finitely generated
group). Let G be the group with two generators a, b subject to the relation

a´1b2a “ b3.

Then, whatever the field k, there exists no faithful linear representation

G ÝÑ GLpEq

where E is a finite-dimensional k-vector space.

The first example of such a group was constructed by Higman; the example here is
due to Baumslag (see [41]), and is an example of a family of groups called the Baumslag-
Solitar groups which have similar presentations with the exponents 2 and 3 replaced by
arbitrary integers.

We will only give a sketch, dependent on some fairly deep facts of group theory.

Sketch of proof. We appeal to the following two results:
– (Malcev’s Theorem) If k is a field and G Ă GLdpkq is a finitely generated group, then
for any g P G, there exists a finite quotient G ÝÑ G{H such that g is non-trivial modulo
H (one says that G is residually finite; for a proof, see [42]).
– (The “Identitätssatz” of Magnus, or Britton’s Lemma; see, e.g., [46, Th. 11.81]) Let G
be a finitely presented group with a single relation (a one-relator group); then one can
decide algorithmically if a word in the generators represents or not the identity element
of G.
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Now we are going to check that G fails to satisfy the conclusion of Malcev’s Theorem,
and therefore has no faithful finite-dimensional representation over any field.

To begin with, iterating the single relation leads to

a´kb2kak “ b3k

for all k ě 1. Now assume G
π
ÝÑ G{H is a finite quotient of G, and let α “ πpaq,

β “ πpbq. Taking k to be the order of α in the finite group G{H, we see that

β2k´3k
“ 1,

i.e., the order of β divides 2k ´ 3k. In particular, this order is coprime with 2, and this
implies that the map γ ÞÑ γ2 is surjective on the finite cyclic group generated by β. Thus
β is a power of β2. Similarly, after conjugation by a, the element b1 “ a´1ba is such that
β1 “ πpb1q is a power of β2

1 .
But now we observe that β2

1 “ πpa´1b2aq “ πpb3q “ β3. Hence β1 is a power of β3,
and in particular it commutes with β, so that

πprb1, bsq “ β1ββ
´1
1 β´1

“ 1

and this relation is valid in any finite quotient.
Now Britton’s Lemma [46, Th. 11.81] implies that the word

c “ rb1, bs “ b1bb
´1
1 b´1

“ a´1baba´1b´1ab´1

is non-trivial in G.14 Thus c P G is an element which is non-trivial, but becomes so in
any finite quotient of G. This is the desired conclusion. �

Remark 2.6.10. Concerning Malcev’s Theorem, a good example to have in mind is
the following: a group like SLdpZq Ă GLdpCq is finitely generated and one can check that
it satisfies the desired condition simply by using the reduction maps

SLdpZq ÝÑ SLdpZ{pZq

modulo primes. Indeed, for any fixed g P SLdpZq, if g ­“ 1, we can find some prime p
larger than the absolute values of all coefficients of g, and then g is certainly non-trivial
modulo p. The proof of Malcev’s Theorem is based on similar ideas (though of course
one has to use more general rings than Z).

Note that if one does not insist on finitely-generated counterexamples, it is easier to
find non-linear groups – for instance, “sufficiently big” abelian groups will work.

2.7. Some general results

In this section, we will prove some of the basic facts about representations. Some of
them will, for the first time, require that some restrictions be imposed on the representa-
tions, namely either that we consider finite-dimensional representations, or that the base
field k be algebraically closed.

14 In the language explained in Rotman’s book, G is an HNN extension for A “ 2Z, B “ 3Z,
isomorphic subgroups of Z “ xby, with stable letter a; thus the expression for c contains no “pinch”
a´1b2a or ab3a´1 as a subword, and Britton’s Lemma deduces from this that c ­“ 1.
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2.7.1. The Jordan-Hölder-Noether theorem. We first discuss a generalization
of the classical Jordan-Hölder theorem of group theory, which explains in which sense
irreducible representations are in fact “building blocks” of all representations, at least for
the finite-dimensional case.

Theorem 2.7.1 (Jordan-Hölder-Noether theorem). Let G be a group, k a field, and

% : G ÝÑ GLpEq

a k-representation of G.
(1) If E ­“ 0 and E is finite-dimensional, there exists a finite increasing sequence of

subrepresentations

0 “ E0 Ă E1 Ă E2 Ă ¨ ¨ ¨ Ă En´1 Ă En “ E

of E such that, for all i, 1 ď i ď n, the quotient representations Ei{Ei´1 are irreducible.
Such sequences are called composition series, and the irreducible representations Ei{Ei´1

are called the composition factors.
(2) If % admits any finite composition series,15 then any two such sequences are equiv-

alent, in the following sense: the number of terms are the same, and the irreducible com-
position factors are isomorphic, up to a permutation. In other words, for any irreducible
k-representation π of G, the integer

nπp%q “ |ti | Ei{Ei´1 » πu|

is independent of the choice of a composition series pEiq.

The uniqueness part of the statement may be considered, to some extent, as analogue
of the fundamental theorem of arithmetic: a factorization of an integer into prime powers
is unique, but only up to permutation of the primes. The integer nπp%q is called the
multiplicity of the composition factor π in %.

Remark 2.7.2. (1) The result is often simply called the Jordan-Hölder Theorem, but
according to H. Weyl [59], the extension to representations is due to E. Noether.

(2) By definition, any composition factor of a representation % is isomorphic to a quo-
tient %1{%2 for some subrepresentations %2 Ă %1 of %. More generally, any representation
of this type, not necessarily irreducible, is called a subquotient of %.

Proof. The existence part (1) is easy, by dimension arguments: since E ­“ 0, we can
select an irreducible subrepresentation E1 (for instance, a subrepresentation of minimal
non-zero dimension), then – if E1 ­“ E – a subrepresentation E2 Ľ E1 of minimal di-
mension, etc. For dimension reasons, each quotient Ei{Ei´1 is then irreducible, and the
process terminates in finitely many steps because dimpEq ă `8.

The uniqueness is more important. Assume that we have two sequences

0 “ E0 Ă E1 Ă E2 Ă ¨ ¨ ¨ Ă En´1 Ă En “ E,

0 “ F0 Ă F1 Ă F2 Ă ¨ ¨ ¨ Ă Fm´1 Ă Fm “ E

with irreducible quotients Fj{Fj´1 and Ei{Ei´1. We proceed to use the second one to
insert (apparent) steps between the successive subspaces of the first sequence, and vice
versa. Precisely, for 0 ď i ď n´ 1, let

Ei,j “ Ei ` pEi`1 X Fjq, 0 ď j ď m

15 This may happen even if dimpEq is infinite!
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and for 0 ď j ď m´ 1, let

Fj,i “ Fj ` pFj`1 X Eiq, 0 ď i ď n.

Then we have, e.g,

Ei “ Ei,0 Ă Ei,1 Ă ¨ ¨ ¨ Ă Ei,m´1 Ă Ei,m “ Ei`1,

and a similar refinement between Fj and Fj`1.
By construction each Ei,j and Fi,j is a subrepresentation of E. Now, for each i,

0 ď i ď n ´ 1, observe that since there is no proper intermediate subrepresentation
between Ei and Ei`1 (this would contradict the fact that Ei`1{Ei is irreducible), there
exists a unique index j, 0 ď j ď m´ 1, for which

Ei,j “ Ei, Ei,j`1 “ Ei`1,

hence with
Ei`1{Ei “ pEi ` pEi`1 X Fj`1qq{pEi ` pEi`1 X Fjqq.

There is a certain symmetry in this between i and j; in fact, by a standard isomorphism
theorem, there is a canonical isomorphism

(2.37) pEi ` pEi`1 X Fj`1qq{pEi ` pEi`1 X Fjqq »

pFj ` pEi`1 X Fj`1qq{pFj ` pEi X Fj`1qq.

(see below for a reminder on this).
The right-hand side is none other than Fj,i`1{Fj,i. The latter is therefore non-zero,

but for the same reason as before, there is a single step of the interpolated sequence
between Fj and Fj`1 that can be non-zero, and it must satisfy

Fj,i`1{Fj,i » Fj`1{Fj.

In other words, for each successive irreducible quotient of the first sequence, we have
associated (in a unique way) a well-defined irreducible quotient of the second sequence.
This gives a map

"

t1, . . . , nu ÝÑ t1, . . . ,mu
i ÞÑ j

which is injective, because j is characterized by the isomorphism

Fj`1{Fj » Fj,i`1{Fj,i,

which holds for a single index i.
Reversing the role of the two sequences, we obtain the equality n “ m, and then a

bijection between the irreducible quotients in the first sequence and those of the second.
�

Remark 2.7.3 (About the standard isomorphism). The isomorphism (2.37) can be
expressed as

pE ` pẼ X F̃ qq{pE ` pẼ X F qq » pF ` pẼ X F̃ qq{pF ` pE X F̃ qq

for subrepresentations E Ă Ẽ, F Ă F̃ of some ambient space. This is induced simply by
quotienting the reciprocal linear maps

e` g̃ ÞÑ g̃

f ` g̃ ÞÑ g̃

for e P E, f P F and g̃ P ẼX F̃ . Indeed, formally at least, these maps are inverse to each
other: losing e from left to right is no problem because the E-component is zero modulo
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E ` pẼ X F q anyway, and similarly for losing f . Thus the only thing one must check
is that the maps are well-defined, since once it is done, we see equally well that these
isomorphisms are intertwining operators.

To check that the maps are well-defined, it is enough to deal with the first one, because
of the symmetry. First of all, the map

Φ : E ` pẼ X F̃ q ÝÑ pF ` pẼ X F̃ qq{pF ` pE X F̃ qq

mapping e` g̃ to g̃ is well-defined, because if

e1 ` g̃1 “ e2 ` g̃2,

(with obvious notation) we get

g̃1 ´ g̃2 “ e2 ´ e1 P E X pẼ X F̃ q “ E X F̃

and hence g̃1 ´ g̃2 maps to zero in the right-hand quotient modulo F ` pE X F̃ q. It is
then enough to check that E ` pẼ X F q Ă KerpΦq to see that Φ induces the linear map
we want. But for an element of the type e ` g with g P Ẽ X F , Φ maps it to g modulo
F ` pF̃ X Eq, which is 0 since g P F !

Example 2.7.4. (1) Let % be semisimple and finite-dimensional, say

% » %1 ‘ %2 ‘ ¨ ¨ ¨ ‘ %n,

with %i irreducible. Then a composition series of % is provided by

E0 “ 0, Ei “ %1 ‘ ¨ ¨ ¨ ‘ %i, 1 ď i ď n,

with Ei{Ei´1 » %i. It is clear that if we permute the labels i of the %i, this does not
change %, but the sequence changes; however, the quotients are indeed merely permuted.

In that situation, nπp%q is the number of components %i which are isomorphic to π,
and is called the multiplicity of π in %.

(2) Consider k “ C and the group

G “
!

ˆ

a b
0 1

˙

| a P Cˆ, b P C
)

with its 2-dimensional representation given by the inclusion in GL2pCq “ GLpC2q. This
representation is not semisimple. With pe1, e2q the canonical basis of C2, one can take
E1 “ Ce1, E2 “ C2; indeed, E1 is a subrepresentation because

ˆ

a b
0 1

˙

e1 “ ae1,

and E1{E0 “ E1 and E2{E1 are one-dimensional, hence irreducible. In abstract terms,
E1 is the representation

ˆ

a b
0 1

˙

ÞÑ a P Cˆ
“ GL1pCq

while E2{E1 is in fact the trivial representation of G.

Exercise 2.7.5. Find the composition factors of the representation of S3 over the
field Z{3Z arising in Exercise 2.6.6, (2).

Exercise 2.7.6. Let k be a field and G a group, and let %1, %2 be two irreducible
k-representations of G acting on E1 and E2 respectively.

Show that a proper subrepresentation π of %1 ‘ %2 such that the two projections
π ÝÑ %1 and π ÝÑ %2 are surjective is the graph of an isomorphism %1 ÝÑ %2.
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Determining the Jordan-Hölder-Noether irreducible composition factor of a represen-
tation % can be delicate. At least the following holds:

Lemma 2.7.7. Let k be a field, G a group and % a finite-dimensional k-representation
of G. If %1 is a finite-dimensional irreducible representation of G and

HomGp%, %1q ­“ 0, or HomGp%1, %q ­“ 0,

then %1 is among the Jordan-Hölder-Noether composition factors of %.

Proof. Both are similar and very intuitive, so we consider here only the case of a

non-zero intertwiner %
Φ
ÝÑ %1. Let E be the space on which % acts. Because the image of

Φ is a non-zero subrepresentation of %1, which is irreducible, we see that Φ is surjective.
Thus F “ KerpΦq Ă E is a proper subrepresentation with

E{F » %1.

Considering a composition series of F , say

0 “ E0 Ă E1 Ă ¨ ¨ ¨ Ă En “ F,

and defining En`1 “ E, we obtain a composition series pEiq0ďiďn`1 of E, in which %1

is one of the composition factors. By uniqueness, this means %1 is indeed one of the
composition factors of %. �

Example 2.7.8. If a representation % : G ÝÑ GLpEq has, for a given basis, a matrix
representation which is block-triangular

%mpgq “

¨

˚

˚

˝

%m1 pgq ‹ . . . ‹

0 %m2 pgq ‹ . . .
...

...
...

0 0 . . . %mn pgq

˛

‹

‹

‚

.

with square blocks of size d1, . . . , dn on the diagonal, then the %mi are matrix represen-
tations of the composition factors of %. Indeed, multiplication shows that g ÞÑ %mi pgq is
a homomorphism to GLdipkq, and the subspaces Ei can be defined as those spanned by
the

d1 ` ¨ ¨ ¨ ` di

first basis vectors; as in (2.33), one sees that % acts on Ei{Ei´1, in the basis formed of
the vectors in the i-th block of the given one, like the matrix representation %mi .

If % is semisimple, we can find a decomposition as above with block-diagonal matri-
ces, and indeed, a block-diagonal decomposition (with irreducible blocks) corresponds
to a semisimple representation. However, if the decomposition turns out to be merely
block-triangular (with some non-zero off-diagonal blocks), this does not mean that the
representation is not semisimple! It might just be that the choice of basis was not the
best possible.

Here is an example: consider G “ S3 and the representation

S3 ÝÑ GLpC3
q

by permutation of the coordinates. The subspace

F “ tpx, y, zq P C3
| x` y ` z “ 0u
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is a subrepresentation. In terms of the basis p1,´1, 0q, p1, 0,´1q, p1, 0, 0q of C3, we see
for instance that the action of the cycle p123q is

¨

˝

0 1 0
1 ´1 ´1
0 0 1

˛

‚

where the third column shows that it is not block-diagonal. This column is given by

%pp123qqp1, 0, 0q “ p0, 0, 1q “ p1, 0, 0q ´ p1, 0,´1q.

However, the representation is semisimple here (taking the third basis vector p1, 1, 1q
will lead to a block-diagonal decomposition).

If
% : G ÝÑ GLpEq

is a semisimple representation, it is natural to ask to classify its irreducible subspaces,
and more generally, to determine what its subrepresentations look like. Here again there
are possible traps. If

(2.38) E “ E1 ‘ ¨ ¨ ¨ ‘ En

is a decomposition into irreducible subspaces, then we know that the isomorphism classes
of the Ei, and their multiplicities, are determined by %, up to isomorphism. The actual
subspaces Ei, in general, are not determined; a related fact is that there are usually many
more subrepresentations of E than the obvious ones of the form

F “
à

iPS

Ei

for some subset S Ă t1, . . . , nu. Indeed, this is already clear in the case of the trivial
group G, where any representation is semisimple, and a decomposition (2.38) is obtained
by any choice of a basis of E: if dimpEq ě 2, the vector space E contains many more
subspaces than those spanned by finitely many “axes” spanned by basis vectors.

A weaker uniqueness is still valid: in any decomposition (2.38), the direct sum Mpπq
of all subspaces Ei on which the action of G is isomorphic to a given irreducible repre-
sentation π, is independent of the decomposition.

Proposition 2.7.9 (Isotypic components). Let G be a group and let k be a field. Let
% : G ÝÑ GLpEq be a semisimple k-representation of G.

(1) Fix an irreducible k-representation π of G. For any decomposition

(2.39) E “
à

iPI

Ei,

where % acts irreducibly on the subspaces Ei, the subspace
à

Ei»π

Ei Ă E

is the same. Indeed, it is equal to the sum of all subrepresentations of E isomorphic to
π. This space, which is the largest subrepresentation of % which is π-isotypic, is called
the the π-isotypic component of E and is denoted Mpπq or MEpπq.

(2) In particular, if all irreducible components %i of % occur with multiplicity 1, the
corresponding subspaces Ei Ă E isomorphic to %i are unique, and any subrepresentation
of E is equal to

à

iPS

Ei
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for some subset S Ă I.
(3) If %1, %2 are semisimple k-representations of G, acting on E1 and E2 respectively,

and if Φ : E1 Ñ E2 is a G-homomorphism, then the restriction of Φ to the isotypic
component ME1pπq is a linear map

ME1pπq ÝÑME2pπq,

i.e., the image of ME1pπq is contained in ME2pπq.

Proof. In order to prove (1), we denote by Mpπq the sum (not necessarily direct,
of course) of the subrepresentations of E isomorphic to π; this is a well-defined intrinsic
subspace of E, and it is clear that, for any decomposition (2.39), we have

(2.40)
à

Ei»π

Ei ĂMpπq.

We thus need only prove the converse inclusion. But if F Ă E is a subrepresentation
isomorphic to π, and j is such that the representation on Ej is not isomorphic to π, the
projection map

pj : F ÝÑ Ej

(defined using (2.39)) is in HomGpF,Ejq, and it is therefore zero by Schur’s Lemma 2.2.6.
Thus the component along Ej of any vector in F is zero, and that means precisely that
F is a subspace of the left-hand side of (2.40). From the definition of Mpπq, and the fact
that F was arbitrary, we get the first part of the proposition.

Now the first part of (2) follows from (1), since in the absence of multiplicity ě 2,
the intrinsic isotypic components are reduced to a single Ei in the decomposition (2.39).
And if F Ă E is a subrepresentation, we know (Lemma 2.2.10) that F is also semisimple,
and then any of its own irreducible subspace is one in E, and hence is equal to some Ei.
Thus F becomes equal to the direct sum of those subspaces Ei which are in F .

Finally, (3) is due to the fact that there exists (from (1)) an intrinsic definition of
ME1pπq, which must naturally be “transported” under an intertwining map to E2. Pre-
cisely, ME1pπq is generated by the vectors v which belong to the image of some homo-
morphism Ψ : π ÝÑ %1. For any such map, the composite

Φ ˝Ψ : π ÝÑ %2

has image in ME2pπq, for the same reason, and hence ME2pπq contains the image under
Φ of generators of ME1pπq, which means that the π-isotypic component of E2 contains
the image of ME1pπq, which is what statement (3). �

Example 2.7.10 (Isotypic components for the trivial and one-dimensional represen-
tations). The simplest example concerns the trivial representation 1G. This is always
irreducible, and for any representation % : G ÝÑ GLpEq, we have

M%p1q “ %G,

the subspace of invariant vectors (this is something that was stated, without using the
same words, in Example 2.1.9).

For instance, if % is the regular representation of G, we find (from the same example)
that M%Gp1q is the one-dimensional subspace of constant k-valued functions on G.

More generally, if dimpπq “ 1, so that it is automatically irreducible, and πpgq P kˆ

is just a scalar, we have

M%pπq “ tv P E | %pgqv “ πpgqv for all g P Gu,

the space of vectors in E that “transform like π”.
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Applied to the regular representation, the reader will easily check that M%Gpπq is
again one-dimensional, and is generated by π itself, seen as a k-valued function.

Example 2.7.11. Here is an application of these ideas, leading to the proof of The-
orem 2.6.1. We consider the representation %m of G “ SL2pCq on the space Vm of
homogeneous polynomials of degree m in CrX, Y s (Example 2.6.1).

Proposition 2.7.12. For each m ě 0, the representation %m of SL2pCq is irreducible.

Proof. We use a fairly common strategy, which we will see again later, to attempt
to analyze %m (which, at this point, we do not even know to be semisimple): we first
consider its restriction to some subgroup of G for which we understand well (or better,
at least) the representation theory. Here we consider

T “
!

tpλq “

ˆ

λ 0
0 λ´1

˙

| λ P Cˆ
)

» Cˆ

(a choice justified partly by the fact that T is abelian). We can see easily how T acts on
the basis vectors ei “ X iY m´i, 0 ď i ď m: for λ P Cˆ, we have by definition

%mptpλqqei “ pλXq
i
pλ´1Y qm´i “ λ2i´mei.

This means that the lines Cei are all stable under the action of T , and that ResGT %m
acts on Cei according to the representation

χ2i´m

"

T ÝÑ GL1pCq
tpλq ÞÑ λ2i´m.

Since peiq is a basis of Vm, this means that we have proved that

(2.41) ResGT p%mq »
à

0ďiďm

χ2i´m “ χ´m ‘ χ´m`2 ‘ ¨ ¨ ¨ ‘ χm.

Thus ResGT p%mq is semisimple, and its irreducible components (the χ2i´m, which are
irreducible since one-dimensional) occur with multiplicity 1.

Now consider any non-zero G-stable subspace F Ă Vm; it is also a subrepresentation of
the restriction of %m to T , obviously, and from what we just observed, Proposition 2.7.9,
(2), implies that the subspace F is a direct sum of some of the lines Cei corresponding
to the representations of T occurring in F . Thus there exists some non-empty subset

I Ă t0, . . . ,mu

such that

(2.42) F “
à

iPI

Cei.

Now we “bootstrap” this information using the action of other elements of G than
those in T . Namely, fix some i P I and consider the action of

(2.43) u “

ˆ

1 1
0 1

˙

(a unipotent element) since F is a stable under G, we know that %mpuqei P F , and this
means

X i
pX ` Y qm´i P F.

Expanding by the binomial theorem, we get

Xm
` pm´ iqXm´1Y ` ¨ ¨ ¨ ` pm´ iqX iY m´i´1

`X iY m´i
“

m
ÿ

j“i

ˆ

m´ i

j ´ i

˙

ej P F,
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and comparison with (2.42) leads to the conclusion that all j ě i are also in I. Similarly,
considering the action of

ˆ

1 0
1 1

˙

we conclude that j P I if j ď i. Hence, we must have I “ t0, . . . ,mu, which means that
F “ Vm. This shows that Vm is irreducible. �

Exercise 2.7.13 (Irreducibility of %m restricted to a smaller group). Consider again
the representation %m of SL2pCq for m ě 0. We restrict it now to the subgroup SU2pCq
of unitary matrices of size 2. The proof of irreducibility of %m in the previous example
used the element (2.43) and its transpose, which do not belong to SU2pCq. However,
%m restricted to SU2pCq is still irreducible, as claimed in Theorem 2.6.1. Of course, this
gives another proof of the irreducibility of %m as a representation of SL2pCq.

(1) Show that a decomposition (2.42) still holds with I not empty for a non-zero
subspace F stable under SU2pCq.

(2) Let j be such that ej “ XjY n´j is in F . Show that for

rpθq “

ˆ

cos θ sin θ
´ sin θ cos θ

˙

P SU2pCq, θ P R,

we have
%mprpθqqej “

ÿ

0ďiďm

fipθqei

where the fi are functions on r0, 2πs which are not identically zero. Deduce that F “ Vm.

Exercise 2.7.14 (Another example of irreducible representation). The following ex-
ample will be used in Chapter 6. We consider k “ C and we let V “ Cn for n ě 1
and E “ EndpV q. The group G “ GLnpCq acts on V (by matrix multiplication!) and
therefore there is an associated representation on E, as in (2.15) (see also Remark 2.2.21).

(1) Show that this representation on E is the conjugation action

g ¨ A “ gAg´1

and that the space E0 of endomorphisms A P E with trace 0 is a subrepresentation of E.
(This representation is also called the Adjoint representation of SLnpCq.)

We will now prove that E0 is an irreducible representation of G, and in fact that it
is already an irreducible representation of the subgroup SUnpCq of unitary matrices with
determinant 1.

(2) Let T Ă SUnpCq be the diagonal subgroup of SUnpCq. Show that the restriction
of E0 to T decomposes as the direct sum of T -subrepresentations

E0 “ H ‘
à

i ­“j

CEi,j

where H is the subspace of diagonal matrices in E0 and Ei,j P E0 is, for 1 ď i ­“ j ď n,
the rank 1 matrix with a single coefficient equal to 1 on the pi, jq-th entry. Moreover
show that the subspaces CEi,j each carry distinct non-trivial irreducible representations
of T , and that H “ pE0q

T is the space of T -invariants.
(3) Let F Ă E0 be a non-zero subspace stable under SUnpCq. Show that F can not

be contained in H.
(4) Deduce that F contains all Ei,j for i ­“ j. Then conclude that F “ E0. [Hint: Show

that suitable combinations of vectors generating H are SUnpCq-conjugate of combinations
of some Ei,j, i ­“ j.]
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2.7.2. Schur’s Lemma. The next result is fundamental. It is usually called “Schur’s
Lemma”, but it was known and used by others like Frobenius or Burnside, independently
of Schur. In fact, it is a refinement of Lemma 2.2.6; the version we state is valid for
finite-dimensional representations, but there are variants when infinite-dimensional rep-
resentations are considered with some topological restrictions (see for instance Proposi-
tion 3.4.16).

Proposition 2.7.15 (Schur’s Lemma, II). Let G be a group and let k be an alge-
braically closed field, for instance k “ C.

(1) If π1 and π2 are irreducible k-representations of G which are non-isomorphic, we
have

HomGpπ1, π2q “ 0.

(2) If π1 and π2 are isomorphic finite-dimensional irreducible k-representations of G,
then

dim HomGpπ1, π2q “ 1,

and in fact if π is an irreducible k-representation of G of finite dimension, we have

HomGpπ, πq “ Homkpπ, πq
G
“ kIdπ.

(3) Conversely, if π is a finite-dimensional, semisimple k-representation of G such
that dim HomGpπ, πq “ 1, it follows that π is irreducible.

Note that we used here the natural representation of G on homomorphism spaces, in
which the G-homomorphisms are the G-invariants. The statement gives a very strong
expression of the fact that non-isomorphic irreducible representations of G are “indepen-
dent” of each other; it is frequently used in the form of the formula

(2.44) dim HomGpπ1, π2q “ δpπ1, π2q “

#

1 if π1 » π2

0 otherwise,

for irreducible finite-dimensional representations of a group G over an algebraically closed
field.

We will see other incarnations of this independence later (e.g., Theorem 2.7.26).

Proof. The first part is a consequence of the earlier version of Schur’s Lemma
(Lemma 2.2.6). For the second, it is enough to consider the case where π1 “ π2

(since HomGpπ1, π2q » HomGpπ1, π1q if π2 » π1). Denote π “ π1, and consider a G-
homomorphism Φ from π to itself. The fact that k is algebraically closed and π is
finite-dimensional implies that Φ, as a linear map, has an eigenvalue, say λ P k. But
Φ ´ λId is then a G-homomorphism of π which is not injective. By Lemma 2.2.6, the
only possibility is that Φ´ λId be identically zero, which is the desired conclusion.

Finally we prove the converse when π is semisimple. Let E be the k-vector space on
which π acts; we can assume that dimE ě 1, and then we let F Ă E be an irreducible
subrepresentation, and F1 a complementary subrepresentation, so that E “ F ‘F1. The
projection Φ : E ÝÑ E onto F with kernel F1 is an element of HomGpπ, πq (we saw
this explicitly in Lemma 2.2.4), and our assumption on π implies that it is a multiple of
the identity. Since it is non-zero, it is therefore equal to the identity, which means that
F1 “ 0 and E “ F is irreducible. �

Exercise 2.7.16 (Schur’s Lemma and semisimplicity). The last statement in Schur’s
Lemma can be a very useful irreducibility criterion. However, one should not forget the

68



semisimplicity condition! Consider the representation % of

G “
!

ˆ

a b
0 d

˙

)

Ă GL2pCq

on C2 by left-multiplication.
(1) What are its composition factors? Is it semisimple?
(2) Compute HomGp%, %q and conclude that the converse of Schur’s Lemma (part (3))

does not always hold when π is not assumed to be semisimple. What happens if instead
of G one uses its subgroup where a “ d “ 1?

A simple, but important, corollary of Schur’s Lemma is the following:

Corollary 2.7.17 (Abelian groups and central character). Let G be an abelian group,
k an algebraically closed field. Then any finite-dimensional irreducible representation of
G is of dimension 1, i.e., the finite-dimensional irreducible representations of G coincide
with the homomorphisms G ÝÑ kˆ.

More generally, if G is any group, and % : G ÝÑ GLpEq is a finite-dimensional
irreducible k-representation of G, there exists a one-dimensional representation ω of the
center ZpGq of G such that

%pzq “ ωpzqIdE

for all z P ZpGq. This representation ω is called the central character of %.

Proof. (1) Let % be a finite-dimensional irreducible representation of G, acting on E.
Because G is abelian, any Φ “ %pgq : E Ñ E is in fact a homomorphism in HomGp%, %q.
By Schur’s Lemma 2.7.15, there exists therefore λpgq P k such that %pgq “ λpgqId is a
scalar. Then any one-dimensional subspace of E is invariant under all operators %pgq,
and by irreducibility, this means that E is equal to any such subspace.

(2) Similarly, for G arbitrary, if z is an element of the center of G, we see that
%pzq commutes with all %pgq, for any representation of G, i.e., %pzq P EndGp%q. If % is
irreducible, Schur’s Lemma implies that %pzq is multiplication by a scalar, and of course
the latter is a one-dimensional representation of ZpGq. �

Remark 2.7.18 (Division algebras). Example 2.4.1 shows that this result does not
hold in general if the field is not necessarily algebraically closed.

If % is an irreducible (finite-dimensional) k-representation of G, the earlier version of
Schur’s Lemma already shows that A “ EndGp%q, the space of G-endomorphisms of %,
has a remarkable structure: it is a subalgebra of the matrix algebra Endkp%q which is a
division algebra, i.e., any non-zero element of A has an inverse in A.

In the case of Example 2.4.1, the reader is invited to show explicitly that A is isomor-
phic to C, as an R-algebra.

Another easy and useful corollary is the following algebraic characterization of multi-
plicities of irreducible representations in a semisimple representation:

Corollary 2.7.19 (Multiplicities). Let G be a group and k an algebraically closed
field. If % is a finite-dimensional semisimple k-representation of G, then for any irre-
ducible k-representation π of G, we have

nπp%q “ dim HomGp%, πq “ dim HomGpπ, %q,

where nπp%q is the multiplicity of π as a summand in %.
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Proof. If we express

% »
à

i

%i,

where %i are (necessarily finite-dimensional) irreducible representations of G, then we
have

HomGpπ, %q »
à

i

HomGpπ, %iq

for all irreducible representation π. This space has dimension equal to the number of
indices i for which %i » π, by Schur’s Lemma (i.e., by (2.44)), which is of course nπp%q.
A similar argument applies to HomGp%, πq. �

If k is algebraically closed, we can also use Schur’s Lemma to give a nice description
of the isotypic component Mpπq of a finite-dimensional semisimple representation % of
G (acting on E). To describe this, let Eπ be the space on which π acts; then there is a
natural k-linear map

Θ

"

HomGpEπ, Eq b Eπ ÝÑ E
Φb v ÞÑ Φpvq.

The image of this map is, almost by definition, equal to the isotypic component
Mpπq Ă E (because any non-zero Φ P HomGpEπ, Eq is injective by Schur’s Lemma, so
that Φpvq is in the subrepresentation ImpΦq isomorphic to %.)

If E is finite-dimensional, we then see (by the previous corollary) that the dimensions
of Mpπq and of the source

HomGpEπ, Eq b Eπ

coincide, and we conclude that Θ gives an isomorphism

HomGpEπ, Eq b Eπ »Mpπq Ă E.

Moreover, Θ is a G-homomorphism, if we let G act trivially on the space HomGpEπ, Eq
(which is natural by (2.17)) and through π on Eπ. From this (picking, if needed, a basis
of HomGpEπ, Eq) we see that Mpπq is isomorphic, as representation of G, to a direct sum
of d copies of π, where

d “ dim HomGpEπ, Eq.

As it happens, the injectivity of Θ can also be proved directly, and this leads to
the following useful result, where % is not assumed to be semisimple, but we can still
characterize the π-isotypic component using the same construction:

Lemma 2.7.20 (A formula for isotypic components). Let G be a group, and let k be
an algebraically closed field. If

% : G ÝÑ GLpEq

is a finite-dimensional k-representation of G and

π : G ÝÑ GLpEπq

is any irreducible k-representation, the map

Θ

"

HomGpEπ, Eq b Eπ ÝÑ E
Φb v ÞÑ Φpvq

is injective and its image is equal to the π-isotypic component MEpπq, the sum of all
subrepresentations of E isomorphic to π. In particular,

Mpπq » pdim HomGpEπ, Eqqπ
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as representation.16

Note that, if % is not semisimple, π might also appear as composition factor outside
of Mpπq (i.e., as a genuine quotient or subquotient.)

Proof. As before, it is clear that the image of Θ is equal to the subrepresentation
Mpπq Ă E. It remains thus to show that Θ is injective, as this leads to the isomorphism

Mpπq » HomGpπ, %q b π,

from which the last step follows.
Let pΦjq be a basis of the space HomGpEπ, Eq, so that any element of the tensor

product is of the form
ÿ

j

Φj b vj

for some vj P Eπ. Then we have

Θ
´

ÿ

j

Φj b vj

¯

“
ÿ

j

Φjpvjq P E,

and the injectivity of Θ is seen to be equivalent to saying that the spaces Fj “ ImpΦjq are
in direct sum in E. We prove this in a standard manner as follows: assume the contrary
is true, and let J Ă I be a set of smallest order for which there is a relation

ÿ

jPJ

Φjpvjq “ 0

with Φjpvjq ­“ 0 for j P J . Consider any ` P J ; we find that

0 ­“ Φ`pv`q P ImpΦ`q X
à

j ­“`

ImpΦjq,

so that, by irreducibility, this intersection is in fact equal to ImpΦ`q (note that we wrote
that the Φj, j ­“ `, are in direct sum because otherwise we could replace the set J by
J ´ t`u.) This means that Φ` belongs, in an obvious sense, to the space

HomGpEπ,
à

j ­“`

ImpΦjqq

which is spanned by the homomorphisms pΦjqj ­“`. This is impossible however, since all
the Φj’s are linearly independent by assumption. �

The following addition is also useful:

Lemma 2.7.21. With assumptions and notation as in Lemma 2.7.20, if pπiq is a
family of pairwise non-isomorphic irreducible representations of G, the isotypic subspaces
Mpπiq Ă E are in direct sum.

Proof. Indeed, for any fixed π in this family, the intersection ofMpπq with the sum of
allMpπiq, π1 ­“ π, is necessarily zero: it can not contain any irreducible subrepresentation,
since the possibilities coming from π are incompatible with those coming from the other
πi. �

16 We use here a relatively standard notation nπ, for n ě 0 and a representation π, to denote a
direct sum of n copies of π.
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2.7.3. Burnside’s irreducibility criterion and its generalizations, 1. We now
show how to use Schur’s Lemma to prove a result of Burnside which provides a frequently
useful irreducibility criterion for finite-dimensional representations, and we derive further
consequences along the same lines. In fact, we will prove this twice (and a third time in
Chapter 4 in the case of finite groups); in this section, we argue in the style of Burnside,
and below in Section 2.7.4, we will recover the same results in the style of Frobenius.

We will motivate the first result, Burnside’s criterion, from the following point of view:
given a finite-dimensional k-representation % of a group G, acting on the vector space E,
the image of % is a subset of the vector space EndkpEq. We ask then “what are the linear
relations satisfied by these elements?” For instance, the block-diagonal shape (2.33) of a
representation which is is not irreducible shows clearly some relations: those that express
that the matrices in the bases indicated have lower-left corner(s) equal to 0, for instance.
These are obvious. Are there others?

Theorem 2.7.22 (Burnside’s irreducibility criterion). Let k be an algebraically closed
field, G a group. A finite-dimensional k-representation

% : G ÝÑ GLpEq

is irreducible if and only if the image of % satisfies no non-trivial linear relation in
EndkpEq. Equivalently, % is irreducible if and only if the linear span of the image of % in
EndkpEq is equal to EndkpEq.

The proof we give is a modern version of Burnside’s original argument. One can give
much shorter proofs – the one in the next section is an example – but this one has the
advantage of “exercising” the basic formalism of representation theory, and of being easy
to motivate.

Proof. First of all, the two statements we give are equivalent by duality of finite-
dimensional k-vector spaces. More precisely, let V “ EndkpEq; then by “relations satisfied
by the image of %”, we mean the k-linear subspace

R “ tφ P V 1 | xφ, %pgqy “ 0 for all g P Gu,

of V 1, the linear dual of EndkpEq. Then we are saying that R “ 0 if and only if the image
of G spans V , which is part of duality theory.

The strategy of the proof is going to be the following:

(1) For some natural representation of G on V 1, we show that R is a subrepresenta-
tion;

(2) We find an explicit decomposition of V 1 (with its G-action) as a direct sum of
irreducible representations, embedded in V 1 in a specific manner;

(3) Using this description, we can see what the possibilities for R are, and especially
that R “ 0 if % is irreducible.

This strategy will also be used afterward to give a more general result of comparison
of distinct irreducible representations.

We let G act on V 1 by the contragredient of the representation of G on V given by

g ¨ T “ %pgq ˝ T

for g P G and T : E Ñ E. Note that this corresponds to the action (2.20), and not the
action (2.18). To check that R Ă V 1 is a subrepresentation, we need simply note that if
φ P R and g P G, then we have

xg ¨ φ, %phqy “ xφ, g´1
¨ %phqy “ xφ, %pg´1hqy “ 0
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for all h P G, which means that g ¨ φ is also in R.
From (2.21), we know that V – with the above action – is isomorphic to a direct sum

of dim % copies of %; hence V 1 is isomorphic to a direct sum of the same number of copies
of q%, which we know to be irreducible (Proposition 2.2.17). It follows that any irreducible
subrepresentation π of R (which exists if R ­“ 0) must be itself isomorphic to q%. (This
fact is clear from the Jordan-Hölder-Noether Theorem, but can be seen directly also by
considering the composites

pi : π ãÑ R ãÑ V 1 »
à

iďdim %

Wi ÝÑ Wi » q%,

where Wi are subrepresentations of V 1 isomorphic to q%; each of these composites is in
HomGpπ, q%q, and hence is either 0 or an isomorphism, by Schur’s Lemma; since π ­“ 0,
not all pi can be zero, hence π » q%.)

However, we claim that there is an isomorphism (of k-vector spaces)
"

E ÝÑ HomGpE
1, V 1q

v ÞÑ αv

where αv : E 1 Ñ V 1 is defined by

xαvpλq, T y “ xλ, T pvqy

for λ P E 1 and T : E Ñ E. If this is the case, then assuming that R ­“ 0, and hence that
R contains a copy of q%, means that, for some v ­“ 0, the image of αv is in R. But this
implies that for all λ P E 1, and g P G, we have

0 “ xαvpλq, %pgqy “ xλ, %pgqvy

which is impossible even for a single g, since %pgqv ­“ 0.
Checking the claim is not very difficult; we leave it to the reader to verify that each

αv is indeed a G-homomorphism from E 1 to V 1, and that v ÞÑ αv is k-linear. We then
observe that

dim HomGpE
1, V 1q “ dim HomGpq%, pdimEqq%q “ dimpEq dimGpq%, q%q “ dimE

by Schur’s Lemma again (using the fact that k is algebraically closed). So the map will
be an isomorphism as soon as it is injective. However, αv “ 0 means that

xλ, T pvqy “ 0

for all λ P E 1 and T P V , and that only happens when v “ 0 (take T to be the identity).
�

Example 2.7.23. Consider again the representation % of Example 2.4.1 which is
irreducible over R but not absolutely irreducible. We can see easily that the linear span
of the image of % is the proper subalgebra

!

ˆ

a b
´b a

˙

| a, b P R
)

in M2pRq. In particular, it does satisfy non-trivial relations like “the diagonal coefficients
are equal”.

We emphasize again the strategy we used, because it is a common pattern in appli-
cations of representation theory: one wishes to analyze a certain vector space (here, the
relation space R); this space is seen to be a subspace of a bigger one, on which a group G
acts, and then the space is seen to be a subrepresentation of this bigger space; indepen-
dent analysis of the latter is performed, e.g., a decomposition in irreducible summands;
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and then one deduces a priori restrictions on the possibilities for the space of original
interest. (For another concrete application, see Section 4.7.3.)

We now implement this principle again in a generalization of Burnside’s Theorem
(which is due to Frobenius and Schur). To motivate it, consider a finite-dimensional
k-representation of G

% : G ÝÑ GLpEq

which is irreducible, with k algebraically closed. Burnside’s Theorem means, in particular,
that if we fix a basis pviq of E and express % in the basis pviq, producing the homomorphism

%m : G ÝÑ GLdimpEqpkq

the resulting “matrix coefficients” p%mi,jpgqq, seen as functions on G, are k-linearly inde-
pendent. Indeed, if we denote by pλiq the dual basis of E 1, we have

%mi,jpgq “ xλi, %pgqvjy,

so that a relation
ÿ

i,j

αi,j%
m
i,jpgq “ 0

valid for all g, for some fixed αi,j P k, means that the element φ of EndkpEq
1 defined by

xφ, T y “
ÿ

i,j

αi,jxλi, T pvjqy

is in the relation space R of the proof above, hence is identically zero, which means that
αi,j “ 0 for all i and j.

The interest of these matrix coefficients is that they are functions on G (with values
in k); as such, they might be written down without mentioning the representation at all,
and in particular without knowing the representation space. However, the choice of basis
is annoying, so the following definition is more convenient:

Definition 2.7.24 (Matrix coefficient). Let G be a group, k a field and

% : G ÝÑ GLpEq

a k-representation of G. A matrix coefficient of % is any function on G of the type

fv,λ

#

GÑ k

g ÞÑ λp%pgqvq “ xλ, %pgqvy,

for some fixed v P E and λ P E 1.

Remark 2.7.25. Note that these functions are typically not multiplicative. An ex-
ception is when % : G ÝÑ GL1pkq “ kˆ is a one-dimensional representation; in that case
one can take v “ 1 P k and λ the identity of k, so that the matrix coefficient is equal to
% as a function G ÝÑ k.

Now we come back to the discussion: matrix coefficients of a fixed irreducible repre-
sentation are k-linearly independent. What is more natural than to ask: “What about
different representations?” Is it possible that their matrix coefficients satisfy non-trivial
linear relations? The answer is very satisfactory: No! This is another expression of
the fact that distinct (i.e., non-isomorphic) irreducible representations of a group are
“independent”.
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Theorem 2.7.26 (Linear independence of matrix coefficients). Let G be a group, k
an algebraically closed field.

(1) For any finite collection p%iq of pairwise non-isomorphic, finite-dimensional, irre-
ducible k-representations of G, acting on Ei, let

% “
à

i

%i acting on E “
à

i

Ei.

Then the k-linear span of the elements %pgq, for g P G, in EndkpEq is equal to

(2.45)
à

i

EndkpEiq.

(2) The matrix coefficients of finite-dimensional irreducible k-representations of G are
linearly independent, in the following sense: for any finite collection p%iq of pairwise non-
isomorphic, finite-dimensional, irreducible k-representations of G, acting on Ei, for any
choice pvi,jq1ďjďdimEi of bases of Ei, and for the dual bases pλi,jq, the family of functions

pfvi,j ,λi,kqi,j,k

on G are k-linearly independent.

Note that there are
ÿ

i

pdimEiq
2

functions on G in this family, given by
#

GÑ k

g ÞÑ xλi,j, %ipgqvi,kyEi ,

for 1 ď j, k ď dimEi.

Proof. It is easy to see first that (1) implies (2): writing down as above a matrix
representation for % “

À

%i in the direct sum of the given bases of Ei, a k-linear relation
on the matrix coefficients implies one on the k-linear span of the image of %, but there is
no non-trivial such relation on

à

i

EndkpEiq.

To prove (1), we use the same strategy as in the proof of Burnside’s Theorem 2.7.22,
for the representation % of G on E: let V “ EndkpEq and

R “ tφ P V 1 | xφ, %pgqy “ 0 for all g P Gu

be the relation space. We will compute R and show that R “ S where

(2.46) S “ tφ P V 1 | xφ, T y “ 0 for all T P
à

i

EndkpEiqu,

so that by duality, the linear span of %pgq is equal to (2.45), as claimed.
As before, we consider the representation of G on V 1 by the contragredient of the

action g ¨ T “ %pgq ˝ T on V , and we see that R Ă V 1 is a subrepresentation, and that
S Ă V 1 is also one (because % leaves each Ei stable).

We now show that V 1 is semisimple and exhibit a decomposition into irreducibles.
For this purpose, denoting

Vi,j “ HomkpEj, Eiq,
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we have also (as in Remark 2.2.22) the similar action of G on each Vi,j, and we obtain
first – as k-vector spaces – the direct sum decompositions

V “
à

i,j

Vi,j, V 1 “
à

i,j

V 1i,j

(rigorously, we identify Vi,j with the subspace of V consisting of all T : E Ñ E that
map the summand Ej to Ei and all other E`’s to 0; this identification is, in fact, also
implicit in the statement of the theorem involving (2.45)). These subspaces V 1i,j are not
irreducible in general: by (2.21), we get isomorphisms of representations

Vi,j » pdimEjqEi,

and hence
V 1i,j » pdimEjqq%i,

for the contragredient, leading to the decomposition

V 1 »
à

i,j

pdimEjqq%i »
à

i

pdimEqq%i,

of V 1 as direct sum of irreducible representations.
Since R and S Ă V 1 are subrepresentations, they are therefore also semisimple and

have irreducible components among the q%i. We now determine which subspaces of V 1,
isomorphic to some q%i, can be in R.

Fix an index i. As in the proof of Burnside’s Theorem, we first claim that there is an
isomorphism of k-vector spaces

"

E ÝÑ HomGpE
1
i, V

1q

v ÞÑ αv

defined by the formula
xαvpλq, T y “ xλ, T pvqy

for λ P E 1i and T P V , where λ P E 1i is extended to E by being 0 on the other summands
Ej, j ­“ i.

Indeed, the αv are G-morphisms, and this map is injective (the arguments are the
same here as in the case of Burnside’s Theorem); then we find that

dim HomGpE
1
i, V

1
q “

ÿ

j

dim HomGpq%i, pdimEqq%jq

“ dimpEq
ÿ

j

dim HomGpq%i, q%jq “ dimpEq

since, using Schur’s Lemma,17 only the term j “ i contributes a non-zero factor 1 to the
sum.

Any subspace of V 1 isomorphic to the fixed E 1i is therefore of the form Impαvq for
some v P E. Now Impαvq Ă R is equivalent with

xαvpλq, %pgqy “ 0

for all g P G and λ P E 1i. But since % is the direct sum of the %i and λ P E 1i, we have

xαvpλq, %pgqy “ xλ, %pgqvy “ xλ, %ipgqviy

where vi is the component of v in Ei. Hence (putting g “ 1) the condition Impαvq Ă R
is equivalent with vi “ 0.

17 This is the crucial point, where the “independence” of distinct irreducible representations comes
into play.
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But a similar computation shows that Impαvq Ă S is also equivalent with vi “ 0
(see (2.46)). Varying i, we see that R and S contain exactly the same irreducible sub-
representations. Hence R “ S, and we saw at the beginning that this implies the conclu-
sion (2.45). �

Example 2.7.27 (Linear independence of one-dimensional representations). Follow-
ing on Remark 2.7.25, since any one-dimensional representation is irreducible, and two
of them are isomorphic if and only if they coincide as functions G ÝÑ kˆ, the theorem
shows that any family of homomorphisms

χi : G ÝÑ kˆ Ă k,

is k-linearly independent in CkpGq when k is algebraically closed. But in fact, this last
assumption is not needed, because we can see the representations χi as taking values in
an arbitrary algebraic closure of k, and they remain irreducible when seen in this manner,
like all 1-dimensional representations.

This result is important in Galois theory. As one might expect, it is possible to prove
it more directly and elementarily, and the reader should attempt to do it (see, e.g., [36,
Th. VI.4.1]).

The linear independence of matrix coefficients turns out to have many important
applications. In particular, it gives quite precise information on the structure of the
regular representation of G acting on the space CkpGq of k-valued functions on the group.

Corollary 2.7.28 (Matrix coefficients as subrepresentations of the regular repre-
sentation). Let G be a group, k an algebraically closed field, and % a finite-dimensional
irreducible k-representation of G. Let Mp%q be the subspace of CkpGq spanned by all
matrix coefficients fv,λ of %.

(1) The space Mp%q depends only on % up to isomorphism.
(2) It is a subrepresentation of the regular representation of G acting on CkpGq; more-

over Mp%q is semisimple and isomorphic to a direct sum of dimp%q copies of %.
(3) Any subrepresentation of CkpGq isomorphic to % is contained in the subspace Mp%q,

i.e., Mp%q is the %-isotypic component of CkpGq, as defined in Lemma 2.7.20.

For one-dimensional representations % (e.g., % “ 1), we already computed Mp%q in
Example 2.1.9: it is a one-dimensional space, spanned by % seen as a k-valued function.
This verifies (3) directly in these simple cases.

Proof. We first check (1), which states that Mp%q is a canonical subspace of CkpGq.
Let E be the space on which % acts and let τ : G ÝÑ GLpF q be a k-representation
isomorphic to %, with the linear map

Φ : E ÝÑ F

giving this isomorphism. Then for any w P F and λ P F 1, writing w “ Φpvq for some
v P E, we have

fw,λpgq “ xλ, τpgqwyF

“ xλ, τpgqΦpvqyF

“ xλ,Φp%pgqvqyF

“ x
tΦpλq, %pgqvyE “ fv,tΦpλqpgq,

for all g P G, showing that any matrix coefficient for τ is also one for %. By symmetry,
we see that Mp%q and Mpτq are equal subspaces of CkpGq.
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We next check that Mp%q Ă CkpGq is indeed a subrepresentation: for v P E (the space
on which G acts), λ P E 1, and g P G, we have

%Gpgqfv,λpxq “ fv,λpxgq “ xλ, %pxgqvy “ f%pgqv,λpxq PMp%q.

In fact, this formula says more: it shows that, for a fixed λ P E 1, the linear map

Φλ : v ÞÑ fv,λ

is an intertwining operator between % and Mp%q.
Fix a basis pvjq of the space E on which % acts, and let pλjq be the dual basis. By

construction, Mp%q is spanned by the matrix-coefficients

fi,j “ fvi,λj , 1 ď i, j ď dimp%q

and from the linear independence of matrix coefficients, these functions form in fact a basis
of the space Mp%q. In particular, we have dimMp%q “ dimp%q2. Now the intertwining
operator

Φ “
à

i

Φλi :
à

i

% ÝÑMp%q

is surjective (since its image contains each basis vector fi,j), and both sides have the same
dimension. Hence it must be an isomorphism, which shows that Mp%q is isomorphic to
pdimp%qq% as a representation of G.

There only remains to check the last part. Let E Ă CkpGq be a subrepresentation of
the regular representation which is isomorphic to %. To show that E Ă Mp%q, we will
check that the elements f P E, which are functions on G, are all matrix coefficients of E.
Let δ P CkpGq

1 be the linear form defined by

δpfq “ fp1q

for f P CkpGq. Consider then the linear form δE P E
1 which is the restriction of δ to E.

Then, for any function f P E and x P G, we have

xδE, %Gpxqfy “ %Gpxqfp1q “ fpxq.

(by definition of the regular representation.)
The left-hand side (seen as a function of x) is a matrix coefficient for %, since %G on

E is isomorphic to %, and hence we see that f PMp%q. �

The next corollary will be improved in the chapter on representations of finite groups.
We state it here because it is the first a priori restriction we have found on irreducible
representations for certain groups:

Corollary 2.7.29. Let G be a finite group and let k be an algebraically closed field.
There are only finitely many irreducible k-representations of G up to isomorphism, and
they satisfy

ÿ

%

pdim %q2 ď |G|

where the sum is over isomorphism classes of irreducible k-representations of G.

Proof. First of all, since the space of an irreducible representation of a finite group
is spanned by finitely many vectors %pgqv, g P G (for any vector v ­“ 0), any irreducible
representation of G is finite-dimensional.

Then by the previous corollary, for any such irreducible representation %, the regular
representation %G contains a subspace isomorphic to dimp%q copies of %. By the linear
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independence of matrix coefficients of non-isomorphic irreducible representations (Theo-
rem 2.7.26), the sum over % of these representations is a direct sum and has dimension

ÿ

%

pdim %q2,

hence the result. �

Remark 2.7.30. If G is finite, there is equality in this formula if and only if the
regular representation is semisimple. (If there is equality, this means that

CkpGq “
à

%

Mp%q »
à

%

pdim %q%

is semisimple: conversely, if CkpGq is semisimple, by Lemma 2.2.11 there exists a stable
subspace F such that

CkpGq “ F ‘
´

à

%

Mp%q
¯

,

but F can not contain any irreducible subrepresentation π, as it would be isomorphic
to some % and hence contained in Mp%q, so that F “ 0. In Chapter 4, we will see that
this semisimplicity occurs if and only if the characteristic of the field k does not divide
the order of G. Readers may enjoy trying to think about it beforehand, and should
also write down explicitly a matrix representation of (say) the regular representation of
G “ Z{2Z over a field of characteristic 2, to check that the latter is not semisimple (see
Exercise 2.4.3).

In the next section, we will derive further consequences of the linear independence
of matrix coefficients, related to characters of finite-dimensional representations. Before
this, as another application of Schur’s Lemma and its corollaries, we can now prove
Proposition 2.3.21 about irreducible representations of a direct product G “ G1 ˆG2.

Proof of Proposition 2.3.21. Recall that we are considering an algebraically
closed field k and two groups G1 and G2 and want to prove that all finite-dimensional
irreducible k-representations of G “ G1 ˆ G2 are external tensor products of the form
% » %1 b %2 for some irreducible representations %i of Gi (unique up to isomorphism).

To begin with, if %1 and %2 are finite-dimensional irreducible representations of G1

and G2, the irreducibility of % “ %1 b %2 follows from Burnside’s irreducibility criterion:
since the %1pg1q and %2pg2q, for gi P Gi, span the k-linear endomorphism spaces of their
respective spaces, it follows by elementary linear algebra that the %1pg1q b %2pg2q also
span the endomorphism space of the tensor product. (Here we used the fact that k is
algebraically closed.)

Thus what matters is to prove the converse. Let therefore

% : G1 ˆG2 ÝÑ GLpEq

be an irreducible k-representation. We restrict % to the subgroup G1 “ G1 ˆ t1u Ă G,
and we let E1 Ă E be an irreducible subrepresentation of E seen as representation of G1;
we denote by %1 the corresponding “abstract” representation of G1. We now proceed to
find a representation %2 of G2 such that

%1 b %2 » %.

For this purpose, define the k-vector space

E2 “ HomG1p%1,ResGG1
%q,
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of intertwiners between %1 and the restriction of % to G1; note that it is non-zero by
definition of %1. We claim that the definition

p%2pg2qΦqpvq “ %p1, g2qΦpvq

for g2 P G2, Φ P E2 and v P E1, defines a representation %2 of G2 “ t1u ˆG2 Ă G on E2.
The point is that because G1 and G2, seen as subgroups of G, commute with each other,
the k-linear map %2pg2qΦ is still a homomorphism %1 Ñ % (and not merely a linear map).
Indeed, denoting Ψ “ %2pg2qΦ, we compute

Ψp%1pg1qvq “ %p1, g2qΦp%1pg1qvq

“ %p1, g2qp%pg1, 1qΦpvqq (since Φ P E2)

“ %pg1, 1qp%p1, g2qΦpvqq “ %pg1, 1qΨpvq,

for all v P E1, which is to say, Ψ P E2.
Now we define a k-linear map

Θ

"

E1 b E2 ÝÑ E
v b Φ ÞÑ Φpvq,

and we claim that Θ is an intertwiner between %1 b %2 and %. Indeed, we can check this
on pure tensors: for gi P Gi, v b Φ P E1 b E2, we have

Θp%1 b %2pg1, g2qpv b Φqq “ Θp%1pg1qv b %2pg2qΦq

“ p%2pg2qΦqp%1pg1qvq

“ %p1, g2qΦp%1pg1qvq

“ %p1, g2q%pg1, 1qΦpvq

“ %pg1, g2qΦpvq “ %pg1, g2qΘpv b Φq

(this must be written down by yourself to not look like gibberish).
We will now show that Θ is bijective. Let F2 Ă E2 be any irreducible subrepresentation

(of G2), with action denoted %̃2; restricting Θ to E1 b F2 gives an intertwiner

%1 b %̃2 ÝÑ E.

By the first part of Proposition 2.3.21, which was proved at the beginning, the rep-
resentation %1 b %̃2 of G is irreducible, and so is E by assumption; moreover, if v0 ­“ 0
is a vector in E1 and 0 ­“ Φ0 P F2, then Θpv0 b Φ0q “ Φ0pv0q is non-zero (it is injective,
by Schur’s Lemma, because Φ0 is an embedding of the irreducible representation %1 in
%). Thus Θ restricted to %1 b %̃2 is non-zero, and again by Schur’s Lemma, it must be an
isomorphism.

We are thus already done proving that % is an external tensor product, but we will
continue with some (minor) additional work that shows that, in fact, Θ itself is bijective.
For this, we just need to show that

dimpE1 b E2q “ dimE “ dimpE1q dimpF2q,

(since we now know that Θ is surjective) or equivalently that dimF2 “ dimE2. But

E2 “ HomG1p%1,ResGG1
%q,

and, by fixing a basis pvjq of the space F2 of %̃2, we see that the restriction to G1 of
% “ %1 b %̃2 is the direct sum

à

j

E1 b kvj » pdim %̃2qE1,
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so that the dimension of E2 is given by

dimE2 “ pdim %̃2q dim HomG1p%1, %1q “ dim %̃2

by the last part of Schur’s Lemma (we use again the fact that k is algebraically closed).
Finally, coming back to the general situation, note that this last observation on the

restriction of %1 b %2 to G1 (and the analogue for G2) show that %1 and %2 are indeed
unique up to isomorphism, by the Jordan-Hölder-Noether Theorem. �

Example 2.7.31. As we have mentioned before, Proposition 2.3.21 is not valid in
general for k-representations of a group G1ˆG2, if k is not algebraically closed. We give
here a simple example. Let k “ R, G1 “ G2 “ R{Z and G “ G1 ˆG2, and consider the
composite

π : G
a
ÝÑ R{Z

%
ÝÑ GL2pRq

where apθ1, θ2q “ θ1`θ2 and % is the R-irreducible representation of Example 2.4.1. Since
R{Z is abelian, π is indeed a representation of G over R. It is irreducible, because the
addition map a is surjective, and % is R-irreducible, as we saw. But we claim that it is
not isomorphic to an external tensor product of representations of G1 and G2.

One way to see this, anticipating a bit some elementary parts of Section 2.7.5 be-
low, is to note that an exterior tensor product τ “ %1 b %2 of two finite-dimensional
representations %1 and %2 satisfies

Trpτpg1, g2qq “ Trp%1pgqqTrp%2pgqq

for all pg1, g2q P G1 ˆ G2. Since the trace of isomorphic representations are equal func-
tions on G (an easy property, see Corollary 2.7.35 for a formal proof), the claim will be
established if we can show that the trace of π is not a product of a function of g1 and a
function of g2. But for pθ1, θ2q P G1 ˆG2, we have

Trpπpθ1, θ2qq “ 2 cospθ1 ` θ2q,

and we leave it as an exercise to check that this is not a product function.

2.7.4. Burnside’s theorem and its generalizations, 2. As promised, we now
explain how to recover the results of the previous section in a style closer (maybe) to
that of Frobenius. Even for readers who have fully understood the arguments already
used, this may be useful. In fact, the proofs are simpler, but not so well motivated. The
viewpoint is to start this time by determining directly the isotypic components of the
regular representation.

Proposition 2.7.32 (Isotypic component of the regular representation). Let k be
an algebraically closed field and G a group. For any finite-dimensional irreducible k-
representation

% : G ÝÑ GLpEq

of G, the %-isotypic component Mp%q Ă CkpGq of the regular representation is isomorphic
to a direct sum of dimp%q copies of %, and is spanned by the matrix coefficients of %.

Proof. We start with the realization (2.23) of CkpGq as the induced representation
IndG1 p1q, and then apply Frobenius reciprocity (2.24), which gives us linear isomorphisms

HomGp%, CkpGqq “ HomGp%, IndG1 p1qq

» Hom1pResG1 p%q,1q “ HomkpE, kq “ E 1.
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Thus the isotypic component Mp%q, which is equal to the image of the injective G-
homomorphism

"

HomGp%, CkpGqq b E ÝÑ CkpGq
Φb v ÞÑ Φpvq

(see Lemma 2.7.20) is isomorphic to E 1 b E as a representation of G, where E 1 has the
trivial action of G, and E the action under %. This is the same as the direct sum of
dimpEq copies of %.

We now show, also directly, that the image of the linear map above is spanned by
matrix coefficients. Indeed, given λ P E 1, the corresponding homomorphism

Φλ : E ÝÑ CkpGq

in HomGp%, CkpGqq is given, according to the recipe in (2.28), by

Φλpvq “ px ÞÑ λp%pxqvqq “ fv,λ,

i.e., its values are indeed matrix coefficients. �

Re-proof of Theorem 2.7.26. First of all, we recover Burnside’s irreducibility
criterion. Consider an irreducible finite-dimensional representation % : G ÝÑ GLpEq.
We know from the proposition that

dimMp%q “ dimp%q2.

Since Mp%q is spanned by the dimp%q2 matrix coefficients

fvi,λj , 1 ď i, j ď dim %

associated with any basis pviq of E and the dual basis pλjq of E 1, these must be inde-
pendent. But then if we consider the matrix representation %m of % in the basis pviq, it
follows that there is no non-trivial linear relation between the coefficients of the %mpgq,
and hence – by duality – the span of those matrices must be the space of all matrices of
size dim %, which means that the linear span of the %pgq in EndpEq is equal to EndpEq.
This recovers Burnside’s criterion (since the converse direction was immediate).

Now consider finitely many irreducible representations p%iq which are pairwise non-
isomorphic. The subspaces Mp%iq Ă CkpGq are in direct sum (Lemma 2.7.21: the inter-
section of any one with the sum of the others is a subrepresentation where no composition
factor is permitted, hence it is zero), and this means that the matrix coefficients of the
%i must be linearly independent – in the sense of the statement of Theorem 2.7.26. �

Exercise 2.7.33. Let G be a group, k an algebraically closed field. Consider the
representation of GˆG on CkpGq by

πpg, hqfpxq “ fpg´1xhq g, h, x P G, f P CkpGq

of Exercise 2.1.3.
Let % : GÑ GLpEq be a finite-dimensional irreducible k-representation, and let Mp%q

denote as usual the span of the matrix coefficients of %.
Show that Mp%q is an irreducible subrepresentation of π, and describe its isomorphism

class as representation of GˆG as an external tensor product.
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2.7.5. Characters of finite-dimensional representations. As another conse-
quence of Theorem 2.7.26, we see that if we are given one matrix coefficient of each
of %1 and %2, some irreducible k-representations of G, both finite-dimensional, we are
certain that they will be distinct functions if %1 and %2 are not isomorphic. The converse
is not true, since even a single representation has typically many matrix coefficients.
However, one can combine some of them in such a way that one obtains a function
which only depends on the representation up to isomorphism, and which characterizes
(finite-dimensional) irreducible representations, up to isomorphism.

Definition 2.7.34 (Characters). Let G be a group and k a field.
(1) A character of G over k, or k-character of G, is any function χ : G ÝÑ k of the

type

χpgq “ Tr %pgq

where % is a finite-dimensional k-representation of G. One also says that χ is the character
of G.

(2) An irreducible character of G over k is a character associated to an irreducible
k-representation of G.

We will typically write χ% for the character of a given representation %. Then we have:

Corollary 2.7.35. Let G be a group and let k be a field.
(1) Two isomorphic finite-dimensional representations %1 and %2 of G have the same

character as function on G.
(2) If k is algebraically closed, then two irreducible finite-dimensional representations

%1 and %2 of G are isomorphic if and only if their characters are equal as functions on
G. More generally, the characters of the irreducible finite-dimensional representations of
G, up to isomorphism, are linearly independent in CkpGq.

(3) If k is algebraically closed and of characteristic zero, then any two finite-dimensional
semisimple representations of G are isomorphic if and only if their characters are equal.

Proof. (1) If two representations (irreducible or not, but finite-dimensional) %1 and
%2 are isomorphic, with Φ : E1 Ñ E2 giving this isomorphism, we have

Φ ˝ %1pgq ˝ Φ´1
“ %2pgq

for all g P G, and hence

Trp%1pgqq “ Trp%2pgqq

so that their characters are equal.
Now, to prove the converse assertion in (2), we note simply that the character Tr %pgq

is a sum of (diagonal) matrix coefficients: if pviq is a basis of the space of %, with dual
basis pλiq, we have

χ% “
ÿ

i

fvi,λi

(i.e,

Tr %pgq “
ÿ

i

xλi, %pgqviy,

for all g P G). Hence an equality

χ%1 “ χ%2

is a linear relation between certain matrix coefficients of %1 and %2 respectively. If %1 and
%2 are irreducible but not isomorphic, it follows that such a relation is impossible.
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Similarly, expanding in terms of matrix coefficients, we see that any linear relation
ÿ

π

αpπqχπ “ 0

among characters of the irreducible finite-dimensional k-representations of G (taken up
to isomorphism) must have αpπq “ 0 for all π.

Finally, for (3), let % be a semisimple k-representation. If we write the decomposition

% »
à

π

nπp%qπ

in terms of the irreducible finite-dimensional k-representations π of G (up to isomor-
phism), with nπp%q ě 0 the multiplicity of π in %, we find a corresponding decomposition
of the character

χ% “
ÿ

π

n%pπqχπ.

By (1), if χ%1 “ χ%2 for two (semisimple finite-dimensional) representations, we must
have nπp%1q “ nπp%2q for all π. But this equality is an equality in k (the characters are
k-valued functions); if k has characteristic zero, this implies the corresponding equality
of integers, from which we see that %1 and %2 are indeed isomorphic. �

Example 2.7.36 (A zero character). Continuing with the notation of the last proof, if
k has positive characteristic p, it is possible that the integer nπp%1q´nπp%2q be a multiple
of p for all π, and then the characters of %1 and %2 are the same. Here is an easy example
showing that this indeed happens. Consider any subgroup G of the group UnpZ{pZq
of unipotent upper-triangular n ˆ n-matrices with coefficients in Z{pZ, for instance, a
subgroup of

U3pZ{pZq “
!

¨

˝

1 a b
0 1 c
0 0 1

˛

‚ | a, b, c P Z{pZ
)

.

With k “ Z{pZ, the inclusion in GLnpkq gives a k-representation

% : UnpZ{pZq ÝÑ GLpknq.

Then, if n is a multiple of p, we have

χ%pgq “ 0

for all g, despite the fact that % is not trivial. (Here, of course, % is not semisimple and
has n trivial composition factors, but the dimension n is 0 in the field k.)

Example 2.7.37 (The character of the regular representation). Let k be any field,
and let G be a finite group, so that the space CkpGq of the regular representation of G is
finite-dimensional. Then its character is given by

(2.47) χpgq “

#

|G| if g “ 1

0 if g ­“ 1.

Indeed, we can take as a basis of CkpGq the family of functions pδxqxPG equal to 1 at
g “ x and 0 elsewhere. Then

%Gpgqδx “ δxg´1

for all g and x P G. This means that %Gpgq acts on the basis vectors by permuting them,
so that the corresponding matrix is a permutation matrix. The trace of %Gpgq is the
number of fixed points of this permutation, but we see that %Gpgqδx “ δx if and only if
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g “ 1, and then x is arbitrary. This gives the formula we claimed. (Note that here also,
if the order of the group G is zero in k, the character becomes identically zero.)

Corollary 2.7.35 is quite remarkable. It gives a tool to study representations of a
group using only functions on G, and – especially for finite and compact groups – it is so
successful that in some cases, one knows all the characters of irreducible representations of
a group – as explicit functions – without knowing explicit descriptions of the corresponding
representations!

Exercise 2.7.38 (Characters are unique). The character of a representation can
be interpreted as a linear combination of its matrix coefficients, which turns out to be
independent of the specific choice of model of the representation, in the sense of depending
only on its isomorphism class. Can we construct any other similar function?

(1) Let k be a field. Explain why finding a linear combination of matrix coefficients for
k-representations of dimension n (of any group) which is an invariant under isomorphism
amounts to finding a linear form λ : Mnpkq ÝÑ k such that λpgxg´1q “ λpxq for all
x P GLnpkq and g P Mnpkq.

(2) Prove that the trace is, up to multiplication by a scalar, the only such linear form.
[Hint: Hint: the problem is that of finding the GLnpkq-invariants for the contragredient
of the natural conjugation action of GLnpkq on Mnpkq.]

Part of the appeal of characters is that they are quite manageable in various compu-
tations. The following summarizes some of their formal properties:

Proposition 2.7.39 (Formalism of characters). Let G be a group and let k be a field.
For any finite-dimensional k-representation % of G, the character χ% satisfies

(2.48) χ%pgxg
´1
q “ χ%pxq, χ%pxgq “ χ%pgxq

for all g, x P G.
Moreover, we have the identities

χ%p1q “ dim % (seen as an element of k),

χ%1‘%2 “ χ%1 ` χ%2 ,

χ%1b%2 “ χ%1χ%2 ,

χ
q%pgq “ χ%pg

´1
q.

If % is finite-dimensional and has distinct composition factors %i, with multiplicities
ni ě 1, then

χ% “
ÿ

i

niχ%i .

Moreover if H Ă G is a subgroup, we have

χResGHp%q
phq “ χ%phq for all h P H,

and if H is a finite-index subgroup, we have

(2.49) χIndGHp%q
pgq “

ÿ

sPHzG
sgs´1PH

χ%psgs
´1
q.

The two statements in (2.48) are equivalent, and state that the value of a character at
some x P G only depends on the conjugacy class of x in G. Functions with this property
are usually called class functions on G.
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Note that we restrict to a finite-index subgroup for induction because otherwise the
dimension of the induced representation is not finite.

The character formula (2.49) makes sense because the property that sgs´1 be in H,
and the value of the trace of %psgs´1q, are both unchanged if s is replaced by any other
element of the coset Hs. At least if k has characteristic zero, one can also use this remark
to rewrite this formula as

χIndGHp%q
pgq “

1

|H|

ÿ

sPG
sgs´1PH

χ%psgs
´1
q,

since the sum on the right-hand side is equal to |H| times the expression in (2.49).
It may also be useful to observe that one can not use the invariance of χ% under

conjugation to remove the s in χ%psgs
´1q, since % is only a representation of H, and

usually s R H.
Note also that by taking g “ 1, this formula implies

dim IndGHp%q “ rG : Hs dim %

which recovers Proposition 2.3.10) (as it should), if the field k has characteristic zero (in
which case the equality in k gives the same in Z).

Proof. The first formulas are direct consequences of the definitions and the prop-
erties of the trace of linear maps. Similarly, the formula for the restriction is clear, and
only the case of induction requires proof. The argument will be an elaboration of the
proof of the dimension formula (Proposition 2.3.10, or of Proposition 2.3.13.

Let E be the space on which % acts, and let F be the space

F “ tf : GÑ E | fphxq “ %phqfpxq for h P H, x P Gu

of the induced representation. We will compute the trace by decomposing F (as a linear
space) conveniently, much as was done in the proof of Proposition 2.3.10 when computing
the dimension of F (which is also, of course, the value of the character at g “ 1). First of
all, for any s P G, let Fs Ă F be the subspace of those f P F which vanish for all x R Hs;
thus Fs only depends on the coset Hs P HzG. We have a direct sum decomposition

F “
à

sPHzG

Fs,

where the components of a given f are just obtained by taking the restrictions of f to
the cosets Hs and extending this by zero outside Hs.

Now, for a fixed g P G, the action of Indpgq on F is given by the regular representation

Indpgqfpxq “ fpxgq.

It follows from this that Indpgq permutes the subspaces Fs, and more precisely that
Indpgq sends Fs to Fsg´1 . In other words, in terms of the direct sum decomposition
above, the action of Indpgq is a “block-permutation matrix”. Taking the trace (it helps
visualizing this as a permutation matrix), we see that it is the sum of the trace of the maps
on Fs induced by Indpgq where s runs over those cosets s P HzG for which Hsg´1 “ Hs,
i.e., over those s for which sgs´1 P H.

Now for any s P G with sgs´1 P H, we compute the trace of the linear map

πs,g : Fs ÝÑ Fs
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induced by Indpgq. To do this, we use the fact – already used in Proposition 2.3.10 – that
Fs is isomorphic to E. More precisely, there are reciprocal k-linear isomorphisms

E
α
ÝÑ Fs

β
ÝÑ E

such that

βpfq “ fpsq

on the one hand, and αpvq is the element of Fs mapping hs to %phqv (and all x R Hs
to 0.) The fact that α and β are inverses of each other is left for the reader to (it is
contained in the proof of Proposition 2.3.10).

Thus the trace of Indpgq is the sum, over those s with sgs´1 P H, of the trace of the
linear map on E given by β ˝ πs,g ˝ α. But – and this shouldn’t be much of a surprise –
this map is simply given by

%psgs´1
q : E ÝÑ E,

with trace χ%psgs
´1q (which is defined because sgs´1 P H, of course). The stated formula

follows by summing over the relevant s.
We check the claim: given v P E, and f “ αpvq, we have

pβ ˝ πs,g ˝ αqpvq “ Indpgqfpsq “ fpsgq

“ fppsgs´1
qsq “ %psgs´1

qfpsq “ %psgs´1
qv,

using the definitions of α and β. �

The formula for an induced character may look strange or complicated at first. In
particular, it is probably not clear just by looking at the right-hand side that it is the
character of a representation of G! Nevertheless, we will see, here and especially in
Chapter 4, that the formula is quite flexible and much nicer than it may seem.

Example 2.7.40. (1) Example 2.7.37 is also a special case of the formula (2.49) for the
character of an induced representation. Indeed, we know that the regular representation
%G of a group G (over a field k) is the same as the induced representation IndG1 p1q of the
trivial representation of the trivial subgroup t1u of G. Hence

χ%Gpgq “
ÿ

sPG
sgs´1“1

1,

which leads to the formula (2.47) (since the sum is empty, except when g “ 1, and the
conjugacy class of 1 is reduced to t1u.)

(2) Generalizing this, let % be the permutation representation (Section 2.6.2) associ-
ated with the action of G on a finite set X. Then we have

χ%pgq “ |tx P X | g ¨ x “ xu|,

i.e., the character value at g is the number of fixed points of g acting on X. Indeed, in
the basis pexq of the space of %, each %mpgq is a permutation matrix, and its trace is the
number of non-zero diagonal entries (which are equal to 1). These correspond to those
x P X where %pgqx “ egx is equal to ex, i.e., to the fixed points of g.

(3) Let H ŸG be a normal subgroup of G of finite index, and % a finite-dimensional
representation of H. Let π “ IndGHp%q. Then

χπpgq “ 0
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for g R H, since the condition sgs´1 P H means g P s´1Hs “ H. For h P H, on the other
hand, we have shs´1 P H for all s, and thus

χπphq “
ÿ

sPG{H

χ%pshs
´1
q.

Exercise 2.7.41. Show directly using the character formula that if H is a subgroup
of finite index in G, the characters on both sides of the projection formula

IndGHp%2 b ResGHp%1qq » IndGHp%2q b %1

are identical functions on G.

Example 2.7.42 (Characters of SL2pCq). Consider G “ SL2pCq and the representa-
tions Vm defined in Example 2.6.1 for m ě 0. We can compute the character of Vm, to
some extent, by using the basis of monomials ei “ X iY m´i of the space Vm: by definition,
if

g “

ˆ

a b
c d

˙

we have

%mpgqpeiq “ paX ` cY qipbX ` dY qm´i

“

i
ÿ

k“0

m´i
ÿ

l“0

ˆ

i

k

˙ˆ

m´ i

l

˙

akci´kbldm´i´lXk`lY m´k´l

“

m
ÿ

j“0

´

ÿ

k`l“j

ˆ

i

k

˙ˆ

m´ i

l

˙

akci´kbldm´i´l
¯

ej

by binomial expansion. The diagonal coefficient here is

ÿ

k`l“i

ˆ

i

k

˙ˆ

m´ i

l

˙

akci´kbldm´i´l,

and hence

χ%mpgq “
m
ÿ

i“0

ÿ

k`l“i

ˆ

i

k

˙ˆ

m´ i

l

˙

akci´kbldm´i´l.

This may – or not – look forbidding. However, if one remembers that the value of the
character at g depends only on the conjugacy class of g, one can simplify this, at least
for certain elements. Suppose for instance that g is diagonalizable, hence is conjugate to
a matrix

tpλq “

ˆ

λ 0
0 λ´1

˙

for some λ P Cˆ (this will be true very often, e.g., whenever the eigenvalues of g are
distinct). The computation of χ%mpgq is then much easier: we have indeed

%mptpλqqei “ pλXq
j
pλ´1Y qm´i “ λ2i´mei

for 0 ď i ď m (as in the proof of Proposition 2.7.12). Hence, we obtain the formula

χ%mptpλqq “ λ´m ` λ´m`2
` ¨ ¨ ¨ ` λm´2

` λm “
λm`1 ´ λ´m´1

λ´ λ´1
.

(This computation corresponds to the fact that the restriction of Vm to the diagonal
subgroup T is the direct sum (2.41), as seen in Example 2.7.11.)
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If we specialize even further to λ “ eiθ with θ P R (i.e., to tpλq being a unitary matrix)
we obtain

(2.50) χ%m

´

ˆ

eiθ 0
0 e´iθ

˙

¯

“
sinppm` 1qθq

sinpθq
,

(with θ “ 0 mapping of course to m ` 1); these character values are simple, and funda-
mental, trigonometric functions.

Suppose on the other hand that g “ uptq is conjugate to an upper-triangular unipotent
matrix

uptq “

ˆ

1 t
0 1

˙

with t P C. Then we have

%mpuptqqei “ X i
ptX ` Y qm´i

and if we expand the second term, we see quickly that this is of the form

X iY m´i
` (combination of ej with j ą i),

leading in particular to
χ%mpuptqq “ m` 1

for all t.

Exercise 2.7.43. Prove that if m ě n ě 0, the characters of the two sides of the
Clebsch-Gordan formula (2.35) coincide for as large a set of (conjugacy classes of) g P
SL2pCq as you can.

The first part of Proposition 2.7.39 shows that the subset of CkpGq whose elements
are characters of finite-dimensional k-representations of G is stable under addition and
multiplication. It is therefore quite natural to consider the abelian group generated by
all characters, as a subgroup of the additive group of CkpGq. Indeed, the tensor product
formula shows that this group is in fact a ring.

Definition 2.7.44 (Generalized, or virtual, characters). Let G be a group and let k
be a field of characteristic zero. The character ring RkpGq of generalized characters of G
over k, is the ring generated, as an abelian group, by the characters of finite-dimensional
k-representations of G. The elements of RkpGq are also called virtual characters. The
dimension of a virtual character χ is defined to be χp1q P Z Ă k.

Note that RkpGq is not a k-vector space: we do not allow linear combinations of
characters with coefficients which are not integers. Concretely, a virtual character χ P
RkpGq is a function

χ : GÑ k

of the form
χ “ χ%1 ´ χ%2

for some finite-dimensional k-representations %1 and %2 of G; note that the latter are by
no means unique.

Example 2.7.45 (Induced representations as ideal in RkpGq). Consider the ring
RkpGq of a group G and a homomorphism φ : H Ñ G with image Impφq of finite
index in G. Now consider the subgroup Iφ of RkpGq generated – as abelian group – by
all characters of induced representations IndGHp%q, where % is a finite-dimensional repre-
sentation of H. Then the projection formula (Proposition 2.3.16) shows that Iφ Ă RkpGq
is an ideal, i.e., χ1χ2 P Iφ if χ1 in Iφ and χ2 is arbitrary.
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We will present some applications of the character ring in Section 4.8.1. We will also
say quite a bit more about characters, for finite and compact groups, in Chapters 4 and 5.

2.8. Some Clifford theory

We have already observed that, in general, there are no obvious relations between
irreducible representations of a group G and those of a subgroup H. We consider here a
special case of this question, as an illustration of many aspects of the general formalism.
This is the case when we have a group G with an exact sequence

1 ÝÑ H ÝÑ G ÝÑ A ÝÑ 1

and the quotient group A is abelian. We can then find some precise links between
irreducible representations of G and those of H. This situation, although it seems rather
special, does have important applications, in particular in number theory. In these, it is
usually the case that the representation theory for H is considered to be simpler: this
indicates why we attempt to understand representations of G by restricting them to H.

The first result does not require that A be abelian.

Proposition 2.8.1. Let k be an algebraically closed field, let G be a group and HŸG
a normal subgroup.

Let % be a finite-dimensional irreducible representation of G. Then either ResGHp%q is
an isotypic representation of H, or else there exists a proper subgroup H1 Ą H of G and
an irreducible representation π of H1 such that % » IndGH1

pπq. In that second case, the
character of % is zero outside of the subgroup H1.

Proof. First, by Exercise 2.3.3,18 the restriction of % to H is semisimple. Let E be
the space on which % acts, and let

E “
à

π

Mpπq

be the canonical decomposition of E, as a representation of H, into a direct sum of
isotypic components, each of which is an isotypic representation attached to an irreducible
representation π of H. If there is a single term in this direct sum, then by definition we
are in the case where ResGHp%q is isotypic. Thus we assume that this is not the case.

