A Quillen model structure for 2-categories

Stephen Lack*
School of Mathematics and Statistics
University of Sydney NSW 2006
AUSTRALIA

email: stevel@maths.usyd.edu.au

Abstract

We describe a cofibrantly generated Quillen model structure on the locally finitely pre-
sentable category 2-Cat of (small) 2-categories and 2-functors; the weak equivalences are the
biequivalences, and the homotopy relation on 2-functors is just pseudonatural equivalence. The
model structure is proper, and is compatible with the monoidal structure given by the Gray
tensor product. It is not compatible with the cartesian closed structure, in which the tensor
product is the product.

The model structure restricts to a model structure on the full subcategory PsGpd of 2-
Cat, consisting of those 2-categories in which every arrow is an equivalence and every 2-cell
is invertible. The model structure on PsGpd is once again proper, and compatible with the
monoidal structure given by the Gray tensor product.

A Quillen model structure on a category allows one to do abstract homotopy theory within
that category; it gives rise, for example, to a homotopy relation on maps, a notion of homotopy
equivalence, and path object and mapping cylinder constructions. The notion was defined by
Quillen in [22, 23] under the name of a closed model category; today the word “closed” is usually
dropped (originally there was also a weaker structure called a model category, but this has proved
to be of lesser interest) and one speaks simply of a model category, or model structure on a category.
The structure consists of three classes of morphisms in the category, called the cofibrations, the
weak equivalences, and the fibrations; it is the weak equivalences which are the abstraction of
the notion of homotopy equivalence. These classes of morphisms are required to satisfy various
conditions, recalled in Section 1 below.

In this paper we describe a Quillen model structure on the category 2-Cat of small 2-categories
and 2-functors. It is closely related to the model structure of Moerdijk and Svensson [20] on the
category 2-Gpd of small 2-groupoids and 2-functors. In particular, the notion of fibration and
weak equivalence introduced below generalize those of [20]. The cofibrations, however, look slightly
different.

Classical examples of categories with a model structure include the category SSet of simplicial
sets, the category Top of topological spaces, the category DGADbD of differential graded abelian
groups, and the category Cat of (small) categories. In the case of Cat there are at least two
different model structures. One of these, due to Thomason [25] (but see also [8]), is derived from
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the model structure on SSet, and a functor is defined to be a weak equivalence if and only if the
induced map between the nerves of the categories is a homotopy equivalence of simplicial sets.
In the other more “categorical” model structure, the weak equivalences are the equivalences of
categories, the cofibrations are the functors which are injective on objects, and the fibrations are
the functors f : A — B with the property that for each object a of A and for each isomorphism
B :b = fain B, there is an isomorphism « : ' & a in A with fa’ = b and fa = 3. It is easy to
see that the weak equivalences which are also fibrations are precisely the equivalences of categories
which are surjective on objects; in [5] these were called the retract equivalences, since they are
precisely the functors f : A — B for which there exists a functor g : B — A with fg = 1p and
gf = 14. This model structure seems to have existed as a folklore definition for a long time. Its
first appearance in print known to the author is in [17], where it is shown that an analogously
defined model structure exists for the category Cat(&’) of categories internal to a topos &’; the case
of ordinary categories is then the case & = Set. It is this “categorical” model structure on Cat
(henceforth called simply the model structure on Cat) which is most similar to the model structure
we define on 2-Cat.

For an introduction to 2-categories, one might consult [19]; certain facts about 2-categories
are also reviewed in Section 2. In the meantime, we recall that 2-categories have not just objects
and morphisms between objects, but also 2-cells between morphisms; and that these 2-cells can
themselves be composed in various ways, satisfying strict associativity and unit conditions. Given 2-
categories &/ and A, one often considers pseudofunctors from 2 to % — which preserve composition
only up to coherent isomorphism — but 2-Cat contains only the 2-functors, which preserve all
composites in the strict sense. In fact the model structure on 2-Cat will allow us to say certain
things about the relationship between 2-functors and pseudofunctors.

Although we are considering 2-Cat only as a category, it does have further structure. For ex-
ample, it is cartesian closed, and so one can talk about categories enriched in 2-Cat with respect to
this cartesian closed structure: these are precisely the 3-categories. Then 2-Cat itself has a canon-
ical 3-category structure, involving the 2-functors, 2-natural transformations, and modifications.
There is also another symmetric monoidal closed structure on 2-Cat: the monoidal part of the
structure is given by the “Gray tensor product” [12] and the internal hom [«7, ] is the 2-category
whose objects are the 2-functors from &7 to %, and whose morphisms and 2-cells are the pseudo-
natural transformations and the modifications. A category enriched in 2-Cat with respect to this
second monoidal structure is called a Gray-category [12, 11]; it is like a 3-category except that the
“middle four interchange” holds only up to coherent isomorphism. The canonical Gray-category
structure on 2-Cat involves the 2-functors, pseudonatural transformations, and modifications. We
shall see that it is only the second monoidal structure which is compatible with the model structure
on 2-Cat.

It is also worth commenting on the fact that we allow only small 2-categories in 2-Cat. This
allows us to employ algebraic techniques in 2-Cat, and means that 2-Cat is a locally finitely
presentable category. It may, however, seem unnatural: the paradigmatic example of a 2-category
is the 2-category Cat of small categories, and Cat is not small. One can deal with this problem
by supposing a hierarchy of universes %y € %1 € %>. Then one considers sets, groups, spaces and
other “everyday” mathematical objects lying in %); categories lying in %4, and 2-categories in %.
From this point of view, we would define 2-Cat to be the category of all 2-categories which are
small with respect to %. Such precise foundational questions will be ignored in this paper, and
we work with a single universe % .



1 Model categories

In this section we recall the definition of a model category, and the special case of a cofibrantly-
generated model category; in fact we are interested in the further special case where the category
is locally finitely presentable, in the sense of Gabriel and Ulmer: see [10], or [2] for a more recent
account. A category £ is locally finitely presentable if it is cocomplete and has a small full
subcategory ¢ consisting of finitely presentable objects, with every object of £ a filtered colimit
of objects of 4. Equivalently, .#  is locally finitely presentable if and only if it is equivalent to the
category of finite-limit-preserving functors from % to Set, for some small category % with finite
limits. Every locally finitely presentable category is not just cocomplete but also complete.

As was stated in the introduction, a model structure on a category % consists of three classes
of morphisms, called the cofibrations, the weak equivalences, and the fibrations, and denoted ¥,
W, and F respectively. The category £ is required to have finite limits and finite colimits, and
the classes of morphisms are required to satisfy the following conditions involving the notion of
weak factorization system, recalled below. We say that a class of morphisms in JZ" is closed under
retracts if it is so as a full subcategory of the arrow category %2 2

(1) (2-for-3) If f, g, and h are morphisms in % with h = gf, then if any two of f, g, and h is in
W, the third is also in #;

(2) the weak equivalences are closed under retracts;
(3) there is a weak factorization system (¢, # N.%) on % ;
(4) there is a weak factorization system (¢ N%#,.%) on % .

Fibrations which are also weak equivalences are called trivial fibrations, while cofibrations which
are also weak equivalences are called trivial cofibrations.

If # and & are classes of morphism in a category £ we say that (&, %) is a weak (or
Bousfield) factorization system [6] if the following conditions are satisfied:

(1) (retracts) The classes .# and #, when seen as full subcategories of the arrow-category % 2
are closed under retracts;

(2) (liftings) If in the diagram

7
.

A B
C — D
1€ & and p € & then there exists a “fill-in” w : B — C with wi = v and pw = v;

(3) (factorizations) Any map f: A — B can be factorized as f = pi where p: E — B is in & and
i:A— FEisin Z.

More generally, if ¢ and p satisfy the lifting condition in the definition of weak factorization
system, we say that ¢ has the left lifting property with respect to p, and that p has the right lifting
property with respect to 7. It turns out that if (&, ) is a weak factorization system then .#



consists of precisely those maps with the left lifting property with respect to &2, and & consists
of precisely those maps with the right lifting property with respect to .#.

For a modern introduction to model categories one might consult any of the excellent books
[9, 14, 15]. In these sources a slightly stronger definition is used, in which the factorizations can be
chosen functorially; but this will always be the case in the cofibrantly-generated context that we
shall be dealing with. In fact we only deal with cofibrantly generated model categories which are
locally finitely presentable, and this makes things particularly simple: see the discussion in [3].

We say that a weak factorization system (.#, %) on a locally presentable category ¢ is cofi-
brantly generated if there is a small set ¢ of morphisms in % with the property that & consists
precisely of those morphisms with the right lifting property with respect to (the maps in) ¢.
Conversely, given a small set ¢4 of maps in a locally presentable category 7, there is a weak factor-
ization system (.#, &) in which & consists of the maps with the right lifting property with respect
to ¢, and . consists of the maps with the left lifting property with respect to 2. The proof is
essentially due to Quillen, and is called the “small object argument”. It was first formulated for
weak factorization systems in [1]. It is possible to give a more explicit description of the maps in
. We say that f : A — B is a relative &4 -cell complezx if it is a transfinite composite of pushouts
of maps in 4. Then f: A — B is in .4 if and only if there are maps m : B — C andr: C — B
with rm = 1g for which mf is a relative ¥-cell complex. Furthermore, for any f one can choose
the factorization f = pi with p € & and i € .# in such a way that i is actually a relative ¥-cell
complex.

A model structure (¢,%#,) on a locally presentable category % is said to be cofibrantly
generated if each of the weak factorization systems (¢ N #, ) and (¢, # N &) is cofibrantly
generated; thus the fibrations are the maps with the right lifting property with respect to a small
set of “generating trivial cofibrations”, and the trivial fibrations are the maps with the right lifting
property with respect to a small set of “generating cofibrations”.

Example 1.1 The model category Cat is cofibrantly generated. A functor is surjective on objects
if and only if it has the right lifting property with respect to the unique functor ¢ : 0 — 1 from
the initial (empty) category to the terminal category. It is full if and only if it has the right lifting
property with respect to the inclusion functor ¢ : 2 — 2 from the category with two objects and
no non-identity arrows to the category with two objects and a single non-identity arrow between
them. A functor is faithful if and only if it has the right lifting property with respect to the unique
bijective-on-objects functor i’ : C — 2, where C is the category with two objects and a parallel
pair of non-identity arrows. Thus we may take 4, i/, and i’ as the generating cofibrations. Write I
for the “free-living isomorphism” consisting of objects =, and y; and non-identity arrows s:x — y
and s7! : y — x satisfying s71s = 1, and ss™! = 1,. Then the fibrations for the model structure
on Cat are the functors with the right lifting property with respect to the functor j : 1 — [ picking
out the object z, thus we may take j as the single generating trivial cofibration.

