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1 | Topological Groups

This chapter contains basic results about the point-set topology of topological groups.
Our convention that all topological spaces are assumed to be Hausdorff will not be in
force for this chapter—whenever we use the Hausdorff condition, this will be mentioned
explicitly.

Definition 1.1. A topological group (G, ·, T ) consists of a group (G, ·) and a topology T
on G (not necessarily Hausdorff) for which the map

q : G×G −→ G, (g, h) 7−→ g−1h

is continuous. Specializing this to h = e, we see that then the inversion map

i : g 7−→ g−1

is a homeomorphism. It follows that the multiplication map

m : (g, h) 7−→ gh

is also continuous. For every a ∈ G, the right translation map

ρa(g) = ga−1,

the left translation map
λa(g) = ag,

and the conjugation map
γa(g) = aga−1

are homeomorphisms of G onto itself, with inverses λa−1 , ρa−1 and γa−1 , respectively. In
particular, the homeomorphism group of G acts transitively on G. It follows that every
neighborhood W of a group element g ∈ G can be written as W = gU = V g, where
U = λg−1(W ) and V = ρg(W ) are neighborhoods of the identity. In what follows, we will
mostly write G for a topological group, without mentioning the topology T explicitly. A
neighborhood of the identity element e will be called an identity neighborhood for short.
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Definition 1.2. We define a morphism f : G −→ K between topological groups G,K to
be a continuous group homomorphism. Topological groups and their morphisms form a
category which we denote by TopGrp.

Example 1.3. The following are simple examples of topological groups and morphisms.

(a) The additive and the multiplicative groups of the fields Q, R, C, and the p-adic fields
Qp, endowed with their usual field topologies, are examples of topological groups.
The exponential maps exp : R −→ R∗ and exp : C −→ C∗ are morphisms.

(b) The circle group U(1) = {z ∈ C | |z| = 1} ⊆ C∗ is another example of a topological
group. The map R −→ U(1) that maps t to exp(2πit) = cos(2πt) + i sin(2πt) is a
morphism.

(c) Every morphism f : R −→ R is of the form f(t) = rt, for a unique real r. This follows
from the fact that Q is dense in R, and that an additive homomorphism f : Q −→ R

is determined uniquely determined by the element r = f(1), since Q is uniquely
divisible.

(d) Every morphism f : U(1) −→ U(1) is of the form f(z) = zm, for a unique integer
m ∈ Z.

(e) As a vectorspace over Q, the group (R,+) has dimension 2ℵ0. Hence the abelian
group R has 22

ℵ0 additive endomorphisms, almost all of which are not continuous.

(f) Let H denote the additive group of the reals, endowed with the discrete topology.
Then id : H −→ R is a continuous bijective morphism, whose inverse is not continu-
ous.

(g) Let F be a field and let GLn F denote the group of invertible n×n-matrices over F . For
an n×n-matrix g, let g# denote the matrix with entries (g#)i,j = (−1)i+j det(g′(j, i)),
where g′(j, i) is the (n−1)× (n−1)-matrix obtained by removing column i and row j
from the matrix g. Then gg# = g#g = det(g)1. Hence if F is a topological field, then
q(g, h) = g−1h = 1

det(g)
g#h depends continuously on g and h, and therefore GLn F

is a topological group. In particular, the matrix groups GLnQ, GLnR, GLnC, and
GLnQp are topological groups.

(h) Every group G, endowed either with the discrete or with the trivial nondiscrete topol-
ogy, is a topological group.

Proposition 1.4. Suppose that (Gi)i∈I is a family of topological groups. Then the product
K =

∏
i∈I Gi, endowed with the product topology, is again a topological group. For each j,
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the projection map prj : K −→ Gj is an open morphism. If H is a topological group and
if there are morphisms fj : H −→ Gj, for every j ∈ J , then there is a unique morphism
f : H −→ K such that prj ◦f = fj holds for all j ∈ J .

Proof. We have to show that the map q : K × K −→ K that maps (g, h) to g−1h is
continuous. Let qj : Gj × Gj −→ Gj denote the corresponding maps, which are by
assumption continuous. Then we have for each j a continuous map prj ◦q = qj◦(prj × prj),

K ×K K

Gj ×Gj Gj .

q

prj ×prj prj

qj

By the universal property of the product topology, this implies that q is continuous.
The remaining claims follow, since these maps on the one hand are continuous (and

open) as claimed by the properties of the product topology, and on the other hand are
group homomorphisms.

The following local criterion for morphisms is often useful.

Lemma 1.5. Let G,K be topological groups and let f : G −→ K be a (not necessarily
continuous) group homomorphism. Then the following are equivalent.

(i) The map f is continuous and hence a morphism of topological groups.

(ii) The map f is continuous at one point a ∈ G, i.e. for every neighborhood W of f(a),
there exists a neighborhood V of a such that f(V ) ⊆W .

Proof. It is clear that (i) implies (ii): a continuous map is continuous at every point.
Suppose that (ii) holds and that U ⊆ K is open. If g ∈ f−1(U), then f(a) = f(ag−1g) ∈
f(ag−1)U . Hence there exists a neighborhood V of a with f(V ) ⊆ f(ag−1)U . Then ga−1V
is a neighborhood of g, with f(ga−1V ) ⊆ U . Hence f−1(U) is open.

Below we will look into separation properties for topological groups more closely. At
this point we just record the following.

Lemma 1.6. A topological group G is Hausdorff if and only if some singleton {a} ⊆ G
is closed.

Proof. Suppose that {a} ⊆ G is closed. The preimage of {a} under the continuous map
(g, h) 7−→ g−1ha is the diagonal {(g, g) | g ∈ G} ⊆ G × G, which is therefore closed
in G × G. Thus G is Hausdorff. Conversely, every singleton in a Hausdorff space is
closed.

[Preliminary Version - December 13, 2017]



4 Chapter 1

Subgroups

Now we study subgroups of topological groups.

Proposition 1.7. Let H be a subgroup of a topological group G. Then H is a topological
group with respect to the subspace topology. Moreover, the closure H is also a subgroup of
G. If H is normal in G, then H is also normal.

Proof. It is clear from the definition that a subgroup of a topological group is again
a topological group. Let H ⊆ G be a subgroup. The continuity of the map q from
Definition 1.1 ensures that

q(H ×H) = q(H ×H) ⊆ q(H ×H) = H.

Thus H is a subgroup. Suppose in addition that H ✂ G is normal. For a ∈ G, put
γa(g) = aga−1. Since the conjugation map γa : G −→ G is continuous, we have

γa(H) ⊆ γa(H) = H.

This shows that H is normal in G.

Lemma 1.8. Let G be a topological group and let A ⊆ G be a closed subset. Then the
normalizer of A,

NorG(A) = {g ∈ G | γg(A) = A},
is a closed subgroup.

Proof. For a ∈ A let ca(g) = gag−1. Then ca : G −→ G is continuous and hence
c−1
a (A) = {g ∈ G | gag−1 ∈ A} is closed. Therefore

S =
⋂

{c−1
a (A) | a ∈ A} = {g ∈ G | γg(A) ⊆ A}

is a closed semigroup in G, and NorG(A) = S ∩ S−1 is closed as well.

Lemma 1.9. Let G be a Hausdorff topological group, and let X ⊆ G be any subset. Then
the centralizer

CenG(X) = {g ∈ G | [g,X ] = e}
is closed. In particular, the center of G is closed.

Proof. Given x ∈ X , the map g −→ [g, x] = gxg−1x−1 is continuous. Therefore CenG(x) =
{g ∈ G | [g, x] = e} is closed, provided that {e} ⊆ G is closed. Then CenG(X) =⋂
{CenG(x) | x ∈ X} is closed as well.

[Preliminary Version - December 13, 2017]
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Lemma 1.10. Let G be a Hausdorff topological group. If A ⊆ G is an abelian subgroup,
then A is an abelian subgroup.

Proof. The commutator map (g, h) −→ [g, h] is constant on A×A and hence also constant
on the closure A× A = A×A.

Lemma 1.11. Let G be a topological group and suppose that U ⊆ G is an open subset. If
X ⊆ G is any subset, then UX and XU are open subsets. In particular, the multiplication
map m : G×G −→ G, (g, h) 7−→ gh and the map q : (g, h) 7−→ g−1h are open.

Proof. For each x ∈ X , the sets Ux = ρx−1(U) and xU = λx(U) are open. Hence
UX =

⋃
{Ux | x ∈ X} and XU =

⋃
{xU | x ∈ X} are open as well.

Proposition 1.12. Let G be a topological group and let H ⊆ G be a subgroup.

(i) The subgroup H is open if and only if it contains a nonempty open set.

(ii) If H is open, then H is also closed.

(iii) The subgroup H is closed if and only if there exists an open set U ⊆ G such that
U ∩H is nonempty and closed in U .

Proof. For (i), suppose that H contains the nonempty open set U . Then H = UH is open
by Lemma 1.11. Conversely, if H is open then it contains the nonempty open set H . For
(ii), suppose that H ⊆ G is open. Then G−H =

⋃{aH | a ∈ G−H} is also open. For
(iii), suppose that U ∩H is nonempty and closed in the open set U . Then U ∩H is also
closed in the smaller set U ∩ H ⊆ U . Upon replacing G by H , we may thus assume in
addition that H is dense in the ambient group G, and we have to show that H = G. The
set U −H = U − (U ∩H) is open in U and hence open in G. On the other hand, H is
dense in G. Therefore U − H = ∅ and thus U ⊆ H . By (i) and (ii), H is closed in G,
whence H = G. Conversely, if H is closed, then H is closed in the open set G.

Corollary 1.13. Let G be a topological group and let V ⊆ G be a neighborhood of some
element g ∈ G. Then V generates an open subgroup of G.

Corollary 1.14. Suppose that G is a Hausdorff topological group and that H ⊆ G is a
subgroup. If H is locally compact in the subspace topology, then H is closed. In particular,
every discrete subgroup of G is closed.

Proof. Let C ⊆ H be a compact set which is an identity neighborhood in the topological
group H . Then there exists an open identity neighborhood U in G such that U ∩H ⊆ C.
Since C is compact, C is closed in G and hence U ∩ H = U ∩ C is closed in U and
nonempty. Now we can apply Proposition 1.12(iii).

[Preliminary Version - December 13, 2017]
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A product of closed subsets in a topological group need not be closed. The standard
example is the additive group of the reals (R,+), with the closed subgroups A = Z and
B =

√
2Z. Then A+B is a countable dense subgroup of R which is not closed. However,

we have the following.

Lemma 1.15. Let G be a Hausdorff topological group, and let A,B ⊆ G be closed subsets.
If either A or B is compact, then AB ⊆ G is closed.

The proof uses a weak form of Wallace’s Lemma, which we will use on several occasions.

Lemma 1.16 (Wallace). Let X1, . . .Xk be Hausdorff spaces containing compact sets
Aj ⊆ Xj, for j = 1, . . . , k. If W ⊆ X1×· · ·×Xk is an open set containing A1×· · ·×Ak,
then there exist open sets Uj with Aj ⊆ Uj ⊆ Xj, for j = 1, . . . , k, such that

A1 × · · · × Ak ⊆ U1 × · · · × Uk ⊆ W.

Proof. There is nothing to show for k = 1. Suppose that k = 2. We put A = A1 and
B = A2 and we fix a ∈ A. For every point b ∈ B, we choose an open neighborhood
Ub × Vb of (a, b) such that Ub × Vb ⊆ W . Since {a} × B is compact, finitely many such
neighborhoods Ub1 × Vb1 , . . . , Ubm × Vbm cover {a} ×B. We put Ua = Ub1 ∩ · · · ∩ Ubm and
Va = Vb1 ∪ · · · ∪ Vbm . Then {a} × B ⊆ Ua × Va ⊆ W . Now we let a ∈ A vary. Since
A is compact, finitely many such strips Ua1 × Va1 , . . . , Uan × Van cover A × B. We put
U = Ua1 ∪ · · · ∪ Uan and V = Va1 ∩ · · · ∩ Van . Then A× B ⊆ U × V ⊆ W and the claim
is proved for k = 2.

For k ≥ 3 we apply the previous argument to A = A1 and B = A2 × · · · × Ak, and
we obtain open sets U ⊆ X1 and V ⊆ X2 × · · · × Xk with A × B ⊆ U × V ⊆ W . By
induction, we find now open sets U2, . . . Uk such that A2 × · · · × Ak ⊆ U2 × · · ·Uk ⊆ V .
Therefore A1 × · · · × Ak ⊆ U × U2 × · · ·Uk ⊆W .

Proof of Lemma 1.15. Suppose that A is compact and B is closed, and that g ∈ G−AB.
We have to show thatG−AB contains a neighborhood of g. By assumption, A−1g∩B = ∅.
If we put q(g, h) = g−1h, then q(A × {g}) ⊆ G − B. By Wallace’s Lemma 1.16 there
exists an open neighborhood V of g such that q(A × V ) ⊆ G − B, i.e. A−1V ∩ B = ∅.
Hence V ∩AB = ∅ and the claim follows. The case where B is compact and A is closed
follows by taking inverses.

Quotients

Suppose that H is a subgroup of a topological group G. We endow the set G/H of left
cosets with the quotient topology with respect to the natural map

p : G −→ G/H, g 7−→ gH.

[Preliminary Version - December 13, 2017]



Topological Groups 7

Thus a subset of G/H is open if and only if its preimage is open. The next result is
elementary, but important.

Proposition 1.17. Let G be a topological group and let H be a subgroup. Then the
quotient map

p : G −→ G/H

is open. The quotient G/H is Hausdorff if and only if H is closed in G.

Proof. Suppose that U ⊆ G is an open set. Then p−1(p(U)) = UH is open by Lemma
1.11, hence p(U) is open by the definition of the quotient topology.

If G/H is Hausdorff, then {H} ⊆ G/H is closed, hence H = p−1({H}) ⊆ G is closed as
well. Conversely, suppose that H ⊆ G is closed. The map p× p : G×G −→ G/H×G/H
is open, because p is open and because a cartesian product of two open maps is again
open. The open set W = {(x, y) ∈ G × G | x−1y ∈ G − H} maps under p × p onto the
complement of the diagonal in G/H × G/H . Hence the diagonal {(gH, gH) | g ∈ G} is
closed in G/H ×G/H , and therefore G/H is Hausdorff.

Corresponding remarks apply to the set H\G of right cosets by taking inverses.

Proposition 1.18. Let G be a topological group. If N✂G is a normal subgroup, then the
factor group G/N is a topological group with respect to the quotient topology on G/N . The
quotient map p : G −→ G/N is an open morphism. The factor group G/N is Hausdorff
if and only if N is closed. In particular, G/N is a Hausdorff topological group.

Proof. We put q̄(gN, hN) = g−1hN and p(g) = gN . Then the diagram

G×G G

G/N ×G/N G/N

q

p×p p

q̄

commutes, and p◦q is continuous. Since p is open, p×p is also open and hence a quotient
map. It follows from the universal property of quotient maps that q̄ is continuous, and
therefore G/N is a topological group. The remaining claims follow from Proposition 1.17.

The next result is the Homomorphism Theorem for topological groups.

Lemma 1.19. Let f : G −→ K be a morphism of topological groups, and put N = ker(f).
Then f factors through the open morphism p : G −→ G/N via a unique morphism f̄ ,

G K.

G/N

f

p f̄

[Preliminary Version - December 13, 2017]
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If f is open, then f̄ is also open.

Proof. The group homomorphism f̄ exists uniquely by the Homomorphism Theorem for
groups. Since p is a quotient map, f̄ is continuous and thus a morphism of topological
groups. If f is open and if W ⊆ G/N is an open set, then f(p−1(W )) = f̄(W ) is open as
well.

Corollary 1.20. Suppose that G,K are topological groups and that K is Hausdorff. If
f : G −→ K is a morphism of topological groups, then f factors through the open mor-
phism p : G −→ G/{e},

G K.

G/{e}

f

p f̄

Connected components

Definition 1.21. Let x be a point in a topological space X . The connected component
of x is the union of all connected subsets of X containing x. This union is closed and
connected. We call a topological space X totally disconnected if the only connected
nonempty subsets of X are the singletons.

The connected component the identity element of a topological groupG will be denoted
by G◦, and we call G◦ the identity component of G. Since the homeomorphism group of
G acts transitively on G, the group G is totally disconnected if and only if G◦ = {e}. We
note that a totally disconnected group is automatically Hausdorff.