Because H is normal in G, the group G acts on the H-subrepresentations of E: if
F Ă E is H-stable, then %pgqF is also an H-subrepresentation since

%phqp%pgqvq “ %pgq%pg´1hgqv P %pgqF.

This formula also indicates that in this action, any H-irreducible subrepresentation
F isomorphic to some given representation π is sent by %pgq to a subrepresentation iso-
morphic to the representation

g ÞÑ πpg´1hgq

of H, which is also irreducible (the H-subrepresentations of F and %pgqF correspond
under %pgq for the same reasons.) In other words, G acts on the finite set of H-isotypic
components Mpπq.

This action is transitive, because the direct sum of the isotypic components corre-
sponding to any non-empty G-orbit is a G-subrepresentation of E, hence equal to E
since we assumed that % is irreducible.

18 If one does not wish to use this exercise, one might just add this as an assumption, and note that
it holds in the cases where all k-representations of G are semisimple, e.g., when G is finite.
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Now fix some isotypic component π1 occurring in E, and let H1 denote the stabilizer
of F “ Mpπ1q for this action of G. We note that H1 contains H (since Mpπ1q is an
H-subrepresentation of E) and is not equal to G (since otherwise E would be H-isotypic,
which we assumed here is not the case). Also the index of H1 in G is finite since dimE ă
`8.

By definition of the stabilizer, the isotypic space F is an H1-subrepresentation of E.
Similarly, all other isotypic spaces are stable under the action of H1 (since they are of
the form %pgqW for some g P G). We therefore find a decomposition

E “
à

π

Mpπq

into H1-subrepresentations, where each summand is of the form %pgqF for some g P G.
The number of these summands is |G|{|H1| “ rG : H1s (since G acts transitively on the
set of summands and H1 is the stabilizer of F ). Thus Proposition 2.3.13 allows us to
recognize that E » IndGH1

pF q. Now we conclude that F is irreducible as a representation
of H1 because % was assumed to be irreducible (see Exercise 2.3.12).

The final statement concerning the character values was already mentioned in Exam-
ple 2.7.40, (3). �

Now we consider some special properties of the case where the quotient A is abelian.

Proposition 2.8.2. Let k be an algebraically closed field, let G be a group and HŸG
a normal subgroup such that A “ G{H is abelian.

Let %1 and %2 be finite-dimensional irreducible k-representations of G acting on E1

and E2 respectively. Then

ResGHp%1q » ResGHp%2q

if and only if there exists a one-dimensional representation χ of A such that

%2 » %1 b χ

where χ is viewed as a character of G via the quotient map G ÝÑ A.

Proof. One implication is clear: since a character χ of A is extended to G in such
a way its kernel contains H, the restriction to H of % b χ is equal to that of %, for any
representation %.

The converse seems intuitive enough, but the argument, easy as it might look, is a
rather good illustration of the formalism of representation theory, and the reader might
want to try to solve the problem by herself first (see also the following remark.)

We consider the space HomkpE1, E2q with its natural action (2.15) of G and the sub-
space E “ HomHpE1, E2q “ HomkpE1, E2q

H . The space E is non-zero, since the restric-
tions of %1 and %2 to H are isomorphic. Since H is normal in G, E is a G-subrepresentation
of HomkpE1, E2q (see Lemma 2.1.12), and since H acts trivially, this means that E is a
representation of the abelian quotient A. Since E ­“ 0, this representation contains some
irreducible subrepresentation, which is one-dimensional (because A is abelian and k is
algebraically closed, Corollary 2.7.17). Let χ be such an irreducible representation of A
in E. Now one can either deduce from the G-intertwiner

χ ãÑ Homkp%1, %2q » q%1 b %2

that, by “twisting” by χ´1 “ qχ, we have

1 ãÑ p%1 b χqqb %2
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and hence %1 b χ » %2 by Schur’s Lemma (both are irreducible), or more concretely, one
can take a non-zero element Φ P E in the space of the subrepresentation isomorphic to
χ. Spelling out what this means, one finds that

%2pgqΦp%1pg
´1
qvq “ χpgqΦpvq

for all g P G and v P E1, which means that Φ P HomGp%1, %2 b χ
´1q. Since it is non-zero,

Schur’s Lemma again proves that %1 » %2 b χ
´1. �

Example 2.8.3. We used the representation on Homkp%1, %2q to compare the two
representations %1 and %2. It is worth contrasting this argument with the following
“cruder” version: since both representations are isomorphic on H, they have in particular
the same dimension, and composing with an H-isomorphism, we are reduced to the case
where %1 and %2 act on the same space E, and satisfy %1phq “ %2phq for all h P H. Now
one can check directly that, for any fixed g P G, the linear map αpgq “ %2pgq

´1 ˝ %1pgq on
E is an H-intertwiner. If we assume that ResGHp%1q is irreducible, then Schur’s Lemma
shows that αpgq “ χpgqId for some scalar χpgq P kˆ, and of course it is then easy to check
that χ is a character, and hence that %1 “ %2 b χ. The problem with this down-to-earth
reasoning is that it is rather messy to try to weaken the assumption of irreducibility of
the restriction to H! Philosophically, it is not representation-theoretic enough...

Exercise 2.8.4. We consider in this exercise the situation and notation of Proposi-
tion 2.8.2, and we assume that A is finite.

(1) If %1 and %2 are irreducible representations of G which are both H-isotypic and
have the same H-irreducible component, show that %1 » %2 b χ for some character χ of
A.

(2) For a finite-dimensional representation % of G, show that

IndGHpResGHp%qq »
à

χ

%b χ,

where χ runs over all one-dimensional representations of A.

2.9. Conclusion

We have now built, in some sense, the basic foundations of representation theory.
Interestingly, there are other basic results, also valid in great generality, for which no
proof is known using only the methods of this chapter (which consist, essentially, of
elementary abstract algebra). These statements require the theory of algebraic groups. A
very short introduction, with a discussion of some of the results it leads to, can be found
in the beginning of Chapter 7.

Before closing this chapter, we can use the vocabulary we have accumulated to ask:
What are the fundamental questions of representation theory? The following are maybe
the two most obvious ones:

‚ (Classification) For a group G, one may want to classify all its irreducible rep-
resentations (say over the complex numbers), or all representations of a certain
type. This is possible in a number of very important cases, and is often of
tremendous importance for applications. One should think here of a group G
which is fairly well-understood from a group-theoretic point of view; knowing its
representations is a natural way to deepen the understanding of the group.

‚ (Decomposition) Given a group G again, and a representation E of G, which
arises naturally in some application, one may ask to find explicitly the irre-
ducible components of E, either as summands if E is semisimple, or simply as
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composition factors. If the group is sufficiently complicated, this decomposition
might involve a “direct integral” (the simplest example comes from the theory
of Fourier integrals, see Section 7.3) and not merely a direct sum.

In Chapters 4 and 5, we will see a number of examples of the first problem for specific
cases of finite groups, and for some compact topological groups. Indeed, this problem
is rather well-understood for some of these groups, including very important ones for
applications. We will also see a few cases of the second problem, one of them being
responsible for some of basic the properties of the Hydrogen atom (see Section 6.4).

Of course, these few examples are only sample illustrations. Among the areas of mod-
ern mathematics where one finds many others, we will just mention that representation
theory is absolutely crucial to the so-called “Langlands Program” in number theory. We
refer to [2] for a general survey of many aspects of this theory.
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CHAPTER 3

Variants

We present here some of the variants of the notions of representation theory that were
discussed in the previous chapter. They are all very important topics in their own right,
and we will encounter them intermittently in later chapters.

3.1. Representations of algebras

If, instead of a group G, we consider an algebra A over a field k, i.e., a (non necessarily
commutative) ring which has a compatible structure of k-vector space, the analogue of a
representation of A is an algebra homomorphism

A
%
ÝÑ EndkpEq.

This may be called a representation of A, but it is more usual to focus on E and to
note that such a map defines a structure of A-module on the vector space E by

a ¨ v “ %paqv

for a P A and v P E.
It is important for certain aspects of representation theory that the k-representations

of a group G can be understood in this language. Associated to G is the vector space
kpGq freely generated by G (which already appeared at the beginning of the previous
chapter); this has in fact the structure of a k-algebra if one defines the product on kpGq
by

rgs ¨ rhs “ rghs,

and expand it by linearity, where we use temporarily rgs to indicate the g-th basis vector
of kpGq. Thus, given elements a, b P kpGq which we express as linear combinations

a “
ÿ

gPG

λgrgs, b “
ÿ

hPG

µhrhs,

with only finitely many non-zero coefficients λg P k and µh P k, the product ab is given
by

ab “
ÿÿ

g,hPG

λgµhrgsrhs “
ÿ

xPG

´

ÿ

gh“x

λgµh

¯

rxs.

Note that if G is not abelian, this algebra is not commutative.

Example 3.1.1. Let G be a finite group, k a field, and consider the element

s “
ÿ

gPG

rgs P kpGq.

Then by expanding the square, we find in kpGq that

(3.1) s2
“
ÿÿ

g,hPG

rghs “
ÿ

xPG

´

ÿ

rgsrhs“x

1
¯

x “ |G|s.
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Similarly, multiplying on the left or the right with x P kpGq, we get

(3.2) srxs “
ÿ

gPG

rgsrxs “
ÿ

gPG

rgxs “
ÿ

hPG

rhs “ s, rxss “ s.

By linearity, we see that sa “ as for all a P kpGq; thus the element s is in the center
of the algebra kpGq.

Definition 3.1.2 (Group algebra). Let k be a field and G a group. The algebra kpGq
defined above is called the group algebra of G over k.

The characteristic algebraic property of the group algebra is the following:

Proposition 3.1.3 (Representations as modules over the group algebra). Let G be
a group and k a field. If

G
%
ÝÑ GLpEq

is a k-representation of E, then E has a structure of kpGq-module defined by extending
% by linearity, i.e.,

´

ÿ

gPG

λgrgs
¯

¨ v “
ÿ

gPG

λg%pgqv.

Conversely, any kpGq-module E inherits a representation of G by restricting the “mul-
tiplication by a” maps to the basis vectors rgs, i.e., by putting

%pgq “ pv ÞÑ rgs ¨ vq,

and furthermore, a k-linear map Φ : %1 ÝÑ %2 is a G-morphism if and only if Φ is
kpGq-linear.

Sometimes, one denotes by %paq the map v ÞÑ a ¨ v. Thus %paq becomes an element in
HomkpE,Eq.

Here are some reasons why this approach can be very fruitful:

‚ It gives access to all the terminology and results of the theory of algebras; in
particular, for any ring A, the notions of sums, intersections, direct sums, etc, of
A-modules, are well-defined and well-known. For A “ kpGq, they correspond to
the definitions already given in the previous chapter for linear representations.
Other constructions are however more natural in the context of algebras. For
instance, one may consider the ideals of kpGq and their properties, which is not
something so natural at the level of the representations themselves.

‚ The kpGq-modules parametrize, in the almost tautological way we have de-
scribed, the k-representations of G. It may happen that one wishes to con-
centrate attention on a special class C of representations, characterized by some
property. It happens, but very rarely, that these representations correspond in
a natural way to all (or some of) the representations of another group GC (an
example is to consider for C the class of one-dimensional representations, which
correspond to those of the abelianized group G{rG,Gs, as in Proposition 2.6.7),
but it may happen more often that there is a natural k-algebra AC such that its
modules correspond precisely (and “naturally”) to the representations in C.

Partly for reasons of personal habit (or taste), we won’t exploit the group algebra
systematically in this book. This can be justified by the fact that it is not absolutely
necessary at the level we work. But we will say a bit more, e.g., in Section 4.3.6, and
Exercise 4.3.30 describes a property of representations with cyclic vectors which is much
more natural from the point of view of the group algebra.
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Exercise 3.1.4 (Representations with a fixed vector under a subroup). Let G be
a finite group, and let H Ă G be a subgroup. We will describe a subalgebra H of
CpHq such that the irreducible complex representations of G which contain non-zero
H-invariant vectors are in correspondance with certain H-modules.

(1) Show that

H “ ta P CpGq | h1ah2 “ a for all h1, h2 P Hu

is a subalgebra of CpGq, and that it is generated as C-vector space by the elements

ηx “
ÿ

yPHxH

rys P CpGq, x P G,

where HxH denotes a double coset of H in G, i.e.,

HxH “ th1xh2 | h1, h2 P Hu Ă G.

(2) Show that if % : G ÝÑ GLpEq is a representation of G, the subspace EH is stable
under multiplication by H, i.e., that EH is an H-module.

(3) Show that if Φ P HomGpE,F q, the restriction of Φ to EH is an H-linear map from
EH to FH .

(4) Let % : G ÝÑ GLpEq be a complex representation of G. If F Ă EH is an H-
submodule of EH , and F̃ “ CpGqF is the subrepresentation of E generated by F , show
that F̃H “ F . [Hint: Show that a vector v P F̃H is of the form v “ 1

|HxH|
ηxw for some

x P G and w P F .]
(5) Let % : G ÝÑ GLpEq be a semisimple representation of G such that EH ­“ 0.

Show that % is irreducible if and only if EH is simple as an H-module, i.e., if and only if
EH contains no proper non-zero submodule.

(6) Show that if %1, %2 are irreducible representations of G on E1, E2 respectively,
with EH

i ­“ 0, the H-modules EH
1 and EH

2 are isomorphic if and only if %1 » %2. [Hint:
When EH

1 » EH
2 , consider the subrepresentation of E1 ‘ E2 generated by the graph of

an H-isomorphism.]

We will use the kpGq-module structure corresponding to representations a number of
times in the remainder of the book. Usually, the notation rgs will be abandoned in doing
so, and we will write, e.g.

s “
ÿ

gPG

g P kpGq

for the element of Example 3.1.1.

Exercise 3.1.5 (The group ring as “universal” endomorphisms). A fixed a P kpGq
has the feature that, for any representation % : G ÝÑ GLpEq, there is a corresponding
k-linear endomorphism given by its action on E, i.e., the linear map

εpaq%

#

E ÝÑ E

v ÞÑ %paqv

in HomkpE,Eq.
These maps are “functorial” in %, in the sense that for any other representation

π : G ÝÑ GLpF q and any morphism of representations Φ P HomGp%, πq, the square
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diagram

E
ε
paq
%
ÝÑ E

Φ Ó Ó Φ

F
ε
paq
π
ÝÑ F

is commutative. This exercise shows that this property characterizes the group algebra.
Namely consider now any map

% ÞÑ ε%

that associates a linear map ε% P HomkpE,Eq to any k-representation % of G, in such a
way that the analogue of the rules above are valid, i.e., Φ˝ε% “ επ ˝Φ for Φ P HomGp%, πq.

We will show that there exists a unique a P kpGq, we have ε% “ ε
paq
% for all representations

%.
(1) Show that there exists a P kpGq such that εkpGq is the linear map

ε
paq
kpGq : x ÞÑ ax

on kpGq, seen as a kpGq-module by multiplication on the left. [Hint: Consider the maps
Φ : x ÞÑ xb on kpGq.]

(2) With a as in (1), show that ε% “ ε
paq
% for any representation % with a cyclic vector

v0.
(3) Conclude that ε% “ ε

paq
% for all representations.

(4) Show that the “universal endomorphisms” associated to a and b P kpGq are the
same if and only if a “ b.

(5) Show that a P kpGq is such that ε
paq
% is in the subspace EndGp%q of self-intertwiners

of %, for all representations % of G, if and only if a is in the center of the group algebra,
i.e., if and only if ax “ xa for all x P kpGq.

A motivating application of this exercise appears in Section 4.3.6.

3.2. Representations of Lie algebras

This section can be safely skipped in a first reading, since it will only be mentioned
again in Chapters 6 and 7. However, it should become clear then (especially from the
analysis of representations of SL2pRq in Section 7.4) that the concepts we quickly discuss
here are of great importance and usefulness.

Besides associative algebras, as in the previous section, there exist other important
and natural algebraic structures which lead to corresponding representation theories. A
particularly appealing one is that of a “quiver”, for which an excellent introduction is
found in [16, §5], but the most important case, besides that of groups and algebras, is
probably that of Lie algebras, because of the intimate connection between Lie groups and
Lie algebras.

We just present here only the simplest definitions, and one of the most basic and
crucial results in the representation theory of Lie algebras: the classification of the finite-
dimensional irreducible representations of the 3-dimensional simple complex Lie algebra
sl2.

Definition 3.2.1 (Lie algebra). Let k be a field. A Lie algebra over k is a k-vector
space L given with a k-bilinear map

r¨, ¨s

"

Lˆ L ÝÑ L
px, yq ÞÑ rx, ys
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often called the (Lie) bracket of L, which satisfies the following rules:

rx, ys “ ´ry, xs for all x, y P L

rrx, ys, zs ` rry, zs, xs ` rrz, xs, ys “ 0 for all x, y, z P L.

The second condition is called the Jacobi identity.1

There are two major natural sources of Lie algebras. One is the tangent space at the
identity of a Lie group, with its Lie bracket (see Section 6.1), which is a real Lie algebra,
and the other is any associative k-algebra A, which has an associated Lie algebra structure
obtained by defining

rx, ys “ xy ´ yx

for px, yq P A ˆ A. Indeed, this clearly defines a k-bilinear operation on A which is
antisymmetric, and the Jacobi identity is obtained by a straightforward computation:

rrx, ys, zs ` rry, zs, xs “ pxy ´ yxqz ´ zpxy ´ yxq ` pyz ´ zyqx´ xpyz ´ zyq

“ ´yxz ´ zxy ` yzx` xzy

“ ypzx´ xzq ´ pzx´ xzqy

“ ry, rz, xss “ ´rrz, xs, ys.

In particular, if E is a k-vector space, we obtain a Lie algebra structure, denoted
glpEq, on the k-algebra EndkpEq.

Definition 3.2.2 (Homomorphisms, representations). Let k be a field.
(1) A morphism between Lie algebras L1 and L2 over k is a k-linear map φ : L1 ÝÑ L2

such that φprx, ysq “ rφpxq, φpyqs for all x, y P L1. A subspace M of a Lie algebra L is a
subalgebra if the restriction of the bracket to M gives it a Lie algebra structure, i.e., if
rx, ys PM for all x, y in M .

(2) A k-representation of a k-Lie algebra L is a morphism

φ : L ÝÑ glpEq

for some k-vector space E. One says that L “acts on E by φ”, and one writes x ¨v instead
of φpxqpvq for x P L and v P E.

(3) A homomorphism φ1 ÝÑ φ2 of representations of L, with φ1 and φ2 acting on E1

and E2 respectively, is a k-linear map E1
Φ
ÝÑ E2 such that

Φpx ¨ vq “ Φpxq ¨ v

for all x P L and v P E1.

Example 3.2.3. (The statements in these examples are simple exercises that the
reader should solve.)

(1) Let E be a k-vector space. The subspace

slpEq “ tx P glpEq “ EndkpEq | Trpxq “ 0u

is a subalgebra of glpEq. Similarly, if B is a bilinear form defined on E, the subspace

opE,Bq “ tx P glpEq | Bpx ¨ v, wq `Bpv, x ¨ wq “ 0u

of glpEq is a subalgebra of E. (To check this, it may be simpler to express B in the form
Bpv, wq “ tvMw for some matrix M .)

1 A mnemonic: a sum of three iterated brackets, where the bracket positions are fixed, and the
arguments are permuted cyclically.
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(2) Let A be an associative k-algebra. A derivation B of A is a k-linear map A
B
ÝÑ A

such that
Bpxyq “ xBpyq ` Bpxqy

for all x, y P A. The set DerkpAq of all derivations of A is a vector subspace of EndkpAq,
and a simple computation (left as exercise) shows that DerkpAq is a subalgebra of glpAq.

(3) Let L be a k-Lie algebra. The adjoint representation

ad : L ÝÑ glpLq

is defined by
adpxqpyq “ rx, ys

for all x, y in L. It is indeed a representation, and in fact this property is equivalent with
the Jacobi identity. Furthermore, another easy computation using the Jacobi identity
shows that adpxq is a derivation of EndkpEq.

It is clear that the kernel of ad is the center

zpLq “ tx P L | rx, ys “ 0 for all y P Lu

of L. For instance, one deduces easily that the adjoint representation of slpEq is injective.

There is a formalism of representations of Lie algebras that closely parallels the for-
malism for groups, and which is indeed directly related when specialized to Lie groups.
For instance, an irreducible representation is one of dimension ě 1 where there is no
non-zero subspace which is stable under the action of the Lie algebra.

Exercise 3.2.4. Let k be an algebraically closed field and L a k-Lie algebra. We de-
note by HomLpφ1, φ2q the vector space of homomorphisms of Lie-algebra representations
between two such representations φ1 and φ2.

(1) Show that Schur’s Lemma holds for finite-dimensional irreducible k-representations
of L: for two irreducible Lie-algebra representations φ1 and φ2, we have

HomLpφ1, φ2q “ 0

unless φ1 and φ2 are isomorphic, and

HomLpφ, φq » k

if φ is irreducible.
(2) What is the analogue for L of a trivial representation? What is the analogue of

the space of invariants of a representation?
(3) Given a representation φ of L acting on E, can you define a representation of L on

EndkpEq such that the space of invariants of this representation is equal to HomLpφ, φq?

We will present only one gem from the vast field of Lie algebras: we will determine
the finite-dimensional irreducible representations of the complex Lie algebra slpC2q, or in
other words, of the space of complex matrices of size 2 with trace 0.

Theorem 3.2.5. For any integer n ě 0, there exists a unique irreducible representa-
tion φn of dimension n`1 of slpC2q. It is characterized among irreducible representations,
up to isomorphism, by the fact that there exists a non-zero vector v such that

φn

´

ˆ

0 1
0 0

˙

¯

v “ 0, φn

´

ˆ

1 0
0 ´1

˙

¯

v “ nv.

This vector is unique up to multiplication by a non-zero scalar and is called a highest
weight vector of φn.
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Sketch of proof. First, we denote L “ slpC2q for simplicity. Then we observe
that the elements

e “

ˆ

0 1
0 0

˙

, h “

ˆ

1 0
0 ´1

˙

, f “

ˆ

0 0
1 0

˙

form a basis of L (as a vector space). A straightforward computation shows that they
satisfy the relations

rh, es “ 2e, rh, f s “ ´2f, re, f s “ h.

We see from these in particular that both h and adphq are diagonalizable with integral
eigenvalues (in the basis pe, h, fq of L, the matrix of adphq is diagonal with eigenvalues
p2, 0,´2q). This fact will generalize to all irreducible representations of L, and it is a
crucial point.

Let φ : L ÝÑ glpEq be a finite-dimensional irreducible representation of L. We
attempt to understand the eigenvalue structure of φphq to determine that of E. One first
easy observation is that Trpφphqq “ Trpφpre, f sqq “ Trprφpeq, φpfqsq is equal to zero.

Let λ be an eigenvalue of φphq, selected so that Repλq is as large as possible, and
let v be a non-zero λ-eigenvector of φphq. (This exists because E is non-zero and finite-
dimensional, and C is algebraically closed.)

We first observe that φpeqv “ 0. Indeed, using the relations above and the fact that
φ is a representation, we have

φphqφpeqv “ φpeqφphqv ` φprh, esqv “ λφpeqv ` 2φpeqv “ pλ` 2qφpeqv.

Thus φpeqv is in the pλ`2q-eigenspace of φpvq; but the maximality condition imposed
on λ shows that this eigenspace must be 0, and hence φpeqv “ 0.

Next, consider the vectors vi “ φpfqiv for i ě 0 (the power refers to repeated com-
positions in EndkpEq). By induction, using the relation rh, f s “ ´2f , one sees that vi
satisfies

φphqvi “ pλ´ 2iqvi.

Since dimE is finite, all these vi must be zero from some point on – otherwise we
would get infinitely many distinct eigenvalues of φphq. Hence there exists n ě 0 be such
that vn ­“ 0 but vi “ 0 for all i ě n` 1.

We denote w “ vn and µ “ λ ´ 2n, its eigenvalue. Now, we go back “upwards”,
defining wi “ φpeqvi`1 for 0 ď i ă n. The point is that

wi “ pi` 1qpλ´ iqvi

for all i. This is proved by induction on i, using the relation re, f s “ h: for instance, for
i “ 0, we have

w0 “ φpeqφpfqv “ φpfqφpeqv ` φphqv “ λv “ λv0

(since φpeqv “ 0) and for i “ 1 we get

w1 “ φpeqv2 “ φpeqφpfqv1

“ φpfqφpeqv1 ` φphqv1 “ φpfqw0 ` pλ´ 2qv1,

which (using w0 “ λv0 and φpfqv0 “ v1) gives

w1 “ λv1 ` pλ´ 2qv1 “ 2pλ´ 1qv1 ;

this is the case i “ 1, and the induction is completely similar.
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A direct consequence of this formula is that the span of pv0, . . . , vnq is a non-zero
subrepresentation of E. Thus, by irreducibility, we have

E “
à

0ďjďn

Cvn,

and in particular dimE “ n`1. This decomposition gives a diagonalization of φphq, and
we finally determine λ by recalling that Trpφphqq “ 0: this gives

0 “
n
ÿ

j“0

pλ´ 2jq “ pn` 1qλ´ 2
n
ÿ

j“0

j “ pn` 1qpλ´ nq,

so that λ “ n. The eigenvalues of φphq are therefore

n, n´ 2, ¨ ¨ ¨ , ´n` 2, ´n,

each with multiplicity one (this gives the generalization of the property we observed for h
and adphq). This shows that E satisfies the properties of the representation of dimension
n` 1 whose existence we claim.

To conclude the proof, we therefore only need to prove the existence and uniqueness
of a representation of dimension n` 1.

We leave these as exercises, with some hints: for uniqueness, starting from a vector
v with φphqv “ nv and φpeqv “ 0, the only subtlety is to check that w “ φpfqnv is
non-zero, to deduce that the vectors

pv, φpfqv, . . . , φpfqnvq

form a basis of E on which the action is completely determined by the computations
above.

The existence can then also be checked by hand: since the action of φpeq, φpfq, φphq
is explicitly written in this basis, it is enough to prove that these linear maps satisfy the
commutation relations

rφphq, φpeqs “ 2φpeq, rφphq, φpfqs “ ´2φpfq, rφpeq, φpfqs “ φphq,

and this may be checked by brute force... (See also [32, §4.8] for a slightly different
approach.) �

This classification should remind the reader of the existence of the representations %n
of SL2pCq of any integral dimension n ě 1 (Theorem 2.6.1). Indeed, in a certain precise
sense, these are “the same”. Namely, the irreducible representation φn of dimension n`1
of slpC2q can be constructed in a different way as a Lie-algebra representation acting
on the same space Vn of homogeneous polynomials of degree n in CrX, Y s on which the
irreducible representation %n acts.

To explain this, we first note that if x P slpC2q, we have exppxq P SL2pCq (where
we compute the exponential of a matrix by the usual power series expansion), since
detpexppxqq “ exppTrpxqq for any matrix x. This gives a connection between the Lie
algebra and the group SL2pCq. Now let

(3.3) φ̃npxq “
d

dt
%npexpptxqq

ˇ

ˇ

ˇ

t“0

for x P slpC2q. Then φ̃n is a representation of slpC2q, and it is irreducible (hence it is
isomorphic to the representation of dimension n` 1 given by the theorem).

We leave it as an exercise (see below) to check that, because %n is a group homomor-

phism, the map φ̃n : slpC2q ÝÑ glpVnq is indeed a representation of the Lie algebra. Now

101



let Hn “ φ̃nphq, where h is the element of slpC2q occurring in the proof of Theorem 3.2.5.
Then

Hn “
d

dt
%n

´

ˆ

et 0
0 e´t

˙

¯ˇ

ˇ

ˇ

t“0

and in particular

HnpX
jY n´j

q “
d

dt
ejt´pn´jqtXjY n´j

ˇ

ˇ

ˇ

t“0
“ p2j ´ nqXjY n´j

for 0 ď j ď n. Thus the element ṽ “ Xn is an eigenvector of Hn with eigenvalue n. In
addition, En “ φ̃npeq satisfies

EnpX
jY n´j

q “
d

dt
%n

´

ˆ

1 t
0 1

˙

¯ˇ

ˇ

ˇ

t“0
pXjY n´j

q

“
d

dt
Xj
ptX ` Y qn´j

ˇ

ˇ

ˇ

t“0
“ pn´ jqXj`1Y n´j´1,

and especially Enpṽq “ 0. Thus the vector ṽ ­“ 0 has both properties of a highest weight

vector, as in Theorem 3.2.5, and it is then easy to conclude that φ̃n is isomorphic to
φn, and that such an isomorphism can be chosen to map ṽ to a highest weight vector v
(what remains to check is that φ̃n is irreducible; the point is that we have diagonalized
the action of Hn, and that the eigenvectors are seen to be obtained from ṽ by repeated
application of φ̃npfq; comparing with the proof of the theorem shows that the span of
these eigenvectors of Hn is irreducible.)

We conclude by observing that it is no coincidence that the argument above has
parallels with the proof of irreducibility of %n in Example 2.7.11: Lie algebras and Lie
groups, which are groups with a differentiable structure that allows us to write expressions
like (3.3) above, are intimately related. We refer for instance to the book of Fulton and
Harris [18] for abundant illustrations and insights.

Exercise 3.2.6. (1) For matrices x and y of size n, show that

expp´txq expp´tyq expptxq expptyq “ exppt2rx, ys `Opt3qq

(where Opt3q represents a matrix-valued function of the form t3fptq with f bounded for
t sufficiently close to 0). [Hint: This can be done by brute force using the power series
expansion.]

(2) Let % be a finite-dimensional representation of SLnpCq. For x P slpCnq, let

φpxq “
d

dt
%pexpptxqq

ˇ

ˇ

ˇ

t“0
.

Show that φ is a representation of the Lie algebra slpCnq. [Hint: Use the previous
result and differentiate carefully...]

3.3. Topological groups

In many applications, it is particularly important to restrict the representations to
respect some additional structure. Among these, topological conditions are the most
common.

The corresponding structure is that of a topological group, i.e., a group G equipped
with a topology such that the product map

GˆGÑ G

and the inverse map
GÑ G
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are both continuous (with G ˆ G being given the product topology). There are many
examples: for instance, any finite group can be seen as a topological group with the
discrete topology; the additive group R or the multiplicative group Rˆ, with the usual
euclidean topology, are also topological groups; similarly, for any n ě 1, GLnpCq is a

group with the topology coming from its inclusion in MnpCq » Cn2
; and moreover, any

subgroup H of a topological group G in G inherits from G a topology and is then a
topological group. This includes, for instance, groups like Z Ă R, SLnpRq Ă GLnpRq or
SLnpZq Ă SLnpRq.

When dealing with a topological group, one typically wishes to restrict the represen-
tations which are considered to include some continuity property. This usually means
taking the base field to be either k “ C or R, and ensuring that the vector space carries
a suitable topology. We will restrict our attention to Banach spaces, i.e., k-vector spaces
E with a norm } ¨ } on E such that E is complete for this norm. Of special interest,
in fact, will be Hilbert spaces, when the norm derives from an inner product x¨, ¨y. As
a special case, it is important to recall that if E is a finite-dimensional real or complex
vector space, it carries a unique topology of Banach space, which can be defined using
an inner product if desired. (Though, as is well-known, there are many equivalent norms
which can be used to define this topology.)

Given a topological group G and a Banach space E, the first restriction concerning
representations % of G on E is that the operators %pgq, g P G, should be continuous.
Precisely, we denote by LpEq the space of continuous linear maps

T : E ÝÑ E,

(which are also called bounded linear maps) and by BGLpEq the group of those T P LpEq
which are invertible, i.e., bijective with a continuous inverse. In fact, this last continuity
condition is automatic when E is a Banach space, by the Banach isomorphism theorem
(see, e.g., [44, Th. III.11].) Of course, if dimpEq ă `8, we have BGLpEq “ GLpEq.

If LpEq is given any topology, the group BGLpEq inherits, as a subset of LpEq a
topology from the latter. It is then natural to think of considering representations

% : G ÝÑ BGLpEq

which are continuous. However, as readers familiar with functional analysis will already
know, quite a few different topologies are commonly encountered on LpEq. The most
natural2 is the norm topology, associated to the norm

(3.4) }T }LpEq| “ sup
vPE
v ­“0

}Tv}

}v}
“ sup

vPE
}v}“1

}T pvq}

defined for T P LpEq (in other words, it is a topology of uniform convergence on bounded
subsets of E; the two expressions coincide because of linearity). However, it turns out
that asking for homomorphisms to BGLpEq which are continuous for this topology does
not lead to a good theory: there are “too few” representations in that case, as we will
illustrate below. The “correct” definition is the following:

Definition 3.3.1 (Continuous representation). Let G be a topological group and
k “ R or C. Let E be a k-Banach space.

(1) A continuous representation, often simply called a representation, of G on E is a
homomorphism

% : G ÝÑ BGLpEq

2 It is natural, for instance, because LpEq becomes a Banach space for this norm.
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such that the corresponding action map
#

Gˆ E ÝÑ E

pg, vq ÞÑ %pgqv

is continuous, where Gˆ E has the product topology.
(2) If %1 and %2 are continuous representations of G, acting on E1 and E2 respectively,

a homomorphism

%1
Φ
ÝÑ %2

is a continuous linear map E1 ÝÑ E2 such that

Φp%1pgqvq “ %2pgqΦpvq

for all g P G and v P E1.

If dimpEq ă `8, note that this is indeed equivalent to asking that % be continuous,
where BGLpEq has its usual (euclidean) topology.

Example 3.3.2 (Too many representations). Consider G “ R and k “ C. If we
consider simply one-dimensional representations

R Ñ Cˆ,

with no continuity assumptions at all, there are “too many” for most purposes. Indeed,
as an abelian group, R has infinite rank, and it is a relatively direct application of Zorn’s
Lemma that any homomorphism χ : H ÝÑ Cˆ, where H Ă R is any subgroup, can
be extended to a one-dimensional representation of R. Since R is torsion free, it follows
that for any finite subset J Ă R which generate a free abelian group of rank |J |, and any
complex numbers zj for j P J , we can find a one-dimensional representation χ such that
χpjq “ zj for j P J .

But as soon as we impose some regularity on the homomorphisms R Ñ Cˆ, we obtain
a much better understanding:

Proposition 3.3.3 (Continuous characters of R). Let χ : R Ñ Cˆ be a continuous
group homomorphism. Then there exists a unique s P C such that

χpxq “ esx

for all x P R.

In fact, one can show that it is enough to ask that the homomorphism be measurable.
The intuitive meaning of this is that, if one can “write down” a homomorphism R Ñ

Cˆ in any concrete way, or using standard limiting processes, it will automatically be
continuous, and hence it will be one of the ones above.

The proof we give uses differential calculus, but one can give completely elementary
arguments (as in [1, Example A.2.5]).

Proof. If χ is differentiable, and not merely continuous, we can use differential
equations: we have

χ1pxq “ lim
hÑ0

χpx` hq ´ χpxq

h
“ χpxq lim

hÑ0

χphq ´ 1

h
“ χpxqχ1p0q

for all x P R. Denoting s “ χ1p0q, any solution of the differential equation y1 “ sy is
given by

ypxq “ αesx
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for some parameter α P C. In our case, putting x “ 0 leads to 1 “ χp0q “ α, and hence
we get the result.

We now use a trick to show that any continuous homomorphism χ : R ÝÑ Cˆ is in
fact differentiable. We define

Ψpxq “

ż x

0

χpuqdu

(note that this would be s´1pesx´1q if χpxq “ esx; this formula explains the manipulations
to come), which is a differentiable function on R. Then we write

Ψpx` tq “

ż x`t

0

χpuqdu “

ż x

0

χpuqdu`

ż x`t

x

χpuqdu

“ Ψpxq `

ż t

0

χpx` uqdu “ Ψpxq ` χpxqΨptq

for all real numbers x and t. The function Ψ can not be identically zero (its derivative χ
would then also be zero, which is not the case), so picking a fixed t0 P R with Ψpt0q ­“ 0,
we obtain

χpxq “
Ψpx` t0q ´Ψpxq

Ψpt0q
,

which is a differentiable function! Thus our first argument shows that χpxq “ esx for all
x, with s “ χ1p0q. �

Example 3.3.4 (Too few representations). Let G be the compact group R{Z. We
now show that, if one insisted on considering as representations only homomorphisms

% : R{Z ÝÑ BGLpEq

which are continuous with respect to the norm topology on BGLpEq, there would be “too
few” (similar examples hold for many other groups). In particular, there would be no
good analogue of the regular representation. Indeed, if f is a complex-valued function on
R{Z and t P R{Z, it is natural to try to define the latter with

%ptqfpxq “ fpx` tq.

To have a Banach space of functions, we must impose some regularity condition.
Although the most natural spaces turn out to be the Lp spaces, with respect to Lebesgue
measure, we start with E “ CpR{Zq, the space of continuous functions f : R{Z Ñ C.
If we use the supremum norm

}f} “ sup
tPR{Z

|fptq|,

this is a Banach space. Moreover, the definition above clearly maps a function f P E to
%ptqf P E; indeed, we have

}%ptqf} “ }f}

(since the graph of %ptqf , seen as a periodic function on R, is just obtained from that of
f by translating it to the left by t units), and this further says that %ptq is a continuous
linear map on E. Hence, % certainly defines a homomorphism

% : R{Z ÝÑ BGLpEq.

But now we claim that % is not continuous for the topology on BGLpEq coming from
the norm (3.4). This is quite easy to see: in fact, for any t ­“ 0 with 0 ă t ă 1{2, we have

}%ptq ´ IdE}LpEq “ }%ptq ´ %p0q}LpEq ě 1
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which shows that % is very far from being continuous at 0. To see this, we take as “test”
function any ft P E which is zero outside r0, ts, non-negative, always ď 1, and equal to
1 at t{2, for instance (where we view R{Z as obtained from r0, 1s by identifying the end
points).

t

1

1

fpxq

fpx` tq

Then }ft} “ 1, and therefore

}%ptq ´ Id}LpEq ě }%ptqft ´ ft} “ sup
xPR{Z

|ftpt` xq ´ ftpxq| “ 1

since %ptqft is supported on the image modulo Z of the interval r1´ t, ts which is disjoint
from r0, ts, apart from the common endpoint t.

However, the point of this is that we had to use a different test function for each t:
for a fixed f , the problem disappears, since by uniform continuity of f P E, we have

lim
tÑ0
}%ptqf ´ f} “ 0

for any fixed f P E.

Exercise 3.3.5. Show that % defined above on E “ CpR{Zq is a continuous repre-
sentation in the sense of Definition 3.3.1.

The general formalism of representation theory can, to a large extent, be transferred
or adapted to the setting of representations of topological groups. In particular, for
finite-dimensional representations, since all operations considered are “obviously contin-
uous”, every construction goes through. This applies to direct sums, tensor products, the
contragredient, symmetric and exterior powers, subrepresentations and quotients, etc.

Some care is required when considering infinite-dimensional representations. For in-
stance, the definition of subrepresentations and quotient representations, as well as that
of irreducible representation, should be adjusted to take the topology into account:

Definition 3.3.6 (Subrepresentations and irreducibility). Let G be a topological
group, and let

% : G ÝÑ BGLpEq

be a representation of G on a Banach space E.
(1) A representation π of G is a subrepresentation of % if π acts on a closed subspace

F Ă E which is invariant under %, and πpgq is the restriction of %pgq to F . Given such
a subrepresentation π, the quotient %{π is the induced representation on the quotient
Banach space E{F with the norm

}v}E{F “ mint}w}E | w pmodF q “ vu.

(2) The representation % is irreducible (sometimes called topologically irreducible ) if
E is non-zero and E has no non-zero proper subrepresentation, i.e., there is no non-zero
proper closed subspace F of E which is stable under all %pgq, g P G.
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If dimpEq ă `8, since any subspace of F is closed, there is no difference between
these definitions and the previous one. But in general the distinction between closed
subspaces and general subspaces is necessary to obtain a good formalism. There exist
indeed infinite-dimensional representations which are topologically irreducible but have
many non-zero proper stable subspaces (these are necessarily dense in the space E, but
they are not closed.)

The second example we give of adapting the formalism is that of the contragredient
representation. Given a Banach space E, the dual Banach space is the vector space E 1

of continuous linear maps E ÝÑ C with the norm

}λ}E1 “ sup
}v}“1

|λpvq| “ sup
v ­“0

|λpvq|

}v}
.

Given a representation

% : G ÝÑ BGLpEq

of a topological group G on E, the contragredient q% acts on E 1 by the usual formula

xg ¨ λ, vy “ xλ, %pg´1
qvy.

If E is finite-dimensional, this is obviously continuous. Otherwise, the following gives
a simple condition under which the contragredient is continuous:

Lemma 3.3.7 (Continuity of the contragredient). Let G be a topological group and %
a representation of G on the Banach space E, such that

sup
gPG

}%pgq}LpEq ă `8.

Then the contragredient representation on E 1 is a continuous representation.

Proof. It is enough to check continuity of the action map at the pair p1, 0q P GˆE 1

(we leave this reduction as an exercise). But we have

}q%pgqλ}E1 “ sup
}v}“1

|λp%pg´1
qvq| ďM}λ}

with M “ sup }%pgq}. Thus if λ is close enough to 0 (and g arbitrary), then so is q%pgqλ,
which means that q% is continuous. �

3.4. Unitary representations

When the representation space (for a topological group) is a Hilbert space H, with
an inner product3 x¨, ¨y, it is natural to consider particularly closely the unitary represen-
tations, which are those for which the operators %pgq are unitary, i.e., preserve the inner
product:

x%pgqv, %pgqwy “ xv, wy

for all g P G, v and w P H.
We present here the most basic facts about such representations. They will be con-

sidered in more detail first for finite groups (Chapter 4), and then for compact and
locally compact groups (Chapters 5 and 6 and Sections 7.2, 7.3, 7.4). For additional
information on the general theory of unitary representations, especially with respect to
infinite-dimensional cases, we recommend the Appendices to [1] as well as [40].

3 Recall from the introduction that our inner products are linear in the first variable, and conjugate-
linear in the second: xv, λwy “ λ̄xv, wy for λ P C.
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Definition 3.4.1 (Unitary representations, unitarizable representations). Let G be
a topological group, which can be an arbitrary group with the discrete topology.

(1) A unitary representation of G is a continuous representation of G on a Hilbert
space H where %pgq P UpHq for all g P G, where UpHq is the group of unitary operators of
G. A morphism %1 Ñ %2 of unitary representations, acting on H1 and H2 respectively, is

a morphism of continuous representations %1
Φ
ÝÑ %2 (one does not require that Φ preserve

the inner product.)
(2) An arbitrary representation

G ÝÑ GLpEq

of G on a complex vector space E is unitarizable if there exists an inner product x¨, ¨y
on E, defining a structure of Hilbert space, such that the values of % are unitary for this
inner product, and the resulting map G ÝÑ UpEq is a unitary representation.

Remark 3.4.2. (1) If E is a finite-dimensional complex vector space and G carries
the discrete topology (e.g., if G is finite) it is enough to construct an inner product on the
vector space E such that % takes value in UpEq in order to check that a representation is
unitarizable (the continuity is automatic).

(2) If %1 : G ÝÑ UpH1q and %2 : G ÝÑ UpH2q are unitary representations, and
Φ : H1 ÝÑ H2 is a G-homomorphism, the adjoint Φ˚ : H2 ÝÑ H1 of Φ is also an
intertwiner. Indeed, given g P G, and v P H2, we have (with obvious notation)

x%1pgqpΦ
˚
pvqq, wy1 “ xΦ

˚
pvq, %1pg

´1
qwy1

“ xv,Φp%1pg
´1
qwqy2

“ xv, %2pg
´1
qΦpwqy2

“ x%2pgqv,Φpwqy2 “ xΦ
˚
p%2pgqvq, wy1,

for all w P H1, which implies that Φ˚p%2pgqvq “ %1pgqpΦ
˚pvqq, and hence that Φ˚ inter-

twines %2 and %1.

The continuity requirement for unitary representations can be rephrased in a way
which is easier to check:

Proposition 3.4.3 (Strong continuity criterion for unitary representations). Let % :
G ÝÑ UpHq be a homomorphism of a topological group G to a unitary group of some
Hilbert space. Then % is a unitary representation, i.e., the action map is continuous, if
and only if % is strongly continuous: for any fixed v P H, the map

#

G ÝÑ H

g ÞÑ %pgqv

is continuous on G. Equivalently, this holds when these maps are continuous at g “ 1.

Proof. The joint continuity of the two-variable action map implies that of the maps
above, which are one-variable specializations. For the converse, we use the unitarity and
a splitting of epsilons.

Let pg, vq be given in GˆH. For any ph,wq P GˆH, we have

}%pgqv ´ %phqw} “ }%phqp%ph´1gqv ´ wq} “ }%ph´1gqv ´ w}

by unitarity. Then, by the triangle inequality, we get

}%pgqv ´ %phqw} ď }%ph´1gqv ´ v} ` }v ´ w}.
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Under the assumption of the continuity of x ÞÑ %pxqv when x Ñ 1, this shows that
when w is close to v and h close to g, the difference becomes arbitrarily small, which is
the continuity of the action map at pg, vq. To be precise: given ε ą 0, we can first find
an open neighborhood Uv of v in H such that }v´w} ă ε for w P Uv, and we can use the
continuity assumption to find an open neighborhood U1 of 1 P G such that }%pxqv´v} ă ε
for x P U1. Then, when ph,wq P gU´1

1 ˆ Uv, we have

}%pgqv ´ %phqw} ă 2ε.

�

Remark 3.4.4 (The strong topology). The name “strong continuity” refers to the
fact that the condition above is equivalent with the assertion that the homomorphism

% : G ÝÑ UpHq

is continuous, with respect to the topology induced on UpHq by the so-called strong
operator topology on LpHq. The latter is defined as weakest topology such that all linear
maps

"

LpHq ÝÑ C
T ÞÑ Tv

(for v P H) are continuous. This means that a basis of neighborhoods of T0 P LpHq for
this topology is given by the finite intersections

č

1ďiďm

Vi

where
Vi “ tT P LpHq | }Tvi ´ T0vi} ă εu

for some unit vectors vi P H and some fixed ε ą 0 (see, e.g., [44, p. 183]).

Example 3.4.5 (The regular representation on L2pRq). Here is a first example of
infinite-dimensional unitary representation. We consider the additive group R of real
numbers, with the usual topology, and the space H “ L2pRq of square-integrable func-
tions on R, defined using Lebesgue measure. Defining

%ptqfpxq “ fpx` tq,

we claim that we obtain a unitary representation. This is formally obvious, but as we
have seen in Example 3.3.4, the continuity requirement needs some care. We will see this
in a greater context in Proposition 5.2.6 in Chapter 5, but we sketch the argument here.

First, one must check that the definition of %ptqf makes sense (since elements of L2pRq
are not really functions): this is indeed so, because if we change a measurable function f
on a set of measure zero, we only change x ÞÑ fpx ` tq on a translate of this set, which
still has Lebesgue measure zero.

Then the unitarity of the action is clear: we have
ż

R

|%ptqfpxq|2dx “

ż

R

|fpx` tq|2dx “

ż

R

|fpxq|2dx,

and only continuity remains to be checked. This is done in two steps using Proposi-
tion 3.4.3 (the reader can fill the outline, or look at Proposition 5.2.6). Fix f P L2pRq,
and assume first that it is continuous and compactly supported. Then the continuity of
t ÞÑ %ptqf amounts to the limit formula

lim
hÑ0

ż

R

|fpx` t` hq ´ fpx` tq|2dx “ 0

109



for all t P R, which follows from the dominated convergence theorem. Next, one uses
the fact that continuous functions with compact support form a dense subspace of L2pRq
(for the L2-norm) in order to extend this continuity statement to all f P L2pRq.

The operations of representation theory, when applied to unitary representations, lead
most of the time to other unitary representations. Here are the simplest cases:

Proposition 3.4.6 (Operations on unitary representations). Let G be a topological
group.

(1) If % is a unitary representation of G, then any subrepresentation and any quotient
representation are naturally unitary. Similarly, the restriction of % to any subgroup H is
a unitary representation with the same inner product.

(2) Direct sums of unitary representations are unitary with inner product

xv1 ‘ w1, v2 ‘ w2y%1‘%2 “ xv1, v2y%1 ` xw1, w2y%2 .

for %1‘%2, so that the subrepresentations %1 and %2 in %1‘%2 are orthogonal complements
of each other.

(3) The tensor product %1b%2 of finite-dimensional unitary representations %1 and %2

is unitary, with respect to the inner product defined for pure tensors by

(3.5) xv1 b w1, v2 b w2y%1b%2 “ xv1, v2y%1xw1, w2y%2 .

Similarly, external tensor products of finite-dimensional unitary representations, are
unitary, with the same inner product on the underlying tensor-product space.

We leave to the reader the simple (and standard) argument that checks that the
definition of (3.5) does extend to a well-defined inner product on the tensor product of
two finite-dimensional Hilbert spaces.

Note that one can extend this to situations involving infinite-dimensional representa-
tions; this is very easy if either %1 or %2 is finite-dimensional, but it becomes trickier to
define the tensor product of two infinite-dimensional Hilbert spaces. Similarly, extending
the notion of induction to unitary representations of topological groups is not obvious; we
will consider this in Chapter 5 for compact groups, and in Section 7.4 in another special
case. In both cases, the reader may look at [1, App. A, App. E] for some more results
and general facts.

Example 3.4.7. A special case of (3) concerns the tensor product (“twist”) of an
arbitrary unitary representation % : G ÝÑ UpHq with a one-dimensional unitary rep-
resentation χ : G ÝÑ UpCq “ S1. In that case, one can define % b χ on the same
underlying Hilbert space H, by

p%b χqpgqv “ χpgq%pgqv,

with the same inner product, which is still invariant for %bχ: for any v, w P H, we have

xp%b χqpgqv, p%b χqpgqwyH “ xχpgq%pgqv, χpgq%pgqwyH

“ |χpgq|2x%pgqv, %pgqwyH “ xv, wyH .

Now we discuss the contragredient in the context of unitary representations. There
are special features here, which arise from the canonical duality properties of Hilbert
spaces. For a Hilbert space H, the conjugate space H̄ is defined to be the Hilbert space
with the same underlying abelian group (i.e., addition) but with scalar multiplication
and inner products defined by

α ¨ v “ ᾱv, xv, wyH̄ “ xw, vyH .
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The point of the conjugate Hilbert space is that it is canonically isometric4 (as Banach
space) to the dual of H, by the map

Φ

"

H̄ ÝÑ H 1

w ÞÑ pλw : v ÞÑ xv, wyq

(vectors in w are “the same” as vectors in H, but because λαw “ ᾱλw, this map is only
linear when the conjugate Hilbert space structure is used as the source.)

If % is a unitary representation of a group G on H, this allows us to rewrite the basic
matrix coefficients fv,λ of % using inner products on H only: given λ “ λw P H

1 and
v P H, we have

fv,λpgq “ λwp%pgqvq “ x%pgqv, wy.

These are now parametrized by the two vectors v and w in H; though it is formally
better to see w as being an element of H̄, one can usually dispense with this extra
formalism without much loss.

Using the map Φ, we can also “transport” the contragredient representation of % to
an isomorphic representation %̄ acting on H̄. Its character, when % is finite-dimensional,
is given by

χ%̄pgq “ χ%pgq

(since the eigenvalues of a unitary matrix are complex numbers of modulus 1, hence their
inverse is the same as their conjugate.)

Exercise 3.4.8 (Matrix coefficients of the conjugate representation). Let % be a
unitary representation of G on a Hilbert space H. Show that the functions

g ÞÑ x%pgqv, wy,

for v, w P H are matrix coefficients of %̄.

Example 3.4.9 (A unitarizability criterion). Let G “ R with its usual topology.
We have seen that there are many one-dimensional representations of G as a topological
group, given by

ωs :

"

R ÝÑ Cˆ

x ÞÑ esx

for s P C (these are different functions, hence non-isomorphic representations).
However, these are only unitary (or, more properly speaking, unitarizable) when s “ it

is purely imaginary. Indeed, when Repsq “ 0, we have |ωspxq| “ 1 for all x P R, and the
unit circle is the unitary group of the 1-dimensional Hilbert space C with inner product
zw̄. Conversely, the following lemma is a quick and convenient necessary condition for
unitarity or unitarizability, because it gives a property which does not depend on any
information on the inner product, and it implies that ωs is not unitarizable when Repsq ­“
0.

Lemma 3.4.10. Let % be a finite-dimensional unitary representation of a group G.
Then any eigenvalue of %pgq, for any g, is a complex number of modulus 1.

Proof. This is linear algebra for unitary matrices, of which the %pgq are examples...
�

4 This is the Riesz representation theorem for Hilbert spaces, see e.g. [44, Th. II.4].
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This lemma applies also to the representations %m of SL2pCq of Examples 2.6.1
and 2.7.42: from (2.41) – for instance – we see that if m ě 1, %m is not unitarizable
(since the restriction to the subgroup T is diagonal with explicit eigenvalues which are
not of modulus 1). However, the restriction of %m to the compact subgroup SU2pCq is
unitarizable (see Proposition 5.2.11 for the general fact concerning comapct groups which
implies this.)

Along the same lines, observe that if we consider the compact group R{Z, its one-
dimensional representations induce, by composition, some representations of R

R ÝÑ R{Z ÝÑ Cˆ,

which must be among the ωs. Which ones occur in this manner is easy to see: we must
have Z Ă Kerpωsq, and from ωsp1q “ 1, it follows that s “ 2ikπ for some integer k P Z.
In particular, we observe a feature which will turn out to be a general feature of compact
groups: all these irreducible representations of R{Z are unitary!

Example 3.4.11 (Regular representation of a finite group). Let G be a finite group,
and CpGq the space of complex-valued functions on G, with the regular representation
of G. A natural inner product on the vector space CpGq is

xϕ1, ϕ2y “
1

|G|

ÿ

xPG

ϕ1pxqϕ2pxq

(one could omit the normalizing factor 1{|G|, but it has the advantage that }1} “ 1 for
the constant function5 1 on G, independently of the order of G.)

It is quite natural that, with respect to this inner product, the regular representation
%G on CpGq is unitary. Indeed, we have

}%Gpgqϕ}
2
“

1

|G|

ÿ

xPG

|ϕpxgq|2 “
1

|G|

ÿ

yPG

|ϕpyq|2 “ }ϕ}2

for all g P G, using the change of variable y “ xg.
A similar property holds for all locally compact groups, but if G is infinite, the in-

ner product must be defined using integration on G with respect to a natural invariant
measure µ, and the space CpGq must be replaced by the Hilbert space L2pG, µq. We will
come back to this later (see Proposition 5.2.6).

In addition to the usual formalism of direct sums, the extra structure of Hilbert spaces
leads to a definition of infinite orthogonal direct sums. If G is a topological group and
p%iqiPI is any family of unitary representations of G, acting on the Hilbert spaces Hi, we
can define the Hilbert space orthogonal direct sum

(3.6) H “
à

iPI

Hi,

and a corresponding representation % “ ‘i%i acting on Hi. Precisely, recall that H is
defined to be the space of families v “ pviqiPI such that

}v}2H “
ÿ

iPI

}vi}
2
i ă `8,

and we define
%pgqv “ p%ipgqviqiPI ,

which is easily checked to be a unitary representation acting on H (see Exercise 3.4.12
below). Of course, for each i, the subspace Hi Ă H is a subrepresentation of H isomorphic

5 This should not be confused with the neutral element in the group.
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to %i. Moreover, the “standard” direct sum of the Hi (the space of families pviq where
vi is zero for all but finitely many i) is a dense subspace of H. It is stable under the
action of %, but since it is not closed in general, it is usually not a subrepresentation in
the topological sense.

Exercise 3.4.12 (Pre-unitary representation). It is often convenient to define a uni-
tary representation by first considering an action of G on a pre-Hilbert space, which
“extends by continuity” to a proper unitary representation (e.g., when defining a repre-
sentation of a space of functions, it may be easier to work with a dense subspace of regular
functions; for a concrete example, see the construction of the regular representation of a
compact topological group in Proposition 5.2.6)).

We consider a fixed topological group G. A pre-unitary representation of G is a
strongly continuous homomorphism

% : G ÝÑ UpH0q,

where H0 is a pre-Hilbert space, i.e., a complex vector space given with a (positive-
definite) inner product, which is not necessarily complete.

(1) Show that if % is a pre-unitary representation, the operators %pgq extend by con-
tinuity to unitary operators of the completion H of H0, and that the resulting map is a
unitary representation of G, such that H0 Ă H is a stable subspace. [Hint: To check the
strong continuity, use the fact that H0 is dense in H.]

(2) Suppose H is a Hilbert space and H0 Ă H a dense subspace. If % is a pre-unitary
representation on H0, explain why the resulting unitary representation is a representation
of G on H.

(3) Use this to check that the Hilbert direct sum construction of (3.6) above leads to
unitary representations.

Unitary representations are better behaved than general (complex) representations.
One of the main reasons is the following fact:

Proposition 3.4.13 (Reducibility of unitary representations). Let G
%
ÝÑ UpHq be

a unitary representation of a topological group G. Then any closed subspace F Ă H
invariant under % has a closed stable complement given by FK Ă H. In particular, any
finite-dimensional unitary representation is semisimple.

Proof. Since any finite-dimensional subspace of a Hilbert space is closed, the second
part follows from the first using the criterion of Lemma 2.2.11.

Thus we consider a subrepresentation F Ă H. Taking a hint from the statement, we
just check that the orthogonal complement

FK “ tv P H | xv, wy “ 0 for all w P F u Ă H

is a closed stable complement of F .
Indeed, the theory of Hilbert spaces6 shows that FK is closed in H and that F ‘FK “

H. From the fact that % preserves the inner product, the same property follows for its
orthogonal complement: if v P FK, we have

x%pgqv, wy “ xv, %´1
pgqwy “ 0

for all g P G and w P F , i.e., FK is indeed a subrepresentation of H. �

6 If H is finite-dimensional, of course, this is mere linear algebra.
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Example 3.4.14 (Failure of semisimplicity for unitary representations). Although this
property is related to semisimplicity, it is not the case that any unitary representation

% : G ÝÑ UpHq

is semisimple, even in the sense that there exists a family pHiqiPI of stable subspaces of
H such that we have a Hilbert-space orthogonal direct sum

H “
à

iPI

Hi

as described above. The reader can of course look back at the proof of Lemma 2.2.11 where
the equivalence of semisimplicity and complete reducibility was proved for the algebraic
case: the problem is that the first step, the existence of an irreducible subrepresentation of
H (which is Exercise 2.2.13) may fail in this context. To see this, take the representation
% of R on L2pRq described in Example 3.4.5. This is an infinite-dimensional unitary
representation and it contains no irreducible subrepresentation!

To see this, we need to know that (as in Corollary 2.7.17) all irreducible unitary
representations of R are one-dimensional. This requires a version of Schur’s Lemma
for unitary representations, possibly infinite-dimensional, which is proved in Proposi-
tion 3.4.16 below. Then, by Proposition 3.3.3 and the unitarizability criterion, it follows
that all irreducible unitary representations of R are given by

χx

"

R ÝÑ Cˆ

t ÞÑ eitx

for some x P R. Now, a non-zero function f P L2pRq spans an irreducible subrepresenta-
tion of % isomorphic to χx if and only if we have

fpx` tq “ %ptqfpxq “ χxptqfpxq “ eitxfpxq

for all x and t P R. But this means that |fptq| “ |fp0q| is constant for (almost) all t P R,
and this constant is non-zero since we started with f ­“ 0. However, we get

ż

R

|fpxq|2dx “ |fp0q|2
ż

R

dx “ `8,

which contradicts the assumption f P L2pRq...
In Chapter 5, we will see that this type of behavior does not occur for compact

topological groups. But this shows, obviously, that the study of unitary representations
of non-compact groups is fraught with new difficulties. This is illustrated in Section 7.4
with the prototypical case of SL2pRq.

Exercise 3.4.15. Show, without using Schur’s Lemma, that the regular representa-
tion % of R on L2pRq is not irreducible. [Hint: Use the classical Fourier transform to
define proper closed invariant subspaces.]

Schur’s Lemma takes the following natural form for unitary representations:

Proposition 3.4.16 (Schur’s Lemma). Let G be a topological group.
(1) If %1 : G ÝÑ UpH1q and %2 : G ÝÑ UpH2q are non-isomorphic irreducible

unitary representations of G, then HomGp%1, %2q “ 0.
(2) If % : G ÝÑ UpHq is an irreducible unitary representation of G, then the space

of intertwiners H ÝÑ H is the one-dimensional space of multiples of the identity.

Although the statement is exactly the same as that of the previous version of Schur’s
Lemma, the proof lies quite a bit deeper, and the reader may skip it in a first reading.
Precisely, the proof requires the spectral theorem for (bounded) self-adjoint operators,
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which we state in a convenient version (see [44, Ch. VII, Th. VII.3] for the proof, in the
separable case, and enlightening discussions).

Theorem 3.4.17 (The spectral theorem). Let H be a Hilbert space and A a con-
tinuous self-adjoint operator on H. There exists a measure space pX,µq, an isometric
isomorphism

T : H ÝÑ L2
pX,µq

and a real-valued function f P L8pXq such that A is, by means of T , equivalent to the
multiplication operator Mf defined on L2pX,µq by

Mf pϕq “ fϕ

for ϕ P L2pX,µq. In other words, we have

T pAvq “Mf pTvq “ fT pvq for all v P H.

If H is separable, one may take pX,µq in such a way that µpXq ă `8.
If A is a unitary operator on H, the same statement is valid with f taking values in

the unit circle S1 Ă C.

The meaning of this theorem is that any property of an individual self-adjoint (resp.
unitary) operator may be studied by reducing to the case of a multiplication operator by
a bounded real-valued functions (resp. by a measurable function with values of modulus
1).

Exercise 3.4.18. Let pX,µq be a measure space, H “ L2pX,µq and let A P BGLpHq
be the multiplication operator by a real-valued function f P L8pX,µq. Furthermore, let
B P BGLpHq be an operator that commutes with A, so that AB “ BA.

Let I Ă R be a bounded interval, and define C to be the multiplication operator
by 1I ˝ f “ 1f´1pIq. Show that B commutes with C. [Hint: Let M “ }f}8; there
exist polynomials Pn on r´M,M s such that Pnpfpxqq Ñ 1Ipfpxqq for all x and }Pn}8 is
absolutely bounded. Then use the fact that PnpAqB “ BPnpAq.]

Proof of Schur’s Lemma. We begin this time with the proof of (2). Let Φ :
H ÝÑ H be an intertwiner. Then the adjoint Φ˚ is also an intertwiner (Remark 3.4.2,
(2)), and we can write

Φ “
Φ` Φ˚

2
` i

Φ´ Φ˚

2i
“ A` iB

where both A and B are self-adjoint intertwiners. Thus, if we prove that a self-adjoint
intertwiner is of the form λId, with λ P R, then the result will follow for all Φ. We can
therefore assume that Φ itself is self-adjoint.

Now we apply the spectral theorem to Φ. This means that we may assume that
H “ L2pX,µq for some measure space pX,µq and that Φ is the multiplication operator
Mf by some real-valued bounded function f on X. We claim that f is almost everywhere
constant, say equal to λ. It is then clear that Φ “Mf “ λId.

For the proof of the claim, let C be the support of the image measure ν “ f˚µ,
which is defined on R by νpBq “ µpf´1pBqq for measurable subsets B Ă R. This set is
a non-empty compact (closed and bounded) subset of R (in fact, it is the spectrum of
the multiplication operator, in the sense of spectral theory [44, VI.3]). Let a “ minpCq,
b “ maxpCq. If a “ b, we deduce that C “ tau is a single point, and then f is almost
everywhere equal to a, and we are done. Otherwise, let c “ pa ` bq{2, U “ ra, cr and
V “ rc, bs. By definition of the support of a measure, we have then νpUq ą 0 and
νpV q ą 0.
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Now let finally A be the operator of multiplication by the characteristic function of
f´1pUq, and let H1 be its kernel. This is a closed subspace of H, and the conditions
νpUq ą 0 and νpV q ą 0 allow us to deduce that 0 ­“ H1 ­“ H. But by Exercise 3.4.18
(applied with B “ %pgq for all g P G), A is an intertwiner of % and therefore H1 is a non-
trivial subrepresentation of the representation on H. This contradicts the irreducibility
assumption, and finishes the proof.

We use this to prove (1). Let Φ : H1 ÝÑ H2 be a non-zero intertwiner between
two given irreducible unitary representations of G. Then Φ˚ ˝ Φ : H1 ÝÑ H1 is a self-
intertwiner of H1. According to (2), we have therefore Φ˚ ˝ Φ “ λId for some constant
λ P C. Then from the formula

λxv, wy “ xΦ˚Φv, wy “ xΦv,Φwy

for all v and w in H1, we deduce that λ ą 0 (take v “ w and use the fact that Φ is
assumed to be non-zero) and then that λ´1{2Φ is an isometric intertwiner from H1 to H2.

But now Ker Φ is a (closed) subrepresentation of H1, and is not H1, so it must be
0, i.e., Φ is injective. Similarly, the image of Φ must be dense in H2, but the fact that
Φ is isometric (up to a scalar) implies that ΦpH1q is closed. Hence, in fact, Φ is an
isomorphism, and by contraposition, we derive (1). �

Exercise 3.4.19 (Uniqueness of invariant inner product). Let G be a topological
group, and let % : G ÝÑ UpHq be an irreducible unitary representation of G. Show that
the inner product on H for which % is unitary is unique up to multiplication by a positive
scalar, i.e., if x¨, ¨y1 is a positive-definite inner product on H, defining the same topology
on H as the original inner product x¨, ¨y, and if

x%pgqv, %pgqwy1 “ xv, wy1

for all v, w P H, then there exists λ ą 0 such that

xv, wy1 “ λxv, wy

for all v, w P H.

The following result is also very useful:

Lemma 3.4.20 (Unrelated unitary subrepresentations are orthogonal). Let G be a

topological group and let G
%
ÝÑ UpHq be a unitary representation. If H1 and H2 are

subrepresentations of H such that there is no non-zero G-intertwiner H1 Ñ H2, then
H1 and H2 are orthogonal. In particular, isotypic components in H of non-isomorphic
irreducible representations of G are pairwise orthogonal.

Proof. Consider the orthogonal projection

Φ : H ÝÑ H

on the closed subspace H2. This linear map Φ is also a G-homomorphism: indeed, if
v P H, its projection Φpvq is characterized by

v “ Φpvq ` pv ´ Φpvqq, Φpvq P H1, v ´ Φpvq P HK
1 ,

and for any g P G, the subsequent relation

%pgqv “ %pgqpΦpvqq ` %pgqpv ´ Φpvqq

together with the condition %pgqΦpvq P H1, %pgqpv ´ Φpvqq P HK
1 (which follow from the

fact that H1 is a subrepresentation) imply that

Φp%pgqvq “ %pgqΦpvq,
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as claimed.
Since the image of Φ is H2, its restriction to H1 is a linear map

H1 ÝÑ H2

which is a G-intertwiner. The assumption then says that it is zero, so that H1 Ă KerpΦq “
HK

2 , which is the same as to say that H1 and H2 are orthogonal.
The last statement is of course a corollary of this fact together with Schur’s Lemma.

�
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CHAPTER 4

Linear representations of finite groups

In this chapter, we take up the special case of finite groups, building on the basic
results of Section 2.7. There are however still two very distinct situations: if the field
k has characteristic coprime with the order of a finite group G (for instance, if k “ C,
or any other field of characteristic 0), a fundamental result of Maschke shows that any
k-representation of G is semisimple. Thus, we can use characters to characterize all
(finite-dimensional) representations of G, and this leads to very powerful methods to
analyze representations. Most of this chapter will be devoted to this case. However, if
k is of characteristic p dividing the order of G, the semisimplicity property fails. The
classification and structure of the representations of G is then much more subtle, and we
refer to [48, Part III] for a very clear introduction.

4.1. Maschke’s Theorem

As already hinted, the next result is the most important result about the representa-
tion theory of finite groups:

Theorem 4.1.1 (Maschke). Let G be a finite group, and let k be a field with charac-
teristic not dividing |G|. Then any k-linear representation

% : G ÝÑ GLpEq

of G is semisimple. In fact, the converse is also true: if all k-representations of G are
semisimple, then the characteristic of k does not divide |G|.

Thus, in some sense, in the case where Maschke’s Theorem applies, the classification
of all representations of G is reduced to the question of classifying the irreducible ones.
Note that it is not required to assume that k be algebraically closed here.

Proof. We use the criterion of Lemma 2.2.11. For a given subrepresentation F Ă E,
the idea is to construct a stable supplement FK as the kernel of a linear projection

P : E ÝÑ E

with image F which is a G-morphism, i.e., P P HomGpE,Eq. Indeed, if P 2 “ P (which
means P is a projection) and ImpP q “ F , we have

E “ F ‘KerpP q,

and of course KerpP q is a subrepresentation if P P HomGpE,Eq.
From linear algebra again, we know that there exists a projection p P HomkpE,Eq

with Imppq “ F , but a priori not one that commutes with the action of G. Note that
p P HomGpE,Eq means that p P EndkpEq

G (see (2.17)). The trick is to construct P using
p by averaging the action (2.18) of G on p in order to make it invariant.

Let then

P “
1

|G|

ÿ

gPG

g ¨ p P EndkpEq.
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We claim that P is the desired projection in EndGpEq. The first thing to notice is
that it is this definition which requires that p - |G|, since |G| must be invertible in k in
order to compute P .

By averaging, it is certainly the case that P P EndGpEq “ EndkpEq
G: acting on the

left by some h P G just permutes the summands

h ¨ P “
1

|G|

ÿ

gPG

h ¨ pg ¨ pq “
1

|G|

ÿ

gPG

phgq ¨ p “
1

|G|

ÿ

xPG

x ¨ p “ P

(in the notation of Example 3.1.1, we are using the fact that P “ e ¨ p where e “ 1
|G|
s P

kpGq, and that he “ e by (3.2)).
Next, ImpP q Ă Imppq “ F : indeed, F is G-invariant and each term

pg ¨ pqv “ %pgqppp%pg´1
qvqq P F

in the sum is in F for any fixed v. Moreover, P is the identity on F , since p is and F is
stable: for v P F , we have

P pvq “
1

|G|

ÿ

gPG

%pgqpp%pg´1
qvq “

1

|G|

ÿ

gPG

%pgg´1
qv “ v.

Thus pP ˝ P qpvq “ P pP pvqq “ P pvq since P pvq P F , and hence P is indeed an
intertwining projection onto F .

We now prove the converse of Maschke’s Theorem. In fact, the result is stronger
than what we claim: we now show that the regular representation on CkpGq is never
semisimple if k has characteristic p dividing |G|. To do this, we consider the subspace

C0 “ tϕ P CkpGq |
ÿ

gPG

ϕpgq “ 0u Ă CkpGq.

This subspace is always a subrepresentation of CkpGq, as one checks immediately (as
before, the values of %Gpgqϕ are a permutation of the values of ϕ). As the kernel of the
non-zero linear form

λ : ϕ ÞÑ
ÿ

gPG

ϕpgq,

we see that C0 is of codimension 1 in CkpGq. If p - |G|, a complementary stable subspace
is easy to find: it is the space of constant functions (it is in fact the unique stable
complement). But if ϕ “ c P k is constant, and p | |G|, we have λpϕq “ c|G| “ 0, so
this complement does not work in characteristic p. We now check that no other will do:
if ϕ0 is a basis of such a complement, the action of G on kϕ0 is by a one-dimensional
representation χ, so we have

%Gpgqϕ0 “ χpgqϕ0

for all g P G; evaluating at 1, we find that ϕ0pgq “ χpgqϕ0p1q for all G. But then

λpϕ0q “ ϕ0p1q
ÿ

gPG

χpgq,

and this equal to 0, which contradicts the assumption that ϕ0 R kerpλq: indeed, either χ
is trivial, and then the value is |G| “ 0 in k, or there exists x P G with χpxq ­“ 1, and
then writing

ÿ

gPG

χpgq “
ÿ

hPG

χpxhq “ χpxqλpχq,

we find again that the sum is zero. �
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Exercise 4.1.2. This exercise shows that the idea of averaging can also be used in
more general contexts than that of finite group.

Let H ŸG be a finite-index subgroup of an arbitrary group G. Let k be a field, and
% a finite-dimensional k-representation of G.

(1) Show that if ResGH % is semisimple as a representation of H, and if the characteristic
of k is coprime to rG : Hs, then % is semisimple. (This is a partial converse to the result
of Exercise 2.3.3.)

(2) Show that this statement is false without a condition on the characteristic of k.

Remark 4.1.3 (Semisimplicity of unitary representations). If k “ C, we can also
prove Theorem 4.1.1 by exploiting Proposition 3.4.13, at least when dealing with finite-
dimensional representations. Indeed, we have the following result:

Proposition 4.1.4 (Unitarizability for finite groups). For a finite group G, any
finite-dimensional representation of G over C is unitarizable.

Proof. The idea is similar to the one in the proof of Maschke’s Theorem. Let % be
a finite-dimensional representation of G on E. What must be done is to find an inner
product x¨, ¨y on E with respect to which % is unitary, i.e., such that

x%pgqv, %pgqwy “ xv, wy

for all v, w P E. Since E is finite-dimensional, we can certainly find some inner product
x¨, ¨y0 on E, although it is not necessarily invariant. But then if we let

xv, wy “
1

|G|

ÿ

gPG

x%pgqv, %pgqwy0,

it is easy to check that we obtain the desired invariant inner product. �

More generally, suppose x¨, ¨y0 is a non-negative, but not necessarily positive-definite,
hermitian form on E, with kernel

F “ tv P E | xv, vy “ 0u.

Then it is clear that the construction of x¨, ¨y above still leads to an invariant non-
negative hermitian form. By positivity, it will be a genuine, positive-definite, inner prod-
uct if

č

gPG

g ¨ F “ 0.

An example of this is the regular representation, where we can take

xϕ1, ϕ2y0 “ ϕ1p1qϕ2p1q.

This has a huge kernel F (all functions vanishing at 1) but since

%GpgqF “ tϕ P CpGq | %Gpgqϕp1q “ ϕpgq “ 0u,

it follows that the intersection of the translates of F is in fact 0. Quite naturally, the
resulting inner product on CpGq is exactly the one described in Example 3.4.11.

The meaning of Maschke’s Theorem is that for any k-representation % of G on a
finite-dimensional vector space E, there always exists a direct sum decomposition of E in
irreducible stable subspaces if |G| is invertible in k. As already discussed in Chapter 2,
this decomposition is not unique. However, by Proposition 2.7.9, the isotypic components
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of %, denoted Mpπq or MEpπq, are defined for any irreducible k-representation π of G,
and they are intrinsic subspaces of E such that

(4.1) E “
à

π

MEpπq,

where π runs over isomorphism classes of irreducible k-representations of G. Recall that
because they are intrinsic, it follows that for any G-homomorphism

Φ : E ÝÑ F,

the restriction of Φ to MEpπq gives a linear map

MEpπq ÝÑMF pπq.

In order to analyze the representations concretely, one needs some way of obtaining
information concerning this decomposition; we will see how to describe explicitly the
projections on E mapping onto the isotypic components (when k is algebraically closed),
and when k is of characteristic 0, how to use characters to compute the multiplicities
of the irreducible representations (which are of course related to the dimension of the
isotypic components.)

4.2. Applications of Maschke’s Theorem

We are now going to apply Maschke’s Theorem. For most of the remainder of this
chapter, we will consider algebraically closed fields k and finite groups G such that the
characteristic of k does not divide |G|, so that Maschke’s Theorem is applicable, as well
as Schur’s Lemma 2.7.15.

We introduce the notation pG for the set of isomorphism classes of k-irreducible rep-
resentations of G (it will always be clear which algebraically closed field k is used); this
set can be identified, by character theory, with the set of characters of irreducible k-
representations of G.

Applying first Maschke’s Theorem to the regular representation of G on CkpGq, we
deduce from Corollary 2.7.28 a fundamental result:

Corollary 4.2.1 (Decomposition of the regular representation). Let G be a finite
group and let k be an algebraically closed field of characteristic not dividing |G|. Then the
regular representation of G on CkpGq is isomorphic to the direct sum, over all isomor-

phism classes of irreducible representations % P pG of G, of subrepresentations isomorphic
to dimp%q copies of %.

In particular, we have

(4.2)
ÿ

%P pG

pdim %q2 “ |G|.

One naturally wants to get more information about the irreducible representations
than what is contained in the formula (4.2). The first basic question is: what is the number
of irreducible representations (up to isomorphism)? The general answer is known, but
we start with a particularly simple case:

Proposition 4.2.2 (Irreducible representations of finite abelian groups). Let G be a
finite group and k an algebraically closed field of characteristic not dividing |G|. Then
all irreducible finite-dimensional representations of G are of dimension 1 if and only if
G is abelian. In particular, if G is abelian, there are |G| non-isomorphic irreducible
k-representations of G.
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Proof of Proposition 4.2.2. We know that the one-dimensional representations
of G are in bijection with those of the abelianized group G{rG,Gs (Proposition 2.6.7).
Thus if all irreducible k-representations of G are of dimension 1, Corollary 4.2.1 implies
that |G| “ |G{rG,Gs| (both are equal to the number of irreducible k-representations of
G), which means that rG,Gs “ 1, i.e., that G is commutative. �

Although the representations of abelian groups are quite elementary in comparison
with the general case, they are of great importance in applications. We will say more
about them in Section 4.5, which includes in particular a sketch of the proof of Dirichlet’s
Theorem on primes in arithmetic progressions. (That later section could be read right
now without much difficulty.)

Note that here also the assumption on k can not be removed: there are cases whereG is
non-abelian, k is algebraically closed of characteristic dividing G, and the only irreducible
k-representation of G is trivial. Indeed, this is true for all non-abelian p-groups and
representations over algebraically closed fields of characteristic p, see, e.g., [11, 27.28];
examples are given by the groups from Example 2.7.36 and in the following exercise.

Exercise 4.2.3. (1) Let G be a p-group acting on a finite set X with p - |X|. Show
that this action has at least one fixed point.
(2) Let

G “
!

¨

˝

1 x y
1 z

1

˛

‚ |x, y, z P Fp

)

.

Let k be any field of characteristic p. Show that any irreducible k-representation of
G is trivial. [Hint: Consider first the case where k is a finite field.]

Example 4.2.4. Consider G “ S3, the symmetric group on 3 letters. It is non-
abelian of order 6, and hence the only possible values for the degrees of irreducible
C-representations of G are 1, 1 and 2 (there are no other integers with squares summing
to 6, where not all are equal to 1). The two one-dimensional representations are of course
the trivial one and the signature

ε : S3 ÝÑ t˘1u Ă Cˆ,

and the 2-dimensional one is isomorphic to the representation by permutation of the
coordinates on the vector space

E “ tpx, y, zq P C3
| x` y ` z “ 0u

(see Exercise 2.6.6.)

More generally, the decomposition of the regular representation implies that there
are at most |G| irreducible representations, and Proposition 4.2.2 shows that this upper
bound is reached if and only G is abelian. In fact, we have the following:

Theorem 4.2.5 (Number of irreducible characters). Let G be a finite group, k an

algebraically closed field of characteristic not dividing |G|. Then the number | pG| of iso-
morphism classes of irreducible k-representations of G is equal to the number of conjugacy
classes in G.

This is another striking fact, which can tell us how many irreducible representations
exist even when none is explicitly known (except for the trivial one...) We will give more
comments on this theorem after its proof.
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Proof. We have the decomposition

(4.3) CkpGq “
à

%P pG

Mp%q,

where Mp%q is the space spanned by all matrix coefficients of the irreducible k-representa-
tion %. To compute the number of summands, we try to find some invariant of CkpGq
which will involve “counting” each % only once. The dimension does not work since
dimMp%q “ dimp%q2; computing the intertwiners from CkpGq to itself is also tempting
but since Mp%q is a direct sum of dimp%q copies of %, we have (by Schur’s Lemma) again

dim HomGpCkpGq, CkpGqq “
ÿ

%

dim HomGpMp%q,Mp%qq

“
ÿ

%

pdim %q2 “ |G|.

One way to do this turns out to be a bit tricky but enlightening (two other possibilities
are discussed in Section 4.3.3 and Remark 4.3.29): we use the fact that CkpGq carries in
fact a representation π of GˆG defined by

πpg1, g2qfpxq “ fpg´1
1 xg2q,

(see Exercise 2.1.3) and that the decomposition (4.3) is in fact a decomposition of CkpGq
into subrepresentations of π; indeed, if fv,λ PMp%q is a matrix coefficient

fv,λpxq “ xλ, %pgqvy

of an irreducible representation %, we have

πpg1, g2qfv,λpxq “ xλ, %pg
´1
1 xg2qvy “ xq%pg1qλ, %pxq%pg2qvy “ f

q%pg1qλ,%pg2qvpxq

so that Mp%q is indeed stable under the action of GˆG.
The point is that Mp%q, as a subrepresentation of π in CkpGq, is isomorphic to the

external tensor product q% b %. Indeed, if % acts on the space E, this isomorphism is the
canonical one given by

"

E 1 b E ÝÑ Mp%q
λb v ÞÑ fv,λ

which is a linear isomorphism by linear independence of the matrix coefficients, and an
intertwiner by the computation just performed.1

Since the representations q%b % of GˆG are all irreducible and non isomorphic, as %
runs over the irreducible representations of G (by Proposition 2.3.21), each appears with
multiplicity 1 in π. As a consequence, we can use Schur’s Lemma (on GˆG) to express
the number of irreducible representations % by the formula

dim HomGˆGpπ, πq “
ÿ

%1,%2

dim HomGˆGp%1 b q%1, %2 b q%2q “
ÿ

%

1.