2 Facts about 2-categories

In this section we gather together some basic definitions and facts about 2-categories; see [19] for
more details.

Every 2-category &7 has an underlying category 2f) obtained by forgetting the 2-cells. Similarly
every 2-functor F' : &/ — 9% has an underlying functor Fy : o4y — %PBy. These constructions define



a functor U : 2-Cat — Cat which preserves limits and colimits. In fact U has both adjoints: the
left adjoint sends a category A to the 2-category DA with (DA)y = A and with no non-identity
2-cells; while the right adjoint sends A to C'A, where (C'A)y = A and there is a unique 2-cell in C'A
between every parallel pair of arrows. The 2-categories of the form DA are called locally discrete
and those of the form C'A are called locally chaotic or locally indiscrete.

We shall say that an arrow f : A — B in a 2-category £ is an equivalence if there exist an
arrow g : B — A and isomorphisms gf = 1 and fg =2 1.

Given some property of functors, we say that a 2-functor F' : # — £ has the property locally
if each F': #(A,B) — Z(FA, FB) has the property. For example, a 2-functor is fully faithful
if and only if it is locally an isomorphism: this implies that the functor between the underlying
categories is fully faithful, but also that the 2-functor is “fully faithful on 2-cells” — that is, locally
fully faithful.

We denote composition in a category or 2-category by juxtaposition, provided that no ambiguity
will result; and use periods as necessary for punctuation. Thus we might write g f for the composite
of 1-cells f : A— B and g: B — C, or Sa for the composite of 2-cells a: f — " and 3 : f' — f”,
or then again gah : gfh — gf’h for the composite of a 1-cell h : D — A, a 2-cell o : f — f’ with
fif':A— B, and a l-cell g : B — C. Given 1-cells f, f': A — B and g,¢' : B — C; and 2-cells
a: f — fand B: g — ¢ we can therefore form 2-cells go : gf — gf and Bf : gf' — ¢'f,
and their composite would then be written Sf'.ga : gf — ¢'f’. Alternatively we could form
Bf :g9f — ¢ fand da: ¢ f — ¢'f', and then ¢ga.Bf : gf — ¢ f’; one of the 2-category axioms
states that ¢’a.8f = Bf'.ga. Sometimes we use “pasting diagrams” to define composite 2-cells, as
in the diagram

A —2 4

fi(%)gi iﬁ )g

which appears in the proof of Theorem 5.1 below. In this case there are 1-cells f;,g; : A; — B;,
a;: A — A, b;: B — B,and g: A — B; 2-cells «; : f; — g; and ; : b;g; — ga;; and we form the
2-cell b;a; : b; f; — b;g; and then the composite 2-cell ¥;.b;c; : b; f; — gay;.

As well as 2-categories, we shall occasionally wish to discuss the more general bicategories [4].
These also have objects, 1-cells, and 2-cells, which compose as for 2-categories, except that the
associative and identity laws for composition of 1-cells hold only up to coherent isomorphism.
Similarly, homomorphisms of bicategories are required to preserve identity 1-cells and composition
of 1-cells only up to coherent isomorphism. A homomorphism between bicategories which are
actually 2-categories is also called a pseudofunctor. We shall write 2-Cat,, for the category of
2-categories and pseudofunctors, and Bicat for the category of bicategories and homomorphisms
of bicategories. There are natural inclusion functors

2-Cat — 2-Cat,; —— Bicat

the first is bijective on objects; the second is fully faithful.

The morphisms between homomorphisms of bicategories which are most often considered are
the pseudonatural transformations: here we shall recall the definition only in the simplest case of
2-functors between 2-categories. If F,G : &/ — % are 2-functors, then a pseudonatural transforma-
tion a : ' — G consists of a 1-cell ayg : FA — GA in £ for each object A of o7, and an invertible



2-cell ay as in

F
FA—f>FB

aAj UQCf LQB

GAW)GB

for each 1-cell f: A — B in /. These 2-cells oy are required to satisfy the following conditions:

F
rA—" o pp . po A9 pe
aA Ug)tf ap Ung ac = aA \U/O!gf [e70]
GA—5~GB—5—~GC GA—g—~GC

for 1-cells f: A— Band g: B — C in &/,

_FE i,
FA {Fpr FB FA FB
~
Fg s
aA ap = A ap
Yoo Gf
P T
GA GB GA r GB
—_— ~— 7
Gg Gg

for each 2-cell p: f — g in &/; and finally «y, is required to be the identity for each object A. A
pseudonatural transformation o for which each a4 is an equivalence will be called a pseudonatural
equivalence.

If  and B are pseudonatural transformations from F' to G, then a modification from « to 3
consists of a 2-cell k4 : aq4 — B4 for each object A, subject to a coherence condition relating the
ka, oy, and By.

Recall from the introduction the notation [<7, %] for the 2-category of 2-functors, pseudonatural
transformations, and modifications, from &7 to 4. We consider the special case where o7 is the 2-
category 2 with two objects, a single non-identity arrow between them, and no non-identity 2-cells.
An object of [2, #] is therefore a 1-cell in #; we write [2, 5], for the full sub-2-category of [2, %]
consisting of the equivalences in %. The constructions [2, %] and [2, %], are both functorial in 4,
and there is a natural bijection between 2-functors ¥ — [2, %], and pairs of 2-functors € — % with
a pseudonatural equivalence between them. There is an evident 2-functor A : Z — [2, %], sending
an object B of & to the constant 2-functor 2 — % with value B. A 2-functor H : € — [2, %],
factorizes as AG for some 2-functor G if and only if the corresponding pseudonatural equivalence
is in fact the identity on G.

Finally, we describe briefly the “Gray tensor product” of 2-categories; for more detail see [12] or
[11]. Just like the tensor product of abelian groups, it can be defined in terms of the corresponding
internal hom: &/ ® 4 is the value at &7 of the functor — ® % : 2-Cat — 2-Cat which is left adjoint
to the functor [#, —] : 2-Cat — 2-Cat sending & to [#,%]. Like the tensor product of abelian
groups once again, there is also a more explicit description. An object of &/ ® % is just a pair
(A, B) consisting of an object A of o/ and an object B of %, but usually we write A ® B rather



than (A, B). The underlying category of &7 ® 2 is generated by morphisms A®b: A9 B — A® B’
foreach b : B —- B anda® B: A® B — A’ ® B for each a : A — A’; subject to relations
(ARV)(A®b) = A®bb, AR 1 = lagp, (d ® B)(a® B) = da® B, and 14 ® B = lagp.
The 2-cells can most efficiently be described by saying that there is a locally fully faithful 2-functor
Q:d QB — o x A sending A® B to (A, B), sending A®b to (1,b) : (A,B) — (A,B’), and
sending a ® B to (a,1) : (A, B) — (A, B). In fact @ is clearly bijective on objects and surjective
on arrows; thus it will turn out to be a trivial fibration for the model structure on 2-Cat described
in the following section.

3 The model structure

In this section we describe a cofibrantly-generated model structure on 2-Cat. The weak equiv-
alences will be the biequivalences: these are the 2-functors F' : &/ — % which are biessentially
surjective on objects and local equivalences. Here we say that F is biessentially surjective on ob-
jects if for each object B of & there is an object A of &/ and an equivalence F'A ~ B in %; recall
also that F' is locally an equivalence if for all objects A and A’ of .7, the induced functor between
hom-categories F : o7/ (A, A") — B(FA,FA') is an equivalence of categories. One easily verifies
that the biequivalences satisfy the 2-for-3 property and are closed under retracts.

If F: o — 9 is a biequivalence then there is a pseudofunctor G : 8 — &/ with pseudonatural
equivalences GF ~ 1, and FG ~ 14. It is an important observation that G cannot in general be
chosen to be a 2-functor, as Example 3.1 below shows. Thus we cannot internalize the notion of
biequivalence to (the Gray-category) 2-Cat in the same way that equivalences are internalized to
(the 2-category) Cat.

Example 3.1 Let Zs be the two-element group, thought of as a one-object 2-category with two
arrows and no non-identity 2-cells. Let Z be the group of integers, thought of as a one-object
category, and let A be the 2-category whose underlying category is Z, with a 2-cell from m to n if
and only if m — n is even. There is an obvious 2-functor F' : A — Zs, which is a biequivalence of
2-categories. On the other hand, a 2-functor G : Zo — A must send the non-identity arrow of Zs
to an arrow in A whose square is the identity, and clearly the identity itself is the only such arrow
in A. Thus there is a unique 2-functor G : Zy — A, and FG : Zo — Zo is the 2-functor sending
both maps to the identity. Clearly F'G is not equivalent to 1z,.

The fibrations will be the 2-functors F' : &/ — 2 with the property that (i) for every object A
of @ and every equivalence B ~ FA in % consisting of b: B — FA, b : FA — B, 3; : bb' = 1
and B2 : b'b =1, thereexist a: A’ - A, d : A— A, a1 :ad’ 21 and ay : d’'a = 1 with FA' = B,
Fa =b, Fa' =V, Fay = 31, and Fas = (5; and (i7) F is locally a fibration: that is, for every
arrow a : A — A’ in &/ and every invertible 2-cell 8 : b — Fa in % there is an arrow @’ : A — A’
in & with Fa' = b and an invertible 2-cell o : @’ — a with Fa = 3. We shall sometimes call such
a 2-functor an equiv-fibration, since it is defined in terms of lifting properties not with respect to
all arrows but only with respect to equivalences.

The trivial fibrations are those 2-functors which are both fibrations and weak equivalences; it’s
not hard to see that these are the 2-functors F' : &/ — 2 which are surjective on objects and for
which each F : &/ (A, A') — B(F A, FA’) is a retract equivalence.

We need only two generating trivial cofibrations in order to specify the fibrations. The first is
the inclusion 2-functor j; : 1 — E, where E is the “free-living equivalence”, generated by objects



x and y, arrows s : ¢ — y and t : y — x, and isomorphisms « : ts — 1 and §: st — 1; and where 1
is the 2-category with a single object x and no non-identity arrows or 2-cells. A 2-functor has the
right lifting property with respect to j; if and only if it satisfies condition (i) in the definition of
fibration. As for the second, consider the 2-category 2 with objects  and y, a single non-identity
morphism s : + — y, and no non-identity 2-cells; and the 2-category D with objects x and y,
non-identity morphisms s,s’ : x — y and an invertible 2-cell o : s — s’. A 2-functor has the
right lifting property with respect to the inclusion js : 2 — D precisely when it satisfies condition
(74). Thus the fibrations are indeed those arrows with the right lifting property with respect to the
generating trivial cofibrations.