Proposition 1.22. Let G be a topological group. Then the identity component G◦ is a
closed normal subgroup, and G/G◦ is a totally disconnected Hausdorff topological group.

Proof. We put q(g, h) = g−1h and we note that a continuous image of a connected set is
connected. Since G◦×G◦ is connected and contains the identity element, q(G◦×G◦) ⊆ G◦.
This shows that G◦ is a subgroup. By the remark above, G◦ is closed. For every a ∈ G,
the set γa(G

◦) = aG◦a−1 is connected and contains the identity, whence aG◦a−1 ⊆ G◦.
This shows that G◦ is a closed normal subgroup.

It remains to show that G/G◦ is totally disconnected. We put H = (G/G◦)◦ and
N = p−1(H). Then N is a closed normal subgroup of G containing G◦. We claim
that N = G◦. If we have proved this claim, then H = {G◦} and thus G/G◦ is totally
disconnected. The restriction-corestriction map p|NH : N −→ H is open, hence H carries
the quotient topology with respect to p|NH : N −→ H . Suppose that V ⊆ N is closed
and open in N and contains the identity. Since G◦ is connected and contains e, we have

[Preliminary Version - December 13, 2017]
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vG◦ ⊆ V for all v ∈ V . Hence V = p−1(p(V )), and therefore p(V ) is closed and open
in H . But H is connected, whence H = p(V ) and thus V = N . It follows that N is
connected, whence N = G◦.

Corollary 1.23. Let f : G −→ K be a morphism of topological groups. If K is totally
disconnected, then f factors through the open morphism p : G −→ G/G◦,

G K.

G/G◦

f

p f̄

Proof. Since f(G◦) ⊆ K is connected, G◦ is contained in the kernel of f .

Metrizability of topological groups

At some point the metrizability of topological groups will become important.

Definition 1.24. A pseudometric d on a set X is a map d : X ×X −→ R≥0 satisfying

d(x, x) = 0, 0 ≤ d(x, y) = d(y, x), d(x, z) ≤ d(x, y) + d(y, z),

for all x, y, z ∈ X . If d(x, y) = 0 implies that x = y, then d is called a metric. A
metric or pseudometric d on a group G is called left invariant if the left translation map
λa : G −→ G is an isometry of the metric or pseudometric space (G, d), for every a ∈ G.
In other words, we require for a left invariant metric that

d(x, y) = d(ax, ay)

for all a, x, y ∈ G. A length function ℓ on a group is a map

ℓ : G −→ R≥0

with the properties

ℓ(e) = 0, ℓ(g) = ℓ(g−1), ℓ(gh) ≤ ℓ(g) + ℓ(h),

for all g, h ∈ G. It follows that the set {g ∈ G | ℓ(g) = 0} is a subgroup of G. If ℓ is a
length function, then

d(g, h) = ℓ(g−1h)

is a left invariant pseudometric. This pseudometric is a metric if and only if ℓ(g) = 0
implies that g = e.

[Preliminary Version - December 13, 2017]
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Theorem 1.25 (Birkhoff–Kakutani). Let G be a Hausdorff topological group. The
following are equivalent.

(i) The topology on G is metrizable by a left invariant metric.

(ii) The topology on G is metrizable.

(iii) The identity element e has a countable neighborhood basis.

The proof relies on the following technical lemma. We call an identity neighborhood
V symmetric if V = V −1. If V is any identity neighborhood, then V ∩V −1 is a symmetric
identity neighborhood.

Lemma 1.26. Let G be a topological group. Suppose that (Kn)n∈Z is a family of symmetric
identity neighborhoods with the property that KnKnKn ⊆ Kn+1 holds for all n ∈ Z, and
with 〈

⋃
n∈ZKn〉 = G. For g ∈ G we put

ℓ(g) = inf{t ≥ 0 | there is some k ≥ 1 and n1, . . . , nk ∈ Z

with t = 2n1 + · · ·+ 2nk and g ∈ Kn1
Kn2

· · ·Knk
}.

Then ℓ is a continuous length function. Moreover, {g ∈ G | ℓ(g) < 2n} ⊆ Kn and
therefore

⋂
n∈ZKn = {g ∈ G | ℓ(g) = 0}.

Proof. First of all we note that for every g ∈ G there exist numbers n1, . . . , nk with
g ∈ Kn1

· · ·Knk
, because the union of the Kn generates G and because every Kn is

symmetric. Thus ℓ(g) is defined for all g ∈ G.
If g ∈ Km1

· · ·Kmr
and h ∈ Kn1

· · ·Kns
, then gh ∈ Km1

· · ·Kmr
Kn1

· · ·Kns
. It follows

that ℓ satisfies the triangle inequality. Since each Kn is symmetric, we have ℓ(g) = ℓ(g−1)
for all g ∈ G. Finally, ℓ(e) = 0 since e ∈ Kn holds for every n ∈ Z. This shows that ℓ is
a length function.

Next we show the continuity of ℓ. We note that ℓ(g) ≤ 2n holds whenever g ∈ Kn.
Let g ∈ G be any element, and let ε > 0. We choose n ∈ Z in such a way that 2n ≤ ε
and we claim that |ℓ(g) − ℓ(h)| ≤ ε holds for all h ∈ gKn. Since g−1h, h−1g ∈ Kn,
we have ℓ(h) = ℓ(gg−1h) ≤ ℓ(g) + 2n and ℓ(g) = ℓ(hh−1g) ≤ ℓ(h) + 2n. Therefore
|ℓ(g)− ℓ(h)| ≤ 2n ≤ ε holds for all h ∈ gKn, and hence ℓ is continuous.

For the last claim, we note first that Kn ⊆ KnKnKn ⊆ Kn+1. Suppose now that
ℓ(g) < 2n. We have to show that g ∈ Kn. There exists k ≥ 1 and numbers n1, . . . , nk ∈ Z

with g ∈ Kn1
· · ·Knk

and with 2n1 + · · ·+ 2nk < 2n. It will suffice to prove the following
claim.

Claim. Suppose that 2n1 + · · ·+ 2nk < 2n. Then Kn1
· · ·Knk

⊆ Kn.

[Preliminary Version - December 13, 2017]
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Proof of the claim. We note that nj < n holds for j = 1, . . . , k. Hence Kn1
· · ·Knk

⊆
Kn−1 · · ·Kn−1. This proves the claim for k = 1, 2, 3. For k ≥ 4 we proceed by induction
on k. Suppose that k ≥ 4. If 2n1 + · · · + 2nk < 2n−1, then Kn1

· · ·Knk−1
⊆ Kn−1 by the

induction hypothesis, and Knk
⊆ Kn−1, whence Kn1

· · ·Knk
⊆ Kn−1Kn−1 ⊆ Kn. There

remains the case where 2n−1 ≤ 2n1+ · · ·+2nk < 2n. We choose the smallest r ∈ {1, . . . , k}
with 2n−1 ≤ 2n1 + · · ·+ 2nr . Then 2n1 + · · ·+ 2nr−1 < 2n−1 and 2nr+1 + · · ·+ 2nk < 2n−1.
By the induction hypotheses Kn1

· · ·Knr−1
⊆ Kn−1 and Knr+1

· · ·Knk
⊆ Kn−1. Thus

Kn1
· · ·Knk

⊆ Kn−1Knr
Kn−1 ⊆ Kn−1Kn−1Kn−1 ⊆ Kn. Note that this is true also for the

extremal cases r = 1 and r = k.

Proof of Theorem 1.25. It is clear that (i) ⇒ (ii) ⇒ (iii), and we have to show that (iii)
implies (i). Let (Vn)n∈N be neighborhood basis for the identity element. For n ≥ 1 we
put Kn = G. Next we choose, for every integer n ≤ 0, inductively symmetric identity
neighborhoods Kn ⊆ G with Kn ⊆ V−n, such that Kn−1Kn−1Kn−1 ⊆ Kn. This is possible
by the continuity of the 3-fold multiplication map G × G × G 7−→ G. Let ℓ denote the
continuous length function resulting from Lemma 1.26, applied to the family (Kn)n∈Z.
Since e ∈

⋂
n∈ZKn ⊆

⋂
n≥0 Vn = {e}, we have ℓ(g) = 0 if and only if g = e. Thus

d(g, h) = ℓ(g−1h) is a left invariant continuous metric on G. Let U ⊆ G be an open set
and suppose that g ∈ U . Then there exists an integer n ∈ N such that gVn ⊆ U . It follows
that the metric ball B2−n(g) = {h ∈ G | d(g, h) < 2−n} is contained in gK−n ⊆ gVn ⊆ U .
Therefore d metrizes the topology of G.

Another important consequence of Lemma 1.26 is the following. We recall that a
Hausdorff space is called a Tychonoff space, or completely regular, or a T3 1

2

-space if for
every closed set A ⊆ X and every point b ∈ X −A there is a continuous map

ϕ : X −→ [0, 1]

with ϕ(b) = 0 and ϕ(A) ⊆ {1}.

Theorem 1.27. Every Hausdorff topological group is a Tychonoff space.

Proof. Let A ⊆ G be a closed set, and let b ∈ G − A. We have to show that there
exists a continuous function ϕ : G −→ [0, 1] with ϕ(A) = {1} and ϕ(b) = 0. Since the
homeomorphism λb of G maps the identity element e to b we may assume as well that
b = e. We put Kn = G for n ≥ 1 and we choose a symmetric identity neighborhood
K0 ⊆ G − A. For n < 0 we choose inductively symmetric identity neighborhoods Kn

in such a way that Kn−1Kn−1Kn−1 ⊆ Kn. Let ℓ denote the continuous length function
resulting from the family (Kn)n∈Z by Lemma 1.26. Then ℓ(e) = 0 and if ℓ(g) < 1, then
g ∈ K0 ⊆ G − A. Thus ℓ(a) ≥ 1 for all a ∈ A. Hence ϕ = min{ℓ, 1} is the desired
continuous function.

[Preliminary Version - December 13, 2017]
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The open mapping theorem and meager sets

We recall some notions related to the Baire Category Theorem. Let X be a topological
space.

Definition 1.28. A subset N ⊆ X is called nowhere dense if its closure N has empty
interior. Equivalently, there exists a dense open set U ⊆ X which is disjoint from N . A
subset of a nowhere dense set is again nowhere dense.

A countable union of nowhere dense sets is called a meager set (a set of first category in
the older literature). It follows that subsets of meager sets are meager, and that countable
unions of meager sets are again meager. A subset M ⊆ X is meager if and only if there
exists a countable family of dense open sets (Un)n≥0 in X with M ∩⋂

n≥0Un = ∅.
A topological space X is called a Baire space if for every countable family of dense

open sets (Un)n≥0, the intersection
⋂
n≥0 Un is again dense. In particular, a Baire space is

not meager in itself. Every completely metrizable space and every locally compact space
is a Baire space by Baire’s Category Theorem.

Proposition 1.29 (The Open Mapping Theorem). Let f : G −→ K be a surjective
morphism of Hausdorff topological groups. If G is σ-compact and if K is not meager in
itself, then f is open.

Proof. From the diagram

G K

G/ ker(F )

f

p f̄

and the fact that p is open and that f̄ is a bijective map, we see that we may assume in
addition that the morphism f itself is bijective. We have then to show that its inverse
f−1 is continuous. We write G =

⋃
n∈NAn, with An compact. For every n ∈ N, the

restriction-corestriction f |An

f(An)
: An −→ f(An) is a continuous bijection and hence a

homeomorphism. Moreover, each f(An) is compact and therefore closed. Since K =⋃
n∈N f(An) is not meager in itself, there exists an index m ∈ N such that f(Am) contains

a nonempty open set V . Let U = f−1(V ). Then U ⊆ G is open, and the restriction-
corestriction f |UV : U −→ V is a homeomorphism. It follows from Lemma 1.5 that f−1 is
continuous.

A Hausdorff topological group G is compactly generated if there exists a compact set
C ⊆ G which generates the group G. A compactly generated group is in particular
σ-compact.

[Preliminary Version - December 13, 2017]
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Corollary 1.30. Suppose that f : G −→ K is a surjective morphism of Hausdorff topo-
logical groups. If G is compactly generated and if K is a Baire space (eg. locally compact
or completely metrizable), then f is open.

We continue to study meager and nonmeager sets in topological groups.

Definition 1.31. Let X be a topological space. The complement of a meager set is
called a comeager set. Note that this is not the same as a nonmeager set. Every subset of
X containing a comeager set is again comeager, and countable intersections of comeager
subsets are comeager.

Suppose that V ⊆ X is open and that A ⊆ X is any subset. We say that A is comeager
in V if A ∩ V is comeager in the subspace V . Note that we do not require that A ⊆ V .
We need the following localization result.

Lemma 1.32. Suppose that V is an open set in the topological space X.

(i) A subset M ⊆ V is meager in the subspace V if and only if M is meager.

(ii) If A is a comeager subset of X, then A is comeager in V .

Proof. For the (i) it suffices to consider the case of nowhere dense sets. Suppose that
N ⊆ V is nowhere dense in the subspace V . Thus there exists an open dense subset
W ⊆ V which is disjoint from N . Since W is dense in V , we have N ⊆ V ⊆ W . Then
W ∪ (X −W ) is dense in X and disjoint from N . Therefore N is nowhere dense in X .
Conversely, if the closure of N ⊆ V in V contains a nonempty open set U ⊆ V , then also
U ⊆ N . Claim (i) follows now by passing to countable unions. Claim (ii) is a special case
of (i). If M = X −A is meager, then M ∩ V = V −A is meager in the subspace V by (i),
hence A is comeager in V .

Lemma 1.33. Suppose that (Xi)i∈I is a family of topological spaces. Let X =
∐

i∈I Xi

denote their coproduct (disjoint union) in the category of topological spaces. Then a subset
M ⊆ X is meager if and only if M ∩Xi is meager in Xi for every i ∈ I.

Proof. If M ⊆ X is meager, then M ∩ Xi is meager in Xi for every i by Lemma 1.32.
Conversely, suppose that N ⊆ X and that N ∩Xi is nowhere dense in Xi for every i ∈ I.
We claim that N is nowhere dense in X . Let Wi ⊆ Xi be a dense open set which is
disjoint from N ∩ Xi. Then W =

⋃
i∈IWi is open and disjoint from N and dense in X

Therefore N ⊆ X is nowhere dense. Hence if Mi = M ∩ Xi is meager for every i ∈ I,
then we write Mi =

⋃
n≥0Nn,i as a countable union of nowhere dense sets in Xi. Then

Nn =
⋃
i∈I Nn,i is nowhere dense and thus M =

⋃
n≥0Nn is meager.

[Preliminary Version - December 13, 2017]
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Definition 1.34. For a subset A of a topological space X we put

O(A) =
⋃

{U ⊆ X | U is open and A is comeager in U}.

Clearly, O(A) is open and possibly empty. The next result is Banach’s Category Theorem.
It says that O(A) is the unique maximal open set in which A is comeager.

Theorem 1.35. If O(A) 6= ∅, then A is comeager in O(A).

Proof. We consider sets C of open subsets of X with the following property: the members
of C are nonempty, pairwise disjoint, and A is comeager in every member of C. If A
is comeager in the open set U , then C = {U} is an example of such a set. The set P
consisting of all such sets C is nonempty and partially ordered by inclusion. Every linearly
ordered subset L of P has

⋃
L ∈ P as an upper bound. Thus (P,⊆) is inductive and

has, by Zorn’s Lemma, maximal elements. Let C be such a maximal element. We put
W =

⋃
C and we note that W ⊆ O(A).

Claim. The set C = O(A)−W is nowhere dense.

We show that the closed set B = O(A) − W has empty interior. For otherwise there
would exist a nonempty open set V ⊆ B. Then V ∩W = ∅, and there would exist an
element u ∈ O(A)∩V . Hence there would exist an open set U containing u in which A is
comeager. But then A would be comeager in V ∩ U ⊆ N by Lemma 1.32(ii), and hence
C ∪ {U ∩ V } ∈ P would be a bigger collection than C, contradicting the maximality of C.
Hence B = O(A)−W has nonempty interior, and thus C = O(A)−W is nowhere dense.

Claim. A is comeager in W .