We now compute directly the left-hand side dimension to deduce the desired formula.
In fact, consider a linear map

Φ : CkpGq ÝÑ CkpGq

which commutes with the representation π. If δg P CkpGq denotes the function which is
0 except at x “ g, where it is equal to 1, and

`g “ Φpδgq,

1 Note that the order of the factors is important here! If we consider E b E1 instead, we do not
obtain an intertwiner...
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we must therefore have

πpg1, g2q`g “ Φpπpg1, g2qδgq “ Φpδg1gg
´1
2
q “ `g1gg

´1
2

for all g, g1, g2 P G. Evaluating at x P G means that we must have

(4.4) `gpg
´1
1 xg2q “ `g1gg

´1
2
pxq,

and in fact, since pδgq is a basis of CkpGq, these equations on `g are equivalent with Φ
being an intertwiner of π with itself.

We can solve these equations as follows: picking first g2 “ 1 and g1 “ x´1, and then
g1 “ 1 and g2 “ x, we get

`gxpxq “ `gp1q “ `xgpxq

and then deduce the two relations

(4.5) `gx´1p1q “ `gpxq “ `x´1gp1q.

Thus Φ is entirely defined by the function ψ : G ÝÑ k defined by

ψpgq “ `gp1q.

In view of the two expressions for `gpxq above, this function must satisfy

(4.6) ψpabq “ ψpbaq

for all a, b P G. But conversely, given a function ψ that satisfies these relations, we may
define `gpxq by

`gpxq “ ψpgx´1
q “ ψpx´1gq,

(see (4.5)), and then obtain

`gpg
´1
1 xg2q “ ψpgg´1

2 x´1g1q

and

`g1gg
´1
2
pxq “ ψpx´1g1gg

´1
2 q,

from which (4.4) follows by putting a “ gg´1
2 , b “ x´1g1 in (4.6).

The conclusion is that HomGˆGpπ, πq is isomorphic (by mapping Φ to ψ) to the linear
space ckpGq of all functions ψ such that (4.6) holds. But this condition is equivalent with

ψpxq “ ψpgxg´1
q, for all x, g P G,

or in other words, ckpGq is the space of class functions on G. Since the dimension of
ckpGq is equal to the number of conjugacy classes of G, by definition (a class function is
determined by the values at the conjugacy classes), we obtain the desired formula. �

Remark 4.2.6 (Sum of dimensions). Thus we have “directly accessible” group-theore-
tic expressions for the number of irreducible k-representations of a finite group G (which
is the number of conjugacy classes), and for the sum of the squares of their degrees
(which is simply |G|). It seems natural to ask: what about the sum of the degrees
themselves, or what about other powers of dimp%q? Although there does not seem to
exist any nice expression valid for all groups, there are some special cases (including
important examples like symmetric groups) where the sum of the dimensions has a nice
interpretation, as explained in Lemma 6.2.6.
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Remark 4.2.7 (Bijections, anyone?). Theorem 4.2.5 is extremely striking; since it
gives an equality between the cardinality of the set of irreducible characters of G (over
an algebraically closed field of characteristic not dividing |G|) and the cardinality of the
set of conjugacy classes, it implies that there exist some bijection between the two sets.
However, even for k “ C, there is no general natural definition of such a bijection, and
there probably is none.

Despite this, there are many cases where one can understand both the conjugacy
classes and the irreducible representations, and where some rough features of the two
sets seem to correspond in tantalizing parallels (see the discussion of GL2pFpq later).
And in some particularly favorable circumstances, a precise correspondence can be found;
the most striking and important of these cases is that of the symmetric groups Sm (see
Section 4.6.5.)

Another remarkable aspect of the result is that the number of irreducible represen-
tations does not depend on the field k (assumed to be algebraically closed, and with
characteristic coprime to |G|.) Here again, this means that there are bijections between
the sets of irreducible characters for different fields. This is of course surprising when the
characteristics of the fields are distinct! One may also ask here if such a bijection can be
described explicitly, and the situation is better than the previous one. Indeed, Brauer
developed a theory which – among other things – does lead to bijections between irre-
ducible characters of G over any algebraically closed fields of characteristic coprime with
|G|. See, e.g, [25, Ch. 15, Th. 15.13] or [48, Ch. 18], for an account of this theory, from
which it follows, in particular, that the family of dimensions of the irreducible characters
over two such fields always coincide.

Exercise 4.2.8 (Minimal index of a proper subgroup). Here is an application of
Maschke’s Theorem and of induction. Let G be a finite group G, and H Ă G a proper
subgroup. We want to obtain a lower bound for its index rG : Hs in terms of represen-
tation theory.

(1) Show that the (complex) induced representation

% “ IndGHp1Cq,

contains the trivial representation of G with multiplicity one.
(2) Deduce that

rG : Hs ě 1`min
π ­“1

dimpπq,

where π runs over non-trivial irreducible C-representations of G.
(Although sometimes this result only implies rG : Hs ě 2, we will see later in Exer-

cises 4.6.13 and 4.7.3 that for the finite groups SL2pFpq, for instance, it is non-trivial.)

4.3. Decomposition of representations

4.3.1. The projection on invariant vectors. Especially when written in terms
of the group algebra (using Example 3.1.1), the core argument of the proof of Maschke’s
Theorem can be immediately generalized:

Proposition 4.3.1 (Projection on the invariant vectors). Let G be a finite group and
k an algebraically closed field of characteristic not dividing |G|. For any k-representation
% : G ÝÑ GLpEq, the map

1

|G|

ÿ

gPG

%pgq : E ÝÑ E
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is a homomorphism of representations, which is a projection with image equal to EG, the
space of invariant vectors in E. Moreover, if E is finite-dimensional, we have

(4.7) dimpEG
q “

1

|G|

ÿ

gPG

χ%pgq

as equality in the field k.

Proof. Let P be the indicated linear map. As in the proof of Maschke’s Theorem,
we see that that ImpP q Ă EG, and that P is the identity on EG. Moreover, we have

P p%pgqvq “ P pvq “ %pgqP pvq,

since ImpP q Ă EG. All this shows that P P HomGpE,Eq is a projection with image
exactly equal to EG.

Finally, the trace of a projection is equal to the dimension of the image, as seen in
the field k, hence the last formula. �

We can use fruitfully Proposition 4.3.1 in many ways. One is to take any representa-
tion for which we know the invariants, and to see what form the projection takes. The
next few sections give some important examples.

4.3.2. “Orthogonality” of characters and matrix coefficients. Consider G and
k as before. If

π1 : G ÝÑ GLpE1q, π2 : G ÝÑ GLpE2q

are irreducible k-representations, we know by Schur’s Lemma that for the natural action
of G on E “ HomkpE1, E2q, the space of invariants

HomGpE1, E2q “ HomkpE1, E2q
G

has dimension 0 or 1 depending on whether π1 and π2 are isomorphic. Applying Propo-
sition 4.3.1, this leads to some fundamental facts.

We assume, to begin with, that π1 is not isomorphic to π2. Then the invariant space
is 0, and hence the associated projection is also zero: for any Φ : E1 ÝÑ E2, we have

(4.8)
1

|G|

ÿ

gPG

g ¨ Φ “ 0.

To see what this means concretely, we select some element Φ P E “ HomkpE1, E2q.
Because there is no intrinsic relation between the spaces here, some choice must be made.
We consider linear maps of rank 1: let λ P E 11 be a linear form, w P E2 a vector, and let

Φ : v ÞÑ xλ, vyw

be the corresponding rank 1 map in HomkpE1, E2q. Spelling out the identity (4.8) by
applying it to a vector v P E1, we get

0 “
1

|G|

ÿ

gPG

π2pgqpxλ, π1pg
´1
qvqywq “

1

|G|

ÿ

gPG

fv,λpgqπ2pg
´1
qw

for all v (we replaced g by g´1 in the sum, which merely permutes the terms).
We can make this even more concrete by applying an arbitrary linear form µ P E 12 to

obtain numerical identities:
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Corollary 4.3.2 (Orthogonality). With notation as above, let π1, π2 be non-isomorphic
k-irreducible representations of G; then for all vectors v P E1, w P E2 and linear forms
λ P E 11, µ P E 12, we have

(4.9)
1

|G|

ÿ

gPG

fv,λpgqfw,µpg
´1
q “

1

|G|

ÿ

gPG

xλ, g ¨ vyE1xµ, g
´1
¨ wyE2 “ 0.

Because such sums with come out often, it is convenient to make the following defi-
nition:

Definition 4.3.3 (“Inner product” of functions on G). Let G be a finite group and
let k be a field with |G| invertible in k. For ϕ1, ϕ2 in CkpGq, we denote

rϕ1, ϕ2s “
1

|G|

ÿ

gPG

ϕ1pgqϕ2pg
´1
q.

This is a non-degenerate2 symmetric bilinear form on CkpGq, called the k-inner prod-
uct.

Thus we have shown that matrix coefficients of non-isomorphic representations are
orthogonal for the k-inner product on CkpGq.

Before going on, we can also exploit the formula (4.7) in this situation: since EG “ 0,
we derive

0 “
ÿ

gPG

χEpgq.

On the other hand, using the isomorphism

E » E 11 b E2

which intertwines the action on E with q%1 b %2, we have (by Proposition 2.7.39)

χEpgq “ χπ1pg
´1
qχπ2pgq.

So we derive the formula

(4.10) rχπ2 , χπ1s “
1

|G|

ÿ

gPG

χπ1pg
´1
qχπ2pgq “ 0,

i.e., the characters of distinct irreducible representations are also orthogonal.
Now we consider the case where the representations π1 and π2 are equal; we then

denote π “ π1 “ π2, acting on the space E. The space EndkpEq
G is one-dimensional and

consists of the scalar operators. The precise application of the projection on the invariant
space EndkpEq

G will now require to identify the scalar which is obtained.
But first we apply (4.7), which does not involve such computations: the argument

leading to (4.10) still applies, with the sole change that the trace of the projection is now
1. Hence we get

(4.11) rχπ, χπs “
1

|G|

ÿ

gPG

χπpgqχπpg
´1
q “ 1.

We can proceed as before with rank 1 linear maps, but in the present case we should
also observe that, because we deal with EndkpEq, there are some other obvious linear
maps to apply the projection to, namely the endomorphisms %phq, for h P G.

2 If ϕ1 ­“ 0, pick x P G with ϕ1pxq ­“ 0 and let ϕ2 be the characteristic function of x´1: then
rϕ1, ϕ2s ­“ 0.
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We obtain that, for some λphq P k, we have

1

|G|

ÿ

gPG

g ¨ πphq “
1

|G|

ÿ

gPG

πpghg´1
q “ λphqIdE.

To determine λphq, we take the trace (this is a standard technique): since

Trpπpghg´1
qq “ χπphq

for all g, we get
χπphq “ λphq dimpπq

for any h P G.
We have to be careful before concluding, because if k has positive characteristic, it

might conceivably be the case that dimpπq “ 0 in k. However, we can see that this is
not the case by noting that the formula just derived would then say that the character
of π is identically 0, which contradicts the linear independence of irreducible characters,
or simply the formula (4.11). Hence we have:

Proposition 4.3.4. Let G be a finite group and k an algebraically closed field of
characteristic coprime to |G|. For any irreducible k-representation π of G and any h P G,
we have

1

|G|

ÿ

gPG

πpghg´1
q “

χπphq

dimpπq
.

We now finally come back to rank 1 maps. For given w P E and λ P E 1 defining

Φ :

#

E Ñ E

v ÞÑ xλ, vyw,

as before, the operator
1

|G|

ÿ

gPG

g ¨ Φ

is now a multiplication by a scalar α. To determine the scalar in question, we compute
the trace: since

Trpg ¨ Φq “ TrpπpgqΦπpg´1
qq “ TrpΦq

for all g, we get
pdimEqα “ TrpαIdEq “ TrpΦq “ xλ,wy

(the trace of the rank 1 map can be computed by taking a basis where w, the generator
of the image, is the first basis vector).

Since we have already seen that dimpEq is invertible in k, we obtain therefore

1

|G|

ÿ

gPG

g ¨ Φ “
xλ,wy

dimE
,

and applying this to a vector v P E, and applying further a linear form µ P E 1 to the
result, we get:

Corollary 4.3.5 (Orthogonality of matrix coefficients). With notation as above, let
π be an irreducible k-representation of G. Then for all vectors v, w P E and linear forms
λ, µ P E 1, we have

(4.12) rfv,λ, fw,µs “
1

|G|

ÿ

gPG

xλ, g ¨ vyxµ, g´1
¨ wy “

xλ,wyxµ, vy

dimE
.
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We also summarize the orthogonality for characters:

Corollary 4.3.6 (Orthogonality of characters). With notation as above, for any two
irreducible representations π and % of G, we have

(4.13) rχπ, χ%s “
1

|G|

ÿ

gPG

χπpgqχ%pg
´1
q “

#

0 if π is not isomorphic to %,

1 otherwise,

or equivalently

(4.14)
1

|G|

ÿ

gPG

χπpgqχq%pgq “

#

0 if π is not isomorphic to %

1 otherwise.

Remark 4.3.7 (Invertibility of dimensions of irreducible representations). We have
seen that for k algebraically closed of characteristic p not dividing |G|, the dimension of
any irreducible representation is invertible in k. In fact, much more is known:

Theorem 4.3.8 (Divisibility). Let G be a finite group. For any algebraically closed
field of characteristic not dividing |G|, the family of the dimensions of irreducible k-
representations of G is the same, and these dimensions divide the order of |G|.

We will explain later how to show that dimpEq | |G| when k “ C (Proposition 4.7.8);
showing that the dimensions of the irreducible representations are the same for any alge-
braically closed field of characteristic p - |G| is more delicate, since it involves the Brauer
characters mentioned in Remark 4.2.7.

4.3.3. Decomposition of class functions. As an application of the previous sec-
tions, we now give a slightly different proof of Theorem 4.2.5. The motivation is that the
characters of irreducible k-representations of G are linearly independent class functions
on G. The k-subspace they span in CkpGq is a subspace of ckpGq and the number of dis-
tinct characters is therefore at most dim ckpGq, which is the number of conjugacy classes.
Hence the equality – which is the claim of the theorem – amounts to the statement that
the characters actually generate ckpGq, i.e., that they form a basis of this space.

We now prove this fact directly (yet another argument is contained in the proof we give
of the corresponding statements for compact groups in Theorem 5.5.1). Let ϕ P ckpGq be
a class function. Like any function on G it can be expanded into a linear combination of
matrix coefficients. We will show that, in this decomposition, only “diagonal” coefficients
appear, and that those diagonal ones are constant (for a given irreducible representation),
and this means that in fact the linear combination in question is a combination of char-
acters.

To be precise, we fix, for every distinct irreducible representation π, a basis pe
pπq
i qi of

the space Eπ of the representation, and denote by pλ
pπq
j qj the dual basis. Let

f
pπq
i,j P CkpGq, 1 ď i, j ď dimpπq,

denote the corresponding matrix coefficients. Theorem 2.7.26 (which corresponds sim-
ply to the isotypic decomposition of the regular representation) shows that there exist

coefficients α
pπq
i,j P k such that

(4.15) ϕ “
ÿ

π

ÿ

i,j

α
pπq
i,j f

pπq
i,j .
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Our claims are: (1) for any π, and any distinct indices i ­“ j, the coefficient α
pπq
i,j is

zero; (2) for any π, the diagonal coefficients α
pπq
i,i are constant as i varies. Given this, if

απ denotes this last common value, we get

ϕ “
ÿ

π

απχπ

by interpreting the character as a sum of diagonal matrix coefficients.
To prove the claim, we use the orthogonality of matrix coefficients: using the choice

of a basis and its dual, Corollaries 4.3.2 and 4.3.5 show that

rf
pπq
i,j , f

p%q
k,l s “

$

&

%

0 if π ­“ %, or pi, jq ­“ pl, kq
1

dimp%q
if π “ %, pi, jq “ pl, kq.

Hence, taking the inner product with some f
p%q
k,l on both sides of (4.15), we get

(4.16) rϕ, f
p%q
k,l s “

ÿ

π

ÿ

i,j

α
pπq
i,j rf

pπq
i,j , f

p%q
k,l s “

α
p%q
l,k

dimp%q
.

We now think of % as fixed. If we remember that f
p%q
k,l is the pl, kq-th coefficient of the

matrix representing %pgq in the basis pe
p%q
l ql, we can reinterpret the left-hand side of this

computation as the pl, kq-th coefficient of the matrix representing

Aϕ “
1

|G|

ÿ

gPG

ϕpgq%pg´1
q P Endkp%q.

Now, because ϕ is a class function, it follows that, in fact, Aϕ is in EndGp%q. This will
be presented in the context of the group algebra later, but it is easy to check: we have

Aϕp%phqvq “
1

|G|

ÿ

gPG

ϕpgq%pg´1hqv

“
1

|G|

ÿ

gPG

ϕpgq%phph´1g´1hqqv

“
1

|G|

ÿ

gPG

ϕphgh´1
q%phq%pg´1

qv “ %phqAϕpvq.

Consequently, Schur’s Lemma ensures – once again! – that Aϕ is a scalar matrix. In

particular, its off-diagonal coefficients rϕ, f
p%q
k,l s with k ­“ l are zero, and the diagonal ones

are all identical; translating in terms of the coefficients α
p%q
l,k using (4.16), we obtain the

claim concerning the latter.

4.3.4. Orthogonality for unitary representations. We consider in this short
section the case k “ C. Then we can proceed with the same arguments as before, but
using the self-duality of Hilbert spaces, we may use the rank 1 linear maps

H1
Φ
ÝÑ H2

between two Hilbert spaces defined by

Φpvq “ xv, v1yv2
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where v1 P H1 and v2 P H2, and the bracket denotes the inner product between vectors
of H1. The same analysis leads, when H1 and H2 are not isomorphic, to the relation

1

|G|

ÿ

gPG

g ¨ Φ “ 0,

and spelling it out by applying this to a v P E1 and taking the inner product of the result
with w P E2, we obtain3

1

|G|

ÿ

gPG

xg´1
¨ v, v1yxg ¨ v2, wy “

1

|G|

ÿ

gPG

xg ¨ v, v1yxg ¨ w, v2y

“ 0.

We interpret this in terms of the invariant inner product

xϕ1, ϕ2y “
1

|G|

ÿ

gPG

ϕ1pgqϕ2pgq

for which the regular representation on the space of complex-valued functions CpGq is
unitary: the formula says that

xϕv1,v2 , ϕv3,v4y “ 0

for any “unitary” matrix coefficients of non-isomorphic irreducible unitary representations
of G.

Similarly, if E “ E1 “ E2 carries the irreducible unitary representation π, the same
argument as in the previous example leads to

1

|G|

ÿ

gPG

g ¨ Φ “
xv2, v1y

dimE
P EndCpEq.

Applying to v and taking inner product with w P E, we get

1

|G|

ÿ

gPG

xg ¨ v, v1yxg
´1
¨ v2, wy “

1

|G|

ÿ

gPG

xg ¨ v, v1yxg ¨ w, v2y

“
xv2, v1yxv, wy

dimE
,

i.e., renaming the vectors, we have

xϕv1,v2 , ϕv3,v4y “
xv1, v3yxv2, v4y

dimE
for any vi P E. Hence:

Corollary 4.3.9 (Orthonormality of unitary matrix coefficients). Let G be a finite
group, π : G Ñ UpEq an irreducible unitary representation of G. For any orthonormal
basis peiq of E, the normalized unitary matrix coefficients

ϕi,j : x ÞÑ
a

dimpEqxπpxqei, ejy

are orthonormal in CpGq, with respect to the invariant inner product.

Indeed, we get

xϕi,j, ϕk,ly “ dimpEq
xei, ekyxej, ely

dimE
“

#

1 if i “ k and j “ l,

0 otherwise.

3 Changing again g into g´1.
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Similarly, for the characters themselves, we obtain the fundamental orthonormality
of characters in the unitary case:

Corollary 4.3.10 (Orthonormality of characters). Let G be a finite group and π, %
two irreducible unitary representations of G. We then have

(4.17) xχ%, χπy “
1

|G|

ÿ

gPG

χπpgqχ%pgq “

#

0 if π is not isomorphic to %,

1 otherwise.

Hence the characters of irreducible unitary representations of G form an orthonormal
basis of the space ckpGq of class functions on G with respect to the invariant inner product.

The last part is due to the fact that we know that the characters of irreducible unitary
representations form an orthonormal family in ckpGq, and that there are as many of them
as there are conjugacy classes, i.e., as many as the dimension of ckpGq, so that they must
form an orthonormal basis.

4.3.5. Multiplicities. A crucial consequence of the orthogonality of characters is a
formula for the multiplicities of irreducible representations in a given representation, at
least in characteristic 0.

Proposition 4.3.11 (Multiplicity formula). Let G be a finite group, and let k be an
algebraically closed field of characteristic 0. For any finite-dimensional k-representation

% : G ÝÑ GLpEq,

and for any irreducible k-representation π of G, the multiplicity nπp%q of π in % is given
by

nπp%q “ dim HomGpπ, %q “ rχ%, χπs “
1

|G|

ÿ

gPG

χ%pgqχπpg
´1
q.

If k “ C, then we can also write

nπp%q “ xχπ, χ%y “
1

|G|

ÿ

gPG

χ%pgqχπpgq.

Note that we also have nπp%q “ dim HomGp%, πq by the symmetry between irreducible
quotient representations and subrepresentations, valid for a semisimple representation
(Corollary 2.7.19).

Proof. Since % is semisimple, we know that its character is given by

χ% “
ÿ

πP pG

nπp%qχπ

in terms of the multiplicities. By orthogonality, we obtain

rχ%, χπs “ nπp%qrχπ, χπs “ nπp%q.

This is an equality in the field k, but since k has characteristic zero, it is also one in
Z (in particular the left-hand side is an integer). �

More generally, we can extend this multiplicity formula by linearity:

Proposition 4.3.12 (Multiplicity formula). Let G be a finite group, and k an alge-
braically closed field of characteristic 0. For i “ 1, 2, let

%i : G ÝÑ GLpEiq
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be a finite-dimensional k-representation of G. Then we have

rχ%1 , χ%2s “ dim HomGp%1, %2q “ dim HomGp%2, %1q.

If k “ C, we have

xχ%1 , χ%2y “ dim HomGp%1, %2q “ dim HomGp%2, %1q.

Remark 4.3.13. It is customary to use (especially when k “ C) the shorthand
notation

x%1, %2y “ xχ%1 , χ%2y

for two representations %1 and %2 of G. We will do so to simplify notation, indicating
sometimes the underlying group by writing x%1, %2yG.

The multiplicity formula also leads to the following facts which are very useful when
attempting to decompose a representation, when one doesn’t know a priori all the irre-
ducible representations of G. Indeed, this leads to a very convenient “numerical” criterion
for irreducibility:

Corollary 4.3.14 (Irreducibility criterion). Let G be a finite group, and let k be an
algebraically closed field of characteristic 0. For any finite-dimensional k-representation
% of G, we have

rχ%, χ%s “
ÿ

πP pG

nπp%q
2

or, if k “ C, we have the formula

xχ%, χ%y “
ÿ

π

nπp%q
2

for the “squared norm” of the character of %.
In particular, % is irreducible if and only if

rχ%, χ%s “ 1,

and if k “ C, if and only if

xχ%, χ%y “
1

|G|

ÿ

gPG

|χ%pgq|
2
“ 1.

Proof. By linearity and orthogonality

rχ%, χ%s “
ÿ

π1,π2

nπ1p%qnπ2p%qrχπ1 , χπ2s “
ÿ

π

nπp%q
2,

and similarly for k “ C. And if this is equal to 1, as an equality in Z, the only possibility
is that one of the multiplicities nπp%q be equal to 1, and all the others are 0, which means
% » π is irreducible. �

Exercise 4.3.15 (Direct product). Let G “ G1 ˆ G2 where G1 and G2 are finite
groups. Use the irreducibility criterion to prove Proposition 2.3.21 directly for complex
representations: all irreducible complex representations of G are of the form π1 b π2 for
some (unique) irreducible representations πi of Gi.

Example 4.3.16 (Permutation representations). Suppose we have a complex repre-
sentation % of a finite group G with xχ%, χ%y “ 2. Then % is necessarily a direct sum of
two non-isomorphic irreducible subspaces, since 2 can only be written as 12 ` 12 as the
sum of positive squares of integers.
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A well-known source of examples of this is given by certain permutation representa-
tions (see Section 2.6.2 for the definition). Consider an action of G on a finite set X, and
the associated permutation representation % on the space CpXq with basis vectors pexq,
so that

%pgqex “ eg¨x.

The character of % is given in Example 2.7.40: we have

χ%pgq “ |tx P X | g ¨ x “ xu|.

We first deduce from this that

xχ%,1y “
1

|G|

ÿ

gPG

ÿ

xPX
g¨x“x

1 “
1

|G|

ÿ

xPX

|Gx|

where Gx “ tg P G | g ¨ x “ xu is the stabilizer of x in G. The order of this subgroup
depends only on the orbit of x, since we have Gy “ gGxg

´1 if y “ g ¨ x, and hence,
summing over the orbits, we get

(4.18) xχ%,1y “
ÿ

oPGzX

|Go||o|

|G|
“ |GzX|,

the number of orbits (we used the standard bijection GozG ÝÑ o induced by mapping
g P G to g ¨ x0 for some fixed x0 P o).

We assume now that there is a single orbit, i.e., that the action of G on X is transitive
(otherwise, % already contains at least two copies of the trivial representation). Then,
since the character of % is real-valued, we have

x%, %y “
1

|G|

ÿ

gPG

´

ÿ

xPX
g¨x“x

1
¯2

“
1

|G|

ÿ

x,yPX

ÿ

gPGxXGy

1

“
1

|G|

ÿ

xPG

|Gx| `
1

|G|

ÿ

x ­“y

ÿ

gPGxXGy

1

“ 1`
1

|G|

ÿ

gPG

|tpx, yq P X ˆX | x ­“ y and g ¨ px, yq “ px, yqu|.

We recognize (from the character formula for a permutation representation again)
that this gives

x%, %y “ 1` x%p2q,1y,

where %p2q is the permutation representation associated to the natural action of G on the
set

Y “ tpx, yq P X | x ­“ yu

(recall that g ¨x “ g ¨y implies that x “ y, so the action of G on XˆX leaves Y invariant.)
By (4.18), we see that we have x%, %y “ 2 if (and, in fact, only if) this action on Y is
transitive. This, by definition, is saying that the original action was doubly transitive: not
only can G bring some element x P X to any other (transitivity), but a single element
can simultaneously bring some x to any x1, and some other y to any y1, provided the
conditions x ­“ y and x1 ­“ y1 are satisfied.

Thus:
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Proposition 4.3.17. Let G be a finite group acting doubly transitively on a finite set
X. Then the representation % of G on the space

E “
!

ÿ

xPX

λxex |
ÿ

xPX

λx “ 0
)

Ă CpXq

defined by %pgqex “ egx is an irreducible complex representation of G of dimension |X|´1,
with character

χ%pgq “ |tx P X | g ¨ x “ xu| ´ 1.

Indeed, the subspace E is stable under the action of G (it is the orthogonal of the
space EG

X for the natural inner product on EX such that pexq is an orthonormal basis.)
For a concrete example, consider G “ Sn acting on X “ t1, . . . , nu by permutations.

If n ě 2, this action is doubly transitive (as the reader should make sure to check, if
needed!), and this means that the representation of Sn on the hyperplane

(4.19) En “
!

pxiq P Cn
|
ÿ

i

xi “ 0
)

is irreducible of dimension n´ 1.

Remark 4.3.18. A warning about the irreducibility criterion: it only applies if one
knows that χ% is, indeed, the character of a representation of G. There are many class
functions ϕ with squared norm 1 which are not characters, for instance

ϕ “
3χπ1 ` 4χπ2

5

if π1 and π2 are non-isomorphic irreducible representations. If π1 and π2 have dimen-
sion divisible by 5, the non-integrality might not be obvious from looking simply at the
character values!

However, note that if ϕ P RpGq is a virtual character (over C, say), i.e., ϕ “ χ%1´χ%2

for some actual complex representations %1 and %2, the condition

xϕ, ϕy “ 1

means that either %1 or %2 is irreducible and the other zero, or in other words, either ϕ
or ´ϕ is a character of an irreducible representation of G. Indeed, we can write

ϕ “
ÿ

π

nπχπ

as a combination of irreducible characters with integral coefficients nπ, and we have again

xϕ, ϕy “
ÿ

π

n2
π

so one, and only one, of the nπ is equal to ˘1, and the others are 0.

Example 4.3.19 (Frobenius reciprocity). From the general multiplicity formula, we
get a “numerical” version of Frobenius reciprocity for induced representations (Proposi-
tion 2.3.8 and (2.25)): given a subgroup H of a finite group G, a (complex, say) repre-
sentation %1 of G and a representation %2 of H, we have4

x%1, IndGHp%2qyG “ xResGH %1, %2yH .

4 We use the notation of Remark 4.3.13.
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This numerical form of Frobenius reciprocity can easily be checked directly, as an
identity between characters: denoting χi “ χ%i , we find using (2.49) that we have

x%1, IndGHp%2qyG “
1

|G|

ÿ

gPG

χ1pgq
ÿ

sPHzG
sgs´1PH

χ2psgs´1q

“
1

|G|

ÿ

sPHzG

ÿ

gPs´1Hs

χ1pgqχ2psgs´1q

“
1

|G|

ÿ

sPHzG

ÿ

hPH

χ1ps
´1hsqχ2phq

“
|HzG|

|G|

ÿ

hPH

χ1phqχ2phq “ xResGHp%1q, %2yH .

Note that, by symmetry, we also have

xIndGHp%2q, %1yG “ x%2,ResGH %1yH ,

(something which is not universally true in the generality in which we defined induced
representations.)

For instance, if one thinks that %1 is an irreducible representation of G, and %2 is one
of H, Frobenius reciprocity says that “the multiplicity of %1 in the representation induced
from %2 is the same as the multiplicity of %2 in the restriction of %1 to H.”

Here is an example of application: for a finite group G, we denote by ApGq the
maximal dimension of an irreducible complex representation of G. So, for instance,
ApGq “ 1 characterizes finite abelian groups (see Proposition 4.2.2). More generally,
ApGq can be seen to be some measure of the complexity of G.

Proposition 4.3.20. For any finite group G and subgroup H Ă G, we have ApHq ď
ApGq.

Proof. To see this, pick an irreducible representation π of H such that dim π “
ApHq. Now consider the induced representation % “ IndGHpπq. It may or may not be
irreducible; in any case, let τ be any irreducible component of %; then we have

1 ď xτ, %y “ xτ, IndGHpπqy “ xResGHpτq, πyH

by Frobenius reciprocity. This means that π occurs with multiplicity at least 1 in the
restriction of τ , and therefore dim τ ě dim π. Thus τ is an irreducible representation of
G of dimension at least ApHq, i.e., we have ApGq ě ApHq. �

Exercise 4.3.21. For a finite group G and a real number p ě 0, let

AppGq “
ÿ

π

pdim πqp.

If p ě 1, show that for any subgroup H Ă G, we have AppHq ď AppGq.

Exercise 4.3.22. Let G be a finite group.
(1) If H ŸG is a normal subgroup of G, show that

IndGHp1q »
à

%

dimp%q%

where the direct sum is over the irreducible complex representations of G such that
H Ă kerp%q. (The point is that the multiplicity of such a representation % is equal to its
dimension.)
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(2) Conversely, let H be a subgroup of G such that the multiplicity of any irreducible
complex representation % of G in IndGHp1q is either 0 or dimp%q. Show that H is normal
in G.

Here is a last, very cute, application of the multiplicity formula:

Proposition 4.3.23 (Where to find irreducible representations?). Let G be a finite
group and let % : G ÝÑ GLpEq be any finite-dimensional faithful complex representation.

Then any irreducible representation π P pG can be found as a subrepresentation of a tensor
power %b ¨ ¨ ¨ b %, with k factors, for some k ě 1.

Proof. Fix π P pG. For k ě 0, we denote by mk ě 0 the multiplicity of π in %bk

(with the convention that the 0-th tensor power is the trivial representation), in other
words

mk “ x%
bk, πy

for k ě 0. The goal is to show that this multiplicity mk is non-zero for some k ě 0, and
the clever idea is to consider the generating series

ÿ

kě0

mkX
k
P ZrrXss,

and show that this formal power series is non-zero. For this purpose, we write

x%bk, πy “
1

|G|

ÿ

gPG

χ%pgq
kχπpgq,

and compute the power series by exchanging the two sums:

ÿ

kě0

mkX
k
“

1

|G|

ÿ

gPG

χπpgq
ÿ

kě0

χ%pgq
kXk

“
1

|G|

ÿ

gPG

χπpgq

1´ χ%pgqX
.

This doesn’t look like the zero power series, but there might be cancellations in the
sum. However, we haven’t used the assumption that % is faithful, and there is the cunning
trick: the point 1{χ%p1q “ 1{ dimp%q is a pole of the term corresponding to g “ 1, and
it can not be cancelled because χ%pgq “ dimp%q if and only if g P Ker % “ 1 (this is the
easy Proposition 4.6.4 below; the point is that the character values are traces of unitary
matrices, hence sum of dim % complex numbers of modulus 1.) So it follows that the
power series is non-zero, which certainly means that mk is not always 0. �

4.3.6. Isotypic projections. We now come back to the problem of determining the
projections on all the isotypic components of a representation, not only the invariant
subspace. In the language of the group algebra, Proposition 4.3.1 means that the single
element

e “
1

|G|

ÿ

gPG

g P kpGq

of the group algebra has the property that its action on any representation of G gives
“universally” the space of invariants. Since EG is the same as the isotypic component of
E with respect to the trivial representation, it is natural to ask for similar elements for the
other irreducible representations of G. These exist indeed, and they are also remarkably
simple: they are given by the characters.
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Proposition 4.3.24 (Projections on isotypic components). Let G be a finite group,
k an algebraically closed field of characteristic p - |G|. For any k-representation

% : G ÝÑ GLpEq

of G, and for any irreducible k-representation π of G, the element

eπ “
dimpπq

|G|

ÿ

gPG

χπpg
´1
qg P kpGq

acts on E as a homomorphism in HomGpE,Eq and is a projection onto the isotypic
component Mpπq Ă E.

In other words, the linear map

(4.20)

$

’

&

’

%

E ÝÑ E

v ÞÑ
dimπ

|G|

ÿ

gPG

χπpg
´1
q%pgqv

is a G-homomorphism, and is a projection onto Mpπq.

For k “ C, if we think of unitary representations, we get:

Proposition 4.3.25 (Orthogonal projections on isotypic components). Let G be a
finite group and let % : G ÝÑ UpHq be a unitary representation of G. For any irreducible
unitary representation π of G, the element

eπ “
dimpπq

|G|

ÿ

gPG

χπpgqg P CpGq

acts on E as a homomorphism in HomGpE,Eq and is the orthogonal projection onto the
isotypic component Mpπq Ă E.

We will explain how one can find this formula for eπ, instead of merely checking
its properties. Indeed, this leads to additional insights. The point is that, for a given
irreducible representation π, the family of projections to the π-isotypic component, which
maps all other isotypic components to 0, gives for every representation % : G ÝÑ GLpEq
of G a linear map

ε% : E ÝÑ E,

in a “functorial” manner, in the sense described in Exercise 3.1.5: for any representation
τ on F and any G-homomorphism

E
Φ
ÝÑ F,

we have

ετ ˝ Φ “ Φ ˝ ε%.

Exercise 4.3.26. Check this fact.

The outcome of Exercise 3.1.5 is that the source of a “universal” linear map on all
representations can only be the action of some fixed element a of the group algebra; even
if you did not solve this exercise, it should be intuitively reasonable that this is the only
obvious source of such maps. Thus, we know a priori that there is a formula for the
projection in terms of kpGq. We only need to find it.

The projections are not just linear maps, but also intertwiners; according to the last
part of Exercise 3.1.5, this corresponds to an element a of the group algebra kpGq which
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is in its center ZpkpGqq. (This is because a gives rise to G-homomorphism if and only if
a satisfies

g ¨ a “ a ¨ g P kpGq

for all g P G, which is equivalent to a P ZpkpGqq because G generates kpGq as a ring.)

Remark 4.3.27. If we write

a “
ÿ

xPG

αxx, αx P k,

the condition that a belong to the center becomes

αx´1g “ αgx´1 , for all x and g,

or, in other words, the function
x ÞÑ αx

must be a class function.

Now we assume that a P ZpkpGqq, so that a acts as a G-morphism on every repre-
sentation of G. In particular, the action of a on an irreducible representation π must be
given by multiplication by some scalar ωπpaq P k, according to Schur’s Lemma. Because
this is “universal”, we see that the element giving the projection on Mpπq is the element
a P kpGq such that ωπpaq “ 1, and ωτ paq “ 0 for all other (non-isomorphic) irreducible
k-representations τ of G – indeed, if a has this property, it follows that for a given rep-
resentation of G on E, a acts as identity on all subrepresentations of E isomorphic to π,
i.e., on Mpπq, and also a that annihilates all other isotypic components. This is exactly
the desired behavior.

To determine a exactly, we observe that we can compute ωτ paq, as a function of the
coefficients αx of a and of the irreducible representation τ , by taking the trace: from

ωτ paqIdτ “
ÿ

xPG

αxτpxq,

we get

ωτ paq dim τ “
ÿ

xPG

αx Trpτpxqq “
ÿ

xPG

αxχτ pxq.

Hence we are looking for coefficients αx such that
ÿ

xPG

αxχπpxq “ dim π

(the case τ “ π) and
ÿ

xPG

αxχτ pxq “ 0,

if τ is an irreducible representation non-isomorphic to π. But the orthogonality of char-
acters (4.13) precisely says that

αx “ dimpπqχπpx
´1
q

satisfies these conditions, and when k “ C and we have unitary representations, this
becomes

αx “ dimpπqχπpxq.

(see also Corollary 4.3.10.) Thus Proposition 4.3.25 is proved.

Having obtained the formula for the projections on isotypic components of any repre-
sentation, there is one important example that should come to mind where we can (and
should) apply this: the group algebra itself, when G acts on kpGq by multiplication on
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the left. The special feature of kpGq is its algebra structure, which also gives some extra
structure to the isotypic components.

Let Ipπq be the π-isotypic component of kpGq. According to the above, the projection
on Ipπq is given by a ÞÑ eπa, where

eπ “
dimpπq

|G|

ÿ

gPG

χpg´1
qg.

Taking a “ 1, we deduce from this that eπ P Ipπq. We deduce, for instance, that

(4.21) e2
π “ eπeπ “ eπ,

and also (since other projections map Ipπq to 0) that

(4.22) e%eπ “ 0

if % is an irreducible representation not isomorphic to π. Note moreover that

(4.23) 1 “
ÿ

π

eπ,

which is simply because of the isotypic decomposition

kpGq “
à

π

Ipπq.

In any ring A, a family peiq of elements satisfying the relations (4.21), (4.22) and
(4.23) is known as a “complete system of orthogonal idempotents”. Their meaning is the
following:

Corollary 4.3.28 (Product decomposition of the group algebra). Let G be a finite
group and k an algebraically closed field of characteristic not dividing |G|. Then the
subspaces Ipπq, where π runs over irreducible k-representations of G, are two-sided ideals
in kpGq. Moreover, with eπ P Ipπq as unit, Ipπq is a subalgebra of kpGq isomorphic to
the matrix algebra Endkpπq, and we have a k-algebra isomorphism

(4.24)

$

&

%

kpGq
„
ÝÑ

ź

π

Endpπq

a ÞÑ pπpeπaqqπ

Proof. The space Ipπq is the image of the projection given by multiplication by eπ,
i.e., we have

Ipπq “ eπkpGq,

which is, a priori, a right-ideal in kpGq. But if we remember that eπ is also in the center
ZpkpGqq of the group algebra, we deduce that Ipπq “ kpGqeπ, i.e., that Ipπq is a two-sided
ideal.

In particular, like any two-sided ideal, Ipπq is stable under multiplication. Usually,
1 R Ipπq, so that 1 does not provide a unit. But, for any a P Ipπq, if we write a “ eπa1,
we find that

eπa “ e2
πa1 “ eπa1 “ a

by (4.21), and similarly aeπ “ a, so that eπ, which is in Ipπq, is a unit for this two-sided
ideal!

The identity (4.23) means that, as algebras, we have

kpGq »
ź

π

Ipπq,
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where any a P kpGq corresponds to peπaqπ. Thus there only remains to prove that the
map

"

Ipπq ÝÑ Endkpπq
a ÞÑ πpaq.

is an algebra isomorphism.
This is certainly an algebra homomorphism (the unit eπ maps to the identity in

Endkpπq, since – by the above – the action of eπ is the projection on Mpπq, which is the
identity for π itself.) It is surjective, by Burnside’s irreducibility criterion (the latter says,
more precisely, that the image of all of kpGq is Endkpπq, but the other isotypic components
map to 0.) We can show that it is an isomorphism either by dimension count (since the
representation of G on kpGq is, for a finite group, isomorphic to that on CkpGq, the
isotypic component Ipπq has the same dimension as the space of matrix coefficients of
π, namely pdimπq2), or by proving injectivity directly: if a P Ipπq satisfies πpaq “ 0, it
follows that the action of a on every π-isotypic component of every representation is also
zero; if we take the special case of kpGq itself, this means in particular that aeπ “ 0.
However, aeπ “ eπa “ a if a P Ipπq, and thus a “ 0. �

Remark 4.3.29. This result also leads to Theorem 4.2.5. Indeed, the center ZpkpGqq
of kpGq has dimension equal to the number of conjugacy classes of G (since it is the space
of all elements

a “
ÿ

gPG

αgg,

with g ÞÑ αg a class function, as we observed before), while from (4.24), we have

ZpkpGqq »
ź

π

ZpEndkpπqq “
ź

π

kIdπ

(since any endomorphism ring has one-dimensional center spanned by the identity). Thus
the dimension of ZpkpGqq is also equal to the number of irreducible k-representations of
G.

Exercise 4.3.30 (How big can a cyclic representation be?). Let G be a finite group
and k a field of characteristic not dividing |G|. Let % : G ÝÑ GLpEq be a finite-
dimensional k-representation of G, and π an irreducible k-representation.

(1) For v P MEpπq Ă E, show that the subrepresentation Fv of E generated by v
(which is a cyclic representation, see Remark 2.2.8) is the direct sum of at most dimpπq
copies of π.

(2) Show that this can not be improved (i.e., it is possible, for some % and v, that Fv
is the direct sum of exactly dimpπq copies of π.)

(3) If you solved (1) using the group algebra kpGq, try to do it without (see [48, Ex.
2.10] if needed).

In the argument leading to the projection formula, we have also proved the following
useful result:

Proposition 4.3.31 (Action of the center of the group algebra). Let G be a finite
group and k an algebraically closed field of characteristic not dividing |G|. For any irre-
ducible k-representation % of G, there is an associated algebra homomorphism

ω% :

"

ZpkpGqq ÝÑ k
a ÞÑ %paq,
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i.e.,

(4.25) %paq “ ω%paqId.

This is given by

(4.26) ω%

´

ÿ

gPG

αgg
¯

“
1

dimp%q

ÿ

gPG

αgχ%pgq.

The last formula is obtained, as usual, by taking the trace on both sides of (4.25).
Note the following special case: if c Ă G is a conjugacy class, the element

ac “
ÿ

gPc

g

is in the center of the group algebra, and we get

(4.27) ω%pacq “
|c|χ%pcq

dim %
.

This can be used to show how to compute (in principle) all characters of irreducible
representations of G: see Proposition 4.6.2 below.

4.4. Harmonic analysis on finite groups

The terminology “harmonic analysis” refers roughly to the use of specific orthonormal
bases of a Hilbert space to analyze its elements, in particular in the setting of function
spaces. In the case of finite groups, there are two main examples, which are related: (1)
either one considers the space cpGq of complex-valued class functions, and the orthonor-
mal basis of irreducible characters; (2) or one considers the full space CpGq of functions
on the group, and a basis of matrix coefficients. The second case is often more difficult
to handle, because matrix coefficients are not entirely canonical objects. This explains
also why the first case is worth considering separately, and not simply as a corollary of
the theory of matrix coefficients.

Given a class function f P cpGq, we have

f “
ÿ

%P pG

xf, χ%yχ%

It is worth isolating the contribution of the trivial representation 1 P pG, which is the
constant function with value

xf, 1y “
1

|G|

ÿ

gPG

fpgq

i.e., the average value of f on G. It is characteristic of harmonic analysis to decompose
f in such a way that its “average” behavior is clearly separated from the fluctuations
around it, which are given by the sum of the contributions of non-trivial characters.

We now write down “explicitly” what is the outcome of this decomposition when f
is especially simple: fix a conjugacy class c Ă G, and let fc be its characteristic function,
which is a class function. We then obtain:

Corollary 4.4.1 (Decomposition of characteristic functions of conjugacy classes).
Let g and h P G. We have

(4.28)
ÿ

%P pG

χ%phqχ%pgq “

$

&

%

|G|

|g7|
if g is conjugate to h,

0 otherwise,
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where g7 is the conjugacy class of g.

This corollary is often called the “second orthogonality formula”, and is usually proved
by observing that the transpose of a unitary matrix (namely, the character table of G,
see Section 4.6) is also unitary. Note that in the “diagonal” case, the value

|G|

|g7|

is also equal to |CGpgq|, the size of the centralizer of g in G.

Proof. As indicated, we expand fc in terms of characters:

fc “
ÿ

%P pG

xfc, χ%yχ%

and we remark that, by definition, we have

xfc, χ%y “
1

|G|

ÿ

gPG

fcpgqχ%pgq “
|c|

|G|
χ%phq

since fc is 1 on the conjugacy class c and 0 elsewhere. �

Remark 4.4.2 (The space of conjugacy classes). The space cpGq of class functions
can be identified with the space CpG7q of complex-valued functions on the set G7 of
conjugacy classes in G, since a class function is constant on each conjugacy class. It is
often useful to think in these terms. However, one must be careful that the Hilbert space
inner product on CpG7q coming from this identification (i.e., the inner product such that
the identification is an isometry) is not the inner product

1

|G7|

ÿ

cPG7

f1pcqf2pcq

that might seem most natural on a finite set. Instead, we have

xf1, f2y “
1

G

ÿ

cPG7

|c|f1pcqf2pcq

for any functions
f1, f2 : G7 ÝÑ C.

This means that each conjugacy class carries a weight which is proportional to its size
as a subset of G, instead of being uniform over all classes.

Harmonic analysis often involves using the expansion of a characteristic function in
order to replace a condition of the type “g is in such and such subset X of G” by its
expansion in terms of some orthonormal basis, so that one can write

ÿ

xPX

fpxq “
ÿ

xPG

fpxq1Xpxq “
ÿ

basis pϕiq

x1X , ϕiy
ÿ

xPG

fpxqϕipxq,

where 1X is the characteristic function of X. Furthermore, it is usually the case that the
constant function 1 is part of the orthonormal basis (this is the case for characters as well
as for matrix coefficients), in which case the corresponding term is

x1X , 1y
ÿ

xPG

fpxq “
|X|

|G|

ÿ

xPX

fpxq,

which may be interpreted as the term that would arise from a heuristic argument in which
one sees |X|{|G| as the rough probability that some element of G is in X.
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We present a good illustration of this principle now, and another one will be found in
Section 4.7.1 later on. The problem we consider is to detect whether an element g P G is
a commutator. The following result in this direction is due to Frobenius.

Proposition 4.4.3 (Detecting commutators). Let G be a finite group. The number
Npgq of pairs px, yq P GˆG such that g “ rx, ys “ xyx´1y´1 is equal to

(4.29) |G|
ÿ

πP pG

χπpgq

χπp1q
,

and in particular g is a commutator if and only if
ÿ

πP pG

χπpgq

χπp1q
­“ 0.

We begin with a lemma which has independent interest, and which is also an appli-
cation of the formula for isotypic projections.

Lemma 4.4.4. Let G be a finite group, and let k be an algebraically closed field with
characteristic coprime to |G|. For any irreducible k-representation π of G, and any x,
y P G, we have

χπpxqχπpyq “
dimπ

|G|

ÿ

gPG

χπpxgyg
´1
q.

Proof. We can express the right-hand side as

dim π

|G|

ÿ

gPG

χπpxgyg
´1
q “

dim π

|y7|

ÿ

gPy7

χπpxgq,

where y7 is the conjugacy class of y. In this second expression, we use harmonic analysis
to detect the condition g P y7, exactly as described above: we have

ÿ

gPy7

χπpxgq “
ÿ

gPG

χπpxgq1y7pgq “
ÿ

gPG

χπpxgq
|y7|

|G|

ÿ

%P pG

χ%pyqχ%pgq

by the second orthogonality formula (Corollary 4.4.1). Exchanging the sums, we obtain
ÿ

gPy7

χπpxgq “ |y
7
|
ÿ

%P pG

χ%pyq
1

|G|

ÿ

gPG

χ%pgqχπpxgq.

But the function

x ÞÑ
dim %

|G|

ÿ

gPG

χ%pgqχπpxgq

is equal to
dim %

|G|

ÿ

gPG

χ%pgqp%Gpgqχπq,

i.e., to the %-isotypic projection of χπ for the regular representation. This is equal to 0
except when % “ π, in which case it is χπ itself, and hence we obtain

ÿ

gPy7

χπpxgq “
|y7|

dim π
χπpxqχπpyq,

which gives the stated result. �

We can now prove the formula of Frobenius.
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Proof of Proposition 4.4.3. This time, we won’t try to motivate the arguments,
so this might appear msyterious... The first idea is to compute, instead of Npgq, the
quantity N 7pgq which is defined to be the number of pairs px, yq P GˆG such that rx, ys
is conjugate to g. The point is that

(4.30) N 7
pgq “

ÿ

hPg7

Nphq “ |g7|Npgq

(where g7 is the conjugacy class of g), simply because the expressions of conjugate ele-
ments as commutators are naturally in bijection:

rx, ys “ g if and only if rzxz´1, zyz´1
s “ zgz´1,

so that one recovers easily Npgq from Npg7q, while relaxing equality to conjugation allows
us to detect the condition using characters instead of involving all matrix coefficients.

Now we start by fixing x, and attempt to determine the number npx, gq of y P G such
that g is conjugate to rx, ys, so that

Npg7q “
ÿ

xPG

npx, gq.

Now we can compute npx, gq using characters: we have

npx, gq “
ÿ

yPG

1g7prx, ysq.

Using again Corollary 4.4.1, and exchanging the order of the two sums, we get

(4.31) npx, gq “
|g7|

|G|

ÿ

πP pG

χπpgq
ÿ

yPG

χπpxyx
´1y´1

q.

The sum over y is a special case of that considered in Lemma 4.4.4, and this lemma
gives

ÿ

yPG

χπpxyx
´1y´1

q “ χπpxqχπpx
´1
q “ |χπpxq|

2,

so that

npx, gq “
|g7|

|G|

ÿ

πP pG

χπpgqβpx, x
´1
q “ |g7|

ÿ

πP pG

χπpgq|χπpxq|
2

dimπ
.

Summing over x, we get

Npg7q “
ÿ

xPG

npx, gq “ |g7|
ÿ

πP pG

χπpgq

dimπ

ÿ

xPG

|χπpxq|
2

“ |G||g7|
ÿ

πP pG

χπpgq

dim π
“ |G||g7|

ÿ

πP pG

χπpgq

dimπ
,

and it follows that

Npgq “ |G|
ÿ

πP pG

χπpgq

dimπ
,

using (4.30); this is what we wanted. �
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Remark 4.4.5. (1) If we isolate the contribution of the trivial representation, we see
that the number of px, yq with rx, ys “ g is given by

|G|
´

1`
ÿ

π ­“1

χπpgq

χπp1q

¯

.

Suppose the group G has no non-trivial one-dimensional representation (which means
that the commutators generate G, or that G is a perfect group). If we apply the basic
intuition of harmonic analysis, we can expect that in many circumstances the first term
will dominate, and hence that many elements in G will be commutators. There are indeed
many results in this direction. For instance, a recent theorem of Liebeck, O’Brien, Shalev
and Tiep [39], confirming a striking conjecture (or question) of Ore, shows that if G is a
finite non-abelian simple group, every element of G is a commutator. One of the criteria
used to detect commutators in this work is the one we just proved. As a simple example,
the reader will be invited to determine the commutators in GL2pFpq in Exercise 4.6.17.

On the other hand, the reader may check (!), using software packages like Magma [7]
or Gap [19], that there exists a perfect group of order 960, which fits into an exact
sequence

1 ÝÑ pZ{2Zq4 ÝÑ G ÝÑ A5 ÝÑ 1,

where not all elements of G are actual commutators. To be more precise, this group
G is isomorphic to the commutator subgroup of the group W5 discussed below in Exer-
cise 4.7.13, with the homomorphism to A5 defined as the restriction to rW5,W5s of the
natural surjection W5 ÝÑ S5. It inherits from W5 a faithful (irreducible) representation
of dimension 5 by signed permutation matrices, and it turns out that the 120 elements
in the conjugacy class of

g “

¨

˚

˚

˚

˚

˝

0 ´1 0 0 0
1 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 0 0 ´1

˛

‹

‹

‹

‹

‚

are not commutators, as one can check that all commutators have trace in t´3,´2, 0, 1, 2, 5u.
On the other hand, one can see that g is a commutator in W5. (Note that, because G
contains at least 481 commutators, it also follows that any g P G is the product of at
most two commutators, by the following well-known, but clever, argument: in any finite
group G, if S1 and S2 are subsets of G with |Si| ą |G|{2, and if g P G is arbitrary, the
fact that5 |S1| ` |gS

´1
2 | ą |G| implies that S1X gS

´1
2 ­“ H, so that g is always of the form

s1s2 with si P Si; the end of the proof of Theorem 4.7.1 in Section 4.7.1 will use an even
more clever variant of this argument involving three subsets...)

(2) If we take g “ 1 in (4.29), we see that the number of px, yq in G ˆ G which
commute, i.e., such that xy “ yx is equal to

|G|| pG| “ |G||G7|.

The reader should attempt to prove this directly (without using characters).

The representations of a finite group G can also be used to understand other spaces of
functions. We give two further examples, by showing how to construct fairly convenient
orthonormal bases of functions on a quotient G{K, as well as on a given coset of a suitable
subgroup.

5 We use here the notation S´1 “ tx´1 | x P Su.
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Proposition 4.4.6 (Functions on G{K). Let G be a finite group and let H be a
subgroup of G. Let V be the space of complex-valued functions on the quotient G{H, with
the inner product

xϕ1, ϕ2yV “
1

|G{K|

ÿ

xPG{H

ϕ1pxqϕ2pxq.

For π : G ÝÑ GLpEq and v P EH , w P E, define

ϕπ,v,w : gH ÞÑ
?

dimExπpgqv, wyE.

Then the family of functions pϕπ,v,wq, where π runs over pG, w runs over an orthonor-
mal basis of the space Eπ of π and v runs over an orthonormal basis of the invariant
space EH

π , forms an orthonormal basis of V .

Proof. First of all, the functions ϕπ,v,w are well-defined (that is, they are functions
in V ), because replacing g by gh, with h P H, leads to

xπpghqv, wyπ “ xπpgqπphqv, wyπ “ xπpgqv, wyπ,

since v P EH
π . We observe next that if ϕ̃π,v,w denote the corresponding matrix coefficients

of G, we have
xϕπ1,v1,w1 , ϕπ2,v2,w2yV “ xϕ̃π1,v1,w1 , ϕ̃π2,v2,w2y,

so that the family of functions indicated is, by the orthonormality of matrix coefficients,
an orthonormal family in V .

It only remains to show that these functions span V . But their total number is
ÿ

πP pG

pdim πqpdim πHq “
ÿ

πP pG

pdimπqxResGH π,1HyH

“
ÿ

πP pG

pdimπqxπ, IndGHp1HqyG

by Frobenius reciprocity. However, for any representation % of G, we have
ÿ

πP pG

pdim πqxπ, %yG “
ÿ

πP pG

pdim πqnπp%q “ dim %,

so that the number of functions in our orthonormal system is equal to

dim IndGHp1Hq “ rG : Hs “ dimpV q,

which means that this system is in fact an orthonormal basis. �

The second case is a bit more subtle. We consider a finite group G, and a normal
subgroup H ŸG such that the quotient A in the exact sequence

1 ÝÑ H ÝÑ G
φ
ÝÑ A ÝÑ 1

is abelian (see also Section 2.8). Fixing a P A, we want to describe an orthonormal basis
of the space W of class functions supported on the H-coset φ´1paq “ Y Ă G, with the
inner product

xϕ1, ϕ2yW “
1

|H|

ÿ

yPY

ϕ1pxqϕ2pxq.

This makes sense because H is normal in G, which implies that any coset of H is a
union of conjugacy classes.

The basic starting point is that the restrictions of characters to Y still form a gen-
erating set of W (because one can extend by zero any function in W , obtaining a class
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function on G, which becomes a linear combination of characters). For dimension rea-
sons, this can not be a basis (except if H “ G). In order to extract a basis, and to
attempt to make it orthonormal, we therefore need to compute the inner product in W
of characters restricted to Y . To detect the condition y P Y , we use the orthogonality of
(one-dimensional) irreducible characters of the quotient group A: we have

1

|A|

ÿ

ψP pA

ψpαqψpφpgqq “

#

0 if φpgq ­“ α, i.e., if g R Y,

1 if g P Y,

and hence

xχπ1 , χπ2yW “
1

|H|

ÿ

yPY

χπ1pyqχπ2pyq

“
1

|H||A|

ÿ

ψP pA

ψpαq
ÿ

yPY

ψpφpyqqχπ1pyqχπ2pyq

“
ÿ

ψP pA

ψpαqxpψ ˝ φq b π1, π2yG

“
ÿ

ψP pA
π2»pψ˝φqbπ1

ψpαq.

This is more complicated than the usual orthogonality relation for characters, but it
remains manageable. It shows that the characters remain orthogonal on H unless we

have π1 » pψ ˝φqbπ2 for some ψ P pA. This is natural, because evaluating the characters,
we obtain in that case

χπ1pyq “ ψpαqχπ2pyq

for y P Y , i.e., χπ1 and χπ2 are then proportional. The factor ψpαq is of modulus one, and
hence

xχπ1 , χπ2yW “ xχπ1 , χπ1yW “
ÿ

ψP pA
pψ˝φqbπ1»π1

ψpαq.

in this situation. This can still be simplified a bit: if ψ occurs in the sum, we obtain

ψpαqχπ1pyq “ χπ1pyq

for all y P Y , and therefore either ψpαq “ 1, or χπ1pyq “ 0 for all y P Y . In the second
case, the character actually vanishes on all of Y (and will not help in constructing an
orthonormal basis, so we can discard it!), while in the first case, we get

xχπ1 , χπ1yW “ |tψ P pA | pψ ˝ φq b π1 » π1u|.

Let us denote by

(4.32) κpπq “ |tψ P pA | pψ ˝ φq b π » πu|

the right-hand side of this formula: it is an interesting invariant attached to any ir-
reducible representation of G (see 7.1.14 for some properties when we define a similar
invariant for all groups). We can then summarize as follows the discussion:

Proposition 4.4.7 (Functions on cosets). Let G be a finite group, H ŸG a normal
subgroup with abelian quotient G{H.
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For α P A, Y and W as defined above, an orthonormal basis of W is obtained by
considering the functions

ϕπpyq “
1

a

κpπq
χπpyq

for y P Y , where π runs over a subset pGH defined by (1) removing from pG those π such
that the character of π is identically 0 on Y ; (2) considering among other characters only
a set of representatives for the equivalence relation

π1 „H π2 if and only if ResGH π1 » ResGH π2.

To completely prove this, we must simply say a few additional words to explain why

the relation π1 „H π2 in the statement is equivalent with the existence of ψ P pA such
that π2 » pψ ˝ φq b π1. This is the content of Proposition 2.8.2, but we can also argue
directly with characters: in one direction this is clear (evaluating the character, which
is 1 on H Ą Kerψ), and otherwise, if ResGH π1 » ResGH π2, we apply the inner product
formula with α “ 0 (so that Y “ H) to get

0 ­“ xResGH π1,ResGH π2yH “
ÿ

ψP pA
π2»pψ˝φqbπ1

ψpαq,

so that the sum can not be empty, and the existence of ψ follows. This remark means that
the functions described in the statement are an orthonormal system in W . We observed
at the beginning of the computation that they generate W , and hence we are done.

Exercise 4.4.8. In the situation of Proposition 4.4.7, show how to obtain an or-
thonormal basis of the space of all functions Y ÝÑ C, with respect to the inner product
on CpGq, using restrictions of matrix coefficients. [Hint: Example 3.4.7 can be useful.]

Exercise 4.4.9. Let Fq be a finite field with q elements and n ě 2 an integer.
(1) Show that takingG “ GLnpFqq andH “ SLnpFqq gives an example of the situation

considered above. What is A in that case?
(2) Show that, in this case, the invariant defined in (4.32) satisfies

κpπq ď n

for any irreducible representation π P pG.

In Exercise 4.6.6, we will give examples of groups having representations where

κpπq ­“ 1, and also examples where the set pGH differs from pG (for both possible rea-
sons: characters vanishing on Y , or two characters being proportional on Y ).

4.5. Finite abelian groups

Finite abelian groups are the easiest groups to deal with when it comes to representa-
tion theory. Since they are also very important in applications, we summarize here again
the results of the previous sections, specialized to abelian groups, before discussing some
features which are specific this situation.

Theorem 4.5.1 (Finite abelian groups). Let G be a finite abelian group.
(1) There are exactly |G| one-dimensional complex representations, often simply called

characters of G, namely group homomorphisms

χ : G ÝÑ Cˆ.
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(2) Let pG be the set of characters of G. We have the orthogonality relations

ÿ

xPG

χ1pxqχ2pxq “

#

|G| if χ1 “ χ2,

0 if χ1 ­“ χ2,
(4.33)

for χ1, χ2 P pG,

ÿ

χP pG

χpxqχpyq “

#

|G| if x “ y,

0 if x ­“ y,
(4.34)

for x, y P G.
(3) Let ϕ : G ÝÑ C be any function on G. We have the Fourier decomposition

ϕ “
ÿ

χP pG

ϕ̂pχqχ

where

ϕ̂pχq “ xϕ, χy “
1

|G|

ÿ

xPG

ϕpxqχpxq,

and the Plancherel formula
ÿ

χP pG

|ϕ̂pχq|2 “
1

|G|

ÿ

xPG

|ϕpxq|2.

The crucial feature which is specific to abelian groups is that, since all irreducible
representations are of dimension 1, they form a group under pointwise multiplication: if

χ1, χ2 are in pG, the product

χ1χ2 : x ÞÑ χ1pxqχ2pxq

is again in pG. Similarly the inverse

χ´1 : x ÞÑ χpxq´1
“ χpxq

(where the last formula holds because |χpxq| “ 1 for all characters) is a character. Hence,

with the trivial character as neutral element, the set pG is also a group, in fact a finite
abelian group of the same order as G. Its properties are summarized by:

Theorem 4.5.2 (Duality of finite abelian groups). Let G be a finite abelian group,

and pG the group of characters of G, called the dual group.
(1) There is a canonical isomorphism

e

#

G ÝÑ
p

pG
x ÞÑ ex

where ex is the homomorphism of evaluation at x defined on pG, i.e.

expχq “ χpxq.

(2) The group pG is non-canonically isomorphic to G.

Proof. (1) A simple check shows that e is a group homomorphism. To show that it
is injective, we must show that if x ­“ 1, there is at least one character χ with χpxq ­“ 1.
This follows, for instance, from the orthogonality relation

ÿ

χ

χpxq “ 0.
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(2) The simplest argument is to use the structure theory of finite abelian groups (see,
e.g., [36, Th. 10.2]): there exist integers r ě 0 and positive integers

d1 | d2 | ¨ ¨ ¨ | dr

such that
G » Z{d1Zˆ ¨ ¨ ¨ ˆ Z{drZ.

Now we observe that for a direct product G1 ˆG2, there is a natural isomorphism
#

xG1 ˆ xG2 ÝÑ {G1 ˆG2

pχ1, χ2q ÞÑ χ1 b χ2,

with pχ1 b χ2qpx1, x2q “ χ1px1qχ2px2q. Indeed, this is a group homomorphism, which is
quite easily seen to be injective, and the two groups have the same order.6

Thus we find
pG » {Z{d1Zˆ ¨ ¨ ¨ ˆ {Z{drZ

and this means that it is enough to prove that pG » G when G is a finite cyclic group
Z{dZ. But a homomorphism

χ : Z{dZ ÝÑ Cˆ

is determined uniquely by e1pχq “ χp1q. This complex number must be a d-th root of
unity, and this means that we have an isomorphism

e1 :

"

zZ{dZ ÝÑ µd “ tz P Cˆ | zd “ 1u
χ ÞÑ χp1q,

Since the group of d-th roots of unity in Cˆ is isomorphic to Z{dZ (though non-
canonically, if d ě 3), we are done. �

Remark 4.5.3. In practice, one uses very often the explicit description of characters
of Z{mZ that appeared in this proof. Denoting epzq “ e2iπz for z P C, they are the
functions of the form

ea : x ÞÑ e
´ax

m

¯

where x P Z{mZ and a P Z{mZ. In this description, of course, the exponential is
to be interpreted as computed using representatives in Z of x and a, but the result is
independent of these choices (simply because epkq “ 1 if k P Z).

Exercise 4.5.4. We have derived the basic facts about representations of finite
abelian groups from the general results of this chapter. However, one can also prove them
using more specific arguments. This exercise discusses one possible approach (see [49,
VI.1]).

(1) Prove the orthogonality relation (4.33) directly.
(2) Show – without using anything else than the definition of one-dimensional char-

acters – that if H Ă G is a subgroup of a finite abelian group, and χ0 P pH is a character

of H, there exists a character χ P pG of G such that χ restricted to H is equal to χ0.
[Hint: Use induction7 on |G{H|.] Afterward, reprove this using Frobenius reciprocity, and
compare with Exercise 2.3.15.

(3) Deduce from this the orthogonality relation (4.34).

(4) Deduce that pG is an abelian group of the same order as G, and that the homo-
morphism e is an isomorphism.

6 It is also surjective by an application of Proposition 2.3.21.
7 Not induction of representations, by proof by induction...
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Example 4.5.5 (Dirichlet’s Theorem on primes in arithmetic progressions). We sketch
how Dirichlet succeeded in proving Theorem 1.2.2. Thus we have a positive integer q ě 1
and an integer a ě 1 coprime with q, and we want to find prime numbers p ” a pmod qq.

Dirichlet’s proof is motivated by an earlier argument that Euler used to give a proof
that there are infinitely many prime numbers, as follows: we know that

lim
σÑ1

ÿ

ně1

1

nσ
“ `8,

e.g., by comparison of the series with the integral
ż `8

1

x´σdx “
1

σ ´ 1
, for σ ą 1.

On the other hand, exploiting the unique factorization of positive integers in products
of primes, Euler showed that

(4.35)
ÿ

ně1

1

nσ
“
ź

p

p1´ p´σq´1

for σ ą 1, where the infinite product (which is called an Euler product) is over all prime
numbers, and is defined as the limit, as xÑ `8, of the partial products

ź

pďx

p1´ p´σq´1
“
ź

pďx

ÿ

kě0

p´kσ “
ÿ

nPP pxq

n´σ

where P pxq is the sum of all positive integers with no prime divisor ą x, and the unique
factorization of integers has been used in the last step; thus the absolute convergence of
the series on the left is enough to justify the equality (4.35).

Now obviously, if there were only finitely many primes, the right-hand side of the
formula would converge to some fixed real number as σ Ñ 1, which contradicts what we
said about the left-hand side. Hence there are infinitely many primes.

An equivalent way to conclude is to take the logarithm on both sides; denoting

ζpσq “
ÿ

ně1

n´σ

for σ ą 1, we have
log ζpσq Ñ `8

on the one-hand, and on the other hand

log ζpσq “ ´
ÿ

p

logp1´ p´σq “
ÿ

p

p´σ `
ÿ

p,kě2

k´1p´kσ “
ÿ

p

p´σ `Op1q

as σ Ñ 1 (where we have used the power series expansion

log
´ 1

1´ x

¯

“
ÿ

kě1

xk

k

which converges absolutely and uniformly on compact sets for |x| ă 1.) Thus Euler’s
argument can be phrased as

lim
σÑ1

ÿ

p

p´σ “ `8.

Using this, it is rather tempting (isn’t it?) to try to analyze similarly either the
product

ź

p”a pmod qq

p1´ p´σq´1
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or the sum
ÿ

p”a pmod qq

p´σ

and to show that, as σ Ñ 1, these functions tend to `8. But if we expand the product,
we do not get the “obvious” series

ÿ

ně1
n”a pmod qq

n´σ,

because there is no reason that the primes dividing an integer congruent to a modulo
q should have the same property (also, if a is not ” 1 pmod qq, the product of primes
congruent to a modulo q is not necessarily ” a pmod qq): e.g., 35 “ 7ˆ 5 is congruent to
3 modulo 4, but 5 ” 1 pmod 4q.

In other words, we are seeing the effect of the fact that the characteristic function
of the single element a P Z{qZ, which is used to select the primes in the product or the
series, is not multiplicative. Dirichlet’s idea is to use, instead, some functions on Z{qZ
which are multiplicative, and to use them to recover the desired characteristic function.

A Dirichlet character modulo q is defined to be a map

χ : Z ÝÑ C

such that χpnq “ 0 if n is not coprime to q, and otherwise

χpnq “ χ˚pn pmod qqq

for some character of the multiplicative group of invertible residue classes modulo q:

χ˚ : pZ{qZqˆ ÝÑ Cˆ.

It follows that χpnmq “ χpnqχpmq for all n, m ě 1 (either because both sides are 0
or because χ˚ is a homomorphism), and from the orthogonality relation we obtain

ÿ

χ pmod qq

χpaqχpnq “

#

|pZ{qZqˆ| “ ϕpqq, if n ” a pmod qq

0, otherwise,

for n ě 1 (because a is assumed to be coprime to q), the sum ranging over all Dirichlet
characters modulo q, which correspond exactly to the characters of the group pZ{qZqˆ.

This is the first crucial point: the use of “suitable harmonics” to analyze the charac-
teristic function of a residue class. We apply this to all primes p, and multiply by p´σ

before summing over primes. We obtain the formula
ÿ

p”a pmod qq

p´σ “
1

ϕpqq

ÿ

χ pmod qq

χpaq
ÿ

p

χppqp´σ.

On the other hand, for each χ, the multiplicativity of χ leads to an analogue of the
Euler product:

ÿ

ně1

χpnqn´σ “
ź

p

p1´ χppqp´σq´1.

As is now classical, we denote by Lpσ, χq the function in this last formula. By the
same reasoning used for ζpσq, it satisfies

logLpσ, χq “
ÿ

p

χppqp´σ `Op1q
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as σ Ñ 1. We have therefore
ÿ

p”a pmod qq

p´σ “
1

ϕpqq

ÿ

χ pmod qq

χpaq logLpσ, χq `Op1q,

for all σ ą 1, and now the idea is to imitate Euler by letting σ Ñ 1 and seeing a divergence
emerge on the right-hand side, which then implies that the series on the left can not have
only finitely many non-zero terms.

On the right-hand side, for the character χ0 corresponding to χ˚ “ 1, we have

Lpσ, χ0q “
ź

p-q

p1´ p´σq´1

(the primes dividing q have χ0ppq “ 0), which therefore satisfies

logLpσ, χ0q “ logp1{pσ ´ 1qq `Op1q

as σ Ñ 1, since only the finitely many terms at p | q make this different from Euler’s case
of ζpσq. This contribution therefore diverges, and we see that Dirichlet’s Theorem follows
from the second crucial ingredient: the fact that for a Dirichlet character χ associated to
a character χ˚ ­“ 1, the function

Lpσ, χq

converges to a non-zero value as σ Ñ 1, so that its logarithm also has a limit. Showing
that the function converges to some complex number is not too difficult; however, proving
that this complex number is non-zero is more subtle. Since this has little to do with
representation theory, we refer, e.g., to [49, Ch. 6] for a very careful presentation of the
details.

Exercise 4.5.6 (Burnside’s inequality for cyclic groups). Although, much of the
time, one deals with irreducible characters of finite abelian groups, higher-dimensional
representations do sometimes occur. Here is one result of Burnside which is used in the
proof of Proposition 4.7.11 below.

For a finite cyclic group G “ Z{mZ with m ě 1, we let G˚ Ă G be the set of
generators of G. The goal is to prove that if % is any finite-dimensional representation of
G, we have

(4.36)
ÿ

xPG˚

|χ%pxq|
2
ě |G˚|

unless χ%pxq “ 0 for all x P G˚.
(1) If you know Galois theory, prove this directly. [Hint: Use the arithmetic-geometric

mean inequality.]
The next steps present an alternative argument which does not require Galois theory.
(2) Show that there exists a non-negative quadratic form Qm in m variables, denoted

n “ pnpaqqaPZ{mZ, such that
ÿ

xPG˚

|χ%pxq|
2
“ Qmpnq

for any representation %, where the coordinate npaq of n “ pnpaqq is the multiplicity of
the irreducible character

x ÞÑ e
´ax

m

¯

of Z{mZ.
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(3) Show that if

m “
ź

p|m

pkp

is the prime factorization of m, we have

Qm “
â

p|m

Qpkp

(for some obvious notion of tensor product of quadratic forms.)
(4) Show that for p prime and for any quadratic form Q1 of rank d ě 1, we have

pQp bQ
1
qpnq “

1

2

ÿ

a,bPZ{pZ

Q1pnpaq ´ npbqq

for any n “ pnpaqq P pZdqp. [Hint: It may be useful to start with Q1pnq “ n2 of rank 1.]
(5) For Q1 as above, non-negative, let spQ1q denote the smallest non-zero value of

Q1pnq for n P Zd. Show that for any quadratic form Q1 of rank d ě 1, we have

spQp bQ
1
q “ pp´ 1qspQ1q.

(6) For k ě 2 and p prime, show that there exists a quadratic form Q1 of rank pk´1

such that Qpk “ Qp bQ
1 and spQ1q “ pk´1. Then prove (4.36).

4.6. The character table

The “character table” of a finite group G is the name given to the matrix pχ%pcqq%,c
which gives the values of all the (complex) irreducible characters χ% of G evaluated at
all conjugacy classes c P G7. In particular, it is a square matrix which determines the
irreducible characters as class functions, and hence encapsulates (in theory at least!) all
the information given by representation theory over C for the group G. It is typically
represented as a square matrix with rows given by the irreducible characters (in some
order) and columns indexed by the conjugacy classes.

Example 4.6.1. A very simple example is the character table of G “ S3:

1 p12q p123q

1 1 1 1

ε 1 ´1 1

%2 2 0 ´1

Table 4.1. Character table of S3

Here the top line, as well as the leftmost row, simply recall the chosen ordering of the
conjugacy classes and characters. For the former, this is usually fairly self-explanatory,
but for the characters, one often wants – if possible – a description of an actual represen-
tation which has the character values given in the row (if only to check that it is correctly
described!)

This might be a complicated matter, but for this example, this is simple (see Re-
mark 4.2.4): 1 is the trivial representation, ε : S3 ÝÑ Cˆ is the signature, and %2 is the
2-dimensional representation acting on

E “ tpx, y, zq P C3
| x` y ` z “ 0u.

Indeed, it is not hard to check that the character values are correct. Note that,
once we know its character, one can check that %2 is irreducible by computing the norm
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xχ%2 , χ%2y “ 1 (see Corollary 4.3.14; we emphasize again that this criterion is only rigor-
ously applicable after constructing a representation with the given character). We also
recall that one needs to know the order of the conjugacy classes in order to weigh prop-
erly the character values (see Remark 4.4.2). This extra information is often indicated in
parallel with the character table, but it can in fact be recovered8 from it using (4.28): if
we fix a class c P G7 and take h P c there, we see that

(4.37) |c| “
|G|

ÿ

%

|χ%phq|
2
.

For instance, taking c “ p12q and c1 “ p123q for S3, we get

|c| “
6

12 ` 12
“ 3, |c1| “

6

12 ` 12 ` 12
“ 2.

as it should.

Before we discuss which information concerning a group can be extracted from the
character table, it is interesting to ask: can we always compute it? Here is a first answer:

Proposition 4.6.2 (The character table is computable). Let G be a finite group,
given in such a way that one can enumerate all elements of G and one can compute the
group law and the inverse.9 Then there is an algorithm that will terminate after some
time by listing the character table of G.

This is a fairly poor version of computability: we make no claim, or guarantee, about
the amount of time the algorithm will require (an estimate can be obtained from the
argument, but it will be very bad).

Proof. First of all, by enumerating all pairs of elements and computing all products
xyx´1, one can make the list of all the conjugacy classes of G, and find means to associate
its conjugacy class to any element of G.

The idea is then to see that the regular representation can be decomposed into isotypic
components. Indeed, first of all, the regular representation is computable: a basis of CpGq
is given by characteristic functions of single points, and the action ofG on the basis vectors
is computable from the inverse map. Moreover, decomposing an arbitrary f P CpGq in
this basis is immediate (given that the values of f are computable).

It is then enough to find an algorithm to compute the decomposition

CpGq “
à

πP pG

Mpπq

of the regular representation into isotypic components, in the sense of giving a list of bases
of the spaces Mpπq. Indeed, given a subspace M among these, one can then compute the
corresponding character by

χpgq “
1

dimpMq
Trp%Gpgq|Mq.

Now the crucial step: the subspaces Mpπq are characterized as the common eigen-
spaces of all operators %Gpaq where a P ZpkpGqq is an element in the center of the group

8 This, of course, assumes that the full character table is known...
9 As an example of the subtleties that may be involved, note that having a generating set is not

enough: one must be able to say whether two arbitrary products of elements from such a set are equal
or not.
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algebra, or equivalently as the common eigenspaces of the operators %Gpacq, where c runs
over the conjugacy classes of G and

ac “
ÿ

gPc

g.

In other words, assume a subspace M Ă CpGq has the property that there exist
eigenvalues λc P C, defined for all c, such that

(4.38) M “ tv P CpGq | %Gpacqv “ λcv for all c P G7u ;

then we claim that M is one of the Mpπq, and conversely.
If this is granted, we proceed as follows: list the conjugacy classes, and for each

of them, find the eigenvalues and eigenspaces of the operator %Gpacq (by finding bases
for them, using linear algebra, which is eminently computable). Then, compute all the
possible intersections of these eigenspaces, and list the resulting subspaces: they are the
isotypic components Mpπq.

We now check the claim. Let M be a non-zero common eigenspace of the %Gpacq given
by (4.38). Writing irreducible characters10 as combinations of the ac’s, it follows that M
is also contained in an eigenspace of the isotypic projections eπ, for any π. But these
are Mpπq, for the eigenvalue 1, and the sum of the other isotypic components, for the

eigenvalue 0. The sum of the eπ is the identity, so there exists some π P pG such that the
eigenvalue of eπ on M is 1. This means that M ĂMpπq. But Mpπq itself is contained in
a common eigenspace:

Mpπq Ă
!

v P CpGq | %Gpacqv “
|c|χπpcq

|G|
v for all c

)

,

by Proposition 4.7.11. This shows that the λc must coincide with |c|χπpcq
|G|

. But then

M ĂMpπq ĂM,

and these inclusions must be equalities! �

This algorithm is not at all practical if G is large, but at least it shows that, by trying
to get information from the character table, we are not building castles completely in the
air!

Note that besides this fact, the proof has led to the characterization

Mpπq “
!

v P CpGq | %Gpaqv “ ωπpaqv for all a P ZpkpGqq
)

of the isotypic components of the regular representation, which is of independent interest.

Exercise 4.6.3. Proposition 4.6.2 shows how to compute, in principle, the character
table of a finite group G. Explain how one can also, in principle, write matrix represen-

tations πm : G ÝÑ GLdimpπqpCq for each irreducible representation π P pG.

4.6.1. Some features of the character table. We present here some of the in-
formation that can be derived from the character table of a group, if it is known (other
examples are given for instance in [25, Ch. 2]). Like in Proposition 4.6.2, we do not
attempt to measure the actual computational efficiency of the procedures we describe,
many of which are quite impractical when implemented directly. In the next sections, we
will compute the character tables of some concrete groups in detail.

10 We are allowed now to use characters as theoretical tools to check that the algorithm works!
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– As already noticed, the sizes of the conjugacy classes, or equivalently the sizes of
the centralizers of CGpgq “ |G|{|g

7| of elements in G, can be computed from the character
table using the formula (4.37).

– The kernel of an irreducible representation % can be determined from its row in the
character table, because of the following:

Proposition 4.6.4 (Size of the character values). Let G be an arbitrary group and %
a finite-dimensional unitary, or unitarizable, representation of G. For g P G, we have

(4.39) |χ%pgq| ď dim %,

and there is equality if and only if %pgq is a scalar. In particular, %pgq “ 1 if and only if
χ%pgq “ χ%p1q “ dimp%q.

Proof. Since % is unitary, the eigenvalues of %pgq are of modulus 1, and hence the
modulus of the trace χ%pgq of %pgq is at most dimp%q. Moreover, by the equality case of
the triangle inequality, there can be equality only if all eigenvalues are equal, which means
(since %pgq is diagonalizable) that %pgq is the multiplication by this common eigenvalue.

Finally, when this happens, we can compute the eigenvalue, which is equal to χ%pgq{ dimp%q,
and this eigenvalue is equal to 1 if and only if %pgq is the identity, if and only if
χ%pgq “ dim %. �

Note, however, that in general a character, even for a faithful representation, has no
reason to be injective (on G or on conjugacy classes): the regular representation gives an
example of this (it is faithful but, for |G| ě 3, its character is not an injective function
on G (Example 2.7.37)). Another type of “failure of injectivity” related to characters is
described in Exercise 4.6.15.

– More generally, all normal subgroups of G can be computed using the character
table, as well as their possible inclusion relations. To do this, one can find the kernels of
the irreducible representations using the lemma and the character table.