We now turn to the trivial fibrations and the generating cofibrations. To say that F : of — %
is surjective on objects is just to say that it has the right lifting property with respect to the
unique 2-functor i1 : 0 — 1 from the empty 2-category 0 to the terminal 2-category 1 defined
above. To say that each F : o/ (A, A") — B(F A, FA’) is surjective on objects is to say that F' has
the right lifting property with respect to the 2-functor is : 2 — 2, where 2 is the 2-category with
objects x and y and no non-identity arrows or 2-cells, and 49 is the inclusion. It remains to express
the condition that each F : &/ (A, A") — B(FA,FA’) be fully faithful; this requires two further
generating cofibrations.

Write Cy for the 2-category with objects z and y, non-identity 1-cells s, s’ : x — vy, and non-
identity 2-cells 01,09 : s — s’. Write Cy for the sub-2-category containing o; but not go; and
write Cy for the sub-2-category containing all the 1-cells but no non-identity 2-cells. There is an
inclusion 2-functor ig : Cy — C; and a 2-functor iy : C5 — Cj sending both o1 and oy to 0.
To say that F' : &/ — 9 has the right lifting property with respect to i3 is to say that each
F:o(AA) — B(FA FA') is full, while to say that F': &/ — % has the right lifting property
with respect to i4 is to say that each F : &/ (A, A") — B(FA,FA) is faithful. Thus the trivial
fibrations are precisely those arrows which have the right lifting property with respect to i1, 49, i3,
and iq4.

The category 2-Cat is locally finitely presentable. There are many ways to see this; for instance
one can show that it is the category of algebras for a finitary monad on a presheaf topos. Another
possibility is to use the results of [18], where it is shown that the category ¥-Cat of (small) ¥-
categories is locally finitely presentable, if ¥ is a symmetric monoidal closed category which is
itself locally finitely presentable. Then one observes that 2-Cat is just ¥-Cat, where ¥ is the
locally finitely presentable category Cat. (The fact that Cat is locally finitely presentable is well-
known, but also follows from the same result, for Cat itself has the form #’-Cat where ¥ is now
the locally finitely presentable category Set.) The practical importance of the fact that 2-Cat is
locally finitely presentable is that it guarantees that the domains and codomains of the generating
cofibrations and generating trivial cofibrations will be a-presentable for some regular cardinal «
(since in a locally presentable category every object is so) but one can also verify directly that these
objects are finitely presentable.

Since 2-Cat is locally finitely presentable, it is complete and cocomplete (so in particular has
finite limits and colimits). We have defined the weak equivalences to be the biequivalences, and
shown that they satisfy the 2-for-3 property. We have defined the trivial fibrations, and shown
that they are the morphisms with the right lifting property with respect to i1, s, i3, and i4. By
the small object argument there is a weak factorization system (%, {trivial fibrations}), where ¢
is the class of all morphisms with the left lifting property with respect to the trivial fibrations;
we define % to be the class of cofibrations. We have defined the fibrations, and shown that they



are the morphisms with the right lifting property with respect to j; and js. By the small object
argument once again, there is a weak factorization system (2, {fibrations}), where & consists of all
morphisms with the left lifting property with respect to the fibrations. By [15, Theorem 2.1.19] it
will now suffice to show that every relative ¥-cell complex is a weak equivalence, where ¢4 denotes
the set {j1, 72}

What we actually prove is slightly stronger. Say that a 2-functor F' : of — % is a biequivalence
section if there exist a 2-functor G' and a pseudonatural equivalence € : FFG — 1 for which GF =1
and eF is the identity transformation of F'; such a 2-functor is clearly a biequivalence.

Lemma 3.2 Every relative 4 -cell complex is a biequivalence section.

PROOF: We shall show that the biequivalence sections are closed under pushout and transfinite
composition, and that the generating trivial cofibrations are biequivalence sections.
Suppose that

o —L> 2

oy
S

is a pushout in 2-Cat, and that F' is a biequivalence section. Since UGF = U the universal property
of the pushout %’ gives a unique 2-functor G’ : B’ — &' satisfying G'F’ =1 and G'V = UG. If
we can find a pseudonatural equivalence €’ : F'G’ — 1 for which &'F’ is the identity on F’, we shall
have proved that F’ is a biequivalence section.

Now the pseudonatural equivalence € : FG — 1 induces a functor H : # — [2, #|., and since
eF is the identity, HF' = AF. We therefore have [2,V].HF = [2,V].AF = AVF = AF'U, and so
the universal property of the pushout %’ gives a unique H' : ' — [2, #’|. satisfying H'F' = AF’
and H'V = [2,V].H. Now H’ corresponds to a pseudonatural equivalence ¢’ : F'G’ — 1, and the
fact that H'F' = AF’ means that ¢ F”’ is the identity.

This proves that the biequivalence sections are stable under pushout. We shall now show that
they are closed under transfinite composition. Suppose then that A is an ordinal, regarded as a
category, and A : A — 2-Cat is a colimit-preserving functor, sending ¢ < A to a 2-category A; and
sending the morphism i < i+ 1 to a biequivalence section f; : A; — A;11. Let Ay be the colimit of
A and h; : A; — Ay the legs of the colimit cocone. Since each f; is a biequivalence section, there
isag;: Ai1 — A; satisfying g; f; = 1, and an equivalence ¢; : f;g; — 1 with ¢; f; the identity. We
must show that hg is a biequivalence section. Since h;g; f;i = h;, there is a unique map k : Ay — Ag
satisfying khg = 1 and kh;+1 = kh;g;. We shall construct an equivalence (¢ : hgk — 1 for which Chg
is an identity; we shall do this by constructing the corresponding map [ : Ay — [2, Ay].. We let
lhg = Ahg, and let lh;11 be the map corresponding to the pseudonatural equivalence

khiq1 Ao
RN
Ay 2> A, . Ay
) fi
A

i+1




where (; is the pseudonatural equivalence corresponding to lh;. Since ¢; f; is the identity, lh;+1f; =
lh;, so there is a unique induced [ satisfying the given relations, and we write  : hok — 1 for the
corresponding pseudonatural equivalence. Since lhg = Ahg, the pseudonatural equivalence (hg is
the identity on hg. This proves that hg is a biequivalence section.

Finally we should check that j; : 1 — E and jo : 2 — D are indeed biequivalence sections.
There is a unique 2-functor k1 : £ — 1, and kij; = 1; there is also an obvious pseudonatural
equivalence k1 : j1k1 — 1 with k1771 the identity. There is a unique 2-functor ko : D — 2 which is
the identity on objects; kojo = 1 and there is an evident pseudonatural equivalence kg : joko — 1
with kojo the identity. O

Theorem 3.3 There is a Quillen model structure on the category 2-Cat of small 2-categories for
which the weak equivalences are the biequivalences and the fibrations are the equiv-fibrations.

Corollary 3.4 All trivial cofibrations are biequivalence sections.

Proor: If f: A — B is a trivial cofibration, then there exist m : B — C and r : C — B with
rm =1 and mf : A — C a relative ¥-cell complex. Since mf is a biequivalence section, there
exists a g : C' — A with gmf = 14 and a pseudonatural equivalence ¢ : mfg — 1 with {(mf the
identity. Now gm : B — A has the property that gmf = 14, and r{m : fgm =rmfgm — rm =1
is a pseudonatural equivalence with the property that r{mf is the identity. O

Remark 3.5 The converse is false. Let E’ be the 2-category with objects x and y, generated by
arrows s : x — y and t : y — x satisfying ts = 1, and an isomorphism o : st = 1 for which to and
os are identities. The inclusion j : 1 = {z} — E’ is a biequivalence section, but not a cofibration.
To see this, observe that 1 is cofibrant (the map 0 — 1 is after all a generating cofibration) but
that E’ is not, by Remark 4.9 below.

Among the 2-categories are those in which every arrow is an equivalence and every 2-cell is
invertible. We shall call such a 2-category a pseudogroupoid, and write PsGpd for the full subcat-
egory of 2-Cat consisting of the pseudogroupoids. Pseudogroupoids were considered in [7] under
the name of 2-groupoids; we shall follow [20], however, in reserving the latter name for those pseu-
dogroupoids in which every arrow is not just an equivalence but in fact an isomorphism. The
inclusion of PsGpd in 2-Cat has a right adjoint, which takes a 2-category to its sub-2-category
containing only those arrows which are equivalences and only those 2-cells which are invertible. It
follows that PsGpd is complete and cocomplete: colimits in PsGpd are formed as in 2-Cat, while
to form a limit in PsGpd, one first forms the limit in 2-Cat, and then applies the coreflection into
PsGpd.

The following result is obvious, but will be used several times:

Lemma 3.6 A 2-category which is biequivalent to a pseudogroupoid is itself a pseudogroupoid.
An immediate consequence is:

Theorem 3.7 There is a model structure on PsGpd for which an arrow is a cofibration, weak
equivalence, or fibration if and only if it is one in 2-Cat.
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Remark 3.8 There is also a model structure on 2-Gpd, as was proved in [20], with the same
notions of weak equivalence and fibration. The situation of 2-groupoids is technically somewhat
easier than for general 2-categories; one reason for this is that an invertible arrow in a 2-category
has a unique inverse, while an equivalence can have many (isomorphic) equivalence-inverses. The
model structure of [20] was used to give a classification of equivariant homotopy 2-types.

4 Cofibrations, cofibrant objects, and pseudofunctors

We recall that an object A of a model category is said to be fibrant if the unique map A — 1
from A to the terminal object is a fibration, and that A is said to be cofibrant if the unique map
0 — A from the initial object to A is a cofibration. In the case of 2-Cat, every object is clearly
fibrant, but the situation for cofibrant objects is more interesting. In this section we shall analyze
the notions of cofibration and cofibrant object.

The first result says, among other things, that the question of whether a 2-functor is a cofibration
depends only on its underlying functor. Recall from Section 2 the functor U : 2-Cat — Cat sending
a 2-category to its underlying category, and its left adjoint D and right adjoint C. We shall say
that a functor is surjective if it is surjective on objects and full.

Lemma 4.1 A 2-functor F : of — % is a cofibration if and only if its underlying functor has the
left lifting property with respect to the surjective functors.

PROOF: Suppose that F' is a cofibration and P a surjective functor. Then UF has the left lifting
property with respect to P if and only if £’ has the left lifting property with respect to C'P. Now
CP is surjective on objects and locally surjective on objects since P is surjective; while CP is
locally fully faithful by construction, thus C'P is a trivial fibration and so F' does have the left
lifting property with respect to C P, and UF' does have the left lifting property with respect to P.