The open subspace W is homeomorphic to the coproduct
∐
{U | U ∈ C} of the subspaces

U ∈ C. Let M = W −A. For every U ∈ C, the set U ∩M is meager in U by the definition
of C. Hence M is meager in W by Lemma 1.33.

Now we finish the proof. We have O(A) = M ∪̇W , for a set M which is meager in
X and hence meager in O(A) by Lemma 1.32(i). Now O(A)−A = (M −A) ∪̇ (W −A).
Since W − A is meager in W , this set is also meager in O(A) by Lemma 1.32(ii). Thus
O(A)− A is a union of two sets which are meager in O(A) and therefore A is comeager
in O(A).

In the topological group Q every subset, including the empty set, is comeager. The
following dichotomy will be used below.

Lemma 1.36. Let G be a topological group. Then either O(∅) = G and G is meager or
O(∅) = ∅.

Proof. The set O(∅) is invariant under all the left translation maps λa and hence either
empty or all of G. If G = O(∅), then G is meager by Theorem 1.35.

[Preliminary Version - December 13, 2017]
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We recall that a subset A of a topological space is called Baire measurable or almost
open if there exists an open set V such that the symmetric differenceM = (A∪V )−(A∩V )
is meager. We will see in Proposition 1.40 below that these sets form a σ-algebra and
that every Borel set is Baire measurable.

Lemma 1.37. If A ⊆ X is Baire measurable and not meager, then O(A) is not meager
and in particular nonempty.

Proof. Let V ⊆ X be open such that M = (V ∪A)− (V ∩A) is meager. Since A itself is
not meager and since A ⊆ V ∪M , the set V is not meager.

The following result is known as Pettis’ Lemma.

Theorem 1.38. Let G be a topological group. Suppose that A,B ⊆ G are nonmeager
subsets. Then O(A)O(B) ⊆ AB. If A is Baire measurable and nonmeager, then A−1A is
an identity neighborhood.

Proof. Suppose that g ∈ O(A)O(B). Then O(A) and O(B) are nonempty, and O(A) ∩
gO(B)−1 6= ∅. Now gO(B)−1 = gO(B−1) = O(gB−1), since λg and the inversion map
are homeomorphisms. Hence W = O(A) ∩ O(gB−1) 6= ∅. By Lemma 1.32(i) and The-
orem 1.35, both A and gB−1 are comeager in W . Hence A ∩ gB−1 is comeager in the
nonempty open set W . By Lemma 1.36 the empty set is not comeager in W , because G,
containing the nonmeager sets A,B, is not meager. Hence A ∩ gB−1 6= ∅ and therefore
g ∈ AB. If A is Baire measurable and not meager, then O(A) 6= ∅ by Lemma 1.37.
Thus O(A)−1O(A) is an open identity neighborhood. But O(A)−1 = O(A−1), and
O(A−1)O(A) ⊆ A−1A.

Corollary 1.39. Suppose that G is a topological group and that H ⊆ G is a subgroup. If
H contains a Baire measurable set which is not meager, then H is open.

The following is a useful property of Baire measurable sets.

Proposition 1.40. The Baire measurable sets in a topological space X form a σ-algebra
which contains all open sets. Hence every Borel set in X is Baire measurable.

Proof. Every open set is Baire measurable. In particular, the empty set is among the
Baire measurable sets. Suppose that A ⊆ X is Baire measurable. We claim that the
complement B = X − A is also Baire measurable. Let U ⊆ X be open such that
(U ∪ A)− (U ∩A) is meager and put V = X − U . We note that M = U − U is nowhere
dense. The symmetric difference of two sets is not changed if we replace both sets by
their complements. Hence

(V ∪ B)− (V ∩ B) = (U ∪A)− (U ∩A) ⊆ ((U ∪A)− (U ∩ A)) ∪M

[Preliminary Version - December 13, 2017]
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is meager, and therefore B is Baire measurable. Suppose that (An)n≥0 is a family of
Baire measurable sets. For every An there is an an open set Un such that the symmetric
difference Mn = (An ∪ Un)− (An ∩ Un) is meager. We put A =

⋃
n≥0An, M =

⋃
n≥0Mn

and U =
⋃
n≥0 Un. Then An − U ⊆ An − Un ⊆ Mn, whence A − U ⊆ M . Likewise,

U −A ⊆M , and therefore

(A ∪ U)− (A ∩ U) = (A− U) ∪ (U − A) ⊆M

is meager. This shows that the Baire measurable sets form a σ-algebra. Since every open
set is Baire measurable, every Borel set is Baire measurable.

We recall that a topological space is called Lindelöf if every open covering has a
countable subcovering. Examples of Lindelöf spaces are second countable spaces and
σ-compact spaces.

Theorem 1.41. Let G, K be topological groups and let f : G −→ K be a group homo-
morphism. Assume also that K is Lindelöf and that G is not meager in itself. If for every
open subset U ⊆ K the preimage f−1(U) is Baire measurable, then f is continuous.

Proof. A closed subset of a Lindelöf space is again Lindelöf. Replacing K by f(G),
we may thus assume in addition that f(G) is dense in K. Let V ⊆ K be an identity
neighborhood. We claim that f−1(V ) contains an identity neighborhood. We choose an
identity neighborhood U ⊆ K such that U−1U ⊆ V . By assumption, E = f−1(U) is Baire
measurable. Since K is Lindelöf and f(G) is dense, we find elements gn ∈ G such that
K =

⋃
n≥0 f(gn)U . Hence G =

⋃
n≥0 gnE. Since G is not meager, E cannot be meager.

Hence E−1E is an identity neighborhood by Theorem 1.38, and f(E−1E) ⊆ V . It follows
that f is continuous at the identity element of G. By Lemma 1.5, the map f is continuous
and hence a morphism of topological groups.

We recall that a map between topological spaces is called Borel measurable if the
preimage of every open set is a Borel set.

Corollary 1.42. Suppose that the topological group G is either locally compact or com-
pletely metrizable and that the topological group K is either σ-compact or second count-
able. Then a group homomorphism f : G −→ K is continuous if and only if f is Borel
measurable.

Finite dimensional topological vector spaces over local fields

An absolute value on a field F is a nonzero map | − | : F −→ R≥0 with |0| = 0 which
satisfies the triangle inequality and which is multiplicative,

|a+ b| ≤ |a|+ |b| and |ab| = |a||b|,

[Preliminary Version - December 13, 2017]
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for all a, b ∈ F . It follows that |a| > 0 for all a ∈ F×. Such an absolute value determines
a metric and a topology on F . If |a| = 1 holds for all a ∈ F×, then the absolute value is
called trivial. The field F is called a local field if this topology is locally compact and if
| − | is nontrivial. Examples of local fields are the real field R and the complex field C

with their usual absolute values, but also the p-adic fields Qp with |a| = p−νp(a), where νp
is the p-adic valuation.

Lemma 1.43. Suppose that K is a local field. For every r > 0, the set

BK
r (0) = {a ∈ K | |a| ≤ r}

is compact. In particular, K is σ-compact.

Proof. Let C ⊆ K be a compact 0-neighborhood. There exists ε > 0 such that BK
ε (0) ⊆ C,

and thus BK
ε (0) is also compact. We choose a ∈ BK

ε (0) in such a way that |a| < 1/r. This
is possible because | − | is nontrivial. Then 1

a
BK
ε (0) = BK

ε/|a|(0) is compact, and hence

BK
r (0) ⊆ BK

ε/|a|(0) is also compact.

Let K be a local field. A topological vector space over K is a vector space E over K

which is a Hausdorff topological group, such that the scalar multiplication map

K× E −→ E, (t, u) 7−→ tu

is continuous. A morphism of topological vector spaces over K is a continuous K-linear
map.

Theorem 1.44. Let E be a topological vector space over a local field K. Then the following
are equivalent.

(i) E has finite dimension.

(ii) E is as a topological vector space isomorphic to Km, for some m ≥ 0.

(iii) E is locally compact.

Proof. Suppose that (i) holds and that v1, . . . , vm is a basis for E. The map f : Km −→ E
that maps (z1, . . . , zm) to z1v1 + · · ·+ zmvm is a bijective morphism of topological vector
spaces. We claim that the inverse of f is continuous at 0. We endow Km with the box
norm

(z1, . . . , zm) = max{|z1|, . . . , |zm|}
and we put Vε = {u ∈ Km | u < ε}, for ε > 0. For δ > 0 we put Lδ = {z ∈ K | |z| < δ}.
We have to show that for every ε > 0, there is an open 0-neighborhood W ⊆ E with

[Preliminary Version - December 13, 2017]
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W ⊆ f(Vε). Passing to a smaller bound ε > 0 if necessary, we may assume that ε < 1 and
that there exists a ∈ K with |a| = ε. Let Sε = {u ∈ Km | u = ε}. Then Sε is compact
and therefore f(Sε) is closed in E. There exists δ > 0 and an open 0-neighborhood V ⊆ E
such that the image W of Lδ×V under the multiplication map K×E −→ E is contained
in E − f(Sε). Since

W =
⋃

{zV | 0 < |z| < δ},
the set W is open. Moreover, we have sw ∈ W for every w ∈ W and every s ∈ L1.
Suppose that u ∈ Km is a vector with r = u > ε. Then there exists b ∈ K with
|b| = εr−1. Then bu ∈ Sε and |b| < 1. It follows that f(u) 6∈ W . This shows that
W ⊆ f(Vε). By Lemma 1.5, the inverse of f is a morphism.

It is clear that (ii) implies (iii).
Now we show that (iii) implies (i). Suppose that E is locally compact. We showed

already that (i) implies (ii), hence every finite dimensional subspace F ⊆ E is locally
compact. By Corollary 1.14, such a finite dimensional subspace is closed. Let W ⊆ E be
a compact 0-neighborhood, and let a ∈ K be an element with 0 < |a| < 1. There is a
finite set A ⊆ E such that W ⊆ A + aW . Let F denote the linear span of A. We claim
that W ⊆ F . We have W ⊆ F +aW . Iterating this inclusion, we see that W ⊆ F +amW
holds for all m ≥ 1. Suppose that w ∈ W −F . Since F is closed, there exists a symmetric
open 0-neighborhood U ⊆ E such that (w+U)∩F = ∅, whence w 6∈ F +U . On the other
hand, Wallace’s Lemma 1.16, applied to the compact set {0} ×W ⊆ K× E, shows that
there exists δ > 0 such that zW ⊆ U holds for all z ∈ Lδ. But for m sufficiently large,
|am| = |a|m < δ. Hence amW ⊆ U and thus w ∈ F + amW ⊆ F + U , a contradiction.
Hence W ⊆ F . It remains to show that E = F . For every u ∈ E there exists a δ > 0
such that zu ∈ W holds for all z ∈ Lδ. Therefore W spans E, and hence F = E.
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2 | Locally compact groups and the
Haar integral

We call a topological group G a locally compact group (a compact group) if the topology
on G is Hausdorff and locally compact (compact).

General properties of locally compact groups

Proposition 2.1. Let G be a locally compact group. Then a subgroup H ⊆ G is closed
if and only if it is locally compact. If H ⊆ G is a closed subgroup, then G/H is locally
compact.

Proof. A closed subspace of a locally compact space is again locally compact. Conversely,
a locally compact subgroup of a Hausdorff topological group is closed by Corollary 1.14.
For the last claim, suppose that H ⊆ G is a closed subgroup, and that g ∈ G is any
element. We have to show that gH has a compact neighborhood inG/H . Let V ⊆ G be an
open identity neighborhood with compact closure. Then p(V g) is an open neighborhood
of g because p : G −→ G/H is open, and thus p(V g) is a compact neighborhood of
gH .

It is straightforward to see that a closed subgroup of a compact group is open if and
only if it has finite index. The following is somewhat more general

Lemma 2.2. Let G be a locally compact group, and suppose that H ⊆ G is a closed
subgroup of countable index. Then H is open.

Proof. Let (gn)n≥0 be a countable set of elements with G =
⋃
n≥0 gnH . Since G is a

Baire space and since the cosets gnH are closed, there is an index m such that gmH has
nonempty interior. But then H = λg−1

m
gmH has nonempty interior and hence is open by

Proposition 1.12.

Lemma 2.3. Let G be a locally compact group. Then G has a σ-compact open subgroup.
In particular, every connected locally compact group is σ-compact.
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Proof. Let C ⊆ G be a compact symmetric identity neighborhood. Then H = 〈C〉 =
C∪CC∪CCC∪· · · is σ-compact. Since C contains a nonempty open set, H is open.

Proposition 2.4. Let G be a locally compact σ-compact group and let (Vn)n∈N be a count-
able family of identity neighborhoods. Then there exists a compact normal subgroup N✂G
with N ⊆

⋂
n∈N Vn such that G/N is metrizable.

Proof. The proof uses Lemma 1.26. Since G is σ-compact, there exists a family of compact
sets (An)n∈N of G with G =

⋃
n∈NAn. We put Ln = A0 ∪ · · · ∪ An, for n ≥ 0. We

also put Kn = G for n ≥ 1. For the integers n ≤ 0, we choose recursively symmetric
identity neighborhoods Kn as follows. Given Kn+1, we choose an identity neighborhood
W such that γa(b) = aba−1 ∈ Kn+1 holds for all (a, b) ∈ L−n ×W . The existence of W is
guaranteed by Wallace’s Lemma 1.16, since L−n is compact and γa(e) = e. We then choose
a compact symmetric identity neighborhood Kn ⊆W ∩ V−n such that KnKnKn ⊆ Kn+1.
Let ℓ denote the corresponding continuous length function on G, as given by Lemma 1.26.
Then N =

⋂
n∈NKn = {g ∈ G | ℓ(g) = 0} is a compact subgroup of G. We claim that

N is a normal subgroup. For a ∈ Lm we have a ∈ Lm+s for all s ≥ 0. If g ∈ N , then
likewise g ∈ K−m−s holds for all s ≥ 0. Thus γa(g) ∈ K−m−s+1 holds for all s ≥ 0. Since
Kn ⊆ Kn+1 holds for all n ∈ Z, this implies that γa(g) ∈ N , and therefore N is normal
in G.

Since ℓ(g) = ℓ(h) holds whenever g−1h ∈ N , we obtain a well-defined length function
ℓ̄ on G/N , via ℓ̄(gN) = ℓ(g). Because p : G −→ G/N is a quotient map, ℓ̄ is continuous.
Also, ℓ̄(gN) = 0 holds if and only if g ∈ N . Therefore d̄(gN, hN) = ℓ(g−1h) is a continuous
left invariant metric on G/N . It remains to show that d̄ determines the topology on G/N .
Suppose that W ⊆ G/N is an open identity neighborhood. We claim that there exists
an integer m ≤ 0 with p(Km) ⊆ W . Let U = p−1(W ). Then U is an open identity
neighborhood, and N ⊆ U . If there exists no m ≤ 0 with Km ⊆ U , then (Kn − U)n≤0 is
a nested family of nonempty compact sets. But then

⋂
(Kn − U) = N − U is nonempty,

a contradiction. Therefore there exists an integer m with p(Km) ⊆ W . Hence if g ∈ G
is any element, then {hN ∈ G/N | d̄(hN, gN) < 2m} ⊆ p(g)W . This shows that the left
invariant metric d̄ determines the topology on G/N

Definition 2.5. A Hausdorff topological group G has no small subgroups if there exists
an identity neighborhood U ⊆ G such that the only subgroup of G that is contained in
U is the trivial group {e}. If G has not small subgroups, and if K −→ G is an injective
morphism of topological groups, then K also has no small subgroups.

Note that in the previous definition it does nor make a difference if we require only
that some identity neighborhood does not contain a nontrivial closed subgroup, because
G is regular.
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Corollary 2.6. Suppose that the locally compact group G has no small subgroups. Then
G has an open metrizable subgroup.

Proof. Let U ⊆ G be an identity neighborhood which contains no nontrivial subgroup
of G. By Lemma 2.3, the group G has an open σ-compact subgroup H . Now we apply
Proposition 2.4 to H and the constant family Un = U ∩H , for n ∈ N. It follows that the
compact normal subgroup N ✂H is trivial, and hence that H is metrizable.

We now study the existence of small subgroups in the totally disconnected case.

Lemma 2.7. Let G be a locally compact group und suppose that V is a compact open
neighborhood of the identity. Then V contains an open subgroup H ⊆ G.

