Dalitz Decays of Pseudo-Scalar Mesons Michael Kunkel

On behalf on the CLAS collaboration

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● ● ● ● ● ●

1 Introduction

- Constituent Quark Model
- Form Factors

- 2 CLAS Setup
- 3 G12 Experiment
- 4 Current State of the Art

▲□▶ ▲□▶ ▲□▶ ▲□▶ = 三 のへで

- 5 Results
- 6 Conclusion

Hadrons are colorless particle formed of quarks/anti-quarks that are held together by the strong force:

- Baryons
 - 3 valence quarks (qqq)
 - Half integer spin $(\frac{1}{2}, \frac{3}{2}, \frac{5}{2}...)$ particles (fermions)
- Mesons
 - 2 valence quarks(qq)
 - Integer spin (0, 1, 2...) particles (bosons)

Valence quarks in hadrons produce the quantum numbers J^P

Constituent Quark Model

Туре	J	Ρ	L	S	J^P
Pseudoscalar	0	-	0	0	0-
Scalar	0	+	1	1	0+
Vector	1	-	0	1	1-
Axial Vector	1	+	1	0	1+
Tensor	2	+	1	1	2 ⁺

Table: Types of Mesons

 $\begin{array}{c}
\mathbf{K}^{0} \\
\mathbf{K$

Figure: Nonet of Pseudoscalar Mesons

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

Constituent Quark Model

$$\pi^0 = \frac{1}{\sqrt{2}} (u\overline{u} - d\overline{d})$$

 η and η' are linear combinations of the singlet and octet states.

$$\begin{pmatrix} \eta \\ \eta' \end{pmatrix} = \begin{pmatrix} -\sin \theta_{\min} & \cos \theta_{\min} \\ \cos \theta_{\min} & \sin \theta_{\min} \end{pmatrix} \cdot \begin{pmatrix} \eta_0 \\ \eta_8 \end{pmatrix}$$
$$\eta_0 \rightarrow \sqrt{\frac{1}{6}} (u\overline{u} + d\overline{d} + s\overline{s})$$
$$\eta_8 \rightarrow \sqrt{\frac{2}{3}} (u\overline{u} + d\overline{d} - 2s\overline{s})$$

$$\theta_{\rm mix} = -16.54^{\circ} \pm 0.71$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ─ □ ─ の < @

If a particle is not point-like, then:

$$\left. \frac{d\sigma}{dq^2} \right|_{\text{measured}} = \left[\frac{d\sigma}{dq^2} \right]_{\text{pointlike}} \left| F(q^2) \right|^2$$

 $\blacksquare q \rightarrow$ momentum transfer

- $F(q^2)$ is the form factor, which contains information about the electromagnetic structure of the hadron
- *F*(*q*²) is the ratio of the measured differential cross section to the Q.E.D. pointlike differential cross section

A neutral meson is it's own antiparticle and has

- charge = 0
- magnetic moment = 0
- wave function is unaffected by charge conjugation or only reverses sign
- C(M) = M

Charge parity is conserved in strong and e&m processes

Particle Type	Charge Parity	Reason
γ	-	quanta of e &m field
Pseudoscalar	+	can decay to $\gamma\gamma$
Vector	-	same quantum numbers as γ

Definition of Dalitz Decay

Consider charge-conjugation parity of the radiative decay of neutral meson *A* to neutral meson *B*: $A \rightarrow B + \gamma$

 $C \left| A \right\rangle \to C \left| B \right\rangle \left| \gamma \right\rangle$

By conservation of charge-conjugation

$$C_A = -C_B$$

If γ is "off shell" γ^* , then Dalitz decay

$$A \to B + \gamma^* \to B + e^+ e^-$$

$$q^2 = m^2(\gamma^*) = m^2_{l^+l^-} > 0 \Rightarrow \text{time-like}$$

■ probability of emitting γ* is caused by the cloud of virtual states in the region of A→B. This dynamic structure is encoded in the transition form factor.