Suppose conversely that U F has the left lifting property with respect to the surjective functors,
and that P is a trivial fibration. Then U P is a surjective functor, so U F' has the left lifting property
with respect to UP, and so DUF has the left lifting property with respect to P. If X and Y are
2-functors satisfying PX = Y F, we have the following diagram of 2-functors:

DUA > g 25

o e e

DU%J—><%)7>9

in which I and J denote the canonical inclusions. Since DUF' has the left lifting property with
respect to P, there is a 2-functor Z : DU% — € with PZ = YJ and ZDUF = XI. Now J
is bijective on objects and bijective on arrows, while P is locally fully faithful; from the equation
PZ = Y J it therefore follows for general reasons that there is a unique 2-functor W satisfying
WJ=Z7Zand PW =Y. Finally PWF =YF =PX and WFI =WJ.DUF = ZDUF = XI, and
so WF = X. Thus W provides the desired fill-in satisfying WF = X and PW =Y. O

In particular, a 2-category o is cofibrant if and only if its underlying category is projective in
Cat with respect to the surjective functors.

Before going any further we need to look more closely at the relationship between 2-functors
and pseudofunctors.
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4.1 Pseudofunctors, bicategories, and homomorphisms

The following result is well-known to 2-category theorists, but seems not to exist in the literature
in this form:

Proposition 4.2 The inclusions 2-Cat — 2-Cat,s and 2-Cat — Bicat have left adjoints.

PRroor: Since 2-Cat,, is a full subcategory of Bicat, it will suffice to construct the left adjoint to
2-Cat — Bicat. This we do as follows. Given a bicategory %, we define a 2-category %’ with the
same objects as %, whose morphisms are the paths in % — that is, a morphism in %’ from A to
B is a sequence f, «.... fo. f1 of morphisms in %, with the domain of f;11 equal to the codomain
of f; for each 7, with the domain of f; equal to A, and the codomain of f,, equal to B. The 2-cells
in #' from fre...« fouf1 10 Gm«...g2.g1 are defined to be the 2-cells in & from the composite
fn---fofi tO gm ... g2g1. Under the evident compositions, this becomes a 2-category. There is an
evident homomorphism P : 4 — %’ which is the identity on objects and sends a morphism in % to
the corresponding path of length 1. In fact P is a “biequivalence of bicategories”: we shall use this
fact in Theorem 4.6 below. Given any homomorphism F' : & — % where ¥ is a 2-category, there
is a unique 2-functor G : B’ — ¥ with GP = F. This now proves the existence of the required
adjoint, which sends % to #4’. O

In particular, if &7 is a 2-category, then the component at <7 of the counit of the adjunction(s)
is the evident 2-functor @ : &/’ — & which is the identity on objects, and sends a path f,,..... fo« f1
to its composite. In fact @) is locally a retract equivalence, and is the identity on objects, so it is a
trivial fibration in 2-Cat.

Proposition 4.3 If a 2-functor F : of — 2 is a trivial fibration then there is a pseudofunctor
G: P — o with FG = 1.

PrOOF: If F' is a trivial fibration, then it is surjective on objects, so one can choose for each
object B of 4 an object GB of &/ with FGB = B. For all objects B and C of 4, the functor
F: 4/ (GB,GC) — #(B,C) is a retract equivalence, so one can choose a functor G : Z(B,C) —
</ (GB,GC') whose composite with F' : &/ (GB,GC) — %(B, () is the identity on #(B,C). Given
f:A— Band g: B — Cin B, we have F(G(gf)) = F(G(9)G(f)), since F is a 2-functor and
FG = 1; thus there is a unique invertible 2-cell ¥, ¢ : G(g)G(f) — G(gf) with Fy ¢ equal to the
identity. Similarly FG(1g) = F(1gg), so that there is a unique invertible 2-cell ¥ : 1ap — G(1B)
with Gy p equal to the identity. This makes G into a pseudofunctor with F'G = 1. g

Remark 4.4 One cannot in general choose G to be a 2-functor: see Example 3.1 once again, and
observe that the biequivalence F' constructed there is in fact a trivial fibration.

In many respects pseudofunctors are more natural than 2-functors: Proposition 4.3 and Re-
mark 4.4 illustrate just one way in which this is the case. There are two reasons we have chosen to
work with 2-functors rather than the more general and more natural pseudofunctors. The first is
that they are formally simpler, the second that they are much better behaved. An example of the
poor behaviour of the pseudofunctors is that 2-Cat,, although it has products and coproducts,
has neither equalizers nor coequalizers, as the following example shows.
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Example 4.5 Consider the ordered set 3 = {0 < 1 < 2} considered as a 2-category with no
non-identity 2-cells.

Consider a 2-category ~# with designated arrows f: A - B, g: B— Cand h: A — C, and
an invertible 2-cell ¢ : gf — h. These determine a pseudofunctor F' : 3 — J# sending 0, 1, and 2
to A, B, and C'; sending 0 < 1 to f, 1 < 2 to g and 0 < 2 to h; strictly preserving the identities,
and with ¢ the pseudofunctoriality constraint. Now suppose that there is a different »' : A — C
and ¢’ : gf — h, and write F’ : 3 — ¢ for the induced pseudofunctor. Were F' and F’ to have an
equalizer, it would have to contain the objects 0, 1, and 2, and the arrows 0 < 1 and 1 < 2, but
not the arrow 0 < 2. This is clearly impossible; thus 2-Cat,s does not have equalizers.

On the other hand, the inclusions {1} — {0 < 1} and {1} — {1 < 2} have no pushout in
2-Cat,,, as the reader will easily verify.

It is nonetheless the case that the homotopy theory of 2-Cat,, is very similar to that of 2-
Cat. There are various ways we could formalize this vague statement; here is one. Say that
a homomorphism of bicategories is a biequivalence if it is biessentially surjective on objects and
locally an equivalence; this extends our earlier definition of 2-functors which are biequivalences.
Let %, as above, consist of the biequivalences in 2-Cat, let #),s consist of the biequivalences in
2-Catys, and #},p, the biequivalences in Bicat.

Theorem 4.6 The inclusion functors 2-Cat — 2-Cat,s and 2-Cat — Bicat induce equivalences
2-Cat[# '] — 2—Catps[7/ps_1] and 2-Cat[# ~1] — Bicat[%om_l] of categories.

PrOOF: The two cases are entirely similar; we shall treat only the second. Since the inclusion
I : 2-Cat — Bicat maps # into #jom, it induces a functor Iy : 2-Cat[# ~'] — Bicat[#om ).
Likewise the left adjoint L to I maps biequivalences to biequivalences, and so induces a left adjoint
Ly to Iy. Finally the unit and counit of the adjunction L - I lie in #},,,, and # respectively, so
that the induced adjunction Ly - Iy is in fact an equivalence. O

4.2 Cofibrant objects

In this section we shall characterize the cofibrant objects in 2-Cat, in the next we shall consider
the more general problem of characterizing the cofibrations.
First we need a little lemma about free categories:

Lemma 4.7 Any retract of a free category on a graph is itself free.

PROOF: Say that an arrow f: A — B in a category % is indecomposable if (i) f is not an identity
and (i) whenever f is a composite f = fof1 either fi or fy is an identity. Define a decomposition
of an arrow f to be a sequence f1,..., f, of indecomposable arrows whose composite f, ... fiis f.
(We deem an identity arrow to be the composite of the empty sequence.) A category is clearly free
if and only if every arrow has a unique decomposition.

Suppose that [ : & — % and R : # — & are functors with RI = 1 and £ free; identify <&/
with its image under I. Any arrow f in & has a unique decomposition f = ¢, ...g1 in %; we
write 7(f) for n. If there is an arrow f admitting no decomposition in o7, then there is such an f
for which 7(f) is minimal. Certainly f is neither an identity nor indecomposable, so we can write
f = fof1 where f1 and fy are non-identity arrows in /. Then the decompositions in % of f1 and fo
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must be f{ = gr...g1 and fo = gy, ... gk11, where 1 < k <n. But if f; and fs have decompositions
in &7, then so would f, thus either f; or fo has no decomposition in «7; since 7(f;) < = (f) and
m(f2) < w(f) this contradicts the minimality of 7(f).

It remains to prove that decompositions are unique. Suppose that f has decompositions f =
fo-o.fiand f = f/ ... f{ in &, and decomposition f = g,...¢g1 in B. We can choose an n;
for each ¢ with 1 < ¢ < n in such a way that f; has decomposition f; = gn, ... gn, ,+1 in %,
and so fi = R(fi) = R(gn,) .- R(gn,_;+1).- Now f; is indecomposable in o, so there is exactly
one non-identity arrow in the sequence R(gn, ,+1),---,R(gn;). Similarly we can choose an m;
for each ¢ with 1 < 4 < m in such a way that f/ has decomposition f] = g, ...Gm, ,+1 in B,

and so f! = R(f!) = R(gm,)---R(gm,_,+1), with exactly one non-identity arrow in the sequence

R(gm;_1+1)s- - R(gm;). Now n and m each equal the number of non-identity arrows in the sequence
R(g;) for 1 < j < p; while f; and f/ each equal the ith non-identity arrow in the sequence, thus
n=m and f; = f/, and the two decompositions are identical. O

Given an object A of a model category, one can factorize the unique map 0 — A as 0 — A’
followed by p : A” — A, where A’ is a cofibrant object, called a cofibrant replacement for A, and
p: A" — A is a trivial fibration. In the previous section, we constructed for each 2-category .« a
2-category &7’ and a trivial fibration Q : &/’ — /. In fact &/’ is always cofibrant, as follows from
the characterization of cofibrant objects in Theorem 4.8 below, and so Q : &/’ — &/ exhibits &/’ as
a cofibrant replacement for <.

Theorem 4.8 For a 2-category < the following conditions are equivalent:
(i) < is cofibrant;

(i1) there is a 2-functor J : o — &' with QJ = 1;

(iii) o is a retract of B’ for some 2-category A.

(iv) the underlying category of <7 is free.

PRrROOF: The implication (i) = (i7) follows immediately from the fact that @ is a trivial fibration,
while the implication (i3) = (i44) is trivial, and (i73) = (iv) follows from Lemma 4.7. Finally, if the
underlying category of o7 is free, then the unique 2-functor 0 — o7 clearly satisfies the condition
of Lemma 4.1, and so &/ is cofibrant. O

Remark 4.9 This means in particular that a 2-category &/ cannot be cofibrant if there exist
non-identity arrows f: A — B and g : B — A satisfying gf = 14.