Proof. By Wallace’s Lemma 1.16, applied to the compact set V × {e} ⊆ V × V , there
exists an open symmetric identity neighborhood U ⊆ V such that V U ⊆ V . In particular,
UU ⊆ V . By induction we conclude that for every k ≥ 1 the k-fold product U · · ·U is
contained in V . Hence the open subgroup H = U∪UU∪UUU ∪· · · is contained in V .

In order to put this result to work, we need two results about totally disconnected
locally compact spaces.

Lemma 2.8. Suppose that X is a compact space, and that x ∈ X. Then the set

Q(x) =
⋂

{D ⊆ X | D contains x and D is closed and open}

is connected.

In a general topological space, the set Q(x) as defined above is called the quasi-
component of x.

Proof. Clearly Q(x) is closed and contains x. Suppose that Q(x) = A ∪ B, with x ∈ A
and A,B closed and disjoint. We have to show that B = ∅. Since X , being compact,
is normal, there exist disjoint open sets U, V ⊆ X with A ⊆ U and B ⊆ V . We put
C = X − (U ∪ V ) and we note that C and Q(x) are disjoint. For every c ∈ C we can
therefore choose an an open and closed set Wc containing x, but not containing c. The
open sets X −Wc cover C. Since C is compact, there exists c1, . . . , cm ∈ C such that
C ⊆ (X−Wc1)∪ · · ·∪ (X−Wcm). Hence C is disjoint from the set W =Wc1 ∩ · · ·∩Wcm.
Also, W is closed and open, and therefore Q(x) ⊆ W . Since W is disjoint from C, we
have W ⊆ U ∪ V . Now Y = U ∪ (X −W ) is open and Z = V ∩W is open and contains
B. Since X = Y ∪ Z and Y ∩ Z = ∅, the set Y is closed and open and thus Q(x) ⊆ Y .
It follows that B = ∅.
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Lemma 2.9. Suppose that X is a locally compact totally disconnected space, and that
x ∈ X. Then x has arbitrarily small compact open neighborhoods.

Proof. Let V be a neighborhood of x. We have to show that V contains a compact open
neighborhood of x. Passing to a smaller neighborhood if necessary, we may assume in
addition that V is open and that V is compact. We put A = V − V and we note that
we are done if A = ∅, with U = V . If A 6= ∅, we make use of Lemma 2.8. Since X is
totally disconnected, we have Q(x) = {x}. Hence for each a ∈ A, there exists a compact
neighborhood Ua ⊆ V of x which does not contain a, and which is open in V . Then⋂
{Ua | a ∈ A} ∩ A = ∅. Hence there exist finitely many points a1, . . . , am such that

U = Ua1 ∩ · · ·∩Uam is disjoint from A. Then U is closed and open in V , and U ⊆ V . But
then U is also open in X .

The next result is van Dantzig’s Theorem.

Theorem 2.10. Let G be a locally compact group. Then the following are equivalent.

(i) G is totally disconnected.

(ii) Every identity neighborhood in G contains an open subgroup.

Proof. Suppose that (i) holds and that U ⊆ G is an identity neighborhood. By Lemma 2.9,
there exists a compact open identity neighborhood V ⊆ U and by Lemma 2.7, there
exists an open subgroup H ⊆ V . Hence (ii) follows. Suppose that (ii) holds and that
g ∈ G− {e}. There exists an open subgroup H ⊆ G− {g}, and thus is no connected set
C ⊆ G containing e and g. Hence (i) follows.

Corollary 2.11. If a locally compact totally disconnected group G has no small subgroups,
then G is discrete.

For compact groups we obtain a stronger form of van Dantzig’s Theorem.

Theorem 2.12. Let G be a compact group. Then the following are equivalent.

(i) G is totally disconnected.

(ii) Every identity neighborhood contains a normal open subgroup.

Proof. Suppose that (i) holds and that U is an identity neighborhood. By Theorem 2.10,
there exist an open subgroup H ⊆ G which is contained in U . Since G =

⋃
G/H is

compact, G/H is finite. Let N denote the kernel of the action of G on G/H . Then N
has finite index in G, and N =

⋂
{γa(H) | a ∈ G} is closed. Since G/N is finite, G/N is

discrete and therefore N is open. Claim (ii) follows, since N ⊆ H ⊆ U . If (ii) holds, then
G is totally disconnected by Theorem 2.10.
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Remarks on profinite groups

A compact group satisfying condition (ii) in Theorem 2.12 is commonly called a profinite
group. Let (Fi)i∈I be a family of finite groups. If we endow each group Fi with the discrete
topology, then the Fi are compact and the product

G =
∏

i∈I

Fi

is a totally disconnected compact group. The fact that the topology is totally disconnected
follows from the next lemma.

Lemma 2.13. A product of totally disconnected spaces is again totally disconnected.

Proof. Let X =
∏

i∈I Xi be a product of totally disconnected spaces Xi. Suppose that
C ⊆ X is a nonempty connected set. Since the Xi are totally disconnected, pri(C) ⊆ Xi

is for every i ∈ I a singleton. But then C itself is a singleton.

The next result is a very weak version of the Peter–Weyl Theorem.

Lemma 2.14. Let G be a profinite group and suppose that g ∈ G is not the iden-
tity element. Then there exist an integer n ≥ 1 and a morphism of topological groups
ρ : G −→ GLn(C) with ρ(g) 6= 1.

Proof. By Theorem 2.12 there exists a normal open subgroup N ⊆ G− {g}. Then F =
G/N is a finite group and gN 6= N . Let f : F −→ GLn(C) be a faithful representation
of F . Such a representation exists, for example via the embedding of F in the complex
group ring C[F ], see Definition 2.18 below. Then the composite

ρ = f ◦ p : G −→ G/N −→ GLn(C)

is a morphism with ρ(g) 6= 1.

Proposition 2.15. Let G be a profinite group. Then there exists a family of finite groups
(Fi)i∈I and a closed injective morphism f : G −→

∏
i∈I Fi. Hence G is isomorphic as a

topological group to a closed subgroup of a product of finite groups.

Proof. Let I denote the set of all open normal subgroups of G. For every N ∈ I we put
FN = G/N , and we put fN(g) = gN . Then each FN is a finite group and the fN fit
together to a morphism f : G −→

∏
N∈I FN . Since the open normal subgroups form a

neighborhood base of the identity in G by Theorem 2.12, the morphism f is injective.
Since G is compact, f is closed.

A first major goal is to prove that a suitable version of Lemma 2.14 holds for all
compact groups. This requires the Haar integral.
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The Haar integral

Suppose that X is a Hausdorff space. The support of a continuous map ϕ : X −→ R is
the closed set

supp(ϕ) = ϕ−1(R− {0}).
We say that ϕ has compact support if supp(ϕ) is compact. The real valued continuous
functions with compact support form a real vector space which we denote by Cc(X). For
ϕ, ψ ∈ Cc(X) we write ϕ ≤ ψ if ϕ(x) ≤ ψ(x) holds for all x ∈ X . The nonnegative
functions in Cc(X) form a positive cone which we denote by

C+
c (X) = {ϕ ∈ Cc(X) | 0 ≤ ϕ}.

We note Cc(X) is a normed vector space with respect to the sup norm

ϕ ∞ = sup{|ϕ(x)| | x ∈ X}.

Lemma 2.16. Suppose that X is a locally compact space and that C ⊆ X is compact.
Then there exists a continuous map ϕ : X −→ [0, 1] with compact support, and with
ϕ(C) ⊆ {1}.

Proof. For every c ∈ C we choose an open neighborhood Uc of c with compact closure.
Since C is compact, there are c1, . . . , cm ∈ C with C ⊆ Uc1 ∪ · · · ∪ Ucm = U . Then U
has compact closure U . Since U is normal, there exists a continuous map ϕ : U −→ [0, 1]
with ϕ(C) ⊆ {1} and ϕ(U − U) ⊆ {0}. If we extend ϕ to all of X by putting ϕ(x) = 0
for x ∈ X − U , then ϕ is continuous and has the desired properties.

We need also the fact that a continuous function with compact support on a locally
compact group is uniformly continuous.

Lemma 2.17. Let G be a locally compact group, and suppose that ϕ ∈ Cc(G). For every
ε > 0 there is a symmetric identity neighborhood V such that |ϕ(g)− ϕ(h)| < ε holds for
all g, h ∈ G with g−1h ∈ V .

Proof. We choose for every a ∈ G an identity neighborhoodWa such that |ϕ(a)−ϕ(g)| < ε
2

holds for all g ∈ aWa, and then an identity neighborhood Ua such that UaUa ⊆Wa. Since
C = supp(ϕ) is compact, there exist a1, . . . , am ∈ G such that C ⊆ a1Ua1 ∪ · · · ∪ amUam .
We choose a symmetric identity neighborhood V such that V −1V ⊆ Ua1 ∩ · · · ∩ Uam and
we claim that V has the desired property. Suppose that h ∈ gV . If gV ∩akUak = ∅ holds
for all k = 1, . . . , m, then ϕ(g) = ϕ(h) = 0. On the other hand, if gV ∩ akUak 6= ∅, then
g ∈ akUakV

−1 and therefore gV ⊆ akUakV
−1V ⊆ akUakUak ⊆ akWak . Hence if h ∈ gV ,

then |ϕ(ak)− ϕ(h)| < ε
2
, and therefore |ϕ(g)− ϕ(h)| < ε.
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At this stage it is convenient to introduce the group ring.

Definition 2.18. Let G be a group (without any topology) and let R be a commutative
ring. The group ring R[G] is the free R-module with basis G. The elements of R[G] are
thus formal linear combinations

∑
g∈G cgg with coefficients cg ∈ R, where only finitely

many coefficients cg are nonzero. The group multiplication extends to a bilinear multipli-
cation R[G]×R[G] −→ R[G] which turns R[G] into an associative R-algebra. Explicitly,
the multiplication is given by

(∑

x∈G

axx

)(∑

y∈G

byy

)
=

∑

x∈G

∑

y∈G

ayby−1xx.

Whenever G acts linearly on an R-module M , this action extends to R[G] and turns M
into an R[G]-module. The map

ǫ :
∑

g∈G

cgg 7−→
∑

g∈G

cg

is called the augmentation map. This map is an algebra homomorphism ǫ : R[G] −→ R.

Observation 2.19. Suppose that G is a locally compact group. Then G acts from the
left on the vector space Cc(G) via

(aϕ)(x) = ϕ(a−1x) = (ϕ ◦ λa−1)(x).

Indeed, we have

b(aϕ) = b(ϕ ◦ λa−1) = ϕ ◦ λa−1 ◦ λb−1 = ϕ ◦ λ(ba)−1 = (ba)ϕ

for all a, b ∈ G. For an element a =
∑

g∈G agg in the real group ring R[G] and ϕ ∈ Cc(G)
we have thus

aϕ =
∑

g∈G

agϕ ◦ λg−1.

We note that the sum on the right-hand side is finite.

Definition 2.20. We call a linear functional

I : Cc(G) −→ R

an invariant integral or Haar integral if the following hold.

(i) If ϕ ∈ C+
c (G), then I(ϕ) ≥ 0.
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(ii) If g ∈ G and if ϕ ∈ Cc(G) , then I(gϕ) = I(ϕ).

(iii) There exists a function ϕ ∈ C+
c (G) with I(ϕ) > 0.

Axiom (i) implies that I(ϕ) ≤ I(ψ) if ϕ ≤ ψ. We note that if I is an invariant integral
and if s > 0, then sI is again an invariant integral.

Example 2.21. Let G be any group, endowed with the discrete topology. Then G is
locally compact and the compact subsets are the finite subsets of G. Then Cc(G) can be
identified with the real group ring R[G] as follows. An element a =

∑
g∈G agg is viewed

as the map g 7−→ ag. In this case I(a) = ǫ(a) is an invariant integral.

Our next aim is to prove the existence of an invariant integral on every locally compact
group. We define R[G]+ to be the set of all elements

∑
g∈G cgg in the real group ring R[G]

whose coefficients cg are nonnegative. We note that R[G]+ is closed under multiplication,
addition, and multiplication by nonnegative reals. If a ∈ R[G]+ and if ϕ ∈ C+

c (G), then
aϕ ∈ C+

c (G).

Lemma 2.22. Suppose that G is a locally compact group and that ϕ, α ∈ C+
c (G). If

α 6= 0, then there exists an element a ∈ R[G]+ with ϕ ≤ aα.

Proof. We put t = α ∞, s = ϕ ∞ and U = {x ∈ G | α(x) > t
2
}. Then U is a

nonempty open set. Since C = supp(ϕ) is compact, there exist elements g1, . . . , gm ∈ G
with C ⊆ g1U ∪ · · · ∪ gmU . For x ∈ gkU we have gkα(x) = α(g−1

k x) > t
2
. Thus

a = 2s
t
(g1 + · · ·+ gn) has the desired property.

Let G be a locally compact group. For functions ϕ, α ∈ C+
c (G) with α 6= 0 we define

their ratio as
(ϕ : α) = inf{ǫ(a) | a ∈ R[G]+ and ϕ ≤ aα}.

By Lemma 2.22, this number is finite and nonnegative.

Lemma 2.23. Suppose that G is a locally compact group and that ϕ, ψ, α, β ∈ C+
c (G),

with α, β 6= 0. Then we have the following.

(i) (gϕ : α) = (ϕ : α) = (ϕ : gα) for all group elements g ∈ G.

(ii) (sϕ : α) = s(ϕ : α) for all real numbers s ≥ 0.

(iii) If ϕ ≤ ψ, then (ϕ : α) ≤ (ψ : α).

(iv) (ϕ+ ψ : α) ≤ (ϕ : α) + (ψ : α).

(v) (ϕ : β) ≤ (ϕ : α)(α : β).
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(vi) ϕ ∞ ≤ (ϕ : α) α ∞.

Proof. In what follows, a and b are elements in R[G]+. Claims (i) and (ii) follow directly
form the definition, since for g ∈ G, the relation ϕ ≤ aα holds if and only if gϕ ≤ gaα.
Likewise, for s > 0 the relation sϕ ≤ aα holds for s > 0 if and only ϕ ≤ 1

s
aα, and

(0 : α) = 0 holds in any case. For claim (iii), suppose that ψ ≤ aα. Then ϕ ≤ ψ ≤ aα.
For claim (iv), suppose that ϕ ≤ aα and that ψ ≤ bα. Then ϕ+ψ ≤ aα+ bα = (a+ b)α.
For claim (v), suppose that we have a, b ∈ R[G]+ with ϕ ≤ aα and α ≤ bβ. Then ϕ ≤ abβ
and thus (ϕ : β) ≤ ǫ(ab) = ǫ(a)ǫ(b). For claim (vi), suppose that a ∈ R[G] with ϕ ≤ aα.
Then ϕ(x) ≤ (aα)(x) ≤ ǫ(a) α ∞ holds for all x ∈ G.

Lemma 2.24. Let G be a locally compact group. Given functions ϕ, ψ ∈ C+
c (G), there

exists a function η ∈ Cc(G) with the following property. For every ε > 0 there exists a
symmetric identity neighborhood V ⊆ G such that

(ϕ : α) + (ψ : α) ≤ (1 + ε)(ϕ+ ψ : α) + ε(1 + ε)(η : α)

holds for all α ∈ C+
c (G) with α 6= 0 and supp(α) ⊆ V .

Proof. By Lemma 2.16 there exists a continuous function η : G −→ [0, 1] with compact
support, such that η(x) = 1 for all x ∈ supp(ϕ) ∪ supp(ψ). We put

ξ(x) = ϕ(x) + ψ(x) + εη(x)

and we define functions ϕ̂, ψ̂ ∈ C+
c (G) as follows. On the closed set {x ∈ G | ϕ(x) = 0}

we put ϕ̂(x) = 0. On the closed set supp(ϕ) we put ϕ̂(x) = ϕ(x)
ξ(x)

. This is possible since

the zero-set of ξ is a closed set which is disjoint from supp(ϕ) ∪ supp(ψ). The function

ψ̂ is defined similarly as ψ̂(x) = ψ(x)
ξ(x)

on supp(ψ), and ψ̂(x) = 0 elsewhere. We note that

ϕ̂ + ψ̂ ≤ 1. We choose δ > 0 so that 6 ξ ∞δ ≤ ε3 and 2δ < ε2. By Lemma 2.17 there is
a symmetric identity neighborhood V such that

|ϕ(x)− ϕ(y)|, |ψ(x)− ψ(y)| < δ

holds whenever x−1y ∈ V . It follows for such x, y ∈ supp(ϕ) that

|ϕ̂(x)− ϕ̂(y)| =
∣∣∣∣
ϕ(x)ξ(y)− ϕ(y)ξ(x)

ξ(x)ξ(y)

∣∣∣∣ ≤
1

ε2
|ϕ(x)ξ(y)− ϕ(y)ξ(x)|

≤ 1

ε2
|ϕ(x)ξ(y)− ϕ(x)ξ(x)|+ 1

ε2
|ϕ(x)ξ(x)− ϕ(y)ξ(x)|

≤ 2δ

ε2
ϕ ∞ +

δ

ε2
ξ ∞ ≤ 3δ

ε2
ξ ∞ ≤ ε

2
.
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If x−1y ∈ V and if ϕ̂(x) = 0 6= ϕ̂(y), then also |ϕ̂(x)− ϕ̂(y)| = |ϕ(y)|
|ξ(y)|

≤ δ
ε
≤ ε

2
.