As a next step, for any normal subgroup N ŸG, we have

N “ Ker %N

where %N is the permutation representation associated to the left-action of G on G{N
(indeed, if exN are the basis vectors for the space of %N , to have g P Ker %N means that
gexN “ exN for all x P G, i.e., gxN “ xN for all x, so g P N , and the converse follows
because N is normal) and if we denote by

X “ t% P pG | x%, IndGNp1qy ě 1u

the set of those irreducible representations which occur in the induced representation, it
follows that

N “
č

%PX

Ker %.

Thus, to determine all normal subgroups of G, from the character table, one can
first list all kernels of irreducible representations, and then compute all intersections of
finitely many such subgroups. In particular, once the conjugacy classes which form a
normal subgroup are known, its order can of course be computed by summing their size.
On the other and, it is interesting to know that there is no way to determine all subgroups
of G from the character table (see Exercise 4.6.7).
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– The character table of a quotient G{N of G by a normal subgroup NŸG can also be
determined from the character table, since irreducible representations of G{N correspond
bijectively to those irreducible representations of G where N Ă Ker %.

– One can check if a group is abelian by checking that all irreducible representations
have dimension 1;

– Whether G is solvable can also, in principle, be determined from the character table.
Indeed, if G is abelian, it is solvable. Otherwise, one can determine whether G contains
a proper normal subgroup N with abelian quotient G{N . If N does not exist, the group
is not solvable; otherwise, N is a non-trivial proper subgroup, and we can iterate with G
replaced by G{N , which is solvable if and only if G itself is solvable.

– It is also natural to ask what can not be determined from the character table. At
first, one might hope that the answer would be “nothing at all!”, i.e., that it may be
used to characterize the group up to isomorphism. This is not the case, however,11 as we
will explain in Exercise 4.6.7 below with a very classical example of two non-isomorphic
groups with the same character tables. It will follow, in particular, that the character
table can not be used to determine all subgroups of a finite group.

4.6.2. A nilpotent group. In order of structural group-theoretic complexity, after
abelian groups come (non-abelian) nilpotent groups. We recall (see, e.g., [46, Ch. 5])
that G is nilpotent if, for some integer i ě 1, we have Gi “ 1, where the sequence of
subgroups pGiqiě1 is defined inductively by

G1 “ G, Gi`1 “ rGi, Gs,

where rGi, Gs is the subgroup generated by commutators rx, ys with x P Gi and y P G.
A good example is given by the family of finite Heisenberg groups Hp defined by

Hp “

!

¨

˝

1 x z
0 1 y
0 0 1

˛

‚ | x, y, z P Fp “ Z{pZ
)

for p prime. This is a p-group since |Hp| “ p3, and any finite p-group is nilpotent (see,
e.g., [46, Th. 5.33]).

We will construct the character table of the groups Hp. We first gain some insight in
the structure of the group Hp by computing its conjugacy classes. To simplify notation,
we will use the shorthand

tx, y, zuH “

¨

˝

1 x z
0 1 y
0 0 1

˛

‚

to denote the elements of Hp. Then straightforward computations yield the product
formula

tx, y, zuHta, b, cuH “ tx` a, y ` b, xb` z ` cuH ,

the conjugacy formula

tx, y, zuHta, b, cuHtx, y, zu
´1
H “ ta, b, xb´ ya` cuH ,

as well as the commutator relation

rtx, y, zuH , ta, b, cuHs “ t0, 0, xb´ yauH .

11 The reader should not add “unfortunately”: there are no unfortunate events in mathematics...
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The last formula shows that

rHp, Hps “ Z “ tt0, 0, zuH | z P Fpu,

is the center of Hp. Each element of Z is a one-element conjugacy class in Hp; on the
other hand, if pa, bq ­“ p0, 0q, the conjugacy formula shows that, for any fixed c P Fp, the
conjugacy class of ta, b, cuH is

Xa,b “ tta, b, zuH | z P Fpu

(because the image of px, yq ÞÑ xb ´ ya ` c is all of Fp in that case, as the image of a
non-constant affine map.) We have therefore found all conjugacy classes:

‚ There are p central conjugacy classes of size 1;
‚ There are p2 ´ 1 conjugacy classes Xa,b of size p.

In particular, the character table of Hp has p2 ` p ´ 1 rows and columns. To start
completing it, a good first step is to determine all one-dimensional representations χ. Not
only is it a beginning to the table, but one can also hope to produce new representations
later by considering the “twists” % b χ of a “brand new” representation % with the one-
dimensional representations (see Exercise 2.2.14.)

The one-dimensional representations are determined by computing the abelianization
Hp{rHp, Hps “ Hp{Z, and we see here that we have an isomorphism

#

Hp{Z ÝÑ F2
p

ta, b, cuH ÞÑ pa, bq.

Thus we have p2 distinct one-dimensional representations of Hp given by

χψ1,ψ2 : ta, b, cuH ÞÑ ψ1paqψ2pbq

where ψ1, ψ2 are two (one-dimensional) characters of Fp.
This now leaves us to find p2 ` p ´ 1 ´ p2 “ p ´ 1 irreducible representations, about

which we know that the sum of the squares of their dimensions must be

|G| ´ p2
“ p2

pp´ 1q.

By comparison, it is very tempting to think that each of those new representations
should be of dimension p. (Indeed, if we also use the fact that their dimension divides
|Hp| “ p3, by Theorem 4.3.8, and hence must be a power of p, and not 1, this is the only
possibility, since a representation of dimension p2 would already have pdim %q2 “ p4 ą

p2pp´ 1q...)
One of the most common ways of finding irreducible representations is to try to

construct them as induced representations, or at least to construct such induced rep-
resentations which contain “new” irreducibles. In particular, inducing one-dimensional
representations of a subgroup can be quite efficient. In the case of Hp, if we want to find
representations of dimension p, we can look for a subgroup of index p; for instance, we
consider

K “ tt0, y, zuH | y, z P Fpu “

!

¨

˝

1 0 z
0 1 y
0 0 1

˛

‚

)

Ă Hp.

We see that K » F2
p; thus we fix a one-dimensional character ψ of K, given by

characters ψ1, ψ2 of Fp such that

ψpt0, y, zuHq “ ψ1pyqψ2pzq,
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and we consider the p-dimensional representation

% “ Ind
Hp
K pψq.

To determine whether this representation is irreducible or not, We will compute its
character, using the formula (2.49). We need for this a set T of representatives of Hp{K,
and we can take

T “ ttpxq “ tx, 0, 0uH | x P Fpu.

Then the character of % is given by

χ%pgq “
ÿ

xPFp
tpxqgtpxq´1PK

ψptpxqgtpxq´1
q.

But for g “ ta, b, cuH , we have

tpxqgtpxq´1
“

¨

˝

1 a xb` c
0 1 b
0 0 1

˛

‚

so that we see already that χ%pgq “ 0 if a ­“ 0, i.e., if g R K (in fact, since KŸG, we know
this must be true from Example 2.7.40, (3).) If a “ 0, on the other hand, the condition
tpxqgtpxq´1 is always satisfied, and thus

χ%pgq “
ÿ

xPFp

ψ1pbqψ2pxb` cq “ ψ1pbq
ÿ

xPFp

ψ2pxb` cq.

If b ­“ 0, sending x to xb` c is a bijection of Fp, and the result is therefore

χ%pgq “

#

pψ1pbq if ψ2 “ 1

0 if ψ2 ­“ 1,

while for b “ 0, which means g “ t0, 0, cuH P Z, we have

χ%pgq “ pψ2pcq.

Hence there are two cases for χ%, depending on whether ψ2 is trivial or not:

t0, 0, cuH t0, b, ‹uH , b ­“ 0 ta, b, ‹uH , a ­“ 0

ψ2 “ 1 p pψ1pbq 0

ψ2 ­“ 1 pψ2pcq 0 0

The middle column concerns p´1 non-central conjugacy classes, and the last concerns
the remaining p2´ p classes, each having p elements. Thus the respective squared norms
in the two cases are

1

p3

´

pˆ p2
` p2

ˆ pp´ 1q ˆ p
¯

“ p,

when ψ2 “ 1 and
pˆ p2

p3
“ 1

when ψ2 ­“ 1. Hence, we have an irreducible representation whenever ψ2 ­“ 1. Moreover,
the character values in that case show that % is then independent of the choice of ψ1, up
to isomorphism; on the other hand, if we look at the characters values for central classes,
we see that inducing using different choices of ψ2 leads to different representations of Hp.
In other words, the p´ 1 representations

%ψ2 “ Ind
Hp
K pψq, ψpb, cq “ ψ2pcq,
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with ψ2 non-trivial, give the remaining p-dimensional irreducible representations of Hp.
We can then present the full character table as follows, where the sole restriction is

that ψ2 in the last row should be non-trivial:

t0, 0, cuH ta, b, ‹uH , pa, bq ­“ p0, 0q

χψ1,ψ2 1 ψ1paqψ2pbq

%ψ2 pψ2pcq 0

Table 4.2. Character table of Hp

Remark 4.6.5. Although it might well seem that we had an easy time finding the
representations of the Heisenberg groups Hp because they are group-theoretically rather
easy to understand, this turns out to be misleading. Indeed, if we consider the groups
UnpFpq of upper-triangular matrices of size n ě 3 with diagonal coefficients 1, so that
Fp » U2pFpq and Hp “ U3pFpq for all primes p, then we obtain again nilpotent groups
(of nilpotency class n´ 1), but there is no known complete classification of the complex
representations of UnpFpq in general

4.6.3. Some solvable groups. Pursuing towards greater group-theoretic complex-
ity, it is natural to consider some non-nilpotent solvable groups. Here a good example to
handle is the family

Bp “

!

ˆ

x t
0 y

˙

| t P Fp, x, y P Fˆp

)

where p is a prime number. Thus |Bp| “ ppp´ 1q2, and the group is solvable because we
have a surjective homomorphism

(4.40)

$

’

&

’

%

Bp ÝÑ pFˆp q
2

˜

x t

0 y

¸

ÞÑ px, yq,

with abelian kernel

U “
!

ˆ

1 t
0 1

˙

| t P Fp

)

» Fp,

i.e., Bp is an extension of abelian groups.
As before, we compute the conjugacy classes, using the formula

ˆ

x t
0 y

˙ˆ

a u
0 b

˙ˆ

x t
0 y

˙´1

“

ˆ

a y´1ttpb´ aq ` xuu
0 b

˙

.

We consider the middle matrix to be fixed, and we look for its conjugates. If b ­“ a
the top-left coefficient can take any value when varying x, y and t, in fact even with
x “ y “ 1, and this gives us pp´ 1qpp´ 2q conjugacy classes of size p. If a “ b, there are
two cases: (1) if u ­“ 0, we can get all non-zero coefficients, thus we have p´ 1 conjugacy
classes of size p ´ 1; (2) if u “ 0, then the matrix is scalar and its conjugacy class is a
single element.

To summarize, there are:

‚ p´ 1 central conjugacy classes of size 1;
‚ p´ 1 conjugacy classes with representatives

ˆ

a 1
0 a

˙

of size p´ 1;
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‚ pp´ 1qpp´ 2q conjugacy classes with representatives
ˆ

a 0
0 b

˙

,

of size p.

The number of conjugacy classes, and hence of irreducible representations, is now

pp´ 1qpp´ 2q ` 2pp´ 1q “ ppp´ 1q.

We proceed to a thorough search... First, as in the previous section, we can easily
find the one-dimensional characters; the commutator formula

ˆ

x t
0 y

˙ˆ

a u
0 b

˙ˆ

x t
0 y

˙´1 ˆ
a u
0 b

˙´1

“

ˆ

1 (something)
0 1

˙

shows that the morphism (4.40) factors in fact through an isomorphism

Bp{rBp, Bps » pF
ˆ
p q

2.

Thus we have pp´ 1q2 one-dimensional representations

(4.41) %pχ1, χ2q :

ˆ

a u
0 b

˙

ÞÑ χ1paqχ2pbq

where χ1 and χ2 are one-dimensional characters of Fˆp . Subtracting, we see that we now
require

ppp´ 1q ´ pp´ 1q2 “ p´ 1

other irreducible representations, and that the sums of the squares of their dimensions
must be

|Bp| ´ pp´ 1q2 “ ppp´ 1q2 ´ pp´ 1q2 “ pp´ 1q3.

This time, the natural guess is that there should be p´ 1 irreducible representations,
each of dimension p´ 1, as this would fit the data very well. (Note also that p´ 1 | |Bp|,
as we know it should by Theorem 4.3.8.)

This time, we will find these representations using a slightly different technique than
induction. Namely, we consider some natural permutation representations attached to
Bp: let Xp be the set of all lines (passing through the origin) in F2

p, on which Bp acts
naturally (an element g acts on a line by mapping it to its image under the associated

linear map F2
p ÝÑ F2

p). By definition, the line Fpe1 spanned by

ˆ

1
0

˙

is fixed by all

elements in Bp, and thus we can consider the permutation representation associated to
the action on the complement Yp “ Xp ´ tFpe1u. This set has order p (it contains the
“vertical” line with equation x “ 0 and the lines y “ λx where λ P FˆP ), and thus the
associated permutation representation π has dimension p. This is not the right dimension,
but we know that a permutation representation of this type always contains the trivial
representation, represented by the invariant element which is the sum of the basis vectors.
Thus we have a representation τ of dimension p´ 1 on the space

E “
!

px`q`PYp |
ÿ

`

x` “ 0
)

Ă CYp .

We proceed to compute its character. This is easy because

χτ “ χπ ´ 1,
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and we know that for a permutation representation, such as π, we have

χπpgq “ |t` P Yp | g ¨ ` “ `u|,

the number of fixed points of the permutation associated to a given element of the group.
We can easily compute this number by looking at the conjugacy classes described above:

‚ If g is central, it fixes every line, so χπpgq “ p, and χτ pgq “ p´ 1;
‚ If

g “

ˆ

a 1
0 a

˙

,

there is no fixed point, since this would correspond to an eigenvector of this
matrix independent from e1, whereas the matrix is not diagonalizable. Hence
χπpgq “ 0, and χτ pgq “ ´1;

‚ If

g “

ˆ

a 0
0 b

˙

,

with a ­“ b, there is a unique fixed point (here, the line spanned by the second
basis vector e2); thus χπpgq “ 1 and χτ pgq “ 0.

We summarize the character of τ :
˜

a 0

0 a

¸ ˜

a 1

0 a

¸ ˜

a 0

0 b

¸

, a ­“ b

τ p´ 1 ´1 0

What is the squared norm of this character? We find

xχτ , χτy “
1

ppp´ 1q2

´

pp´ 1q2 ˆ pp´ 1q ` pp´ 1q ˆ pp´ 1q
¯

“ 1

so that it is indeed irreducible, of dimension p ´ 1. This is just one representation, but
we know that we can “twist” it using one-dimensional characters: for χ “ %pχ1, χ2q as
in (4.41), we find that the character values of τ b χ are:

˜

a 0

0 a

¸ ˜

a 1

0 a

¸ ˜

a 0

0 b

¸

, a ­“ b

τ b χ pp´ 1qχ1paqχ2paq ´χ1paqχ2paq 0

These are all irreducible representations, but they depend only on the product char-
acter χ1χ2 of Fˆp , and thus there are only p ´ 1 different irreducible representations of
dimension p´ 1 that arise in this manner.

We have now found the right number of representations. We summarize all this
in the character table, using the characters %pχ,1q to obtain the pp ´ 1q-dimensional
representations:

˜

a 0

0 a

¸ ˜

a 1

0 a

¸ ˜

a 0

0 b

¸

, a ­“ b

%pχ1, χ2q χ1paqχ2paq χ1paqχ2paq χ1paqχ2pbq

τ b %pχ,1q pp´ 1qχpaq ´χpaq 0

Table 4.3. Character table of Bp
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Exercise 4.6.6 (Dihedral groups). The dihedral groups Dn, of order 2n, form another
well-known family of solvable groups; these can be defined either as the subgroup of
isometries of R2 fixing (globally, not pointwise) a regular n-sided polygon centered at the
origin, or as the group generated by a normal cyclic subgroup Cn » Z{nZ of order 2 and
an element i P Dn ´ Cn of order 2 such that

ixi´1
“ ixi “ x´1

for x P Cn (geometrically, Cn corresponds to rotations, generated by the rotation of angle
2π{n, and i to an orientation-reversing isometry.)

(1) Find the character table for Dn. [Hint: They are slightly different when n is even
or odd; see, e.g., [48, §5.2] for the details.]

(2) In the notation of Exercise 4.3.21, show that if p ě 0 is such that

AppCnq ď AppDnq,

for n large enough, then necessarily p ě 1.
(3) Assume that n is odd. Show that: there exist distinct irreducible representations

of Dn which are proportional on the non-trivial coset Y “ Dn´Cn of Cn in Dn; there exist
irreducible representations with character identically zero on Y ; there exist irreducible
representations such that the invariant

κpπq “ |tψ P pA | pψ ˝ φq b π » πu|

is not equal to 1, where φ : Dn ÝÑ A “ Dn{Cn » Z{2Z is the projection. (This provides
the examples mentioned in Exercise 4.4.9.)

Exercise 4.6.7 (Two non-isomorphic groups with the same character table). Con-
sider the dihedral group G1 “ D4 of order 8, and the group G2 defined as the subgroup
of the multiplicative group of the Hamilton quaternions generated by i, j and k, or in
other words (for readers unfamiliar with quaternions) the group generated by symbols i,
j, k, subject to the relations

i2 “ j2
“ k2

“ ijk “ ´1.

(1) Show that G2 is of order 8 (by enumerating its elements for instance), and that it
contains a single element of order 2. Deduce that G2 is not isomorphic to G1.

(2) Compute the character table of G2. Show that, up to possible reordering of the
rows and columns, it is identical with that of G1.

(3) Deduce from this a few things about a finite group that the character table can
not determine (try to find as many things as possible that are different in G1 and G2;
note that (1) already gives examples, and you should try to find others). For instance,
can one determine all subgroups of a finite group from the character table, and not just
the normal ones?

4.6.4. A family of finite linear groups. The building blocks of all finite groups
are, in some precise sense, the simple groups. We now consider the representations of the
simplest type of group which is closely related to an infinite family of non-abelian simple
groups: the linear groups Gp “ GL2pFpq for p prime (the simple groups in question are
the quotients PSL2pFqq, for q R t2, 3u). In contrast to the previous case, some of the
irreducible representations that arise can not easily be described at the level of actual
actions of Gp on specific vector spaces: we will first identify them only as characters.

The whole computation is rather more involved than in the previous cases, as can
be expected, and the reader should be active in checking the details. For other fairly
detailed accounts along the same lines, see [18, §5.2] or [16, §4.24], and for a treatment
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from a slightly different perspective, see [10, §5.1]. We note however that these character
tables were already known to Frobenius.

We begin in the usual way by finding the size of Gp and its conjugacy classes. For
the first point, the number of elements of Gp is the same as the number of bases of the
plane F2

p, i.e.

|Gp| “ pp
2
´ 1qpp2

´ pq “ ppp´ 1q2pp` 1q

(there are p2´ 1 choices for the first basis vector, and then the second may be any vector
except the p which are linearly dependent on the first one.)

We will assume that p ě 3 (and briefly mention the simpler case of GL2pF2q in a final
remark). Determining the conjugacy classes is a question of linear algebra over Fp, and
we can argue using the characteristic polynomial of a given element g P Gp:

‚ If g has a multiple eigenvalue in Fp, but is diagonalizable, this means g is a scalar
matrix. There are p ´ 1 such matrices, and each is a conjugacy class of size 1,
which together form the center Z of Gp;

‚ If g has a multiple eigenvalue but is not diagonalizable, we can find a basis of
F2
p in which g has the form

g “

ˆ

a 1
0 a

˙

(first we can conjugate g to triangular form, but then the argument of the previ-
ous section gives a conjugate as above.) There are p´ 1 such conjugacy classes,
and to compute their size we leave it to the reader to check that the centralizer
of such a matrix g is the subgroup

K “

!

ˆ

x t
0 x

˙

| x P Fˆp , t P Fp

)

so that the size of the conjugacy class of g is |Bp{K| “ p2 ´ 1;
‚ If g has two distinct eigenvalues in Fp, it is diagonalizable over Fp, i.e., it is

conjugate to a matrix

g “

ˆ

a 0
0 b

˙

with a ­“ b. However, there are only 1
2
pp´ 1qpp´ 2q such classes because one can

permute a and b by conjugating with

w “

ˆ

0 1
1 0

˙

,

and each of these classes has size |Gp|{pp´ 1q2 “ ppp` 1q because the centralizer
of g as above is easily checked to be the group

(4.42) T1 “

!

ˆ

x 0
0 y

˙

| x, y ­“ 0
)

of diagonal (not necessarily scalar) matrices, which is isomorphic obviously to
Fˆp ˆ Fˆp , and is of order pp´ 1q2;

‚ Finally, if g has two distinct eigenvalues, but they do not belong to the base
field Fp, the matrix can be diagonalized, but only over the extension field k{Fp

generated by the eigenvalues. This is necessarily the unique (up to isomorphism)
extension field of degree 2. It is generated by some element α such that ε “ α2

is a fixed non-square in Fˆp (the existence of ε uses the assumption p ě 3; for
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p ” 3 pmod 4q, for instance, one may take ε “ ´1.) We will write, by convention
α “

?
eps. Once ε is fixed, we can see that g is conjugate to a matrix

(4.43) g “

ˆ

a b
εb a

˙

P Gp

for some a P Fp and b P Fˆp . However, as before, the number of classes of this

type is only 1
2
ppp´ 1q (changing b into ´b does not change the conjugacy class.)

The centralizer of an element g of this type is seen to be equal to the subgroup

(4.44) T2 “

!

ˆ

x y
εy x

˙

| px, yq ­“ p0, 0q
)

of order p2 ´ 1, so that the conjugacy classes are of size ppp ´ 1q. We observe
that T2 is not at all a complicated group: it is abelian, and in fact the map

(4.45)

$

&

%

T2 ÝÑ Fpp
?
εqˆ

ˆ

x y
εy x

˙

ÞÑ x` y
?
ε

is an isomorphism. The determinant on T2 corresponds, under this isomorphism,
to the map sending x ` y

?
ε to x2 ´ εy2, which is the norm homomorphism

Fp
?
εqˆ Ñ Fˆp (this is because αp “ ´α, since α “

?
ε generates the extension

of Fp of degree 2.)

Remark 4.6.8. Note the close formal similarity between the group T2 and the group
!

ˆ

x y
´y x

˙

| x, y P R, px, yq ­“ p0, 0q
)

Ă GL2pRq

which is isomorphic to Cˆ by mapping an element as above to x ` iy. Here, of course,
the real number ´1, which is not a square in R, plays the role of ε. If y ­“ 0, the
corresponding matrix in GL2pRq is not diagonalizable over R, but it is over C, with
conjugate eigenvalues x˘ iy.

Tallying all this, we see that the number of conjugacy classes is

|G7p| “ 2pp´ 1q ` 1
2
pp´ 1qpp´ 2q ` 1

2
ppp´ 1q “ p2

´ 1.

Remark 4.6.9. The following terminology is used for these four types of conjugacy
classes: they are (1) scalar classes; (2) non-semisimple; (3) split semisimple; (4) non-split
semisimple, respectively. The fourth type did not appear in the previous section, whereas
the first three intersect the upper-triangular subgroup Bp. Of course, one must be careful
to avoid confusion with the other meaning of semisimple in representation theory...

It will not be very difficult to find three “families” of irreducible representations, using
the type of methods that were successful in the previous sections. Once this is done, we
will see what is missing.

First, the commutator group of Gp is SL2pFpq, and thus the determinant gives an
isomorphism

det : Gp{rGp, Gps ÝÑ Fˆp ,

so that we have p´ 1 characters of dimension 1 given by

χpgq “ χ1pdetpgqq

for some character χ1 of Fˆp .
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The next construction is based on induction: we use the subgroup Bp to induce its
one-dimensional characters

%pχ1, χ2q :

ˆ

a t
0 b

˙

ÞÑ χ1paqχ2pbq

where χ1 and χ2 are again characters of Fˆp , and we denote

πpχ1, χ2q “ Ind
Gp
Bp
p%pχ1, χ2qq,

which has dimension p` 1. To compute the character of this representation, we use the
set of representatives

R “
!

ˆ

1 0
t 1

˙

| t P Fp

)

Y

!

ˆ

0 1
1 0

˙

)

of the cosets BpzHp. Thus, for π “ πpχ1, χ2q we have

(4.46) χπpgq “
ÿ

rPR
rgr´1PBp

χ1parqχ2pbrq

(where we write ar and br for the diagonal coefficients of rgr´1). Before considering the
four conjugacy types in turn, we observe the following very useful fact: for any x P Gp,
we have

(4.47) xBpx
´1
XBp “

#

Bp if x P Bp,

tg | g diagonal in the basis pe1, xe1qu if x R Bp.

Indeed, by definition, an element of Bp has the first basis vector e1 P F2
p as eigenvector,

and an element of xBpx
´1 has xe1 as eigenvector; if xe1 is not proportional to e1 – i.e.,

if x R Bp – this means that g P Bp X xBpx
´1 if (and only if) g is diagonalizable in the

fixed basis pe1, xe1q. (Note that in this case, the intersection is a specific conjugate of the
group T1 of diagonal matrices.)

Now we compute:

‚ If g “

ˆ

a 0
0 a

˙

is scalar, we obtain χπpgq “ pp` 1qχ1paqχ2paq;

‚ If g “

ˆ

a 1
0 a

˙

is not semisimple, then since g P Bp, only 1 P R contributes to the

sum (since for r ­“ 1 to contribute, it would be necessary that g P r´1Bpr X Bp,
which is not possible by (4.47).) Thus we get

χπpgq “ χ1paqχ2paq

in that case;

‚ If g “

ˆ

a 0
0 b

˙

with a ­“ b, besides r “ 1, the other contributions must come

from r P R such that g is diagonal in the basis pe1, re1q, which is only possible if
re1 “ e2, i.e., the only other possibility is r “ w; this gives

χπpgq “ χ1paqχ2pbq ` χ1pbqχ2paq

for the split semisimple elements;
‚ If g is non-split semisimple, it has no conjugate at all in Bp (as this would mean

that g has an eigenvalue in Fp), and hence χπpgq “ 0.

The character values are therefore quite simple:
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˜

a 0

0 a

¸ ˜

a 1

0 a

¸ ˜

a 0

0 b

¸ ˜

a b

εb a

¸

πpχ1, χ2q pp` 1qχ1paqχ2paq χ1paqχ2paq χ1paqχ2pbq ` χ2pbqχ1paq 0

Table 4.4. Character of πpχ1, χ2q

It is now a straightforward computation to determine the squared norm of the char-
acter of these induced representations: we find

xχπ, χπy “
1

|Gp|

!

pp´ 1qpp` 1q2 ` pp´ 1qpp2
´ 1q ` A

)

where A is the contribution of the split semisimple classes, namely

A “
ppp` 1q

2

ÿÿ

a,bPFˆp
a­“b

|χ1paqχ2pbq ` χ1pbqχ2paq|
2.

To compute A, one can expand the square, obtaining

A “
ppp` 1q

2

´

2pp´ 1qpp´ 2q ` 2 RepBq
¯

with

B “
ÿÿ

a,bPFˆp
a­“b

χ1paqχ1pbqχ2paqχ2pbq

“
ÿÿ

a,b

χ1paqχ1pbqχ2paqχ2pbq ´ pp´ 1q

“

´

ÿ

xPFˆp

χ1pxqχ2pxq
¯2

´ pp´ 1q.

Thus there are two cases: if χ1 “ χ2, we have B “ pp ´ 1q2 ´ pp ´ 1q, whereas if
χ1 ­“ χ2, we get B “ ´pp ´ 1q. This leads, if no mistake is made in gathering all the
terms, to

(4.48) xπpχ1, χ2q, πpχ1, χ2qy “

#

2 if χ1 “ χ2

1 if χ1 ­“ χ2.

Thus πpχ1, χ2q is irreducible if and only χ1 ­“ χ2 (see Exercise 4.8.3 for another argu-
ment towards this result, which is less computational). This means that we have found
many irreducible representations of dimension p`1. The precise number is 1

2
pp´1qpp´2q,

because in addition to requiring χ1 ­“ χ2, we must remove the possible isomorphisms be-
tween those representations, and the character values show that if χ1 ­“ χ2, we have

πpχ1, χ2q » πpχ11, χ
1
2q

if and only if

pχ11, χ
1
2q “ pχ1, χ2q or pχ11, χ

1
2q “ pχ2, χ1q.

These 1
2
pp ´ 1qpp ´ 2q representations are called the principal series representations

for GL2pFpq.
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Remark 4.6.10. The existence of the isomorphism πpχ1, χ2q » πpχ2, χ1q is guaran-
teed by the equality of characters. It is not immediate to write down an explicit isomor-
phism. (Note that, by Schur’s Lemma, we have dim HomGppπpχ1, χ2q, πpχ2, χ1qq “ 1, so
at least the isomorphism is unique, up to scalar; for an actual description, see, e.g., [10,
p.404].)

Even when χ1 “ χ2 we are not far from having an irreducible: since

xπpχ1, χ1q, πpχ1, χ1qy “ 2,

the induced representation has two irreducible components. Could it be that one of
them is one-dimensional? Using Frobenius reciprocity, we see that for a one-dimensional
character of the type χ ˝ det, we have

xπpχ1, χ1q, χ ˝ detyGp “ x%pχ1, χ1q, %pχ, χqyBp “

#

0 if χ1 ­“ χ

1 if χ1 “ χ,

since the restriction of χ ˝ det to Bp is
ˆ

a t
0 b

˙

ÞÑ χpaqχpbq.

Switching notation, we see that πpχ, χq contains a unique 1-dimensional representa-
tion, which is χ ˝ det. Its other component, denoted Stpχq, is irreducible of dimension p,
with character values given by

χStpχq “ χπpχ,χq ´ χ ˝ det,

namely
˜

a 0

0 a

¸ ˜

a 1

0 a

¸ ˜

a 0

0 b

¸

, b ­“ a

˜

a b

εb a

¸

, b ­“ 0

Stpχq pχpaq2 0 χpaqχpbq ´χpa2 ´ εb2q

From this, we see also that these representations are pairwise non-isomorphic (use the
values for split semisimple elements).

Another description of these representations, which are called the Steinberg represen-
tations, is the following: first Gp acts on the set Xp of lines in F2

p, as did Bp in the previous
section; by linear algebra, this action is doubly transitive (choosing two non-zero vectors
on a pair of distinct lines gives a basis of F2

p, and any two bases can be mapped to one
another using Gp), and therefore by Proposition 4.3.17, the permutation representation
associated to Xp splits as

1‘ St

for some irreducible representation St of dimension p. Then we get

Stpχq » Stbχpdetq

(e.g., because the permutation representation on Xp is isomorphic to the induced repre-

sentation Ind
Gp
Bp
p1q “ πp1,1q, as in Example 2.6.4, (2), so that St is the same as Stp1q,

and then one can use character values to check the effect of multiplying with χ ˝ det.)
The character of “the” Steinberg representation is particularly nice:
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˜

a 0

0 a

¸ ˜

a 1

0 a

¸ ˜

a 0

0 b

¸

, b ­“ a

˜

a b

εb a

¸

, b ­“ 0

St p 0 1 ´1

To summarize: we have found

p´ 1, 1
2
pp´ 1qpp´ 2q, p´ 1

irreducible representations of dimension

1, p` 1, p

respectively. There remains to find 1
2
ppp ´ 1q representations, with sum of squares of

dimensions equal to

|Gp| ´ pp´ 1q ´ pp´ 1qp2
´ 1

2
pp´ 1qpp´ 2qpp` 1q2 “ 1

2
ppp´ 1qpp´ 1q2.

It seems therefore to be an excellent guess that the representations in question should
be of dimension p´ 1. These will be the discrete series or cuspidal representations of Gp.

Note already the striking parallel between the (known) rows and columns of the
evolving character table: for the first three families of conjugacy classes, we have found
families consisting of the same number of irreducible representations, all with a common
dimension. We can therefore indeed expect to find a last family, which should correspond
somehow to the non-split semisimple conjugacy classes of Gp. Another clear reason for the
existence of a link with these conjugacy classes is that, for the moment, any combination of
“known” irreducible characters is, when evaluated on a non-split semisimple class (4.43),
a function of the determinant detpgq “ a2 ´ εb2.

As it turns out, just as the induced representations πpχ1, χ2q are parametrized by
the pair pχ1, χ2q, which can be interpreted as a character of the centralizer T1 of a split
semisimple conjugacy class (see (4.42)), the cuspidal representations are parametrized by
certain characters φ of the common (abelian) centralizer T2 of the representatives we use
for the non-split semisimple classes, defined in (4.44). Here, we will just pull the formula
out of a hat, as a class function, but in Exercise 4.6.21, we explain an actual construction
of the corresponding representations (though it does remain mysterious). We identify

φ : T2 ÝÑ Cˆ

with a character Fpp
?
εqˆ ÝÑ Cˆ using the isomorphism (4.45), and define a function

Rpφq by
˜

a 0

0 a

¸ ˜

a 1

0 a

¸ ˜

a 0

0 b

¸

, b ­“ a

˜

a b

εb a

¸

, b ­“ 0

Rpφq pp´ 1qφpaq ´φpaq 0 ´pφpa` b
?
εq ` φpa´ b

?
εqq

We claim that these give us the missing characters, for suitable φ.

Proposition 4.6.11. Let φ be a character of T2, or equivalently of Fpp
?
εqˆ, such

that φ ­“ φ1, where the character φ1 is defined by12

(4.49) φ1px` y
?
εq “ φpx´ y

?
εq.

Then Rpφq is an irreducible character of Gp. Moreover, we have

Rpφ1q “ Rpφ2q

12 A better notation would be φ1 “ φp, since this is what the operation a` b
?
ε ÞÑ a´ b

?
ε amounts

to.
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if and only if either φ1 “ φ2 or φ1 “ φ12.

Once this is known, we have all the characters we need. Indeed, these characters are
of dimension p´ 1. To count them, we note that the condition (4.49) is equivalent with

Kerpφq Ą
!

w P Fpp
?
εqˆ | w “

x` y
?
ε

x´ y
?
ε

)

(when seeing φ as a character of Fpp
?
εqˆ) and the right-hand side is the same as the

kernel of the norm map

Fpp
?
εqˆ ÝÑ Fˆp .

Thus those φ which do satisfy the condition are in bijection with the characters of
the image of the norm map, which is Fˆp since the norm is surjective. There are therefore

p ´ 1 characters to be excluded from the p2 ´ 1 characters of T2 (namely, those of the
form

x` y
?
ε ÞÑ χpx2

´ εy2
q

where χ is a character of Fˆp .) Finally, the identities Rpφq “ Rpφ1q show that the total

number of irreducible characters given by the proposition is, as expected, 1
2
ppp´ 1q.

Proof of Proposition 4.6.11. We see first that the identity Rpφq “ Rpφ1q does
hold, as equality of class functions. Similarly, the restriction φ ­“ φ1 is a necessary
condition for Rpφq to be an irreducible character, as we see by computing the square
norm, which should be equal to 1: we have

xRpφq, Rpφqy “
1

|Gp|

!

pp´ 1q3 ` pp´ 1qpp2
´ 1q`

1

2
ppp´ 1q

ÿ

a,bPFp
b­“0

|φpa` b
?
εq ` φpa´ b

?
εq|2

)

and the last sum (rather like what happened for the induced representation πpχ1, χ2q) is
equal to

ÿ

a,bPFp
b­“0

|φpa` b
?
εq ` φpa´ b

?
εq|2 “ 2ppp´ 1q`

2 Re
´

ÿ

a,bPFp
b ­“0

φpa` b
?
εqφpa´ b

?
εq
¯

“ 2ppp´ 1q ` 2 Re
´

ÿ

xPFpp
?
εqˆ

φpxqφ1pxq ´
ÿ

aPFˆp

1
¯

“ 2pp´ 1q2 ` pp2
´ 1qxφ, φ1y

(where the last inner product refers to the group T2.) Thus we carefully find

xRpφq, Rpφqy “ 1` xφ, φ1y,

which is 1 if and only if φ ­“ φ1.
This result, and similar checks (one may verify in similar manner that Rpφq, as a

class function, is orthogonal to all the irreducible characters previously known), show
that Rpφq behaves like the character of an irreducible representation. But this strong
evidence is not, by itself, conclusive: although it shows that Rpφq, when expanded into
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a combination of characters, must only involve the missing ones, this does not by itself
guarantee that it is one itself.

This is something we noticed already in Remark 4.3.18; and as in that remark, we see
at least (since Rpφq has norm 1 and Rpφq takes positive value at 1) that in order to con-
clude, it is enough to exhibit a linear combination of characters with integral coefficients
which is equal to Rpφq. This we do as in [18, p. 70], although with even less motivation:
we claim that

Rpφq “ χ1 ´ χ2 ´ χ3,

where χi is the character of the representation %i given by

%1 “ πpφ,1q b Stpφq, (where φ is restricted to Fˆp )

%2 “ πpφ,1q,

%3 “ Ind
Gp
T2
pφq.

Checking this is a matter of computation; note at least that the dimension

ppp` 1q ´ pp` 1q ´ rGp : T2s “ p2
´ 1´ ppp´ 1q “ p´ 1

is correct; the reader should of course make sure of the other values; we only give the

character of the induced representation Ind
Gp
T2
pφq to facilitate the check if needed:

˜

a 0

0 a

¸ ˜

a 1

0 a

¸ ˜

a 0

0 b

¸

, b ­“ a

˜

a b

εb a

¸

, b ­“ 0

Ind
Gp
T2
pφq ppp´ 1qφpaq 0 0 φpa` b

?
εq ` φpa´ b

?
εq

(this is especially easy to evaluate because T2 only intersects conjugacy classes of central
and of non-split semisimple elements.) �

We are thus done computing this character table! To summarize, we present it in a
single location:

˜

a 0

0 a

¸ ˜

a 1

0 a

¸ ˜

a 0

0 b

¸ ˜

a b

εb a

¸

χ ˝ det χpa2q χpa2q χpabq χpa2 ´ εb2q

πpχ1, χ2q pp` 1qχ1paqχ2paq χ1paqχ2paq
χ1paqχ2pbq`

χ2pbqχ1paq
0

Stpχq pχpa2q 0 χpabq ´χpa2 ´ εb2q

Rpφq pp´ 1qφpaq ´φpaq 0
´pφpa` b

?
εq`

φpa´ b
?
εqq

Table 4.5. Character table of GL2pFpq

Remark 4.6.12. (1) For p “ 2, the only difference is that there are no split semisim-
ple conjugacy classes, and correspondingly no principal series (induced) representations.
Indeed, GL2pF2q is isomorphic to S3 (an isomorphism is obtained by looking at the
permutations of the three lines in F2

2 induced by an element of GL2pF2q), and the char-
acter table of the latter in Example 4.6.1 corresponds to the one above when we remove
the third line and column: the 2-dimensional representation of S3 corresponds to the
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(unique) Steinberg representation and the signature corresponds to the (unique) cuspidal
representation of GL2pF2q.

(2) The restriction to GL2pkq where k is a field of prime order was merely for conve-
nience; all the above, and in particular the full character table, are valid for an arbitrary
finite field k, with characters of kˆ, and of the group of invertible elements in its quadratic
extension, instead of those of Fˆp and Fˆp2 .

This computation of the character table of GL2pFpq was somewhat involved. The
following series of exercises shows some of the things that can be done once it is known.

Exercise 4.6.13 (Characters of SL2pFpq). The group SL2pFpq is quite closely related
to GL2pFpq, and one can compute the character table of one from that of the other.

(1) For p ě 3, show that SL2pFpq has p` 4 conjugacy classes, and describe represen-
tatives of them.

(2) By decomposing the restriction to SL2pFpq of the irreducible representations of
GL2pFpq, describe the character table of SL2pFpq for p ě 3. [See, for instance, [18, §5.2]
for the results; there are two irreducible representations of GL2pFpq which decompose as
a direct sum of two representations whose characters are quite tricky to compute, and
you may try at first to just compute the dimensions of the irreducible components.]

(3) Show in particular that

(4.50) min
π ­“1

dimπ “
p´ 1

2

where π runs over all non-trivial irreducible (complex) representations of SL2pFpq.
(In Section 4.7.1, we will see some striking applications of the fact that this dimension

is large, in particular that it tends to infinity as p does, and we will prove (4.50) more
directly, independently of the computation of the full character table.)

(4) For G “ GL2pFpq, H “ SL2pFpq, A “ G{H » Fˆp , compute the invariant κpπq
defined in (4.32) for all representations π of G.

Exercise 4.6.14 (The Gelfand-Graev representation). Let

U “
!

ˆ

1 t
0 1

˙

| t P Fp

)

Ă GL2pFpq.

This is a subgroup of GL2pFpq, isomorphic to Fp. Let ψ ­“ 1 be a non-trivial irreducible
character of U .

(1) Compute the character of % “ Ind
GL2pFpq
U pψq, and show that it is independent of

ψ ­“ 1.
(2) Show that if π is an irreducible representation of GL2pFpq, the multiplicity x%, πy

of π in % is either 0 or 1, and that it is equal to 1 if and only if dim π ě 2.

This representation % is called the Gelfand-Graev representation of the group GL2pFpq.
In concrete terms, the result means that for any irreducible representation

π : GL2pFpq ÝÑ GLpEq,

of dimension at least 2, there exists a unique linear form

`π : E ÝÑ C

(up to scalar) such that

`π

´

π

ˆ

1 x
0 1

˙

v
¯

“ ψpxq`πpvq
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for x P Fp and v P E (this is because such a linear form is exactly an element of
HomUpπ, ψq, which is isomorphic to HomGpπ, %q by Frobenius reciprocity; such a linear
form is called a Whittaker functional for π.)

Using the specific isomorphism that implements Frobenius reciprocity, we find that
given such a linear form `π ­“ 0, the homomorphism

π ÝÑ IndGU pψq

is given by mapping a vector v to the function

Wvpgq “ `πp%pgqvq.

Exercise 4.6.15 (Distinct characters that coincide on a generating set). Show that
the following can happen for some finite groups: there may exist a group G, a gen-
erating set S, and two irreducible (even faithful) representations %1 and %2 which are
non-isomorphic but satisfy

χ%1psq “ χ%2psq

for all s P S.

Exercise 4.6.16 (Contragredient). Let % be an irreducible representation of GL2pFpq.
Let χ be the character of Fˆp such that

%
´

ˆ

x 0
0 x

˙

¯

“ χpxqId

(the central character of %). Show that the contragredient q% of % is isomorphic to the
representation %̂ given by

%̂pgq “ χpdetpgqq´1%pgq.

[Hint: This can be done without using the character table, by looking at what is the
transpose of g´1.]

Exercise 4.6.17 (Commutators in GL2pFpq). Using Proposition 4.4.3, show that the
set of commutators (not only the subgroup they generate!) in GL2pFpq is equal to SL2pFpq

for p ě 3.

Exercise 4.6.18. (1) For p ě 3 and π an irreducible representation of GL2pFpq, show
that there exists a constant cπ P C and a character χ of Fˆp such that

χπ

´

ˆ

x 1
x

˙

¯

“ cπχpxq

for all x P Fˆp (this can be done without the character table).
(2) Let f denote the characteristic function of the set of all g P GL2pFpq which are

diagonalizable over an algebraic closure of Fp. Show that

xf, χπy “ 0

for all except p of the irreducible representations of GL2pFpq. [Hint: Here you should
probably use the character table.]

In the last exercise, we present one of the known constructions of the discrete series
of representations as actual representations: they will arise as irreducible components of
the Weil representation. This uses the following fact:
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Proposition 4.6.19. Let k be a field. Then SL2pkq is isomorphic to the group with
generators αpyq for y P kˆ, npxq for x P k and w, subject to the relations

αpy1qαpy2q “ αpy1y2q, npx1qnpx2q “ npx1 ` x2q

αpyqnpxqαpy´1
q “ npy2xq, wαpyqw “ αp´y´1

q(4.51)

wnpxqw “ αp´x´1
qnp´xqwnp´x´1

q for x ­“ 0,

where y, y1, y2 P k
ˆ, x, x1, x2 P k.

Sketch of proof. Let G be the group defined by these generators and relations.
One first checks that SL2pkq is a quotient of G by the homomorphism given by

αpyq ÞÑ

ˆ

y 0
0 y´1

˙

, npxq ÞÑ

ˆ

1 x
0 1

˙

, w ÞÑ

ˆ

0 1
´1 0

˙

(i.e., one must check that the matrices above satisfy the stated relations, and that they
generated SL2pkq.) Then one can prove that this homomorphism is an isomorphism by
the simple expedient of constructing its inverse. The latter is given by

ˆ

a b
0 d

˙

ÞÑ npaqαpb{aq

and, for c ­“ 0, by
ˆ

a b
c d

˙

ÞÑ npa{cqαp´c´1
qwnpd{cq.

Set-theoretically, it is very easy to see that this is indeed an inverse: for instance, one
has to verify that

ˆ

1 a{c
0 1

˙ˆ

´c´1 0
0 ´c

˙ˆ

0 1
´1 0

˙ˆ

1 ´d{c
0 1

˙

“

ˆ

a b
c d

˙

,

and this is straightforward. One must however ensure that this set-theoretic inverse is in
fact a homomorphism; this is again, in principle, a matter of computations, but it is more
involved since one has to handle different cases. The generic one (when the bottom-left
entries are non-zero) is done in detail in [10, p. 406], and the reader may wish to handle
another one (at least) before taking the result for granted. �

Exercise 4.6.20. Let k be a field.
(1) Show that SL2pkq is generated by the elements

ˆ

1 x
0 1

˙

,

ˆ

1 0
x 1

˙

for x P k. [Hint: Show first that w is in the group generated by these elements (how can
one exchange the values of two variables without using an auxiliary variable?).]

(2) For k “ Fp, show that SL2pFpq is generated by
ˆ

1 1
0 1

˙

,

ˆ

1 0
1 1

˙

.

Exercise 4.6.21 (The Weil representation). Let p be an odd prime and let k “
Fpp
?
εq be (as above) a quadratic extension of Fp, and define σpx` y

?
εq “ x´ y

?
ε for

x` y
?
ε P k and

Trpx` y
?
εq “ 2x, Npx` y

?
εq “ x2

´ εy2

the trace (resp. norm) map from k to Fp (resp. kˆ to Fˆp ).
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Let V be the space of functions k ÝÑ C. Define the Fourier transform on V by

pfpxq “ ´
1

p

ÿ

yPk

fpyqe
´Trpxσpyqq

p

¯

(where epzq is as in Remark 4.5.3). This is a linear map V ÝÑ V .
(1) Show that there exists a representation of SL2pFpq on V such that

´

ˆ

y 0
0 y´1

˙

¨ f
¯

pxq “ fpyxq

´

ˆ

1 t
0 1

˙

¨ f
¯

pxq “ e
´tNpxq

p

¯

fpxq

´

ˆ

0 1
´1 0

˙

¨ f
¯

pxq “ pfpxq.

for y P Fˆp and x P Fp. [Hint: Use the presentation of SL2pFpq by generators and relations
above; this requires some non-trivial identities, which may be checked in [10, p. 408].]

(2) Let φ be a character of T2 such that φ ­“ φ1, as in Proposition 4.6.11. Define

Vφ “ tf P V | fpyxq “ φpyq´1fpxq for all y P k with Npyq “ 1u.

Show that Vφ is a subrepresentation of V of dimension p´ 1.
(3) Show that the representation of SL2pFpq on Vφ extends to a representation of

GL2pFpq determined by the condition
´

ˆ

y 0
0 1

˙

¨ f
¯

pxq “ φpỹqfpỹxq

where ỹ P kˆ satisfies Npỹq “ y.
(4) Show that this representation of GL2pFpq on Vφ is isomorphic to the discrete

series Rpφq. [Hint: Show that Vφ has the correct central character, and that Rpφq has no

non-zero vector invariant under
!

ˆ

1 t
0 1

˙

)

; then use the character table.]

4.6.5. The symmetric groups. The irreducible characters of the symmetric groups
Sn, n ě 1, were already essentially determined by Frobenius. Since then, there have been
many different interpretations and variants of the construction and the subject remains
a very lively topic of current research, both for its own sake and because of its many
applications.

We will content ourselves here by stating a description of the irreducible representa-
tions in the language of “Specht modules”, but we will not give the proofs. There are
many excellent detailed treatments in the literature, including those in [18, Ch. 4] or [11,
§28] and the very concise version in [14, Ch. 7].

The conjugacy classes in the symmetric group Sn are naturally classified by the
partitions of n, corresponding to the cycle decomposition of a permutation σ P Sn: if
σ is written as the product of disjoint cycles of lengths λ1, . . . , λk (with k ď n and
λi “ 1 corresponding to a fixed point of σ), then the conjugacy class of σ consists of all
permutations which are products of disjoint cycles of the same lengths. These lengths
satisfy the relation

(4.52) λ1 ` ¨ ¨ ¨ ` λk “ n,

and conversely, for any 1 ď k ď n and for any positive integers λ1, . . . , λk summing to n,
we can construct a conjugacy class of permutations in Sn as product of cycles of these
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lengths taken successively. To normalize the set of lengths, one may order them in such
a way that

(4.53) λ1 ě λ2 ě ¨ ¨ ¨ ě λk ě 1,

and by “λ “ pλ1, . . . , λkq is a partition of n”, we mean that the λi are integers satisfy-
ing (4.52) and (4.53).

Remark 4.6.22. This elementary fact associated to Theorem 4.2.5 gives us a way to
compute directly the number of irreducible representations of Sn, at least for small n.
For instance, there are 56 different irreducible representations of S11. Note that we only
described three of them up to now: the trivial representation, the signature ε : Sn ÝÑ

t˘1u, and the 10-dimensional irreducible subrepresentation of the permutation action on
Cn (see Example 4.3.16).

For large n, denoting by ppnq the number of partitions of n, it was proved by Hardy
and Ramanujan that

ppnq „
1

4
?

3n
exp

´

´
2π
?

6

?
n
¯

, as nÑ `8,

(which means that the ratio of the two sides tends to 1 as n Ñ `8), and even stronger
exact expansions are known (the first being due to Rademacher). These facts are however
proved without much, if any, reference to the group-theoretic interpretation of ppnq (see
for instance [27, §20.1].)

We now describe a construction that associates a complex representation Sλ of Sn

to any partition λ of n. The main result is that these are irreducible representations,
and that they are pairwise non-isomorphic. Since there are as many as the number of
conjugacy classes of Sn, it follows that the Sλ give all the irreducible representations of
the symmetric group Sn. The construction proceeds in four steps:

(1) [The diagram of λ] Given λ, the associated Young diagram is a graphical repre-
sentation of λ; it contains k row of boxes, where the i-th row contains λi boxes, and the
rows are aligned on the left. For n “ 11 and λ “ p4, 3, 3, 1q, for instance, the diagram is

(2) [λ-tableaux] A λ-tableau is obtained from the diagram of λ by filling each box
with an integer from 1 to n, without repetitions. Hence there are n! distinct λ-tableaux.
For instance, the following tableau

3 7 1 11
2 9 6
4 10 8
5

is a p4, 3, 3, 1q-tableau.
(3) [λ-tabloids] A λ-tabloid is an equivalence class of λ-tableaux for the equivalence

relation t1 „ t2 if and only if, for each i, the numbers in the i-th row of t1 are the same
as those in the i-th row of t2. For instance, with t the tableau above, the first of the two
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tableaux below is equivalent to t, but the other is not:

11 7 3 1
2 6 9
4 8 10
5

2 7 1 11
3 9 6
4 10 8
5

It is easy to see that the number of distinct λ-tabloids is equal to

n!

λ1! ¨ ¨ ¨λk!
.

Indeed, Sn acts simply transitively on the λ-tableaux (by permuting the integers in
the boxes) and this action respects the equivalence relation, so Sn acts transitively on
the λ-tabloids. The stabilizer of any λ-tabloid is isomorphic to Sλ1 ˆ ¨ ¨ ¨ ˆ Sλk (each
factor permuting the integers in the corresponding row), and the formula follows.

(4) [The Specht module] To define Sλ, let first Mλ be the permutation representation
corresponding to the action of Sn on the λ-tabloids. Thus we have

dimMλ
“

n!

λ1! ¨ ¨ ¨λk!
.

Like any permutation representation, this is not irreducible. We construct Sλ as the
subrepresentation of Mλ generated by the vectors defined by

et “
ÿ

σPCt

εpσqrσ ¨ ts PMλ,

where ε is the signature of a permutation, t runs over the λ-tableau and Ct is the subgroup
of Sn which permutes the integers in each column of the tableau. For instance, for the
tableau t above, we see that Ct is the subgroup of order 4! ¨ 3! ¨ 3! of S11 which permutes
p3, 2, 4, 5q, p7, 9, 10q and p1, 6, 8q, and fixes 11.

The subrepresentation Sλ generated by all et is in fact generated (as an Sn-module)
by a single one of them, since one checks that

σ ¨ et “ eσ¨t.

Now we have:

Theorem 4.6.23. Each irreducible complex representation of Sn is isomorphic to Sλ

for a unique partition λ of n.

For the proof, see for instance [14, §7.A]. It is remarkable that, in this important case,
one has a “canonical” correspondence between the conjugacy classes of a group and its
irreducible representations.

The following exercise illustrates some special examples of this construction.

Exercise 4.6.24. (1) Show that Sλ is the trivial representation for λ “ pnq with
diagram given by a single row with n boxes:

¨ ¨ ¨
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(2) Show that Sλ is the signature homomorphism ε for λ “ p1, 1, ¨ ¨ ¨ , 1q, with diagram
given by n rows with one box per row:

...

(3) Show that for λ “ pn ´ 1, 1q, for n ě 2, the Specht module Sλ is the irreducible
subrepresentation (4.19) of dimension n´ 1 of the permutation representation associated
to the standard action of Sn on t1, . . . , nu.

4.7. Applications

We present in this section some sample applications of the representation theory of
finite groups, where the statements do not, by themselves, seem to depend on represen-
tations. The sections are independent of each other.

4.7.1. “Quasirandom” groups. Quite recently, Gowers [21] introduced a notion
of “quasirandom” groups, motivated in part by similar ideas in the context of graph
theory. Here is one of the simplest results that can be obtained in this area:

Theorem 4.7.1 (Gowers, Nikolov-Pyber). Let G ­“ 1 be a non-trivial finite group
and k ě 1 the smallest dimension of a non-trivial irreducible complex representation of
G. For any subsets A, B, C in G such that

(4.54)
|A||B||C|

|G|3
ą

1

k
,

we have ABC “ G, or in other words, every element g P G can be written as g “ abc
with a P A, b P B and c P C.

We use here the following product notation: for subsets A1, . . . , Ak of a group G (not
necessarily distinct), the set A1A2 ¨ ¨ ¨Ak is the set of all products

a “ a1a2 ¨ ¨ ¨ ak

with ai P Ai for all i; if some Ai “ taiu are singletons, we may just write the corresponding
element ai, e.g., in a1A2a3. We also write A´1

1 for the set of all a´1 with a P A.
It is also convenient to denote

νpAq “
|A|

|G|
for A Ă G: this is the “density” of A in G. It can be interpreted intuitively as the
probability that a “random element” in G belong to A, and the hypothesis (4.54) of the
theorem can be phrased as

(4.55) νpAqνpBqνpCq ą
1

k
.

Proof. The first step is due to Gowers [21, Lemma 5.1]: under the stated condi-
tion (4.55), we will show that AB X C is not empty, i.e., that some c P C is of the form
ab with a P A and b P B.

To proceed with better motivation, fix only the two sets B and C. We try to find an
upper bound on the size of the set D of those elements g P G such that the intersection

C X gB
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is empty; indeed, to say that a set A fails to satisfy AB X C ­“ H is to say that A Ă D,
and if we know that D has a certain size, then it can not contain any set of larger size.

The idea to control |D| (or the density νpDq) is to look at the function

ϕB,C : g ÞÑ
|C X gB|

|G|
“ νpC X gBq

defined on G, and to show that it is non-zero on a relatively large set by finding an upper
bound for its “variance”, i.e., the mean-square of ϕB,C minus its average.

This average value is easy to determine: we have

xϕB,C , 1y “
1

|G|2

ÿ

gPG

|C X gB| “
1

|G|2

ÿ

cPC

ÿ

gPG
cPgB

1 “
|B||C|

|G|2
“ νpBqνpCq,

since c P gB is equivalent with g P cB´1, which has order |B|. Hence we wish to
understand the quantity

1

|G|

ÿ

aPG

´

ϕB,Cpaq ´ νpBqνpCq
¯2

,

and if we know an upper-bound (say V ) for it, we can argue by positivity13 that the set
X of those g P G with ϕB,C “ 0 (i.e., C X gB “ H) satisfies

|X|

|G|
pνpBqνpCqq2 “

1

|G|

ÿ

gPX

´

ϕB,Cpgq ´ νpBqνpCq
¯2

ď V,

and in particular, if A Ă G satisfies

νpAq ą
V

pνpBqνpCqq2
,

it must be the case that ϕB,C is not identically zero on A, i.e., that ABXC is not empty.
Now, in order to analyze ϕB,C , we observe that for any g P G, we have

ϕB,Cpgq “
1

|G|

ÿ

xPG

1Cpxq1gBpxq “
1

|G|

ÿ

xPG

1Cpxq1Bpg
´1xq

where, for any subset D Ă G, we denote by 1D the characteristic function of D.
In other words, defining ψpgq “ ϕB,Cpg

´1q, we have

ψ “ %Gp∆Cq1B,

where

∆C “
1

|G|

ÿ

gPG

1Cpgqg P CpGq.

We now normalize ψ by subtracting the average, defining

ψ0 “ ψ ´ xψ, 1y “ %Gp∆CqµB, µB “ 1B ´ νpBq.

Our goal is then to bound from above the quantity

xψ0, ψ0y “
1

|G|

ÿ

gPG

´

ψpgq ´ νpBqνpCq
¯2

“
1

|G|

ÿ

aPG

´

ϕB,Cpaq ´ νpBqνpCq
¯2

.

We do this by observing that %Gp∆Cq is a linear map acting on the subspace

C0pGq “ tϕ P CpGq | xϕ, 1y “ 0u Ă CpGq

13 This is the trick known as Chebychev’s inequality in probability theory.
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and hence, by elementary Hilbert space theory, we have

(4.56) xψ0, ψ0y ď λ2
xµB, µBy

where λ2 ě 0 is the largest eigenvalue of the non-negative self-adjoint operator

∆2 “ %Gp∆Cq
˚%Gp∆Cq

acting on C0pGq, the adjoint %Gp∆Cq
˚ being computed for the inner product on CpGq.

We have not yet really used much representation theory. But here is the crux: consider
the λ-eigenspace of ∆2, say E Ă C0pGq. Then E is a subrepresentation of the left-regular
representation, i.e., it is stable under the action of G such that

λGpgqϕpxq “ ϕpx´1gq,

simply because the two actions of G on itself by right and left multiplication commute:
since %Gp∆Cq is defined using right-multiplication, the operators λGpgq commute with
%Gp∆Cq and its adjoint, hence with ∆2, and therefore stabilize its eigenspaces. Indeed, if
∆2ϕ “ λϕ, we have

∆2pλGpgqϕq “ λGpgq%Gp∆2qϕ “ λλGpgqϕ.

Now our assumption shows that dimpEq ě k, because under λG, the invariant sub-
space of CpGq is the space of constant functions, which is orthogonal to C0pGq, so that
λG can not act trivially on any subspace of E. Thus the eigenvalues of ∆2 have “large”
multiplicity (if k is large).

How can this knowledge of the dimension of the eigenspace help bounding the eigen-
value? The point is that we can achieve some control of all the eigenvalues of ∆2 using
its trace, and because all eigenvalues are non-negative, we have

kλ2
ď pdimEqλ2

ď Trp∆2q,

which we compute separately, using the relation

%Gpgq
˚
“ %Gpg

´1
q

coming from unitarity, to obtain

Trp∆2q “
1

|G|2

ÿ

x,yPG

1Cpxq1Cpy
´1
qTrp%Gpy

´1xqq,

so that, by the character formula for the regular representation, we obtain

Trp∆2q “
1

|G|

ÿ

x,yPC
x“y

1 “
|C|

|G|
“ νpCq.

Thus we find an upper bound for λ2, namely

λ2
ď
νpCq

k
,

and hence by (4.56) we get

1

|G|

ÿ

gPG

´

ϕB,Cpgq ´ νpBqνpCq
¯2

ď
νpCq

k
xµB, µBy.

But the last term is also easy to compute: we have

xµB, µBy “ x1B, 1By ´ 2νpBqx1B, 1y ` νpBq
2

“ νpBqp1´ νpBqq ď νpBq,
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and therefore14 the conclusion is

1

|G|

ÿ

gPG

´

ϕB,Cpgq ´ νpBqνpCq
¯2

ď
νpBqνpCq

k
.

Now the positivity argument shows that the number, say N , of those g P G with
C X gB “ H satisfies

νpNq ď
1

kνpBqνpCq
.

This gives the intermediate statement proved by Gowers: if A, B, C satisfy

|A||B||C|

|G|3
“ νpAqνpBqνpCq ą

1

k
,

then the intersection C X AB is not empty. Now we bootstrap this using a final clever
trick of Nikolov and Pyber [43, Prop. 1]: consider again A, B, C as in the proposition,
and redefine

C1 “ G´ AB “ tg P G | g is not of the form ab with a P A, b P Bu.

Then by definition, we have C1 X AB “ H. By contraposition, using the result of
Gowers, this means that we must have

|A||B||C1|

|G|3
ď

1

k

and the assumption (4.55) now leads to

|C1| ă |C|.

This means that |AB| ` |C| ą |G|. Now for any g P G, this means also that |AB| `
|gC´1| “ |AB|`|C| ą |G|. Therefore the sets AB and gC´1 must intersect; this precisely
means that g P ABC, and we are done. �

The next corollary does not mention representations at all:

Corollary 4.7.2 (SL2pFpq is quasirandom). If p ě 3 is a prime number and A Ă
SL2pFpq is a subset such that

(4.57) |A| ą 21{3ppp` 1qpp´ 1q2{3

or equivalently
|A|

| SL2pFpq|
ą

´ 2

p´ 1

¯1{3

,

then for any g P SL2pFpq, there exist a1, a2, a3 P A with g “ a1a2a3.

Proof. This follows from the proposition for G “ SL2pFpq, where |G| “ ppp2 ` pq,
and B “ C “ A, using (4.50), which shows that k “ 1

2
pp´ 1q. �

This result shows that subsets A of SL2pFoq satisfying (4.57) generate SL2pFpq, but
in a very strong sense, since every element is the product of at most three elements of A.
Results like this can be used to help with certain proofs of Theorem 1.2.5 in Section 1.2: to
show that a very small subset like S “ ts1, s2u (as in (1.1)) generates SL2pFpq in at worse
C log p steps, it suffices to find some C 1 such that the number of elements in SL2pFpq

obtained using products of ď C 1 log p elements from S is ě 2pp ` 1q8{9, for instance.
Indeed, if that is the case, the set A formed by these products satisfies the assumption of

14 We could have kept the term ´νpBq2 to very slightly improve this estimate, but it does not seem
to matter in any application.
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the corollary, and every element of G is the product of at most 3C 1 log p elements from
S.

Exercise 4.7.3. We indicate here how to prove that the minimal dimension of a
non-trivial representation of SL2pFpq is at least pp ´ 1q{2 (see (4.50)), without invoking
the full computation of the character table of SL2pFpq. Thus let % ­“ 1 be an irreducible
representation of SL2pFpq, with p ě 3 a prime.

(1) Show that one can assume that

T “ %
´

ˆ

1 1
0 1

˙

¯

has an eigenvalue ξ which is a primitive p-th root of unity. [Hint: Use the fact that
ˆ

1 1
0 1

˙

and

ˆ

1 0
1 1

˙

generate SL2pFpq.]

(2) Show that, for all a coprime to p, ξa
2

is also an eigenvalue of T . [Hint: Use a
suitable conjugate of T .]

(3) Deduce that dimp%q ě pp´ 1q{2.
(Note that it is only by constructing the cuspidal representations of SL2pFq that it is

possible to show that this bound is sharp, and also that if Fp is replaced with another
finite field with q elements, of characteristic p, this argument does not give the correct
lower bound 1

2
pq ´ 1q.)

The terminology “quasirandom” may seem mysterious at first, but it is well explained
by the mechanism of the proof: the average of the function ϕB,C corresponds precisely
to the intuitive “probability” that an element x P G belongs to two subsets of density
|B|{|G| and |C|{|G| if the corresponding conditions are genuinely random and indepen-
dent. Hence, the fact that ϕB,C is quite closely concentrated around its average value,
when k is large, may be interpreted as saying that its elements and subsets behave as
if they were random (in certain circumstances). The paper [21] of Gowers gives more
examples of this philosophy.

To put the result in context, note that if k “ 1 (for instance if G is abelian, or
if G “ GL2pFpq, which has many one-dimensional irreducible representations) the con-
dition (4.55) can not be satisfied unless A “ B “ C “ G. And indeed a statement
like Corollary 4.7.2 is completely false if, say, G “ Z{pZ with p large: for instance, if
A “ B “ C is the image modulo p of the set of integers 1 ď n ď t

p
3
u ´ 1, we see that

A`B ` C is not all of G, although the density of A is about 1{3, for all p.

4.7.2. Burnside’s “two primes” theorem. We prove here the theorem of Burn-
side mentioned in Chapter 1 (Theorem 1.2.7): a finite group with order divisible by at
most two distinct primes is necessarily solvable. The proof is remarkable, in that it does
not depend on being able to write the character table of the group being investigated, but
on subtler features about a finite group that may be found by looking at its irreducible
characters. These are related to integrality properties, which have many other important
applications.

The basic idea is to prove the following seeminlgy weaker statement:

Proposition 4.7.4 (Existence of normal subgroup). Let G be a finite group of order
paqb for some primes p and q and integers a, b ě 0. If G is not abelian, it contains a
normal subgroup H ŸG with H ­“ 1 and H ­“ G.

To see that this implies Burnside’s Theorem, that groups of order paqb are solvable,
one argues by induction on the order of a group G of this type. The proposition shows
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that, either G is abelian (and therefore solvable), or there exists H ŸG such that H ­“ 1
and G{H ­“ 1; in that case we have an exact sequence

1 ÝÑ H ÝÑ G ÝÑ G{H ÝÑ 1,

and both H and G{H have orders strictly smaller than |G|, and divisible only (at most)
by the primes p and q. By induction, they are therefore solvable, and this is well-known
to imply that G itself is solvable.

So we are reduced to a question of finding a non-trivial normal subgroup in a group
G, one way or another, and Burnside’s idea is to find it as the kernel of some suitable
non-trivial irreducible representation

% : G ÝÑ GLpEq,

or of an associated homomorphism

%̄ : G
%
ÝÑ GLpEq ÝÑ PGLpEq.

Indeed, it is a bit easier to ensure that Ker %̄ is non-trivial (the kernel is enlarged
modulo the scalars), and the possibility that Ker %̄ “ G is so special that its analysis is
even simpler.

We will find the desired representation by means of the following result, which is itself
of great interest:

Theorem 4.7.5 (Burnside). Let G be a finite group,15 and

% : G ÝÑ GLpEq

an irreducible complex representation of G. If g P G is such that its conjugacy class
g7 Ă G has order coprime with dim %, then either χ%pgq “ 0, or g P Ker %̄, where %̄ is the
composite homomorphism

G
%
ÝÑ GLpEq ÝÑ PGLpEq.

This may not be a result that is easy to guess or motivate, except that the statement
may well come to mind after looking at many examples of character tables. For instance,
in the case of the solvable groups Bp of order ppp´1q2 (see Table 4.3 in Section 4.6.3), the
characters of the irreducible representations of dimension p ´ 1 vanish at all conjugacy
classes of size p ´ 1, and their values at conjugacy classes of size 1 are scalar matrices
(hence in the kernel of %̄). Similarly, the character of the Steinberg representation of
dimension p of GL2pFpq is zero at all conjugacy classes of size p2 ´ 1. (Note that if the
reader did look, she will certainly have also remarked a striking fact: for any irreducible
representation % of dimension dim % ą 1, there exists – or so it seems – some conjugacy
class c with χ%pcq “ 0; this is indeed true, as we will explain in Remark 4.7.10 below...)

We can also check immediately that the statement of the theorem is true for conjugacy
classes of size 1: this corresponds to elements of the center of G, for which %pgq is
always a homothety for any irreducible representation % (the central character, as in
Corollary 2.7.17.)

Proof of Proposition 4.7.4 using Theorem 4.7.5. Note first that we can cer-
tainly assume that a ě 1 and b ě 1, since a group of order a power of a single prime has
a non-trivial center (see, e.g., [46, Th. 4.4] for this basic feature of finite groups.)

We attempt to find an element g P G and an irreducible representation % so that
Theorem 4.7.5 applies, while ensuring that the character value χ%pgq is non-zero. The

15 Of any order.
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difficulty is to ensure the coprimality condition of dimp%q with |g7|, and indeed this is
where the assumption that |G| is only divisible by two primes is important.

The following property holds for arbitrary finite groups, and can be interpreted as one
more attempt of conjugacy classes and irreducible representations to behave “dually” (see
Remark 4.2.7):

Fact. Let G ­“ 1 be a finite group, and let p, q be prime numbers. There exists a pair
pg, %q, where g ­“ 1 is an element of G, and % ­“ 1 is an irreducible complex representation
of G, such that χ%pgq ­“ 0 and

(4.58) p - |g7|, q - dimp%q.

We first conclude the proof using this fact: the point is that if |G| “ paqb with a,
b ě 1, then with g and % as so conveniently given, the conditions (4.58) mean that
|g7| and dimp%q must be coprime (one does not need to know the – true – fact that
dimp%q | |G|: the order of g7 does divide |G|, and hence must be a power of q, but q is
coprime with dimp%q).16 Hence we can apply Theorem 4.7.5 and conclude that g P Ker %̄,
so that the latter is a non-trivial normal subgroup. The endgame is now straightforward:
if Ker %̄ ­“ G, this kernel is the required proper, non-trivial, normal subgroup, while
otherwise the composition %̄ is trivial, and then % takes scalar values, and must therefore
be one-dimensional by irreducibility. We then get an isomorphism

G{Kerp%q » Imp%q Ă Cˆ,

which shows in turn that Ker % is a proper, non-trivial, normal subgroup... unless G »

Imp%q is in fact abelian!
Now we prove the claim. We thus consider an arbitrary finite group G and primes

p and q. We first show that there exists an element g ­“ 1 in G such that p - |g7|. This
follows from an averaging trick, which is familiar from arguments used in many proofs of
Sylow’s theorems: because G is partitioned into conjugacy classes, we have

ÿ

g7PG7

|g7| “ |G|.

We isolate the contribution of the conjugacy classes of size 1, i.e., of the center ZpGq
of G, and then reduce modulo p to get the identity

ÿ

g7PG7´ZpGq

|g7| ” ´|ZpGq| pmod pq.

If p divides |ZpGq|, any non-trivial element in the center of G satisfies p - |g7| “ 1).
Otherwise, one of the terms in the left-hand side must be non-zero modulo p, and this
gives an element g with p - |g7|.

The final step is to show that, given any g ­“ 1, there exists some non-trivial irreducible
representation % with q - dim % and χ%pgqnot “ 0. Applying this to any of those g whose
existence we just proved, this gives all of (4.58).

Given g ­“ 1, the basic relation between the values of the irreducible characters at g
and their dimensions is the orthogonality relation (4.28), which gives

ÿ

%P pG

χ%pgqχ%p1q “
ÿ

%P pG

pdim %qχ%pgq “ 0.

16 Of course, (4.58) does not exclude possibilities like

|G| “ pqr, g7 “ qr, dimp%q “ pr,

where p, q, r are distinct primes; see Remark 4.7.6 for the case of the alternating group A5.
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If we isolate, as usual, the contribution of the trivial representation, we find

(4.59)
ÿ

% ­“1

pdim %qχ%pgq “ ´1,

which certainly tells us that there is some irreducible representation % ­“ 1 such that
χ%pgq ­“ 0.

But even better, if we reduce this identity modulo the prime number q, it implies
that there is some non-trivial irreducible representation with χ%pgq ­“ 0 and q - dim %.
This deduction relies on the fact that the values χ%pgq of irreducible characters, which
are sums of roots of unity (the eigenvalues of %pgq) are algebraic integers: modulo `, the
right-hand side of (4.59) is non-zero, and some term in the sum is therefore not divisible
by q.

Precisely, if it were the case that q | dim % for all % such that χ%pgq ­“ 0, we would get

(4.60) ´
1

q
“

ÿ

% ­“1
q|dimp%q

´dimp%q

q

¯

χ%pgq,

where the right-hand side is an algebraic integer, and this is impossible since 1{q is not. In
Section A.1 in the Appendix, we present a short discussion of the properties of algebraic
integers that we use (here, Proposition A.1.1), and readers for whom this is not familiar
may either read this now, or continue while assuming that the character values involved
are all actual integers in Z, since in that case (4.60) is patently absurd. �

Remark 4.7.6 (Why A5 is not solvable...). The simplest non-solvable group is the
alternating group A5 of order 60 “ 22 ¨ 3 ¨ 5 (one can show that all groups of order 30
– there are four up to isomorphism – are solvable.) It is instructive to see “how” the
argument fails in that case. The character table of A5 is computed, e.g., in [18, §3.1,
Ex. 3.5], and we just list it here, subscripting the conjugacy classes with their sizes (the
reader who has not seen it might think of finding natural linear actions corresponding to
the representations displayed):

11 p12qp34q15 p123q20 p12345q12 p13452q12

1 1 1 1 1 1

%3 3 ´1 0 1`
?

5
2

1´
?

5
2

%13 3 ´1 0 1´
?

5
2

1`
?

5
2

%4 4 0 1 ´1 ´1

%5 5 1 ´1 0 0

Table 4.6. Character table of A5

One can then list the pairs pg, %q for which χ%pgq ­“ 0 and (4.58) holds, and see that
in all cases, the greatest common divisors of |g7| and dimp%q is different from 1. (For
instance, we have the pairs

pp, qq “ p2, 3q, pg7, %q “ pp12qp34q, %4q,

pp, qq “ p3, 2q, pg7, %q “ pp123q, %5q,

pp, qq “ p2, 5q, pg7, %q “ pp12qp34q, %3 or %13q,

and some others.)
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We now come to the proof of Theorem 4.7.5. Here again, the basic ingredient is of
independent interest, as it provides more subtle integrality properties of character values:

Proposition 4.7.7 (Divisibility). Let G be a finite group and let

a “
ÿ

gPG

αpgqg P CpGq

be an element of the group algebra with coefficients αpgq which are algebraic integers.
Moreover, assume a P ZpCpGqq is in the center of the group algebra, or equivalently that
α is a class function on G. Then a acts on irreducible representations by multiplication
by scalars, and those are all algebraic integers.

In particular, for any g P G and % P pG, we have

(4.61) dimp%q | χ%pgq|g
7
|

in the ring Z̄ of algebraic integers.

Proof. The action of a central element a on an irreducible representation % is given
by the scalar ω%paq of Proposition 4.3.31, and so we must show that this is in Z̄ under
the stated conditions.

Since, as a function of a, this scalar is a ring homomorphism, and Z̄ is itself a ring
(Proposition A.1.2), it is enough to prove the integrality of ω%paq when a runs over a
set of elements which span the subring ZpZ̄pGqq (defined as the center of the Z̄-module
generated by the basis vectors g of CpGq.) For instance, one can take the elements

ac “
ÿ

gPc

g

where c runs over conjugacy classes in G. This means, in practice, that we may assume
that the coefficients αpgq are in fact in Z.

Under this condition, we consider the element e% P CpGq giving the %-isotypic projec-
tion. Using the left-multiplication action of G on the group ring, we have

ae% “ ω%paqe%,

i.e., multiplication by a, as a map on CpGq, has ω%paq as an eigenvalue. We claim that
this linear map

Φa

"

CpGq ÝÑ CpGq
x ÞÑ ax

can be represented by an integral matrix in a suitable basis. In fact, the elements x P G
form a basis in CpGq which does the job: we have

ax “
ÿ

gPG

αpgqgx “
ÿ

gPG

αpgx´1
qg

where the relevant coefficients, namely the αpgx´1q, are indeed integers.
We conclude that ω%paq is a root of the characteristic polynomial detpX ´Φaq of Φa,

and if we use the basis above, we can see that this polynomial is monic with integral
coefficients, hence deduce that ω%paq is indeed an algebraic integer. (We are using here
one part of the criterion in Proposition A.1.2.)

Now for the last part, we use the expression (4.26) for ω%paq, in the special case where
a “ ac, which is

ω%pacq “
1

dimp%q

ÿ

gPc

χ%pgq “
|g7|χ%pgq

dimp%q
,
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and the fact that this is an algebraic integer is equivalent with the divisibility rela-
tion (4.61). �

Before using Proposition 4.7.7 to finish the proof of Theorem 4.7.5, the reader is
probably tempted to apply the general fact that ω%paq P Z̄ to other elements a. Doing
this leads almost immediately to a proof of an observation we already mentioned (see
Remark 4.3.7 for instance):

Proposition 4.7.8 (Dimensions of irreducible representations divide the order). If

G is a finite group and % P pG is an irreducible complex representation of G, then the
dimension of % divides |G|.

Proof. We are looking for a suitable a P CpGq to apply the proposition; since

ω%paq “
1

dimp%q

ÿ

gPG

αpgqχ%pgq,

the most convenient would be to have αpgq such that the sum is equal to |G|. But there

does exist such a choice: by the orthogonality relation, we can take αpgq “ χ%pgq and
then

ω%paq “
1

dimp%q

ÿ

gPG

αpgqχ%pgq “
|G|

dimp%q
.

Since αpgq P Z̄, this is indeed an algebraic integer, by the proposition. Hence

|G|

dimp%q
P Z̄XQ “ Z,

which is the desired result. �

We can finally finish:

Proof of Theorem 4.7.5. With (4.61) in hand, what to do is quite clear: the
dimension dimp%q divides the product

χ%pgq|g
7
|,

and it is assumed that it is coprime with the second factor |g7|. So it must divide the
character value χ%pgq (this happens in the ring Z̄ of algebraic integers, always; we are
using Proposition A.1.6.)

Such a relation, we claim, is in fact equivalent with the conclusion of the theorem.
This would again be clear if χ%pgq were in Z, since the bound

|χ%pgq| ď dimp%q

and the divisibility dimp%q | χ%pgq P Z lead to

χ%pgq P t´ dimp%q, 0, dimp%qu,

and we know that |χ%pgq| “ dimp%q is equivalent with %pgq being a scalar matrix, i.e.,
g P Ker %̄ (Proposition 4.6.4).

To deal with the general case, we must be careful because if we have non-zero algebraic
integers z1, z2 with

z1 | z2,

we can not always conclude that |z1| ď |z2| (e.g., take z1 “ 1 and z2 “ ´1`
?

2.) What
we do is note that the divisibility relation implies that

dim % | z
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for any conjugate z of χ%pgq. Taking the product of these relations, we derive

dimp%qr | Npχ%pgqq

where r is the number of conjugates of χ%pgq (this is just Corollary A.1.9.) We have now
a divisibility relation among integers, and if χ%pgq ­“ 0, we deduce that inequality

dimp%qr ď |Npχ%pgqq|.

But since each conjugate z of χ%pgq is a sum of dimp%q roots of unity,,17 it is of modulus
ď dimp%q. This implies

|Npχ%pgqq| ď dimp%qr,

and by comparison we must have equality in all the terms of the product, in particular

|χ%pgq| “ dimp%q,

which – as before – gives g P Ker %̄. �

Remark 4.7.9. We used the divisibility relation (4.61) in the previous proof by as-
suming that dimp%q is coprime with the factor |g7| on the right-hand side. What happens
if we assume instead that dimp%q is coprime with the second factor, χ%pgq? One gets
the conclusion that dimp%q divides the size of the conjugacy class of g. This is of some
interest; in particular, if there exists some g with χ%pgq “ ˘1 (or even χ%pgq a root of
unity), we have

dimp%q | |g7|.

We can see this “concretely” in the Steinberg representations of GL2pFpq, of dimension
p: the values at semisimple conjugacy classes are roots of unity, and indeed dimpStq “
p | ppp` 1q, ppp´ 1q, which are the sizes of the split (resp. non-split) semisimple classes.
On the other hand, it is not clear if this “dual”statement has any interesting applications
in group theory.

Remark 4.7.10 (Characters have zeros). We come back to the following observa-
tion, which is certainly experimentally true for those groups for which we computed the
character table:

Proposition 4.7.11 (Burnside). Let G be a finite group, and % P pG an irreducible
representation of dimension at least 2. Then there exists some g P G such that χ%pgq “ 0.

Proof. This is once again obvious if the character takes actual integer values in Z:
the orthonormality relation for % gives

1

|G|

ÿ

gPG

|χ%pgq|
2
“ 1,

i.e., the mean-square average over G of the character of % is 1. Hence either |χ%pgq|
2 “ 1

for all g, which can only happen when dimp%q “ 1, or else some element g must have

|χ%pgq| ă 1,

which gives immediately χ%pgq “ 0 if χ%pgq P Z.
In the general case, we must again be careful, since there are many non-zero algebraic

integers z with |z| ă 1 (e.g., ´1 `
?

2). However, one can partition G into subsets for
which the sum of the character values is an actual integer. To be precise, we write G as

17 In fact, any conjugate is also a character value χ%pxq for some x P G, but checking this fact
requires the Galois-theoretic interpretation of the conjugates, which we do not wish to assume.
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the union of the equivalence classes for the relation defined by x „ y if and only if x and
y generate the same (finite cyclic) subgroup of G. Hence

ÿ

gPG

|χ%pgq|
2
“

ÿ

SPG{„

ÿ

xPS

|χ%pxq|
2.