The 2-categories of the form &7’ are “free” in the sense that they lie in the image of the left
adjoint to the inclusion 2-Cat — 2-Cat,s. The theorem shows that the cofibrant objects are
precisely the retracts of the free objects. This situation is familiar from homological algebra,
where, for example, an R-module is projective if and only if it is a retract of a free module; of
course the condition of being cofibrant just says that an object is “projective with respect to the
trivial fibrations”. From another point of view, the cofibrant objects are precisely the free ones:
that is, the 2-categories whose underlying categories are free.
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Remark 4.10 The construction of &7’ is very closely related to the results of [5], involving a 2-
monad T on a 2-category .%#. One defines algebras for the 2-monad as for ordinary monads, but
there are two sorts of morphisms, the “strict” (corresponding in our case to the 2-functors) and
the “pseudo” (corresponding in our case to the pseudofunctors). Once again one can construct, for
each algebra A, an algebra A’ with the property that pseudo maps from A to B are in bijection
with strict maps from A’ to B. Once again the algebras A with the property that the canonical
map A’ — A has a section are important; in [5] they are called the flexible algebras. Thus if one
defines flexible 2-categories by obvious analogy with [5], one sees that a 2-category is flexible if and
only if it is cofibrant. In fact there is a way to view 2-categories within the framework of [5]: for a
fixed set X, there is a 2-monad T on the 2-category Cat™** whose algebras are the 2-categories
with object-set X, whose strict morphisms are the identity-on-object 2-functors, and whose pseudo
morphisms are the identity-on-object pseudofunctors — for the details see [21] — and then our
construction o7’ agrees with that of [5].

4.3 Cofibrations

In the previous section we saw how to characterize the cofibrant objects; when it comes to the
cofibrations in general, we have relatively little to add to Lemma 4.1. We do have:

Lemma 4.11 There is a cofibrantly generated weak factorization system (&, ) on Cat with &
consisting of the surjective functors. One can choose the set 4 of generating cofibrations to consist
of the functorsi:0 — 1 and i’ : 2 — 2 of FExample 1.1.

PRrROOF: It suffices to repeat the observation of Example 1.1 that a functor is surjective on objects
if and only if it has the right lifting property with respect to 0 — 1, and full if and only if it has
the right lifting property with respect to 2 — 2. O

Corollary 4.12 A functor F : A — B lies in 7 if and only if it is injective on objects, faithful,
and there are functors I : B — C and R : C — B satisfying RI = 1 such that C' is obtained from
the image of A by freely adjoining objects and then arrows between specified objects.

We saw in the last section that for functors with domain the initial category the class of relative
@-cell complexes is closed under retracts, but in general this is no longer the case, as the following
example shows:

Example 4.13 Let @ be the monoid of non-negative rationals under addition. We think of @) as
a one-object category with object X, and we write the arrows as x® with a a non-negative rational.
Let A be the monoid obtained from @Q by adjoining an element y satisfying y? = 2%y = y = ya®
for all a, and z%y = z° for all @ > 0. The only new arrow in A is therefore y itself. Let C' be the
category obtained from A by adjoining an object Z and an arrow g : Z — X. Then the inclusion
i: A — Cis a relative ¥-cell complex.

The subcategory B of C' containing every arrow except g is a retract via the functor sending ¢
to yg. Thus the inclusion j : A — B is a retract of a relative ¥-cell complex i : A — C. Suppose
now that j were a relative ¥-cell complex. The arrow yg is not freely adjoined, since it satisfies
y(yg) = yg. On the other hand if @ and b are distinct positive rationals, then z%¢g and 2’g cannot
both be freely adjoined, since y(2%g) = y(x’g). Thus the only possibility is that B is obtained from
A by freely adjoining a single arrow z%g. This, however, would imply that the monoid ) was freely
generated by a, which is of course impossible.

Thus j : A — B is a retract of a relative ¥-cell complex but not itself a relative ¢-cell complex.
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Combining Lemma 4.1 and Corollary 4.12 we have:

Proposition 4.14 A 2-functor F : of — 2B is a cofibration if and only if its underlying ordinary
functor satisfies the conditions of Corollary 4.12; in particular, F must be injective on objects and
1-cells.

5 The homotopy relation

We now explore the homotopy relation. In a general model category there are several different ways
of defining the homotopy relation, but they all coincide and are well-behaved when one restricts
oneself to objects which are both fibrant and cofibrant. In the case of 2-Cat, we have seen that
all objects are fibrant, but that relatively few are cofibrant.

In a model category %, a path object for an object X consists of a factorization

PX ()
e

X xX

of the diagonal, where r is a weak equivalence, and (p;) is a fibration. We know that such a
factorization is possible, and that » may be chosen to be a trivial cofibration, but here r is assumed
only to be a weak equivalence. A right homotopy from f: B — X to g : B — X consists of a path
object on X, as above, and a morphism h : B — PX with p1h = f and poh = g. If there exists a
right homotopy from f to g we say that f and g are right homotopic.

If, as in our case, every object is fibrant, the general theory tells us that right homotopy is an
equivalence relation on %' (B, X), respected by composition on either side, and that right homotopy
implies left homotopy.

The main result of this section is:

Theorem 5.1 If F,G :  — o are 2-functors, then they are right homotopic if and only if there
is a pseudonatural equivalence from F to G.

Proor: If
Py
R (PQ)

o Do o x o

is a path object for </, then PR = 1, and R is a biequivalence. It follows that P; is also
a biequivalence, and that there exists a pseudonatural equivalence © : RP; ~ 1g.. If now
H: % — P is a right homotopy from F to GG, then we have

F—PH=—PRPH " Py —@

and so F' is pseudonaturally equivalent to G.

On the other hand, for every 2-category &7, we have the following canonical choice of path
object Z47. An object of Y./ consists of three objects A, A1, and As of & and two equivalences
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a1 : A1 — Aand as : A5 — A in /. A morphism in £« consists of three morphisms f: A — B,
f1: Ay — By, and fy : Ay — By and invertible 2-cells as in:

a1 as

Aq A As
fll a3 lf 2 lf2
By o B 5 By

A 2-cell in P& consists of 2-cells a: f — g, a1 : f1 — g1, and a3 : fo — g2 in & satisfying:

AZ.L)A AZ.L)A
(ﬁgg>m ig >g = ﬁ( i; f<§>g
BiT)B BiT)B

for ¢ = 1 and ¢ = 2. With the obvious compositions one obtains a 2-category, equipped with 2-
functors P, : o/ — o and Py : Pof — o for which the induced 2-functor (g) P — A XA
is a fibration in 2-Cat.

There is is an evident factorization A = (g)R, where R : of — 2.9/ sends an object A to

A—=a<t 4

and is defined similarly on 1-cells and 2-cells. Now R : o — &7 is a biequivalence of 2-categories,
and so R, P;, and P, exhibit Z.4 as a path object for &. Let F,G : 4 — o be 2-functors, and let
® : F — G be a pseudonatural equivalence. Then we can define a right homotopy H : Z — Pof
from F' to G as follows. On objects H sends B to

FB-"%~GB~<'—GB
and on morphisms H sends f: B — C to

®B 1

FB GB GB
Ffl 2; le le
FC o0 GC I GC

where @ f is the isomorphism expressing the pseudonaturality of ®. Finally on 2-cells, H sends
a: f—gto (Fa,Ga,Ga). This is clearly a 2-functor with PPH = F and P,H = G. O

6 Stability of biequivalences

A model category is said to be right proper if the pullback of a weak equivalence by a fibration is
a weak equivalence, and left proper if the pushout of a weak equivalence by a cofibration is a weak
equivalence. It is said to be proper if it is both right proper and left proper. A model category in
which every object is fibrant is automatically right proper; see [14, Corollary 11.1.3].

The model category Cat is proper: every object is fibrant, and so it is right proper, while the
fact that it is left proper was proved in [16].
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Example 6.1 It is not true that equivalences in Cat are stable under pullback by an arbitrary
functor. For example, consider the functor j : 1 — I of Example 1.1; recall that I is the “free-living
isomorphism”. Let 7' : 1 — I be the other functor. Then j and j’ are both equivalences, but their
pullback is the initial category 0, and the inclusion 0 — 1 is not an equivalence.

Similarly, equivalences in Cat are not stable under pushout by an arbitrary functor. To see this,
let B be the group Z of integers, thought of as a one-object category; and let A be the category
with two objects x1 and xg, with A(z;,x;) = Z for i,j € {1,2}, and with composition given by
addition. There is an equivalence P : A — B sending each n : z; — x; to n, and an equivalence
Q@ : A — B sending n : x; — x; to n+ j —i. The pushout of P along () is the terminal category 1,
and the unique functor B — 1 is not an equivalence.

We now turn to the case of 2-Cat. Once again, every object is fibrant, and so the model
structure is immediately seen to be right proper, but the fact that it is left proper is more involved.
Throughout the proof we shall refer to the following pushout diagram:

o L= (%)

e

B —J> 9
The main step is:

Lemma 6.2 If in the pushout (%), P is a trivial fibration and I is the pushout of a generating
cofibration, then Q) is a trivial fibration.

PROOF: Suppose in (x) that P is a trivial fibration, and I is the pushout of a generating cofibration.
We consider in turn the four possible generating cofibrations: i1 : 0 — 1, 15 : 2 — 2, i3 : Cy — (4,
and i4 : CQ — Cl.

If I is a pushout of i1, then ¥ is the coproduct o/ 4+ 1 and I the inclusion. It follows that
P =%+ 1and Q = P+ 1, which is clearly a trivial fibration if (and only if) P is one.

If I is a pushout of i9, then ¥ is obtained from . by freely adjoining an arrow ¢ : A — B
between given objects A and B in &/. It follows that & is obtained from % by freely adjoining
an arrow d : PA — PB, and that @ is the unique map extending P which sends ¢ to d. More
explicitly, % is the 2-category with the same objects as <7, whose arrows are the well-formed words
of the form a, «c+ap_1.....c.a; where each a; is an arrow in </, and whose 2-cells are the
well-formed words of the form oy, « ¢. p_1 ...« cC.aq where each «o; is a 2-cell in «&/. There is a
similar description for &, and Q acts letter-by-letter on a word, sending an arrow a in .« to Pa, a
2-cell o in & to Pa, and ¢ to d. It is clear from this description that () inherits from P each of
the properties of being surjective on objects, full, and locally fully faithful.

The case of i3 is the hardest; first we treat the easier case of i4. If I is a pushout of i4, then €
is obtained from &/ by imposing the relation o = o’ on a pair of 2-cells a,o’ : f — g: A — B in
/. Then 2 is obtained from % by imposing the relation Pa = Pa’ on %, and Q is the 2-functor
obtained from P by passing to the quotient. This process has no effect on objects and arrows,
so @ will, like P, be surjective on objects and full. More explicitly, the hom-category ¢ (C, D) is
obtained from the corresponding hom-category <7 (C, D) by imposing the relation hak = ha'k for
all h: B — D and k: C — A. Similarly 2(PC, PD) is obtained from #(PC,PD) by imposing
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the relation m.Pa.n = m.Po’.n for all m : PB — PD and n : PC — PA. But in this case, since
P is full, we can write m = Ph and n = Pk for some h : B — D and some k : C — A, so that
2(QC,QD) is obtained from %(PC, PD) by imposing the relations Ph.Pa.Pk = Ph.Pa/.Pk for
all h: B— D and all k£ : C — A. This means that

(C,D) —L—~%(C, D)

r| |o

B(PC, PD) —= 2(QC, QD)

is in fact a pushout in Cat. Since P : &/(C,D) — A(PC,PD) is a retract equivalence and
I:4/(C,D) — € (C,D) is injective on objects, it follows that @ : €(C,D) — 2(QC,QD) is also
a retract equivalence. Since we have already observed that ) : ¥ — & is surjective on objects, it
now follows that it is a trivial fibration.