We claim that V has the desired properties. Let α ∈ C+
c (G) be a nonzero function

with supp(α) ⊆ V and suppose that a ∈ R[G]+ with

ξ ≤ aα.

Then ϕ = ξϕ̂ ≤ (aα)ϕ̂. If α(g−1x) 6= 0, then g−1x ∈ V and therefore ϕ̂(x) ≤ ϕ̂(g) + ε
2
.

Hence if a =
∑

g∈G agg, then

ϕ(x) ≤
∑

g∈G

agα(g
−1x)ϕ̂(x) ≤

∑

g∈G

ag
(
ϕ̂(g) + ε

2

)
α(g−1x).

and hence (ϕ : α) ≤
∑

g∈G ag(ϕ̂(g) +
ε
2
). Similarly, (ψ : α) ≤

∑
g∈G ag(ψ̂(g) +

ε
2
) and

therefore

(ϕ : α) + (ψ : α) ≤
∑

g∈G

ag(ϕ̂(g) + ψ̂(g) + ε) ≤
∑

g∈G

ag(1 + ε) = ǫ(a)(1 + ε).

Thus

(ϕ : α) + (ψ : α) ≤ (ϕ+ ψ + εη : α)(1 + ε) ≤ (ϕ+ ψ : α)(1 + ε) + ε(1 + ε)(η : α)

as claimed.

Construction 2.25. We now fix a nonzero function ϕ0 ∈ C+
c (G) and study the quantity

I(ϕ, α) =
(ϕ : α)

(ϕ0 : α)
,

for ϕ, α ∈ C+
c (G) with α 6= 0 6= ϕ. Note that (ϕ0 : α) > 0 by Lemma 2.23(vi). From the

definition of I(ϕ, α) and Lemma 2.23 we conclude that

I(ϕ, α) ≤ (ϕ : ϕ0),
1

(ϕ0:ϕ)
≤ I(ϕ, α),

I(gϕ, α) = I(ϕ, α),

I(sϕ, α) = sI(ϕ, α),

I(ϕ+ ψ, α) ≤ I(ϕ, α) + I(ψ, α),

for all g ∈ G, ψ ∈ C+
c (G)−{0} and all s ≥ 0. We note also that for all ϕ, ψ ∈ C+

c (G)−{0}
there exists by Lemma 2.24 function η ∈ C+

c (G) such for every ε > 0 there is symmetric
identity neighborhood V such that

I(ϕ, α)+I(ψ, α) ≤ I(ϕ+ψ, α)(1+ε)+ε(1+ε)I(η, α)≤ I(ϕ+ψ, α)(1+ε)+ε(1+ε)(η : ϕ0).
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holds for all nonzero α ∈ C+
c (G) with supp(α) ⊆ V . In order to obtain an additive

functional, we wish to pass to the limit as ε approaches 0. The problem is that V and α
depend on ε. We circumvent this by a compactness argument. Let

P = C+
c (G)− {0}.

We consider the compact infinite cube

Q =
∏

ϕ∈P

[
1

(ϕ0:ϕ)
, (ϕ : ϕ0)

]
.

Given a symmetric identity neighborhood V ⊆ G and a nonzero α ∈ C+
c (G) with

supp(α) ⊆ V , we may consider the element (I(ϕ, α))ϕ∈P ∈ Q, and the set QV ⊆ Q
consisting of all such elements. These sets QV have the finite intersection property. Hence

⋂
{QV | V ⊆ G is a symmetric identity neighborhood} ⊆ Q

is nonempty. We pick an element I in this intersection. Thus I is a map I : P −→ R

which assigns to every ϕ ∈ P the real number

I(ϕ) = prϕ(I) ∈
[

1
(ϕ0:ϕ)

, (ϕ : ϕ0)
]
⊆ R,

and I ∈ QV holds for every identity neighborhood V ⊆ G.

Theorem 2.26. Every locally compact group admits an invariant integral.

Proof. Suppose that ϕ, ψ ∈ P and that s > 0. For every identity neighborhood V and
and every α ∈ P with supp(α) ⊆ V we have I(ϕ + ψ, α) ≤ I(ϕ, α) + I(ψ, α). Since
I is contained in the closure of PV , the relation I(ϕ + ψ) ≤ I(ϕ) + I(ψ) holds as well.
Similarly, the relation I(sϕ, α) = sI(ϕ, α) implies that I(sϕ) = sI(ϕ).

There is a constant c ≥ 0 such that for every ε > 0 there exists a symmetric identity
neighborhood V such that I(ϕ, α) + I(ψ, α) ≤ I(ϕ + ψ, α)(1 + ε) + ε(1 + ε)c holds for
all α ∈ P with supp(α) ⊆ V . Since I is contained in PV , we have I(ϕ) + I(ψ) ≤
I(ϕ+ ψ)(1 + ε) + ε(1 + ε)c. This is true for every ε > 0, hence I(ϕ) + I(ψ) = I(ϕ+ ψ).

Every function ϕ ∈ Cc(G) − {0} can be written as a difference ϕ = ϕ1 − ϕ2, with
ϕ1, ϕ2 ∈ P as defined above. We put I(ϕ) = I(ϕ1) − I(ϕ2) and we have to check that
this expression is well-defined. If ϕ = ϕ3−ϕ4 is another decomposition of this type, then
ϕ1 + ϕ4 = ϕ3 + ϕ2, and thus I(ϕ1) + I(ϕ4) = I(ϕ3) + I(ϕ2), whence I(ϕ1) − I(ϕ2) =
I(ϕ3) − I(ϕ4). Conversely, every linear extension of I to Cc(G) has to satisfy these
formulas.

It follows readily that I is additive and that I(sϕ) = sI(ϕ) holds for all s ∈ R. Hence
I is a linear functional. By construction, I is invariant under the G-action. We have
I(ϕ0, α) = 1 no matter what α and V are. Hence I(ϕ0) = 1.
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Thus we have established the existence of a Haar integral on every locally compact
group. We now show that such an integral is unique up to a positive constant. We first
make an observation about invariant integrals.

Lemma 2.27. Let J be an invariant integral on the locally compact group G and suppose
that ϕ ∈ Cc(G). For every a ∈ R[G] we have

J(aϕ) = ǫ(a)J(ϕ).

If ϕ, α ∈ C+
c (G) and if α 6= 0, then J(α) 6= 0 and

J(ϕ) ≤ (ϕ : α)J(α).

Proof. If a =
∑

g∈G agg, then J(aϕ) =
∑

g∈G J(aggϕ) =
∑

g∈G agJ(ϕ) by the G-invariance
of the integral. This proves the first claim. Now suppose that ϕ, α ∈ C+

c (G)−{0} and that
α 6= 0. If a ∈ R[G]+ and if ϕ ≤ aα, then J(ϕ) ≤ ǫ(a)J(α), which proves the last claim.
By assumption, there exists an element ϕ ∈ C+

c (G) with J(ϕ) > 0. By Lemma 2.23 there
exists an element a ∈ R[G]+ with ϕ ≤ aα and thus 0 < J(ϕ) ≤ J(aα) = ǫ(a)J(α).

Now we show that an invariant integral is determined uniquely up to a positive scaling
factor.

Theorem 2.28. Let G be a locally compact group and suppose that I, J are two invariant
integrals. Then there exists a positive real s > 0 such that J = sI.

Proof. It suffices to prove the following. Given two functions ϕ1, ϕ2 ∈ C+
c (G)− {0} and

two invariant integrals I, J , we have

J(ϕ1)

J(ϕ2)
=
I(ϕ1)

I(ϕ2)
.

This, in turn, will be a consequence of the following claim.

Claim. Given ϕ1, ϕ2 ∈ C+
c (G) − {0} and a real number ε > 0, there exists a function

α ∈ C+
c (G)− {0} such that

(1− ε)(ϕj : α)J(α) ≤ J(ϕj) j = 1, 2,

holds for every invariant integral J .

Let us assume for the moment that the claim is correct. Since J(ϕ2) ≤ (ϕ2 : α)J(α)
holds by Lemma 2.27, we have

(1− ε)
(ϕ1 : α)

(ϕ2 : α)
≤ 1

(ϕ2 : α)

J(ϕ1)

J(α)
≤ J(ϕ1)

J(ϕ2)
.
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By symmetry, the same inequality holds if we exchange ϕ1 and ϕ2. Moreover, we may
replace J by I. If we then take inverses on both sides, we obtain the inequality

I(ϕ1)

I(ϕ2)
≤ 1

(1− ε)

(ϕ1 : α)

(ϕ2 : α)
.

Hence we have
I(ϕ1)

I(ϕ2)
≤ 1

(1− ε)2
J(ϕ1)

J(ϕ2)
.

Since ε > 0 was arbitrary, we conclude that

I(ϕ1)

I(ϕ2)
≤ J(ϕ1)

J(ϕ2)
.

By symmetry we get also the reverse inequality. and hence the two fractions are equal.
It remains to justify the claim.

Proof of the claim. We put C = supp(ϕ1)∪ supp(ϕ2) and we choose a continuous function
with compact support η : G −→ [0, 1], such that η(C) ⊆ {1}, using Lemma 2.16. We
choose s > 0 in such a way that ε > 2s(η : ϕj) holds for j = 1, 2. Then we choose
a symmetric identity neighborhood V such that |ϕj(x) − ϕj(y)| < s holds whenever
x−1y ∈ V , for j = 1, 2. We also choose a function β ∈ C+

c (G) − {0} with supp(β) ⊆ V
and we put α(x) = β(x) + β(x−1). Hence α(x) = α(x−1). We have to show that

(1− ε)(ϕj : α)J(α) ≤ J(ϕj).

We choose t > 0 such that tJ(ϕj) < sJ(α) holds, for j = 1, 2. Then we choose a
symmetric identity neighborhood W with compact closure W such that |α(x)−α(y)| < t
holds whenever x−1y ∈ W . Since C is compact, there exist elements g1, . . . , gm ∈ G such
that C ⊆ g1W ∪· · ·∪gmW . We put U0 = G−C and Uk = gkW , for k = 1, . . . , m. This is
a finite open covering of G. Hence there exists partition of unity ψ0, . . . , ψm subordinate
to this covering, that is, ψk : G −→ [0, 1] is continuous, supp(ψk) ⊆ Uk, and

∑m
k=0 ψk = 1.

It follows that
∑m

k=1 ψk(c) = 1 for all c ∈ C, and that ψ1, . . . , ψm ∈ C+
c (G). In particular

we have

(a) ϕj =
m∑

k=1

ψkϕj

for j = 1, 2. In what follows, x and y denote arbitrary elements of G. For y ∈ xV we have
ϕj(x)− s ≤ ϕj(y), and therefore (ϕj(x)− s) · (xα) ≤ ϕj · (xα) holds for all x. Integrating
this inequality, we obtain

(b) (ϕj(x)− s)J(α) ≤ J(ϕj · xα).
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For y ∈ gkW we have g−1
k y = (g−1

k x)(x−1y) ∈ W and therefore α(x−1y) = α((x−1y)−1) ≤
α(g−1

k x) + t. Thus ψk · (xα) ≤ ψk · (gkα)(x) + t. Multiplying both sides by ϕj, summing
over k, and integrating we arrive at the inequality

(c) J(ϕj · (xα)) ≤
m∑

k=1

J(ϕjψk)(gkα)(x) + tJ(ϕj).

Since tJ(ϕj) < sJ(α), we conclude that

(d) (ϕj(x)− 2s)J(α) ≤
m∑

k=1

J(ϕk · ψk)(gkα)(x).

We put ϕ′
j = max{0, ϕj − 2s}. The right-hand side in (d) is nonnegative, hence

(ϕ′
j : α)J(α) ≤

m∑

k=1

J(ϕk · ψk) = J(ϕj).

By Lemma 2.27, J(ϕj) ≤ (ϕj : α)J(α). Also, we have ϕj ≤ ϕ′
j +2sη. Combining (b) and

(c), we obtain

(ϕj : α) ≤ (ϕ′
j + 2sη : α) ≤ (ϕ′

j : α) + 2s(η : α) ≤ (ϕ′
j : α) + 2s(η : ϕj)(ϕj : α)

and thus
(1− ε)(ϕj : α)J(α) ≤ (ϕ′

j : α) ≤ J(ϕj).

This proves the claim and finishes the proof of the theorem.

Theorems 2.26 and 2.28 show the existence and uniqueness of an invariant integral I
on a locally compact group, up to a positive real scaling factor. From now on we write

I(ϕ) =

∫

G

ϕ

for this integral.

Example 2.29. There will be very few occasions where we have to evaluate a Haar
integral explicitly. Nevertheless it might be instructive so see some examples relating the
Haar integral to the integrals arising in real analysis.

(a) G = R is the additive group of the reals, in the usual topology. Let ϕ ∈ Cc(G). Then
there exists an interval [u, v] ⊆ R containing supp(ϕ), and

∫
G
ϕ =

∫ v
u
ϕ(t)dt, where

the right-hand side denotes the Riemann integral. If we choose a larger interval [u′, v′]

containing [u, v], then
∫ v
u
ϕ(t)dt =

∫ v′
u′
ϕ(t)dt, so the left-hand side is well-defined. It

remains to show that the right-hand side is translation invariant. But this is true,
since

∫ v+s
u+s

ϕ(t− s)dt =
∫ v
u
ϕ(t)dt holds for all s ∈ R.
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(b) G = U(1) = {z ∈ C∗ | |z| = 1} is the circle group. We put
∫
G
ϕ =

∫ 1

0
ϕ(exp(2πit))dt,

where the right-hand side denotes again the Riemann integral. Since
∫ 1

0
ϕ(exp(2πit))dt =∫

G
ϕ =

∫ 1

0
ϕ(exp(2πi(t− s)))dt holds for all s ∈ R, this is the Haar integral.

(c) Let λ denote the Lebesgue measure on Rm. For the additive group G = Rm, the
Haar integral is given by

∫
G
ϕ =

∫
Rm ϕ(v)dλ(v). This follows from the fact that λ is

translation invariant.

The modular function

Construction 2.30. Let G be a locally compact group. The real vector space Cc(G) is
a left R[G]-module with respect to the left G-action gϕ = ϕ ◦ λg−1 and for a ∈ R[G], the
diagram

Cc(G) Cc(G)

R R

a

∫
G

∫
G

ǫ(a)

commutes. In short, ∫

G

: Cc(G) −→ R

is a homomorphism of R[G]-modules, where R[G] acts on R via the augmentation map ǫ.
We now consider a different R[G]-module structure on Cc(G), by putting

G× Cc(G) −→ Cc(G), (g, ϕ) 7−→ ϕ◦γg−1.

This G-action turns Cc(G) into a left R[G]-module in a different way. We put

Ig(ϕ) =

∫

G

ϕ ◦ γg−1.

Since γg = λg ◦ ρg = ρg ◦ λg, we conclude that Ig(ϕ) =
∫
G
ϕ ◦ ρg−1 and hence that

Ig(ϕ ◦ λa) = Ig(ϕ). Therefore Ig is an invariant integral. By Theorem 2.28 there exists a
positive real number s such that sI = Ig. We put mod(g) = s. Thus

mod(g)

∫

G

ϕ =

∫

G

ϕ ◦ γg−1 =

∫

G

ϕ ◦ ρg−1 .