Each class S is the set of generators of some finite cyclic subgroup H of G. Applying
(to H and the restriction of % to H) the inequality (4.36) from Exercise 4.5.6, we deduce
that

ÿ

xPS

|χ%pxq|
2
ě |S|

unless some (in fact, all) character values χ%pxq are zero for x P S. Summing over S, and
comparing with the orthonormality relation, it follows that when χ% has no zero, there
must be equality in each of these inequalities. But S “ t1u is one of the classes, and
therefore |χ%p1q|

2 “ 1, which gives the desired result by contraposition. �

This fact is about the rows of the character table; is there another, “dual”, property of
the columns? If there is, it is not the existence of at least one zero entry in each column,
except for those of central elements (for which the modulus of the character value is
the dimension): although this property holds in a number of examples, for instance the
groups GL2pFpq, we can see that it is false for the solvable groups Bp of Section 4.6.3: we

see in Table 4.3 that for the non-diagonalizable elements

ˆ

a 1
0 a

˙

, with conjugacy classes

of size p´ 1, every character value is a root of unity.

4.7.3. Relations between roots of polynomials. Our last application is to a
purely algebraic problem about polynomials: given a field k (arbitrary to begin with)
and a non-zero irreducible polynomial P P krXs of degree d ě 1, the question is whether
the roots

x1, . . . , xd

of P (in some algebraic closure of k) satisfy any non-trivial k-linear relation, or any
non-trivial multiplicative relation? By this, we mean, for linear relations, do there exist
coefficients αi P k, not all zero, such that

α1x1 ` ¨ ¨ ¨ ` αdxd “ 0 ?

Or (for multiplicative relations), do there exist integers ni P Z, not all zero, such that

xn1
1 ¨ ¨ ¨ x

nd
d “ 1 ?

For instance, since

x1 ` ¨ ¨ ¨ ` xd “ ad´1, x1 ¨ ¨ ¨ xd “ p´1qda0,

for

P “ Xd
` ad´1X

d´1
` ¨ ¨ ¨ ` a1X ` a0,

we have a non-trivial linear relation

x1 ` ¨ ¨ ¨ ` xd “ 0,

whenever the coefficient of degree d ´ 1 of P is zero, and a non-trivial multiplicative
relation

x2
1 ¨ ¨ ¨ x

2
d “ 1

whenever a0 “ P p0q “ ˘1.
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A general method to investigate such questions was found by Girstmair (see [20] and
the references there, for instance), based on representation theory. We present here the
basic idea and the simplest results.

As in the (first) proof of Burnside’s Irreducibility Criterion (see Section 2.7.3), the
basic idea is to define the set of all relations (linear or multiplicative) between the roots
of P , and show that it carries a natural representation of a certain finite group G. If we
can decompose this representation in terms of irreducible representations, we will obtain
a classification of all the possible relations that may occur. As was the case for the
Burnside criterion, this is often feasible because the relation space is a subrepresentation
of a well-understood representation of G.

With notation as before for the roots of P , we denote by

Ra “

!

pαiqi P k
d
|

d
ÿ

i“1

αixi “ 0
)

,

Rm “

!

pniqi P Zd
|

d
ź

i“1

xnii “ 1
)

the spaces of linear or multiplicative relations between the roots; we see immediately that
Ra is a k-vector subspace of kd, while Rm is a subgroup of the abelian group Zd, so that
it is a free abelian group of rank at most d.

The group G that acts naturally on these spaces is the Galois group of the polynomial
P , which means the Galois group of its splitting field

kP “ kpx1, . . . , xdq

(in the remaining of this section, we will assume known the basic statements of Galois
theory.)

To ensure that this Galois group is well-defined, we must assume that P is separable,
for instance that k has characteristic zero (k “ Q will do). The elements of G are
therefore field automorphisms

σ : kP ÝÑ kP .

By acting on a relation (linear or multiplicative) using G, we see that the Galois group
acts indeed on Ra and Rm. More precisely, recall that σ P G permutes the roots pxiq, so
that there exists a group homomorphism

"

G ÝÑ Sd

σ ÞÑ σ̂

characterized by

σpxiq “ xσ̂piq

for all roots of P . This homomorphism is injective since the roots of P generate the
splitting field kP .

If α “ pαiq is in Ra, acting by σ on the relation

α1x1 ` ¨ ¨ ¨ ` αdxd “ 0,

we get

0 “ σpα1x1 ` ¨ ¨ ¨ ` αdxdq “ α1xσ̂p1q ` ¨ ¨ ¨ ` αdxσ̂pdq

(since σ is the identity on k) or in other words the vector

σ ¨α “ pασ̂´1piqq1ďiďd
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is also in Ra. But note that we can define

σ ¨α “ pασ̂´1piqq1ďiďd

for arbitrary α P kd, and σ P G; this is in fact simply the permutation k-representation πk
ofG on kd constructed from the action ofG on the set txiu of roots ofG (see Section 2.6.2),
and hence we see that Ra is a subrepresentation of the permutation representation πk.

Similarly, we can act with G on multiplicative relations. However, since Rm is only
an abelian group, it is only the Q-vector space Rm bQ that we can view as a subrepre-
sentation of the (same!) permutation representation πQ of G over Q.

If we succeed in decomposing πk, we can hope to see which subrepresentations can
arise as relation spaces Ra, and similarly for πQ and Rm. The simplest example of this
idea is the following:

Proposition 4.7.12. Let k be a field of characteristic zero, P P krXs an irreducible
polynomial of degree d ě 2 with Galois group isomorphic to the full symmetric group Sd.

(1) Either Ra “ 0, i.e., there are no non-trivial linear relations between the roots of
P , or Ra is one-dimensional and is spanned by the element e0 “ p1, . . . , 1q corresponding
to the relation

x1 ` ¨ ¨ ¨ ` xd “ 0.

This second case may always happen, for a given field k, if there exists a polynomial
with Galois group Sd.

(2) Either Rm “ 0, i.e., there are non non-trivial multiplicative relations between the
roots of P , or Rm is a free Z-module of rank 1 generated by ne0 for some n ě 1, or the
splitting field of P is contained in the splitting field of a Kummer polynomial Xn´b. The
first case can happen for any field k for which there exists a polynomial with Galois group
Sd, and the second and third cases are possible for k “ Q for n “ 2, n “ 3.

Proof. As we have already observed, the space kd of πk decomposes as a direct sum
of subrepresentations

kd “ ke0 ‘ V

where
V “

!

v “ pviq P k
d
|
ÿ

i

vi “ 0
)

.

When G » Sd, although k is not algebraically closed (otherwise an irreducible polyno-
mial P of degree ě 2 would not exist!), these are irreducible subrepresentations. Indeed,
we must only check this for V , and we immediately see that if V could be decomposed
into two or more subrepresentations (recall that Maschke’s Theorem does apply for any
field of characteristic 0), then the same would be true for the representation of G on
V b k̄, which contradicts the fact that it is irreducible (though we have only directly
proved this for k Ă C, see (4.19), it is in fact valid for any algebraically closed field of
characteristic 0).

Because ke0 and V are non-isomorphic as representations of G » Sd (even for d “ 2,
where V is also one-dimensional), the only possibilities for Ra are therefore

Ra “ 0, or Ra “ ke0, or Ra “ V, or Ra “ V ‘ ke0 “ kd

(this is the uniqueness of isotypic subspaces, see the second part of Proposition 2.7.9.)
The cases Ra “ 0 and Ra “ ke0 are precisely the two possibilities of the statement we
try to prove, and we now check that the others can not occur. For this, it is enough to
show that Ra Ą V is impossible. But V is spanned by the vectors

(4.62) f2 “ p1,´1, 0, . . . , 0q, . . . , fd “ p1, 0, . . . , 0,´1q.
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Even if only the first were to be in Ra, this would translate into x1 “ x2, which is
impossible.

There only remains to prove the existence part: provided some polynomial in krXs
with Galois group Sd exists,18 one can find instances where both cases Ra “ 0 or Ra “ ke0

occur. This is easy: if we fix such a polynomial

P “ Xd
` ad´1X

d´1
` ¨ ¨ ¨ ` a1X ` a0 P krXs

with Galois group Sd, the polynomials P pX ` aq, for any a P k, have the same Galois
group (because the splitting field has not changed!), and the sum of the roots yi “ xi´ a
is

d
ÿ

i“1

xi ´ da,

which takes all values in k when a varies; when it is zero, the polynomial P pX ` aq
satisfies Ra “ ke0, and otherwise Ra “ 0.

We now deal with the multiplicative case; the argument is similar, but some of the
cases excluded in the additive case become possible. First, since Rm bQ is a subrepre-
sentation of πQ, we see again that there are the same four possibilities for the subspace
Rm bQ. Of course, if it is zero, we have Rm “ 0 (because Rm is a free abelian group);
if Rm b Q “ Qe0, on the other hand, we can only conclude that Rm “ nZe0 for some
integer n ě 1 (examples below show that it is indeed possible that this happens with
n ­“ 1.)

Continuing with the other possibilities, we have Rm b Q Ą V if and only, for some
n ě 1, the vectors nf2, . . . , nfd are in Rm, where fi is defined in (4.62). This means that
we have

´x1

x2

¯n

“ ¨ ¨ ¨ “

´x1

xd

¯n

“ 1,

and from this we deduce that

σpxn1 q “ xnσ̂p1q “ xn1 ,

for all σ P G. By Galois theory, this translates to xn1 P k. Therefore x1 is a root of a
Kummer polynomial Xn´b P krXs, which is the last possible conclusion we claimed. Note
that b could be a root of unity (belonging to k): this is a special case, which corresponds
to Rm bQ “ Qd (instead of V ), since each xi is then a root of unity.

In terms of existence of polynomials with these types of multiplicative relations, we
first note that Rm “ 0 is always possible if there exists at least one irreducible polynomial
P P krXs with Galois group Sd. Indeed, we have P p0q ­“ 0, and as before, we may replace
P with Q “ P paXq for a P k, without changing the Galois group; the roots of Q are
yi “ a´1xi, and

y1 ¨ ¨ ¨ yd “
x1 ¨ ¨ ¨ xd
ad

.

Then, if we pick a P kˆ so that this is expression is not a root of unity, we obtain a
polynomial Q with Rm “ 0 (such an a ­“ 0 exists: otherwise, taking a “ 1 would show
that x1 ¨ ¨ ¨ xd is itself a root of unity, and then it would follow that any a P kˆ is a root
of unity, which is absurd since Q Ă k).

For the case of Rm b Q “ Qe0, we will just give examples for k “ Q: it is known
(see, e.g., [51, p. 42]) that the polynomial

P “ Xd
´X ´ 1

18 This may not be the case, or only for some d (in the case of k “ R, only d “ 2 is possible.)
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has Galois group Sd for d ě 2; since the product of its roots is p´1qdP p0q “ p´1qd`1, it
satisfies the relation

ź

i

x2
i “ 1,

so Rm bQ “ Qe0, and in fact Rm “ nZe0 with n “ 1 if d is odd, and n “ 2 if d is even.
For the Kummer cases, we take k “ Q for simplicity (it will be clear that many fields

will do). For n “ 2, any quadratic polynomial X2 ´ b with b not a square of a rational
number has Galois group S2; if b “ ´1, noting x1 “ i, x2 “ ´i, we have

Rm “ tpn1, n2q P Z2
| n1 ` 2n2 ” 0 pmod 4qu,

which has rank 2 (so Rm bQ “ Q2), and if b ­“ ´1, we have

Rm “ tpn1, n2q P Z2
| ni ” 0 pmod 2q, n1 ` n2 “ 0u,

with Rm bQ “ Qe0. For n “ 3, any Kummer equation X3 ´ b “ 0, with b not a perfect
cube, will have splitting field with Galois group S3, and a quick computation with the
roots 3

?
b, j 3
?
b, j2 3

?
b, where j is a primitive cube root of unity in C, leads to

Rm “ tpn1, n2, n3q P Z3
| n1 ` n2 ` n3 “ 0, ni ” nj pmod 3q for all i, ju,

so that again Rm bQ “ Qe0. �

Exercise 4.7.13 (Palindromic polynomials). We consider in this exercise the case
where d is even and the Galois group of P is the group Wd defined as the subgroup of
Sd that respects a partition of t1, . . . , du into d{2 pairs. More precisely, let X be a finite
set of cardinality d “ 2n, and let i : X Ñ X be an involution on X (i.e., i ˝ i “ IdX)
with no fixed points, for instance X “ t1, . . . , du and ipxq “ d` 1´x. The n “ d{2 pairs
tx, ipxqu partition X, and one defines

Wd “ tσ P Sd | σpipxqq “ ipσpxqq for all x P Xu

which means concretely that an element of Wd permutes the pairs tx, ipxqu, and may (or
not) switch x and ipxq. This group is sometimes called the group of signed permutations
of t1, . . . , nu.

(1) Show that Wd is of order 2nn! for d “ 2n ě 2 even, and that there is an exact
sequence

1 ÝÑ pZ{2Zqn ÝÑ Wd ÝÑ Sn ÝÑ 1.

Find a faithful representation of Wd in GLnpCq where the matrix representation has
values in GLnpZq.

(2) Let k be a field of characteristic 0, P P krXs an irreducible polynomial of degree
d “ 2n even, d ě 2, of the form

P “ Xd
` ad´1X

d´1
` ¨ ¨ ¨ ` an`1X

n
` an`1X

n´1
` ¨ ¨ ¨ ` ad´1X ` 1,

i.e., with the same coefficients for Xj and Xd`1´j for all j (such polynomials are called
palindromic, or self-reciprocal). Show that the Galois group of P can be identified with a
subgroup of Wd. [Hint: If x is a root of P , then 1{x is also one.]

(3) Show that the permutation k-representation πk of Wd associated to the action of
Wd on X splits as a direct sum

E0 ‘ E1 ‘ E2
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where E0 “ ke0 and, for a suitable numbering of the roots, we have

E1 “

!

pαiq | αd`1´i ´ αi “ 0, 1 ď i ď d,
ÿ

αi “ 0
)

,

E2 “

!

pαiq | αd`1´i ` αi “ 0, 1 ď i ď d
)

,

and the three spaces are irreducible. [Hint: You may assume k Ă C; compute the orbits
of Wd on X, and deduce the value of the squared norm of the character of πk.]

(4) In the situation of (2), assume that the Galois group of P P krXs is equal to Wd.
Show that the only possible spaces of linear relation between roots of a polynomial P as
above are Ra “ 0 and Ra “ ke0.

It is known that “many” palindromic polynomials with Galois groups Wd exist; for
more information and some applications, the reader may look at [34, §2].

Remark 4.7.14. Both Proposition 4.7.12 and this exercise are in the direction of
showing that linear or multiplicative relations are rare in some cases. However, for some
other Galois groups, interesting things can happen. For instance, Girstmair showed that
there exists a group G of order 72 which can arise as the Galois group (for k “ Q) of
some polynomial P of degree 9 for which the roots, suitably numbered, satisfy

4x1 ` x2 ` x3 ` x4 ` x5 ´ 2px6 ` x7 ` x8 ` x9q “ 0.

Another example is the group G usually denoted W pE8q, the “Weyl group of E8”,
which can be defined as the group with 8 generators

w1, . . . , w8

which are subject to the relations

w2
i “ 1 pwiwjq

mpi,jq
“ 1, 1 ď i ă j ď 8,

where mpi, jq “ 2 unless the vertices numbered i and j in the diagram below

r r r r r r r
r1 3

4

5 6 7 8

2

are linked with an edge, e.g., mp1, 3q “ mp2, 4q “ 3. (This diagram is called the Dynkin
diagram of E8; this definition is given here only in order to be definite; of course, this
presentation is justified by the many other definitions and properties of this group, which
is an example of a Coxeter groups.)

The group W pE8q has order

W pE8q “ 696, 729, 600 “ 214
¨ 35

¨ 52
¨ 7,

and one can construct irreducible polynomials P P QrXs, of degree 240, with Galois
group W pE8q, such that

dimpRm bQq “ 232,

or in other words: there are 8 roots of P , out of 240, such that all others are in the
multiplicative group generated by those (see [4, §5] or [28, Rem. 2.4]).
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4.8. Further topics

We finish this chapter with a short discussion of some further topics concerning rep-
resentations of finite groups. These – and their developments – are of great interest and
importance in some applications, and although we only consider basic facts, we will give
references where more details can be found. One last important notion, the Frobenius-
Schur indicator of an irreducible representation, will be considered in Section 6.2, because
it makes sense, and is treated exactly the same way, for all compact groups.

4.8.1. Intertwiners between induced representations. We have used induced
representations quite often, either in a general way (typically to exploit Frobenius reci-
procity) or to construct specific representations of concrete groups. In the second role, in
particular, we see that it is useful to understand intertwiners between two induced repre-
sentations. In particular in Section 4.6.4, we computed the dimension of such spaces “by
hand”, as inner products of induced characters. The answers are rather clean, as (4.48)
illustrates, and it should not be a surprise to see that there is a general approach to these
computations.

Proposition 4.8.1 (Intertwiners between induced representations). Let G be a finite
group, and let H1, H2 be subgroups of G. Let %1, %2 be complex finite-dimensional repre-
sentations of H1 and H2, acting on the vector spaces E1, and E2, respectively. There is
an isomorphism

HomGpIndGH1
%1, IndGH2

p%2qq » Ip%1, %2q

where

(4.63) Ip%1, %2q “ tα : GÑ HomCpE1, E2q |

αph1xh2q “ %2ph2q
´1
˝ αpxq ˝ %1ph1q

´1,

for all h1 P H1, x P G, h2 P H2u.

Proof. We start naturally by applying Frobenius reciprocity to “remove” one in-
duced representation: we have an isomorphism

HomGpIndGH1
%1, IndGH2

p%2qq » HomH2pResGH2
IndGH1

%1, %2q.

The next idea is to find first a convenient model for the space

HompResGH2
IndGH1

%1, %2q,

and then to isolate the H2-intertwiners inside this space. Let F1 denote the space on
which IndGH1

%1 acts, as well as its restriction to H2. By construction, F1 is a subspace of
the space V1 of all functions from G to E1.

Using the expression

f “
ÿ

xPX

fpxqδx,

for any f P V1, where δx denotes the characteristic function of the single point x, it follows
that any linear map T from V1 to E2 can be expressed in the form

Tf “ Tαf “
ÿ

xPG

αpxqpfpxqq

where αpxq P HompE1, E2q is the linear map defined by

αpxq : v ÞÑ T pvδxq.
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We claim that this gives an isomorphism

T :

"

I ÝÑ HompF1, E2q

α ÞÑ Tα

where

I “ tα : G ÝÑ HompE1, E2q | αph1xq “ αpxq ˝ %1ph1q
´1
u

(in general, since F1 is a subspace of V1, HompF1, E2q would be a quotient of HompV1, E2q,
and what we are doing is find a good representative subspace for it in HompV1, E2q.)

To check this, let f P F1 be given, and compute

Tαpfq “
ÿ

yPH1zG

ÿ

h1PH1

αph1yqpfph1yqq

“
ÿ

yPH1zG

ÿ

h1PH1

αpyq ˝ %1ph1q
´1
p%1ph1qfpyqq

“ |H1|
ÿ

yPH1zG

αpyqpfpyqq,

which quickly shows that T is injective (since one can prescribe the values of an element
f P F1 arbitrarily on each coset in H1zG). Since we also know that

dim I “ rG : HspdimE1qpdimE2q

(by an argument similar to the computation of the dimension of an induced representa-
tion), and this is also the dimension of HompF1, E2q (by Proposition 2.3.10), we conclude
that T is indeed an isomorphism.

Now we can easily answer the question: given α P I, when is Tα P HompF1, E2q an
H2-intertwiner? For h2 P H2 and f P F1, we have

Tαph2 ¨ fq “
ÿ

xPG

αpxqpph2 ¨ fqpxqq “
ÿ

xPG

αpxqpfpxh2qq

and we want this to be equal to

%2ph2qTαpfq “
ÿ

xPG

p%2ph2q ˝ αpxqqpfpxqq

for all h2 and f . We fix h2; by change of variable, the first expression is

Tαph2 ¨ fq “
ÿ

xPG

αpxh´1
2 qpfpxqq “ Tβpfq

for βpxq “ αpxh´1
2 q. The second is T%2ph2qα, and since β and %2ph2qα are both still elements

of I, the injectivity of T shows that the equality

Tαph2 ¨ fq “ %2ph2qTαpfq, f P F1,

is equivalent to

αpxh´1
2 q “ %2ph2qαpxq

for all x P G. Replacing h2 by h´1
2 , and combining these for all h2 P H2, we find that

Ip%1, %2q defined in (4.63) is the subspace of I isomorphic, under T , to HomH2pF1, E2q. �

If, as in the case of GL2pFpq in Section 4.6.4, we induce one-dimensional characters,
we get a very general irreducibility criterion for such representations::

199



Corollary 4.8.2 (Irreducibility of induced representations). Let G be a finite group,
H a subgroup of G and χ a one-dimensional complex representation of H. The induced
representation % “ IndGH χ is irreducible if and only if the one-dimensional representations
χs of Hs “ H X sHs´1 defined by

χsphq “ χps´1hsq

are distinct from ResGHs χ as s runs over the complement of H in G.

Proof. By the irreducibility criterion of Corollary 4.3.14, which is the converse of
Schur’s Lemma, it suffices to determine when the space Iχ,χ of intertwiners of % “ IndGHpχq
with itself is one-dimensional. We apply Proposition 4.8.1 to compute this space; if
we note that the space HompE1, E2q can be identified with C when E1 “ E2 is one-
dimensional, we see that Iχ,χ is isomorphic to the space I of functions α : G ÝÑ C such
that

αph1xh2q “ %ph1h2q
´1αpxq

for all x P G and h1, h2 P H. These conditions seem similar to those defining an induced
representation, and this would suggest at first that the dimension of I is |HzG{H| “ |S|,
but there is a subtlety: a representation x “ h1sh2 with hi P H need not be unique,
which creates additional relations to be satisfied. In consequence, the dimension can be
smaller than this guess.

The one-dimensional subspace of I corresponding to CId in EndGp%q is spanned by
the function α0 such that

α0pxq “

#

χpxq´1 if x P H,

0 otherwise,

(as one can easily check using the explicit form of the Frobenius reciprocity isomorphism).
We now determine the condition under which I is actually spanned by this special

function α0. If we denote by S a set of representations for the double cosets HsH Ă G
(taking s “ 1 for the double coset H ¨ H “ H), we see first of all, from the relations
defining I, that the map

"

I ÝÑ CS

α ÞÑ pαpsqqsPS

is injective. Similarly, we get

(4.64) αphsq “ χphq´1αpsq “ αpshq

for all h P H and s P S.
Now fix s P S. We claim that either αpsq “ 0 or χs “ χ on Hs “ H X sHs´1

(note in passing that χs is indeed a well-defined representation of this subgroup, since
s´1Hss Ă H). Indeed, for x P Hs “ H X sHs´1, we have

αpxsq “ αpsps´1xsqq “ αpps´1xsqsq

by (4.64), applied with h “ s´1xs P H, and this gives

χpxq´1α “ χps´1xsq´1α,

which is valid for all x P Hs, hence the claim.
Consequently, if no χs coincides with χ on Hs when s R H (corresponding to the

double cosets which are distinct from H), any α P I must vanish on the non-trivial
double cosets, and hence be a multiple of α0. This proves the sufficiency part of the
irreducibility criterion, and we leave the necessity to the reader... �
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Exercise 4.8.3 (Principal series). Let n ě 2 be an integer and let p be a prime
number. Let G “ GLnpFpq and define B Ă G to be the subgroup of all upper-triangular
matrices. Moreover, let W Ă G be the subgroup of permutation matrices.

(1) Show that

G “
ď

wPW

BwB,

and that this is a disjoint union. [Hint: Think of using Gaussian elimination to put a
matrix in triangular form in some basis.]

(2) Let χ : B ÝÑ Cˆ be the one-dimensional representation given by

χpgq “ χ1pg1,1qχ2pg2,2q ¨ ¨ ¨χnpgn,nq

where χi, 1 ď i ď n, are characters of Fˆp , and let % “ IndGB χ. Show that % is irreducible
whenever all characters χi are distinct.

(3) For n “ 2, show without using characters that the induced representations
πpχ1, χ2q and πpχ2, χ1q (with χ1 ­“ χ2) are isomorphic, and write down a formula for
an isomorphism. [Hint: Follow the construction in Proposition 4.8.1 and the Frobenius
reciprocity isomorphism.]

The irreducible representations of GLnpFpq constructed in this exercise are called the
principal series ; for n “ 2, they are exactly those whose irreducibility was proved in
Section 4.6.4 using their characters.

Note that there is no principle series unless there are at least n distinct characters
of Fˆp , i.e., unless p ´ 1 ě n. This suggests – and this is indeed the case! – that the
character tables of GLnpFpq, when p is fixed and n varies, behave rather differently from
those of GLnpFpq when n is fixed and p varies.

Exercise 4.8.4. We explain here a different approach to the corollary. Let G be a
finite group, H1 and H2 subgroups of G, χ a one-dimensional complex representation of
H1.

(1) Show that

ResGH2
IndGH1

χ »
à

sPS

IndH2
H2,s

χs

where S is a set of representatives of the double cosets H2gH1, H2,s “ H2 X s
´1H1s and

χs is the one-dimensional character of H2,s given by

χspxq “ χpsxs´1
q

[Hint: This can be done with character theory.]
(2) Prove the corollary, and recover the irreducibility result (2) of the previous exercise,

using (1).

4.8.2. Artin’s theorem on induced representations. Our second topic concern-
ing induction takes up the following question: we have seen, in concrete examples, that
many irreducible representations of certain finite groups arise as induced representations
from subgroups, and indeed from one-dimensional characters of abelian subgroups. How
general is this property? It turns out that, provided some leeway is allowed in the state-
ment, one can in fact recover all irreducible representations using induced representations
of cyclic subgroups. This is the content of the following theorem of Artin, which is an
excellent illustration of the usefulness of the character ring RpGq “ RCpGq introduced in
Definition 2.7.44, and of the virtual characters that it contains.
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Theorem 4.8.5 (Artin). Let G be a finite group, and let % P pG be an irreducible
complex representation of G. There exists a decomposition

(4.65) % “
ÿ

i

αi IndGHi χi

in RpGq bQ, where αi P Q, Hi Ă G is a cyclic subgroup of G and χi is an irreducible
character of Hi, and where we identify representations of G with their image in RpGq.

Concretely, recall that the meaning of (4.65) is the following: there exist m ě 1,
finitely many non-negative integers ni ě 0 and mj ě 0, corresponding cyclic subgroups
Hi and Hj, and one-dimensional characters χi and χj of Hi and Hj, such that we have
an isomorphism of actual representations

m%‘
à

i

ni IndGHi χi »
à

j

mj IndGHj χj.

(precisely, m is a common denominator of all αi in (4.65), ni “ ´mαi if αi ă 0, while
mj “ mαj if αj ě 0).

Proof. There is a surprisingly easy proof: the Q-vector space RpGq bQ has a basis
corresponding to the irreducible representations of G, and inherits from the characters
a non-degenerate symmetric bilinear form x¨, ¨yG for which those characters form an or-
thonormal basis. By duality of vector spaces, a subspace V Ă RpGq bQ is equal to the
whole space if and only if its orthogonal V K is zero. In particular, if V is generated by
certain elements pχiq in RpGqbQ, we have V “ RpGqbQ if and only if no ξ P RpGqbQ
is orthogonal to all χi.

We apply this now to the family pχiq of all representations induced from irreducible
representations of cyclic subgroups of G. Suppose ξ P RpGq b Q is orthogonal to all
such χi. Then, using the Frobenius reciprocity formula (which holds in RpGq b Q by
“linearity” of induction and restriction with respect to direct sums), we get

xIndGH χ, ξyG “ xχ,ResGH ξyH

for any cyclic subgroup H and χ P pH. Varying χ for a fixed H, it follows that ResGH ξ
is zero for all H. If we identify ξ with its virtual character in CpGq, this means that ξ
vanishes on all cyclic subgroups of G. But since any element x P G belongs to at least
one cyclic subgroup, this gives ξ “ 0. �

It is natural to wonder whether a result like Artin’s Theorem might not also be valid
without involving virtual characters (i.e., with only αi ě 0 in (4.65), but examples show
that this is not the case. The simplest is the 4-dimensional irreducible representation % of
the alternating group A5 (the character table of which is found in Remark 4.7.6); see [48,
Exercise 10.5] for the details.

Exercise 4.8.6. Find an Artin decomposition of all irreducible representations of A5.

On the other hand, there is an important theorem of Brauer which shows that one may
find decompositions with integral coefficients αi P Z, provided one allows representations
induced by one-dimensional characters of a slightly larger class of subgroups than cyclic
subgroups, the so-called elementary subgroups. We refer, here also, to the treatment in
Serre’s book [48, Ch. 10] for the details.
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CHAPTER 5

Abstract representation theory of compact groups

In this chapter, we consider the representation theory of compact topological groups.
Our goal is to present the basic facts from the general theory, which is due to Peter-
Weyl, and to do so by highlighting the close parallel with the case of finite groups (which
is a special case, in fact, if we consider a finite group as a compact group with the
discrete topology). This requires some care in the analytic set up, but the reader should
appreciate how the work in getting the right definition of continuity, and of the regular
representation (for instance) are justified when, in the end, the character formalism and
the decomposition of the regular representation look formally very much the same as they
do for finite groups.

5.1. An example: the circle group

We begin with an example, where it turns out that the basic facts are already well-
known from the theory of Fourier series. This corresponds to what is probably the
simplest infinite compact group, the unit circle

G “ tz P Cˆ
| |z| “ 1u Ă Cˆ

with its topology as a subset of C. This groups is often best understood in the equivalent
representation as the quotient R{Z, or R{2πZ, with the quotient topology, where the
isomorphism is given by

"

R{Z ÝÑ G
x ÞÑ e2iπx

(since it is important to view G as a topological group, one should note that this is a
homeomorphism.)1

We already know explicitly what are the irreducible unitary representation of G:
by Example 3.4.9 and Schur’s Lemma (Proposition 3.4.16), these are one-dimensional
(because G is abelian) and are precisely the characters

χm :

"

R{Z ÝÑ Cˆ

t ÞÑ e2iπmt

for m P Z. The finite linear combinations of these characters are simply trigonometric
polynomials. This is a rather special subspace of functions on G, but it is dense in many
important function spaces, including the space of continuous functions, by the Weierstrass
approximation theorem.

The problem of expressing an “arbitrary” function in a series involving the χm is a
basic problem of Fourier analysis, and is one of the most classical (and beautiful) problems
of analysis. The Fourier series of an integrable function ϕ is the series

ÿ

mPZ

αpmqe2iπmt
“

ÿ

mPZ

αpmqχmptq

1 It is useful here to remember that a continuous bijection between compact topological spaces is
necessarily a homeomorphism, i.e., the inverse is also automatically continuous.
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where

αpmq “

ż

R{Z

ϕpxqe´2iπmxdt

are the Fourier coefficients. Many results are known about the convergence of Fourier
series towards ϕ, and they reveal a wide variety of behavior. For instance, it was shown
by Kolmogorov that there exist integrable functions ϕ P L1pR{Zq such that the Fourier
series above diverges for all x P R{Z. (For the classical theory of Fourier series, one can
look at Zygmund’s treatise [61]; for instance, Kolmogorov’s Theorem is found in [61, Th.
VIII.4.1].)

However, it is also classical that a very good theory emerges when considering the
square-integrable functions: if ϕ P L2pR{Zq, the Fourier series converges in L2-norm, i.e.,

›

›

›
ϕ´

ÿ

|m|ďM

αpmqχm

›

›

›

L2
ÝÑ 0

as M ÝÑ `8, and in particular the Parseval (or Plancherel) formula
ż

R{Z

|ϕpxq|2dx “
ÿ

mPZ

|αpmq|2 “
ÿ

mPZ

|xϕ, χmy|
2

holds.
This can be interpreted in terms of a unitary representation of G on L2pGq: under

the regular action

%ptqϕpxq “ ϕpx` tq,

the condition of square-integrability is preserved, and in fact

}%ptqϕ}2 “

ż

R{Z

|ϕpx` tq|2dx “

ż

R{Z

|ϕpxq|2dx “ }ϕ}2,

because the Lebesgue measure is invariant under translations. Thus L2pGq is formally a
unitary representation (the continuity requirement also holds; we will verify this later in
a more general case). The L2-theory of Fourier series says that the family of characters
pχmq is an orthonormal basis of the space L2pGq, and this is, quite recognizably, a suitable
analogue of the decomposition of the regular representation: each of the characters χm
appear once (a one which is the dimension of χm!) in L2pGq.

It is rather natural to explore how facts about Fourier series can be interpreted in
terms of the representation theory of R{Z. Although this is quite straightforward, this
brings out a few facts which are useful to motivate some parts of the next section, where
arbitrary compact groups enter the picture.

For instance, let us consider the orthogonal projection map

pm : L2
pGq ÝÑ L2

pGq

onto the χm-isotypic component of G. Since this space is one-dimensional, with χm itself
as a unit vector, we have simply

pmpϕq “ xϕ, χmyχm,

i.e., for t P R{Z, we have

(5.1) pmpϕqptq “
´

ż

R{Z

ϕpxqe´2iπmxdx
¯

e2iπmt.
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This seems to be a complicated way of writing the m-th Fourier coefficient of ϕ, which
is the integral that appears here. However, we can write this as

pmpϕqptq “

ż

R{Z

e2iπmpt´xqϕpxqdx

“

ż

R{Z

e´2iπmyϕpy ` tqdy “

ż

R{Z

χmpyqp%pyqϕqptqdy,

or in other words we have (formally) the formula

pm “

ż

R{Z

χmpyq%pyqdy,

which is clearly similar to (4.20).
There is yet another instructive way to express the projection, where we consider ϕ

as fixed and m as varying: the formula

pmpϕqptq “

ż

R{Z

ϕpxqe2iπmpt´xqdx

can be written

pmpϕq “ ϕ ‹ χm

where ¨ ‹ ¨ denotes the operation of convolution of functions on G:

pϕ1 ‹ ϕ2qptq “

ż

R{Z

ϕ1pxqϕ2pt´ xqdx

(when this makes sense, of course). In particular, (5.1) means that the characters χm are
eigenfunctions of the convolution operator

Tϕ :

"

L2pGq ÝÑ L2pGq
f ÞÑ ϕ ‹ f,

with eigenvalues given precisely by the Fourier coefficients xϕ, χmy. Note finally that this
convolution operator is an intertwiner of the regular representation: this follows either
from a direct computation, or from the fact that Tϕ acts by scalar multiplication on the
characters.

5.2. The Haar measure and the regular representation of a locally compact
group

In order to adapt the arguments which succeeded in the case of finite groups, and which
are suggested by the example of the circle group, we see that we need first to define the
analogue of the regular representation. In order for this to be a unitary representation, it
seems natural to look at the space of L2 functions on G, with respect to some “natural”
measure µ. Which measure to select is dictated by the requirement that the usual action

%Gpgqϕpxq “ ϕpxgq

of the regular representation should be unitary: what is required is that
ż

G

fpxgqdµpxq “

ż

G

fpxqdµpxq

for f integrable and g P G. This property, for instance, holds for the Lebesgue measure
on R{Z, or on Rd.
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It is by no means obvious that a measure µ exist with this property, and indeed, this
imposes a restriction on the topological groups that one may consider in this manner.
The relevant existence statement is given by the following theorem:

Theorem 5.2.1 (Existence and properties of Haar measure). Let G be a locally com-
pact topological group.

(1) There exists, up to multiplication by a scalar α ą 0, a unique non-zero Radon
measure µ on G which is right-invariant, i.e., which is such that, for any fixed g P G, we
have

(5.2)

ż

G

fpxgqdµpxq “

ż

G

fpxqdµpxq

for f ě 0 measurable and for f P L1pG, dµq. Such a measure is called a Haar measure
on G.

(2) If G is compact, there exists a unique Haar measure such that µpGq “ 1, which is
called the probability Haar measure on G.

(3) Any Haar measure on a compact group G is also left-invariant, i.e., we have

(5.3)

ż

G

fpgxqdµpxq “

ż

G

fpxqdµpxq,

for fixed g P G, and is invariant under inversion, i.e.
ż

G

fpx´1
qdµpxq “

ż

G

fpxqdµpxq,

both for f ě 0 measurable or f P L1pG, dµq.
(4) The support of any Haar measure µ on G is equal to G, i.e., for any non-empty

open set U Ă G, we have µpUq ą 0.
(5) Let CcpGq be the space of continuous and compactly-supported functions on G.

Then, for any p ě 1, the natural map CcpGq Ñ LppG, µq is injective and if p ­“ `8, the
space CcpGq is dense in LppG, µq for the Lp-norm.

Remark 5.2.2. (1) We have written the definition of Haar measure in terms of integral
of functions. In terms of sets, µ satisfies (5.2) if, for any Borel subset of G and any g P G,
we have

µpBq “ µpBg´1
q “ µpBgq

(the last by applying the previous one to g´1).
(2) We will often simply write L1pGq, or more generally LppGq, for p P r1,`8s, instead

of L1pG, µq or LppG, µq, the integrability condition being understood implicitly to refer
to a Haar measure. Note that the spaces LppG, µq are independent of the choice of Haar
measure.

We will not prove the existence (and uniqueness) parts of this theorem (see, e.g., [17,
Th. 10.5, Th. 10.14]). For many important classes of groups, it is in fact possible to write
down somehow a non-zero measure µ which turns out to satisfy (5.2), and the uniqueness
shows that µ is then a Haar measure.

Proof of (2), (3), (4). Given the statement (1) of existence and uniqueness, part
(2) follows as soon as we check that, for a compact group G, the total measure µpGq is
finite if µ is a Haar measure. This is in fact part of the definition of a Radon measure,
namely such a measure is finite on compact sets.
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For (3), we fix a Haar measure µ, and then observe that for any fixed g, one can define
a measure µg on G by

ż

G

fpxqdµgpxq “

ż

G

fpgxqdµpxq,

and that (because left and right multiplications on G commute!) this is always right-
invariant on G. Thus, by (1), there exists a non-negative real number ∆pgq such that

(5.4) µg “ ∆pgqµ,

or equivalently, such that
ż

G

fpgxqdµpxq “ ∆pgq

ż

G

fpxqdµpxq

for all f .
Taking f “ 1, we see that ∆pgqµpGq “ µpGq, and therefore ∆pgq “ 1. This means

that µ was indeed already left-invariant.
A similar argument applies to invariance under inversion: define ν by

ż

G

fpxqdνpxq “

ż

G

fpx´1
qdµpxq,

then (because of the left-invariance just proved), the measure ν is also a Haar measure,
and taking f “ 1 leads to ν “ µ, which is the desired statement.

Finally, the support property (4) is due intuitively to the fact that µ “treats the
same” every point, so its support must be either empty (which is excluded because it
would correspond to the zero measure) or all of G. Since, properly speaking, the support
of a measure is not always well-behaved on an arbitrary locally-compact space, we will
prove the fact that µpUq ą 0 for any open set U , which always makes sense. Suppose
to the contrary that µpUq “ 0 for some non-empty open subset U of G; we may assume
that 1 P U (replace U by Ux´1 for any x P U , which has the same measure by the
invariance of Haar measure). Then, we deduce first that µpKq “ 0 for any compact
subset K Ă G, because K is contained in a finite union of translates Ux of U , and then
using the regularity of Radon measures, we deduce

µpGq “ suptµpKq | K Ă G compactu “ 0,

which contradicts the fact that µ is non-zero.
Finally, that continuous functions with compact support inject in Lp spaces is a con-

sequence of the fact that the support of µ is G, and that bounded functions with compact
support are integrable (since µ is finite on compact sets). The deeper fact that the contin-
uous functions with compact support are dense in LppG, µq for 1 ď p ă `8 is a general
property of Radon measures, see, e.g., [17, Prop. 7.9]. �

Remark 5.2.3. (1) It is important to remember to what extent the Haar measure is
unique; if G is compact, it can be normalized uniquely by selecting as the probability Haar
measure, but for a general locally compact group, there is no preferred Haar measure.
In applications where two or more groups are involved simultaneously, it may be quite
important – and sometimes delicate! – to assign suitable Haar measures to all of them.

(2) In some texts, the Haar measure is defined as a left-invariant measure (satisfy-
ing (5.3)), instead of a right-invariant one, as we did. Of course, sometimes the Haar
measure as we defined it is also left-invariant (this is always the case for compact groups,
as we saw), in which case this issue doesn’t matter. However, this property is not always
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true, and one must be careful about the convention which is used (see Exercise 5.2.5 for
an example of a Haar measure which is not left-invariant).

In any case, an analogue of Theorem 5.2.1 holds with left-invariant measures instead
of right-invariant ones. Moreover, there is a simple link between the two. Indeed, if µ is
a Haar measure given by Theorem 5.2.1 (right-invariant!), then for any g P G we obtain
a real number ∆pgq ě 0 by the formula (5.4), and one can fairly easily see that ∆pgq ą 0
for all g and that the resulting map

"

G ÝÑ R`,ˆ

g ÞÑ ∆pgq

is a continuous homomorphism, such that the measure

dνpgq “ ∆pgqdµpgq

is a left-invariant Haar measure on G (see again Exercise 5.2.5). This function is called
the modulus of G, or modular character of G.

Clearly, a Haar measure on G is also left-invariant if and only if ∆pgq “ 1 for all
g P G. A locally compact group G with this property is called unimodular. Thus, we
have shown that compact groups are always unimodular. Similarly, abelian groups are
unimodular since the left and right multiplication operators are then the same.

Example 5.2.4 (Examples of Haar measure). (1) If G is a finite group, or more
generally a discrete group, then a Haar measure is given by the counting measure:

µpXq “ |X|

for a subset X Ă G. For G finite, the probability Haar measure is then defined by

µpXq “
|X|

|G|

for X Ă G, or in other words by the averaging formula
ż

G

fpxqdµpxq “
1

|G|

ÿ

xPG

fpxq

for f P CpGq. We recognize a type of expression which was extensively used in Chapter 4!
(2) If G “ Rd, d ě 1, or G “ pR{Zqd, a Haar measure is obviously given by Lebesgue

measure. (This shows that Theorem 5.2.1 is at least as deep as the existence of the
Lebesgue measure!)

(3) Let G “ Rˆ. Then a Haar measure on G is given by

dµpxq “
dx

|x|

in terms of the Lebesgue measure dx on R. This can be proved by a straightforward
computation using the change of variable formula for the Lebesgue measure: for a P Rˆ,
putting y “ ax with dy “ |a|dx, we have

(5.5)

ż

Rˆ
fpaxq

dx

|x|
“

ż

Rˆ
fpyq

dy

|a||y{a|
“

ż

Rˆ
fpyq

dy

|y|
.

(For the subgroup R`,ˆ, one may also argue conceptually using the exponential group
isomorphism R » R`,ˆ and the obvious fact that if

f : G1 Ñ G2

is an isomorphism of locally compact groups, i.e., a homeomorphism which is also a group
isomorphism, then the direct image f˚µ1 of a Haar measure on G1 is a Haar measure
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on G2; one must then check that the direct image of the Lebesgue measure under the
exponential is x´1dx on R`,ˆ.)

If one restricts this measure to R`,ˆ, we get the Haar measure x´1dx on positive real
numbers. Note that the invariance properties of the measure x´1dx explains the form of
some classical formulas, such as the definition

Γpsq “

ż `8

0

xs´1e´xdx

of the Gamma function: it is really an integral of x ÞÑ xse´x with respect to Haar measure
on R`,ˆ.

(4) The example (3) can be generalized to the (genuinely non-abelian, non-compact)
group G “ GLnpRq for n ě 1: in terms of the Lebesgue measure dx “

ś

i,j dxi,j on the

space MnpRq » Rn2
of matrices, a Haar measure on the subset G is given by

(5.6) dµpxq “
1

| detpxq|n
dx.

This is again a simple application of the change of variable formula for multi-dimensio-
nal Lebesgue measure: the maps x ÞÑ xg on G extends to a diffeomorphism of MnpRq
with Jacobian | detpgq|n, and the result follows, formally, as in (5.5). Note that, although
G is not compact (and not abelian), the left-invariance property (5.3) also holds for this
Haar measure, so that G is unimodular.

(5) Let G “ SU2pCq. Here, and in many similar circumstances, one needs first to find
a convenient parametrization to describe the Haar measure on G; typically, this means
introducing finitely many continuous coordinates on G, and using a measure defined in
terms of these coordinates using Lebesgue measure or a related measure.

A convenient system of coordinates on SU2pCq is obtained by remarking that any
g P SU2pCq can be written uniquely

(5.7) g “

ˆ

a b
´b̄ ā

˙

where a, b P C are arbitrary, subject to the unique condition |a|2` |b|2 “ 1 (we leave the
verification of this fact as an exercise). Using the real and imaginary parts of a and b as
coordinates, we see that G is homeomorphic to the unit sphere S3 in R4.

There is an obvious measure that comes to mind on this unit sphere: the “surface”
Lebesgue measure µ, which can be defined as follows in terms of the Lebesgue measure
µ4 on R4:

µpAq “ µ4

´!

x P R4
´ t0u | }x} ď 1 and

x

}x}
P A

)¯

for A Ă S3. This measure is natural because it is invariant under the obvious linear
action of the orthogonal group O4pRq on S3 (simply because so is the Lebesgue measure
µ4).

We claim that this also implies that µ is in fact a Haar measure on SU2pCq. Indeed,
an element g P SU2pCq, when acting on S3 by multiplication on the right, does so as the
restriction of an element of O4pRq (as an elementary computation reveals), which gives
the result.

(6) In Section 7.4, we will discuss in some depth the unitary representations of G “
SL2pRq. Thus it is useful to know that G is also unimodular. This is a special case of a

general useful fact: if G is a locally compact group such that G{rG,Gs is compact, then G
is unimodular. Indeed, the modular character g ÞÑ ∆pgq is a continuous homomorphism
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on G (as we have already mentioned, see the exercise below) with abelian image, so that
it factors through this compact quotient. Then its image is a compact subgroup of R`,ˆ,
so it must be trivial, which means that ∆ “ 1.

Exercise 5.2.5. We present a few additional properties and examples of Haar mea-
sures in this exercise.

(1) [Compactness and Haar measure] Show that if G is a locally compact topological
group and µ is a Haar measure on G, we have µpGq ă `8 if and only if G is compact.

Next, we will explain a slightly different proof of the left-invariance of Haar measure
on a compact group, which applies to more general groups.

(2) Fix a Haar measure µ on G. Show that the function ∆ : G ÝÑ r0,`8r defined
by (5.4) is nowhere zero, and is a continuous homomorphism G ÝÑ R`,ˆ.

(3) Show that if G is compact, such a homomorphism is necessarily trivial. Show
directly (without using (5.5)) that ∆ is also necessarily trivial for G “ GLnpRq, n ě 2.

(4) Let G be locally compact. Show that the measure

dνpyq “ ∆pyqdµpyq

is a non-zero left-invariant measure on G.
(5) Let

G “

"ˆ

a b
0 1

˙

| a P Rˆ, b P R

*

Ă GL2pRq.

Show that, in terms of the coordinates a, b, the measure

dµ “
dadb

|a|

is a Haar measure on G. Check that it is not left-invariant, i.e., (5.3) does not always
hold. What is the function ∆pgq in this case? What is a non-zero left-invariant measure
on G?

With the Haar measure in hand, we can define the regular representation of a locally
compact group.

Proposition 5.2.6 (The regular representation). Let G be a locally compact group,
and let µ be a Haar measure on G. The regular action

%Gpgqϕpxq “ ϕpxgq

is a well-defined unitary representation of G on L2pG, µq, which is strongly continuous.
Up to isometry, this representation is independent of the choice of Haar measure, and

is called “the” regular representation of G.
Similarly, the left-regular representation λG is defined on L2pG, µq by

λGpgqϕpxq “ ϕpg´1xq,

and the two representations commute: we have λGpgq%Gphq “ %GphqλGpgq for all g, h P G.

Proof. Although this sounds formal – and an important goal of the theory is to set
it up in such a way that it becomes formally as easy and flexible as it is in the case of
finite groups –, it is important to see that there is actually some non-trivial subtleties
involved.

First of all, the regular action is clearly well-defined for functions, but an element of
L2pG, µq is an equivalence class of functions on G, where functions which differ on a set
of Haar measure zero are identified. Thus we must check that, if ϕ has this property,
so does %Gpgqϕ. This follows directly from the invariance of Haar measure (but it is
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not a triviality). Once this is settled, we check that %G is unitary using once more the
invariance of µ:

}%Gpϕq}
2
“

ż

G

|ϕpxgq|2dµpxq “

ż

G

|ϕpxq|2dµpxq “ }ϕ}2.

What is by no means obvious is the continuity of the representation. We use the
strong continuity criterion of Proposition 3.4.3 to check this.2

We first take ϕ P CpGq, and we check the continuity at g “ 1 of

g ÞÑ %Gpgqϕ

as follows: we have

}%Gpgqϕ´ ϕ}
2
“

ż

G

|ϕpxgq ´ ϕpxq|2dµpxq,

and since ϕpxgq ´ ϕpxq Ñ 0 as g Ñ 1, for every x P G, while

|ϕpxgq ´ ϕpxq|2 ď 4}ϕ}28,

we see from the dominated convergence theorem that

lim
gÑ1

}%Gpgqϕ´ ϕ}
2
“ 0,

which is the desired statement in that case.
Now if ϕ is arbitrary, we use the density of CpGq in L2pG, µq. Let ε ą 0 be arbitrarily

small. We find first a continuous function ϕε P CpGq such that }ϕ ´ ϕε} ă ε. Then for
any g P G, we have

}%Gpgqϕ´ ϕ} ď }%Gpgqϕ´ %Gpgqϕε} ` }%Gpgqϕε ´ ϕε} ` }ϕε ´ ϕ}

“ 2}ϕε ´ ϕ} ` }%Gpgqϕε ´ ϕε}

ď 2ε` }%Gpgqϕε ´ ϕε}.

By the previous case, for all g in some open neighborhood of 1 in G, we have

}%Gpgqϕε ´ ϕε} ă ε,

and hence for all such g we get

}%Gpgqϕ´ ϕ} ď 3ε,

and therefore the desired strong continuity. (Note that this argument spells out the result
sketched in Exercise 3.4.12).

Finally, we observe that if we replace the Haar measure µ with ν “ αµ, with α ą 0,
the linear map

"

L2pG, µq ÝÑ L2pG, νq
f ÞÑ α´1{2f

is an isometry that is immediately seen to intertwine the regular representations on the
two spaces. Thus the regular representation is well-defined up to isomorphism, indepen-
denly of the choice of Haar measure. �

2 Except when G is finite, %G will not be continuous in the norm topology on the unitary group
UpL2pG,µqq.
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Exercise 5.2.7 (Representations on Lp-spaces). Let G be a locally compact topolog-
ical group, and µ a Haar measure on G. For any real number p ě 1, show that there is a
strongly continuous representation of G on LppG, µq, denoted %, such that

%pgqϕpxq “ ϕpxgq

for ϕ P LppG, µq and (almost all) g P G. Check that if ϕ P L2pG, µq X LppG, µq, any
Lp-translate %pgqϕ coincides with the corresponding translate %Gpgqϕ under the regular
representation, in particular %Gpgqϕ P L

2pG, µq X LppG, µq also. (For this reason, in the
very few cases where we use the Lp-regular representation, we will just use the same
notation as for the L2 representation.)

Exercise 5.2.8 (The regular representation is faithful). (1) Show that the regular
representation of a locally compact group G is faithful.

We now use this to give a simple application of representation theory to prove a
general fact about compact topological groups. The goal is to show the following: for
any neighborhood U of 1 in G, there exists a neighborhood V Ă U which is invariant
under conjugacy, i.e., such that xV x´1 Ă V for all x P G. This looks deceptively simple
but it is a bit tricky to prove directly (the reader may want to try!)

(2) Let U Ă G be a neighborhood of 1. Show that there exists finitely many functions
fi P L

2pGq with norm 1, and ε ą 0 such that

(5.8) U Ą tg P G | }%Gpgqfi ´ fi} ă ε for all iu

[Hint: Use (1) and the continuity of the regular representation of G, where the unitary
group carries the strong operator topology, as in Remark 3.4.4.]

(3) For a fixed index i, let Ai Ă L2pGq be the set

Ai “ t%Gpxqfi | x P Gu

of translates of fi. Show that the set

Vi “ tg P G | }%Gpgqf ´ f} ă ε for all f P Aiu

is conjugacy-invariant and is equal to

Vi “
č

xPG

xUix
´1, Ui “ tg P G | }%Gpgqfi ´ fi} ă εu.

(4) To conclude, show that Vi is an open neighborhood of 1. [Hint: Use the fact that
Ai is compact.]

(5) Show that in the non-compact group SL2pRq, it is not true that all neighborhoods
of 1 contain a conjugacy-invariant neighborhood. Which parts of the argument above fail
in that case?

What might be remembered of this exercise is the fact that the formula (5.8) shows
how to use the regular representation of G to write down (a basis of) neighborhoods of 1
in G in such a way that they can be manipulated further.

Example 5.2.9 (Representations from measure-preserving actions). The regular rep-
resentation of a finite group is a special case of a permutation representation. Similarly,
the definition of the regular representation of a locally compact group can be generalized
to analogues of more general permutation representations. Namely, consider a set X on
which G acts (on the left), with the property that X carries a finite Radon measure ν
and that G acts through measure-preserving transformations, i.e., with

ż

X

fpg ¨ xqdνpxq “

ż

X

fpxqdνpxq
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for any fixed g P G and f either ě 0 measurable, or integrable. Then one can define a
representation of G on L2pX, νq by

pg ¨ ϕqpxq “ ϕpg´1
¨ xq.

Arguing as in the proof of Proposition 5.2.6, one sees that this is a unitary represen-
tation of G.

For a specific example, consider the group G “ SO3pRq of rotations of R3 acting (by
matrix-vector multiplication) on the unit ball B “ tx P R3 | }x} ď 1u. Taking for ν the
restriction to B of Lebesgue measure on R3, we see that G preserves ν, and we obtain
therefore a representation of SO3pRq on L2pB, νq.

Example 5.2.10 (Induced representations). Using the Haar measure, one can also
define the proper analogue of induced representations in the setting of compact groups.
Consider a compact group G, with Haar measure µ, and a compact (equivalently, closed)
subgroup K Ă G. Given a unitary representation

% : K ÝÑ UpHq

of K, one defines the induced representation π “ IndGKp%q as follows. Define first the
vector space

(5.9) V0 “ tf : G ÝÑ H | f is continuous,

and fpkgq “ %pkqfpgq for all k P K, g P Gu,

on which G acts by the regular action:

πpgqfpxq “ fpxgq.

Define an inner product on V0 by

xf1, f2y0 “

ż

G

xf1pxq, f2pxqyHdµpxq.

This is well-defined (the integrand is a continuous function on G), and is positive-
definite on V0. Moreover, it is G-invariant because of the invariance of Haar measure,
namely

xπpgqf1, πpgqf2y0 “

ż

G

xf1pxgq, f2pxgqyHdµpxq “ xf1, f2y0

for all g P G.
So we almost have a unitary representation of G on V0. But V0 has no reason (in

general) to be a Hilbert space, as completeness will usually fail. Still, one can check that
π is strongly continuous on V0 (so that it is a pre-unitary representation, as discussed in
Exercise 3.4.12). Then, following the idea sketched in that exercise, we define V to be
the completion of V0 with respect to x¨, ¨y0. This is a Hilbert space in which V0 is a dense
subspace, and since the πpgq were unitary on V0, they extend by continuity to unitary
operators on V . Similarly, since the properties

πpghq “ πpgqπphq, πpg´1
q “ πpgq´1

hold on the dense subspace V0 Ă V , they are valid on all of V . The proof of the
strong continuity of this representation is now obtained as in the case of the regular
representation, using the fact that π is strongly continuous on V0, unitarity, and the fact
that V0 is dense in V .

Just as was the case in Chapter 2 (see (2.23)), the regular representation can be
identified with the induced representation IndG1 p1q. Indeed, in that case the space V0 is
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the space of continuous functions on G, with the inner product of L2pG, µq and the same
action as the regular representation, so that the statement amounts to the fact that CpGq
is dense in L2pG, µq for the L2-norm.3

Apart from its use in describing certain representations, the most important feature of
induction is Frobenius reciprocity. Looking at the proof of Proposition 2.3.8, it may seem
at first to be mostly formal, and likely to extend without much ado to compact groups.
However, note that part of the construction in (2.27) involves evaluating functions in the
space of the induced representation at a single point, which is not well-defined in general
in L2-type spaces. Nevertheless, after proving the Peter-Weyl Theorem, we will be able
to show that some important cases of Frobenius reciprocity hold (Proposition 5.4.9).

We finish this section by a discussion of unitarizability. Using integration with respect
to the Haar measure, one gets the following useful fact:

Theorem 5.2.11 (Unitarizability of representations of compact groups). Let G be a
compact topological group.

(1) Any finite-dimensional continuous representation of G is unitarizable. As a con-
sequence, a finite-dimensional representation of G is semisimple.

(2) More generally, any continuous representation

% : G ÝÑ BGLpHq

with values in the group of invertible linear maps on a Hilbert space H is unitarizable,
i.e., there exists an inner product x¨, ¨y% on H such that %pgq P UpH, x¨, ¨y%q for all g P G,
and such that the topology defined by this inner product is the same as the original one
on H.

Proof. The first part is easy, as in the case of finite groups: we merely use integration
with respect to a Haar measure µ, instead of averaging, to construct an invariant inner
product. Precisely, let

% : G ÝÑ GLpEq

be a finite-dimensional complex representation of G. Fix an arbitrary inner product x¨, ¨y0
on E, and define

xv, wy “

ż

G

x%pxqv, %pxqwy0dµpxq.

The continuity of % shows that the integral is well-defined (integral of a continuous
bounded function); it is obviously a non-negative hermitian form on E, and the invariance
of the Haar measure shows that it is G-invariant: we have

x%pgqv, %pgqwy “

ż

G

x%pxq%pgqv, %pxq%pgqwy0dµpxq

“

ż

G

x%pxqv, %pxqwy0dµpxq.

Moreover, note that

}v}2 “

ż

G

}%pxqv}20dµpxq

and if v ­“ 0, this is the integral over G of a non-negative, continuous function which is
non-zero since it takes the value }v}20 ą 0 at x “ 1. Therefore, we have }v}2 ą 0 if v ­“ 0,
and the hermitian form is positive-definite.

3 More generally, one can give a description of the space V for an arbitrary induced representation
in terms of square-integrable H-valued functions, defined in the spirit of what will be done in the next
section.
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Thus % can be seen as a homomorphism

% : G ÝÑ Upx¨, ¨yq.

As a final step, since all inner products on a finite-dimensional vector space define
the same topology (which coincides with the strong topology), this representation is still
strongly continuous.

For (2) everything in the above goes through identically, using the given norm } ¨ } on
H instead of } ¨ }0, except this last step: it might conceivably be the case that

xv, wy% “

ż

G

x%pgqv, %pgqwydµpgq

defines a different topology on an infinite-dimensional Hilbert space H. However, this is
not the case: for every v P H, the map

g ÞÑ %pgqv

is continuous, and hence

sup
gPG

}%pgqv} ă `8.

This means that the image of % is “pointwise” bounded in LpHq. The Banach-
Steinhaus theorem (see, e.g., [44, Th. III.9]) implies that it is uniformly bounded on
the unit ball, i.e., that

M “ sup
gPG

}%pgq}LpHq ă `8,

so that we get

}%pgqv}2 ďM}v}2, M´1
}v}2 “M´1

}%pg´1
q%pgqv}2 ď }%pgqv}2,

for every g P G and v P H. Integrating leads to

M´1
}v}2 ď xv, vy% ďM}v}2,

so that the “new” norm is topologically equivalent with the old one. �

Example 5.2.12 (Inner product on finite-dimensional representations of SU2pCq).
We explain here how to compute an invariant inner product for the representation %m of
SU2pCq on the space Vm of homogeneous polynomials of degree m in CrX, Y s.

One method is to follow the construction used in the proof of the theorem, by picking-
up an inner product on Vm and averaging it over G using a Haar measure on the group. In
order to simplify the computation, it pays to make a careful choice. One observation that
can help choose wisely (here and in general) is the one in Lemma 3.4.20: unrelated unitary
subrepresentations are orthogonal. This can not be applied to Vm as a representation of
SU2pCq (of course), but we can apply it to the restriction to a suitable subgroup. Indeed,
consider the diagonal subgroup

K “

!

ˆ

eiθ 0
0 e´iθ

˙

| θ P R
)

,

so that (as in (2.41)) the space Vm decomposes as the direct sum of the subspaces Cej
generated by the basis vectors ej “ XjY m´j, 0 ď j ď m, on which K acts by a one-
dimensional representation, namely

%m

´

ˆ

eiθ 0
0 e´iθ

˙

¯

ej “ eip2j´mqθej.
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Since the lines Cej span distinct irreducible K-subrepresentations of Vm, it follows
that for j ­“ k, we have

xej, eky “ 0

for any invariant inner product on Vm.
Now we come back to the averaging procedure to compute the remaining inner prod-

ucts xej, ejy. However, in order to simplify again the computation, we adopt here the
variant described at the end of Remark 4.1.3: it is enough to select a non-negative her-
mitian form x¨, ¨y0 form on Vm, not necessarily positive-definite, provided the form defined
by

xP1, P2y “

ż

SU2pCq

x%mpgqP1, %mpgqP2y0 dµpgq

for polynomials P1, P2 P Vm is itself positive-definite. We select

xP1, P2y0 “ P1p1, 0qP2p1, 0q,

and claim that this property does hold. Indeed, we get

xP, P y “

ż

SU2pCq

|p%mpgqP qp1, 0q|
2dµpgq “

ż

SU2pCq

|P pa, bq|2dµpgq,

where we write (as usual)

g “

ˆ

a b
c d

˙

,

so that }P } “ 0 if and only if P vanishes on every pa, bq P C2 which form the first row of
a matrix in SU2pCq. As observed in (5.7), these are the pairs of complex numbers with
|a|2` |b|2 “ 1, and by homogeneity of P P Vm, it follows that in fact P “ 0, proving that
the inner product defined in this manner is positive definite.

It remains to compute the inner products xej, ejy. We get

xej, ejy “

ż

SU2pCq

|a|2j|b|2pm´jqdµpgq,

and using the description of Haar measure from Example 5.2.4, (5), one can show that
this is equal to

(5.10) xej, ejy “

ż 1

0

tjp1´ tqm´jdt “
1

pm` 1q
`

m
j

˘

(this is a special case of Euler’s beta function.)
Another argument for determining this invariant inner product is based on an a priori

computation based on its (known) existence and its invariance property. Using the same
basis vectors as above, we find, for instance, that for all θ P R and j, k, we must have

xej, eky “ x

ˆ

eiθ 0
0 e´iθ

˙

ej,

ˆ

eiθ 0
0 e´iθ

˙

eky

“ xeip2j´mqθej, e
ip2k´mqθeky “ e2ipj´kqθ

xej, eky,

which again immediately implies that ej and ek must be orthogonal when j ­“ k. This
means that pejq is an orthogonal basis, and (as before) that we need only determine the
norms }ej}

2 “ xej, ejy in order to find the inner product.
This must naturally rely on other elements of SU2pCq than the diagonal ones (oth-

erwise, we would be arguing with %m restricted to the diagonal subgroup K, where any
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choice of }ej}
2 ą 0 gives a K-invariant inner product). Here we sketch the method used

in [58, III.2.4]:4 consider the elements

gt “

ˆ

cos t ´ sin t
sin t cos t

˙

, t P R,

of SO2pRq Ă SU2pCq, and differentiate with respect to t, and then evaluate at 0, the
invariance formula

0 “ xgt ¨ ej, gt ¨ ej`1y.

This procedure leads to the relation

xAej, ej`1y ` xej, Aej`1y “ 0,

where A is the linear operator defined on Vm by

AP “
d

dt
pgt ¨ P q

ˇ

ˇ

ˇ

t“0
.

Spelling out gt ¨ ej, an elementary computation shows that

Aej “
j

2
ej´1 ´

m´ j

2
ej`1,

so that (by orthogonality of the non-diagonal inner products) we get a recurrence relation

pj ` 1qxej, ejy “ pm´ jqxej`1, ej`1y.

This determines, up to a constant scalar factor c ą 0, the norms }ej}
2, and indeed a

quick induction leads to the formula

xej, ejy “ cj!pm´ jq! 0 ď j ď m,

which coincides – as it should! – with (5.10) when taking c´1 “ pm` 1q!.

5.3. The analogue of the group algebra

It is now natural to discuss the analogue of the action of the group algebra of a finite
group. However, some readers may prefer to skip to the next section, and to come back
once the proof of the Peter-Weyl theorem has shown that this extension is naturally
required.

The group algebra for a finite group G is the source of endomorphisms of a representa-
tion space % which are linear combinations of the %pgq. When G is compact, but possibly
infinite, the group algebra (over C) can still be defined (as finite linear combinations of
symbols rgs, g P G), but the endomorphisms it defines are not sufficient anymore. For
instance, in a group like SU2pCq, the center of the group algebra is too small to create
interesting intertwiners (e.g., on the regular representation), because all conjugacy classes
in SU2pCq, except those of ˘1, are infinite.

It seems intuitively clear that one can solve this problem of paucity by replacing
the sums defining elements of the group algebra with integrals (with respect to Haar
measure). This means, that we want to consider suitable functions ψ on G and define

ż

G

ψpgqrgsdµpgq,

4 Which can be seen a simple case of studying the group SU2pCq through its Lie algebra.
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in some sense. More concretely, we will consider a unitary representation %, and define
%pψq as the linear map

(5.11) %pψq “

ż

G

ψpgq%pgqdµpgq.

This is clearly well-defined when % is finite-dimensional (the integration can be com-
puted coordinate-wise after selecting a basis)5 but needs some care when % is not (e.g.,
when G is infinite and % is the regular representation), since we are then integrating
a function with values in the space LpHq of continuous linear maps on H, for some
infinite-dimensional Hilbert space H.

Such an integral can indeed be defined. A natural approach would be to use the
extension of Lebesgue’s integration theory to Banach-space valued functions, but this is
not so commonly considered in first integration courses. We use an alternate definition
using “weak integrals” which is enough for our purposes and is much quicker to set-up.
The basic outcome is: for ψ P L1pGq (with respect to Haar measure, as usual), one can
define continuous linear operators %pψq, for any unitary representation % of G, which
behave exactly as one would expect from the formal expression (5.11) and the standard
properties of integrals.

Proposition 5.3.1 (L1-action on unitary representations). Let G be a locally compact
group with Haar measure µ. For any integrable function ψ P L1pGq and any unitary
representation % : G ÝÑ UpHq, there exists a unique continuous linear operator

%pψq : H ÝÑ H

such that

(5.12) x%pψqv, wy “

ż

G

ψpgqx%pgqv, wydµpgq

for any vectors v, w P H. This has the following properties:
(1) For a fixed %, the map

"

L1pGq ÝÑ LpHq
ψ ÞÑ %pψq

is linear and continuous, with norm at most 1, i.e., }%pψqv} ď }ψ}L1}v} for all ψ P L1pGq.
If Φ : % ÝÑ π is a homomorphism of unitary representations, we have

Φ ˝ %pψq “ πpψq ˝ Φ.

(2) For a fixed ψ P L1pGq, the adjoint of %pψq is given by

(5.13) %pψq˚ “ %pψ̌q

where the “adjoint function” ψ̌ is defined by ψ̌pgq “ ψpg´1q.
(3) For any ψ and %, and for any subrepresentation π of % acting on H1 Ă H, the

restriction of %pψq to H1 is given by πpψq. In other words, H1 is also invariant under the
action of all operators %pψq for ψ P L1pGq.

(4) For any g P G and ψ P L1pGq, we have

(5.14) %pgq%pψq “ %pλGpgqψq, %pψq%pgq “ %p%Gpg
´1
qψq,

where %G and λG represent here the right and left-regular representations acting on L1pGq,
as in Exercise 5.2.7. For ψ P L2pGq, this coincides with the usual regular representations.

5 Formally speaking, one should check that the result is independent of the basis, but that is of
course easy, e.g., by computing the coordinates with respect to a fixed basis.
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We will denote

%pψq “

ż

G

ψpxq%pxqdµpxq,

and for any vector v P H, we also write

%pψqv “

ż

G

ψpxq%pxqvdµpxq,

which is a vector in H. The properties of the proposition can then all be seen to be
formally consequences of these expressions, and can be remembered (or recovered when
needed) in this way. For instance, the inequality }%pψq}LpHq ď }ψ}L1pGq can formally be
recovered by writing

›

›

›

ż

G

ψpxq%pxqdµpxq
›

›

›
ď

ż

G

|ψpxq|}%pxq}dµpxq “

ż

G

|ψpxq|dµpxq,

which is of course perfectly natural (this uses the fact that %pxq has norm 1 for all x.)

Proof. (1) The procedure is a familiar one in the theory of Hilbert spaces: a vec-
tor can be pinpointed (and shown to exist) by describing what its inner products with
other vectors are, and these can be prescribed arbitrarily, provided only that they are
linear and continuous functions of their argument. Precisely, given ψ P L1pGq, a unitary
representation % on H and a vector v P H, define

`ψ,v

$

&

%

H ÝÑ C

w ÞÑ

ż

G

ψpgqxw, %pgqvydµpgq.

This is well-defined because ψ is integrable and the factor

|xw, %pgqvy| ď }w}}v}

is bounded. It is also continuous, by strong continuity of %, hence measurable. Moreover,
the map `ψ,v is clearly a linear form on H, and it is continuous, since the same inequality
leads to

|`ψ,vpwq| ď C}w}, C “ }v}}ψ}L1pGq

for all w P H. According to the Riesz representation theorem for Hilbert spaces, there
exists therefore a unique vector, which we denote %pψqv, such that

`ψ,vpwq “ xw, %pψqvy

for all w P H. Taking the conjugate, we obtain (5.12), and the uniqueness is then also
achieved.

From this, the remaining properties are quite easily checked. For (1), the linearity
(both the linearity of %pψq as a map on H, and then the linearity as a function of ψ) is
deduced in a very standard way from the uniqueness and the linearity of `ψ,v as function
of v and ψ.

Riesz’s Theorem also implies that }%pψqv} “ }`ψ,v}, which is bounded by the constant
C “ }v}}ψ}L1 above. This inequality

}%pψqv} ď }ψ}L1}v}

shows that %pψq is continuous for a fixed ψ, and also that it is continuous as a map
L1pGq ÝÑ LpHq, with norm at most 1 as claimed.

(2) We leave this as an exercise.
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(3) plays an important role later on, so we give the argument: let v P H1 be a vector
in the stable subspace; we first check that %pψqv is also in H1, using orthogonality. If
w P HK

1 is orthogonal to H1, we have

x%pψqv, wy “

ż

G

ψpgqx%pgqv, wydµpgq “ 0,

i.e., %pψqv P pHK
1 q
K “ H1, as desired. But then, %pψqv is determined by its inner products

with vectors w P H1, and then we have

xπpψqv, wy “

ż

G

ψpgqxπpgqv, wydµpgq

by definition, which – since π “is” simply % restricted to H1 – is equal to
ż

G

ψpgqx%pgqv, wydµpgq “ x%pψqv, wy

as expected.
(4) These formulas replace formal computations based on the invariance of the Haar

measure under translation. We only write down one of these as such a formal computa-
tion: for g P G and ψ P L1pGq, we have

%pgq%pψq “ %pgq

ż

G

ψpxq%pxqdµpxq “

ż

G

ψpxq%pgxqdµpxq “

ż

G

ψpg´1yq%pyqdµpyq

which is is the first formula. We leave the other to the reader, as we leave her the task
of translating it into a formal argument �

Exercise 5.3.2 (More general integrals). Many variants of this construction are pos-
sible. For instance, let H be a separable Hilbert space (so there is a countable subset of
H which is dense in H). For any function

f : G ÝÑ H

which is “weakly measurable”, in the sense that for every w P H, the function

g ÞÑ xfpgq, wy

is measurable on G, and which has bounded values (in the norm of H), show how to
define the integrals

ż

G

fpgqdµpgq P H

and show that this construction is linear with respect to f , and satisfies

(5.15)
›

›

›

ż

G

fpgqdµpgq
›

›

›
ď

ż

G

}fpgq}dµpgq

(you will first have to show that g ÞÑ }fpgq} is integrable). Moreover, for a unitary
representation % of a locally compact group G on H and for any ψ P L1pGq and v P H,
show that

%pψqv “

ż

G

fpgqdµpgq

for fpgq “ ψpgq%pgqv.
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Exercise 5.3.3 (Intertwiners from L1-action). Let G be a locally compact group and
µ a Haar measure on G.

(1) For an integrable function ϕ on G, explain how to define the property that ϕ is a
class function (i.e., formally, ϕpxyx´1q “ ϕpyq for all x and y in G).

(2) Let ϕ be an integrable class function on G. For any unitary representation % of
G, show that the operator

ż

G

ϕpxq%pxqdµpxq

is in HomGp%, %q, i.e., is an intertwiner.

Exercise 5.3.4 (Convolution). Let G be a compact group and µ a Haar measure on
G. For any functions ϕ, ψ P L2pGq, show that

λGpϕqψ “ ϕ ‹ ψ,

where the convolution ϕ ‹ ψ is defined by

pϕ ‹ ψqpgq “

ż

G

ϕpxqψpx´1gqdµpxq.

Prove also that
pϕ ‹ ψqpgq “ xϕ, λGpgqψ̌y,

where the adjoint function ψ̌ is given by (5.13), and deduce that ϕ ‹ ψ is continuous.

The formulas in (5.14) express the link between the action of L1-functions on H (given
by the “implicit” definition (5.12) using inner products) and the original representation
%. The following is another important relation. Crucially, it shows how to recover the
original representation operators %pgq starting from the collection of linear maps %pψq.
This is trickier than for finite groups, because there is (in the infinite case) no integrable
function supported only at a single point g P G.

Proposition 5.3.5 (L1-approximation of representation operators). Let G be a com-
pact topological group, and let % : G ÝÑ UpHq be a unitary representation of G. Fix
g P G, and for any open neighborhood U of g in G, write ψU for the characteristic function
of U , normalized so that }ψU} “ 1, i.e., define

ψUpxq “

$

&

%

1

µpUq
if x P U

0 otherwise.

Then we have
lim
UÓg

%pψUq “ %pgq,

where the limit is a limit “as U tends to g”, taken in the strong topology in LpHq, i.e., it
should be interpreted as follows: for any v P H, and for any ε ą 0, there exists an open
neighborhood V of g such that

(5.16) }%pψUqv ´ %pgqv} ă ε,

for any U Ă V .

Proof. This is a simple analogue of the classical statements of “approximation by
convolution” in integration theory. We use (5.12), and the fact that the integral of ψU is
one, to write

x%pψUqv ´ %pgqv, wy “

ż

G

ψUpxqx%pxqv ´ %pgqv, wydµpxq
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for any U and any w P H. Therefore

|x%pψUqv ´ %pgqv, wy| ď }w}

ż

G

ψUpxq}%pxqv ´ %pgqv}dµpxq

ď }w} sup
xPU

}%pxqv ´ %pgqv}

for all w P H. This implies that

}%pψUqv ´ %pgqv} ď sup
xPU

}%pxqv ´ %pgqv}

(alternatively, this should be thought as an application of the inequality (5.15) for the
integral

%pψUqv ´ %pgqv “

ż

G

ψUpxqp%pxqv ´ %pgqvqdµpxq

as defined in Exercise 5.3.2.)
But now, the strong continuity of the representation % means that x ÞÑ }%pxqv´%pgqv}

is a continuous function on G taking the value 0 at x “ g. Hence, for any ε ą 0, we can
find some neighborhood V of g such that

}%pxqv ´ %pgqv} ă ε

for all x P V . This choice of V gives the desired inequality (5.16). �

5.4. The Peter-Weyl theorem

Once we have the regular representation %G of a compact group G at our disposal, we
attack the study of unitary representations of the group by attempting to decompose it
into irreducibles. This is done by the Peter-Weyl theorem, from which all fundamental
facts about the representations of general compact groups follow.

Theorem 5.4.1 (Peter-Weyl). Let G be a compact topological group with probability
Haar measure µ. Then the regular representation of G on the space L2pG, µq decomposes
as a Hilbert space direct sum6

(5.17) L2
pG, µq “

à

%

Mp%q

of isotypic components of the finite-dimensional irreducible unitary representations of G,
each Mp%q being isomorphic to a direct sum of dimp%q copies of %.

Although this result addresses only the properties of the regular representation, it
should not be surprising, in view of the importance of the latter in the case of finite
groups, that it leads to results for arbitrary unitary representations:

Corollary 5.4.2 (Decomposition of unitary representations). Let G be a compact
topological group.

(1) Any irreducible unitary representation of G is finite-dimensional.
(2) Any unitary representation of G is isomorphic to a Hilbert direct sum of irreducible

subrepresentations.

We start with the proof of the Peter-Weyl theorem. As usual, we attempt to motivate
the arguments, instead of trying to present the shortest proof possible.

6 Recall that we defined a orthogonal direct sum of unitary representations in Section 3.4.
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The first observation we can make is that, essentially, we already know how to obtain
the inclusion

(5.18)
à

%

Mp%q Ă L2
pG, µq

(where the direct sum is orthogonal) as well as the fact that Mp%q is, for any finite-
dimensional irreducible unitary representation, isomorphic to a direct sum of dimp%q
copies of %.

Indeed, we can follow the method of Section 2.7.3, and in particular Theorem 2.7.26,
to embed irreducible finite-dimensional representations in L2pG, µq. Given an irreducible
unitary representation

% : G ÝÑ UpHq

of G, we see that the unitary matrix coefficients

fv,w : g ÞÑ x%pgqv, wy

are bounded functions on G, by the Cauchy-Schwarz inequality, and are continuous, so
that fv,w P L

2pGq for all v, w P H (this is (5) in Theorem 5.2.1, which also shows that dis-
tinct matrix coefficients are distinct in L2pGq). A formal argument (as in Theorem 2.7.26)
implies that, for a fixed w P H, the map

v ÞÑ fv,w

is an intertwiner of % and %G. If w ­“ 0, Schur’s Lemma implies that this map is injective,
because it is then non-zero: we have fw,wp1q “ }w}

2 ­“ 0, and the continuity of fw,w shows
that it is a non-zero element of L2pGq.

Now we assume in addition that % is finite-dimensional. In that case, the image of
v ÞÑ fv,w is a closed subspace of L2pGq (since any finite-dimensional subspace of a Banach
space is closed) and hence it is a subrepresentation of %G which is isomorphic to %. Varying
w, again as in Theorem 2.7.26, we see furthermore that %G contains a subrepresentation
isomorphic to a direct sum of dimp%q copies of %.

If we let % vary among non-isomorphic finite-dimensional unitary representations,
we also see that, by Lemma 3.4.20, the corresponding spaces of matrix coefficients are
orthogonal.

So to finish the proof of the first inclusion (5.18), we should only check that the %-
isotypic component coincides with the space of matrix coefficients of %. We can expect
this to hold, of course, from the case of finite groups, and it is indeed true. However, the
argument in the proof of Theorem 2.7.26 needs some care before it can be applied, as it
relies on the linear form δ : ϕ ÞÑ ϕp1q which is not necessarily continuous on a subspace
of L2pGq (and it is certainly not continuous on all of L2pGq, if G is infinite).

Still, δ is well-defined on any space consisting of continuous functions. The following
lemma will then prove to be ad-hoc:

Lemma 5.4.3. Let G be a compact group and let E Ă L2pGq be a finite-dimensional
subrepresentation of the regular representation. Then E is (the image of) a space of
continuous functions.

Assuming this, let E Ă L2pGq be any subrepresentation isomorphic to %. We can view
E, by the lemma, as a subspace of CpGq. Then the linear form

δ : ϕ ÞÑ ϕp1q
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is well-defined on E. Using the inner product induced on E by the L2-inner product, it
follows that there exists a unique ψ0 P E such that

δpϕq “ xϕ, ψ0y

for all ϕ P E. We conclude as in the proof of Theorem 2.7.26: for all ϕ P E and x P G,
we have

ϕpxq “ δp%Gpxqϕq “ x%Gpxqϕ, ψ0y “ fϕ,ψ0pxq,

so that ϕ “ fϕ,ψ0 . This shows that E is contained in the space of matrix coefficients of %.
Before going to the converse inclusion, we must prove Lemma 5.4.3:

Proof of Lemma 5.4.3. The basic idea is that continuous functions can be ob-
tained by averaging integrable functions, and that averaging translates of a given ϕ P E
(under the regular representation) leads to another function in E. This way we will show
that EXCpGq is dense in E (for the L2-norm), and since dimE ă `8, this implies that
E X CpGq “ E, which is what we want.

Thus, given ϕ P E, consider functions of the type

ϑpgq “

ż

G

ψpxqϕpgxqdµpxq

where ψ P L2pGq. If we write this as

ϑpgq “ xλGpg
´1
qϕ, ψy,

the strong continuity of the left-regular representation shows that ϑ is continuous. But
we can also write this expression, as

ϑ “

ż

G

ψpxq%Gpxqϕ dµpxq “ %Gpψqϕ,

using the action of L1 functions defined in Proposition 5.3.1 (since G is compact, any
square-integrable function is also integrable). This shows (using part (3) of the proposi-
tion) that ϑ P E X CpGq. Finally, by Proposition 5.3.5 applied to g “ 1, for any ε ą 0,
we can find ψ P L1pGq such that

}ϕ´ ϑ} “ }%Gp1qϕ´ %Gpψqϕ} ď ε,

and we are done. �

We have now proved (5.18), and must consider the converse. The problem is that, for
all we know, the set of finite-dimensional irreducible unitary representations of G might
be reduced to the trivial one! In other words, to prove the reverse inclusion, we need a
way to construct or show the existence of finite-dimensional representations of G.

The following exercise shows an “easy” way, which applies to certain important groups
(compact subgroups UnpCq.)