Neutral Meson Dalitz Decays

Vector or Pseudoscalar meson decay

Pseudoscalar meson decay

・ ロ ト ・ 雪 ト ・ 雪 ト ・ 日 ト

-

Decay Amplitude:

Back to the Form Factor

For pseudoscalar meson $P \in \{\pi^0, \eta, \eta'\}$ Dalitz decay $P \rightarrow l^+ l^- \gamma$, the decay rate is proportional to the form factor

$$\frac{d\Gamma(P \to l^+ l^- \gamma)}{dq\Gamma(P \to \gamma\gamma)} = \frac{4\alpha}{3\pi q} \left[1 - \frac{4m_l^2}{q^2}\right]^{\frac{1}{2}} \left[1 + 2\frac{m_l^2}{q^2}\right] \left[1 - \frac{q^2}{m_P^2}\right]^3 \left|F(q^2)\right|^2$$

 $F(q^2)$ can be fit to the dipole form: $F(q^2)=[1-\frac{q^2}{\Lambda^2}]^{-1}$ In the limit of small momentum transfer

$$\lim_{q^2 \to 0} F(q^2) = 1 - \frac{1}{6} q^2 \langle r^2 \rangle$$

Determining the transition form factor or the charge radius from Dalitz decay has been a challenge due to low statistics......until now

Dalitz Event In

Dalitz event in CLAS detector

G12 Overview

- Data was taken in Hall B experiment G12
- Running Time: 04/2008 → 06/2008
- 44 Days of Beam Time
- 60 65 nA of 5.6–5.7
 GeV e⁻
- E_{\gamma} up to 5.5 GeV
- 126 TB Raw Data
- 40 cm ℓH_2 target
- **gold radiator 10^{-4}X_0**

- Raw sensitivity of 53 pb⁻¹
- 26 x10⁹ production triggers (3 x 10⁶ triggers)
- Calorimeter + Čerenkov counter cleanly identify e⁺e⁻ pairs ad reject π⁺π⁻ pairs by factor of 10⁻⁶

Identifying p e^{\pm} and γ events

- For e^{\pm} , particle had to pass CC and EC cut
 - Detect p, $e^+ e^- \gamma$ for reaction p(γ , p, $e^+ e^- \gamma$)
 - Identify $e^+ e^-$ and reject $\pi^+\pi^-$ pairs by
 - # of Čerenkov counter photoelectrons ≥ 2.5 per particle
 - Calorimeter energy \approx particle momentum
 - Geometric match in the azimuthal angle between the CC and a DC hits.
 - - Energy deposition in EC
 - Time of flight
 - No missing mass or missing energy
 - Also look at p(γ, p, e⁺ e⁻) γ, identifying the γ with missing mass and energy

(ロ) (同) (三) (三) (三) (三) (○) (○)

Many collaborations and η factories have produced results for TFF's

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三 - のへぐ

• For π^0 • SINDRUM I: 53,955 • FERMILAB: 63,693 • For η • WASA: 526 ± 25 • TAPS: 1345 ± 59 • For η' • NONE

π^0 Dalitz Decay Statistics

Comparison of FNAL π^0 Dalitz decay spectrum (left), to the CLAS G12 π^0 Dalitz decay spectrum (right)

η Dalitz Decay Statistics

Comparison of TAPS η Dalitz decay spectrum (left), to the CLAS G12 η Dalitz decay spectrum (right)

η' Dalitz Decay Statistics

CLEO search of η' Dalitz decay (left), First observation of η' Dalitz decay from CLAS G12 experiment (right)

Simulation

- Acceptance is complete due to PLUTO event simulator, which I implemented for CLAS for Dalitz decays
 - Generates Dalitz spectrum using conserving production angles

Problem: Anomalous point at $q^2 \sim 0$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … 釣�?

Background @ $q^2 \sim 0$

- Background due to $\eta \to \gamma \gamma$ and $\gamma \to e^+e^-$ in the target
- Solution simulate this process using GEMC, a GEANT4 based simulation

G12 target schematic (top); GEMC G12 target reconstruction (bottom)

GEMC Simulation

- Used PLUTO++ to simulate $10^7 \eta \rightarrow \gamma \gamma$ events
- Smeared γ vertex to be uniformly distributed within GEMC target

 $\eta \rightarrow \gamma \gamma \rightarrow \gamma e^+e^-$

- Used PLUTO++ to simulate $50 \cdot 10^6 \eta \rightarrow e^+ e^- \gamma$ Dalitz events
- Used same cuts and binning as data

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Corrected Eta Dalitz Spectrum

Anomalous points in bins 4 & 5

Currently studying causes of these anomalies

3

What we will to contribute to

Hope to update current picture with better error bars

Works in Progress

- Study anomalous points in data spectrum
- Investigating acceptance corrections
- Invariant mass of $e^+e^-\gamma$ exceeds worlds statistics in $P(\eta, \eta')$
- Dalitz decay of η' seen for first time
- A significant contribution will be made from this work

(ロ) (同) (三) (三) (三) (三) (○) (○)