For g, h ∈ G we have

Igh(ϕ) =

∫

G

ϕ ◦ ρ(gh)−1 =

∫

G

ϕ ◦ ρh−1 ◦ ρg−1 = mod(g)mod(h)

∫

G

ϕ,
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which shows that
mod(gh) = mod(g)mod(h).

Hence mod : G −→ R>0 is a group homomorphism, the modular function. We will
show next that mod is a morphism of topological groups. But first we note the following
algebraic fact. If we extend mod in the natural way to the group ring R[G] by putting
mod(

∑
g∈G agg) =

∑
g∈G agmod(g), then R becomes an R[G]-module and

∫

G

: Cc(G) −→ R

is again a homomorphism of R[G]-modules, but for a different module structure on Cc(G)
and on R.

Proposition 2.31. Let G be a locally compact group. Then the modular function

mod : G −→ R

is a morphism of topological groups, which is independent of the Haar integral.

Proof. We choose a function ϕ ∈ C+
c (G) − {0}. If I, J are two invariant integrals, then

there exists by Theorem 2.28 a real number s > 0 with J = sI. Hence 0 6= J(ϕ ◦ γg−1) =
sI(ϕ ◦ γg−1) = smod(g)I(ϕ) = mod(g)J(ϕ), which shows that mod is independent of the
chosen Haar integral.

We now prove that mod is continuous at the identity. By Lemma 1.5 this will imply
that mod is continuous. Let C = supp(ϕ) and suppose that ε > 0. Let U ⊆ G be an
open symmetric identity neighborhood with compact closure U . By Lemma 2.16 there
exists a continuous function with compact support η : G −→ [0, 1], with η(CU) ⊆ {1}.
Let V ⊆ U be a symmetric identity neighborhood such that

|ϕ(x)− ϕ(y)|
∫

G

η ≤ ε

∫

G

ϕ

holds for all x, y ∈ G with x−1y ∈ V . We claim that for x ∈ V and y ∈ G we have

(1) |ϕ(yx)− ϕ(y)|
∫

G

η ≤ εη(y)

∫

G

ϕ.

If y ∈ CU , then η(y) = 1 and y−1(yx) = x ∈ V , so (1) is true. If y 6∈ CU , then y 6∈ C
and y 6∈ Cx−1, whence ϕ(y) = 0 = ϕ(yx), so (1) holds also. Now we integrate (1) with
respect to the variable y and obtain

∣∣∣∣
∫

G

(ϕ ◦ ρx−1 − ϕ)

∣∣∣∣
∫

G

η ≤ ε

∫

G

η

∫

G

ϕ 6= 0.
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It follows that
∣∣∫
G
ϕ ◦ ρx−1 −

∫
G
ϕ
∣∣ ≤ ε

∫
G
ϕ. Since

∫
G
ϕ◦ρx−1 = mod(x)

∫
G
ϕ, this implies

that
|mod(x)− 1| ≤ ε

holds for all x ∈ V .

Definition 2.32. A locally compact group is called unimodular if mod is constant on G.
This holds if and only if the Haar integral on G is bi-invariant,

∫

G

ϕ ◦ ρa =
∫

G

ϕ =

∫

G

ϕ ◦ λa

for all a ∈ G.

Proposition 2.33. Let G be a locally compact group. Then G is unimodular if G is
abelian, or compact, or if [G,G] = G.

Proof. If G is abelian, then ρa = λa−1 and the claim follows from the left invariance of the
Haar integral. If G is compact, then mod(G) ⊆ R>0 is compact. Since every nontrivial
subgroup of (R>0, ·) is unbounded, mod(G) = {1}. The last claim follows from the fact
that (R>0, ·) is abelian and that mod is continuous.
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3 | The Peter–Weyl Theorem

In this chapter we work over the complex field C. The real part of a complex number z
is denoted by Re(z), and the imaginary unit is written as i =

√
−1. We denote complex

conjugation by z 7−→ z̄. This should not be confused with the closure operation for sets
in a topological space.

The support of a complex valued continuous function ϕ on a topological space X is

supp(ϕ) = ϕ−1(C− {0}).

We denote by Cc(X,C) the complex vector space of all continuous complex functions on
X with compact support. It follows that Cc(X,C) splits as a real vector space as

Cc(X,C) = Cc(X)⊕ iCc(X)

We put

ϕ(x) = ϕ(x),

where z 7−→ z denotes complex conjugation. If G is a locally compact group, then G acts
from the left on Cc(G,C) via

G× Cc(G,C) −→ Cc(G,C), (g, ϕ) 7−→ gϕ = ϕ ◦ λg−1.

Definition 3.1. Let G be a locally compact group. A linear map

I : Cc(G,C) −→ C

is called a complex Haar integral if the following hold for all ϕ ∈ Cc(G,C) and all g ∈ G.

(i) I(ϕ ◦ λg−1) = I(ϕ).

(ii) I(ϕϕ) is real and non-negative.

(iii) I(ϕϕ) 6= 0 if ϕ 6= 0.
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Proposition 3.2. On every locally compact group G there exists a complex Haar inte-
gral I. If J is another complex Haar integral, then there exists a real number s > 0 such
that J = sI.

Proof. Let I be a Haar integral on G. For ϕ ∈ Cc(G,C) we have ϕ = ϕ1 + iϕ2, with
ϕ1, ϕ2 ∈ Cc(G), and we extend I to Cc(G,C) by putting I(ϕ) = I(ϕ1) + iI(ϕ2). Then I
is a complex linear map satisfying (i) and (ii). Property (iii) follows from Lemma 2.27.

Suppose that J is another complex Haar integral. For ϕ ∈ C+
c (G) − {0} we have

ψ =
√
ϕ ∈ Cc(G) − {0}, and J(ϕ) = J(ψψ̄) > 0 by property (iii) of a complex Haar

integral. Therefore the restriction of J to Cc(G) is a Haar integral. Hence there exists
s > 0 such that J(α) = sI(α) holds for all α ∈ Cc(G). Since Cc(G) generates Cc(G,C) as
a complex vector space, J = sI.

A complex Haar integral I on a locally compact group will again be denoted by

I(ϕ) =

∫

G

ϕ =

∫

G

ϕ(g)dg.

For an element a in the complex group ring C[G] we have then
∫
aϕ = ǫ(a)

∫

G

ϕ,

where ǫ : C[G] −→ C is the augmentation homomorphism.

Definition 3.3. Suppose that E is a complex vector space. A sesquilinear form on E is
a map

b : E × E −→ C

which is bi-additive and which satisfies the identities

b(zu, v) = z̄b(u, v) and zb(u, v) = b(u, zv)

for all u, v ∈ E and z ∈ C. A sesquilinear form b is called hermitian if b(u, v) = b(v, u)
holds for all u, v ∈ E. A hermitian form b is positive definite if b(u, v) > 0 holds for all
nonzero u ∈ E.

Construction 3.4. Let G be a locally compact group. For ϕ, ψ ∈ Cc(G,C) we put

〈ϕ|ψ〉 =
∫

G

ϕψ.

By the properties of a complex Haar integral, 〈−|−〉 is a positive definite hermitian form
on Cc(G,C). Moreover, we have

〈gϕ|gψ〉 = 〈ϕ|ψ〉
for all ϕ, ψ ∈ Cc(G,C). In order to carry on, we need results from operator theory.
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Convex sets in Hilbert spaces

We recall that a norm on a complex vector space E is a map − : E −→ R≥0 with the
properties

u+ v ≤ u + v , zu = |z| u , u = 0 if and only if u = 0,

for all u, v ∈ E and z ∈ C. Hence a norm is a length function. A norm determines in
particular a metric and a topology on E.

Definition 3.5. Suppose that 〈−|−〉 : E ×E −→ C is a positive definite hermitian form
on a complex vector space E. The associated norm on E is

u =
√

〈u|u〉.

We note that
u+ v 2 = u 2 + 2Re〈u|v〉+ v 2

and that

〈u|v〉 = 1
4

3∑

k=0

i
k u+ i

kv
2
.

On several occasions we will use the parallelogram identity

x+ y 2 + x− y 2 = 2
(
x 2 + y 2),

which is a direct consequence of the definition of the norm. In order to see that −
satisfies the triangle inequality, we first prove the Cauchy–Schwarz inequality,

|〈u|v〉| ≤ u v .

For this we expand the nonnegative expression

〈v|u〉u− u 2v
2
= |〈v|u〉|2 u 2 − 2 u 2Re(〈v|u〉〈u|v〉) + u 4 v 2

= u 4 v 2 − |〈u|v〉|2 u 2 = u 2( u 2 v 2 − |〈u|v〉|2
)
.

It follows from the Cauchy–Schwarz inequality that

u+ v 2 ≤ ( u + v )2,

hence − is indeed a norm. The norm − turns E into a metric space, and the Cauchy–
Schwarz inequality shows that 〈−|−〉 is continuous. This follows of course also from the
explicit formula for 〈−|−〉 in terms of − 2. The pair (E, 〈−|−〉) is called a pre-Hilbert
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space. A linear subspace F of a pre-Hilbert space E is again a pre-Hilbert space if we
restrict the hermitian form to F . If the pre-Hilbert space E is complete with respect to
− , then E is called a Hilbert space. Hence a closed linear subspace of a Hilbert space is

again a Hilbert space. For a locally compact group G, the complex vector space Cc(G,C)
is an example of a pre-Hilbert space.

Example 3.6. On the complex vector space Cm we put

〈u|v〉 =
m∑

k=1

ūkvk.

We call this the standard hermitian form. Then (Cm, 〈−|−〉) is a Hilbert space.

The previous example is universal, as the following lemma shows.

Lemma 3.7. Let (E, 〈−|−〉) be a Hilbert space of finite dimension m. Then there exists
a linear isomorphism f : Cm −→ E such that 〈f(u)|f(v)〉 = 〈u|v〉 holds for all u, v ∈ Cm.

Proof. Let v1, . . . , vm be a basis for E. We use the Gram–Schmidt algorithm to transform
this basis into an orthonormal basis v̂1, . . . , v̂m. Then

f(z, . . . , zm) =
∑

z1v̂1 + · · ·+ zmv̂m

is a linear isomorphism which preserves the hermitian forms.

We call a nonempty subset K of a real or complex vector space E convex if for all
u, v ∈ K and all s ∈ [0, 1] we have su + (1 − s)v ∈ K. Arbitrary intersections of convex
sets are again convex. If K and L are convex, then K + L is also convex.

Lemma 3.8. Let E be a pre-Hilbert space and let K ⊆ E be a nonempty complete subset
which is convex. For every u ∈ E there exists a unique point p(u) ∈ K which minimizes
the distance to u.

Proof. We put d = inf{ u− v | v ∈ K}. For v, w ∈ K we have by the parallelogram
identity

(v − u)− (w − u) 2 + (v − u) + (w − u) 2 = 2 v − u 2 + 2 w − u 2,

whence

v − w 2 = 2 v − u 2 + 2 w − u 2 − 4 u− 1
2
(v + w) ≤ 2 v − u 2 + 2 w − u 2 − 4d2.

Hence if (vn)n≥0 is a sequence in K with limn u− vn = d, then (vn)n≥0 is a Cauchy
sequence. Its limit v = limn vv ∈ K then satisfies u− v = d. For v, w ∈ K with
u− v = u− w = d the inequality shows that v = w.
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The previous lemma has several important consequences for convex sets. If E is a
normed vector space, we define the closed convex hull of a subset X ⊆ E as

conv(X) =
⋂

{K ⊆ E | K is closed, convex and X ⊆ K}.

This set is in particular closed and convex.

Let w be a nonzero vector in a pre-Hilbert space E and let s be a real number. A
half-space H ⊆ E is a set of the form

H = H(w, s) = {u ∈ E | Re〈w|u〉 ≤ s}.

Half-spaces are closed and convex. The next result is a special case of the Banach–Hahn–
Mazur Theorem.

Proposition 3.9. Let K be a closed convex set in a Hilbert space. Then

K =
⋂

{H | H ⊆ E is a half-space containing K}.

Proof. The right-hand side is closed and convex and contains the left-hand side. It suffices
therefore to prove that for every u ∈ E−K, there exists a halfspace H ⊆ E containing K
with u 6∈ H . We put v = p(u), where p is the map defined in Lemma 3.8, and w = u− v.
Thus w 6= 0. Let s = Re〈v|w〉. Then

0 < Re〈w|w〉 = Re〈w|u〉 − s,

hence u 6∈ H(w, s). Suppose that y ∈ E − H(w, s). We have to show that y 6∈ K. We
consider the map

t 7−→ (1− t)v + ty − u 2 = w 2 + 2tRe〈v − y|w〉+ t2 y − v 2.

Its derivative at time t = 0 is

2s− 2Re〈y|w〉 < 0.

Hence there exists t ∈ [0, 1] such that (1− t)v + ty − u < v − u , and thus y 6∈ K.

Proposition 3.10. Let C be a compact set in a Hilbert space E. Then

K = conv(C)

is compact.
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Proof. Given ε > 0, we put D = {u ∈ E | u ≤ ε
3
} and U = {u ∈ E | u < ε}. Since

C is compact, there exists a finite set A ⊆ C such that C ⊆ D + A. The convex hull L
of the finite set A is the continuous image of a simplex, and hence compact. Hence there
exists a finite set B ⊆ L such that L ⊆ D+B. Since both L and D are closed and convex
and since L is compact, the set D + L is closed by Lemma 1.15 and convex. We have
C ⊆ D + A ⊆ D + L ⊆ D +D + B. Since D + L is closed, convex and contains C, we
have K ⊆ D + L ⊆ D +D + B ⊆ U + B. Hence K is totally bounded. Since K is also
complete, K is compact.

For a subset X in a pre-Hilbert space E we put

X⊥ = {v ∈ E | 〈x|v〉 = 0 for all x ∈ C}.

Since x⊥ = ker[u 7−→ 〈x|u〉] is closed, X⊥ is a closed complex subspace of E.

Lemma 3.11. Suppose that F ⊆ E is a complete complex subspace in a pre-Hilbert space
E. Then E = F ⊕ F⊥.

Proof. For u ∈ E we put u1 = p(u) and u2 = u − u1, where p : E −→ F is the map
defined in Lemma 3.8. We claim that u2 ∈ F⊥. For every w ∈ F − {0} and every z ∈ C

we have
u2

2 ≤ u2 + zw 2 = u2
2 + 2Re(〈u2|w〉z) + |z|2 w 2.

Putting z = −1
w 2 〈w|u2〉, we see that

0 ≤ −1

w 2 |〈w|u2〉|2.

Thus u2 ∈ F⊥ and therefore E = F +F⊥. Since F ∩F⊥ = {0}, we have a direct sum.

Normed vector spaces and bounded operators

We need to recall some notions and facts from functional analysis. In what follows, we
consider only complex vector spaces. Most of the results have analogues for real vector
spaces, with the obvious modifications. If (E, − E) is a normed vector space, we put

BE
r (v) = {u ∈ E | u− v E ≤ r},

for r > 0. For r, s > 0 we have
sBE

r (0) = BE
rs(0).

As customary in functional analysis we will call linear maps operators.
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Lemma 3.12. Let F be a linear subspace of a normed vector space E. Then its closure
F is also a linear subspace.

Proof. The closure of F is a subgroup of E by Proposition 1.7. For every z ∈ C we have
zF ⊆ F , whence zF ⊆ F . This shows that F is a linear subspace.

Definition 3.13. Let (E, − E) and (F, − F ) be normed vector spaces. A bounded
operator

T : E −→ F

is a linear map which maps bounded sets to bounded sets.

Lemma 3.14. Let (E, − E) and (F, − F ) be normed vector spaces and let T : E −→ F
be an operator. The following are equivalent.

(i) T is Lipschitz continuous.

(ii) T is continuous.

(iii) T is bounded.

(iv) T (BE
r (0)) is bounded for some r > 0.

Proof. It is clear that (i) implies (ii) and that (iii) implies (iv). Suppose that (ii) holds.
Then there exists ε > 0 such that T (BE

ε (0)) ⊆ BF
1 (0). Therefore T (BE

r (0)) ⊆ BF
r/ε(0)

holds for all r > 0, and hence T is bounded. Hence (ii) implies (iii). Finally, suppose that
(iv) holds. Then there exist r, s > 0 such that T (BE

r (0)) ⊆ BF
s (0) holds, which implies

that T (BE
t (0)) ⊆ BF

ts/r(0) holds for all t > 0. Thus T (u) F ≤ s
r
u E holds for all u ∈ E,

and hence T (u)− T (v) F ≤ s
r
u− v E holds for all u, v ∈ E. Thus (iv) implies (i).