Finally, if I is a pushout of i3, then % is obtained from & by freely adjoining a 2-cell v : f — g :
A — B between given arrows f,g: A — B of o/. Then Z is obtained from % by freely adjoining
a 2-cell § from Pf to Pg, and Q : € — & is the unique 2-functor extending P which sends 7 to
0. This process has no effect on objects and arrows, so @) will, like P, be surjective on objects and
full. To go any further, we need a more explicit description of % and Z.

If C and D are objects of &7, write &(C, D) for the category obtained from <7 (C, D) by freely
adjoining an arrow kah : kfh — kgh for all k: B — D and h : C' — A, subject to relations of the

form

kR S ok h kfh =2 g kfh T b rw

lfkahl llgkah kahl lk’ah kahl lkah’

_— E— —_— /
Lfkgh Tk lgkgh kgh s k'gh kgh P kgh'.

We shall try to define a composition making & into a 2-category with the required universal property
of A.

To make & into a 2-category, we should define a functor &(c,d) : £(C, D) — &(C’,D’) for all
arrows d : D — D’ and ¢: C' — C’. The composite functor

(0, D) XY (¢ Dy —~&(C', D)

sends kfh to dkfhc and kgh to dkghc; there is now a unique functor &(c,d) : &(C,D) —
&(C", D) extending </ (c,d) and sending kah to dkahc. The functors of the form &(c,d) satisfy
&(d,d)éE(c,d) = &(cc’,d'd) where d' : D' — D" and ¢ : ¢ — C"; and also &(1¢,1p) = le(co,p)-
This much makes & into a sesquicategory; it will be a 2-category if it also satisfies the “middle four
interchange” law, which states that if o : f — f/: A —- Band ¢ : g — ¢ : B — C are 2-cells
in &, then (¢¥f")(g9p) = (¢'¢)(¥f). This follows from the relations imposed on the &(C, D). The
verification of the universal property is straightforward; and so & is just #. Summarizing, Z(C, D)
is obtained from &7 (C, D) by freely adjoining arrows of the form kah : kfh — kgh subject to three
classes of relations.

Similarly, 2(QC, QD) is obtained from Z(PC,PD) by freely adjoining arrows of the form
m.Pa.n : m.Pf.n — m.Pg.n subject to corresponding relations. Now P is full, so that m and n
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have the form Pk and Ph for some k : B — D and h : C' — A. Next we show that if k1, ke : B — D
and hi, he : C — A satisfy Pky = Pky = f and Phy = Phg = g, then P(kjahy) = P(keahg). Since
Pk = Pks there is a unique invertible 2-cell k : k1 — ko which is mapped to the identity 2-cell on
f; similarly there is a unique invertible A : hy — ho mapped to the identity on g. Now the relations

wfh ko fA
kifhy —> ko fhy ko fhy —=> ko fhy
klahll lkgahl kgahll \Lk2ah2
k1ghy prng kaghy kaghy e kagho

imply, respectively, that P(kjahy) = P(keahy) and P(kaahy) = P(koahs); thus P(kiahy) =
P(kaachs) as claimed. Thus 2(QC,QD) can be obtained from Z(PC,PD) by freely adjoining
arrows of the form Pk.Pa.Ph subject to three classes of relations. The third class, for example,
consists of relations of the form

PE.Pf.v

Pk.Pf.Ph Pk.Pf.PH
Pk.Pa.Phl \LPk.Pa.Ph’

/

Pk.Pyg.Ph > Pk.Pg.Ph

but since P is locally fully faithful, v = P\ for a unique X : h — h’. The other classes of relations
are similar, and so Z(QC, QD) can be obtained from Z(PC, PD) by freely adjoining arrows of the
form Pk.Pa.Ph subject to relations of the form

PLPf.Pk.Pf.PH 2RI D) by pr P P

Pl.Pf.Pk.Pa.Phl lPl.Pg.Pk.Pa.Ph

PLPf.Pk.Pg.Phy—soos PLPg.Pk.Pg.Ph

pk.Pf.PL = by proph Pk.Pf.PR L pr Pl
Pk.Pa.Phl lPk’.Poc.Ph Pk.Pa.Phl lPk.Pa.Ph’
Pk:.Pg.Phmek’.Pg.Ph Pk.Pg.PhPWPEk:.Pg.Ph’.

This now proves that the diagram

</ (C,D) —L—~%(C, D)

Pl lQ
PB(PC,PD) — 2(QC,QD)
is a pushout in Cat, in which I is injective on objects and P is a retract equivalence. It follows

that Q : €(C,D) — 2(QC,QD) is a retract equivalence, and so that @ : ¥ — 2 is a trivial
fibration. O
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Theorem 6.3 The model category 2-Cat s proper.

PROOF: We have already seen that 2-Cat is right proper; the other half will involve three steps.
The first of these uses the fact that the generating cofibrations and generating trivial cofibrations
have domains which are finitely presentable objects of 2-Cat; the latter two steps are actually
general facts about model categories.

Step 1: If P is a trivial fibration and [ is a relative ¢-cell complex then @ is a trivial
fibration.

We know that I can be written as the transfinite composite of a chain of 2-functors which are
pushouts of generating cofibrations. We prove the result by transfinite induction on the length of
the chain. Lemma 6.2 takes care of all the steps involving successor ordinals; thus it will suffice to
prove the result for a limit ordinal «, given that it holds for all lesser ordinals. Thus we have a
chain of pushouts

1
Pl lpﬁ \LP“/ lQ
B P
J

in which the P3 are trivial fibrations, and the horizontal arrows are cofibrations. The fact that @
is a trivial fibration now follows by [15, Lemma 7.4.1].

Step 2: If P is a trivial fibration and [ is a cofibration then () is a trivial fibration.

We may form pushouts

oL Mo L

e Je o

%’J@N91S9

where RM =1, SN = 1, and M1 is a relative ¥-cell complex. Now ()1 is a trivial fibration by
Step 1, but Q is a retract of 1, so it too is a trivial fibration.

Step 3: If P is a weak equivalence and [ is a cofibration then () is a weak equivalence.

We may form pushouts

o 2o s g

[T

%Ql(gléh‘@
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where P = PP, Q = (QQ2Q1, P; is a trivial cofibration, and P, is a trivial fibration. Trivial
cofibrations and are stable under pushout, so Q7 is a trivial cofibration; and cofibrations are stable
under pushout, so I; is a cofibration. Now @ is a trivial fibration by Step 2, and so @ is the
composite of a trivial cofibration and a trivial fibration, hence a weak equivalence. O

Corollary 6.4 The model category PsGpd is proper.

PRrROOF: Since pushouts in PsGpd are formed as in 2-Cat, the fact that PsGpd is left proper
is immediate from the fact that 2-Cat is left proper. On the other hand, PsGpd is right proper
since every object is fibrant. (]

7 Monoidal structure on 2-Cat

The category 2-Cat is cartesian closed, but it also has a symmetric monoidal closed structure for
which the tensor product is the “Gray tensor product”, described in Section 2. The internal hom
of the closed structure is given by what we have been writing [/, ]: the 2-category of 2-functors,
pseudonatural transformations, and modifications, from o/ to 4. In each case the unit for the
tensor product is the terminal 2-category 1.

In this section we investigate the relationship between these monoidal structures and the model
structure. In particular, one might hope that these structures make 2-Cat into a monoidal model
category [15] and that it further satisfies the “monoid axiom” of [24]. If ¥ is a monoidal model
category, then the monoidal closed structure passes to the homotopy category. Furthermore, the
category A-Mod of modules for a monoid A in ¥ has a canonical model structure, provided that
A is cofibrant as an object of . If ¥ also satisfies the monoid axiom, then the assumption that A
be cofibrant is no longer required; moreover, the category of monoids in ¥ has a canonical model
structure.

A monoidal model category is defined to be a category with a monoidal closed structure and a
model structure which satisfy a kind of “internalized lifting condition” (essentially Quillen’s axiom
SMT7) and a technical condition which is automatically satisfied if the unit for the tensor product is
cofibrant. Since the terminal 2-category 1 is cofibrant, we shall not bother to spell out the technical

condition. The “internalized lifting condition” involves the internal hom [—, —| coming from the
closed structure. The condition is that if p: C'— D is a fibration, i : A — B a cofibration, and
P [B, D]

e

AC A, D
[4,0) ——=[4,D)
a pullback then the induced map [B,C| — P is a fibration, trivial if either the fibration p or the
cofibration i is so.

It is also possible to use the adjunction connecting the tensor product and internal hom to
reformulate this condition. Given arrows i : A — B and j : C' — D, form the pushout

A® D A®D+agc B&C
. |
A C B®C

i®C
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and write ¢[Jj for the induced map A ® D +45c B ® C — B ® D. Then the category satisfies the
internalized lifting condition if and only if (a) i(Jj is a cofibration whenever i and j are cofibrations,
and (b) i(Jj is a trivial cofibration whenever one of 7 and j is a cofibration and the other a trivial
cofibration. Furthermore, if the model structure is cofibrantly generated, then it suffices to check
(a) and (b) when i and j are generating cofibrations or generating trivial cofibrations; see [15].

Example 7.1 Cat is a monoidal model category via the cartesian closed structure. If p: C — D
is a fibration and 7 : A — B a cofibration, as above, we must show that the induced functor
w: [B,C] — P is a fibration, trivial if either p or i is so.

The fact that w is a fibration amounts to the fact thatif f: A - C,u: B—C,andg: B — D
are functors satisfying pf = ¢i; and ¢ : f — ui and ¥ : ¢ — pu natural isomorphisms satisfying
pp = i; then there exist a functor v : B — C satisfying pv = ¢ and vi = f and a natural
isomorphism 0 : v — wu satisfying pf = ¢ and 6i = .

To see this, we define for each object b of B an object vb of C' and an isomorphism 6y : vb — ub
as follows. If b = ia, let vb = fa and 0, = p,; otherwise, use the fact that p is a fibration to choose
an arbitrary 6 : vb — ub with the property that pvb = gb and p#, = 1. There is now a unique
way to make v into a functor so that 6 : v — u is a natural isomorphism; and the resulting v and
0 satisfy all the requirements.