Exercise 5.4.4 (Groups with a finite-dimensional faithful representation). Let G be
a compact topological group which is a closed subgroup of GLnpCq for some n ě 1.

Show that the linear span of matrix coefficients of finite-dimensional irreducible rep-
resentations of G is a dense subspace of CpGq, using the Stone-Weierstrass Theorem (we
recall the statement of the latter in Section A.3). Deduce the Peter-Weyl Theorem from
this.
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The class of groups covered by this exercise is restricted (in the next chapter, we
describe another characterization of these groups and give examples of compact groups
which are not of this type). We now deal with the general case, by proving that the direct
sum

à

%

Mp%q

is dense in L2pGq. Equivalently, using Hilbert space theory, we must show that if ϕ P
L2pGq is non-zero, it is not orthogonal to all isotypic components Mp%q.

The basic motivation for what follows comes from looking at the case of the circle
group: when % varies, we expect the projection onto Mp%q to be given by a convolu-
tion operator that commutes with the regular representation; if we can find a non-zero
eigenvalue with finite multiplicity of this convolution operator, this will correspond to a
non-trivial projection.

The details are a bit more involved because the group G is not necessarily abelian. We
exploit the fact that Mp%q is stable under the left-regular representation λG: if ϕ KMp%q,
we have

xϕ, λGpgqfy “ 0

for all g P G and f P Mp%q. As a function of g, this is the convolution ϕ ‹ f̌ (see
Exercise 5.3.4). If we further note that, for a basic matrix coefficient fpgq “ x%pgqv, wy,
we have

f̌pgq “ x%pg´1qv, wy “ x%pgqw, vy

which is also a matrix coefficient, we can deduce that ϕ K Mp%q implies that ϕ ‹ f “ 0
for all f PMp%q.

It is therefore sufficient to prove that, for some finite-dimensional subrepresentation
E Ă L2pGq, the convolution operator

Tϕ : f ÞÑ ϕ ‹ f

is non-zero on E: if this is true, then since E is semisimple (Proposition 3.4.13), it
contains an irreducible subrepresentation % such that ϕ is not orthogonal to it.

For an arbitrary operator, this property might be very tricky, but by Exercise 5.3.4
again, we have also

Tϕpfq “ λGpϕqf,

so that Tϕ is an intertwiner of the regular representation (Exercise 5.3.3). As such, by
Schur’s Lemma, it acts by a scalar on any finite-dimensional subrepresentation. The
question is whether any of these scalars is non-zero, i.e., whether Tϕ has a non-zero
eigenvalue when acting on these finite-dimensional subspaces. Now here comes the trick:
we basically want to claim that the convolution form of Tϕ, abstractly, implies that
(provided ϕ ­“ 0) it has a non-zero eigenspace KerpTϕ ´ λq, with non-zero eigenvalue
λ, of finite dimension. If that is the case, then KerpTϕ ´ λq is a finite-dimensional
subrepresentation on which Tϕ is a non-zero scalar, and we deduce that ϕ is not orthogonal
to it.

To actually implement this we must change the operator to obtain a better-behaved
one, more precisely a self-adjoint operator. We form the function ψ “ ϕ̌‹ϕ, and consider
the convolution operator

Tψ “ λGpψq “ λGpϕq
˚λGpϕq.

Since the convolution product is associative, we see that KerpTϕq Ă KerpTψq, and
hence the previous reasoning applies to Tψ also: Tψ intertwines the regular representation
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with itself, and if there exists a finite-dimensional subrepresentation E such that Tψ acts
as a non-zero scalar on E, the function ϕ is not orthogonal to E.

But now Tψ is self-adjoint, and even non-negative since

xTψf, fy “ }Tϕf}
2
ě 0

for f P L2pGq. Moreover, writing

Tψfpxq “ λGpψqfpxq “

ż

G

ψpyqfpy´1xqdµpyq “

ż

G

ψpxy´1
qfpyqdµpyq

(by invariance of Haar measure), we see that Tψ is an integral Hilbert-Schmidt operator
on G with kernel

kpx, yq “ ψpxy´1
q

(as defined in Proposition A.2.5); this kernel is in L2pGˆG, µˆ µq (again by invariance
of Haar measure, its L2-norm is }ψ}). By Proposition A.2.5, it is therefore a compact
operator.

The operator Tψ is also non-zero, because ψ is continuous (Exercise 5.3.4 again)
and ψp1q “ }ϕ}2 ­“ 0 (by assumption), and because by taking f to be a normalized
characteristic function of a small enough neighborhood of 1, we have ψ ‹ f close to ψ,
hence non-zero (this is Proposition 5.3.5, applied to the left-regular representation). So
we can apply the spectral theorem (Theorem A.2.3, or the minimal version stated in
Proposition A.2.6) to deduce that Tψ has a non-zero eigenvalue λ with finite-dimensional
eigenspace KerpTψ ´ λq, as desired.

Remark 5.4.5. At the end of Section A.2, we prove – essentially from scratch – the
minimal part of the spectral theorem for compact self-adjoint operators which suffices
for this argument, in the case when the space L2pG, µq is separable (which is true, for
instance, whenever the topology of G is defined by a metric and thus for most groups
of practical interest; see [44, Pb. IV.43] for this.) Alternatively, Exercise A.2.4 asks to
prove the spectral theorem for compact self-adjoint operators starting from the general
version of Theorem 3.4.17; this illustrates the philosophy that this version encapsulates
all that is really needed to apply the spectral theorem in simple situations.

Exercise 5.4.6 (Another argument). Let G be a compact topological group with
probability Haar measure µ.

(1) Show directly that, for any g ­“ 1, there exists a finite-dimensional unitary repre-
sentation % of G such that %pgq ­“ 1. (We also state this fact formally in Corollary 5.4.8.)
[Hint: One can also use compact operators for this purpose.]

(2) Use this and the Stone-Weierstrass Theorem (Theorem A.3.1) to give a proof of
the Peter-Weyl theorem in the general case. (See Exercise 5.4.4.)

We now come to the proof of Corollary 5.4.2. This also requires the construction
of some finite-dimensional subrepresentations. The following lemma is therefore clearly
useful:

Lemma 5.4.7. Let G be a compact topological group, and let

% : G ÝÑ UpHq

be any non-zero unitary representation of G. Then % contains an irreducible finite-
dimensional subrepresentation.
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Proof. It suffices to find a non-zero finite-dimensional subrepresentation of H, since
it will in turn contain an irreducible one for dimension reasons. But we can not hope
to construct the desired subrepresentation using kernels or eigenspaces of intertwiners
this time (think of % being an infinite orthogonal direct sum of copies of the same ir-
reducible representation). Instead we bootstrap the knowledge we just acquired of the
regular representation, and use the following remark: if E Ă L2pGq is a finite-dimensional
subrepresentation of the left-regular representation and v P H, then the image

F “ tλGpϕqv | ϕ P Eu

of the action of E on v is a subrepresentation of H. Indeed, by (5.14), we have

%pgq%pϕqv “ %pλGpgqϕqv P F

for all ϕ P E and g P G. Obviously, the subspace F is a quotient of E (by the obvious
surjection ϕ ÞÑ %pϕqv), and hence is also finite-dimensional, and we will be done once we
ensure that we can find E such that the quotient space F is non-zero.

To do this, we fix any v ­“ 0, and basically use the fact that %p1qv “ v ­“ 0 is “almost”
in F . So we approximate %p1q using the L2-action: first of all, by Proposition 5.3.5, we can
find ψ P L2pGq such that %pψqv is arbitrarily close to %p1qv, in particular, we can ensure
that %pψqv ­“ 0. Further, using the Peter-Weyl Theorem, we can find a ψ1 P L

2pGq which
is a (finite) linear combination of matrix coefficients of finite-dimensional representations
and which approximates ψ arbitrarily closely in L2pGq. Since (Proposition 5.3.1, (1)) we
have

}%pψq ´ %pψ1q}LpHq ď }ψ ´ ψ1}L1 ď }ψ ´ ψ1}L2 ,

we get

}%pψ1qv}H ě }%pψqv}H ´ }ψ ´ ψ1}L2}v}H ,

which will be ą 0 if the approximation ψ1 is suitably chosen. Now take for E the
finite direct sum of the spaces Mp%q for the % which occur in the expression of ψ1 as a
combination of matrix coefficients: we have ψ1 P E, and E is a subrepresentation of the
left-regular representation with F ­“ 0 since it contains %pψ1qv ­“ 0. �

Proof of Corollary 5.4.2. First of all, Lemma 5.4.7 shows by contraposition
that all irreducible representations must be finite-dimensional (if % is infinite-dimensional,
the statement shows it is not irreducible). Then we also see that the “complete re-
ducibility” must be true: if reducibility failed, the (non-zero) orthogonal complement of
a “maximal” completely-reducible subrepresentation could not satisfy the conclusion of
the lemma. To be rigorous, this reasoning can be expressed using Zorn’s Lemma. We
give the details, though the reader may certainly think that this is quite obvious (or may
rather write his own proof). Let % : G ÝÑ UpHq be a unitary representation; consider
the set

O “ tpI, pHiqiPIqu

where I is an arbitrary index set, and Hi Ă H are pairwise orthogonal finite-dimensional
irreducible subrepresentations. This set is not empty, by Lemma 5.4.7. We order it by
inclusion: pI, pHiqq ď pJ, pH 1

jqq if and only if I Ă J and H 1
i “ Hi for i P I Ă J . This

complicated-looking ordered set is set up so that it is very easy to see that every totally
ordered subset P has an upper bound.7 By Zorn’s Lemma, we can find a maximal element

7 For the more natural set O1 of all “completely reducible subrepresentations” of H, ordered by
inclusion, checking this is more painful, because one is not keeping track of consistent decompositions of
the subspaces to use to construct an upper bound.
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pI, pHiqq in O. Then we claim that the subspace

H 1
“

K
à

iPI

Hi

is in fact equal to H, which is then exhibited as a Hilbert orthogonal sum of finite-
dimensional subspaces. Indeed, consider H2 “ pH 1qK Ă H. If this is non-zero, H2

contains a finite-dimensional subrepresentation, say H0, again by Lemma 5.4.7. But then
(assuming the index 0 is not in I...) we have

pI Y t0u, pHi, H0qq P O,

contradicting the maximality of pI, pHiqq. Thus H2 “ 0, which means that H 1 “ H as
claimed. �

We finally deduce some further corollaries of the Peter-Weyl theorem:

Corollary 5.4.8 (Separating points and completeness criteria). Let G be a compact
topological group with probability Haar measure µ.

(1) If g ­“ 1 is a non-trivial element of G, there exists a finite-dimensional unitary,
indeed irreducible, representation % of G such that %pgq ­“ 1.

(2) Suppose C is a given set of finite-dimensional irreducible unitary representations
of G. Then C is complete, i.e., contains all irreducible representations of G, up to iso-
morphism, if and only if the linear span M of the matrix coefficients of representations
% P C is dense in L2pG, µq, or equivalently, if M is dense in CpGq for the L8-norm.

(3) Suppose C is a given set of finite-dimensional irreducible unitary representations
of G; then C is complete if and only if we have the Plancherel formula

}ϕ}2 “
ÿ

%PC

}p%pϕq}
2

for all ϕ P L2pGq, where p% is the orthogonal projection on the isotypic component Mp%q.

As a matter of fact, the statement of the Peter-Weyl Theorem in the original paper
is that (3) holds (and the statement in Pontryagin’s version, a few years later, was the
density of M in CpGq!)

Proof. (1) The regular representation is faithful (Exercise 5.2.8), so for g ­“ 1, the
operator %Gpgq is not the identity. However, by the Peter-Weyl Theorem, %Gpgq is the
direct sum of the operators obtained by restriction to each Mp%q, which are just direct
sums of dimp%q copies of %pgq. Hence some at least among the %pgq must be distinct from
the identity.

The statement of (2) concerning the L2-norm is an immediate consequence of the
Peter-Weyl Theorem and Hilbert space theory: if M is not dense in L2pG, µq, the orthog-
onal complement of its closure is a non-zero subrepresentation of the regular represen-
tation, which must therefore contain some irreducible subrepresentation π. Because the
definition of M means that it is spanned by the Mp%q where % ranges over C, we must
have π R C.

Similarly, (3) is a direct translation of the Peter-Weyl Theorem using the theory of
Hilbert spaces.

For the part of (2) involving continuous functions, we recall that M is indeed a
subspace of CpGq. We must show that M is dense in CpGq for the L8-norm. This
can be thought of as an analogue of the classical Weierstrass approximation theorem for
trigonometric polynomials (which, indeed, corresponds to G “ S1), and one can indeed
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use (1) and the Stone-Weierstrass Theorem (this is the content of Exercise 5.4.6) to
establish this. �

Our last result in this section is a special case of Frobenius reciprocity for induced
representations.

Proposition 5.4.9 (Frobenius reciprocity for compact groups). Let G be a compact
topological group with probability Haar measure µ, and let K Ă G be a compact subgroup.
For any finite-dimensional unitary representations

%1 : G ÝÑ UpH1q, %2 : K ÝÑ UpH2q,

we have a natural isomorphism

HomGp%1, IndGKp%2qq » HomKpResGKp%1q, %2q.

Proof. We leave it to the reader to check that the proof of Proposition 2.3.8 can carry
through formally unchanged, provided one proves first that the image of any intertwiner

Φ : %1 ÝÑ IndGKp%2q

lies in the (image of) the subspace V0 of continuous functions used in the definition of
induced representations (see (5.9); note that all intertwiners constructed from right to left
by (2.28) have this property, because of the strong continuity of unitary representations,
so that Frobenius reciprocity can only hold in this form when this property is true.)

Since %1 is finite-dimensional, so is the image of Φ, and thus the statement is an
analogue of Lemma 5.4.3. We can reduce to this case: fixing an orthonormal basis peiq
of H2, and expressing any square-integrable function f : G ÝÑ H2 in the form

f “
ÿ

i

fiei

with fi P L
2pGq, the definition of the induced representation shows that we obtain an

embedding
"

IndGKp%2q ÝÑ L2pGqdim %2

f ÞÑ pfiq

where the right-hand side is the orthogonal direct sum of dim %2 copies of the regular
representation.

If Φ : %1 ÝÑ IndGKp%2q is an intertwiner, then the projection onto each component of
the image of Φ is a finite-dimensional subrepresentation of L2pGq. By Lemma 5.4.3, each
component fi of any f P ImpΦq is therefore continuous, and we deduce that ImpΦq Ă
V0. �

Exercise 5.4.10. Which of the other properties of induction can you establish for
compact groups?

5.5. Characters and matrix coefficients for compact groups

The reward for carefully selecting the conditions defining unitary representations of
compact groups and proving the analytic side of the Peter-Weyl Theorem is that, with
this in hand, character theory becomes available, and is just as remarkably efficient
as in the case of finite groups (but of course it is also restricted to finite-dimensional
representations).

We summarize the most important properties, using as before the notation pG for the
set of isomorphism classes of irreducible unitary representations of G.
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Theorem 5.5.1 (Character theory). Let G be a compact topological group, and let µ
be the probability Haar measure on G.

(1) The characters of irreducible unitary representations of G are continuous func-
tions on G, which form an orthonormal basis of the space L2pG7q of square-integrable
conjugacy-invariant functions on G. In particular, a set C of finite-dimensional irre-
ducible representations of G is complete, in the sense of Corollary 5.4.8, if and only if
the linear combinations of characters of representations in C are dense in L2pG7q.

(2) For any irreducible unitary representation π P pG of G, and any unitary represen-
tation

% : G ÝÑ UpHq

of G, the orthogonal projection onto the π-isotypic component of H is given by

Φπ “ pdimπq

ż

G

χπpgq%pgqdµpgq,

using the L1-action of Proposition 5.3.1.
In particular, if % is finite-dimensional, the dimension of the space %G of G-invariant

vectors in H is given by the average over G of the values of the character of %, i.e.,

dim %G “

ż

G

χ%pgqdµpgq.

(3) A unitary finite-dimensional representation % of G is irreducible if and only if
ż

G

|χ%pgq|
2dµpgq “ 1.

More generally, if %1 and %2 are finite-dimensional unitary representation of G, we
have

(5.19) xχ%1 , χ%2y “
ÿ

πP pG

nπp%1qnπp%2q,

where nπp%q “ xχ%, χπy is the multiplicity of π in %.

The reader should definitely try her hand at checking all these facts, without looking
at the proof, since they are analogues of things we know for finite groups. For the sake of
variety, we use slightly different arguments (which can also be applied to finite groups.)
First we compute the inner products of matrix coefficients:

Lemma 5.5.2. Let G be a compact group with probability Haar measure µ.
(1) If π1 and π2 are non-isomorphic irreducible unitary representations of G, any two

matrix coefficients of π1 and π2 are orthogonal in L2pGq.
(2) If π : G ÝÑ UpHq is an irreducible unitary representation of G and v1, w1, v2,

w2 are vectors in H, we have

(5.20)

ż

G

xπpgqv1, w1yxπpgqv2, w2ydµpgq “
xv1, v2yHxw2, w1yH

dimpHq
.

Proof. (1) A matrix coefficient of π1 (resp. π2) is a vector in the π1-isotypic com-
ponent (resp. π2-isotypic component) of the regular representation of G. These isotypic
components are orthogonal if π1 and π2 are not isomorphic (Lemma 3.4.20).

(2) Instead of arguing as we did in Chapter 4, we sketch a different argument: we
use the fact that the isotypic component Mpπq Ă L2pGq, under the action of %G b λG, is
isomorphic to the external tensor product πb π̄, as a representation of GˆG (this is the
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unitary version of the computation done in the proof of Theorem 4.2.5 for finite groups,
and the argument extends easily to compact groups.)

By Proposition 2.3.21, π b π̄ is an irreducible, and unitary, representation of GˆG.
In particular, there existsa unique pG ˆ Gq-invariant inner product on Mpπq, up to
multiplication by a positive scalar (see Exercise 3.4.19.) The L2-inner product, restricted
to Mpπq, is such an inner product, but so is the inner product induced by

xv1 b w1, v2 b w2y “ xv1, v2yHxw1, w2yH̄ “ xv1, v2yHxw2, w1yH

on H b H̄. Hence there exists some α ą 0 such that

(5.21)

ż

G

xπpgqv1, w1yxπpgqv2, w2ydµpgq “ αxv1, v2yHxw2, w1yH

for all vectors v1, w1, v2, w2. In order to compute α, we use the following trick: we fix an
arbitrary non-zero vector v P H, and take v1 “ v2 “ v and, successively, w1 “ w2 “ ei,
the elements of an orthonormal basis of H. We then sum the identity (5.21) over i, and
obtain

ÿ

i

ż

G

|x%pgqv, eiy|
2dµpgq “ α}v}2 dimpHq.

But the left-hand side is equal to
ż

G

ÿ

i

|x%pgqv, eiy|
2dµpgq “

ż

G

}πpgqv}2dµpgq “ }v}2,

using the orthonormality of the basis and the unitarity of πpgq. Hence, by comparison,
we get α “ 1{ dimpHq, which gives the statement (5.20). �

Proof of Theorem 5.5.1. (1) The space L2pG7q is a closed subspace of L2pGq.
The characters of finite-dimensional representations are (non-zero) continuous functions,

invariant under conjugation, and therefore belong to L2pG7q. Since the character of π P pG
lies in Mpπq (as a sum of matrix coefficients), the distinct characters are orthogonal, and
Lemma 5.5.2 actually shows that they form an orthonormal system in L2pG7q.

In order to show its completeness, we need only check that if ϕ P L2pG7q is conjugacy-
invariant, its isotypic components, say ϕπ, are multiples of the character of π for all
irreducible representations π. This can be done by direct computation, just as in the case
of finite groups (Section 4.3.3), but we sketch again a different argument.

It is enough to prove that the spaceMpπqXL2pG7q, in which ϕπ lies, is one-dimensional,
since we already know that χπ is a non-zero element of it. But we can see this space
MpπqXL2pG7q as the invariant subspace of Mpπq when G acts on L2pGq by the diagonal
or conjugation combination of the two regular representations, i.e.,

%pgqϕpxq “ ϕpx´1gxq

for ϕ P L2pGq. Let H be the space on which π acts. The isotypic component Mpπq
is isomorphic to H b H̄ » EndpHq as a vector space, and the corresponding action
on EndpHq is the usual representation of G on an endomorphism space. Thus the G-
invariants of Mpπq under the action % correspond to the space of G-invariants in EndpHq,
which we know is EndGpHq “ CId, by Schur’s Lemma. This shows that it has dimension
1, as claimed.

(2) Because characters are conjugacy-invariant, the action of Φπ on a unitary repre-
sentation is an intertwiner (Exercise 5.3.3). In particular, Φπ acts by multiplication by a
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scalar on every irreducible unitary representation % P pG. This scalar is equal to the trace
of Φπ acting on %, divided by dimπ. Since the trace is given by

pdimπq

ż

G

χπpgqχ%pgqdµpgq,

which is equal to 0 if π is not isomorphic to %, and to dim π otherwise (by orthonormality
of characters), we see that Φπ is the identity on the π-isotypic component of any unitary
representation, while it is zero on all other isotypic components. This means that it is
the desired projection.

(3) If % is a finite-dimensional unitary representation of G, we have

χ% “
ÿ

πP pG

nπp%qχπ,

and by orthonormality of the characters we find

xχ%, χπy “ nπp%q

for π P pG. Again orthonormality implies that the formula (5.19) is valid. Applied to
%1 “ %2 “ %, this gives

}χ%}
2
“

ÿ

πP pG

nπp%q
2.

Each term in this sum is a non-negative integer, hence the L2-norm is equal to 1 if
and only if a single term, say nπp%q, is non-zero, and in fact equal to 1, which means that
% is isomorphic to π. �

Exercise 5.5.3 (Paradox?). Explain why Part (2) of Theorem 5.5.1 does not conflict
with the result of Exercise 3.1.5 when G is infinite (note that the action of the projection
Φπ is not given by an element of the group algebra CpGq as defined in Section 3.1).

Exercise 5.5.4. Let % : G ÝÑ UpHq be a unitary representation of a compact
group G, such that, for any f P L2pGq, the operator %pfq on H is compact. Show that

the multiplicity of any irreducible representation π P pG is finite in H.

Remark 5.5.5 (Less duality). All the statements, except for the care needed with
L2-theory, are exactly identical with those which are valid for finite groups. There is,
however, at least one sharp difference: there is no good analogue of the second orthogo-
nality formula of Corollary 4.4.1, which expresses the orthogonality of the columns of the
character table of a finite group: the expression

ÿ

%P pG

χ%phqχ%pgq

for g, h P G, does not make sense – in general – in any usual sense (i.e., when G is infinite,
this is usually a divergent series.) In other words, the duality between conjugacy classes
and irreducible representations is even fuzzier than was the case for finite groups.

Other features of the representations of finite groups that are missing when G is
infinite are those having to do with integrality properties (though it is tempting to think
that maybe there should be some analogue?)

In addition to character theory, matrix coefficients remain available to describe or-
thonormal bases of L2pG, µq. We present this in two forms, one of which is more intrinsic
since it does not require a choice of basis. However, it gives an expansion of a different
nature than an orthonormal basis in Hilbert space, which is not so well-known in general.
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Theorem 5.5.6 (Decomposition of the regular representation). Let G be a compact
topological group and let µ be the probability Haar measure on G.

(1) For π P pG, fix an orthonormal basis peπ,iq1ďiďdimpπq of the space of π. Then the
family of matrix coefficients

ϕπ,i,jpgq “
a

dimpπqxπpgqeπ,i, eπ,jy

form an orthonormal basis of L2pG, µq, where π runs over pG and 1 ď i, j ď dim π.

(2) For π P pG, acting on the space Hπ, consider the map

Aπ

$

&

%

L2pGq ÝÑ EndpHπq

ϕ ÞÑ

ż

G

ϕpgqπpg´1
qdµpgq,

Then the Aπ give “matrix-valued” Fourier coefficients for ϕ, in the sense that

ϕpxq “
ÿ

πP pG

pdimπqTrpAπpϕq ˝ πpxqq,

for all ϕ P L2pGq, where this series converges in L2pG, µq.

Proof. The first statement (1) is a consequence of the Peter-Weyl theorem and the
orthogonality of matrix coefficients.

The second statement is easy enough to prove: given ϕ P L2pGq, we have an L2-
convergent series

ϕ “
ÿ

πP pG

ϕπ,

where ϕπ is the orthogonal projection of ϕ on the π-isotypic component. We compute it
using the projection formula of Theorem 5.5.1 applied to the regular representation and
to the irreducible representation π. Using the unitarity, this gives

ϕπpxq “ pdimπq

ż

G

χπpgq%Gpgqϕpxqdµpgq

“ pdimπq

ż

G

χπpg
´1
qϕpxgqdµpgq

“ pdimπqTr
´

ż

G

ϕpxgqπpg´1
qdµpgq

¯

“ pdimπqTr
´

ż

G

ϕpyqπpy´1xqdµpyq
¯

“ pdimπqTr
´´

ż

G

ϕpyqπpy´1
qdµpyq

¯

πpxq
¯

“ pdim πqTrpAπpϕqπpxqq,

as claimed. �

We can see the second statement as another formulation of the Peter-Weyl decompo-
sition, since the summands g ÞÑ TrpAπpϕqχπpgqq are elements of Mpπq. The advantage of
this version is that we obtain an intrinsic decomposition without having to select a basis
of the spaces of irreducible representations.

Exercise 5.5.7 (G-finite vectors). Let G be a compact group with probability Haar
measure µ, and let

% : G ÝÑ UpHq

be a unitary representation of G. A vector v P H is called G-finite if the subrepresentation
generated by v is finite-dimensional.
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(1) Show that the space H1 of G-finite vectors is stable under G, and that it is dense
in H. When is it closed?

(2) Show that a function f P L2pG, µq is a G-finite vector of the regular representation
if and only if f is a finite linear combination of matrix coefficients of irreducible unitary
representations of G. (These functions are the analogues, for G, of the trigonometric
polynomials in the case of the circle group S1.)

(3) Prove the analogue for a unitary representation % of a compact group G of the
property described in Exercise 4.3.30 for finite groups: for any irreducible representation
π and any vector v in the π-isotypic component of %, the subrepresentation generated by
v is the direct sum of at most dimpπq copies of π.

5.6. Some first examples

We present in this section some simple examples of characters of compact groups.

Example 5.6.1 (Representations of SU2pCq). The most basic example of non-abelian
compact group is the group SU2pCq Ă SL2pCq. We have already seen that it has irre-
ducible representations %m of degree m` 1 for all integers m ě 0, obtained by restricting
the representation of SL2pCq on homogeneous polynomials in two variables (see Sec-
tion 2.6.1 and Exercise 2.7.13).

The concrete incarnation of the Peter-Weyl theorem in that case is the fact that these
represent all irreducible representations of SU2pCq. We state this formally:

Theorem 5.6.2 (Irreducible representations of SU2pCq). The only irreducible unitary
representations of SU2pCq are given by the representations %m described above. We have
dim %m “ m` 1 and the character χm of %m is given by

(5.22) χm

´

ˆ

eiθ 0
0 e´iθ

˙

¯

“
sinppm` 1qθq

sin θ

for θ P r0, πs.

Proof. The definition of %m makes it clear that it is a continuous representation.
Thus we must check that there are no other irreducible unitary representation of SU2pCq
than those. We will use the completeness criterion from character theory (Theorem 5.5.1)
to do this (there are other methods, the most elegant and most adapted to generalizations
being the analysis of the representations of the Lie algebra of SU2pCq, which is very closely
related to Theorem 3.2.5).

The set SU2pCq
7 of conjugacy classes in SU2pCq can be identified with the interval

r0, πs using the map

c

$

&

%

r0, πs ÝÑ SU2pCq
7

θ ÞÑ

ˆ

eiθ 0
0 e´iθ

˙

.

Indeed, this follows from the diagonalizability of unitary matrices in an orthonormal
basis. Precisely, any g P SU2pCq is conjugate in U2pCq to such a matrix for some
θ P R, say g “ xcpθqx´1. By replacing x with αx for some α P C, we can ensure that
detpxq “ 1, i.e., that x P SU2pCq. Finally, by periodicity, we can assume θ P r´π, πs, and

by conjugating by

ˆ

0 1
´1 0

˙

, which replaces θ by ´θ, we see that we may assume that

θ P r0, πs. Finally, the element θ is then unique, because the trace of cpθq is a conjugacy
invariant, and Tr cpθq “ 2 cos θ, which is an injective function on r0, πs.
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In terms of this identification of SU2pCq
7, it is not very difficult to check that for two

(square-integrable) class functions ϕ1, ϕ2, we have
ż

G

ϕ1pgqϕ2pgqdµpgq “
2

π

ż π

0

ϕ1pcpθqqϕ2pcpθqq sin2 θdθ,

and of course we already checked (in (2.50)) that

χmpcpθqq “
sinppm` 1qθq

sin θ
.

This means that we are reduced to showing that the functions

ϕmpθq “
sinppm` 1qθq

sin θ
, m ě 0,

form an orthonormal basis of the space H “ L2pr0, πs, 2
π

sin2 θdθq. Because this is close
enough to classical Fourier series, we can do this by hand, by reduction to a Fourier
expansion, and therefore finish the proof.

Let ϕ P H be given; we define a function ψ on r´π, πs by

ψpθq “

#

ϕpθq sin θ if θ ě 0,

ϕp´θq sin θ if θ ď 0,

(i.e., we extend the function ϕpθq sin θ so that it is an odd function.) By definition of
H, we see that ψ P L2pr´π, πs, dθq. We can therefore expand ψ in Fourier series in this
space: we have

ψpθq “
ÿ

hPZ

αhe
ihθ

in L2pr´π, πsq, with

αh “
1

2π

ż π

´π

ψpθqe´ihθdθ.

Since ψ is odd, we have αh “ ´α´h, and in particular α0 “ 0, hence the Fourier
expansion on r0, πs takes the form

ϕpθq sin θ “
ÿ

hě1

αh2i sinphθq “ 2i
ÿ

mě0

αm`1 sinppm` 1qθq,

i.e.,

ϕ “ 2i
ÿ

mě0

αm`1ϕm

in L2pr0, πs, 2
π

sin2 θdθq. Since we already know that the ϕm are an orthonormal system
in this space, it follows that they form an orthonormal basis, as we wanted to prove. �

Using character theory, we can check the Clebsch-Gordan formula for SU2pCq in a
single stroke of the pen (compare with the proof of Theorem 2.6.3 that we sketched
earlier):

Corollary 5.6.3 (Clebsch-Gordan formula for SU2pCq). For all m ě n ě 0, the
representations %m of SU2pCq satisfy

%m b %n »
à

0ďiďn

%m`n´2i.
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Proof. One might say it is a matter of checking the identity at the level of characters,
i.e., of proving the elementary formula

sinppm` 1qθq

sin θ

sinppn` 1qθq

sin θ
“

ÿ

0ďiďn

sinppm` n´ 2iqθq

sin θ

for all θ P r0, πs. But more to the point, character theory explains how to guess (or find)
such a formula: by complete reducibility and orthonormality of characters, we know that

%m b %n »
à

0ďkďmn´1

xχmχn, χky%k,

(the restriction of the range comes from dimension considerations), and we are therefore
reduced to computing the multiplicities

xχmχn, χky “
2

π

ż π

0

sinppm` 1qθq

sin θ

sinppn` 1qθq

sin θ

sinppk ` 1qθq

sin θ
sin2

pθqdθ.

This is, of course, an elementary – if possibly boring – exercise. �

Using the coordinates in (5.7) on SU2pCq, it is also possible to see how the representa-
tions %m, defined as acting on polynomials, can be embedded in the regular representation.
Indeed, if we see the coordinates pa, bq P C2 of some element g P SU2pCq as a row vector
(with coefficients subject to the condition |a|2 ` |b|2 “ 1), a direct matrix multiplication
shows that the row vector corresponding to a product gh is the same as the vector-matrix
product pa, bqh. If we restrict a polynomial P P CrX, Y s to pX, Y q “ pa, bq, this gives
an intertwiner from Vm to a space of continuous functions on SU2pCq. Since this map is
non-zero (any basis vector X iY m´i restricts to a non-zero function), it is an injection

Vm ãÑ L2
pSU2pCqq.

According to Vilenkin [58], it was first observed by É. Cartan that matrix coefficients
or characters of irreducible representations of certain important groups lead to most of
the “classical” special functions8 (of course, the fact that the exponential function is a
representation of the additive group of C, or of R by restriction, is an even older phenom-
enon that has the same flavor.) We present here some simple instances, related to the
group SU2pCq, and another case of this phenomenon will be described in Exercise 7.4.14
in Section 7.4; more information about these, as well as many additional examples, are
found in [58].

We begin with the characters of SU2pCq. As functions of the parameter θ describing
the conjugacy class, they are of course completely elementary, but a change of variable
adds more subtlety:

Definition 5.6.4 (Chebychev polynomials). For m ě 0, there exists a polynomial
Pm P RrXs, of degree m, such that

χmpθq “ Pmp2 cos θq, 0 ď θ ď π,

i.e., such that

(5.23)
sinppm` 1qθq

sinpθq
“ Pmp2 cos θq,

and the polynomial Um “ PmpX{2q is called the m-th Chebychev polynomial of the second
kind.

8 Especially the functions that arise in mathematical physics, e.g., Bessel functions.

236



The fact that the characters of SU2pCq form an orthonormal basis of the space of
class functions translates into the following fact:

Proposition 5.6.5 (Chebychev polynomials as orthogonal polynomials). The restric-
tions to r´1, 1s of the polynomials Um, m ě 0, form an orthonormal basis of the space
L2pr´1, 1s, dνq, where ν is the measure supported on r´1, 1s given by

dνptq “
2

π

?
1´ t2dt.

The justification for this substitution is that the Chebychev polynomials arise in
many applications completely independently of any (apparent) consideration of the group
SU2pCq. On the other hand, algebraic properties of the representations %m can lead to
very simple (or very natural) proofs of identities among Chebychev polynomials which
might otherwise look quite forbidding if one starts from the definition (5.23), and even
more if one begins with an explicit (!) polynomial expansion.

Example 5.6.6. The first few Chebychev polynomials Um are

U0 “ 1, U1 “ 2X, U2 “ 4X2
´ 1,

U3 “ 8X3
´ 4X, U4 “ 16X4

´ 12X2
` 1, . . .

(as one can prove, e.g., by straightforward trigonometric manipulations...)

Exercise 5.6.7 (Playing with Chebychev polynomials). In this exercise, we express
the Clebsch-Gordan formula for %mb%n in terms of expansions of Chebychev polynomials,
and deduce some combinatorial identities.

(1) Show that we have

Um “
ÿ

0ďjďm{2

p´1qj
ˆ

m´ j

m´ 2j

˙

p2Xqm´2j

for all n ě 0. [Hint: It is helpful here to interpret the Chebychev polynomials in terms of
characters of the larger group SL2pCq.]

(2) Using the Clebsch-Gordan decomposition, show that for m ě n ě 0, we have

UmUn “
n
ÿ

k“0

Um`n´2k.

(3) Deduce that for m ě n ě 0, and k ď pm` nq{2, we have
ÿ

i`j“k
iďm{2,jďn{2

p´1qi`j
ˆ

m´ i

m´ 2i

˙ˆ

n´ j

n´ 2j

˙

“
ÿ

``t“k
`ďn

p´1qt
ˆ

m` n´ 2`´ t

m` n´ 2k

˙

.

Example 5.6.8 (Representations of SO3pRq). The group SO3pRq of rotations in a
3-dimensional euclidean space is also very important in applications (we will see it appear
prominently in the analysis of the hydrogen atom in Section 6.4). As it turns out, it is very
closely related to the group SU2pCq, and this allows us to find easily the representations
of SO3pRq from those of SU2pCq.

Proposition 5.6.9. There exists a continuous surjective group homomorphism

p : SU2pCq ÝÑ SO3pRq

such that Ker p “ t˘1u Ă SU2pCq has order 2. As a consequence, the irreducible unitary
representations of the group SO3pRq are representations π`, ` ě 0, of dimension 2` ` 1,
determined by the condition π` ˝ p “ %2l.
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Partial proof. One can write explicitly p in terms of matrices; crossing fingers to
avoid typing mistakes, and using the usual expression

ˆ

a b
´b̄ ā

˙

of a matrix g P SU2pCq, for some a, b P C with |a|2 ` |b|2 “ 1, this takes the form

(5.24) p
´

ˆ

x` iy u` iv
´u` iv x´ iy

˙

¯

“

¨

˝

px2 ` y2q ´ pu2 ` v2q 2pyv ` xuq ´2pxv ´ yuq
´2pxu´ yvq x2 ´ y2 ´ u2 ` v2 2pxy ` uvq
2pxv ` yuq ´2pxy ´ uvq x2 ´ y2 ` u2 ´ v2

˛

‚

but that is about as enlightening as checking by hand the associativity of the product of
matrices of fixed size four or more; a good explanation for the existence of p is explained
in Remark 6.3.10 in the next chapter, so we defer a reasonable discussion of this part
of the result (see also [53, §4.3] for a down-to-earth approach). Note at least that the
formula makes it easy to check that ppgq “ 1 if and only if g “ 1 or ´1.

On the other hand, given the existence of p, we notice that if % is any irreducible
unitary representation of SO3pRq, then % ˝ p is an irreducible unitary representation of
SU2pCq. By the previous classification, it is therefore of the form %m for some m ě 0.
The question is therefore: for which integers m ě 0 is %m of the form % ˝ p? The answer
is elementary: this happens if and only if Kerppq Ă Kerp%mq, and since Kerppq has only
two elements, this amounts to asking that %mp´1q “ 1. The answer can then be obtained
from the explicit description of %m, or by character theory using (5.22): ´1 corresponds
to θ “ π and we have

χmp´1q “ lim
θÑπ

sinppm` 1qθq

sinpθq
“ p´1qm,

so that %m is obtained from an irreducible representation of SO3pRq if and only if m “ 2`
is even. Since different values of ` ě 0 lead to representations of different dimension, this
gives the desired correspondence. �

Example 5.6.10 (Infinite direct products). The following class of examples does not
occur so often in basic applications, but it is enlightening. By Proposition 2.3.21 (and
unitarizability, and the fact that irreducible representations of compact groups are finite-
dimensional), we see that the irreducible unitary representations of a direct product
G1 ˆG2 of compact groups are of the form

%1 b %2,

where %1 (resp. %2) ranges over the representations in xG1 (resp. xG2). This extends
naturally to a similar statement for an arbitrary finite product G1 ˆ ¨ ¨ ¨ ˆ Gk, with
irreducible representations

%1 b ¨ ¨ ¨b %k.

We will now extend this idea to infinite products of compact groups. Let I be an
arbitrary index set (the interesting case being when I is infinite, say the positive integers),
and let pGiqiPI be any family of compact topological groups indexed by I (for instance,
the family pGL2pFpqqp, where p runs over primes). The product group

G “
ź

iPI

Gi
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can be given the product topology. By Tychonov’s Theorem (see, e.g., [44, Th. IV.5]),
this is a compact topological space. One can check that the product on G is continuous,
and hence G is a compact topological group. We now determine its irreducible unitary
representations.

There is an abundance of irreducible representations arising from the finite products
of the groups: for any finite subset J Ă I, we have the projection homomorphism

(5.25) pJ :

"

G ÝÑ GJ “
ś

iPJ Gi

pgiqiPI ÞÑ pgjqiPJ

which is continuous (by definition of the product topology), so that any irreducible uni-
tary representation b

iPJ
%i of the finite product GJ gives by composition an irreducible

representation of G, with character

χppgiqq “
ź

iPJ

χ%ipgiq.

Some of these representations are isomorphic, but this only happens when a compo-
nent %i is trivial, in which case we might as well have constructed the character using
GJ´tiu (we leave a formal proof to the reader!) In other words, we have a family of irre-
ducible representations parametrized by a finite – possibly empty – subset J of I, and a
family p%iqiPJ of non-trivial irreducible unitary representations of the groups Gi, i P J .
In particular, the trivial representation of G arises from I “ H, in which case GJ “ 1.

We now claim that these are the only irreducible unitary representations of G. This
statement is easy to prove, but it depends crucially on the topological structure of G. For
the proof, we use the completeness criterion from Peter-Weyl theory (Corollary 5.4.8),
by proving that the linear span (say V ) of the matrix coefficients of those known repre-
sentations is dense in L2pGq.

For this purpose, it is enough to show that the closure of V contains the continuous
functions, since CpGq is itself dense in L2pGq. Let therefore ϕ be continuous on G.
The main point is that the product topology imposes that ϕ depends “essentially” only
on finitely many coordinates. Precisely, let ε ą 0 be arbitrary. Since G is compact,
the function ϕ is in fact uniformly continuous, in the sense that there exists an open
neighborhood U of 1 such that

|ϕpgq ´ ϕphq| ď ε

if gh´1 P U .9 The definition of the product topology shows that, for some finite subset
J Ă I, the open set U contains a product set

V “ tpgiqiPI | gi P Vi for i P Ju

for suitable open neighborhoods Vi of 1 in Gi. Intuitively, up to a precision ε, it follows
that ϕ “only depends on the coordinates in J”. Let then

ϕJpgq “ ϕpg̃q

where g̃i “ gi for i P J and g̃i “ 1 otherwise. Since gg̃´1 P V , this function on G satisfies

|ϕpgq ´ ϕJpgq| ď ε

for all g P G.

9 We leave the proof as an exercise, adapting the classical case of functions on compact subsets of
R.
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But now, ϕJ can be identified with a function on GJ . Then, by the Peter-Weyl
theorem, we can find a linear combination ψ of matrix coefficients of representations of
GJ such that

}ψ ´ ϕJ}L2pGJ q ď ε.

But it is quite easy to see that the probability Haar measure µ on G is such that its
image under the projection pJ is the probability Haar measure µJ on GJ . This means
that when we see ψ (and again ϕJ) as functions on G, we still have

}ψ ´ ϕJ}L2pGq ď ε.

Putting these inequalities together, we obtain

}ϕ´ ψ}L2pGq ď 2ε,

and as ε was arbitrary, we are done.
In Exercise 6.1.4 in the next chapter, we present a slightly different proof, which

directly shows that an irreducible unitary representation of G must be of the “known”
type.
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CHAPTER 6

Applications of representations of compact groups

This chapter presents some applications of the representation theory of compact
groups.

6.1. Compact Lie groups are matrix groups

The first application we present is a rather striking fact of differential geometry: the
identification of compact Lie groups with compact subgroups of the linear matrix groups
GLnpCq. We recall the definition of Lie groups first:

Definition 6.1.1 (Lie group). A Lie group G is a topological group which is also a
topological manifold, i.e., for every g P G, there exists an open neighborhood of g which
is homeomorphic to an open ball in some euclidean space Rn, n ě 0.

To be more precise, this is the definition of a “topological” Lie group, which we use
because it is self-contained. One can also define smooth (or real-analytic) Lie groups by
asking that a topological group be also a smooth (resp. real-analytic) manifold such that
the product and inverse maps are smooth (resp. analytic). This differential aspect will
be used in Section 6.2 below.

The main result of this section is the fact that a much stronger-looking definition
leads to the same class of groups, in the compact case.

Theorem 6.1.2 (Compact Lie groups are matrix groups). A topological group G is
a compact Lie group if and only if there exists some n ě 1 such that G is homeomorphic
to a closed subgroup of UnpCq, or equivalently to a compact subgroup of GLnpCq.

The proof of this result is a very nice combination of basic facts of the theory of Lie
groups and of the Peter-Weyl theory. The statement is very powerful: in particular, note
that for a closed subgroup of GLnpCq, the multiplication map is not only continuous (as
required by the condition that G be a topological group) but smooth in an obvious sense,
or indeed even polynomial in terms of the coefficients of the matrix arguments.

Example 6.1.3. (1) Because of the theorem, it is not surprising (!) that all examples
of compact Lie groups that one can write directly are, in fact, obviously compact matrix
groups. Such are UnpCq, its subgroup SUnpCq, or the subgroup Tn Ă SUnpCq of diagonal
matrices, which can be identified also with the torus pR{Zqn. One can also consider the
group of real orthogonal matrices OnpRq, which can be seen as SUnpCq X GLnpRq, or
the unitary symplectic group USp2gpCq Ă GL2gpCq, for g ě 1, which consists of unitary
matrices of size 2g preserving a fixed non-degenerate alternating bilinear form.

(2) One can also give many examples of compact topological groups which are not
Lie groups, though it is maybe not immediately obvious that they can not be embedded
in a matrix group in any way – this becomes another consequence of the theorem. The
infinite products considered in Example 5.6.10, namely

G “
ź

iPI

Gi, Gi ­“ 1,
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are of this type, provided I is infinite and infinitely many among the Gi are non-trivial
(for the simplest example, take I to be countable and Gi “ Z{2Z for all i). Indeed, from
the description of the irreducible unitary representations of G in Example 5.6.10, we see
that for every irreducible representation % of G, there exists a finite subset J Ă I such
that

ker % Ą GpJq “
ź

iRJ

Gi.

A finite-dimensional representation of G, which is a direct sum of finitely many such
representations, therefore has kernel containing a finite intersection

GpJ1q X ¨ ¨ ¨ XGpJkq

of such subgroups, and the latter contains GpJq for J “ J1Y¨ ¨ ¨YJk, which is a non-trivial
group since J is finite, and hence I ´ J is not empty. Thus G has no finite-dimensional
faithful representation.

(3) Another example is the following group, which is called the group of p-adic integers
(this groups and its relatives are of considerable importance in number theory). Let p be
a fixed prime number, and consider first the infinite product

Gp “
ź

kě1

Z{pkZ

and then the subgroup

Zp “ tpxkq P Gp | xk`1 ” xk pmod pkq for all k ě 0u Ă Gp

(to see examples of elements of Zp, take any x P Z, and consider xk “ x pmod pkq for all
k ě 0; then pxkq P Zp.)

It is again an exercise to check that Zp is a closed subgroup of Gp, and hence a
compact topological group. It is an abelian group, and one can see as follows that it
does not have a faithful finite-dimensional representation. First, since Zp is abelian, its
irreducible unitary representations are one-dimensional. Then we note that if χ is a
character of Zp, there exists an integer j ě 1 such that

Kerχ Ą tpxkq P Zp | xj “ 0u

(note that if xj “ 0, then x1 “ 0, . . . , xj´1 “ 0, each in its respective group Z{pZ, . . . ,
Z{pj´1Z). Indeed, the sets

Uj “ tpxkq P Zp | xj “ 0u

form a fundamental system of neighborhoods of 0 in Zp, and hence, by continuity of χ,
there exists j ě 0 such that χpUjq is contained in the open neighborhood

V “ S1
X tz P C | |z ´ 1| ă 1{2u

of 1 in S1. But then, since Uj is a subgroup of Zp, the set χpUjq is a subgroup of S1

contained in V . But it is elementary that t1u is the only such subgroup, which means
that Uj Ă Kerχ, as claimed.

We conclude with an argument quite similar to that in Example 5.6.10: the kernel
of any finite direct sum of characters of Zp will also contain a subgroup of the type Uj,
and hence such a representation is not faithful (since, for instance, the image in Zp of a
non-zero integer x ” 0 pmod pjq is a non-trivial element of Uj.)

Exercise 6.1.4 (No small subgroups in unitary groups). (1) Show that in any unitary
group UnpCq, there is a neighborhood V of 1 which contains no non-trivial subgroup.
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(2) Use this to reprove the result of Example 5.6.10 by directly showing that any
irreducible representation of an infinite product of compact groups is of the “known”
form % ˝ pJ , with notation as in (5.25).

The group Zp is abelian, and also carries an extra structure: Zp is also a topological
ring, with coordinate-wise multiplication, and one can therefore define other groups like

SL2pZpq “

!

ˆ

a b
c d

˙

| a, b, c, d P Zp, ad´ bc “ 1u.

With the group structure coming from matrix multiplication and the induced topology
from the product topology on Z4

p, this is again a compact topological group (it is a closed

subset of the compact space Z4
p). Of course, it is non-abelian.

We conclude by mentioning that the similarity between the two counter-examples is
not accidental. In fact, deep results of Gleason, Montgomery-Zippin and Yamabe imply
that a locally compact topological group G is a Lie group if and only if contains no small
subgroups, i.e., if there is a neighborhood of 1 in G containing no non-trivial subgroup.

We come now to the proof of the theorem. For this, we will need to use without
proof the following facts concerning Lie groups (which are proved in all textbooks on Lie
theory, for instance [32]):
– A Lie group G has a well-defined dimension dimpGq, a non-negative integer, which is
the dimension of G as a manifold; for instance

dimpRq “ 1, dimpGLnpRqq “ n2, dimpGLnpCqq “ 2n2

(the last case illustrates that the dimension involved is that of G as a real manifold.)
– A compact Lie group G has only finitely many connected components; in particular, if
G is compact, we have dimpGq “ 0 if and only if G is a finite group (which is a compact
Lie group with the discrete topology).
– If H Ă G is a closed subgroup of a Lie group, then in fact H is a submanifold, and H
is itself (with the induced topology) a Lie group.
– In the same situation whereH Ă G is a closed subgroup, we have in particular dimpHq ď
dimpGq, and if there is equality, the subgroup H is a union of some of the connected
components of G; especially, if H and G are both connected, we have H “ G.

Now we embark on the proof...

Proof of Theorem 6.1.2. It is enough to prove the following statement, which
introduces representation theory: if G is a compact Lie group, there exists a finite-
dimensional faithful representation

% : G ÝÑ GLpEq

of G; indeed, fixing a basis of E, % is then an injective homomorphism of G into GLnpCq
with n “ dimpEq. Since G is compact, % is an homeomorphism onto its image, which is
therefore a compact subgroup of GLnpCq, and with respect to an inner product for which
% is unitary, this image is in fact a subgroup of UnpCq.

The basic idea is now to use the fact that Peter-Weyl theory provides us with many
finite-dimensional representations of G, indeed enough to separate points, which means
that for every g P G, g ­“ 1, there is at least one finite-dimensional representation %g such
that %gpgq ­“ 1. If g is also in the connected component of 1 in G, then Ker %g will be a
closed subgroup of G with strictly smaller dimension, and we can argue (essentially) by
induction on the dimension.
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We present this idea slightly differently, merely for the sake of diversity. Let d ě 0
be the minimal dimension of the kernel of some finite-dimensional representation % of G.
We claim that d “ 0; if that is the case, and % is such that dim Ker % “ 0, we see by
the facts above that the kernel is a finite subgroup of G (possibly trivial, of course). But
then we can also consider the representation

%‘
à

gPKer %
g ­“1

%g,

which is still finite-dimensional and is now faithful.
Let % be such that the kernel H of % has dimension d. Now assume, for contradiction,

that dimH “ dim Ker % ě 1. Then we can find some h P H which is not trivial, but is in
the connected component of H containing 1. Then

Kerp%‘ %hq “ H XKer %h

is a proper subgroup of H. Its dimension is ď dimpHq. But it can not be equal: by the
facts recalled before the proof, this would only be possible if the connected component
of 1 in H coincided with that in H X Ker %h, which is not the case as h is in one, but
not the other! Thus dim Kerp% ‘ %hq ă dimH “ d, and this is a contradiction with the
definition of d, which means the supposition that d ě 1 is untenable. �

6.2. The Frobenius-Schur indicator

The results in this section apply equally well (and are of interest!) for finite groups.
The basic issue they address is the following: given a finite-dimensional (complex) rep-
resentation

% : G ÝÑ GLpEq

of a compact group G, does there exist on E a symmetric, or alternating, non-degenerate
bilinear form b which is invariant under G, i.e., such that

bp%pgqv, %pgqwq “ bpv, wq

for all g P G and v, w P E? This question should be contrasted with the unitarizability
of %, which can be interpreted partly as saying that there is always on E an invariant
non-degenerate (positive-definite) hermitian form. As a first illustration of the techniques
that will be used, we spell out the following algebraic version of this fact:

Proposition 6.2.1. Let G be a compact group, % : G ÝÑ GLpEq an irreducible
finite-dimensional complex representation of G. Then there exists, up to multiplication
by a positive scalar, a unique G-invariant hermitian form b on E.

Proof. Because we know that % is unitarizable, the only thing we need to explain
is the uniqueness. We can deduce this from Schur’s Lemma (in a way similar to Exer-
cise 3.4.19), or use an argument from character theory which is also instructive. The
group G acts on the vector space S of hermitian forms on E by

pg ¨ bqpv, wq “ bp%pg´1
qv, %pg´1

qwq,

and we wish to show that SG is one-dimensional.
The point is that the character of the action of G on S is g ÞÑ |χ%pgq|

2 (we leave this
as an exercise; the arguments in the proof of Theorem 6.2.3 are very similar.) Then the
dimension formula for invariants of representations of G give

dimSG “

ż

G

|χ%pgq|
2dµpgq “ 1
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(where µ is the probability Haar measure on G) by orthonormality of characters. �

It is tempting to consider the real and imaginary parts of an invariant hermitian form
to construct symmetric and alternating forms; however, these are only R-bilinear!

Definition 6.2.2. Let G be a group and let % : G ÝÑ GLpEq be a finite-dimensional
complex representation of G. One says that % is of orthogonal type if there exists a G-
invariant, non-degenerate, symmetric bilinear form on E, and that % is of symplectic type
if there exists a G-invariant, non-degenerate, alternating bilinear form on E. If neither
of these possibilities holds, we say that % is of complex type.

Note that we do not exclude a priori the possibility that a representation could be
of more than one type. However, for irreducible representations of compact groups, this
does not occur:

Theorem 6.2.3 (Frobenius-Schur indicator). Let G be a compact group with proba-
bility Haar measure µ, and let

% : G ÝÑ GLpEq

be a finite-dimensional representation of G. Define the Frobenius-Schur indicator of % by

(6.1) FSp%q “

ż

G

χ%pg
2
qdµpgq.

Then if % is irreducible, we have FSp%q P t´1, 0, 1u, and
(1) The representation % is of orthogonal type if and only if FSp%q “ 1;
(2) The representation % is of symplectic type if and only if FSp%q “ ´1;
(3) The representation % is of complex type if and only if FSp%q “ 0.
In particular, one, and exactly one, of the three possibilities arise.

Proof. The first part of the argument is relatively similar to that used in Proposi-
tion 6.2.1. Only towards the end do we work out, using character theory, a numerical
criterion that distinguishes the three possible types of representations – this naturally
introduces the Frobenius-Schur indicator as the “right” tool to do this.

We let B denote the vector space of bilinear forms on the space E. The group G acts
on B by the formula

pg ¨ bqpv, wq “ bp%pg´1
qv, %pg´1

qwq

for b P B and v, w P E, and an invariant bilinear form on E is therefore simply an
element of the subspace BG. We must attempt to compute this space, and in particular
determine its dimension.

For this, we compute first the character of the action of G on B. This is quite simple:
the linear isomorphism

#

E 1 b E 1 ÝÑ B

λ1 b λ2 ÞÑ bλ1,λ2 ,

where

(6.2) bλ1,λ2pv, wq “ λ1pvqλ2pwq

is an isomorphism of representations, where E 1 carries the contragredient of %. Hence by
the character formalism, we have

(6.3) χBpgq “ χ
q%pgq

2
“ χ%pgq

2
.
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The next step looks innocuous: by the projection formula on invariants, we have

dimBG
“

ż

G

χBpgqdµpgq,

and we can bound this from above by

(6.4) dimBG
ď

ż

G

|χBpgq|dµpgq “

ż

G

|χ%pgq|
2dµpgq “ 1,

so that the space BG is either zero or one-dimensional, i.e., if there exists a non-zero
invariant bilinear form on E, it is unique up to scalar.1

What remains to be done is to understand when the dimension is 0 and when it is 1,
and this will lead to the refined statement of the theorem. The key is that B has an a
priori decomposition

(6.5) B “ Bsym ‘Balt

into two subrepresentations, where Bsym is the space of symmetric bilinear forms and
Balt the space of alternating bilinear forms. It is indeed clear that Bsym and Balt are G-
invariant in B, and the decomposition of B as a vector space is well-known: BsymXBalt “

0, and one can write any b P B in the form b “ bs ` ba where

(6.6) bspv, wq “
1

2
pbpv, wq ` bpw, vqq, bapv, wq “

1

2
pbpv, wq ´ bpw, vqq,

with bs P Bsym and ba P Balt (note in passing that (6.5) can be interpreted as the decom-
position of B under the representation of the group S2 “ Z{2Z on B by permutation of
the arguments, i.e., the action where the generator 1 P Z{2Z acts by 1 ¨bpv, wq “ bpw, vq).

It follows from (6.5) that

BG
“ BG

sym ‘B
G
alt,

with the summands being the spaces of invariant symmetric or alternating bilinear forms.
Since dimBG ď 1, we get the basic trichotomy in terms of bilinear forms: either
dimBG

sym “ 1, dimBG
alt “ 0 (orthogonal type); or dimBG

sym “ 0, dimBG
alt “ 1 (sym-

plectic type); or BG
sym “ BG

alt “ BG “ 0 (complex type). One might object that (for

instance) it is possible that dimBG
alt “ 1 but that a non-zero b P BG

alt is degenerate,
whereas the definition of symplectic type asks for a non-degenerate bilinear form. But
for any non-zero b P BG, the kernel of b, i.e., the subspace

Ker b “ tv P E | bpv, wq “ 0 for all w P Eu,

is a subrepresentation of E (since for all v P Ker b and w P E, we have

bp%pgqv, wq “ bpv, %pgq´1wq “ 0

so that %pgqv P Ker b). Thus, since E is irreducible and b ­“ 0 (so that Ker b ­“ E), we
have Ker b “ 0, and b is non-degenerate.

The numerical criterion for the trichotomy, involving the Frobenius-Schur indicator,
arises by noting the following clever way of encapsulating it: the three possibilities are

1 As mentioned, this might pass unnoticed, but we have obtained here an upper-bound for the
invariants in a representation (the bilinear forms) using information concerning those of a space which
seems, a priori, unrelated (the hermitian forms S); this is all done through the remarkable effect of
character theory.
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characterized by the value of

dimBG
sym ´ dimBG

alt “

$

’

&

’

%

1´ 0 “ 1 for orthogonal type,

0´ 0 “ 0 for unitary type,

0´ 1 “ ´1 for symplectic type.

which is therefore the “explanation” for the Frobenius-Schur indicator.2 Again from
character theory, we get that the desired invariant is

dimBG
sym ´ dimBG

alt “

ż

G

pχsympgq ´ χaltpgqq dµpgq

where, for simplicity, we denote by χsym and χalt the characters of Bsym and Balt. There-
fore we proceed to compute the difference of the two characters.

This is quite easy. For a fixed element g P G, we can diagonalize the unitary operator
%pgq in some basis peiq1ďiďn of E, with dual basis pλiq of E 1, so that

%pgqei “ θiei, q%pgqλi “ θ̄iλi

for some eigenvalues θi, whose sum is χ%pgq or χ
q%pgq, respectively. Then the bilinear

forms
bi,j “ bλi,λj

given by (6.2) form a basis of B, with

g ¨ bi,j “ θiθjbi,j,

by definition of the action on B. Applying the decomposition (6.6), a basis of Bsym is
given by the symmetric bilinear forms

1

2
pbi,j ` bj,iq

where i and j are arbitrary (but of course pi, jq and pj, iq give the same basic bilinear
form, so we may assume i ď j), and a basis of Balt is given by the alternating forms

1

2
pbi,j ´ bj,iq

where this time i ă j. Notice that in both case, these are eigenvectors for the action of
g with the same eigenvalue θiθj (because bi,j and bj,i are in the same eigenspace). Thus
we find that

χsympgq “
ÿ

1ďiďjďn

θiθj, χaltpgq “
ÿ

1ďiăjďn

θiθj.

Only the diagonal terms are missing from the second sum compared to the first; hence
we get

χsympgq ´ χaltpgq “
ÿ

1ďiďn

θi
2
“ χ%pg2q

(since the matrix %pg2q has eigenvalues θ2
i in the basis peiq), and to conclude, and recover

the formula (6.1), we may simply observe that
ż

G

χ%pg2qdµpgq “

ż

G

χ%pg
2
qdµpgq

since we know already that the integral is a real-number. �

2 Note that we could have exchanged the sign of the two terms, which would just have changed the
meaning of the indicators ˘1; the choice we made is the standard one, but it is to some extent just a
convention.
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We will now give a few examples. Before doing this, the following result illustrates
another interesting meaning of the Frobenius-Schur indicator, and should suggest that
representations of complex type are in the some sense the most usual ones.

Proposition 6.2.4 (Self-dual representations). Let G be a compact topological group
and let % be an irreducible representation of G. Then FSp%q ­“ 0 if and only if the character
of % is real-valued, and this is the case if and only if % is isomorphic to its contragredient
representation q%. Such a representation is called self-dual.

Proof. According to the proof above, % is symplectic or orthogonal if and only if the
space BG of invariant bilinear forms on the space of % is one-dimensional, and (in view
of the character formula (6.3)) this is the case if and only if

ż

G

χ%pgq
2
dµpgq “ 1.

As we did earlier, we argue that
ˇ

ˇ

ˇ

ż

G

χ%pgq
2
dµpgq

ˇ

ˇ

ˇ
ď

ż

G

|χ%pgq|
2dµpgq “ 1,

but now we continue by noticing that if there is equality, it must be the case that χ%pgq
2

is proportional to |χ%pgq|
2, with a scalar multiple of modulus 1. Taking g “ 1 shows that

the scalar must be equal to 1, i.e. (taking conjugate), we have

χ%pgq
2
“ |χ%pgq|

2
ě 0

for all g P G. Since, among complex numbers, only real numbers have a non-negative
square, we obtain the first result.

Now the last (and possibly most interesting!) conclusion is easy: since the character
of q% is χ%, it follows from character theory that % has a real-valued character if and only
if it is isomorphic to its contragredient. �

Example 6.2.5. (1) Let G “ SL2pCq, or SU2pCq. Among the representations %m
of G, m ě 0, those with m even are of orthogonal type while those with m odd are of
symplectic type. This can be checked in different ways: for SU2pCq, one may use the
integration and character formulas (see (5.22)) to check that this amounts to proving the
identity

2

π

ż π

0

sinp2pm` 1qθq

sin 2θ
sin2 θdθ “ p´1qm.

For either group, one may also define explicitly an invariant non-degenerate bilinear
form b on the representation space Vm of homogeneous polynomials of degree m in two
variables, by putting

bpei, ejq “
p´1qiδpi,m´ jq

`

m
i

˘

for the basis vectors ei “ X iY m´i.
Such a definition certainly defines a bilinear form on Vm, and it is symmetric for m

even, alternating for m odd (where δpi,m ´ iq is always zero). To see that it is non-
degenerate, observe that the non-zero coefficients of the matrix pbpei, ejqqi,j are exactly
the anti-diagonal ones, so that the determinant is their product, up to sign, which is
non-zero.
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What is by no means immediately obvious, on the other hand, is that b is SL2pCq-
invariant! A fairly quick algebraic proof of this is explained in [54, 3.1.4, 3.1.5]: we know
that the group SL2pCq is generated by the elements

uptq “

ˆ

1 t
0 1

˙

, t P C, apxq “

ˆ

x 0
0 x´1

˙

, x P Cˆ, w “

ˆ

0 1
´1 0

˙

(see Proposition 4.6.19), so that it is enough to check that

bp%mpgqei, %mpgqejq “ bpei, ejq

for g in one of these three classes (and all basis vectors ei, ej). We leave the easy cases
of apxq and w to the reader, and just present the (maybe somewhat mysterious) case of
g “ uptq. In that case, we have

(6.7) %mpgqei “ X i
ptX ` Y qm´i “

m´i
ÿ

k“0

ˆ

m´ i

k

˙

tkei`k

by the binomial theorem, and hence

bp%mpgqei, %mpgqejq “
m´i
ÿ

k“0

m´j
ÿ

`“0

tk``
ˆ

m´ i

k

˙ˆ

m´ j

`

˙

bpei`k, ej``q.

Using the definition of b, only terms with i ` k ` j ` ` “ m remain, and this can be
rearranged as

bp%mpgqei, %mpgqejq “ p´1qitm´i´j
m´i´j
ÿ

k“0

p´1qk

`

m´i
k

˘`

m´j
m´i´j´k

˘

`

m
i`k

˘

(where it is possible that the sum be empty). If one rearranges the ratio of binomial
coefficients in terms of factorials, this becomes

bp%mpgqei, %mpgqejq “
p´1qitm´i´j

pm´ i´ jq!

pm´ iq!pm´ jq!

m!

m´i´j
ÿ

k“0

p´1qk
ˆ

m´ i´ j

k

˙

The inner sum over k is zero (hence equal to bpei, ejq) except when m “ i` j, and in
that last case we obtain

bp%mpgqei, %mpgqejq “
p´1qipm´ iq!i!

m!
“ bpei, ejq.

Overall, this concrete example can be considered as a rather striking illustration of the
power of character theory: the existence of a symmetric or alternating invariant bilinear
form on the space of %m is obtained by a simple integral of trigonometric functions, but
the actual bilinear form is quite intricate and it is not straightforward at all to guess its
expression. In particular, note that it is quite different from the SU2pCq-invariant inner
product, for which the vectors ei are orthogonal (see Example 5.2.12). Of course, this
inner product x¨, ¨y on Vm is not invariant under the larger group SL2pCq, since %m is not
unitary as a representation of SL2pCq.

(2) This last remark illustrates again the strength of character theory: let us write
the crucial inequality (6.4) in the form

dimBG
ď dimSG,
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(with B the space of bilinear forms, S the space of hermitian forms). Now although
both sides are purely algebraic invariants that may be defined for any finite-dimensional
complex representations of any group, and although the inequality is valid for all compact
groups, it is not universally valid for finite-dimensional representations of topological
groups! Indeed, already for G “ SL2pCq and % “ %m, the right-hand side is 0, while the
left-hand side is always 1 (since we checked that the bilinear form b above was SL2pCq-
invariant, and not merely in BSU2pCq.)

(3) But there is even more to this story: if we write (6.4) in the form

dimBG
ď 1,

then this inequality is valid for any finite-dimensional irreducible representation of any
group G (even without imposing continuity conditions)! This is another variant of Schur’s
Lemma. Indeed, we can assume the existence of one non-zero invariant bilinear form b on
the space E of the irreducible representation % of G under consideration, since otherwise
BG “ 0. As in the beginning of the proof of Theorem 6.2.3, any b ­“ 0 in BG is non-
degenerate, because its kernel is a proper subrepresentation of %. Now, if b1 is any element
in BG, bilinear algebra shows that there exists a linear map Φ : E ÝÑ E such that

b1pv, wq “ bpv,Φpwqq

for all v, w P E. Algebraically, this linear map Φ is simply the transpose of the identity
map E ÝÑ E, when the latter is seen as mapping the space E given with the bilinear
form b to E given with b1. It is natural from this point of view that Φ is an intertwiner
E ÝÑ E, and this is easily checked using the fact that b and b1 are non-degenerate. By
Schur’s Lemma, there exists λ P C such that Φ “ λId, and this gives b1 “ λb, so that b
spans BG.

(4) For some important classes of finite groups, all representations are of orthogonal
type. This applies, for instance, to the symmetric groups (because one can show that they
can be constructed as matrix representations with values in GLnpQq, or even GLnpZ),
so that their characters are real-valued). An interesting consequence of this arises as the
application of the following simple lemma:

Lemma 6.2.6 (Groups with all representations orthogonal). Let G be a finite group
such that FSp%q “ 1 for all irreducible complex representations % of G. Then the sum

ÿ

%P pG

dimp%q

of the dimensions of irreducible representations of G is equal to the number of elements
of order 2 in G.

Proof. This is quite a cute argument: by assumption, we have

1

|G|

ÿ

gPG

χ%pg
2
q “ 1

for all % P pG. Multiplying by dimp%q and then summing over all %, we obtain
ÿ

%P pG

dimp%q “
1

|G|

ÿ

%P pG

ÿ

gPG

χ%pg
2
q dimp%q

“
1

|G|

ÿ

gPG

ÿ

%P pG

χ%pg
2
qχ%p1q.
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By the second orthogonality relation (4.28), the inner sum vanishes unless g2 is con-
jugate to 1, i.e., unless g2 “ 1, and in that case it is equal to |G|. Thus we get

ÿ

%P pG

dimp%q “ |tg P G | g2
“ 1u|,

as claimed. �

The problem of evaluating this sum was mentioned in Remark 4.2.6.

Exercise 6.2.7. Consider the examples of finite groups for which we computed the
full character table (in Section 4.6.2, 4.6.3 and 4.6.4), and for each of them determine
the Frobenius-Schur indicators (in particular determine which are self-dual). [Hint: For
GL2pFpq, one can use Exercise 4.6.16 to find rather easily the self-dual representations.]

6.3. The Larsen alternative

Our next application has some common features with the Frobenius-Schur theory, but
it is a much more recent development which is really a fact about compact, infinite, Lie
groups. The results are due to M. Larsen [38, §3], and have been extensively developed
by N. Katz (for instance in [29]).

Their basic motivation can be described as follows: a compact group G Ă UnpCq is
given, by some means or other, and the question that arises is to identify it, in particular,
to prove that it is “big” in some sense. Here, “big” has roughly the following meaning:
either one would like to prove that G Ą SUnpCq, or one knows – again, one way or
another – that G preserves either a symmetric or alternating non-degenerate bilinear
form, and the goal is to prove that G contains either the corresponding (real) special
orthogonal group or the unitary symplectic group. For this, Larsen found a beautiful
numerical criterion. We present it here as an interesting and relatively elementary fact
about representations of compact groups. It might not be clear whether this is actually
applicable in practice, but we will describe quickly in a later remark how the problem
appears in concrete applications.

The invariant introduced by Larsen is the following:

Definition 6.3.1 (Fourth moment of a representation). Let G be a compact subgroup
of UnpCq for some n ě 1 with probability Haar measure µ. The fourth moment of G is
defined by

(6.8) M4pGq “

ż

G

|Trpgq|4dµpgq.

More generally, given a finite-dimensional representation % of G, the fourth moment
of % is defined by

M4p%q “

ż

G

|χ%pgq|
4dµpgq.

Thus M4pGq is the fourth moment of the “tautological” (faithful) representation % :
G ãÑ UnpCq.

A priori, this might be an arbitrary non-negative real number. However, as in the case
of the Frobenius-Schur indicator (6.1), it is in fact an integer, and certain of its values
carry important meaning. More precisely, we have the following rather remarkable result
of Larsen:

251



Theorem 6.3.2 (Larsen alternative for unitary groups). Let n ě 2, G Ă SUnpCq a
compact group. If the fourth moment M4pGq is equal to 2, then either G is finite, or
G “ SUnpCq. In particular, if G is connected, we have G “ SUnpCq.

The proof is a very nice application of basic character theory and representation
theory, together with some facts of Lie theory. The first step, which we take “backwards”
in comparison with Section 6.2, is to interpret the fourth moment in purely algebraic
terms.

Lemma 6.3.3. Let G be a compact group and

% : G ÝÑ GLpEq

a finite-dimensional representation of G.
(1) We have

(6.9) M4p%q “ dimpEndp%q b Endp%qqG “ dimpEndp%b q%qqG.

(2) Let π be any of the representations of G on %b %, %b q% or Endp%q. If we have a
decomposition

π »
à

i

ni%i, ni ě 0,

into G-stable subspaces, with non necessarily irreducible subrepresentations %i, then we
have

M4p%q ě
ÿ

i

n2
i ,

with equality if and only if the %i are pairwise distinct irreducible representations.
(3) If G Ă H are compact subgroups of UnpCq, then we have

(6.10) M4pHq ď M4pGq.

Proof. Note that the fourth moment is an inner product

M4p%q “ x|χ%|
4, 1y.

By the formalism of characters, the function |χ%|
4 is the character of the representation

τ “ %b %b q%b q%,

so that M4p%q is the dimension of the invariant space τG. But using the associativity of
the tensor product, and the relations

p%1 b %2qq“ q%1 b q%2, q

q% “ %,

we can arrange the tensor product τ in two ways: either

τ “ p%b %q b p%b %qq» Endp%b %q,

which gives
M4p%q “ dimpEndp%b %qqG,

or
τ “ p%b q%q b p%b q%qq» Endp%b q%q “ EndpEndp%qq,

and therefore
M4p%q “ dimpEndp%b q%qqG “ dim EndpEndp%qqG.

This proves (1), and (2) is a general fact about dim EndpπqG for any representation
π: we have

xEndpπq, 1y “
ÿ

i,j

ninjx%i, %jy
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by linearity. Each term is a non-negative integer, and hence

xEndpπq, 1y ě
ÿ

i

n2
i x%i, %iy ě

ÿ

i

n2
i ,

by keeping only the diagonal terms i “ j. If there is equality, we see that we must have
x%i, %jy “ δpi, jq, which means that the %i are irreducible (taking i “ j) and distinct (for
i ­“ j).

Finally the inequality (6.10), though not at all obvious from the definition (6.8), is
clear from (1): if G Ă H then, for any representation of H, the space of G-invariants
contains the space of H-invariants. �

Remark 6.3.4. The reader may have noted that the two quantities

dimpEndp%q b Endp%qqG, dim Endp%b q%qG

in (6.9) make sense for any (finite-dimensional) representation of any group, and the
algebraic argument with associativity of the tensor product used in the proof of the
lemma shows that they are equal in this generality. One may therefore define an abstract
“fourth moment” of a representation using either of them. It is natural to ask, if G is
not compact, what is the meaning of this abstract M4p%q, and in particular (in view of
the Larsen alternative) to ask what the equality M4p%q “ 2 means in general. We will
discuss this in Section 7.1.

Proof of the Larsen alternative. To study M4pGq, we use part (2) of the pre-
vious lemma for the representation of G on the linear space EndpCnq, i.e., on Endp%q in
terms of the defining representation

% : G ãÑ UnpCq.

We recall that this representation is the conjugation action, i.e., that

g ¨ A “ gAg´1

for g P G and A P E “ EndpCnq (it is the restriction of the corresponding action for
SUnpCq, or indeed for GLnpCq.) There is, as usual, a canonical invariant subspace of
dimension one, namely CId Ă E. Moreover, a stable (orthogonal) complement is

E0 “ tA P E | TrpAq “ 0u,

the space of endomorphisms of trace 0. Hence we have a first decomposition into subrep-
resentations

(6.11) E “ CId‘ E0.

If only for dimension reasons, the two components are non-isomorphic; therefore, by
the previous lemma, we get automatically

M4pGq ě 12
` 12

“ 2.

We deduce first from this that M4pSUnpCqq “ 2: indeed, the lemma shows that
this simply means that the decomposition (6.11) is a decomposition into irreducible rep-
resentations of SUnpCq, which we know is true for the first component because it is
one-dimensional, and for the second by Exercise 2.7.14.

By the same token, we see that if G Ă SUnpCq, we can only have M4pGq “ 2 if E0

is also irreducible as a representation of G. We assume that this is the case, and will
deduce that G is either finite or equal to SUnpCq.
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To do this, we must appeal to the fact that G is a Lie group, and in fact that it is a
smooth manifold.3 Thus we may consider the tangent space of G at the identity element,
which is its Lie algebra,4 denoted LiepGq. This is a real vector space, of dimension equal
to the dimension of G as a manifold. The point is that G acts linearly on LiepGq, by
means of the so-called Adjoint representation,5 which is obtained by differentiating at the
identity the conjugation action of G on itself: denoting by ipgq the inner automorphism
that maps x to gxg´1, the adjoint representation is given by

Ad

"

G ÝÑ GLpLiepGqq
g ÞÑ T1ipgq

(where T1ipgq denotes the tangent map at 1 to ipgq.) This is a well-defined linear map on
LiepGq for each g, since ipgqp1q “ 1, and it is a representation because ipghq “ ipgqiphq
and ipg´1q “ ipgq´1.

This representation is a real representation of G, since LiepGq is a real vector space.
Most crucial for us, it has the following property, which is almost immediate: if G Ă H,
with H also a compact Lie group, then LiepGq Ă LiepHq, and the adjoint representation
of G is the restriction of the adjoint representation of H. Applied to G Ă SUnpCq, it
follows that LiepGq is a subrepresentation of LiepSUnpCqq.

This is the source of the desired subrepresentation of E0. We will check below the
following facts:
– The Lie algebra Ln of SUnpCq is a real subspace of E0, such that Ln‘iLn “ LnbC “ E0;
– The adjoint representation of SUnpCq on Ln is a real subrepresentation of E0, i.e., on
Ln Ă E0, the adjoint representation is given by g ¨ A “ gAg´1 for A P Ln Ă E0.

If we assume these, we can conclude as follows: for our compact subgroup G Ă

SUnpCq, we have the subrepresentation

LiepGq bC Ă Ln bC “ E0

of the G-action on E0. Since we are assuming that the latter is irreducible, this means
that either LiepGq is 0, in which case G is finite, that LiepGq is equal to Ln, in which
case, by Lie theory, we have G “ SUnpCq. Hence the Larsen alternative is proved.

Now we explain the facts mentioned above – these are quite standard, and the reader
may well have already encountered them. To begin with, the special unitary group is
defined by the conditions

detpgq “ 1, gg˚ “ 1

in GLnpCq. The tangent space at 1 is obtained by considering the linearized forms of
these equations, viewed as applying to matrices A in MnpCq, which form the tangent
space at 1 of GLnpCq. The first equation becomes TrpAq “ 0, which means A P E0, and
the second becomes

A` A˚ “ 0,

i.e., A is skew-hermitian, so

(6.12) Ln “ tA P MnpCq | A “ ´A
˚, and TrpAq “ 0u Ă E0

3 It does not suffice here to know that G is a topological manifold.
4 Although we will in fact not need the structure of Lie algebra (see Section 3.2) that exists on this

space.
5 It may be confusing at first that there there exists an adjoint representation for a Lie group, and

one for a Lie algebra, see Example 3.2.3, and that neither has much to do with the adjoint of a linear
map.
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(note that since the adjoint operation A ÞÑ A˚ is not complex-linear, this is indeed only
a real vector space.)

We can easily check explicitly that E0 “ Ln bC: for A P E0, we write

A “
A` A˚

2
`
A´ A˚

2
“ iB ` C, (say.)

Then C˚ “ ´C, so C is skew-hermitian, and B “ pA`A˚q{p2iq has also B˚ “ ´pA˚`
Aq{p2iq “ ´B, so that B is skew-hermitian. Since TrpBq “ RepTrpAqq and TrpCq “
i ImpTrpAqq, we deduce TrpBq “ TrpCq “ 0, so that we have found a decomposition of A
as C` iB with C, B both in Ln. This decomposition is unique, because LnX iLn “ 0 (in
E0): any matrix in the intersection is both hermitian and skew-hermitian. So this proves
the first claim.

The second one is not too surprising since the adjoint representation is defined using
conjugation. To be precise, let A P Ln be a tangent vector; then elementary differential
geometry tells us that AdpgqpAq can be computed as

d

dt
ipgqpxtq

ˇ

ˇ

ˇ

t“0

where xt P SUnpCq defines any smooth curve with tangent vector A at t “ 0. As usual,
one takes xt “ expptAq, where the exponential is that of matrices; then we have

ipgqxt “ g expptAqg´1
“ expptgAg´1

q,

(e.g., using the Taylor series expansion) and the derivative at t “ 0 gives AdpgqA “

gAg´1, as desired. �

Example 6.3.5 (Finite groups with M4 “ 2). As observed by Katz [29, 1.6.1], there
do exist finite groups G Ă SUnpCq, for some n ě 2, for which M4pGq “ 2. For instance,
let G “ PSL2pF7q; it follows from the character table of SL2pF7q that G has two distinct
irreducible representations π1 and π2 of dimension 3 “ p7 ´ 1q{2. Unitarized, either of
these gives a homomorphism

G ÝÑ U3pCq.

Since G is a simple group, this is necessarily a faithful representation, and (for the

same reason) the composite G ãÑ U3pCq
det
ÝÑ Cˆ, which can not be injective, is trivial.

Thus the image of either of these representations is a finite subgroup of U3pCq, and one
can check that these have fourth moment equal to 2.

In addition to the case of the unitary group considered above, there are criteria for
orthogonal and symplectic groups. Let n be an even integer at least 4 and let G Ă UnpCq
be a connected compact group which is contained in the subgroup USpnpCq of unitary
matrices that leave invariant a non-degenerate alternating bilinear form. Then Larsen
showed that G “ USpnpCq if and only if M4pGq “ 3. Similarly, if n ě 2 and G Ă UnpCq is
a compact connected group contained in the subgroup OnpCq of unitary matrices leaving
invariant a non-degenerate symmetric bilinear form, we have G Ą SOnpCq if and only if
M4pGq “ 3.

We sketch the argument for the symplectic case: denoting V “ Cn, one has a decom-
position

V b2
“ Sym2

pV q ‘C‘ V1

as USpnpCq-representation, where the trivial one-dimensional component C corresponds
to the (dual of the) invariant alternating form on V , and V1 ­“ 0 because dimV ě 4.
As representations of USpnpCq, the three pieces are known to be irreducible, so that

255



M4pUSpnpCqq “ 3, and by Lemma 6.3.3, (1), we have M4pGq “ 3 if and only if all
three representations are G-irreducible. It also turns out that Sym2

pV q is isomorphic
to the Adjoint representation of USpnpCq on its Lie algebra, and hence it contains as
a G-invariant subspace the Lie algebra of G itself. Therefore irreducibility of Sym2

pV q
implies that G “ USpnpCq since both are connected with the same Lie algebra.

Finally, we address the problem of applications of the Larsen alternative. We explain
here, with a specific example, some of the situations where results like this are very
valuable tools. As already hinted, sometimes theory gives the existence of some group
which carries information concerning objects of interest. A very good example, though
it is not directly relevant to the Larsen alternative, is the Galois group of the splitting
field of a polynomial. This is a finite group, which is (usually) defined rather abstractly,
so that if one knows the coefficients of the polynomial, it is not easy at all to determine
the Galois group. In fact, often the only obvious information is that it is isomorphic to
a subgroup of Sn, where n is the degree of the polynomial (for instance, can you guess
the Galois group of the splitting field of

X8
´ 4X7

` 8X6
´ 11X5

` 12X4
´ 10X3

` 6X2
´ 3X ` 2

over Q?)
Now for the example, which is based on deep work and ideas of P. Deligne and N.