For a bounded operator T : E −→ F we define its operator norm

T = sup{ Tu F | u ∈ BE
1 (0)}.

It follows that

Tu ≤ T u E.

In particular, T is a T -Lipschitz map.

Lemma 3.15. Suppose that E and F are normed vector spaces. Then (B(E, F ), − )
is a normed vector space. If D is another normed vector space and if S ∈ B(D,E) and
T ∈ B(E, F ), then TS ≤ T S .
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Proof. For S, T ∈ B(E, F ), z ∈ C and u ∈ E we have

(S − zT )u F ≤ ( S + |z| T ) u E.

It follows that B(E, F ) is a vector space and that the operator norm satisfies the triangle
inequality. Moreover, T = 0 holds if and only if T = 0. Suppose that z ∈ C − {0}.
Then zTu F = |z| Tu ≤ |z| T u E, whence zT ≤ |z| T . The same reasoning
shows that T = 1

z
(zT ) ≤ 1

|z|
zT , and thus zT = |z| T . Hence the operator

norm is indeed a norm. For v ∈ D we have TSv F ≤ T Sv E ≤ T S v D, which
proves the last claim.

We recall that a complete normed vector space is called a Banach space.

Proposition 3.16. Suppose that (E, − E) and (F, − F ) are normed vector spaces.

If F is a Banach space, then (B(E, F ), − ) is a Banach space. In particular, the
dual space

E∗ = B(E,C)

of a normed vector space is always a Banach space.

If E has finite dimension, then every operator T : E −→ F is bounded.

Proof. Suppose that F is complete and that (Tn)n≥0 is a Cauchy sequence in B(E, F ).
For every u ∈ E, the sequence (Tnu)n≥n is a Cauchy sequence in F because

Tnu− Tmu ≤ Tn − Tm u E .

We put Tu = limn Tnu. Since each Tn is linear, Tn(u + zv) − Tnu − zTnv = 0 holds for
all vectors u, v and scalars z. Therefore T (u+ zv) − Tu− zTv = 0 holds as well, which
shows that T : E −→ F is linear. There exists k > 0 such that Tm − Tk ≤ 1 for all
m ≥ k. Therefore Tu− Tku F ≤ u E, and thus T − Tk is continuous. Hence T is also
continuous, and we have proved that B(E, F ) is complete.

If E has finite dimension m, then E is as a topological vector space isomorphic to Cm

by Theorem 1.44. We fix such an isomorphism of topological vector spaces f : Cm −→ E.
Let u1, . . . , um denote the standard basis of Cm. We put vk = T (f(uk)). The map
h : Cm −→ F that maps (z, . . . , zm) to z1v1 + · · · + zmvm is continuous, and h = T ◦ f .
Hence T is continuous.

It follows that every bijective linear map between finite dimensional normed vector
spaces is Lipschitz continuous. In particular, such a vector space is always a locally
compact Banach space.
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Proposition 3.17. Let (E, − E) be a normed vector space. Then there exists a Banach

space (Ê, − Ê) and a linear isometric injection j : E −→ Ê with dense image. If
(F, − F ) is a Banach space and if T : E −→ F is a bounded operator, then there is a

unique bounded operator T̂ : Ê −→ F such that T̂ ◦ j = T ,

E F

Ê.

T

j

T̂

Proof. Let C ⊆ EN denote the complex vector space of all Cauchy sequences in E, and
let N ⊆ C denote the complex vector space of all sequences in E converging to 0. For
a sequence u = (un)n≥0 in C, the sequence ( un E)n≥0 is a real Cauchy sequence by
the triangle inequality. We put u = limn un E. Then N = {u ∈ C | u = 0}
and Ê = C/N is a normed vector space, with norm u+N Ê = u . For u ∈ E we

put j(u) = (u)n≥0 + N ∈ Ê. Then j is an isometric linear injection. For a Cauchy
sequence u = (un)n≥0 ∈ C, we claim that u +N = limn j(un). Given ε > 0, there exists
k ≥ 0 such that un − um ≤ ε for all m,n ≥ k. Hence we have for all n ≥ k that
limm un − um ≤ ε, which shows that j(un)− u+N Ê ≤ ε. This proves the claim,

and it also shows that j(E) ⊆ Ê is dense.
We have proved so far that every Cauchy sequence in j(E) has a limit in Ê, and that

j(E) is dense in Ê. Hence every Cauchy sequence in Ê has a limit, which shows that Ê
is a Banach space.

If T ∈ B(E, F ) and if F is complete, then we may define T̂ (u+N) = limn Tun. This is
a linear operator which extends T . For u+N ∈ Ê we have limn Tun F ≤ T limn un ,

hence T̂ is bounded. Since j(E) ⊆ Ê is dense, T̂ is the unique continuous extension
of T .

Corollary 3.18. If (E, 〈−|−〉) is a pre-Hilbert space, then (Ê, 〈−|−〉) is a Hilbert space
in such a way that 〈j(u)|j(v)〉 = 〈u|v〉 holds for all u, v ∈ E.

Proof. We use the notions introduced in the previous proof and we put

〈u+N |v +N〉 = 1

4

3∑

k=0

i
k u+ i

kv +N
2
,

for u,v ∈ C. This map is continuous on Ê × Ê. We have 〈j(u)|j(v)〉 = 〈u|v〉 for all
u, v ∈ E. Since j(E)× j(E) ⊆ Ê× Ê is dense, 〈−|−〉 is a positive definite hermitian form
on Ê.
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The following results are not needed for the proof of the Peter–Weyl theorem, but
they fit well in this section on bounded operators.

Lemma 3.19. Let T : E −→ F be a bounded operator between normed vector spaces
E, F . Suppose that E is a Banach space, and that r, s > 0. If BF

r (0) ⊆ T (BE
s (0)) holds,

then BF
r (0) ⊆ T (BE

s(1+ε)(0)) holds for every ε > 0.

Proof. We put δ = ε
1+ε

. Suppose that w ∈ BF
r (0). We claim that we can find elements

un ∈ δn−1BE
s (0), for n = 1, 2, . . ., such that

w − T (u1 + u2 + · · ·+ un) F ≤ rδn.

For n = 1, this is clear: we choose u1 ∈ BE
s (0) in such a way that w − Tu1 ≤ rδ. Now

we proceed by induction. Given u1, . . . , un, we have

v = w − T (u1 + u2 + · · ·+ un) ∈ δnBF
r (0) ⊆ δnT (BE

s (0)).

Hence we can find un+1 ∈ δnBE
s (0) such that

w − T (u1 + u2 + · · ·+ un)− Tun+1 ≤ rδn+1.

Now un ≤ sδn−1. Since E is complete and since 0 < δ < 1, the limit u =
∑∞

n=1 un
exists in E, and T (u) = w. Moreover,

u ≤ s
∞∑

n=1

δn−1 = s 1
1−δ

= s(1 + ε).

Theorem 3.20. Let E be a Banach space, let F be a normed vector space and suppose
that T : E −→ F is a bounded operator. Then either T (E) is meager or T is surjective
and open.

Proof. Suppose that T (E) is not meager. Since T (E) =
⋃
n≥1 T (B

E
n (0)), there exists some

n ≥ 1 such that T (BE
n (0)) has nonempty interior. Hence there exists v ∈ F and r > 0

such that v +Br(0) ⊆ T (Bn(0)). Thus

Br(0) ⊆ T (Bn(0)) + T (Bn(0)) ⊆ T (Bn(0)) + T (Bn(0)) ⊆ T (BE
2n(0)).

By Lemma 3.19, Br(0) ⊆ T (BE
2n+1(0)). Hence T (B

E
s (u)) contains for every s > 0 an open

neighborhood of Tu. Thus T is an open map, and T (F ) contains an identity neighborhood
BF
ε (0). Since F =

⋃
n≥1 nB

F
ε (0), we have F = T (E).

Corollary 3.21 (Open mapping theorem). Suppose that E, F are Banach spaces and
that T : E −→ F is a bounded operator. If T is surjective, then T is open.
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Corollary 3.22 (Closed graph theorem). Suppose that E, F are Banach spaces and
that T : E −→ F is an operator. Then T is continuous if and only its graph

X = {(u, Tu) | u ∈ E} ⊆ E × F

is closed.

Proof. If T is continuous, then its graphX is closed. Conversely, suppose thatX is closed.
Then X is a closed linear subspace of E×F and hence a Banach space with respect to the
norm (u, v) = u E + v F . The projection map pr : E × F −→ E is continuous and
linear. Its restriction to X is continuous, bijective and, by Corollary 3.21, open. Hence
the map u 7−→ (u, Tu) is continuous, and thus T is continuous.

Corollary 3.23. Let T be an operator on a Hilbert space E which satisfies 〈Tu|v〉 =
〈u|Tv〉. Then T is bounded.

Proof. Let X ⊆ E ×E denote the graph of T . We show that X is closed. If (un)n≥0 is a
sequence in En such that (un, Tun)n≥0 converges to (u, v), then we have for w ∈ E that

〈v|w〉 = lim〈Tun|w〉 = lim
n
〈un|Tw〉 = 〈u|Tw〉 = 〈Tu|w〉.

It follows that Tu = v, and thus (u, v) ∈ X . Hence X is closed, and T is continuous by
Corollary 3.22.

Adjoint operators in Hilbert spaces

The next result is a special case of Riesz’ Representation Theorem. We recall that E∗ =
B(E,C).

Proposition 3.24. Let E be a Hilbert space. The map

L : E −→ E∗, u 7−→ 〈u|−〉
is a semilinear isometric bijection.

Proof. It is clear that L is semi-linear, L(zu) = z̄L(u). For u 6= 0 we have 〈u|u〉 > 0, hence
L(u) 6= 0. This shows that L is injective, and we claim that L is also surjective. Suppose
that ξ ∈ E∗ is a nonzero bounded linear form, with kernel F ⊆ E. Since C ∼= E/F , the
kernel F is a closed hyperplane. By Lemma 3.11, E = F ⊕F⊥, and F⊥ has dimension 1.
Let v ∈ F⊥ be a nonzero vector. Then a = ξ(v) 6= 0 and the vector u = ā

v 2 v has the

property that ξ(u) = |a|2

v 2 = 〈u|u〉 = L(u)(u). Since ker(ξ) = F = ker(L(u)), we conclude

that ξ = L(u). Hence L is surjective.
For v ∈ BE

1 (0) and u ∈ E we have |L(u)v| = |〈u|v〉| ≤ u , hence L(u) ≤ u .
If u 6= 0, then 〈u| 1

u
u〉 = u , hence L(u) ≥ u . Thus L(u) = u holds for all

u ∈ E.
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Proposition 3.25. Let E be a Hilbert space and suppose that b : E × E 7−→ C is a
sesquilinear form. The following are equivalent.

(i) b is continuous.

(ii) There exists a real number r ≥ 0 such that |b(u, v)| ≤ r u v holds for all u, v ∈ E

(iii) There exists a bounded operator T ∈ B(E) such that b(u, v) = 〈Tu|v〉 holds for all
u, v ∈ E.

If these equivalent conditions are satisfied, then T ≤ r and T is uniquely determined.

Proof. Suppose that b is continuous. Then there exists ε > 0 such that |b(u, v)| ≤ 1 holds
for all u, v ∈ BE

ε (0). Then b(u, v)| ≤ 1
ε
u v holds for all u, v ∈ E, so (ii) implies (ii).

Suppose that (ii) holds. Then for every u ∈ E, the map b(u,−) is linear and bounded.
We define a semilinear map B : E −→ E∗ by B(u) = b(u,−). By Proposition 3.24 there
is a unique operator T : E −→ E with L ◦ T = B. Thus 〈Tu|v〉 = b(u, v) holds for all
u, v. For v ∈ BE

1 (0) we have

Tv 2 = 〈Tv|Tv〉 = b(v, Tv) ≤ r Tv

and thus Tv ≤ r. Hence T is bounded, with T ≤ r.
It is clear that (iii) implies (i).

Corollary 3.26. If E is a Hilbert space, then there exists for every T ∈ B(E) a unique
T ∗ ∈ B(E) such that

〈Tu|v〉 = 〈u|T ∗v〉
holds for all u, v ∈ E. The operator T ∗ is called the adjoint of T . We have

T ∗∗ = T and T = T ∗ .

Proof. We put b(u, v) = 〈u|Tv〉. By Proposition 3.25 there exists a unique T ∗ ∈ B(E)
such that 〈T ∗v|u〉 = 〈v|Tu〉 holds for all u, v ∈ E. Thus 〈u|T ∗v〉 = 〈Tu|v〉 and T ∗∗ = T .
Since |〈u|Tv〉| ≤ T u v , we have T ∗ ≤ T . But this implies that T = T ∗∗ ≤
T ∗ , and therefore T = T ∗ .

A linear operator T : E −→ E on a Hilbert space E is called self-adjoint if

〈Tu|v〉 = 〈u|Tv〉
holds for all u, v ∈ E. It follows that 〈Tu|u〉 ∈ R, and T is bounded by Corollary 3.23.
Conversely, a bounded operation T ∈ B(E) is self-adjoint if and only if

T = T ∗.

An example of a bounded self-adjoint operator is the projection operator p : E = F ⊕
F⊥ −→ F associated to a closed linear subspace F ⊆ E as in Lemma 3.11.
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Lemma 3.27. Let T be a self-adjoint bounded operator on a Hilbert space E. Then

T = sup{|〈Tu|u〉| | u ∈ BE
1 (0)}.

Proof. We put ν(T ) = sup{|〈Tu|u〉| | u ∈ BE
1 (0)}. Thus

(1) |〈Tu|u〉| ≤ ν(T ) u 2

holds for all u ∈ E. By the Cauchy–Schwarz inequality we have |〈Tu|u〉| ≤ T u 2,
whence

ν(T ) ≤ T .

In order to show that T ≤ ν(T ) we use the identity

〈T (x+ y)|x+ y〉 − 〈T (x− y)|x− y〉 = 4Re〈Tx|y〉

For s > 0 we substitute x = su and y = 1
s
Tu. By (1) and by the parallelogram identity

we obtain

4 Tu 2 ≤ ν(T )
(
su+ 1

s
Tu

2
+ su− 1

s
Tu

2)
= 2ν(T )

(
s2 u 2 +

1

s2
Tu 2).

For Tu 6= 0 we may put s =
√

Tu
u

and we obtain 4 Tu 2 ≤ 2ν(T )2 Tu u and thus

Tu ≤ ν(T ) u .

This inequality is also valid if Tu = 0. Hence

T ≤ ν(T ).

Definition 3.28. Let E, F be normed vector spaces and assume that F is complete. An
operator T : E −→ F is called compact if for every bounded set B ⊆ E, the set T (B) has
compact closure. It follows that every compact operator is bounded. An example of a
compact operator is the projection operator p : E = F ⊕ F⊥ −→ F associated to a finite
dimensional linear subspace F ⊆ E.

The following is the Spectral Theorem for compact self-adjoint operators. We denote
the set of all complex eigenvalues of an operator T by σP (T ). This set is called the point
spectrum of T .

Theorem 3.29. Let T be a compact self-adjoint operator on a Hilbert space E. For an
eigenvalue z ∈ σP (T ), we let Ez = ker(T − zidE) denote the corresponding eigenspace.
Then we have the following.
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(i) σP (T ) ⊆ R and for distinct eigenvalues s, t, the eigenspaces Es, Et are orthogonal.

(ii) T ∈ σP (T ) or − T ∈ σP (T ).

(iii) We have
∑

t∈σP (T )Et = E.

(iv) The set σP (T ) is finite or countable. If σP (T ) has an accumulation point z, then
z = 0.

(v) For every 0 6= t ∈ σP (T ), the eigenspace Et has finite dimension.

Proof. We may assume that T 6= 0, since otherwise all claims are trivially true.
If u ∈ E is an eigenvector for the eigenvalue z ∈ C, then 〈Tu|u〉 = z̄〈u|u〉 is real,

which shows that z ∈ R. If s, t are different eigenvalues and if u ∈ Et and v ∈ Es, then
t〈u|v〉 = 〈Tu|v〉 = 〈u|Tv〉 = s〈u|v〉, which shows that 〈u|v〉 = 0. Hence (i) is true.