It remains to show that if i or p is trivial, then so is w. If 7 is trivial, then [i, D] is a trivial
fibration, so its pullback P — [A, C] is a trivial fibration; since also [i, C] is a trivial fibration, the
fibration w is trivial by the 2-for-3 property. The case where ¢ is trivial is entirely analogous.

Example 7.2 2-Cat is not a monoidal model category via the cartesian closed structure. To see
this, consider the generating cofibration is : 2 — 2; we shall show that i3[Ji5 is not a cofibration.
The pushout 2 X 2494922 x 2 is the “non-commuting square”: it has four objects (0,0), (0,1), (1,0),
and (1,1); arrows generated by (0,0) — (0,1), (0,0) — (1,0), (0,1) — (1,1), and (1,0) — (1,1),
but the two paths (0,0) — (1,1) are not equal. On the other hand, they become equal after one
applies i9[Jio. Thus io[is is not injective on arrows, so cannot be a cofibration.

We now turn to the case of the Gray tensor product.

Lemma 7.3 If i and j are cofibrations then so is il1j. In particular, if A is cofibrant and j is a
cofibration then A ® j is a cofibration.

PRrROOF: It suffices to consider the case where i, j € {iy,12,i3,i4}. For any C' we have isomorphisms
0®C=0and 1®C = C;thusifi: A — B is i1 then ¢[Jj is just j, so is a cofibration. Similarly,
0y =i if j =1.

Next observe that the underlying functors of i3 and i4 are isomorphisms of categories, and that
the “underlying category functor” U : 2-Cat — Cat preserves pushouts, while the underlying
category of the Gray tensor product C'® D only depends on the underlying categories of C and
D. It follows that i[Jj is an isomorphism if either i or j is either i3 or iy.

This leaves only the case i = j = iy : 2 — 2, which we treat by direct calculation. An object
of 2® 2 is a pair (z,y) where z,y € {0,1}. The arrows of 2® 2 are freely generated by arrows
(1,n) : (x,y) — (z,9) and (§,1) : (z,y) — (2/,y), where £ : 2 — 2’ and 1 : y — ¢ are arrows in 2,
subject to the “Gray relations” (1,7')(1,7) = (1,7'n), (£, 1)(§,1) = (¢, 1), and (14, 1,) = 1 ,)-
Thus the underlying category of 2 ® 2 is the non-commuting square of Example 7.2. On the other
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hand, since the category 2 is discrete, the canonical trivial fibrations C®2 — C'x2 and 20C — 2xC
are isomorphisms, and s0 2 ® 2 42522 ® 2 is just 2 X 2 4952 2 X 2, which we saw in Example 7.2 to
be the non-commuting square. Thus i5[is is an isomorphism at the level of underlying categories,
and is therefore a cofibration. O

The next result is of independent interest:

Lemma 7.4 IfF : &/ — % is a biequivalence and € is any 2-category, then € X F : € x o — € X B
and €RQF : € R4 — €€ A are biequivalences.

PROOF: An object of ¢ x £ is a pair (C, B) consisting of an object of 4" and an object of . Since
I is biessentially surjective on objects, there is an object A of &/ with an equivalence FA ~ B;
thus (¢ x F)(C,A) ~ (C,B) and € x F is biessentially surjective on objects. Similarly, the fact
that ¥ x I is locally essentially surjective on objects and locally fully faithful follows easily from
the corresponding facts for F'. Thus ¥ x F' is a biequivalence.

On the other hand € ® F is a biequivalence since Q' (¢ ® F) = (¢ x F)Q, where Q : € @ & —
€ x o and Q' : € @ B — € x P are the canonical trivial fibrations. (]

Theorem 7.5 2-Cat is a monoidal model category with respect to the monoidal structure given by
the Gray tensor product.

PRrROOF: We have seen that the unit for the tensor is cofibrant, and that ¢[Jj is a cofibration if 7 or
7 is one. It remains to show that if ¢ and j are cofibrations, one of which is trivial, then i[1j is a
weak equivalences.

Suppose that ¢ : A — B is a cofibration with A cofibrant, and that j : C — D is a trivial
cofibration. In the diagram

B®j B D

05
B®C’—k>B®C+A®CA®D

i@CT |

A®C A®D

A®j

A®j is a cofibration by Lemma 7.3, and a trivial one by Lemma 7.4; thus k is a trivial cofibration
since it is a pushout of A ® j. On the other hand B ® j is a weak equivalence by Lemma 7.4 once
again; thus i[Jj is a weak equivalence by the 2-for-3 property. Since all the generating cofibrations
have cofibrant domains, it follows that ¢[]j is a weak equivalence whenever 7 is a cofibration and j
a trivial cofibration.

The case where ¢ is a trivial cofibration and j a cofibration follows by symmetry. O

The symmetric monoidal closed structure on 2-Cat given by the Gray tensor product restricts
to the full subcategory PsGpd, since [«7, #] and &/ ® £ are pseudogroupoids if o/ and £ are: the
case of [/, A is obvious, while &/ ® £ is biequivalent to &7 x %, which once again is obviously a
pseudogroupoid.
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Theorem 7.6 PsGpd is a monoidal model category with respect to the monoidal structure given
by the Gray tensor product.

ProOOF: Consider the formulation of the internal lifting condition which involves tensor products
and pushouts. These are both formed in PsGpd as in 2-Cat, so the condition for PsGpd follows
immediately from the corresponding condition for 2-Cat. O

We now turn to the monoid axiom of [24]; for convenience we follow [24] in stating it only for
symmetric monoidal categories. The axiom says that any transfinite composite of pushouts of maps
of the form j ® C', where j is a trivial cofibration and C' is arbitrary, is a weak equivalence. If, as
in the case of 2-Cat, the model category is cofibrantly generated, then it suffices to consider j ® C
with j a generating trivial cofibration.

Theorem 7.7 The monoidal model categories 2-Cat and PsGpd satisfy the monoid axiom.

PRrROOF: The case of PsGpd clearly follows from that of 2-Cat. Suppose that F': &/ — £ is a
biequivalence section, with GF = 1land e : FG — 1. Then (¢®G)(¢®F) = €®(GF) =¢®1 = 1.
On the other hand, (¢ ® F)(¢ @ G) = ¢ ® (FG), and so ¥ ® ¢ is a pseudonatural equivalence
from (¢ ® F)(¢ @ G) to 1, with (¢ ®¢)(¢ @ F) = ¢ & (¢F) equal to the identity. Thus € ® F is
a biequivalence section.

We saw in the proof of Lemma 3.2 that the biequivalence sections are closed under pushout
and transfinite composition, and that they contain the generating trivial cofibrations. Thus any
transfinite composite of pushouts of maps of the form j ® C' with j a generating trivial cofibration
must be a biequivalence section, and therefore a weak equivalence. O

8 Relationships between homotopy categories

This section is devoted to relationships between the homotopy categories of various model categories
studied in the rest of the paper. Most of these relationships will be expressed in terms of the notion
of Quillen adjunction, recalled below, but first we look directly at various categories equivalent
to the homotopy category of 2-Cat. We have already seen one such relationship: the categories
2-Cat[# '], 2-Cat,s[#;s '], and Bicat[#},0, '] are all equivalent, by Theorem 4.6.

If F,G: o — 9 are homomorphisms of bicategories, write F' ~ G if there is a pseudonatural
equivalence from F' to G. This defines a congruence on Bicat, and we may form the quotient
@ : Bicat — Bicat/ ~ which is the identity on objects, but identifies arrows F and G if (and only
if) F' ~ G. Similarly, we may form @ : 2-Cat,; — 2-Cat,/ ~. If F': &/ — % is a biequivalence
of bicategories, then there is a homomorphism G : 8 — & with GF ~ 1 and FG ~ 1; thus
Q@ : Bicat — Bicat/ ~ inverts the biequivalences. On the other hand, if F,G : & — A are
pseudonaturally equivalent, we may form a “path object” P % with biequivalences Py, Py : % —
P and R : B — PP exactly as in the proof of Theorem 5.1, and obtain a homomorphism
H: o — PP with PPH = F and P,H = G. Any functor which inverts the biequivalences must
identify P; and P», and so also identify F' and G. The case of pseudofunctors between 2-categories
is entirely analogous, and we deduce:

Theorem 8.1 The categories Bicat[#},om '] and Bicat/ ~ are canonically equivalent, as are the
categories 2-Catys[#ps '] and 2-Cat,s/ ~.
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An adjunction between model categories is called a Quillen adjunction if the left adjoint sends
cofibrations to cofibrations and trivial cofibrations to trivial cofibrations; this is equivalent to ask-
ing that the right adjoint send fibrations to fibrations and trivial fibrations to trivial fibrations.
A Quillen adjunction induces an adjunction (the “derived adjunction”) between the homotopy
categories of the model categories.

In more detail, if @7 is a model category, write Hoe/ for the homotopy category, write Z : & —
&/ for the cofibrant replacement functor, and (4 : ZA — A for the associated trivial fibration;
and write X : o/ — & for the fibrant replacement functor, and £4 : A — X A for the associated
trivial cofibration. Suppose that 4 is also a model category, and U : 8 — o is part of a Quillen
adjunction F 4 U with unit n: 1 — UF and counit € : FU — 1. The composite F'Z : o/ — %
sends weak equivalences to weak equivalences, and so induces a functor F’ : Ho/ — Ho4, called
the total left derived functor of F. Similarly, the composite UX : # — of sends weak equivalences
to weak equivalences, and so induces a functor U’ : Ho# — Ho./ called the total right derived
functor of U. The unit ' : 1 — U'F’ of the derived adjunction has components

Gt UEFZA
A2 A2z A U REZA

while the counit &’ : F'U’ — 1 has components

-1
FCuxp 35

FZUXB -2 puxB22- xB B.

Thus 7' is invertible if and only if U(F A.ny is a weak equivalence for all cofibrant objects A, while
¢’ is invertible if and only if e 3. F(yp is a weak equivalence for all fibrant objects B. If both i’ and
¢’ are invertible, then the adjunction F’ -4 U’ is an equivalence, and we say that F' - U is a Quillen
equivalence. (One warning is appropriate here: we have used the “prime” notation to denote both
total right derived functors and total left derived functors; if as well as the Quillen adjunction
F - U there were a Quillen adjunction G' - F' this would create ambiguity in the notation F’. This
ambiguity will not arise in the examples considered below.)

We saw in Section 2 two adjunctions between Cat and 2-Cat, namely D 4 U and U 4 C.
The first of these fails to be a Quillen adjunction since D fails to preserve cofibrant objects: every
category A is cofibrant, but D A is cofibrant in 2-Cat if and only if A is free. The second adjunction,
U - C, fails to be a Quillen adjunction because C fails to preserve fibrations. Let A be the category
with two objects x and y, and two non-identity arrows s,s’ : © — y; and let p : 2 — A be the
inclusion. Then p is a fibration, but Cp is not, since there is an isomorphism s = s’ in C'A which
does not lift through Cp.