Katz [30].
Let q “ pd be a prime power and Fq a finite field with q elements. Using the trace

map Tr “ TrFq{Fp , the homomorphism

ψ : x ÞÑ e
´TrFq{Fppxq

p

¯

is a non-trivial character of the abelian group Fq. For any element a P Fq, one defines

(6.13) Spa; qq “
ÿ

xPFˆq

ψpax` x´1
q,

a sum which is called a Kloosterman sum. These are apparently just complex numbers,
but they turn out to be related to some compact Lie groups. Indeed, it follows from the
work of A. Weil that for every a P Fq there exists a well-defined conjugacy class θpa; qq
in the unitary group U2pCq such that

(6.14) Tr θpa; qq “ ´
Spa; qq
?
q

(in particular, note that this implies that

|Spa; qq| ď 2
?
q,

for a P Fˆq , which is a rather deep theorem of A. Weil, a special case of the Riemann
Hypothesis for curves over finite fields ; see, e.g., [27, Th. 11.11] for one of the simplest
proofs.)

The connection with the Larsen alternative arises from the following fact, which is a
special case of a famous theorem of Deligne (Deligne’s equidistribution theorem), applied
to the so-called Kloosterman sheaves: there exists a compact subgroup K Ă U2pCq,
depending a priori on p, such that, first, all θpa; qq are in fact naturally conjugacy classes
of K, and second, they become equidistributed among conjugacy classes of K, in the sense
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that for any continuous class function f : K ÝÑ C, we have

(6.15)

ż

K

fpxqdµpxq “ lim
qÑ`8

1

q ´ 1

ÿ

aPFˆq

fpθpa; qqq.

where µ is the probability Haar measure on K. See the discussion in [30, Ch. 3].
Thus, if one succeeds in determining what the group K is – something which, just

as was the case for Galois group, is by no means clear by just looking at (6.13)! –
one can answer many questions about the asymptotic distribution of Kloosterman sums,
something which is of great interest in number theory.

Now it is clear why the Larsen alternative is useful: applying first (6.15) with fpxq “
|Trpxq|4 and then (6.14), we get the alternative formula

M4pKq “ lim
qÑ`8

1

q ´ 1

ÿ

aPFˆq

|Tr θpa; qq|4

“ lim
qÑ`8

1

q2pq ´ 1q

ÿ

aPFˆq

ˇ

ˇ

ˇ

ÿ

xPFˆq

ψpax` x´1
q|

ˇ

ˇ

ˇ

4

for the fourth moment of K, which involves the given, concrete, data defining the problem.
We may have a chance to evaluate this...

As it turns out, one can evaluate directly this limit in this case (this is a relatively
elementary computation, see Exercise 6.3.6 below), and see that it exists and is equal to
2. In other words, the compact group K satisfies M4pKq “ 2 (we remind the reader that
the existence of this group K lies extremely deep). Hence the Larsen alternative shows
that either K is finite, or K Ą SU2pCq. In fact, one can analyze the situation further,
and show that K is equal to the special unitary group SU2pCq.

In the works of Katz, many other (more general) situations are considered, lead-
ing to extremely general and beautiful equidistribution theorems. But even though the
statements can be extremely concrete, there is no known elementary proof of the deep
connection between sums like Kloosterman sums and a compact Lie group!

Exercise 6.3.6 (Fourth moment of Kloosterman sums). For a finite field Fq with q
elements and ψ as above, define

T pa, b; qq “
ÿ

xPFˆq

ψpax` bx´1
q.

(1) Show that T pa, b; qq “ Spab; qq if a, b P Fˆq .
(2) Let

N4pqq “
ÿ

aPFˆq

|Spa; qq|4.

Deduce from (1) that

pq ´ 1qN4pqq “ q2Npqq ´ pq ´ 1q4 ´ 2pq ´ 1q,

where

Npqq “
ˇ

ˇ

ˇ

!

px1, x2, y1, y2q P pF
ˆ
q q

4
| x1 ` x2 “ y1 ` y2 and

1

x1

`
1

x2

“
1

y1

`
1

y2

)
ˇ

ˇ

ˇ
.

(3) Prove that

Npqq “ 3pq ´ 2qpq ´ 1q
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and deduce that

lim
qÑ`8

N4pqq

q ´ 1
“ 2.

[Hint: Use the fact that a pair px` y, xyq determines x and y up to order.]

Exercise 6.3.7 (Other moments). One can define other types of moments. For
instance, given a compact group G (with probability Haar measure µ) and a finite-
dimensional unitary representation % of G, the k-th moment of % is defined to be

Mkp%q “

ż

G

χ%pgq
kdµpgq

for an integer k ě 0. If G Ă GLnpCq is a compact subgroup, we denote by MkpGq the
k-th moment of this inclusion.

It is an elementary consequence of character theory, which is not necessarily clear at
first when expressed for a “concrete” group, that Mkp%q is a non-negative integer, as the
multiplicity of the trivial representation in the finite-dimensional representation %bk.

The sequence of moments pMkp%qqaě0, as k ě 0 varies, can be quite interesting.
(1) Take G “ SU2pCq Ă GL2pCq. Show that

MkpGq “ 0

if k is odd and

M2kpGq “
1

k ` 1

ˆ

2k

k

˙

for k ě 0. Can you prove directly that the right-hand side is an integer?
(2) Compute the first few terms and identify this sequence in the “Online Encyclopedia

of Integer Sequences” (http://oeis.org). (These are called the Catalan numbers, and
have extremely varied interpretations.)

(3) Let G “ SUnpCq Ă GLnpCq. Show that MkpGq ­“ 0 if and only if k is divisible by
n. What happens when G “ UnpCq?

Exercise 6.3.8 (Another application of the Larsen alternative). For a prime number
p, and an element a P Fˆp , let

S3pa; pq “
1

p

ÿÿ

x,yPFˆp

e
´x` y ` apxyq´1

p

¯

,

which is called a a hyper-Kloosterman sum in two variables (the inverse pxyq´1 is com-
puted in Fˆp ).

(1) For reasonably large values of p (say p ď 100000) and the first few k ě 0, compute
(using a computer) the “empirical” moments

mk,p “
1

p´ 1

ÿ

αPFˆp

S3pa, pq
k.

Discuss the behavior of the result as p grows.
(2) Can you make a guess concerning some analogue of the equidistribution result for

Kloosterman sums discussed above? Check in [30] whether this guess is correct.

Exercise 6.3.9 (Maximal fourth moment). (1) Let G Ă UnpCq be a compact sub-
group of UnpCq and let % : G ÝÑ UmpCq be an irreducible unitary representation of G.
Show that M4p%q ď m2. If G is connected, show that equality holds if and only if m “ 1.

(2) Show that the dihedral group D4 of order 8 has a two-dimensional irreducible
representation % with M4p%q “ 4.
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Remark 6.3.10 (From SU2pCq to SO3pRq). The Adjoint representation turns out to
provide the conceptual explanation of the projection homomorphism

p : SU2pCq ÝÑ SO3pRq

of Proposition 5.6.9. Indeed, for the compact Lie group G “ SU2pCq, the Lie algebra
is a three-dimensional real vector space (by (6.12): M2pCq has dimension 8, the skew-
hermitian condition implies that the bottom-left coefficient is minus the conjugate of the
top-right one, and that the diagonal ones are purely imaginary, leaving 8 ´ 2 ´ 2 “ 4
dimensions, and the matrices of trace zero form a 3-dimensional subspace.) In fact,

L2 “

!

ˆ

ia c` id
´c` id ´ia

˙

| a, c, d P R
)

,

so that a matrix representation for the Adjoint representation of SU2pCq on L2 is a
homomorphism

Adm : SU2pCq ÝÑ GL3pRq.

This “is” the desired projection, in the sense that it has kernel t˘1u, and image
conjugate to SO3pRq in GL3pRq (depending on which basis of the Lie algebra L2 is used
to compute the matrix form of the representation).

In topological terms, the projection p is a non-trivial covering map of SO3pRq (since
SU2pCq is connected). Thus SO3pRq is not simply connected (in fact, one can show that
SU2pCq is simply connected, so it is the universal covering of SO3pRq). There are well-
known “physical” demonstrations of this property of the rotation group (due in particular
to Dirac); see, e.g., [5] for an accessible mathematical account, though seeing movies on
the web might be even more enlightening...

6.4. The Hydrogen atom

We now come to the discussion of Example 1.2.3, i.e., of the basic invariants of simple
quantum-mechanical systems, and in particular of the hydrogen atom.

In order to do this, we summarize briefly the fundamental formalism of (non-relati-
vistic) quantum mechanics, contrasting it with classical newtonian mechanics, in the
simplest situation of a single (point-like) particle evolving in R3, under the influence of
some force (or forces):

‚ The state of the system at a given time t is represented by a unit vector ψ
(i.e., with }ψ} “ 1) in some fixed Hilbert space H [in contrast, in newtonian
mechanics, the state of the particle is represented by an element px, pq P R6,
where x represents the position of the particle and p its momentum p “ mv,
where v P R3 is the the velocity at t and m is the mass of the particle];

‚ Two vectors ψ1, ψ2 in H correspond to the same state if and only if there exists
θ P R such that ψ1 “ eiθψ2, i.e., if the vectors are proportional;

‚ An observable quantity (or just “observable”), such as position or momentum,
is represented by a linear operator A defined on a dense subspace DA of H; if
A is continuous, it can be defined on all of H, but many interesting observables
are not continuous on DA. Moreover A must be self-adjoint, which has the
usual meaning when A is continuous on H, and has a more technical definition
otherwise (see Exercise 6.4.1). [In Newtonian mechanics, an observable quantity
is simply a real-valued function f : P ÝÑ R, where P Ă R6 is the set of possible
states of the system.]
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‚ The physical interaction of the system described by the state ψ with an observ-
able Amust result, through experiments, in some actual numerical (approximate)
value; the crucial prediction of quantum mechanics is that this value λ will be an
element of the spectrum σpAq Ă R of A, but that it’s value can not be predicted
beforehand. Instead, one defines (purely mathematically) a probability measure
µψ,A on R such that µψ,ApBq is the probability that the measurement will give
a value in B Ă R. The measure µψ,A is called the spectral measure of A with
respect to ψ. In the important case that A has (at most) countably many distinct
eigenvalues λi P R, i ě 0, whose eigenspaces span H, so that

(6.16) H “
à

iě0

KerpA´ λiq,

the spectral measure is defined by

(6.17) µψ,ApBq “
ÿ

λiPB

}pipψq}
2,

where pi : H ÝÑ KerpA´λiq is the orthogonal projection on the i-th eigenspace.
(This is a probability measure since ψ is a unit vector, and it satisfies the con-
dition that any physically observed values would be among the eigenvalues λi of
A, since the measure µψ,A has support given by these eigenvalues.)

In particular, suppose A is an orthogonal projection and that it is non-trivial,
i.e., that A ­“ 0, A ­“ Id. Its spectrum is t0, 1u, and the corresponding projections
are just p1 “ A itself and p0 “ Id ´ A. Thus “measuring” the observable A
will result in either of these values, with probability }Aψ}2 of getting 1, and
probability 1´ }Aψ}2 of getting 0 (in probabilistic terms, this corresponds to a
Bernoulli random variable with “probability of success” }Aψ}2).

‚ The probability can be understood experimentally, and the prediction checked,
as follows: if the measurement is repeated a large number of times (say N times),
each time after preparing the system to be in state ψ, then the proportion NB{N
of the number NB of measurements for which the experimental value λ is in B
will be close to µψ,ApBq. [This is in striking contrast with newtonian mechanics:
given that the particle is in the state px, pq P P , the value of the observation f
is simply the exact value fpx, pq P R.]

In the example where the spectral measure is given by (6.17), one will there-
fore “observe” the eigenvalue λi with relative frequency given by

µψ,Aptλiuq “ }pipψq}
2.

This property makes the link between the mathematical model and the nat-
ural world; it can, in principle, be experimentally falsified, but the probabilistic
interpretation has turned out to be confirmed by test after test. Not only is it
the case that the relative frequencies of various results (especially zero/one tests
corresponding to projections) are found to be close to the theoretical values, but
no method (either practical or even theoretical) has been found to predict exactly
the values of the measurements as they are performed one after the other.

‚ Finally, the basic dynamical equation is Schrödinger’s equation: there exists
a particular observable E, the Hamiltonian, such that the state of the system
evolves in time as a solution pψtq of the equation

(6.18) i
h

2π

d

dt
ψt “ Eψt,
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here h is Planck’s constant. The Hamiltonian encapsulates the forces acting
on the particle. [In newtonian mechanics, the particle evolves according to the
differential equation

m
d2x

dt2
“ sum of the forces

instead.] We won’t discuss dynamics of quantum systems here, but it turns out
that there is a connection between this equation and unitary representations of
the (additive, non-compact) group R; see Section 7.3.

For more information, from a mathematical point of view, the reader may refer to [53,
56, 57, 59] (there are also, of course, many physics books on quantum mechanics which
may be worth reading.)

Exercise 6.4.1 (Unbounded self-adjoint operator). Let H be a Hilbert space, and let
A : DA ÝÑ H be a linear operator defined on DA Ă H, a dense subspace of H. The pair
pDA, Aq is called an unbounded operator on H; it is called self-adjoint, if the following
two conditions hold: (1) we have

DA “ tψ P H | φ ÞÑ xAφ, ψy extends to a continuous linear form on Hu;

and (2) for all ψ1, ψ2 P DA, we have

xAψ1, ψ2y “ xψ1, Aψ2y.

Show that the following defines a self-adjoint unbounded operator:

H “ L2
pR, dxq

DA “

!

ψ P H |

ż

R

x2
|ψpxq|2dx ă `8

)

pAψqpxq “ xψpxq for ψ P DA.

This observable is interpreted as the position of a particle constrained to move on the
line R. Given ψ P L2pRq with }ψ}2 “ 1, the spectral measure µψ,A is the probability
measure |ψpxq|2dx on R, so that the probability that a particle in the state described by
ψ be located inside a set B is given by

ż

B

|ψpxq|2dx.

Much more about the general theory of unbounded linear operators can be found, for
instance, in the books of Reed and Simon [44, 45].

How does representation theory enter the picture? The answer has to do with possible
symmetries of the system, which must be compatible with the linear structure of the
underlying Hilbert space. If an observable A of interest is also compatible with the
symmetries of the system, and can be described using only eigenvalues (as in (6.16)), it
follows that the eigenspaces must be invariant under these symmetries; in other words, if
there is a symmetry group G of the system, the eigenspaces of observables are (unitary)
representations of G.

Now consider such an eigenspace, say V “ KerpA ´ λq. For states ψ P V , the
observable A has the specific, exact, value λ. If the representation V is not irreducible,
we can find another observable B such that B commutes with A, and some eigenspace
of B is a proper subspace W of V . For the states in W , both A and B have determined
value. In the opposite direction, if V is an irreducible representation of G, nothing more
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may be said (without more information) concerning the states in V (this is the physical
interpretation of Schur’s Lemma...)

What this shows is that, given a quantum system with symmetry group G, we should
attempt to decompose the corresponding representation of G on H into irreducible rep-
resentations. The states in each subrepresentation will be fundamental building blocks
for all states (by linearity), which can not be further analyzed unless more information
is available.

We now illustrate these general principles with concrete examples. We consider a
particle evolving in R3, which is constrained to lie on the unit sphere S2 Ă R3 (this
restriction is not very physical, but it helps at first with the mathematical analysis.) The
underlying Hilbert space is taken to be H “ L2pS2, νq, where ν is the surface Lebesgue
measure on the sphere, defined similarly as in Example 5.2.4, (5). The operators of
multiplication of a by the coordinates can play the role of position observables (as in
Exercise 6.4.1, but since the coordinates are bounded, the corresponding operators are
continuous on H). Suppose now that the system evolves according to a homogeneous
force, compatible with the rotational symmetry of the sphere S2. We are then dealing
with the representation of the rotation group SO3pRq on H, given by

pg ¨ ψqpxq “ ψpg´1xq

(this is indeed a unitary representation since the measure µ is SO3pRq-invariant; see
Example 5.2.9.)

Even without knowing anything about certain observables like energy, it is intuitively
clear that if the system is rotation-invariant, these observables must be compatible with
the symmetries: in some sense, applying a rotation to a state ψ amounts to observing
this state from a different direction in space, and rotation-invariance implies the absence
of privileged directions!

Thus we attempt to decompose the representation of SO3pRq that we just introduced.
Recall from Example 5.6.8 that the irreducible unitary representations of SO3pRq are
obtained, by composing with the projection

SU2pCq ÝÑ SO3pRq,

from the odd-dimensional irreducible representations of SU2pCq. Hence, for each integer
` ě 0, there exists a unique irreducible representation of SO3pRq of dimension 2` ` 1,
which we will denote V`.

Proposition 6.4.2 (Decomposition of L2pS2q). The space L2pS2q is isomorphic, as
a representation of SO3pRq to the Hilbert direct sum

à

`ě0

V`

of all irreducible representations of SO3pRq, each occurring with multiplicity 1.

Proof. There is a quick proof coming from Frobenius reciprocity, which starts from
the observation that the group G acts transitively on S2, and the stabilizer of the point
n “ p1, 0, 0q is the subgroup K » SO2pRq of rotations around the x-coordinate axis.6

Hence we have a bijection

φ

"

KzG ÝÑ S2

g ÞÑ g ¨ n,

6 One could use any other point.
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which is in fact a homeomorphism (it is continuous, and both spaces are compact). It
follows that functions on S2 are “the same” (by composition with this homeomorphism)
as functions on G such that

fpkgq “ fpgq

for k P K, g P G. Moreover, since the Lebesgue measure on S2 is known to be the unique
rotation-invariant measure on S2, up to scalar, there exists a constant c ą 0 such that
the probability Haar measure µ satisfies

φ˚µ “ cν.

We can therefore identify the representation on L2pS2, νq with the representation of
SO3pRq on

H1 “ tf : SO3pRq ÝÑ C | f P L2
pSO3pRqq,

fpkgq “ fpgq if k P K, g P SO3pRqu

with action

pg ¨ fqpxq “ fpxgq,

and the restriction of the usual inner product. This means that

L2
pS2, νq » Ind

SO3pRq
K 1

as unitary representation of SO3pRq (see Example 5.2.10). Now, given an irreducible
representation % of SO3pRq, we can use the Frobenius Reciprocity formula for compact
groups (Proposition 5.4.9) to derive

dim HomSO3pRqp%, L
2
pS2
qq “ dim HomKpRes

SO3pRq
K %,1q,

which is the multiplicity of the trivial representation in the restriction of % to K. We
analyze this multiplicity by noting that the diagonal subgroup in SU2pCq maps onto K
via the projection; for instance (although there are more intrinsic ways to see this), this
may be checked using the “ugly” formula (5.24): for any θ P R, we have

ˆ

eiθ 0
0 e´iθ

˙

ÞÑ

¨

˝

1 0 0
0 cos2pθq ´ sin2pθq ´2 cospθq sinpθq
0 2 cospθq sinpθq cos2pθq ´ sin2pθq

˛

‚,

which represents a rotation around the x-axis7 with angle 2θ. Therefore, we get

dim HomSO3pRqp%, L
2
pS2
qq “ dim HomT pRes

SU2pCq
T %,1q,

viewing % as a representation of SU2pCq. But we computed the restriction of the repre-
sentations of SU2pCq to the diagonal subgroup a long time ago: for % “ %`, we have

Res
SU2pCq
T % “ χ´2` ‘ χ´2``2 ‘ ¨ ¨ ¨ ‘ χ2`´2 ‘ χ2`

by (2.41) (remember that the m there is 2` here) where

χj

´

ˆ

eiθ 0
0 e´iθ

˙

¯

“ eijθ.

By inspection, the multiplicity of the trivial representation 1 “ χ0 of T is indeed
equal to 1. �

7 This calculation depends on a compatible normalization of K and the projection, but changing
either would just require to conjugate one or the other.
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The physical meaning of this result, for our hypothetical quantum particle on the
sphere, is that if it is in a “pure” state ψ with well-defined angular momentum, it has a
natural invariant attached to it, namely the index ` such that ψ is in the subspace (say
W`) of L2pS2q isomorphic to V`. This invariant is called the angular momentum quantum
number of the state (or sometimes orbital, or azimutal, quantum number).

Continuing with this particle on the sphere, suppose it is (i.e., the state ψ is) in W`.
If we want to pinpoint the state more precisely, or at least describe specific states which
can combine to construct all the states in W`, we must “break” the rotational symmetry.

Suppose we consider observables B which are only symmetric with respect to rotations
around a fixed axis (say, the x-axis). This means that the underlying symmetry group
becomes the subgroup K » SO2pRq of SO3pRq of rotations around this axis. If we start
from states known to be in W`, we must then decompose this space as a representation
of K, and the corresponding K-subrepresentations represent states for which the angular
momentum and all K-invariant observables are fully known. Here K is abelian, so we
know these subspaces are one-dimensional, and hence correspond to a unique state.

Precisely, as in the proof of Proposition 6.4.2, the space W` decomposes, as a repre-
sentation of K, as the direct sum of the 2`` 1 characters of SO2pRq given by

χj :

ˆ

cos θ ´ sin θ
sin θ cos θ

˙

ÞÑ eijθ

with ´` ď j ď `. Each one of the (one-dimensional) subspaces W`,j on which K acts
like χj therefore describes a unique quantum state, parametrized by the two quantum
numbers ` ě 0 and j P t´`, . . . , `u. This second parameter is called the magnetic quantum
number (historically, this is because it can be experimentally detected by putting systems
in magnetic fields which are symmetric with respect to the given axis, for instance in the
so-called “Zeeman effect”.)

All this is still relevant for more realistic physical systems, where the particle evolves
in R3, with state space given by H “ L2pR3q, under conditions of spherical symmetry,
so that the relevant unitary representation of SO3pRq is given by

%pgqϕpxq “ ϕpg´1
¨ xq

for g P SO3pRq and ϕ P L2pR3q. The point is that, as a representation of SO3pRq, we can
separate the radius-dependency of functions in L2pR3q (on which SO3pRq acts trivially)
and the spherical components. To be precise:

Proposition 6.4.3. There is a linear map

CpS2
q b C0pr0,`8rq

Φ
ÝÑ L2

pR3
q

mapping ϕb ψ to the function

fpxq “ ψp}x}qϕ
´ x

}x}

¯

.

This map is an isometry for the inner product induced by

xϕ1 b ψ1, ϕ2 b ψ2y0 “

´

ż `8

0

ψ1prqψ2prqrdr
¯´

ż

S2

ϕ1pxqϕ2pxqdνpxq
¯

and has dense image. Moreover

(6.19) %pgqfpxq “ Φppg ¨ ϕq b ψq.
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Sketch of proof. We leave again some details to the reader, but the main point
is the formula for integration of functions in spherical coordinates, which states that

ż

R3

fpx, y, zqdxdydz “

ż

S2

ż `8

0

fprxqrdrdνpxq

for integrable f : R3 ÝÑ C. This implies in particular the isometry condition

xΦpϕ1 bΨ1q,Φpϕ2 b ψ2qyL2pR3q “ xϕ1 bΨ1, ϕ2 b ψ2y0

for all ϕi P CpS
2q and ψi P C0pr0,`8rq. The formula (6.19) can be checked easily, and

it remains to prove that the image of Φ is dense in L2pR3q. But suppose f is orthogonal
to this image, so that

xf,Φpϕb ψqy “ 0

for all ϕ and ψ. This translates, by integrating in spherical coordinates, to

0 “

ż

S2

ϕpxq
´

ż `8

0

ψprqfprxqrdr
¯

dνpxq

for all ϕ P CpS2q and ψ P C0pr0,`8rq. For all x, this gives
ż `8

0

ψprqfprxqrdr “ 0

for all ψ, and then we get f “ 0 (to be precise, one must invoke Fubini’s Theorem since
one really gets this for almost all x P S2, and then fprxq for almost all r ě 0, depending
possibly on x...) �

In other words, we have

L2
pR3

q » L2
pS2, νqb̂L2

pr0,`8r, rdrq,

if we define the tensor product of Hilbert spaces on the right as the completion of CpS2qb

C0pr0,`8rq with respect to the inner product x¨, ¨y0, and this is an isomorphism as
unitary SO3pRq-unitary representations, where the action of L2pr0,`8, rdrq is trivial.
Consequently, we obtain:

Corollary 6.4.4. As a representation of SO3pRq, the space L2pR3q decomposes as
a direct sum of infinitely many copies of every irreducible representation of SO3pRq.

Thus, a state f P L2pR3q lying in one irreducible subrepresentation still determines
an angular momentum quantum number `, and if the state is further compatible with
breaking the spherical symmetry as described above, it has a magnetic quantum number
m, ´` ď m ď `.

Going further in understanding the hydrogen atom requires more physical information
concerning the system, and this is not purely a question of symmetry (i.e., of representa-
tion theory!) anymore (though some non-obvious SO4pRq-symmetry of the system can be
used to explain the results). Roughly speaking, the energy levels of the atom are them-
selves quantized because of the form that the Schrödinger equation takes in the radial
direction, forming a decreasing sequence En Ñ 0, with n ě 1 (the “principal quantum
number”). The states with a given energy level En form a subrepresentation for the
action of SO3pRq on L2pR3q, and one shows that it has dimension n2, and is isomorphic
to a direct sum of V` for 0 ď ` ď n ´ 1 (dually, the Schrödinger equation can be solved
on the V`-isotypic component of L2pR3q, which is isomorphic to V` b L

2pr0,`8rq, and is
found to involve the energy levels En for n ą `.)
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Comparing with Example 1.2.3, the only missing ingredient is the spin s: this is a
purely quantum-mechanical invariant, which is best explained using the Dirac theory that
combines the special theory of relativity with basic quantum mechanics.

We refer the reader to [53, Ch. 8, 9] and to [56, §4.5, §4.8] for the details of the
remainder of this story...

266



CHAPTER 7

Other groups: a few examples

The picture of representation theory beyond the case of compact groups changes
quite dramatically. Even if one restricts to locally compact groups, it happens that non-
compact groups have typically infinite-dimensional irreducible unitary representations,
and from these one can not usually produce all representations using Hilbert direct sums.
Their study becomes in many respects more analytic, and certainly requires quite different
tools and techniques. These are mostly beyond the scope of this book – as people say!
– and the very modest goal of this chapter is simply to present some concrete examples
of groups and, even if without full proofs, a survey of some phenomena involved in the
representation theory of such groups, emphasizing mostly those that were not visible in
the previous chapters.

We begin however with some words about the more algebraic topic of algebraic groups.

7.1. Algebraic groups

In the discussion of the Larsen alternative in the previous chapter, we observed in
Remark 6.3.4 that the fourth moment of a finite-dimensional complex representation
% : G ÝÑ GLpEq can be defined algebraically and abstractly by

M4p%q “ dimpEndp%q b Endp%qqG “ dim Endp%b q%qG,

and in particular M4pGq can be defined for any subgroup G Ă GLnpCq using the tauto-
logical representation % : G ãÑ GLpCnq.

In view of Theorem 6.3.2, we are naturally led to ask: what can we say about a
group G such that M4pGq “ 2, when the fourth moment is defined in this manner? In
particular, what can we say if G is infinite, in which case Larsen’s alternative states that,
if G is compact and contained in SUnpCq, then it is equal to a conjugate of gUnpCqg

´1.
The answer to that question leads naturally to the important topic of algebraic groups,

and of the Zariski-closure of a linear group, and we use this as a motivating example to
introduce briefly these concepts.

The basic statement is that if G Ă GLnpCq is infinite and satisfies M4pGq “ 2, then it
is “very large” in GLnpCq, but one can not take “very large” to have the same meaning
as in the case of compact groups – indeed, we are thinking of groups like SLnpZq Ă
GLnpCq, or GLnpQq, which may have only a finite intersection with SUnpCq, or of more
or less random finitely-generated subgroups of GLnpCq, which are essentially impossible
to classify. However, it turns out that one can associate to any subgroup G Ă GLnpCq a
larger group G Ą G, in a natural way, and the conclusion will be that an infinite group
G Ă SLnpCq with M4pGq “ 2 satisfies G “ SLnpCq.

The group G is called the Zariski-closure of G in GLnpCq, and its informal description
is that it is the smallest subgroup of GLnpCq containing G which can not be distinguished
from G using only polynomial equations satisfied by the coordinates of the underlying
matrices. It then follows that all purely algebraic invariants of G and G coincide (for
instance, M4pGq “ M4pGq), but G is a much more rigid object, and this leads to a form
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of the Larsen alternative for G which is as precise and clean as Theorem 6.3.2 for compact
groups.

We first define G. Given G Ă GLnpCq, we introduce two objects:
– the set IG of all polynomials vanishing on G, or more precisely, denoting

A “ CrpXi,jq1ďi,jďn, Y s,

which is a polynomial algebra in n2 ` 1 variables,1 we let

IG “ tf P A | fpgi,j, detpgq´1
q “ 0 for all g “ pgi,jq P Gu

– the set VG of all elements in GLnpCq which are common zeros of all these polyno-
mials, i.e

(7.1) VG “ tx P GLnpCq | fpx, detpxq´1
q “ 0 for all f P IGu.

Obviously, the definitions show that G Ă VG. But crucially, VG is also a subgroup of
GLnpCq:

Lemma 7.1.1 (Zariski closure). (1) The set VG Ă GLpV q is a subgroup of GLnpCq
containing G. It is denoted G, and is called the Zariski-closure of G in GLnpCq.

(2) Suppose H Ą G is another subgroup of GLnpCq. Then H Ą G, where H is the
Zariski-closure of H.

(3) We have

M4pGq “ M4pGq.

Proof. (1) This is quite elementary, but a little bit long if one wishes to give all
details. We start by showing that VG is stable under inversion, since this is where one
sees how the extra variable Y in the polynomial algebra A is useful.

Given any f P IG, define a new polynomial f̃ by

f̃ppXi,jq, Y q “ fpY ¨ pX̃i,jq, detpXi,jqq

where Y is seen as a scalar in the first argument, and the matrix X̃ “ pX̃i,jq that it

multiplies is the transpose of the cofactor matrix of X “ pXi,jq, i.e., the coefficients X̃i,j

are the polynomials in CrpXi,jqs such that

detpXq ˆX´1
“ X̃

(this encapsulates the Cramer formulas for solving linear equations.)

Thus f̃ P A; now, for g P GLnpCq, we have

f̃pg, detpgq´1
q “ fpdetpgq´1

pg̃i,jq, detpgqq “ fpg´1, detpgqq,

and this vanishes for all g P G, since g´1 P G and f P IG. Thus we find that f̃ also
belongs to IG, and this implies by definition that f̃ vanishes on VG, which means that

fpg´1, detpgqq “ f̃pg, detpgq´1
q “ 0.

for all g P VG.
Finally, consider g P VG to be fixed, and vary f P IG; we find that

fpg´1, detpg´1
q
´1
q “ fpg´1, detpgqq “ 0

for all f P IG, which by definition means that g´1 P VG, as desired.

1 The usefulness of the presence of the extra variable Y , which is used to represent polynomially the
inverse of an element g P GLnpCq, will be clear very soon.
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We then proceed to show that VG is stable under products, arguing along similar
lines. First, we show that VG is stable by multiplication by elements of G on both sides:
if g1 P G is given, then for all g P VG, both g1g and gg1 are in VG.

Indeed, given f P IG, we define

f̃pXi,j, Y q “ fpg1 ¨ pXi,jq, detpg1q
´1Y q

where g1 ¨ pXi,jq denotes the matrix product. Since matrix multiplication is polynomial
in the coordinates pXi,jq, this is an element of A. And as such, it belongs to IG, because
for g P G we have g1g P G – since G is itself a group – and hence

f̃pg, detpgq´1
q “ fpg1g, detpg1gq

´1
q “ 0

by definition of IG. Hence f̃ vanishes in fact identically on all of VG, which means that
fpg1gq “ 0 for all g P Vg. Since f P IG is arbitrary, this property, applied to a fixed
g P VG, means that g1g P VG. Reversing the order of a few products, we also obtain in
this way that gg1 P VG for all g P VG.

Finally, we deduce the stability of VG under all products: let g1 P VG be given; for
f P IG, define again

f̃ppXi,jq, Y qq “ fpg1 ¨ pXi,jq, detpg1q
´1Y q P A.

We get f̃ P IG (because, for g P G, we know from the previous step that g1g P VG,

and then f̃pg, detpgq´1q “ fpg1g, detpg1gq
´1q “ 0, and therefore f̃ vanishes on VG. In

particular, fixing some g P VG and using the fact that fpg1gq “ 0 for all f P IG, this
means that g1g P VG.

Thus we have proved that G “ VG is a group, which of course contains G.
(2) If H Ą G, then any polynomial vanishing on H also vanishes on G, so that

IH Ă IG, and then the set H of zeros of the polynomials in IH contains that of zeros of
IH , so H Ą G.

(3) Now we show that G and its Zariski-closure have the same fourth moment. This
is a special case of a much more general statement concerning the equality of algebraic
invariants of G and G, which is explained in Exercise 7.1.6. We take the definition
M4pGq “ dimpEndpCnq b EndpCnqqG (the other invariant space would do just as well).
Since G Ă G, we have

dimpEndpCn
q b EndpCn

qq
G
ď dimpEndpCn

q b EndpCn
qq
G

and we must therefore check that an element of F “ EndpCnq b EndpCnq which if G-
invariant is also G-invariant.

The condition that a given element x P F is G-invariant can be expressed by saying
that it satisfies the relations

g ¨ x “ x

for g P G. If we fix a basis pxkq1ďkďn4 of F , each equation g ¨ x “ x, with unknown
g P GLnpCq, can be expressed as a set of n4 equations in terms of the coordinates pgi,jq of
g, where the k-th equation expresses the fact that the coefficient of xk of x is equal to the
coefficient of xk of g ¨ x. And the point is that this last coefficient is a polynomial in the
coordinates pgi,j) (with coefficients depending on x; this may require a moment’s thought
to be clear, and it may be easier to think first of the analogue problem for invariant
bilinear forms, and to check that a bilinear form b on Cn is G-invariant if and only if it
is G-invariant.)
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Thus, to say that x P F is G-invariant means that all elements of G have the property
that their coefficients gi,j are solutions of a certain set of polynomial equations (deter-
mined by x). The polynomials determining these equations are therefore elements of IG,
and it follows again from the very definition of VG that any element of G is also a solution
of these equations, which means that x P FG. �

Now we can state a general version of the Larsen alternative:

Theorem 7.1.2 (The Larsen alternative). Let n ě 1 be an integer, and let G Ă

SLnpCq be any group, with Zariski-closure G Ă SLnpCq. Assume that G acts irreducibly
on Cn. If M4pGq “ 2, then either G is finite, or G “ SLnpCq.

Sketch of the proof. First note that G Ă SLnpCq, because the relation detpgq “
1 is assumed to be valid for all g P G, so that detpgq ´ 1, viewed as a polynomial of the
coordinates pgi,jq, is an element of the ideal IG, and therefore every g P G must satisfy
detpgq “ 1 also.

Since G Ą G, the action of G on Cn is also irreducible. We also know that M4pGq “
M4pGq, and it is relatively easy to check (see Proposition 7.1.7 below) that if G is finite,
then G “ G, so that G is also finite. Thus G satisfies the same assumptions as G, and
we must show that either G is finite, or G “ SLnpCq.

We now appeal without proof to an important result: since G is given with the
inclusion G Ă SLnpCq, which is a faithful irreducible representation (in particular, a
faithful semisimple representation), it is known that G contains a compact subgroup
K Ă G such that the Zariski-closure of K (computed by the same method as above, with
G “ K instead) is still G. We get

M4pKq “ M4pGq “ M4pGq “ 2

and by the Larsen alternative (Theorem 6.3.2) for compact groups, it follows that either
K is finite, or K contains a conjugate of SUnpCq. In the first case, K “ G “ G is finite,
while in the second G contains (a conjugate of) the Zariski-closure of SUnpCq. But it
is known that the Zariski-closure of SUnpCq is SLnpCq (see again Proposition 7.1.7),
and hence G Ą SLnpCq (without conjugacy ambiguity, since this group is conjugation-
invariant in GLnpCq.) �

At first sight, Theorem 7.1.2 might seem to be a poor substitute of the earlier version
of the Larsen alternative, since it involves the group G which may seem complicated and
obscure. In fact, one should think of G as being typically a much simpler object than G,
and of the passage from G to G as simplifying considerably the problem. This is because
G belongs to the category of linear algebraic groups, i.e., it is a subgroup of GLnpCq
which is the set of common zeros of a set of polynomials (elements of the algebra A.)

One may also ask why one does not try to go directly from the given group G to the
compact group K which is used to reduce to the earlier version of the Larsen alternative?
This seems difficult because it may well happen that G and K have trivial intersection! A
basic example is G “ GLnpZq, n ě 2; then one can show (see Proposition 7.1.7 for n “ 2
and Exercise 7.1.8 for n ě 3) that G is the set of matrices g in GLnpCq with detpgq2 “ 1;
the subgroup K is then the group of unitary matrices g P UnpCq with detpgq2 “ 1. The
intersection G XK is the finite group W2n of signed permutation matrices (discussed in
Exercise 4.7.13; indeed, if g “ pgi,jq is any unitary matrix with integral coefficients, the
condition

ÿ

j

g2
i,j “ 1

270



implies that, for a given i, a single gi,j P Z is ˘1, and the others are 0; denoting j “ σpiq,
one sees that σ must be a permutation of t1, . . . , nu, so that g P W2n; since any W2n Ă

GLnpZq, we get the result.) In this case, GXK still acts irreducibly on Cn (as the reader
should check), but if we replace G by the subgroup

G3 “ tg P GLnpZq | g ” Id pmod 3qu,

which has finite index, it also possible to show that the Zariski-closure of G3, and hence
the compact subgroup K, are the same as that for G. However, G3 X K is now trivial
since a signed permutation matrix which is congruent to the identity modulo 3 has to be
the identity (we used reduction modulo 3 instead of 2 here to be able to distinguish the
two signs.)

Remark 7.1.3. One can also bypass the compact case and give a purely algebraic
proof of Theorem 7.1.2, as done by Katz in [29], but the reader who checks this proof will
see that it parallels very closely the argument of Theorem 6.3.2. This is no coincidence,
but another illustration of the close links between representations of linear algebraic
groups (at least, of the so-called reductive groups, which contain all Zariski-closures
of subgroups of GLnpCq acting irreducibly on Cn) and representations of compact Lie
groups.

Exercise 7.1.4 (The Zariski topology). The association of the “big” group G to the
group G has (besides the name itself!) the aspect of a “closure” operation. Indeed, it can
be interpreted as taking the closure of G in GLnpCq with respect to a certain topology,
called the Zariski topology.

Let k be an algebraically closed field and let n ě 1 be an integer. We define An “ kn,
which is called the affine n-space over k, and we denote krXs “ krX1, . . . , Xns the algebra
of polynomials in n variables. Note that for a polynomial f P krXs and x P An, we can
evaluate f at x.

(1) For any subset I Ă krXs, let

(7.2) VpIq “ tx P An
| fpxq “ 0 for all f P Iu.

Show that the collection of sets pVpIqqIĂA is the collection of closed sets for a topology
on An.

In particular, this allows us to speak of the Zariski-closure of any subset V Ă An: it
is the intersection of all Zariski-closed subsets of An which contain V .

(2) Show that any polynomial map f : An ÝÑ Am is continuous with respect to the
Zariski topologies on the respective affine spaces.

(3) For n “ 1, show that a subset V Ă A1 is closed for the Zariski topology if and
only if V “ A1 or V is finite. Show that the Zariski topology on A2 is not the product
topology on A1 ˆA1. Show also that the Zariski topology is not Hausdorff, at least for
A1 (the case of An for arbitrary n might be more difficult.)

(4) Let G “ GLnpkq, seen as a subset of An2
by means of the coefficients of the

matrices. Show that G is dense in An2
with respect to the Zariski topology. Furthermore,

show that the set

G̃ “ tpg, xq P An2`1
| detpgqx “ 1u Ă An2`1

is Zariski-closed in An2`1.
(5) For k “ C and G Ă GLnpCq with Zariski-closure G, show that the Zariski-closure

of G̃ Ă An2`1 is equal to

G̃ “ tpg, xq P GˆC | detpgqx “ 1u.
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The Zariski topology is a foundational notion in algebraic geometry; readers interested
in learning more may look at [24] for the general theory (or should really try to attend a
course in algebraic geometry, if at all possible!). In the context of linear algebraic groups,
the books [6] and [55] may be more accessible.

We use this language to give a formal definition:

Definition 7.1.5 (Linear algebraic group). Let k be an algebraically closed field. A
group G is a linear algebraic group over k if there exists some n ě 1 such that G is a
Zariski-closed subgroup of GLnpkq.

Since we will not talk of any other types of algebraic groups, we will often omit the
adjective “linear” below.

Exercise 7.1.6 (Zariski closure and polynomial representations). Let k be an alge-
braically closed field and let G Ă GLnpkq be any subgroup. Let

% : G ÝÑ GLmpkq

be a (matrix) representation of G. We assume that % is a polynomial representation, i.e.,
that the coefficients of %pgq are functions on G which are restrictions of polynomials in
the coordinates gi,j and in detpgq´1.

(1) Let G Ă GLnpkq be the Zariski closure of G. Show that there exists a unique
representation

% : G ÝÑ GLmpkq

such that % coincides with % on G. What is % if % is the injection of G in GLnpkq?
(2) Show that a subspace V Ă km is a subrepresentation of % if and only if it is a

subrepresentation of %. Deduce that % is G-irreducible (resp. G-semisimple) if and only
if % is G-irreducible (resp. G-semisimple).

(3) Show that the subspace pkmqG of vectors invariant under G is equal to the subspace
of vectors invariant under G.

(4) Show that the representations q% (contragredient), Symk % (k-th symmetric power,

for k ě 0),
Źk % (alternating power, for k ě 0) are also polynomial.

(5) Using these ideas, prove that any finite-dimensional complex polynomial repre-
sentation of Cˆ is semisimple. Show this is false for arbitrary (or even continuous)
representations.

Going from G to the Zariski-closure G in the above proof might be a difficult psy-
chological step at first, especially if one thinks of G as being particularly concrete (e.g.,
G “ GLnpZq Ă GLnpCq) while G seems a very abstract object. However, it is a fact
that computing the Zariski-closure of a group is quite often relatively easy, using known
results (which may themselves, of course, be non-trivial.) We give here a few simple
examples (parts (1) and (5) fill up some steps we only claimed in the sketch of the proof
of Theorem 7.1.2, and (5) illustrates also, on a special case, the passage from G to a
compact subgroup K Ă G with Zariski-closure equal to G which was quoted in that
argument.)

Proposition 7.1.7 (Examples of Zariski closure). (1) If G Ă GLnpCq is a finite
group, then G “ G.

(2) The Zariski closure of Z in C is C.
(3) The Zariski closure of SL2pZq in GL2pCq is SL2pCq, and that of GL2pZq is the

subgroup of matrices in GL2pCq with determinant equal to 1 or ´1.
(4) The Zariski closure of the unit circle in Cˆ is equal to Cˆ.
(5) For n ě 1, the Zariski closure of SUnpCq in GLnpCq is SLnpCq.
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Proof. We will use the language of the Zariski topology and Zariski closure applied
to more general subsets than subgroups of GLnpCq, and we will use three very elementary
observations:

‚ If X Ă C is any subset, then its Zariski closure X̄ is either equal to X, if X is
finite, or is equal to C if X is infinite (this is part of Exercise 7.1.4);

‚ If X Ă Y , then the Zariski closure of Y contains the Zariski closure of X (this
is a formal property of any topology);

‚ If X Ă SLnpCq is such that its Zariski closure is dense in SLnpCq for the usual
euclidean topology, then the Zariski closure is equal to SLnpCq (this is because
a polynomial that vanishes on X must vanish, by continuity, on its euclidean
closure, hence on all of SLnpCq).

For (1), the first observation applies, and similarly for (2). For (3), we first note
that since the equation detpgq “ 1 is a polynomial equation satisfied by all elements of
SL2pZq, it is also satisfied by all elements of its Zariski-closure, and hence the latter must
be contained in SL2pCq. Now note that Γ “ SL2pZq contains the subgroups

U` “
!

ˆ

1 n
0 1

˙

| n P Z
)

, U´ “
!

ˆ

1 0
n 1

˙

| n P Z
)

,

each isomorphic in an obvious way to Z and contained in the corresponding groups with
complex coefficients. By (2), the Zariski closure of U` and U´ are therefore equal to
these groups

Ū` “
!

ˆ

1 t
0 1

˙

| t P C
)

, Ū´ “
!

ˆ

1 0
t 1

˙

| t P C
)

,

and by the second principle, the Zariski-closure Γ̄ contains Ū` and Ū´, and hence the
group they generate. But it is well-known that this group is all of SL2pCq. We can
conclude in fact very concretely even without knowing this: for any complex numbers
pt, u, vq, we compute

(7.3)

ˆ

1 t
0 1

˙ˆ

1 0
u 1

˙ˆ

1 v
0 1

˙

“

ˆ

ut` 1 puv ` 1qt` v
u uv ` 1

˙

.

Since each factor is known to be in Γ̄, it is then easy to deduce by inspection that Γ̄
contains the set C of all matrices in SL2pCq with non-zero bottom-left coefficient (define
u to be this coefficient, and solve for t and v to have the right diagonal coefficients,
then check that the top-right must also be correct). One can then also check that C is
dense in SL2pCq for the usual topology, and apply the third principle to conclude that
Γ̄ “ SL2pCq.

In the case of GL2pZq, the Zariski-closure must contain SL2pCq, and it is contained
in

G̃ “ tg P GL2pCq | detpgq2 “ 1u

because the polynomial equation detpgq2 “ 1 is satisfied by all elements of GL2pZq. Since
we have

G̃ “ SL2pCq Y SL2pCq

ˆ

´1 0
0 1

˙

and both sets on the right-hand side are in the Zariski-closure of GL2pZq, we get the
converse inclusion.

Case (4) is again a special case of the first principle. For (5), let K “ SUnpCq. Its
Zariski-closure G is a subgroup of SLnpCq (since the condition detpgq “ 1 is a polynomial
equation satisfied by K, and hence also by its Zariski-closure). Applying the first and

273



second principles, we see that G contains the diagonal subgroup A Ă SLnpCq (because
for each i ­“ j, it must contain the subset Ai,j Ă A of diagonal matrices g with diagonal
coefficients gk,k “ 1 for k R ti, ju, and hence also the subgroup generated by these Ai,j,
which one sees is equal to A.)

We conclude that G contains KAK, but it is a special case of the polar decomposition
of matrices that KAK “ SLnpCq, and therefore G “ SLnpCq. �

Exercise 7.1.8. Let n ě 2 be an integer. Show that the Zariski-closure of SLnpZq in
GLnpCq is equal to SLnpCq, and that the Zariski-closure of GLnpZq is equal to

tg P GLnpCq | detpgq2 “ 1u Ă GLnpCq.

[Hint: Find subgroups of SLnpZq isomorphic to SL2pZq which generate it, and use the
case n “ 2.]

There are very general results which make computations such as those in the previous
exercise quite easy. For instance, this result is a special case of a much more general theo-
rem of Borel, which computes the Zariski-closure of many important discrete groups. We
state a special case (though it might not be obvious that SLnpZq satisfies the assumption
of this result; see for instance the book of Witte–Morris [60, §4.7] for a proof):

Theorem 7.1.9 (Borel density theorem). Let n ě 2 and let Γ Ă SLnpRq be a discrete
subgroup such that there exists a probability measure on the quotient SLnpRq{Γ which is
invariant under the left-action of SLnpRq. Then the Zariski closure of Γ in SLnpCq is
equal to SLnpCq.

We conclude this section with sketches of two other applications of algebraic groups
to rather basic questions of general representation theory. First, we need some further
facts about algebraic groups:

Lemma 7.1.10 (Connected component of the identity). Let G Ă GLnpCq be an al-
gebraic group. Then the connected component G0 of G containing 1, for the Zariski
topology, is a normal subgroup of finite index in G. Furthermore, any Zariski-closed
subgroup of finite index in G contains G0.

The fact that rG : G0s ă `8 is quite strong and is an important feature of algebraic
groups.

Sketch of proof. Rather elementary formal manipulations show that G0 is a nor-
mal subgroup of G (e.g., once one knows that G0 is a subgroup, its image under a
conjugation x ÞÑ gxg´1, for g P G, is also a connected subgroup of G, hence must be
contained in G0, which implies that G0 is normal). To show that the index of G0 in G
is finite, one first notices that G, with the Zariski topology, is a noetherian topological
space, i.e., any descending chain

G Ą V1 Ą V2 Ą ¨ ¨ ¨ Ą Vn Ą ¨ ¨ ¨

of (Zariski) closed subsets of G is stationary, i.e., there exists i ě 1 such that Vj “ Vi
if j ě i. Indeed, let AG be the algebra of functions on G (the restrictions to G of the
polynomial functions on GLnpCq), and let

IpViq “ tf P AG | fpViq “ 0u Ă AG.

Then IpViq is an ideal of AG and these form an increasing chain

IpV1q Ă IpV2q Ă ¨ ¨ ¨ Ă IpVnq Ă ¨ ¨ ¨ .
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Since AG (which is a quotient of the ring of polynomials on GLnpCq) is a noetherian
ring, this chain of ideals becomes ultimately constant. However, using the notation (7.2),
one can see that

Vi “ VpIpViqq

(because Vi is tautologically included in the right-hand side, and one checks that the
right-hand side is the Zariski-closure of Vi, which was assumed to be closed), and hence
all Vi coincide from some point on.

Coming back to G0, it is an open subset of G (for the Zariski topology), and any
G0-coset in G is also open. If pgiqiě1 is a sequence of elements such that giG

0 are distinct
(hence disjoint) G0-cosets, we obtain an increasing sequence of open sets

G0
Ă G0

Y g1G
0
Ă ¨ ¨ ¨ Ă G0

Y
ď

1ďiďn

giG
0
Ă ¨ ¨ ¨

whose complements in G are therefore decreasing closed sets, which means the sequence
must in fact be finite by the noetherian property. This implies that there are only finitely
many distinct G0-cosets, as claimed.

Finally, if H is a closed subgroup of G of finite index, it is also open in G (the
complement is the union of finitely many cosets, each of which is closed), and hence must
contain the connected component of 1 in G. �

We next consider a very simple-looking property of representation theory, which is
due to Chevalley: over C, the tensor product of two semisimple representations remains
semisimple (with no continuity or related assumption!) No proof of this fact is known
without using algebraic groups, and (as mentioned by Serre [50, Part II, §1]), it would
be interesting to have an elementary proof of this fact.

Theorem 7.1.11 (Chevalley). Let %1, %2 be finite-dimensional complex semisimple
representations of a group G on vector spaces E1 and E2. Then %1 b %2 is semisimple.

Sketch of proof. Let G̃ Ă GLpE1q ˆ GLpE2q Ă GLpE1 ‘ E2q be the image of G
under the homomorphism g ÞÑ p%1pgq, %2pgqq. The semisimplicity of %1b%2 is equivalent to
that of the natural representation of G̃ on E1bE2, so we can replace G by G̃, and assume
that G is a subgroup of GLpE1q ˆ GLpE2q acting semisimply (by the two projections)
on E1 and E2, and acting by tensor product on E1 b E2. Observe that these three
representations are then polynomial representations of G.

After this reduction, let G be the Zariski-closure of G. By Exercise 7.1.6, (2), it
is enough to prove that the action of G on V1 b V2 is semisimple. Furthermore, after
passing possibly to the connected component of the identity of G, one can assume that
G is connected (for the Zariski topology; this step uses Lemma 7.1.10, Exercise 2.3.3 and
the fact that we work with representations over a field of characteristic zero).

We now require one non-trivial ingredient. For any linear algebraic group H Ă

GLnpCq, one shows that there exists a unique maximal normal connected subgroup RuH
of H such that all elements of RuH are unipotent as elements of GLnpCq; this subgroup is
unique, and it is called the unipotent radical of H. This has the crucial property that, for
a connected algebraic group H, a finite-dimensional polynomial complex representation
of H is semisimple if and only if its kernel contains RuH.

We apply this criterion in our case. Since G is given with a faithful representation
on E1 ‘ E2, which is semisimple by assumption, it follows that the unipotent radical
RuG must be trivial. But then, RuG acts obviously trivially on E1 bE2, and hence this
representation of G is semisimple. �
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Remark 7.1.12. It is known, and it is a more elementary property, that the converse
holds: if the tensor product %1 b %2 is semisimple, then %1 and %2 are semisimple. The
proof of this does not require the use of algebraic groups (one may guess that this is
more elementary because this converse is valid over any algebraically closed field k under
the condition that dim %1 and dim %2 are both invertible in k, whereas Chevalley’s result
holds only in this generality if the characteristic p of the field is large enough compared
with dim %1 and dim %2, more precisely if

p ą dim %1 ` dim %2 ´ 2

(see [50, Part II, lecture 1, Th. 2] and [52].)

Example 7.1.13. Let G be the group

G “

!

ˆ

a b
0 d

˙

P GL2pCq | a, b, d P C
)

.

This is an algebraic subgroup of GL2pCq (defined by the polynomial equation that
asserts that the bottom-left coordinate of a matrix is 0), and its unipotent radical is the
subgroup

RuG “

!

ˆ

1 b
0 1

˙

| b P C
)

which we have already seen at work many times (this subgroup is clearly made of unipo-
tent elements, and it is normal in G; a simple computation shows that it is maximal
with this property). The quotient G{RuG is isomorphic to Cˆ ˆ Cˆ (mapping the
matrix above to pa, dq), and therefore the criterion we used in the proof states that a
finite-dimensional polynomial complex representation of G is semisimple if and only if
it factors through the quotient Cˆ ˆ Cˆ. The “if” direction is part of Exercise 7.1.6,
and as an example of the “only if” part, note that the tautological faithful 2-dimensional
representation of G is indeed not semisimple.

The last application is due to N. Katz [31, Lemma 2.18.2 bis], and again it would be
interesting to know if there is a more direct proof.

Proposition 7.1.14. Let k be an algebraically closed field of characteristic zero, G
a group and % : G ÝÑ GLpEq a non-zero finite-dimensional k-representation of G. Let
A be the group of one-dimensional k-characters of G such that % and % twisted by χ are
isomorphic, i.e.,

A “ tχ : G ÝÑ kˆ | % » %b χu.

Then A is finite.

Sketch of proof. We give the main steps of the proof, which the reader can fill-up
(or check in the original text), assuming k “ C. It is convenient to write A “ ApG, %q to
indicate the dependency of this group on G and %.

(1) One checks that ApG, %q “ ApG{Kerp%q, %q, which means that one may assume
that % is a faithful representation. We then identify it with its image in GLpEq and reduce
to G Ă GLpEq acting on E in the standard way; we then write ApGq instead of ApG, %q.

(2) Let G be the Zariski-closure of G in GLpEq. The crucial step is to show that
ApGq “ ApGq; to do this, one shows that any χ P ApGq extends to a character χ̃ P ApGq
(see Exercise 7.1.15 below.)

(3) Now consider χ P ApGq. By definition of isomorphism of representations, there
exists an element g P GLpEq such that

gxg´1
“ χpxqx

276



for all x P G. Taking the determinant, it follows that

χpxqdimpEq
“ 1

for all x P G. This means that χ is a character of order dividing dimE, and in particular
its kernel is a normal subgroup of finite index. By the last part of Lemma 7.1.10, Kerχ
contains G0, which means that χ factors through the finite group G{G0. But this gives
an injection

ApGq ãÑ HompG{G0, kˆq

and therefore ApGq is finite. �

Exercise 7.1.15. In this exercise, we explain the proof of Step (2) in the previous
sketch. The notation is as in this proof: G Ă GLpEq is the Zariski-closure of G. Let Z
be the center of GLpEq, i.e., the subgroup of scalar matrices.

(1) Let χ P ApGq be given. Show that there exists g P GLpEq such that G is contained
in

Hg “ tx P GLpEq | gxg´1x´1
P Zu,

and deduce that G Ă Hg.
(2) With χ and g as in (1), show that there exists a map

"

G ÝÑ kˆ

x ÞÑ αpxq

such that

gxg´1
“ αpxqx

for all x P G. Show that x ÞÑ αpxq is an element of ApGq and that αpxq “ χpxq for all
x P G.

(3) Conclude that ApGq “ ApGq.

7.2. Locally-compact groups: general remarks

In the remaining sections of this chapter, we will give a short introduction to some
aspects of the representation theory of non-compact, but locally compact, groups. We
begin with an introductory section to describe, in general terms, some of the new phe-
nomena that occur in this case. We will then illustrate many of them in the next two
sections, sometimes with proofs, and otherwise with references to the literature.

We will discuss two type of differences: “global” ones concern the way unitary rep-
resentations are (or not) built out of irreducible one, while “local” ones deal with the
existence and other properties of the irreducible unitary representations. The properties
of the regular representation sit somehow in the middle, since in the case of compact
groups, we saw that it contains (in a relatively well-controlled way) all the irreducible
unitary representations.

(1) On the global side, a major difference is that a (non-zero) unitary representation
% of a non-compact group G might have no irreducible subrepresentation. An example
of this behavior was already given in Example 3.4.14, with the regular representation of
R. Certainly, if G is not compact, the trivial one-dimensional representation 1 is never a
subrepresentation of the regular representation of G, since the constant function 1 is not
square-integrable when G is not compact.

This shows that if one wishes to uses irreducible unitary representations to describe
all representations, different constructions than just direct sums are needed. One can in-
deed define direct integrals of families of representations parametrized by measure spaces,
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and show that any unitary representation is a direct integral of irreducible unitary rep-
resentations (see, e.g., [40, Th. 2.9]). However, even when the subtleties involved in
establishing such a theory are dealt with, a major difficulty remains: there is, in gen-
eral, no uniqueness result for such direct integral decompositions. This applies already
to groups like non-abelian free groups, or some solvable Lie groups, or even to a group
as innocent-looking as G “ Q ¸ Qˆ seen as a discrete (solvable) group: indeed, one
can show (see [40, §3.5]) that the regular representation of G on L2pGq (note that here
the Haar measure is just the counting measure, since G is discrete) decomposes in two
“essentially inequivalent” ways as a direct integral of irreducible unitary representations.

Nevertheless, the existence of integral decompositions and the fact that the regular
representation is faithful imply the important fact that any locally compact group has
sufficiently many irreducible unitary representations to distinguish group elements:

Theorem 7.2.1 (Gelfand–Raikov). Let G be a locally compact group. For any g ­“ 1
in G, there exists an irreducible unitary representation % of G such that %pgq ­“ 1.

See [40, p. 110] for a proof in the case of a separable group (one in which there is a
countable dense subset); this result was first proved using different techniques by Gelfand
and Raikov.

(2) Concerning the “local” side of the theory, that of properties of the irreducible
representations themselves, a major difference is that a non-compact groupGmay have no
(non-trivial) finite-dimensional unitary representations (see for instance Proposition 7.4.1
below for G “ SL2pRq, which therefore applies also to any G which is generated by
subgroups which are topologically isomorphic to SL2pRq). A direct consequence is that
there is no obvious possibility to define a character theory for such groups, although
one can develop a more refined theory of characters as distributions on Lie groups like
SL2pRq. One can still define matrix coefficients, since the functions

fpgq “ x%pgqv, wy

exist on G, and are bounded, but in the non-compact case, these functions are not nec-
essarily in L2pGq, which reflects the fact that the irreducible unitary representations are
not necessarily to be found as subrepresentations of the regular representation. Both pos-
sibilities may arise for the same group, as we will see for G “ SL2pRq, which admits both
irreducible unitary representations that are subrepresentations of the regular represen-
tations (these form an infinite countable set), and many which are not (an uncountable
set). On the other hand, for SL2pCq, there are no irreducible subrepresentations of the
regular representation.

Finally, maybe the most mysterious aspect of the theory of irreducible representations
for Lie groups like SL2pRq is that there may exist irreducible unitary representations
which are completely “invisible” from the point of view of the regular representation.
To be a bit more precise, even if an irreducible representation % is not contained as a
subrepresentation in L2pGq, it may appear in the generalization of the Plancherel formula
(or Fourier inversion formula). Indeed, this is particularly clear for abelian groups, say
G “ R, where for f P L2pRq, smooth with compact support, we have the expression

fpxq “

ż

R

f̂ptqeitxdt

in which all unitary characters x ÞÑ eitx occur, although none of them is a subrepresenta-
tion of L2pRq. For G “ SL2pRq (and for other Lie groups) there is a Plancherel formula,
due to Harish-Chandra, for suitably smooth functions in L2pGq, but the representations
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occurring on the right-hand side do not exhaust all irreducible unitary representations
(see [33, Th. 11.6]).

These few lines should be enough to convince the reader that the representation
theory of non-compact groups is a fascinating area of mathematics. We refer to [33] for
a full-featured account.

7.3. Locally compact abelian groups

In the case of locally compact abelian groups, there is a very satisfactory theory, where
the direct integral decompositions of unitary representations which generalize direct sum
decompositions are relatively transparent. This is known as the theory of Pontryagin
duality and generalizes classical Fourier analysis.

Let G be a locally compact abelian group. By Schur’s Lemma (Proposition 3.4.16)

all irreducible unitary representations of G are of dimension 1. Hence the set pG of
isomorphism classes of unitary irreducible representations of G is well-defined, as the set
of continuous homomorphisms χ : G ÝÑ S1. This set is a group, with the operations of
pointwise multiplication and inversion.

Definition 7.3.1 (Dual of a locally compact group). The dual group of a locally

compact abelian group G is the group pG, with the topology of uniform convergence on

compact subsets of G, i.e., with the topology such that a basis of neighborhoods of χ0 P pG
is given by the sets

tχ P pG | |χpxq ´ χ0pxq| ď ε for all x P Ku

where ε ą 0 and K Ă G is compact.

The choice of topology is important, as the next lemma shows.

Lemma 7.3.2. For any locally compact abelian group G, the dual group pG is a locally
compact abelian group.

The most important fact is that pG is locally compact (which implies for instance that
there is a Haar measure on the dual group.)

Now we can generalize Theorems 4.5.1 and 4.5.2:

Theorem 7.3.3 (Pontryagin duality). Let G be a locally compact abelian group, and
let µ be a Haar measure on G.

(1) The homomorphism
#

G ÝÑ
p

pG
x ÞÑ ex

where expχq “ χpxq, is an isomorphism of locally compact groups, i.e., a group isomor-
phism and a homeomorphism.

(2) There exists a unique Haar measure pµ on pG such that, for any function f P CcpGq
continuous and compactly supported on G, the function

pf :

$

&

%

pG ÝÑ C

χ ÞÑ

ż

G

fpxqχpxqdµpxq

is in L2pG, µq and satisfies the Plancherel formula
ż

G

|fpxq|2dµpxq “

ż

pG

| pfpχq|2dpµpχq.
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In particular, the linear map f ÞÑ pf extends to an isometry L2pG, µq ÝÑ L2p pG, pµq.

(3) Furthermore, if pf is in L1p pG, pµq, we have the inversion formula

fpxq “

ż

pG

pfpχqχpxqdpµpχq.

Exercise 7.3.4. (1) If µ is replaced by cµ with c ą 0, how is pµ changed?

(2) If G is a group such that pG » G (examples are finite groups or G “ Rn for n ě 1,
see the example below), show that there exists a unique Haar measure µ on G such that
pµ “ µ. What is this measure when G is finite? (This measure is sometimes called the
self-dual Haar measure on G.)

Before giving examples of this result, we explain how to interpret it from the point of
view of representation theory as giving a direct integral decomposition

(7.4) %G »

ż

pG

‘ χdpµpχq

of the regular representation of a locally compact abelian group G. Although we do not
give a general definition of such decompositions, since this would involve rather delicate
measurability issues, this example and the others below should give a good idea of what
is happening. For full details, see for instance the book of Mackey [40].

Intuitively, an element of the right-hand side of (7.4) should be a family v “ pvχq,
where χ runs over all characters of G, and vχ is a vector in the space on which χ acts.
Since χ has dimension 1, we can identify all these spaces with C, so that v can be seen as a

function pG ÝÑ C. From a Hilbert space perspective, it is natural to view the underlying
space of the direct integral as the collection of these families such that the norm

}v}2 “

ż

pG

|vχ|
2dpµpχq,

is finite, which means that the space of the direct integral is L2p pG, pµq. From the point of
view of representation theory, the group G should act on these families pvχq by

(7.5) g ¨ v “ pχpgqvχqχ.

The map from the regular representation to the direct integral is given by

f ÞÑ p pfpχqqχ

which, by the Plancherel formula, makes sense and gives an isometry between the space

L2pG, µq and L2p pG, pµq. And further, this abstract Fourier transform is an intertwiner:
for any g P G, we have

{p%Gpgqfqpχq “

ż

G

p%Gpgqfqpxqχpxqdµpxq

“

ż

G

fpx` gqχpxqdµpxq “ χpgq pfpχq

using invariance of Haar measure and the fact that χ is a homomorphism (this is a
formal computation, and a rigorous one if f is also in L1pG, µq). This means that the
χ-component of the image of f is multiplied by χpgq under the regular action of g on f .
This corresponds exactly to the definition (7.5) of the direct integral.
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Example 7.3.5. (1) Let G “ R; then, as we have already seen (see Example 3.4.9),
the dual group is isomorphic as a group to R using the map

"

R ÝÑ pG
t ÞÑ et

where etpxq “ eitx. It is an elementary exercise that this is also an homeomorphism, so

that pG is isomorphic to R as a topological group. The corresponding abstract Fourier
transform is defined for f P L1pRq by

pfptq “

ż

R

fpxqe´itxdx

and coincides therefore with the “usual” Fourier transform. The Fourier inversion for-
mula, with this normalization, is

fpxq “
1

2π

ż

R

pfptqeitxdt

so that the dual Haar measure of the Lebesgue measure is 1
2π
dt. (This illustrates that

one must be somewhat careful with the normalizations of Haar measure.)
(2) Let G “ Z; this is a discrete non-compact locally compact abelian group. A

unitary representation % of Z on a Hilbert space H is simply determined by the data of
a unitary operator %p1q, and two such representations are isomorphic if and only if the

operators are unitarily equivalent. This means in particular that pZ » S1 » R{Z as a
group (a one-dimensional unitary operator is a complex number of modulus 1), and one
can then check furthermore that these isomorphisms are also homeomorphisms.

(3) The dual group of S1 » R{Z was already determined as isomorphic to Z (in
Example 3.4.9), the isomorphism being

"

Z ÝÑ zR{Z
n ÞÑ e2iπn

,

so that comparing (2) and (3), we see a special case of Pontryagin duality (again one

must check that the topology on zR{Z is indeed discrete.)
(4) Let G “ Rˆ. Then we have an isomorphism

#

G ÝÑ pZ{2Zq ˆR

x ÞÑ

´ x

|x|
, log |x|

¯

of locally abelian groups. Hence pG is isomorphic to Z{2Z ˆ R (because the dual of
a product is the product of the duals), where the character corresponding to pε, tq P
Z{2ZˆR is given by

χpxq “ sgnpxqε|x|it, sgnpxq “
x

|x|
.

Exercise 7.3.6. Let G be a compact abelian group. Show that, with the topology
of uniform convergence on G, the dual group is discrete.

One can prove that any unitary representations of a locally compact abelian group G
has a decomposition into a direct integral of characters. In the special case of G “ Z, this
is another interpretation of the spectral theorem for unitary operators, which is mentioned
at the end of Theorem 3.4.17): a unitary representation % of Z on a Hilbert space H is
uniquely determined by the operator %p1q P UpHq, and the spectral theorem gives an
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isomorphism of this representation with a representation %̃ on a space L2pX,µq, for some
measure space pX,µq, where %̃p1q is the multiplication operator by some function of the
form eif , for a real-valued measurable function f on X. We interpret this as stating that

L2
pX,µq »

ż

X

‘ efpxqdµpxq

(where, for t P R{Z, the character et of Z is given by etpnq “ eint), with the representation
given formally for v “ pvxqxPX in the direct integral by

1 ¨ v “ pefpxq ¨ vxq “ pe
ifpxqvxqx.

This intuitive description fits perfectly with the spectral theorem.
There is another important example where the general decomposition has a concrete

and relatively classical form. This is when G “ R, and the result is due to Stone:

Theorem 7.3.7 (Stone’s Theorem). Let H be a separable Hilbert space and let % :
R ÝÑ UpHq be a unitary representation, also known as a strongly continuous one-
parameter unitary group in H.

There exists a finite measure space pX,µq and a real-valued function f on X such that
% is isomorphic to the representation on L2pX,µq given by

%̃ptqϕpxq “ eitfpxqϕpxq.

For a proof, combine [44, Th. VIII.4] with [44, Th. VIII.8] (or [35, §4.6, §6.1]).
This result plays a very important role in quantum mechanics, as giving the time

evolution of a state under the Schrödinger equation: indeed (at least formally), given an
initial state ϕ0 P L

2pX,µq of norm 1, the functions ϕt “ %̃p´tqϕ0 satisfy the differential
equation

i
d

dt
ϕt “ fϕt,

which is a (close variant of) the equationf (6.18) for the Hamiltonian operator of multi-
plication by f .

Exercise 7.3.8. Interpret Stone’s Theorem as an isomorphism

% »

ż

X

‘ efpxqdµpxq,

where (as before) etpxq “ eitx for t P R and x P R.

7.4. A non-abelian example: SL2pRq

In this section, we will discuss some basic aspects of the irreducible unitary repre-
sentations of the group G “ SL2pRq and of its regular representation. Although some
technical facts will not be proven in full details, we will be able to present concretely
many aspects of this theory, which will give a first orientation towards its generalization
to other similar groups. The results we present were first obtained by Bargmann in 1947.

Before beginning, we recall from Example 5.2.4, (6) that the group G is unimodular:
its Haar measure is both left and right invariant.

We begin by showing that there are no non-trivial finite-dimensional unitary repre-
sentations of SL2pRq:

Proposition 7.4.1. Let G “ SL2pRq. Then any finite-dimensional unitary represen-
tation of G is trivial.
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Proof. It is enough to show that an irreducible unitary representation % of G with
dimp%q ă `8 is trivial. We give a proof that is not the shortest but which is enlightening.

Assume that % is not trivial. We consider the restriction of % to the subgroups

U` “

"ˆ

1 t
0 1

˙

| t P R

*

» R, U´ “

"ˆ

1 0
t 1

˙

| t P R

*

» R.

Using the identity (7.3) (with real parameters), we see that one of these representa-
tions must be non-trivial. We may assume that % restricted to U` is not trivial, the other
case being exactly similar.

Since dimp%q ă `8, this restriction ResGU`p%q is semisimple and hence contains a
non-trivial irreducible subrepresentation of U` » R. By the classification of characters
of R, this means that there exists a real number x ­“ 0 and a non-zero vector v such that

%
´

ˆ

1 t
0 1

˙

¯

v “ eitxv

for all t P R. Now, using the relation

(7.6)

ˆ

a 0
0 a´1

˙ˆ

1 t
0 1

˙ˆ

a´1 0
0 a

˙

“

ˆ

1 a2t
0 1

˙

,

it follows that for all a P Rˆ, the vector

va “ %
´

ˆ

a 0
0 a´1

˙

¯

v ­“ 0

satisfies

%
´

ˆ

1 t
0 1

˙

¯

va “ eia
2txva.

This means that the restriction ResGU`p%q also contains the character t ÞÑ eia
2xt, for

all a ą 0. Since x ­“ 0, this gives infinitely many distinct characters of U` contained in
%, which is impossible since dimp%q ă `8. This contradiction means that % does not
exist. �

Exercise 7.4.2. This exercise presents a different proof of this proposition. Let % be
a finite-dimensional unitary representation of SL2pRq and let χ be its character.

(1) Show that χpxq “ dimp%q “ χp1q for all x P U` and all x P U´. [Hint: Use (7.6)
and continuity; this does not use unitarity.]

(2) Deduce that the kernel of % contains U` and U´, and conclude that % is trivial.

The proof of Proposition 7.4.1 may remind the reader of the argument used in Ex-
ercise 4.7.3 to show that SL2pFpq has no non-trivial irreducible representation of small
dimension. There are in fact many concrete parallels between aspects of the representa-
tion theory of SL2pFpq and that of SL2pRq and SL2pCq. These are explained to a certain
extent by the fact that these groups are “specializations” of the algebraic group SL2 – for
instance, identities like (7.3) or (7.6) are valid uniformly for coefficients in any field.

This analogy continues with the first concrete examples of infinite-dimensional irre-
ducible representations of these groups, which we now present. The construction is similar
to that of the principal series of the finite groups GL2pFqq (Section 4.6.4): it proceeds by
induction of one-dimensional characters from the subgroup of upper-triangular matrices.
Naturally, these representations are also called the principal series representations, and
many of their properties are formally similar.
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We consider G “ SL2pRq, and the subgroups

B “
!

ˆ

a b
0 a´1

˙

| a P Rˆ, b P R
)

Ă G,

B` “
!

ˆ

a b
0 a´1

˙

| a ą 0, b P R
)

Ă B.

The argument in Proposition 7.4.1 shows in fact that B has no other finite-dimensional
unitary representation than the one-dimensional characters

ˆ

a b
0 a´1

˙

ÞÑ χpaq

for some χ P zpRˆq. Such a character is of the form

χpaq “ sgnpaqε|a|it

where ε P t0, 1u and t P R (see Example 7.3.5, (4)).
We wish to define a representation IndGBpχq in such a way that it is unitary, and that

it satisfies irreducibility properties similar to those of the principal series in Section 4.6.4
and Exercise 4.8.3. The Hilbert space will be a space of functions

f : G ÝÑ C

which transform suitably under multiplication on the left by b P B, and which carries
formally the regular representation of G. However, the most naive definition of the space
(asking that fpbgq “ χpbqfpgq) and of the norm (the L2-norm with respect to a Haar
measure on G) do not work.

Instead, we denote by δ : B ÝÑ R`,ˆ the homomorphism

δ
´

ˆ

a b
0 a´1

˙

¯

“ |a|,

and by K the compact subgroup K “ SO2pRq Ă G (equipped with its probability Haar
measure) and we define

Hχ “ tf : G ÝÑ C | fpbgq “ χpbqδpbqfpgq

for all b P B, g P G, and }f}2 ă `8u,

where the norm is given by

}f}2 “

ż

K

|fpkq|2dk.

Proposition 7.4.3 (Principal series of SL2pRq). (1) For any unitary character χ P
zpRˆq, the space Hχ with the norm } ¨ } above is a Hilbert space, and the action

%χpgqfpxq “ fpxgq

defines a unitary representation of G “ SL2pRq on Hχ. It is also denoted IndGBpχq
and called a principal series representation. The representation space Hχ is infinite-
dimensional.

(2) It is irreducible if and only if χ is not the character given by χpxq “ sgnpxq “ x{|x|.

(3) For χ1 and χ2 in zpRˆq, we have %χ1 » %χ2 if and only χ1 “ χ2 or χ1 “ χ´1
2 .

(4) There exists no subrepresentation of the regular representation of G which is iso-
morphic to %χ.
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Note how (2) and (3) are formally similar with the properties of the induced repre-
sentations forming the principal series of the finite linear groups GL2pFpq (if one makes
the adaptation to deal with SL2pFpq and if one accounts for the appearance of δ, which
changes the irreducibility condition). Indeed, there exists a general notion of induction
for locally compact groups, satisfying a formalism of intertwiners which is parallel to that
of Proposition 4.8.1, and which explains these similarities.

To prove Part (1) of Proposition 7.4.3, we use the following lemma:

Lemma 7.4.4. (1) We have G “ BK where K “ SO2pRq, and more precisely any
g P SL2pRq can be expressed as g “ bk with b P B` and k P K, and this representation is
unique. In fact, we can write

(7.7) g “

ˆ

y1{2 xy´1{2

0 y´1{2

˙

kpθq, where kpθq “

ˆ

cospθq sinpθq
´ sinpθq cospθq

˙

for unique coordinates px, y, θq with x P R, y ą 0 and θ P R{2πZ, which are called the
Iwasawa coordinates of g.

(2) For ε P t0, 1u, let

L2
εpKq “ tf P L

2
pKq | fp´kq “ p´1qεfpkq for all k P Ku

seen as a closed subspace of L2pKq.
Then if χ corresponds to the parameters pε, tq, the restriction map

"

Hχ ÝÑ L2
εpKq

f ÞÑ f | K

is a well-defined isometric isomorphism of Hilbert spaces, and in particular, Hχ is infinite-
dimensional.

Proof. (1) One can of course check the result by brute force computation, but a
better understanding arises using the action of G on the complex upper half-plane

H “ tz “ x` iy P C | x P R, y ą 0u Ă C

given by
ˆ

a b
c d

˙

¨ z “
az ` b

cz ` d
.

One can easily check that this is indeed an action (in particular, the imaginary part
of g ¨ z is ą 0 if z P H), and that K can be identified with the stabilizer of i P H. In
addition, the formula

ˆ

y1{2 xy´1{2

0 y´1{2

˙

¨ i “ x` iy

shows that the subgroup B acts transitively on H. Hence if g P G, we can express g ¨ i
in the form b ¨ i for some b P B. Then b´1g P K so that g “ bk for some k P K. And
since B XK “ t˘Idu, we also obtain the uniqueness statement, while the formula (7.7)
follows from this computation.

(2) Using (1), we see that the norm on Hχ is indeed a norm, from which it follows at
least that Hχ is a pre-Hilbert space: if }f} “ 0, we get fpkq “ 0 for almost all k P K,
and then by definition

fpbkq “ δpbqχpbqfpkq “ 0

for almost all b P B and k P K, hence f “ 0 by (1). The restriction map to K is
well-defined on Hχ since for any f P Hχ and k P K, we have ´Id P B, hence

fp´kq “ δp´Idqχp´Idqfpkq “ p´1qεfpkq,
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so that f restricted to K is in the space L2
εpKq. Now it is immediate by definition that

the restriction to K preserves the norm. Further, if f P L2
εpKq, we extend it to a function

f̃ P Hχ in the obvious way: we define

f̃pbkq “ δpbqχpbqfpkq

for b P B and k P K. This is an unambiguous definition, again because B X K “ ˘Id
and f P L2

εpKq, so the right-hand side takes the same value for p´b,´kq as for pb, kq.
Clearly the restriction of this function to K is equal to f , and since, for b P B and

g “ b1k1 P G, we have

f̃pbgq “ f̃pbb1k1q “ δpbb1qχpbb1qfpk1q

“ δpbqχpbq ˆ pδpb1qχpb1qfpk1qq “ δpbqχpbqf̃pbk1q

we see that f̃ P Hχ, which finishes the proof of (2). �

We will use the coordinates px, y, θq of (7.7) below for various computations. In
particular, these provide a way to speak of differentiable functions on G “ SL2pRq,
which correspond to its manifold (or Lie group) structure.

Exercise 7.4.5. (1) Show that the measure y´2dxdy on H is invariant for the action
of G.

(2) Deduce that, in Iwasawa coordinates, a Haar measure on G is given by

1

y2
dxdydθ.

(3) Check directly that this measure is also left-invariant.

It is formally clear that the action of G on Hχ in Proposition 7.4.3 is a representation.
The next step is to check that %χ is unitary, and this is where the tweak to the invariance
properties of functions in the definition of Hχ is important. We explain this, and leave
to the reader the exercise of checking that g ÞÑ %χpgq is strongly continuous; once this is
done, we have proved Part (1) of the proposition.

Lemma 7.4.6. Let g P G be fixed. For k P K, let βpkq P B`, κpkq P K be the unique
elements such that

kg “ βpkqκpkq.

Then the maps β and κ are continuous and for any f P L1pKq, we have
ż

K

fpkqdk “

ż

K

δpβpkqq2fpκpkqqdk.

Proof. We use the fact that a (left or right) Haar measure on G can be described
by dbdk where db denotes a left-invariant Haar measure on B` (note that B` is not
unimodular).

We first pick a function ϕ P CcpGq. Since G itself is unimodular, we have
ż

B`

ż

K

ϕpbkqdbdk “

ż

G

ϕpxqdx “

ż

G

ϕpxgqdx “

ż

B`

ż

K

ϕpbkgqdbdk,

and using the definition, we find
ż

B`

ż

K

ϕpbkqdbdk “

ż

B`

ż

K

ϕpbβpkqκpkqqdbdk.
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The point is that δpbq´2 on B` is the modular character linking the left-Haar measure
db to a right-Haar measure. Thus, using Fubini’s Theorem to integrate over b first, we
obtain

ż

B`

ż

K

ϕpbkqdbdk “

ż

K

ż

B

ϕpbκpkqqδpβpkqq2dbdk.

Now we select ϕ of the type

ϕpbkq “ ψpbqfpkq

where f is continuous on K and ψ is continuous and compact supported on B`, and
satisfies

ş

B`
ψpbqdb “ 1: the formula becomes

ż

K

fpkqdk “

ż

K

fpκpkqqδpβpkqq2dk,

by Fubini’s Theorem, which gives the result for f continuous on K. It is now a standard
limiting process to extend the result to any integrable function f on K. �

Using this lemma, we obtain unitarity of Hχ as follows: for g P G and f P Hχ, we
have

}%χpgqf}
2
“

ż

K

|fpkgq|2dk “

ż

K

|fpβpkqκpkq|2dk

“

ż

K

δpβpkqq|fpκpkq|2dk “

ż

K

|fpkq|2dk “ }f}2

(using the notation of the lemma, applied to |f |2).
We will now prove the irreducibility statement in part (2) of Proposition 7.4.3. The

method we use illustrates two important general techniques in the representation theory
of Lie groups: exploiting the restriction to compact subgroups, and “differentiating” a
representation to study it through its Lie algebra (although we do not develop formally
these aspects in any depth).