For (ii) we use Lemma 3.27. Let un ∈ BE
1 (0) be sequence of vectors with

lim
n

|〈Tun|un〉| = T > 0.

Passing to a subsequence, we may assume in that both t = limn〈Tun|un〉 and v = limn Tun
exist. We note that 〈Tun|tun〉 = t〈Tun|un〉 is real. Thus

0 ≤ Tun − tun
2 = Tun

2 − 2〈Tun|tun〉+ t2 un
2 ≤ 2t2 − 2t〈Tun|un〉.

The limit over the right-hand side is 0, hence v = limn Tun = limn tun. Since |t| = T 6= 0,
we conclude that limn un = u = 1

t
v and thus v = Tu = tu. Since t = 〈Tu|u〉 6= 0, we have

u 6= 0. So Et 6= 0, and |t| = T . This proves (ii)
For (iii) we first note the following. If D ⊆ E is a T -invariant subspace, then D⊥

is also T -invariant. For if x ∈ D and y ∈ D⊥, then 0 = 〈Tx|y〉 = 〈x|Ty〉. We put

F =
∑

t∈σP (T )Et. Then T (F ) ⊆ F and hence T (F ) ⊆ F . It follows that T (F
⊥
) ⊆ F

⊥
.

Then the restriction-corestriction of T to the Hilbert space F
⊥
is again a compact self-

adjoint operator, hence either F
⊥

= 0 or F
⊥
contains a nontrivial eigenspace of T by

(ii). Therefore F
⊥
= 0. By Lemma 3.11 and Lemma 3.12, E = F ⊕ F

⊥
, and thus (iii) is

proved.
Now we prove (iv) and (v). Given ε > 0, let S = {t ∈ σP (T ) | |t| ≥ ε}. We claim that

D =
∑

t∈S Et has finite dimension. If D would have infinite dimension, we could find in
D a sequence of pairwise orthogonal eigenvectors un of length un = 1, with eigenvalues
tn ∈ S. But then we would have Tun − Tum

2 ≥ 2ε for m 6= n, contradicting the
compactness of T . It follows that S is finite and that Et has finite dimension for all t ∈ S.
Therefore σP (T ) is finite or countable, and 0 is the only possible accumulation point of
σP (T ). This proves (iv) and (v).
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Hilbert modules for locally compact groups

Suppose that E is a pre-Hilbert space. An operator T : E −→ E is called unitary if T is
bijective and if

〈Tu|Tv〉 = 〈u|v〉
holds for all u, v ∈ E. A unitary operator is bounded, and so is its inverse.

Definition 3.30. Let G be a topological group. A Hilbert G-module E consists of a
Hilbert space E and a continuous linear action

G× E −→ E,

such that every g ∈ G acts as a unitary operator on E.

Example 3.31. Let E = Cm with the standard hermitian form as in Example 3.6. A
matrix g ∈ Cm×m is unitary if and only if g∗g = 1 holds, where g∗ denotes the conjugate-
transpose matrix, (g∗)i,j = gj,i. The unitary group

U(m) = {g ∈ Cm×m | g∗g = 1}.

is a compact matrix group. If E is a finite dimensional Hilbert space, then there exists
by Lemma 3.7 an isomorphism f : Cm −→ E which preserves the hermitian forms. If
E is a Hilbert G-module, then Cm becomes a Hilbert G-module G × Cm −→ Cm via
gu = (f−1 ◦ g ◦ f)(u). The associated homomorphism G −→ U(m) is continuous.

For a locally compact group G with complex Haar integral
∫
G
we denote by L2(G) the

completion of the pre-Hilbert space Cc(G,C). We view Cc(G,C) as a dense subspace of
L2(G). Since every g ∈ G acts as a unitary operator on Cc(G,C) via gϕ = ϕ ◦ λg−1 , it
acts also as a unitary operator on the completion L2(G) by Lemma 3.17. In particular,
G acts linearly on L2(G). If

∫
G
is replaced by another complex Haar integral, then the

norm and the hermitian form on L2(G) are scaled by a positive real number. This does
not change the topology and geometry of L2(G).

Lemma 3.32. The action of G on L2(G) is faithful.

Proof. Let g ∈ G − {e}, and let U be an identity neighborhood with UU−1 ⊆ G − {g}.
Let ϕ ∈ Cc(G)−{0} be a function with supp(ϕ) ⊆ U . Then supp(gϕ) = g supp(ϕ). Since
gU ∩ U = ∅, we have gϕ 6= ϕ.

Proposition 3.33. Let G be a locally compact group. Then the action

G× L2(G) −→ L2(G)

is continuous and thus L2(G) is a faithful Hilbert module for G.
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We first prove a lemma. An action satisfying the assumptions of the following lemma
is sometimes called strongly continuous.

Lemma 3.34. Suppose that G is a topological group acting as an abstract group linearly
on a Hilbert space E. Assume that each g ∈ G acts as a unitary operator on E, and that
there is a dense subset X ⊆ E with the property that for each x ∈ X, the there is an
identity neighborhood V ⊆ G such that the map V −→ E, a 7−→ ax is continuous. Then
the action G× E −→ E is continuous and thus E is a Hilbert G-module.

Proof. Suppose that ε > 0 and that g ∈ G and u ∈ E. We choose x ∈ X with x− u ≤
ε/4, and we choose an identity neighborhood V ⊆ G such that x− ax ≤ ε/4 holds for
all a ∈ V . For h ∈ gV and w ∈ BE

ε/4(u) we have then

gu− hw ≤ gu− gx + gx− hx + hx− hu + hu− hw

= u− x + x− g−1hx + x− u + u− w ≤ ε.

Proof of Proposition 3.33. We putX = Cc(G,C) ⊆ L2(G) and we apply Lemma 3.34. We
choose an open identity neighborhood U ⊆ G with compact closure. By Lemma 2.16 there
exists a continuous function η : G −→ [0, 1] with compact support and with η(UC) ⊆ {1}.
Given ε > 0 and ϕ ∈ Cc(G,C), there exists by Lemma 2.17 a symmetric open identity
neighborhood V ⊆ U such that |ϕ(x) − ϕ(a−1x)| η ≤ ε/4 holds for all a ∈ V and all
x ∈ G. We claim that

(1) |ϕ(x)− ϕ(a−1x)| η ≤ (ε/4)η(x)

holds for all a ∈ V and all x ∈ X . This is certainly true if x ∈ UC, because then η(x) = 1.
If x 6∈ UC, then x 6∈ C and a−1x 6∈ C, so the left-hand side is 0, and the inequality is also
valid. We integrate the squares of both sides of (1) over x. We obtain

ϕ− aϕ 2 η 2 ≤ (ε/4)2 η 2.

Therefore ϕ− aϕ ≤ ε/4. By Lemma 3.34, E is a Hilbert G-module.

Now we prove an important results which use an averaging process over a compact
group. We call a complex Haar integral on a compact group G normalized if

∫

G

dg = 1.

Theorem 3.35. Let G be a compact group with normalized complex Haar integral
∫
G
and

let E be a Hilbert module for G. Let T ∈ B(E) be a bounded operator. Then there exists

a unique bounded operator T̃ ∈ B(E) such that

〈T̃ u|v〉 =
∫

G

〈Tg−1u|g−1v〉dg
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holds. The operator T̃ commutes with all elements of G, and T̃ ≤ T . If T is self-

adjoint, the T̃ is also self-adjoint. If T is compact, then T̃ is compact.

Proof. Given u, v ∈ E, the map g 7−→ 〈Tg−1u|g−1v〉 is continuous and therefore contained
in Cc(G,C), since G is compact. Also, b(u, v) =

∫
G
〈Tg−1u|g−1v〉dg is a sesquilinear form

on E. We have |〈Tg−1u|g−1v〉| ≤ T g−1u g−1v = T u v , whence

|b(u, v)| ≤
∫

G

T u v dg = T u v .

By Proposition 3.25, the sesquilinear form b is continuous and the existence and uniqueness
of T̃ follows. The left invariance of the complex Haar integral shows that 〈hTh−1u|v〉 =
〈T̃ h−1u|h−1v〉 = 〈T̃ u|v〉 holds for all u, v ∈ E and h ∈ G, whence hT̃h−1 = T̃ .

If T is self-adjoint, then 〈T − |−〉 is a hermitian form, and then 〈T̃ − |−〉 is also

hermitian. Thus T̃ is self-adjoint.
Suppose that T is compact. Then A = T (BE

1 (0)) is compact, and so is the set

GA = {ga | g ∈ G and a ∈ A} ⊆ E.

The closed convex hull K = conv(GA) is compact by Proposition 3.10. Suppose that
H(w, s) ⊆ E is a half-space containing K. For u ∈ BE

1 (0) and g ∈ G we have then
gTg−1u ∈ GA, whence

Re〈T̃ u|w〉 =
∫

G

Re〈Tg−1u|g−1w〉dg =
∫

G

Re〈gTg−1u|w〉dg ≤
∫

G

sdg = s.

By Proposition 3.9, T̃ (BE
1 (0)) ⊆ conv(GA), and therefore T̃ is compact.

A nonzero Hilbert G-module is called irreducible if it contains no proper nontrivial
Hilbert G-submodule. It follows that every nonzero finite dimensional Hilbert G-module
contains a nonzero irreducible Hilbert G-module.

Lemma 3.36. Let G be a compact group with normalized complex Haar integral
∫
G
.

Suppose that E is a nonzero Hilbert G-module. Then there exists a finite dimensional
irreducible Hilbert G-module F ⊆ E.

Proof. Let w ∈ W be a nonzero vector. The operator T = 〈w|−〉w is continuous and
self-adjoint. The image of T is the 1-dimensional space Cw, and thus T is compact.
Therefore T̃ is compact and self-adjoint by Theorem 3.35. We claim that 〈T̃w|w〉 6= 0.
The map ϕ : g 7−→ 〈Tg−1w|g−1w〉 = |〈w|g−1w〉|2 is non-negative and not constant. Hence

its integral 〈w|T̃w〉 is positive. In particular, T̃ 6= 0. By Theorem 3.29, T̃ has a finite

dimensional eigenspace Et. Since T̃ is G-invariant, its eigenspace Et is also G-invariant.
In the finite dimensional vector space Et we choose a nonzero G-invariant subspace F of
minimal dimension. Then F is an irreducible Hilbert G-module.
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Corollary 3.37. Let G be a compact group. Then every irreducible Hilbert G-module E
has finite dimension.

The next result is the main theorem for Hilbert G-modules for compact groups.

Theorem 3.38. Let G be a compact group with normalized complex Haar integral
∫
G
.

Suppose that E is a Hilbert module for G. Then there exists a family (Fi)i∈I of finite
dimensional pairwise orthogonal irreducible Hilbert G-modules Fi such that

E =
∑

i∈I

Fi.

Proof. We may assume that E 6= 0. Let F denote the set of all nonzero finite dimensional
irreducible Hilbert G-modules contained in E. We fix a set K whose cardinality is strictly
bigger than the cardinality of F . Let P denote the collection of all maps F : I −→ F
which are defined on subsets I of K, and which have the property that Fi ⊥ Fj holds
for i 6= j. Such a map is injective and therefore I ( K. We define a partial order ≤ on
P by putting F ≤ F ′ if F ′ extends F . Then (P,≤) is inductive and we can choose a
maximal element F in P. We put X =

∑
i∈I Fi and we claim that X = E. Otherwise,

X⊥ would be a nontrivial Hilbert G-module. By Lemma 3.36 there exists then a nonzero
finite dimensional irreducible Hilbert G-module D ⊆ X⊥. We may choose an element
k ∈ K − I because the cardinality of K is big enough, and we may extend F to I ∪ {k}
by putting Fk = D. Then we have constructed a larger element than F , a contradiction.
Thus X = E, and the claim is proved.

Theorem 3.39 (Peter–Weyl Theorem). Let G be a compact group, and suppose that
g ∈ G−{e}. Then there exists a finite dimensional irreducible Hilbert G-module E for G
such that g acts nontrivially on E.

Proof. We decompose the Hilbert G-module L2(G) as in Theorem 3.38 as L2(G) =∑
i∈I Fi. Since G acts faithfully on L2(G), there exists an index i such that g acts non-

trivially on Fi.

Theorem 3.40. Let G be a compact group. Then there exists an index set I, a family
(mi)i∈I of natural numbers mi ≥ 1 and an injective closed morphism of topological groups

G −→
∏

i∈I

U(mi).

Proof. We choose a faithful Hilbert G-module E for G, for example E = L2(G). Let
(Fi)i∈I be a family of irreducible Hilbert G-modules as in Theorem 3.38. For each i ∈ I
we fix a Hilbert space isomorphism Fi ∼= Cmi . In this way we obtain a morphism ρ :
G −→

∏
i∈I U(mi). Since E is faithful, ρ has trivial kernel. Since G is compact, ρ is

closed.
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In short, every compact group is isomorphic as a topological group to a closed subgroup
of a (possibly infinite) product of unitary matrix groups.

Theorem 3.41. Let G be a compact group. For every identity neighborhood U ⊆ G, there
exists a closed normal subgroup N ✂ G with N ⊆ U such that G/N is isomorphic as a
topological group to a closed subgroup of U(m), for some m.

Proof. We choose an injective morphism

ρ : G −→
∏

i∈I

U(mi) = H.

as in Theorem 3.40. There exists a basic open set W =
∏

i∈I Vi ⊆
∏

i∈I U(mi) with
ρ−1(W ) ⊆ U . Thus there is a finite set I0 ⊆ I such that Vi = U(mi) holds for all
i ∈ I − I0. Let M =

∏
i∈IMi with Mi = {1} for all i ∈ I − I0, and Mi = U(mi) for

i ∈ I0. Then M is a closed normal subgroup of H , and the quotient H/M is isomorphic
to

∏
i∈I0

U(mi). We put N = ρ−1(M). Then the induced morphism G/N −→ H/M is an
injective morphism, and N ⊆ U .

Corollary 3.42. Let G be a compact group. If G has no small subgroups, then there
exists m ≥ 1 and an injective morphism

G −→ U(m).

Lemma 3.43. Let Γ be an abelian group group and let E be a nonzero finite dimensional
complex vector space. If Γ acts linearly and irreducibly on E, then dim(E) = 1.

Proof. Suppose that γ ∈ Γ. If F ⊆ E is an eigenspace of γ, then F is Γ-invariant, because
Γ is commutative. Hence F = E. It follows that every γ ∈ Γ acts as a multiple of the
identity. Hence every subspace of E is Γ-invariant, and thus dim(E) = 1.

Corollary 3.44. Let G be a compact abelian group. Then there exists a set I and a closed
injective morphism

G −→
∏

I

U(1).

For a locally compact group G, we let Ĝ denote a set of representatives for the class
of all irreducible Hilbert G-modules. This is called the unitary dual of G.

Proposition 3.45. Suppose that G is a compact group. Then for every D ∈ Ĝ, there
exists a submodule F ⊆ Cc(G,C) ⊆ L2(G) with F ∼= D.
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Proof. We may assume that D ∼= Cm as a Hilbert space. Thus we are given a continuous
homomorphism f : G −→ U(m) ⊆ Cm×m. For k = 1, . . . , m we put

ϕk(x) = fk,1(x),

and we define a linear map h : Cm −→ Cc(G,C) via h(z1v1 + · · ·+ zmvm) = z1ϕ1 + · · ·+
z+mϕm, where v1, . . . , vm is the standard basis for Cm. We claim that h is G-equivariant.
For g ∈ G we have

gvk =
m∑

j=1

fj,k(g)vj

and

gϕk(x) = fk,1(g−1x) =
m∑

j=1

fk,j(g−1)fj,1(x) =
m∑

j=1

fj,k(g)ϕj(x),

which shows that h is equivariant. By Proposition 3.25 there exists a self-adjoint operator
T : Cm −→ Cm such that

〈Tu|v〉 = 〈h(u)|h(v)〉
holds for all u, v ∈ Cm. Since the hermitian form on the right is G-invariant, T commutes
with all elements of G. Since T is a compact operator and since every eigenspace of T is
G-invariant, T = t1 for some t ≥ 0. Since h 6= 0, we conclude that t > 0. This implies
that h is injective and therefore 1

t
h is an isomorphism of Hilbert G-modules.
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