On the other hand, the functor D : Cat — 2-Cat does preserve fibrations and trivial fibrations,
so would be part of a Quillen adjunction if it had a left adjoint, which is in fact the case. The left
adjoint P to D sends a 2-category .7 to the category P« with the same objects as & and with
hom-sets (P</)(A, B) = mo(«/ (A, B)), where 7 : Cat — Set is the functor sending a category to
its set of connected components.

Theorem 8.2 The adjunction P 4 D : Cat — 2-Cat is a Quillen adjunction. The counit of the
derived adjunction is invertible but the unit is not.

PRrROOF: The discussion preceding the theorem contained the proof that P 4 D is a Quillen ad-
junction. The counit ¢’ : P'D’ — 1 is invertible if and only if eg.P{pp : PZDB — B is a weak
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equivalence for every fibrant category B — that is, for every category. Now g is an isomorphism,
so we need only show that P(pp : PZDB — PDB is a weak equivalence. The 1-cells of ZDB
are the paths in the 1-cells in B; all 2-cells in ZDB are invertible, and there is a (unique) 2-cell
between two paths if and only if their composite in B is the same. Taking connected components
on the hom-categories of ZD B therefore simply identifies such paths with the same composite in
B; thus P(pp is also invertible. This proves that &’ is invertible.

On the other hand, ' : 1 — D’P’ is invertible if and only if Dépa.na : A — DXPA is a weak
equivalence for all cofibrant 2-categories A. Now {pA is an equivalence of categories, and so Dépa
is a biequivalence (in fact an equivalence of 2-categories), so that o’ will be invertible if and only if
N4 is a weak equivalence for all cofibrant 2-categories A. Let A be the 2-category with two objects
z and y, non-identity arrows s,s’ : © — y, and non-identity 2-cell o : s — s’; since the underlying
category of A is free, A is cofibrant. Then PA is just 2, and 74 identifies the non-isomorphic arrows
s and s, so fails to be a biequivalence. O

Next we consider the inclusion I : PsGpd — 2-Cat. This preserves all of the model structure,
and so any adjunction involving it will be a Quillen adjunction. Now I does have a right adjoint
R, which sends a 2-category to the sub-2-category containing all the objects, but only those 1-cells
which are equivalences, and only those 2-cells which are invertible. On the other hand I does not
have a left adjoint, since it does not preserve equalizers. To see this, let £ denote the “free-living
equivalence”, generated by objects = and y, 1-cells s : x — y and ¢ : y — x, and invertible 2-cells
a:ts— 1land 3: st — 1; let E' be generated by objects x and y, 1-cells s : . — y and ¢, : y — x,
and invertible 2-cells o : ts — 1, o/ : t's — 1, 3 : st — 1, and 3’ : st’ — 1. As well as the inclusion
i: B — E’, there is another 2-functor ¢/ : E — E’ with the same effect on objects, but sending ¢ to
t’. The equalizer in 2-Cat of 7 and ¢’ is 2, which does not lie in PsGpd. Thus I : PsGpd — 2-Cat
does not preserve limits and so does not have a left adjoint.

Theorem 8.3 The adjunction I 4 R : 2-Cat — PsGpd is a Quillen adjunction. The unit of the
derived adjunction is invertible but the counit is not.

ProOOF: The discussion preceding the theorem contained the proof that I 4 R is a Quillen ad-
junction. The unit ' : 1 — R'I’ is invertible if and only if Réra.ma : A — RXIA is a weak
equivalence for every cofibrant pseudogroupoid A. Now 7,4 is invertible for all A, so it will suffice
to show that R&j4 is a weak equivalence. But &74 : XIA — IA is a weak equivalence and A is
a pseudogroupoid, so XIA is a pseudogroupoid, so RXIA = XIA and Rérq = £r4. Thus 7 is
invertible.

On the other hand, ¢ : 'R’ — 1 is invertible if and only if eg.I(gp : IZRB — B is a weak
equivalence for every fibrant 2-category B — that is, for every 2-category. Now [ preserves weak
equivalences, so this is equivalent to asking that eg : IRB — B be a weak equivalence; but if ep
were a weak equivalence, then B would be biequivalent to the pseudogroupoid IRB and so would
itself be a pseudogroupoid. The 2-category 2 is not a pseudogroupoid, so €’ is not invertible. O

When we turn to the inclusion [ : 2-Gpd — 2-Cat the situation is somewhat different: I has
a right adjoint R sending a 2-category to its sub-2-category of invertible arrows and 2-cells, but it
also has a left adjoint L which freely adjoins inverses to all 1-cells and 2-cells. We have already
seen that a non-trivial 2-groupoid can never be cofibrant in 2-Cat, so [ fails to preserve cofibrant
objects, and I 4 R is not a Quillen adjunction. On the other hand, I does preserve fibrations and
trivial fibrations.
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Theorem 8.4 The adjunction L 41 : 2-Gpd — 2-Cat is a Quillen adjunction. The counit of
the derived adjunction is invertible but the unit is not.

PROOF: Once again, it remains only to prove the invertibility of &’ : L'’ — 1 and non-invertibility
ofn:1—-T1L".

Recall from Section 4.1 that the cofibrant replacement functor Z can be constructed so that
there is a pseudofunctor p4 : A — Z A inducing a natural bijection between pseudofunctors A — C
and 2-functors ZA — C'. (In Section 4.1 we used the notation &7’ for what we are here calling ZA.)
Thus if B and G are 2-groupoids, the composite pseudofunctor nzrpprp : IB — ILZIB induces
a natural bijection between pseudofunctors B — G and 2-functors LZIB — G. Then eg.L(;p is
the unique 2-functor np : LZIB — LI B satisfying Ing.nzipprg = 1.

But we can construct a 2-groupoid LZIB satisfying this universal property analogously to the
construction of ZA in Section 4.1: the underlying category of LZIB is the free groupoid on the
underlying graph of I B, and the 2-cells are chosen so that the induced 2-functor ng : LZIB — B
is locally fully faithful. Thus since wp is bijective on objects and surjective on 1-cells, it is a
biequivalence. This proves that &’ is invertible.

As for the non-invertibility of 7/, since I preserves weak equivalence, €, 4 is a weak equivalence
for any 2-category A, and so [€4.n4 : A — I X LA is a weak equivalence if and only ifng : A — ILA
isone. Now I LA is a 2-groupoid, and so in particular a pseudogroupoid; thus if n4 were to be a weak
equivalence, A would have to be a pseudogroupoid. Once again, there are cofibrant 2-categories,
such as 2, which are not pseudogroupoids. O

Theorem 8.5 The Quillen adjunction of Theorem 8.4 restricts to a Quillen equivalence between
2-Gpd and PsGpd.

PROOF: Since the fully faithful inclusion PsGpd — 2-Cat preserves all of the model structure,
we deduce from Theorem 8.4 a Quillen adjunction L 4 I : 2-Gpd — PsGpd for which the
counit of the derived adjunction is invertible. It remains to show that the unit is so, which will
be the case provided that I{ra.ma : A — IX LA is a weak equivalence whenever A is a cofibrant
pseudogroupoid. Once again, I preserves weak equivalences, which leaves us to prove that nga :
A — ILA is a weak equivalence.

We shall prove that 74 is a biequivalence for any pseudogroupoid A; first, however, we need
a more explicit description of ILA. Make a definite choice, for each f : a — b in A, of an arrow
f':b— a and (invertible) 2-cells 8 : ff' — 1y and o : f'f — 1,. An object of ILA is an object of
A, while the arrows of I LA are generated by the arrows f in A and their formal inverses f~! subject
to the relations ff~! = 1 and f~'f = 1. Thus every arrow can be represented as a composite
fn n__ll o faofr L. for each arrow, make a definite choice of such a representation. We now define a
2-cell in ILA from fof ! ... fofi 10 gmg ... 9297 " to be a 2-cell in A from f,f, ... f2f] to
GmGh_1 - - - g29;. Under the obvious definition of composition this makes ILA into a groupoid, and
the 2-functor n4 : A — ILA sending an arrow f: A — B to f lATl clearly has the required universal
property. Moreover, 14 is a biequivalence: it is straightforward to verify that is bijective on objects
and locally an equivalence, but one can also construct a pseudofunctor /LA — A which is the
identity on objects and sends an arrow f, fn__l1 o fafr Yo £ ! _1-.. faf1, and this pseudofunctor
is a biequivalence-inverse to 4. (]

Corollary 8.6 The inclusion of 2-Gpd in 2-Cat induces a fully faithful functor Ho2-Gpd —
Ho 2-Cat with both adjoints.
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PrROOF: We saw in Theorem 8.4 that the inclusion 2-Gpd — 2-Cat induces a functor J :
Ho2-Gpd — Ho2-Cat with a left adjoint for which the counit is invertible; the latter condition
means that the functor is fully faithful.

We saw in Theorem 8.5 that the inclusion 2-Gpd — PsGpd induces an equivalence of cat-
egories J1 : Ho2-Gpd — HoPsGpd; and we saw in Theorem 8.3 that the cofibrant replacement
functor Z : PsGpd — PsGpd followed by the inclusion PsGpd — 2-Cat induces a functor
Jo : HoPsGpd — Ho2-Cat with a right adjoint. Thus the composite JsJ; has a right adjoint; but
this composite is induced by the functor 2-Gpd — 2-Cat sending a 2-groupoid to its cofibrant
replacement “as a pseudogroupoid”, and since the resulting 2-category is weak equivalent to the
original 2-groupoid, J2Jp is just J. O

Finally, we turn to the classifying space of a 2-category. The nerve functor N : 2-Cat — SSet
has a left adjoint W. It was proved in [20] that the composite adjunction LW + NI : 2-Gpd —
SSet is a Quillen adjunction. The counit of the derived adjunction is invertible, and so (NI)’ :
Ho2-Gpd — HoSSet is fully faithful; its image consists of the homotopy 2-types.

The functor N : 2-Cat — SSet does not preserve fibrations: recall that for a 2-category .« the
0-simplices of N« are the objects of &/, and the 1-simplices are the arrows. The two 2-functors
1 — 2 are fibrations of 2-categories, but are mapped by N to the two maps A[0] — A[1], which are
not Kan fibrations. Thus the adjunction W 4 N is not a Quillen adjunction.

In [13], a class of 2-functors called 2-fibrations is defined. It seems plausible that N will map
2-fibrations to Kan fibrations, but it seems unlikely that the 2-fibrations will form part of a model
structure, so we have not pursued this possibility.
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