We denote by L the Lie algebra of G “ SL2pRq, which is the space the real matrices
of size 2 with trace 0. If X P L, we have expptXq P G for all t P R. We wish to extend
the representation %χ to an action of the Lie algebra by differentiating, as in (3.3), but
since elements in Hχ are just L2-functions, this is not always possible. Thus we define a
subspace where this can be done: let

H8
χ “ tf P Hχ | f is smoothu

where smoothness refers to the Iwasawa coordinates.
We have obviously %χpgqfpH

8
χ q Ă H8

χ , and H8
χ is dense in Hχ. The Lie algebra action

can be defined on H8
χ :

Lemma 7.4.7. For X P L and f P H8
χ , let

%χpXqf “
d

dt
%χpexpptXqq

ˇ

ˇ

ˇ

t“0
“ lim

tÑ0

%χpexpptXqqf ´ f

t
.

(1) The limit above exists in the L2-sense, and the function %χpXqf is in H8
χ . Fur-

thermore, for X, Y P L, we have

%χprX, Y sqf “ %χpXqp%χpY qfq ´ %χpY qp%χpXqfq.

(2) For any g P G, we have

%χpXqfpgq “
d

dt
fpg expptXqq

ˇ

ˇ

ˇ

t“0
.
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Sketch of proof. We can prove the existence of the limit at the same time as we
prove the formula (2). Thus we are claiming that

lim
tÑ0

ż

K

ˇ

ˇ

ˇ

%χpexpptXqqfpkq ´ fpkq

t
´

d

ds
fpk exppsXqq

ˇ

ˇ

ˇ

s“0

ˇ

ˇ

ˇ

2

dk “ 0.

The integral is equal to
ż

K

ˇ

ˇ

ˇ

fpk expptXqq ´ fpkq

t
´

d

ds
fpk exppsXqq

ˇ

ˇ

ˇ

s“0

ˇ

ˇ

ˇ

2

dk.

The integrand tends to 0 as tÑ 0 by standard calculus, and the mean value theorem
proves that it is bounded for t close enough to 0. Since K is compact, this bound allows
us to use the dominated convergence theorem to conclude that the integral converges to
0 as tÑ 0.

The formula for %χprX, Y sq is left as an exercise to the reader (see, e.g., [37, VI.1]). �

The second part allows us to express easily the Lie algebra action in terms of coordi-
nates on G such that px, y, θq as in (7.7), using differential calculus.

Lemma 7.4.8. Let

E “

ˆ

0 1
0 0

˙

, H “

ˆ

1 0
0 ´1

˙

, F “

ˆ

0 0
1 0

˙

P L.

For a smooth function f : Rˆs0,`8rˆR{2πZ ÝÑ C, identified with a function on
G, we have

d

dt
f
´

g expptEq
¯
ˇ

ˇ

ˇ

t“0
“ y cos 2θ

Bf

Bx
` y sin 2θ

Bf

By
` sin2 θ

Bf

Bθ
,

d

dt
f
´

g expptHq
¯
ˇ

ˇ

ˇ

t“0
“ ´y sin 2θ

Bf

Bx
` 2y cos 2θ

Bf

By
` sin 2θ

Bf

Bθ
,

d

dt
f
´

g expptF q
¯ˇ

ˇ

ˇ

t“0
“ y cos 2θ

Bf

Bx
` y sin 2θ

Bf

By
´ pcos 2θ ´ sin2 θq

Bf

Bθ
.

Since the three elements pE,F,Hq above form a basis of L as a vector space, this
lemma and the previous one completely describe the Lie algebra action.

Proof. This is an application of differential calculus; we explain the proof of the
first formula, and leave the remainder to the reader. Consider

g “

ˆ

a b
c d

˙

P GL2pRq

with Iwasawa coordinates px, y, θq. Then

g expptXq “ g

ˆ

1 t
0 1

˙

“

ˆ

a at` b
c ct` d

˙

,

and we write pxptq, yptq, θptqq the corresponding coordinates. By the chain rule formula,
we have

d

dt
fpxptq, yptq, θptqq “

Bf

Bx

dx

dt
`
Bf

By

dy

dt
`
Bf

Bθ

dθ

dt
,

and in particular

(7.8)
d

dt
fpg expptEqq

ˇ

ˇ

ˇ

t“0
“ x1p0q

Bf

Bx
` y1p0q

Bf

By
` θ1p0q

Bf

Bθ
.
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We now compute px1p0q, y1p0q, θ1p0qq. First, we denote zptq “ xptq ` iyptq and observe
that (using the action on the upper-half place, as in the proof of Lemma 7.4.4) we have

zptq “ g expptXq ¨ i “
ai` at` b

ci` ct` d
,

hence z1p0q “ pci` dq´2 by direct computation (recall ad´ bc “ 1).
We then note that (by matrix multiplication), we have the formulas

(7.9) ci` d “ y´1{2
p´i sin θ ` cos θq “ y´1{2e´iθ, y “

1

c2 ` d2
,

hence

z1p0q “ pci` dq´2
“ ye2iθ,

which gives

x1p0q “ y cosp2θq, y1p0q “ 2 sinp2θq.

For the computation of θ1p0q, we observe that

e´2iθptq
“
pct` ci` dq2

pct` dq2 ` c2

(by (7.9) applied to g expptXq instead of g), and by differentiating, we deduce that

´2iθ1p0qe´2iθ
“

2cpc` idqpc2 ` d2q ´ 2cdpci` dq2

pc2 ` d2q2
.

Using again (7.9), the right-hand side is

´2
!

sin θe´iθ ´ sin θ cos θe´2iθ
)

“ ´2e´2iθi sin2 θ,

which leads to θ1p0q “ sin2 θ. Combining these computations with (7.8), we obtain the
formula for the derivative of fpg expptXqq. �

Now we prove that Hχ is irreducible if χ is not the sign character of B. We first
note that the restriction to K of Hχ is isomorphic to the subrepresentation L2

εpKq of
the regular representation of K on L2pKq (this is immediate from the definition and
from Lemma 7.4.4), and that this subrepresentation is just the Hilbert direct sum of the
characters

ˆ

cospθq sinpθq
´ sinpθq cospθq

˙

ÞÑ e2iπnθ

where n runs over integers n P Z with parity ε, i.e., such that n ” ε pmod 2q – this last fact
is a consequence of the decomposition of the regular representation L2pKq » L2pR{2πZq
as direct sum of these characters over all n P Z. We denote by ϕn the function above on
K.

Now let V Ă Hχ be a non-zero closed subspace invariant under %χ. We must check
that (if χ is not the sign), the space V is necessarily all of Hχ. First, viewing V as
a subrepresentation of ResGKp%χq, the decomposition above shows that V is a (Hilbert)
direct sum of spaces Cϕn for n in some subset of integers with the parity ε. Since V ­“ 0,
this implies that, for some n, we have ϕn P V .

Now we use the Lie algebra action. Note that the function fn of the coordinates
px, y, θq that corresponds to ϕn is given by

fnpx, y, θq “ ypit`1q{2einθ.
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By Lemmas 7.4.7 and 7.4.8, we have

(7.10) %χ

´

ˆ

0 1
´1 0

˙

¯

fn “ %χpEqfn ´ %χpF qfn “
Bfn
Bθ

“ infn,

and (extending the action to LbC by linearity) we also get

%χ

´

ˆ

1 ´i
´i ´1

˙

¯

fn “ %χpHqfn ´ i%χpEqfn ´ i%χpF qfn

“ ´2iye´2iθ
´

Bfn
Bx

` i
Bfn
By

¯

` ie´2iθ Bfn
Bθ

“ pit` 1´ nqfn´2(7.11)

and in the same way

(7.12) %χ

´

ˆ

1 i
i ´1

˙

¯

fn “ pit` 1` nqfn`2.

If we first assume that t ­“ 0, we note that since the factors pit`1˘nq are non-zero for
all n P Z, the last relations show (after an immediate induction) that ϕn˘2 P V whenever
ϕn P V . It follows that the set of integers n such that ϕn P V coincides with all integers
with the given parity ε, and therefore we conclude in that case that V “ Hχ.

If t “ 0 and ε “ 0 (which means that χ is the trivial character of B), the same
argument applies because all integers n where ϕn P V are even, and hence n˘ 1 ­“ 0 for
all such n, and we find H1 » L2

0pKq again by induction.
The last remaining case is when t “ 0 and ε “ 1, so that χ is the sign character.

Then the argument breaks down. Indeed, note that

L2
1pKq “ L2

1,` ‘ L
2
1,´

where
L2

1,˘ »
à

ně1
n odd

ϕ˘nC

(these are the spaces of odd functions on K with, respectively, all positive or negative
Fourier coefficients zero), and the following lemma shows that this gives the decomposition
of Hsgn in irreducible components:

Lemma 7.4.9. The subspaces H˘
sgn of Hsgn corresponding to L2

1,˘ are non-zero irre-
ducible subrepresentations of %sgn.

These two representations are known as “limits of discrete series” or “mock discrete
series”. We will denote them as %`sgn and %´sgn.

Sketch of the proof. It is clear that the spaces are non-zero and are proper sub-
spaces in Hχ. It is also clearly visible from the relations (7.10), (7.11) and (7.12) that
the subspaces

H8
sgn X L

2
1,˘

(which are dense in L2
1,˘) are stable under the action of the Lie algebra (the point is that

for n “ 1, we get

%sgn

ˆˆ

1 ´i
´i ´1

˙˙

f1 “ 0

instead of a non-zero multiple of f´1). This strongly suggests that these are indeed
subrepresentations, but this is not a completely formal consequence (see the remark
below).
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Let n ě 1 be odd. We will show that %sgnpgqfn P H
`
sgn for any g, and from this it

follows easily that H`
sgn is stable under the action of G.

It is enough to prove that %sgnpgqfn P H
`
sgn for g in the subgroups U` and U´ since

these generate G (see Proposition 7.4.1). We have

%sgn

´

ˆ

1 t
0 1

˙

¯

fnpgq “ fnpg expptEqq

and for a fixed t P R, we see (from the formula) that this is an analytic function of the
Iwasawa coordinates px, y, θq of g. From this, one deduces the existence of a power series
expansion

(7.13) %sgn

´

ˆ

1 t
0 1

˙

¯

fn “
ÿ

kě0

tk

k!
p%sgnpEqq

kfn

which converges for t small enough. The previous observation concerning the Lie algebra
show that p%sgnpEqq

kfn is in L2
1,˘ for all k ě 0, and hence so is the sum of the series when

it converges. Hence H`
sgn is stable under the action of %sgn restricted to “small enough”

elements of U`. But it is easy to see that such elements generate U`, and hence H`
sgn

is stable under all of U`. Arguing similarly for U´, and then for H´
sgn, we obtain the

result. �

Remark 7.4.10. The passage from a subspace invariant under the Lie algebra action
to an actual subrepresentation is not a formal matter. For instance, consider the regular
representation % of R on L2pRq. The corresponding Lie algebra is one dimensional, and
a generator X acts on smooth functions with compact support simply by

%pXqfptq “ f 1ptq.

Let V 8 Ă L2pRq be the subspace of smooth functions with support in the fixed
interval r0, 1s (for example). This is of course stable under the derivation action %pXq,
but the closure of V 8 in L2pRq is simply L2pr0, 1sq, which is not a subrepresentation of
the regular representation. The difference between this space and the lemma is that the
functions in V 8 are not analytic.

At this point we have proved parts (1) and (2) of Proposition 7.4.3. Concerning
(3), we will just prove that two principal series representations are not isomorphic if the
characters are not equal or inverse, and leave to an exercise the fact that Hχ » Hχ´1 . We
will use the Lie algebra action (which is simpler) to isolate a vector in Hχ with specific
properties that (almost) pin down the parameters pε, tq of χ, and which must be preserved
under an isomorphism.

Precisely, let χ1 and χ2 be characters of B and denote Hχi “ Hi for i “ 1, 2. Assuming
that Φ : H1 ÝÑ H2 is an isomorphism of representations, first observe that the linear
map Φ also commutes with the Lie algebra action: we have

(7.14) Φp%χ1pXqfq “ %χ2pXqΦpfq

for X P L and f P H8
1 (this is an elementary consequence of the definition.) Now assume

first that the parity ε is 0, and let v1 P H1 (resp. v2 P H2) be the function denoted f0

above (since we are using two characters, it is better here to be careful with notation: f0

restricted to K is independent of the character, but as function on G, the two vectors are
different). Since v1 and v2 are characterized up to a non-zero scalar by the fact that they
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span the respective spaces HK
1 and HK

2 of K-invariant vectors, the vector ṽ2 “ Φpv1q is
a (non-zero) multiple of v2. Now denote

E´ “

ˆ

1 ´i
´i ´1

˙

, E` “

ˆ

1 i
i ´1

˙

P LbC.

By (7.11) and (7.12), the Lie algebra action satisfies

%χ1pE
´
q%χ1pE

`
qv1 “ pit1 ` 1q%χ1pE

´
qf2

“ pit1 ` 1qpit1 ` 1´ 2qv1

“ p1´ t21qv1,(7.15)

and similarly

%χ2pE
´
q%χ2pE

`
qv2 “ p1´ t

2
2qv2,

(with obvious notation for f2, t1 and t2). Applying Φ and using (7.14) and the fact that
ṽ2 is a non-zero multiple of v2, we deduce that

1´ t21 “ 1´ t22,

which means that an isomorphism can only exist, in the even case, when t1 “ t2 (i.e.,
χ2 “ χ1) or t1 “ ´t2 (i.e., χ1 “ χ´1

2 ).
The odd case is similar (using the function f1, for instance), and since there is no K-

invariant vector in Hχ if χ has odd parity, there can be no isomorphism between principal
series associated to characters with different parity. This finishes the proof of the “only
if” part of (3) in Proposition 7.4.3. The next exercise sketches the remaining part.

Exercise 7.4.11. (1) Construct a linear map

Φ : Hχ ÝÑ Hχ´1

which is a linear isomorphism commuting with the Lie algebra action (i.e., such that (7.14)
holds).

(2) Prove that a non-zero multiple of Φ is an isometric intertwiner of %χ and %χ´1 .
[Hint: Use analyticity as in the proof of Lemma 7.4.9.]

We finally explain the proof of the last part of Proposition 7.4.3: no principal series
is isomorphic to a subrepresentation of the regular representation. Here the motivation
comes from the basic results we proved concerning isotypic components of the regular
representation, both in the algebraic case (Corollary 2.7.28) and in the case of compact
groups (see Section 5.4): the isotypic component is described using matrix coefficients,
and the reason the principal series do not embed in the regular representation is simply
that their matrix coefficients, although they are well-defined, are not in L2pGq.

Lemma 7.4.12 (Matrix coefficients and subrepresentations of the regular representa-
tion). Let G be a unimodular locally compact group, and let % be an irreducible unitary
representation of G. Then % is a subrepresentation of the regular representation %G if and
only if all matrix coefficients

fv,w : g ÞÑ x%pgqv, wy

are in L2pGq. Furthermore, this property holds as soon as some non-zero matrix coeffi-
cient is in L2pGq.

Sketch of the proof. If all matrix coefficients are in L2pGq, then for any fixed
vector w P H, the map

Φw : v ÞÑ fv,w
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is formally a linear map H ÝÑ L2pGq which intertwines % and the regular representation
(as in Corollary 2.7.28). If w ­“ 0, this map is injective (because KerpΦwq is seen to be
the orthogonal of the span of the vectors %pgqw, which is dense in H by irreducibility of
%). The problem (as in Chapter 5) is that its image might not be closed in L2pGq. But it
can be proved that this does not happen, using the Closed Graph Theorem (see, e.g., [44,
Th. III.12]) of functional analysis (to first show that Φw is continuous) and a variant of
Schur’s Lemma to prove that Φw is necessarily proportional to an isometry H ÝÑ L2pGq.
Since an isometry obviously has a closed image, the map Φw gives then an embedding of
% inside %G.

To prove that it is enough to have a single non-zero matrix coefficient in L2pGq in order
to conclude that all of them are square-integrable requires another argument, which is
where the assumption that G be unimodular is used. We refer, e.g., to [13, Prop. 12.2.3,
Th. 12.2.5] for details. �

We will now show concretely that the principal series representations %χ corresponding
to ε “ 0 have some matrix coefficient which is not in L2pGq. We use the following
integration lemma:

Lemma 7.4.13. Let A be the diagonal subgroup

A “
!

αpaq “

ˆ

a 0
0 a´1

˙

| a ą 0
)

Ă SL2pRq.

Let ϕ P CpGq be a non-negative function which is K-invariant on both sides, i.e.,
such that

ϕpk1gk2q “ ϕpgq

for all k1, k2 P K. Then ϕ is in L1pGq if and only if
ż `8

0

ϕpαperqq sinhp2rqdr ă `8.

Sketch of the proof. The point is that the groupG satisfies the polar (or Cartan)
decomposition

G “ KA`K, A` “ tαpaq | a ě 1u

which shows that a function which is K-invariant on both sides “lives” on the double
coset space KzG{K, which can be identified with (a quotient of) A` » r1,`8r. Thus
A` contains “all the non-compactness” that might prevent a continuous function from
being integrable. To obtain the statement, one computes the Jacobian of the change of
variable

"

K ˆ A` ˆK ÝÑ G
pk1, αpaq, k2q ÞÑ k1αpaqk2

to deduce that the integral of a K-bi-invariant function on G is proportional to
ż `8

0

ϕpαperqq sinhp2rqdr.

(see, e.g., [37, VII, §2] for details, or [33, Prop. 5.28] for a more general version.) �

Now let χ be a character of B of the form

χ
´

ˆ

a b
0 a´1

˙

¯

“ |a|it
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with t P R. We consider the function f0 in Hχ corresponding to the characteristic function
of K in L2

0pKq. This is a vector of norm 1. Let

ϕpgq “ x%χpgqf0, f0y.

We will show that ϕ R L2pGq using the last lemma. Indeed, first of all, the K-
invariance on both sides holds: since %χpkqf0 “ f0 and %χ is unitary, we find

ϕpk1gq “ x%χpk1gqf0, f0y “ x%χpgqf0, %χpk
´1
1 qf0y “ ϕpgq

as well as

ϕpgk2q “ x%χpgk2qf0, f0y “ x%χpgqf0, f0y “ ϕpgq.

Now we compute the function ϕpαpaqq for τ P R, with notation as in the lemma. We
have

ϕpgq “ x%χpgqf0, f0y “

ż

K

f0pkgqf0pkqdk “

ż

K

f0pkgqdk.

On the other hand, we know that

f0pgq “ ypit`1q{2

in terms of Iwasawa coordinates px, y, θq. We compute the coordinate ypa, θq of

g “ αpaqkpθq “

ˆ

‹ ‹

´a´1 sin θ a cos θ

˙

by the recipe (7.9), obtaining

ypa, θq “ pa2 cos θ ` a´2 sin2 θq´1.

We therefore have

ϕpαpaqq “ |a|´1´it
ˆ

1

2π

ż 2π

0

dθ

pcos2 θ ` a´4 sin2 θqpit`1q{2
.

for a ą 1, and

ϕpαpaqq “ |a|1`it ˆ
1

2π

ż 2π

0

dθ

psin2 θ ` a4 cos2 θqpit`1q{2
.

for 0 ă a ă 1.
For a ą 1, we have

|p1` a´4 cos2 θqpit`1q{2
| ď

?
2

for all θ, and hence

|ϕpαpaqq| ě
1
?

2a
.

The integral in the lemma that determines whether ϕ is in L2pGq therefore satisfies
ż `8

0

|ϕpαperqq|2 sinhp2rqdr ě
1

2

ż `8

1

a´1da “ `8,

proving that the matrix coefficient ϕ is not in L2pGq.

Exercise 7.4.14 (Hypergeometric functions and matrix coefficients). Let Ã be the
subgroup

Ã “
!

ãpτq “

ˆ

coshpτq sinhpτq
sinhpτq coshpτq

˙

| τ P R
)

Ă SL2pRq.
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(1) Show that a function ϕ P CpGq which is K-invariant on both sides is in L2pGq if
and only if

ż `8

0

|ϕpãpτqq|2e2τdτ ă `8.

(2) Let χ be a character of B as above (i.e., with parity ε “ 0), and let ϕ be the
matrix coefficient considered previously. Show that

ϕpãpτqq “ pcosh τq´1´it 1

π

ż π

0

dθ

p1` tanh2 τ ´ 2 tanh τ cos θqpit`1q{2
.

(3) For a P C and an integer k ě 0, let

paqk “ apa` 1q ¨ ¨ ¨ pa` k ´ 1q.

For a, b, c P C, c not being a non-positive integer, let

2F1pa, b; c; zq “
ÿ

kě0

paqkpbqk
pcqkk!

zk,

seen at first as a formal power series. Show that this power series converges absolutely
for |z| ă 1.

(4) Show that 2F1pa, b; c; zq is a solution of the differential equation

zp1´ zqy2 ` pc´ pa` b` 1qzqy1 ´ aby “ 0

(either as a formal power series, or as holomorphic function when convergent.) This
function is known as a Gauss hypergeometric function.

(5) Show that for x P C with |x| ă 1 and for ν P C, we have

1

π

ż π

0

dθ

p1` x2 ´ 2x cos θqν
“ 2F1pν, ν; 1;x2

q

[Hint: Factor the denominator in the form p1´xeiθqνp1´xe´iθqν and apply the binomial
theorem before integrating termwise.]

(6) Express the matrix coefficient ϕpãpτqq in terms of some hypergeometric function.
This gives another example of the frequent relations between special functions and repre-
sentation theory, as we already discussed briefly in Example 5.6.1. The fact that suitable
matrix coefficients satisfy differential equations, like the hypergeometric function does, is
a feature that extends to other Lie groups and which is crucial to the analysis of their
unitary representations (see, e.g., [33, VIII.7]).

(7) Possibly by looking at references on the behavior of a hypergeometric function as
z Ñ 1, prove that the matrix coefficient ϕ is in L2`εpGq for all ε ą 0.

Proposition 7.4.3 constructs many irreducible unitary representations of SL2pRq. Are
these all of them (up to isomorphism)? The example of SL2pFpq may suggest that this
is unlikely, and indeed there exist two other types of representations, of very different
nature. We will only give their definitions and sketch their construction, but both are
very important when considering generalizations.

We begin with the so-called discrete series representations. We recall the definition

H “ tz P C | Impzq ą 0u

of the upper half-plane, and the fact that G “ SL2pRq acts on H by
ˆ

a b
c d

˙

¨ z “
az ` b

cz ` d
.
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For g P SL2pRq as above, we will write

jpg, zq “ cz ` d.

This function satisfies the relation

(7.16) jpg1g2, zq “ jpg1, g2 ¨ zqjpg2, zq,

as the reader should check, and in addition we have jpg, zq ­“ 0 whenever g P G and
z P H.

Proposition 7.4.15 (Discrete series). Let n ě 2 be an integer, and let

Hn “

!

f : H ÝÑ C | f is holomorphic and

}f}2n “

ż

H

|fpzq|2yn
dxdy

y2
ă `8

)

.

(1) The vector space Hn is an infinite-dimensional Hilbert space, and the representa-
tion πn defined by

πnpgqfpzq “ jpg´1, zq´nfpg´1
¨ zq

is a unitary representation of SL2pRq on Hn.
(2) The representation πn is irreducible for n ě 2.
(3) The representation πn is isomorphic to a subrepresentation of the regular repre-

sentation.

Sketch of proof. (1) The fact that πn is formally a representation depends on
the property (7.16) of the factor jpg´1, zq. It is not obvious that Hn is a Hilbert space,
but one proves using the Cauchy integral formula that if a sequence pfnq converges in
L2pH, y´2dxdyq to some function f , then the convergence is in fact locally uniform. From
this, standard arguments of complex analysis show that f is also holomorphic, and one
deduces that Hn is complete for the given norm (see, e.g., [37, IX, §2, Lemma 1] for
details). The unitarity is a consequence of the invariance of the measure y´2dxdy on H
(for the action of SL2pRq) and of the formula (7.16).

(2) Although it would be more robust to analyze the Lie algebra representation for
suitable vectors in Hn (to compare the structure of πn with the principal series, see the
exercise below), we use an elegant trick from [33, Prop. 2.7]. We begin by noting that
the function

fn : z ÞÑ
1

pz ` iqn

is in Hn (it is not necessarily obvious that }fn}n ă `8, but the computation that shows
this is done below, while proving (3)). Now let V Ă Hn be a non-zero closed invariant
subspace. We will show that fn P V ; since V is arbitrary, this implies that V K “ 0
(otherwise we would get fn P V

K also...) and hence V “ H.
The underlying motivation is that fn transforms according to a character of K, namely

(7.17) πnpkpθqqfn “ e´inθfn

for θ P R. We will compute the projection operator onto the corresponding isotypic com-
ponent, using the holomorphic structure, and see that the image of any closed invariant
subspace is one-dimensional, spanned by fn.

Thus let P : Hn ÝÑ Hn be the linear map defined by

P pfq “
1

2π

ż 2π

0

pπnpkpθqfqe
inθdθ
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for f P Hn, which (by Peter-Weyl theory, see Theorem 5.5.1, (2)) is the projection on
this isotypic component. Since V is a subrepresentation of Hn, this projection also maps
V to V , so that P pfq P V for any f P V . We claim that

P pfq “ ´p2iqnfpiqfn.

If this is true, then taking any f P V such that fpiq ­“ 0, we deduce that fn P V , and
conclude that H is irreducible (such a function f exists because there exists f P V and
z P H with fpzq ­“ 0, and picking g P G with g ¨ z “ i, we get πnpgqfpiq ­“ 0).

To prove the formula, we fix any z P H and express P pfqpzq as a complex line integral:
we have

P pfqpzq “ ´
1

2π

ż 2π

0

pπnpkpθqqfqpzqe
inθdθ

“
1

2π

ż 2π

0

pz sin θ ` cos θq´nf
´z cos θ ´ sin θ

z sin θ ` cos θ

¯

einθdθ

“ ´
1

2iπ

ż

C

´izpw ´ w´1q ` pw ` w´1q

2

¯´n

ˆ f
´zpw ` w´1q ´ ipw ´ w´1q

izpw ´ w´1q ` pw ` w´1q

¯ dw

wn`1

after putting w “ e´iθ, where C Ă C is the unit circle (oriented in the usual counter-
clockwise direction). One now checks that the integrand is a holomorphic function in a
neighborhood of the unit disc |w| “ 1, except for a simple pole at w “ 0. Indeed the
factor

´izpw ´ w´1q ` pw ` w´1q

2

¯´n

w´n´1
“

2n

w

1

pw2p1` izq ` 1´ izqn

has poles at w “ 0 and at w with w2 “ p1 ´ izq{p1 ` izq; since it is well-known (and
easily checked, indeed we will do this below) that |pz ` iq{pz ´ iq| ą 1 for all z P H, this
rational function has indeed no pole except 0 in a neighborhood of |w| ď 1. Furthermore,
the argument of f is

zpw ` w´1q ´ ipw ´ w´1q

izpw ´ w´1q ` pw ` w´1q
“

w2pz ´ iq ` z ` i

w2piz ` 1q ` 1´ iz

and we leave to the reader to check that the imaginary part of this argument is, for all
w with |w| ď 1, strictly positive (it is best to use continuity arguments...)

We can therefore compute the integral above using Cauchy’s residue formula, obtain-
ing

P pfqpzq “ ´Resw“0
2n

w

1

pw2p1` izq ` 1´ izqn
f
´ w2pz ´ iq ` z ` i

w2p1` izq ` 1´ iz

¯

“ ´
2n

p1´ izqn
fpiq “ ´p2iqnfpiqfnpzq,

as claimed.
(3) By Lemma 7.4.12, it suffices to prove that some matrix coefficient of πn is in

L2pGq. We use

ϕpxq “ xπnpxqfn, fny

(note that ϕp1q “ }fn}
2
n, so by computing ϕ, and showing it is finite, we will in passing

confirm that fn P Hn.)
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We observe that |ϕ| is K-invariant on both sides (because of (7.17), although ϕ itself
is not), so we can use Lemma 7.4.13 to determine whether ϕ P L2pGq. For a ą 0, we have

πnpαpaqqfnpzq “ jpαpa´1
q, zq´nfnpαpa

´1
q ¨ zq “ pa´1z ` aiq´n,

and therefore

ϕpαpaqq “

ż

H

pa´1z ` aiq´npz̄ ´ iq´nyn
dxdy

y2
.

This integral is rather more transparent if one performs the change of variable w “
pz´iq{pz`iq, which maps the upper half-plane H to the unit disc D “ tw P C | |w| ă 1u.
The measure corresponding to y´2dxdy on D is p1 ´ |w|2q´2dw, and since the inverse
substitution is z “ ´ipw ` 1q{pw ´ 1q, simple computations give

y “
1

2i
pz ´ z̄q “

1´ |w|2

|1´ w|2

(which certainly makes it clear that |w| ă 1 if and only if y ą 0) and

pz̄ ´ iqpa´1z ` aiq “
2i

w̄ ´ 1
ˆ

i

w ´ 1
ˆ pwpa´ a´1

q ´ pa` a´1
qq

“ ´
2

|1´ w|2
ppa´ a´1

qw ´ pa` a´1
qq.

If follows that

ϕpαpaqq “ 2´n
ż

D

p1´ |w|2qn´2

ppa` a´1q ´ pa´ a´1qwqn
dw.

In particular, we get

ϕpαpetqq “

ż

D

p1´ |w|2qn´2

pcoshptq ´ w sinhptqqn
dw “

1

coshptqn

ż

D

p1´ |w|2qn´2

p1´ tanhptqwqn
dw.

The last integral can be computed in polar coordinates by integrating over the argu-
ment first, namely:

ż

D

p1´ |w|2qn´2

p1´ tanhptqwqn
dw “

ż 1

0

p1´ r2
q
n
´

ż 2π

0

1

p1´ r tanhptqeiθqn
dθ
¯

rdr

“ 2π

ż 1

0

p1´ r2
q
nrdr “

π

n

(for the integration over θ, use a geometric series expansion and integrate termwise; the
point is that only terms with eikθ where k ě 0 appear, and just once k “ 0).

Hence we have

|ϕpαpetqq|2 “
π2

n2
coshptq´2n

and multiplying by sinhp2tq „ e2t, we see that
ż `8

0

|ϕpαpetqq|2 sinhp2tqdt ă `8

for n ě 2. �

Exercise 7.4.16. Let n ě 2 be an integer and πn the discrete series representation
constructed in Proposition 7.4.15.

Show that the restriction of πn to K is given by the Hilbert direct sum
à

jě0

Cfn,j
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where

fn,jpzq “ fnpzq
´z ´ i

z ` i

¯j

satisfies

πnpkpθqqfn,j “ e´ipn`2jqθfn,j.

(In particular, this shows that πn is not isomorphic to πm for m ­“ n, since n can be
recovered from the abstract representation π “ πn as the smallest integer h P Z such
that the K-isotypic component of the character kpθq ÞÑ e´ihθ is non-zero in π.)

Exercise 7.4.17 (The other discrete series). For n ě 2, let Hn be the same Hilbert
space as in Proposition 7.4.15, but define

π̃npgqfpzq “ jpηg´1η´1, zq´nfppηg´1η´1
q ¨ zq

where

η “

ˆ

0 1
1 0

˙

.

Show that π̃n is an irreducible unitary representation of G, that it is isomorphic to a
subrepresentation of the regular representation, and that the restriction to K is the direct
sum of the characters kpθq ÞÑ eipn`2jqθ where j ě 0. (In particular, no πn is isomorphic
to a π̃m.)

Remark 7.4.18. In contrast with the principal series of unitary representations, which
are constructed by means of a very general construction (induced representation from a
one-dimensional representation of a maximal solvable subgroup) that can be applied to all
semisimple Lie groups (e.g., to SLnpRq for all n ě 2, or symplectic groups), the existence
of discrete series of SL2pRq depends on rather specific properties of the group.

Indeed, if we define in general a discrete series of a locally compact group G to be
one which is isomorphic to a subrepresentation of its regular representation, then one can
show, for instance, that the group SL2pCq has no discrete series, and also that SLnpRq,
for n ě 3, has no discrete series. There is a beautiful group-theoretic criterion for
the existence of discrete series which explains this behavior, and which was discovered
by Harish-Chandra: a semisimple Lie group G admits discrete series if and only if it
contains a connected compact abelian subgroup of the same dimension as a maximal
connected abelian subgroup (see, for instance, [33, Th. 12.20]). For G “ SL2pRq, the
diagonal subgroup A is a maximal abelian subgroup (it is not connected, but the subgroup
with positive diagonal coefficients is) of dimension 1, and the compact subgroup K also
has dimension 1. But in SL2pCq, the diagonal subgroup is isomorphic to Cˆ and has
dimension 2 (in terms of real coordinates), while any compact subgroup is contained in a
conjugate of SU2pCq, and has maximal compact abelian subgroups isomorphic to SO2pRq
again, hence of smaller dimension.

There remains one series of irreducible unitary representations of G to discuss. These
are the most elusive, and are called the complementary series. We will obtain them by
considering induced representations from some one-dimensional non-unitary representa-
tions of B: the remarkable fact is that, for some of these characters, one may define a
(non-obvious!) G-invariant inner product for which the representation becomes unitary.

For simplicity, we consider only a character χ defined by

χ
´

ˆ

a b
0 a´1

˙

¯

“ |a|s
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for some fixed s P C (i.e., with parity ε “ 0), since Exercise 7.4.21 will show that the
other characters do not lead to any new unitary representations.

We consider the Hilbert space

Hs “ tf : G ÝÑ C | fpbgq “ χpbqδpbqfpgq for all b P B, g P G,

and }f}2 “

ż

K

|f |2dk `8u,

and the representation

%spgqfpxq “ fpxgq.

One then shows (as in Proposition 7.4.3, (1)) that %s is a strongly continuous repre-
sentation of G on the Hilbert space Hs, and that Hs is (by restriction of functions to K)
isometric to the space L2

0pKq of even square-integrable functions on K. However, one
can also see that if Repsq ­“ 0, this representation is not unitary (thus %s is viewed as a
continuous representation of G on the Banach space underlying Hs, as in Definition 3.3.1).

On the other hand, arguing by restriction to K and by differentiation exactly as in
(3) of Proposition 7.4.3 (note that the restriction of %s to K is isomorphic to the regular
representation on L2

0pKq, independently of s, and in particular is unitary), we see using
the analogues

%s

´

ˆ

0 1
´1 0

˙

¯

fn “ infn,

%s

´

ˆ

1 ´i
´i ´1

˙

¯

fn “ ps` 1´ nqfn´2,(7.18)

%s

´

ˆ

1 i
i ´1

˙

¯

fn “ ps` 1` nqfn`2

of (7.10), (7.11) and (7.12) that if s is not an odd integer, then %s is irreducible. (Here
n is an even integer and fn, as before, denotes the function in Hs corresponding to
kpθq ÞÑ einθ.)

The question we consider is then: for which values of s (not integers) is the represen-
tation %s unitarizable? We already know this is the case for Repsq “ 0, but there might
conceivably exist other values of s for which this is true. Our strategy will be to find a
necessary condition for this property using the Lie algebra, and then to verify that this
conditions is sufficient.

Lemma 7.4.19. Let s P C be a complex number and assume it is not an odd integer.
If there exists a positive-definite inner product p¨, ¨q on Hs invariant under %s, then we
have s2 ´ 1 ă 0.

In other words, a necessary condition for the unitarizability of the representation %s
is that either s “ it with t P R (corresponding to the known principal series) or s is a
real number with ´1 ă s ă 1.

Proof. We assume that the inner product p¨, ¨q exists. Because the restriction of
%s to K is the regular representation on L2

0pKq, the functions fn with n even, which
span distinct subrepresentations of L2

0pKq, must be orthogonal with respect to the inner
product. Since they span a dense subset of Hs, it follows that the inner product is entirely
determined by the norms

an “
a

pfn, fnq ą 0,
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and we can normalize this inner product (by multiplying by a fixed constant) to ensure
that a0 “ 1.

We will find relations between the an by exploiting the G-invariance of the inner
product (this should be compared with the second argument used in Example 5.2.12 to
determine the invariant inner product on the irreducible representations of SU2pCq.) As
in the proof of Proposition 7.4.3, it is much easier to work with the Lie algebra L. For
the action of the latter, a formal computation shows that the G-invariance of the inner
product implies that the operators %spXq for X P LbC are skew-hermitian when acting
on H8

s , so that
p%spXqv, wq “ pv,´%spX̄qwq

for v, w P H8
s (if X P L, so that X has real coefficients, %spXq is skew-symmetric, but the

sesquilinearity of the inner product leads to the extension to LbC being skew-hermitian).
We apply this to v “ fn, w “ fn`2 and

X “

ˆ

1 i
i ´1

˙

, tX “

ˆ

1 ´i
´i ´1

˙

so that, using the relations (7.18), we get

(7.19) ps` 1` nqan`2 “ p%spXqfn, fn`2q

“ pfn,´%spX̄qfn`2q “ ´ps̄` 1´ pn` 2qqan.

For n “ 0, this leads to

a2 “
s̄´ 1

s` 1
“ ´

|s´ 1|2

1´ s2

and since a2 ą 0, we find the necessary condition 1´ s2 ă 0. �

As we have already hinted, it turns out that this necessary condition for unitarity is
in fact sufficient:

Proposition 7.4.20 (Existence of complementary series). Let s be a non-zero real
number such that ´1 ă s ă 1. There exists a G-invariant inner product p¨, ¨q on Hs so
that %s extends by continuity to an irreducible unitary representation of the completion of
Hs with respect to this inner product.

Sketch of proof. We use the notation of the proof of the lemma. The point is
that, since s is real, we have the induction relation

an`2 “ ´
s´ 1´ n

s` 1` n
an “

n` 1´ s

n` 1` s
an

(see (7.19)) which allows us to determine uniquely the constants an for all n P Z even,
once a0 “ 1 is fixed. For ´1 ă s ă 1, the numerator and denominator are non-zero real
numbers of the same sign, so this gives a sequence panqn even of positive real numbers.

We can thus define a positive-definite inner product p¨, ¨q on L2
0pKq by

´

ÿ

j

λjf2j,
ÿ

j

µjf2j

¯

“
ÿ

j

λjµja2j,

which is well-defined on all of L2
0pKq because the a2j are bounded, as one can see by

induction that 0 ď a2j ď 1 for all j. We denote H̄s the completion of Hs with respect to
this inner product; since one can check that a2j Ñ 0 as j Ñ `8, this space is strictly
larger than Hs (but Hs is of course dense in it).

The next step is to check (using the formulas (7.18)) that %spXq is skew-hermitian with
respect to this inner product, for all X P L, when applied to finite linear combinations of
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the functions f2j. Note that this is not automatic, because we only used these relations
partially in order to obtain a necessary condition for the existence of the inner product.
We leave this however as an exercise.

We then need to prove that the representation %s is, in fact, unitary with respect
to this new inner product. For this purpose, we use the analyticity as in the proof of
Lemma 7.4.9. Indeed, for small enough X in the Lie algebra and for v a finite linear
combination of basis vectors fn, we have

%spexppXqqv “
ÿ

kě0

1

k!
p%spXqq

kv,

hence for another such vector w, we get

p%spexppXqqv, wq “
ÿ

kě0

1

k!
pp%spXqq

kv, wq

“
ÿ

kě0

p´1qk

k!
pv, %spXq

kwq

“ pv, %spexpp´Xqqwq.

Since expp´Xq “ exppXq, this shows (by continuity and density) that %spexppXqq is
unitary for X small enough in L. But we know that such elements of g generate SL2pRq,
and therefore %s is unitary with respect to p¨, ¨q; for instance, we have, as we used earlier

ˆ

1 t
0 1

˙

“ exp
´

ˆ

0 t
0 0

˙

¯

,

ˆ

1 0
t 1

˙

“ exp
´

ˆ

0 0
t 0

˙

¯

,

and for t in small interval around 0, these generate SL2pRq.
Finally, since H̄s contains L2

0pKq, it is easy to see that the extension of %s to H̄s

remains (topologically) irreducible. Hence this gives the desired unitarization. �

We note that the same computation leading to (7.15) shows that the function f0 P H̄s

satisfies

%spE
´
q%spE

`
qf0 “ ps

2
´ 1qf0

and since it is determined, up to a scalar, by the fact that it spans the K-invariant
subspace of %s, it follows as in Proposition 7.4.3, (3), that %s can only be isomorphic to
%s or to %´s (and one can show, indeed, that %s » %´s), and also that %s is not isomorphic
to any principal series representation. (The complementary series are also different from
discrete series since the latter have no K-invariant vectors.)

Exercise 7.4.21 (No odd complementary series). Let χ be a character of B given by

χ
´

ˆ

a b
0 a´1

˙

¯

“

´ a

|a|

¯

|a|s

and define Hχ and %χ by the obvious adaptation of the previous definition. Show that
the representation %χ can not be unitarized if Repsq ­“ 0.

Exercise 7.4.22 (A matrix coefficient of complementary series). Let 0 ă s ă 1 be
given and let %s be the corresponding complementary series as constructed in the proof
of Proposition 7.4.20, in particular with the inner product p¨, ¨q.

(1) Show that for any v P Hs and g P G, we have

p%pgqv, f0q “ x%pgqv, f0y,
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where f0 is the function in Hs with restriction to K equal to 1, and the inner product on
the right is the standard one on Hs » L2

0pKq.
(2) Deduce that there exists δ ą 0 such that the matrix coefficient ϕpgq “ x%pgqf0, f0y

is not in L2`δpGq. [Hint: Argue as in the proof of Proposition 7.4.3, (4).]

This exercise, together with Exercise 7.4.14 (7) and the properties of discrete series,
reveals what is, in many applications, the most crucial difference between the complemen-
tary series and the other series of representations: for principal series, matrix coefficients
are in L2`εpGq for any ε ą 0, while matrix coefficients of discrete series are in L2pGq, by
definition. We will mention briefly below one of the problems where this fact is decisive
for applications.

With the complementary series, it turns out that we have now found all irreducible
unitary representations of SL2pRq (up to isomorphism), as was first proved by Bargmann.
We summarize:

Theorem 7.4.23 (Bargmann’s classification). Let G “ SL2pRq. Any irreducible uni-
tary representation % of G is isomorphic to one, and only one, of the following list:

(1) The principal series %χ associated to

χ
´

ˆ

a b
0 a´1

˙

¯

“

´ a

|a|

¯ε

|a|it

where t ě 0 if ε “ 0 and t ą 0 if ε “ 1.
(2) The two mock discrete series %`sgn and %´sgn which are the irreducible components

of the principal series %sgn.
(3) The discrete series πn or2 π̃n for n ě 2 an integer.
(4) The complementary series %s with 0 ă s ă 1.
(5) The trivial one-dimensional representation.

Sketch of proof. The restrictions on t and s in (1) and (4) are imposed to ensure
that the representations are pairwise non-isomorphic, and so that all representations
we have found appear in the list. Hence the point of this theorem is that the given
representations exhaust the possibilities for irreducible unitary representations of G up
to isomorphism.

To prove this, one can begin to classify all possibilities for the combination of the Lie
algebra action and the restriction to K (introducing the so-called pL,Kq-modules), which
gives rather straightforwardly a rough classification in terms of the set of characters of K
occurring in a unitary irreducible representation of G. One can then match each possibil-
ities with one of the representations above, and deduce that any unitary representation
is such that it corresponds to one in the list, as far as this combined pL,Kq-action is
concerned. The last step is then to prove that non-isomorphic unitary representations
can not have isomorphic pL,Kq-actions. We refer to [10, §2.6] or [36, VI.6] for details
(in the very similar case of GL2pRq). �

An important definition in further applications is that of a tempered irreducible unitary
representations: % is said to be tempered if and only if its matrix coefficients are in
L2`εpGq for all ε ą 0. We see then from Bargmann’s classification that the tempered
representations are the trivial one, the discrete and mock discrete series, and the principal
series.

2 The representations π̃n are described in Exercise 7.4.17.
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Exercise 7.4.24. (1) For each irreducible unitary representation of SL2pRq, deter-
mine its contragredient.

(2) An irreducible unitary representation % of SL2pRq on a Hilbert space H is called
unramified or spherical if HK is non-zero, i.e., if there exists a non-zero v P H invariant
under the action of SO2pRq. Show that % is spherical if and only if it is either a principal
series with even parity ε “ 0, or a complementary series. Show that in all spherical cases,
the dimension of HK is equal to 1.

We conclude this chapter by describing one problem where the representation theory
of SL2pRq is important, and where the distinction between principal and complementary
series appears clearly.

The group G “ SL2pRq contains many discrete subgroups Γ such that the coset space

YΓ “ ΓzG

is a compact space, or at least has finite measure for the natural measure µΓ that is
obtained from the Haar measure on G. For instance, the second property holds for
Γ “ SL2pZq and any finite-index subgroup of SL2pZq, and there are many examples of
the latter, for instance

ΓpNq “ tg P SL2pZq | g ” Id pmodNqu

is a subgroup of SL2pZq with index equal to | SL2pZ{NZq| (subgroups of SL2pZq containing
a subgroup ΓpNq for some N ě 1 are called congruence subgroups.)

Using the measure µΓ, one can construct the space L2pYΓ, µΓq, and since we used a
left-action of G to define YΓ, the (right) regular representation still makes sense on this
Hilbert space:

pg ¨ fqpxq “ fpxgq

for g P G and f P L2pYΓ, µΓq. This is a unitary representation (because the Haar-
measure is invariant). Then one may ask: What is the structure of this space as a
unitary representation? How can it be expressed in terms of irreducible representations?

Remark 7.4.25. Here, there is a certain useful analogy with the case of the discrete
subgroup Z Ă R, in which case L2pR{Zq is the same as the regular representation of the
compact group R{Z. In particular, it decomposes as a direct sum of countably many
irreducible subspaces with multiplicity one.

The functions on R{Z can be seen as Z-periodic functions on R, and their importance
is certainly clear. This suggests that spaces like L2pYΓ, µΓq should also be interesting
objects to study.

One can perform a first decomposition, which goes back to Gelfand, Graev and
Piatetski-Shapiro, and which shows that

L2
pYΓ, µΓq “ H1 ‘H2

where H1 is a Hilbert direct sum of at most countably many irreducible subspaces, each
irreducible representation occurring with finite multiplicity, and H2 is a direct integral of
the principal series representations3 %it for t ě 0, each occurring with the same constant
finite multiplicity nΓ ě 0 (where nΓ “ 0 means that H2 “ 0.) One can easily compute nΓ,
given Γ, as the number of “cusps” of Γ; one finds, for instance, that nΓ “ 1 if Γ “ SL2pZq,
and that nΓ “ 0 whenever YΓ is compact (so that H2 “ 0 if YΓ is compact.) Note in
particular that H2 never contains a complementary series representation.

3 This shows that although principal series representations do not occur as closed subspaces of L2pGq,
they do occur in spaces of Γ-invariant functions on G.
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The space H1 is the most interesting. If YΓ is compact, one can show relatively easily
thatH1 is the direct sum of infinitely many irreducible components, but the corresponding
parameters (in the Bargmann classification) are not explicit, with very few exceptions.
Moreover, the subspace H1 is much more mysterious if YΓ is not compact. In some
important special cases, such as Γ “ SL2pZq or a finite-index congruence subgroup, one
can show (as done first by Selberg) that H1 contains infinitely many distinct irreducible
subrepresentations, but this is not known (nor expected) in general.

Selberg realized that a crucial issue in applications is whether H1 contains, or not,
a complementary series representation. It is possible to construct examples of quotients
YΓ which contain an arbitrarily large (finite) number of complementary series represen-
tations. Selberg conjectured, on the other hand, that this does not happen if Γ “ ΓpNq
for some N ě 1 (for instance, for Γp1q “ SL2pZq.) This conjecture (for which there is a
lot of evidence, for instance it is known for SL2pZq itself, or for N small enough) reveals
a remarkable feature of these special quotients Y pNq “ YΓpNq, which is understood to be
related to the arithmetic nature of their definition.

Selberg’s conjecture is usually described in more concrete terms. Since a complemen-
tary representation %s (where 0 ă s ă 1) is spherical, any subrepresentation H of H2

isomorphic to %s contains a vector v0 P H which is K-invariant, and which is unique
up to multiplication by a non-zero scalar. Such a vector corresponds in L2pYΓ, µΓq to a
complex-valued function on

XΓ “ ΓzG{K » ΓzH,

where H is the upper half-plane (see the proof of Lemma 7.4.4), i.e., to a function f on
H which satisfies the Γ-invariance relations

(7.20) fpγ ¨ zq “ fpzq

for all γ P Γ (these are called automorphic functions). It is not difficult to check using
the Lie algebra action that, because f is related to v0, it is smooth on H and satisfies the
differential equation

∆f “ λf

where λ “ 1{4´ s2 Ps0, 1{4r and

∆f “ ´y2
´

B2f

Bx2
`
B2f

By2

¯

(in other words, f is an eigenfunction of the so-called hyperbolic Laplace operator ∆.)
This applies also to principal series %it in H2, except that one finds a function f on H
which is Γ-invariant and satisfies

∆f “
´1

4
` t2

¯

f,

with eigenvalue λ “ 1{4` t2 ě 1{4.
In fact, this correspondence goes also backwards: given a smooth function f on H

satisfying (7.20), so that it “lives” on XΓ, and satisfying

∆f “ λff

for some λf ą 0, and f P L2pYΓ, µΓq (after extending it to YΓ using the quotient map YΓ Ñ

XΓ), one can associate to it an irreducible subrepresentation which is a subrepresentation
πf of H2 (it is essentially the subrepresentation generated by f). One can then check
that πf is a complementary series if and only if λf ă 1{4.

Remarkably, Selberg himself succeeded in proving the first result towards his conjec-
ture. Consider again N ě 1 and Γ “ ΓpNq. Informally, even if the conjecture could fail
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(as far as we know), it can not fail too badly. More precisely, if %s is a complementary
series in H2 for Γ “ ΓpNq, then we have

s ď
1

4

(or equivalently, for an eigenfunction f of ∆ as above, we have λf ě 3{16.) The main
point is that the lower-bound 1{4 is independent of the integer N , i.e., of the subgroup
ΓpNq which is considered. This fundamental result turns out to be crucial in the original
proof of the seemingly elementary Theorem 1.2.5! (We already mentioned that more
direct and elementary proofs are now known, see [12].)

Although Selberg’s conjecture has a concrete formulation in terms of eigenfunctions of
∆, it turns out that the most recent progress in its direction have relied very extensively
on results which are based in a fundamental way on the representation-theoretic version
of the statement. We refer to [47] for a first hint of these arguments, and to [10, 2] for
introductions to the general theory of automorphic representations which underlies this
type of problems.

Example 7.4.26. Here is a very brief example, taken from the work of Bernstein
and Reznikov [3], of how representation theory may help in solving problems concerning
Γ-invariant eigenfunctions of ∆ using the correspondence with subrepresentations of the
space L2pYΓ, µΓq. Let

j : Hit ÝÑ L2
pYΓ, µΓq

be an isometric embedding of a principal series representation %it, and let H “ ImpHitq

be the corresponding closed subspace of L2pYΓ, µΓq. In [3], one issue is to estimate the
supremum norm of certain functions f “ jpvq in H, i.e., to estimate

N8pvq “ sup
xPYΓ

|jpvqpxq| “ }jpvq}8

(in terms of certain parameters describing the function f “ jpvq, which we will not
describe).

Viewed from the sole point of view of the function f on H, this problem seems delicate.
But one can relatively easily succeed in proving a first bound

N8pvq ď Npvq

if v is in H8
it , where N is a type of Sobolev norm on H8

it .
Then Bernstein and Reznikov observe that, one can exploit the existence of the un-

derlying representation to improve this first estimate. The point is that

N8pg ¨ vq “ N8pvq

for all g P SL2pRq, i.e., the sup norm is invariant, whereas the Sobolev norm is not. One
can therefore also claim that

N8pvq ď Npg ¨ vq

for any g P SL2pRq, or in fact that

(7.21) N8pvq ď Npg1 ¨ v1q ` ¨ ¨ ¨ `Npgk ¨ vkq

for any decomposition
v “ v1 ` ¨ ¨ ¨ ` vk

of the vector v with k ě 1, vi P H
8
it , and for any gi P SL2pRq. Denoting by NGpvq the

minimum of the right-hand side of (7.21) as one runs over all such decompositions, we
deduce therefore that

N8pvq ď NG
pvq.
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The new norm NG is also invariant, and depends only on the representation %it (not
on the embedding j.) Bernstein and Reznikov succeed in estimating it by exploiting
suitable decompositions of the vectors they are considering in a convenient model of %it.
This is a beautiful illustration of the type of arguments made possible by a good use of
representation theory, and we refer to the paper [3] for more details.
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APPENDIX A

Some useful facts

A.1. Algebraic integers

Readers familiar with algebraic integers will probably not need to read this section.
We recall the definition and those properties of algebraic integers which are relevant to
the applications in the text, especially in Section 4.7.2. A very good summary for similar
purposes (with proofs) is found in Section 4.3 of [16].

An algebraic integer z P C is any complex number such that there exists a non-zero
monic polynomial p P ZrXs such that ppzq “ 0; we denote by Z̄ the set of algebraic
integers.1 Since the set Iz “ tp P ZrXs : ppzq “ 0u is an ideal of ZrXs, there exists
a unique monic generator pz of Iz, which is called the minimal polynomial of z. This
polynomial is irreducible over Q.

For instance, any n P Z is a zero of p “ X´n, and hence Z Ă Z̄. In fact, we have the
following stronger fact, which illustrates one way in which algebraic integers generalize
integers:

Proposition A.1.1. An algebraic integer z which is also a rational number is an
element of Z, i.e., we have Z̄XQ “ Z.

Proof. To see this, let z “ a{b, with a and b ­“ 0 coprime integers, be a rational
number which is also an algebraic integer, so that we have

zn ` an´1z
n´1

` ¨ ¨ ¨ ` a1z ` a0 “ 0,

for some n ě 1 and integral coefficients ai P Z.
Substituting z “ a{b and multiplying with the common denominator bn, one finds

an ` an´1a
n´1b` ¨ ¨ ¨ ` a1ab

n´1
` a0b

n
“ 0,

and therefore b | an, which means b “ 1 or ´1 since a and b are coprime. �

Other important examples of algebraic integers include arbitrary roots of unity (so-
lutions of Xn ´ 1 “ 0). Moreover, although this is not entirely obvious, Z̄ is a ring: the
sum, difference and product of algebraic integers remains an integer. We prove this in an
ad-hoc, yet fairly elegant manner (this is the approach used in [16]):

Proposition A.1.2. (1) A complex number z P C is an algebraic integer if and only
there exists a square matrix A P MnpZq, for some n ě 1, with integral coefficients, such
that z is an eigenvalue of A, i.e., such that we have detpz ´ Aq “ 0.

(2) If z1, z2 are algebraic integers, then so are z1 ` z2 and z1z2.

Proof. (1) The characteristic polynomial detpX ´Aq of A is a monic integral poly-
nomial of degree n, and therefore any of its zeros is an algebraic integer. We must check
the converse. Thus let z be an algebraic integer, and let

p “ Xn
` an´1X

n´1
` ¨ ¨ ¨ ` a1X ` a0 P ZrXs

1 It is the restriction to monic equations which is crucial to obtain a generalization of integers; if
instead p is allowed to be any non-zero p P QrXs, one obtains the notion of algebraic number.
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be the minimal polynomial of z. We can write down immediately a suitable matrix,
namely

Az “

¨

˚

˚

˚

˚

˝

0 ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ¨ ´a0

1 0 ¨ ¨ ¨ ¨ ¨ ¨ ´a1

0 1 0 ¨ ¨ ¨ ´a2
...

. . . . . . . . .
...

0 ¨ ¨ ¨ ¨ ¨ ¨ 1 ´an´1

˛

‹

‹

‹

‹

‚

.

It is a standard exercise that detpAz ´ zq “ 0, but the following explains how to
“produce” it: consider the abelian group M “ Zrzs generated by powers of z, as a
subgroup of C. Because of the relation ppzq “ 0, this is a free finitely-generated abelian
group, with basis

p1, z, z2, . . . , zn´1
q,

hence of rank n (the rank is no smaller because p is the minimal polynomial of z.) The
map

mz

"

M ÝÑ M
a ÞÑ za

is a homomorphism of abelian groups, and with respect to the basis of M above, it is
represented by an integral matrix which is precisely Az. But since mzpzq “ z2 “ z ˆ z,
we see that z is an eigenvalue of the homomorphism mz, hence of the matrix Az.

(2) We can now prove that Z̄ is stable under product and multiplication using the
characterization we just obtained. Indeed, let A1 and A2 be integral matrices such that zi
is an eigenvalue of Ai. It is standard that z1z2 is an eigenvalue of A1bA2, which is also an
integral matrix (if ei are eigenvectors of Ai for the eigenvalue zi, then pA1bA2qpe1be2q “

z1z2pe1 b e2q, by definition of tensor products.)
The case of sums is a bit less obvious, and the formula is worth remembering: z1` z2

is an eigenvalue of

(A.1) A “ A1 b Id` Idb A2.

Indeed, with ei as before, we have

Ape1 b e2q “ pA1 b Id` Idb A2qpe1 b e2q “ z1pe1 b e2q ` z2pe1 b e2q,

so e1 b e2 is an eigenvector for the eigenvalue z1 ` z2. �

Remark A.1.3. The last formula A “ A1 b Id ` Id b A2 may seem mysterious at
first. It has a natural explanation in terms of representations of Lie algebras, however: if
L is a Lie algebra (over C, say) and

Φ1 : L ÝÑ glpE1q, Φ2 : L ÝÑ glpE2q

are representations of L (as in Definition 3.2.2), then the “correct” definition of the tensor
product Φ1 b Φ2 of these representations is the map

Φ : L ÝÑ glpE1 b E2q

given by

Φpxq “ Φ1pxq b Id` Idb Φ2pxq,

which has the same form as (A.1).

We can now see that any linear combination of roots of unity with integral coefficients
is an algebraic integer. In particular:
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Corollary A.1.4. Let G be a finite group, and let % be a finite-dimensional complex
representation of G. Then for any g P G, the character value χ%pgq is an algebraic integer.

Proof. Indeed, χ%pgq “ Tr %pgq is the sum of the dimp%q eigenvalues of %pgq, and
each of them is a root of unity, since %pgq|G| “ 1 (using the finiteness of G). �

We now discuss quickly the divisibility relation in Z̄. As might be expected, if z1, z2

are algebraic integers, one says that z1 divides z2, denoted

z1 | z2,

if and only if z2 “ z1z with z also an algebraic integer (in other words, the ratio z2{z1 P C
is in fact in Z̄.)

We see clearly that if the same z1 divides z2 and z3 (all in Z̄), it divides their sum or
difference, or their product. In particular, if we have a relation

ÿ

i

ziwi “ 1

with zi, wi all algebraic integers, and if we fix some positive integer q ě 2, we can conclude
that some wi is not divisible by q, in view of the fact that 1{q R Z̄.

One can also define a coprimality relation between algebraic integers: algebraic inte-
gers z1 and z2 are said to be coprime, which is denoted pz1, z2q “ 1, if and only if there
exist algebraic integers w1, w2 such that

z1w1 ` z2w2 “ 1.

This shows in particular that if two ordinary integers in Z are coprime (in the usual
sense), they are also coprime as algebraic integers. On the other hand, suppose that z1

and z2 in Z̄ have a “common divisor” w P Z̄, i.e., we have w | z1 and w | z2. Then the
algebraic integers z1 and z2 can be coprime only if w is a unit, i.e., if 1{w is also in Z̄.
Indeed, writing zi “ wyi, we get

wy1w1 ` wy2w2 “ 1

and thus 1{w “ y1w1 ` y2w2 P Z̄. If w P Z, of course, the condition 1{w P Z̄ means that
w “ ˘1.

Remark A.1.5 (Units). There are many examples of units, some of which are complex
numbers with modulus not equal to 1, in contrast with the units ˘1 in Z. For instance,
the element ε “ 1`

?
2 satisfies

1

1`
?

2
“

1´
?

2

1´ 2
“ ´1`

?
2 P Z̄,

so it is a unit, although |ε| ą 1.
Other examples of units are roots of unity, since the inverse of a root of unity is also

one.

The fundamental link between divisibility and coprimality among integers remains
valid:

Proposition A.1.6. Let z1, z2, z3 be algebraic integers such that z1 | z2z3. If z1 and
z2 are coprime, then z1 divides z3.

Proof. Indeed, from a relation

z1w1 ` z2w2 “ 1
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we get z3 “ z1w1z3 ` z2z3w2, and since each term of the sum is divisible by z1, so is
z3. �

The last notion we need is the definition of the conjugates of an algebraic integer, and
of the norm map. The former is very natural:

Definition A.1.7 (Conjugates and norm of algebraic integers). Let z P Z̄ be an
algebraic integer. Let p P ZrXs be the minimal polynomial of z. A conjugate w of z is
any root of p in C, and the norm of z, denoted Npzq, is the product of all conjugates of
z.

In other words, a conjugate of z is an algebraic integer which satisfies “the same
minimal equation” as z. Since any polynomial p1 P ZrXs for which p1pzq “ 0 is a
multiple of p, it follows that whenever z satisfies a polynomial relation with integral
coefficients, so do all its conjugates.

For example: if n P Z, we have p “ X´n, and n has no other conjugate than itself; if
z is a root of unity of order n, so that zn´ 1 “ 0, then all its conjugates are also roots of
unity of order n (but not all roots of zn´1 are conjugates of z, e.g., ´1 is not a conjugate
of the fourth root of unity z “ i, because the minimal polynomial for i is X2 ` 1, and
not X4 ´ 1.)

Factoring the minimal polynomial p, we have

ppXq “
ź

w

pX ´ wq

where the product, by definition, is over all conjugates of z. In particular, we find

Npzq “
ź

w

w “ p´1qnpp0q.

with n “ degppq. This shows that the norm of z is an integer in Z.

Proposition A.1.8 (Conjugates of sums and products). Let z1 and z2 be algebraic
integers. Then any conjugate w of z1z2 can be written

w “ w1w2

with w1 a conjugate of z1 and w2 a conjugate of z2. Similarly, any conjugate of z1` z2 is
of the form w1 ` w2 for some conjugate wi of zi.

Note, however, that not all sums w1 ` w2 are necessarily conjugates of z1 ` z2 (for
instance, take z1 “

?
2, z2 “ ´

?
2; then w1 “ z1 and w2 “

?
2 are conjugates of z1 and

z2, with w1 ` w2 “ 2
?

2, although z1 ` z2 “ 0 has no non-zero conjugate.)

Proof. Although this property is much better understood in terms of Galois theory,
there is a cute argument using the criterion in Proposition A.1.2. We present this for
z1z2, leaving the case of the sum to the reader.

Consider integral matrices A1 and A2 with characteristic polynomials p1 and p2, the
minimal polynomials for z1 and z2 respectively. Form the matrix A “ A1bA2. Since z1z2

is an eigenvalue of A, we know that any conjugate of z1z2 is among the other eigenvalues
of A. Similarly, for any conjugate w1 of z1 and w2 of z2, there are eigenvectors e1, e2 with
Aiei “ wiei. Each of these gives an eigenvector e1 b e2 of A with eigenvalue w1w2. If we
count, we see that we construct this way n1n2 eigenvectors of A, with eigenvalues given
by products of conjugates of z1 and z2. Since A has size n1n2, there can be no other
eigenvector, and therefore no other eigenvalue either! �
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Corollary A.1.9. Let z be an algebraic integer and n P Z such that n | z. Then
nr divides Npzq in the ring Z, where r is the degree of the minimal polynomial of z, or
equivalently, the number of conjugates of z.

Proof. The point is that n divides any conjugate w of z: indeed, if we write z “ nz1

for some algebraic integer z1, we see that w, as a conjugate of nz1, must be of the form
nw1, where w1 is a conjugate of z1 (since n is the only conjugate of itself...) �

Exercise A.1.10. Let z be an algebraic integer. Show that z is a unit in Z̄ if and
only if Npzq “ ˘1.

A.2. The spectral theorem

In the proof of the general case of the Peter-Weyl theorem, a crucial ingredient is the
fact that certain operators constructed using the regular (or left-regular) representation
have non-trivial, but finite-dimensional, eigenspaces. The standard statement along these
lines is the spectral theorem for compact normal operators. We will state this result, but
we will only prove a weaker statement that is sufficient for our purposes.

We start with the definition:

Definition A.2.1 (Compact operator). Let H be a Hilbert space and let T : H ÝÑ

H be a continuous linear operator. Then T is compact if and only if there is a sequence
pTnq of continuous operators Tn : H Ñ H such that dim ImpTnq ă `8 for all n, and
Tn Ñ T in the operator norm topology, i.e., uniformly on the unit ball of H.

Example A.2.2. A compact operator should be considered as “small” in some sense.
An illustration of this intuitive idea is the fact that if λ ­“ 0, the operator λId on H is
compact if and only if H is finite-dimensional. Indeed, suppose Tn Ñ λId in LpHq. Then,
for n sufficiently large, we }λ´1Tn ´ Id} ă 1, and this implies that λ´1Tn is invertible
(this is well-known: check that the geometric series

ÿ

kě0

pId´ λ´1Tnq
k

converges in LpHq, as it should, to the inverse of Id´ pId´ λ´1Tnq “ λ´1Tn). Then

dimH “ dim ImpTnq ă `8.

The spectral theorem for compact operators is the following:

Theorem A.2.3 (Spectral theorem). Let H be a Hilbert space and let T : H ÝÑ H be
a normal compact operator, i.e., a compact operator such that TT ˚ “ T ˚T , for instance
a self-adjoint operator with T “ T ˚.

There exists a subset S Ă C which is finite or countable, such that the eigenspace
KerpT ´ λq is non-zero if and only if λ P S, and is finite-dimensional if λ ­“ 0.

Furthermore, we have a Hilbert space orthogonal direct sum decomposition

H “
à

λPS

KerpT ´ λq.

In particular, if T ­“ 0, the set S is not reduced to t0u.

In other words: a normal compact operator can be diagonalized with at most count-
ably many eigenvalues, and for any non-zero eigenvalue, the corresponding eigenspace is
finite-dimensional. Note that, if T has finite rank (i.e., dim ImpT q ă `8), this is just a
form of the spectral theorem for matrices of finite size commuting with their adjoint. In
view of the definition of compact operators, the result can therefore be seen as “passing
to the limit” with this classical theorem.
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Exercise A.2.4. Prove Theorem A.2.3 for self-adjoint compact operators defined on
a separable Hilbert space using the spectral theorem for arbitrary self-adjoint operators
which is stated in Theorem 3.4.17. [Hint: Recall the following result of functional analysis:
a Hilbert space H such that the closed unit ball of H is compact is finite-dimensional;
use this to prove that a compact multiplication operator Mf has the property that, for
any ε ą 0, the function f only takes finitely many values y with |y| ą ε (up to sets of
measure zero.)]

We will apply this to Hilbert-Schmidt integral operators:

Proposition A.2.5. Let pX,µq be a measure space, and let

k : X ˆX ÝÑ C

be a function which is in L2pXˆX,µˆµq. The linear operator Tk acting on L2pX,µq by

pTkϕqpxq “

ż

X

kpx, yqfpyqdµpyq

is compact. It is self-adjoint if k satisfies kpx, yq “ kpy, xq.

The operator Tk is customarily called the Hilbert-Schmidt (integral) operator with
kernel k. We give the proof in the case when L2pX,µq is a separable Hilbert space, which
is the case in most applications (for instance for X a compact metric space and µ a Radon
measure on X). The general case is considered, e.g., in [15, XI.8.44].

Proof when L2pX,µq is separable. First of all, the Cauchy-Schwarz inequality
and Fubini’s theorem give

ż

X

|Tkpϕqpxq|
2dµpxq ď

ż

X

´

ż

X

|kpx, yq|2dµpyq
¯´

ż

X

|fpyq|2dµpyq
¯

dµpxq

“ }k}2L2pXˆXq}f}
2
L2pXq,

which shows that Tk is well-defined, and continuous with norm

(A.2) }Tk} ď }k}L2pXˆXq.

We can now check quite easily that Tk is compact when L2pX,µq is separable. Fix
any orthonormal basis pϕkqkě1 of L2pXq. Then the functions

ψk,` : px, yq ÞÑ ϕkpxqϕ`pyq

are known to form an orthonormal basis of L2pX ˆXq (see, e.g., [44, II.4, p. 51]), and
we can therefore expand k in an L2-convergent series

(A.3) k “
ÿ

k

ÿ

`

αpk, `qψk,`, αpk, `q P C.

Given any N ě 1, we define the approximation T pNq “ TkN , where kN is the corre-
sponding partial sum

kN “
ÿ

kďN

ÿ

`ďN

αpk, `qψk,`.

Note that for any ϕ P L2pXq, we have

T pNqϕ “
ÿ

kďN

ÿ

`ďN

αpk, `q
´

ż

X

ϕ`pyqfpyqdµpyq
¯

ϕk,
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which shows that the image of T pNq is finite-dimensional, spanned by the ϕk, k ď N . In
addition, in the space of operators on L2pXq, we have

}Tk ´ T
pNq
} “ }Tk´kN } ď }k ´ kN}L2pXˆXq,

by (A.2), which tends to 0 as N Ñ `8 (since the series (A.3) converges in L2pX ˆXq).
So we have found finite rank approximations of Tk, and thus Tk is compact.

Finally, it is a formal computation, left to the reader, to check that

T ˚k “ Tk̃, where k̃px, yq “ kpy, xq,

so that k is self-adjoint if k “ k̄. �

We are now going to prove part of the spectral theorem in a special case involving
Hilbert-Schmidt operators. This statement is enough for the application to the proof of
the Peter-Weyl theorem.

Proposition A.2.6. Let X be a compact space with a Radon measure µ, and let
T “ Tk be a non-zero self-adjoint Hilbert-Schmidt operator with continuous kernel k such
that Tk is non-negative, i.e.

xTkf, fy ě 0

for all f P L2pX,µq.
Then there exists a positive eigenvalue λ ą 0 of T , and the corresponding eigenspace

is finite-dimensional.

Proof when L2pX,µq is separable. We denote H “ L2pXq in this argument,
since parts of it will apply to any positive compact operator. We first show the general
fact that if λ ­“ 0 is an eigenvalue of a compact operator T , the eigenspace V “ KerpT´λq
is finite-dimensional (this is false for λ “ 0, e.g., take T “ 0...). The basic idea is that
T , restricted to V , remains compact – but this operator on V is λId, and we can apply
Example A.2.2. To implement this, let P denote the orthogonal projection onto the closed
subspace V . Consider a sequence pTnq of operators with finite rank such that Tn Ñ T in
LpHq, and define Un “ PTn as operator on V . These are finite rank operators in LpV q,
and we have

}Un ´ T }LpV q ď }pP ´ IdqTn}LpV q ` }Tn ´ T }LpHq “ }Tn ´ T }LpHq

since P “ Id on V . This shows that, indeed, T is compact when restricted to the stable
subspace V . Since T “ λId on V , we conclude that V is finite-dimensional.

Now for the existence of the eigenvalue, which is the most crucial part. The idea is to
show the norm λ “ }T }LpHq itself is an eigenvalue, and in order to prove this it is enough
to show that the supremum

}T }LpHq “ sup
v ­“0

}Tv}

}v}

is reached. Indeed, assume that v P H has norm 1 and satisfies }Tv} “ λ. Considering
any vector w P H and t P R, we have

}T pv ` twq}2 ď λ2
}v ` tw}2,

and after expanding both sides as polynomials in t of degree 2, the coefficient of t must
vanish for this inequality to hold for all t close to 0; one checls that this gives the formula

RexTv, Twy “ λ2 Rexv, wy.

Since T is self-adjoint and λ is real, we deduce that

RexT 2v, wy “ RexTv, Twy “ Rexλ2v, wy
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for all w P H. Taking w “ T 2v´λ2v, we obtain T 2v “ λ2v. Now we “take the squareroot”
as follows: we write Tv “ λv ` v1, and apply T , getting

λ2v “ T 2v “ λTv ` Tv1 “ λ2v ` λv1 ` Tv1,

so Tv1 “ ´λv1. But λ ą 0 and T is positive, so this is impossible unless v1 “ 0, and
hence Tv “ λv, as desired.

Thus we are reduced to proving the existence of a vector achieving the norm of T
(indeed, this reduction did not use anything about T itself!) Here the idea is that this
property holds for a finite-rank operator – and we hope to get it to carry through the
limiting process. Readers familiar with weak convergence and the alternative definition
of compact operators based on the relative compactness of the image of the unit ball will
find the following arguments rather näıve, but one should remember that the Peter-Weyl
theorem predates such notions.

We we argue from scratch, starting with a sequence pvnq of unit eigenvectors of Tn for
the norm λn “ }Tn}. Since λn Ñ λ, it would of course be enough to know that pvnq, or a
subsequence of pvnq, converges. But since the unit ball of an infinite-dimensional Hilbert
space is not compact, we can not claim that such a subsequence exists. However, we can
fix a countable dense subset pϕkq of H, consisting of the Q-linear span of an orthonormal
basis pψmq of H. Then, by a diagonal argument, we can find a subsequence wj “ vnj of
pvnq such that

xϕk, wjy ÝÑ αk
for all k. We apply this to the elements ψm of the chosen orthonormal basis, and we
derive

ÿ

mďM

|xψm, wjy|
2
ÝÑ

ÿ

mďM

|βm|
2

for any M ě 1, where βm is αk for the index such that ψm “ ϕk. The left-hand side is
the norm of the projection of wj on the span of pψ1, . . . , ψMq, and as such is ď 1. Hence
we get

ÿ

mďM

|βm|
2
ď 1

for all M ě 1, which shows that the vector

v “
ÿ

mě1

βmψm

exists in H, and has norm ď 1. But then, since the ϕk are finite linear combinations of
the ψm, we get

xwj, ϕky ÝÑ xv, ϕky

as j Ñ `8, for all k. Since tϕku is dense in H, it follows (formally) that

(A.4) xwj, wy ÝÑ xv, wy

as j Ñ `8, for all w P H.2

We now argue that, due to the compactness of T , this weaker convergence property
suffices to ensure that Twj Ñ Tv in H. If this is true, we are done: since Twj “
Tnjvnj ` pT ´ Tnjqvnj , we have

}Twj} “ λnj ` op1q Ñ λ,

2 One can think of this property as saying that “every coordinate” of wj , captured by any linear
functional on H, converges to the corresponding coordinate of v. To clarify the meaning of this, note
that the formula }v} “ sup}w}ď1 |xv, wy| shows that the convergence in norm is equivalent to a uniform

convergence (over w of norm 1) of the corresponding “coordinates”.
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and therefore }Tv} “ λ, as desired (note that this also shows that }v} “ 1).
At last, we can use the explicit form of T to prove that Twj Ñ Tv. We write

kpx, yq “ kxpyq, so that (using our simplifying assumption that k is continuous) each kx
is a well-defined continuous (hence bounded and square-integrable) function on X. Then
we can write

pTwj ´ Tvqpxq “ xwj ´ v, kxy,

and hence

}Twj ´ Tv}
2
“

ż

X

|xwj ´ v, kxy|
2dµpxq.

We can now apply the dominated convergence theorem to conclude: by (A.4), the
integrand converges pointwise to 0, and moreover

|xwj ´ v, kxy|
2
ď p}wj} ` }v}q

2
}k}28 ď 2}k}28,

which is an integrable function on X, so that the dominated convergence theorem does
apply. �

Remark A.2.7. In the language of weak convergence, we can summarize the last
steps of the argument as follows: (1) any sequence of unit vectors in H contains a weakly
convergent subsequence; (2) a compact operator maps a weakly convergent sequence to
a norm-convergent sequence. In general, (1) is a consequence of the Banach-Alaoglu
Theorem (see, e.g., [44, Th. IV.21]) and the self-duality of Hilbert spaces, while (2) is
most easily seen as coming from the alternate characterization of compact operators (on
a Hilbert space H) as those mapping the unit ball to a relatively compact subset H (see,
e.g., [44, VI.5, Th. VI.11] for this fact).

A.3. The Stone-Weierstrass Theorem

We conclude with the statement of the general Stone-Weierstrass approximation the-
orem, which is used in Exercises 5.4.4 and 5.4.6 for an alternative proof of the Peter-Weyl
Theorem.

Theorem A.3.1 (Stone-Weierstrass approximation theorem). Let X be a compact
topological space, and let A Ă CpXq be a subspace of continuous functions on X such
that (1) A is an algebra: if f , g P A, the product fg is also in A; (2) A is stable under

complex conjugation: if f P A, then f̄ is in A, where f̄ maps x to fpxq; (3) A separates
points, i.e., for any elements x, y in X with x ­“ y, there exists some f P A such that
fpxq ­“ fpyq.

Then A is dense in CpXq for the uniform topology, i.e., for any f P CpXq and ε ą 0,
there exists g P A with

sup
xPX

|fpxq ´ gpxq| ă ε.
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Gamma function, 209
Gauss hypergeometric function, 295
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restriction, 30, 34, 39, 42, 110, 136, 202, 215
Riemann Hypothesis for curves over finite

fields, 256
Riesz representation theorem, 111, 219
right-ideal, 140
right-regular representation, 10
roots of unity, 151, 191, 192, 195, 308, 310

Sarnak’s philosophy, 1
scalar class, 167, 168

Schrödinger equation, 260, 265, 282
Schur’s Lemma, 20, 29, 54, 65, 68–70, 72, 73,

76, 79–81, 92, 99, 114, 117, 123, 126, 130,
139, 171, 200, 223, 225, 231, 250, 279, 293

second orthogonality formula, 143, 144, 232,
251

Selberg’s conjecture, 305, 306
self-adjoint operator, 7, 114, 183, 225, 259, 312,

314
self-dual Haar measure, 280
self-dual representation, 248, 251
self-reciprocal polynomial, 196
semisimple conjugacy class, 191
semisimple representation, 19, 21, 22, 25, 31,

49, 50, 52, 53, 62–64, 66, 68, 69, 75–77, 79,
83, 84, 90, 96, 113, 114, 118, 119, 132, 214,
270, 272, 275, 276, 283

semisimplicity criterion, 22
separable, 7
short exact sequence, 7, 19, 50
signature, 155, 175, 180, 181
signed permutation, 196
signed permutation matrix, 146, 271
skew-hermitian matrix, 254, 255, 259
skew-hermitian operator, 301
small subgroup, 242
Sobolev norm, 306
solvable group, 5, 159, 162, 185, 186, 192, 299
Specht module, 178, 180, 181
spectral measure, 260
spectral theorem, 3, 114, 115, 226, 281, 312
spectrum, 260
spherical representation, 304
spin, 4, 266
split exact sequence, 19
split semisimple class, 167, 168, 170–172
stabilizer, 134, 180
stable complement, 18, 54, 56, 113, 119, 253
stable lattice, 50, 56
stable subspace, 12, 296
state, 4, 259, 260, 264
Steinberg representation, 171, 175, 186, 191
Stone’s Theorem, 282
Stone-Weierstrass Theorem, 203, 224, 226, 229,

316
strong continuity, 108, 113, 210, 211, 213, 219,

222, 300
strong topology, 109, 212, 221
submodule, 96
subquotient, 60, 71
subrepresentation, 12, 14, 16–19, 27, 33, 49, 52,

53, 60, 64, 67, 72, 73, 90, 101, 106, 110,
116, 118, 132, 180, 193–195, 216, 218, 246,
252, 254, 272, 284, 289, 292, 296

subrepresentation generated by a vector, 233
sum, 16
support of a measure, 8, 115, 206
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surface Lebesgue measure, 262
symmetric bilinear form, 127, 202, 245, 246,

248, 255
symmetric group, 25, 124, 125, 178, 179, 194,

250
symmetric power, 25, 52, 272
symmetry, 2, 261
symplectic type, 245, 246, 248

tableau, 179, 180
tabloid, 179
tangent space, 254
tangent vector, 255
tautological, 9, 53, 251, 267, 276
tempered representation, 303
tensor power, 137
tensor product, 6, 24, 51, 53, 110, 155, 252,

275, 309
topological group, 33, 102, 106–108, 113, 114,

116
topologically irreducible representation, 106
torus, 241
trace, 7, 85, 86, 126, 128, 146, 158
trace map, 177
transitive action, 134, 180, 262
transitivity, 42, 45
translates, 9, 54, 120
transpose, 26, 176, 250, 268
triangle inequality, 158
trigonometric polynomial, 203
trivial representation, 10, 11, 19, 21, 36, 65, 99,

122, 125, 134, 137, 142, 146, 150, 155, 163,
180, 239, 258, 303

trivial subrepresentation, 13
twisting, 25, 91, 110, 160, 164, 276
two-sided ideal, 140
Tychonov Theorem, 239

unbounded self-adjoint operator, 261
unimodular group, 208, 209, 292
unipotent element, 6, 66, 84, 89, 275
unipotent radical, 275, 276
unit, 310
unit disc, 298
unit vector, 259
unitarizability criterion, 111
unitarizable representation, 108, 120, 214, 244,

300
unitary group, 3, 212, 242
unitary matrix, 111, 137, 143, 234
unitary matrix coefficient, 131, 223
unitary operator, 7, 108, 115
unitary representation, 107–112, 114, 116, 120,

130, 138, 139, 158, 204, 205, 209, 210, 213,
218, 232, 233, 238, 262, 302, 304

unitary symplectic group, 241, 251
universal endomorphisms, 96, 97, 138

unramified representation, 304
upper half-plane, 285, 295, 298
upper-triangular matrix, 89, 162, 201

variance, 182
velocity, 259
virtual character, 89, 135, 202

weak convergence, 315
weak integral, 218
Weil representation, 57, 176, 177
Weyl group, 197
Whittaker functional, 176

Young diagram, 179–181

Zariski topology, 271
Zariski-closure, 267–272, 274, 276
Zorn’s Lemma, 24, 227
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