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Abstract

A cofibrantly generated Quillen model structure on the category Bicats of bicategories and
strict homomorphisms is constructed. Another such structure on the category 2-Cat of 2-
categories and 2-functors is described, correcting the construction given in an earlier paper.
The fully faithful inclusion of 2-Cat in Bicats is shown to be the right adjoint part of a Quillen
equivalence.

In an earlier paper [5] I tried to describe a Quillen model structure on the category 2-Cat of
2-categories and 2-functors. Unfortunately, as pointed out to me by André Joyal, this contained
an error. The purpose of this note is to correct the error, and moreover to show that the Quillen
model structure extends to one on the category Bicats of bicategories and strict homomorphisms of
bicategories. The fully faithful inclusion of 2-Cat in Bicats has a left adjoint, and this adjunction
turns out to be a Quillen equivalence.

The problem with the earlier definition is that the generating trivial cofibration j1 : 1 → E,
defined on page 179, is not a weak equivalence. The solution, also suggested by André, is to replace
the “free-living equivalence E”, by the “free-living adjoint equivalence”, defined below. This results
in a change in the definition of fibration and trivial cofibration, but not in the definition of weak
equivalences, trivial fibrations, or cofibrations. All other results in the paper remain valid.

A bicategory [2], like a 2-category, contains objects, 1-cells (or morphisms or arrows) between
objects, and 2-cells between 1-cells, and these can be composed as in a 2-category, except that the
composition of 1-cells is associative and unital only up to coherent isomorphism. The 2-categories
can be seen as those bicategories for which these isomorphisms are in fact identities. A homomor-
phism of bicategories [2] — that is, a homomorphism between bicategories — does not preserve
composition or identities strictly, but only up to coherent isomorphism. The strict homomorphisms,
in which these isomorphisms are identities, and so the structure is strictly preserved, are rare in
practice, but of theoretical importance, and it is these which are considered here. A strict ho-
momorphism between bicategories which are actually 2-categories is precisely a 2-functor; while a
homomorphism between 2-categories is also called a pseudofunctor. The reasons for working with
2-functors rather than pseudofunctors were discussed in [5, Section 4.1], and the reasons for working
with strict homomorphisms are precisely the same.

A homomorphism of bicategories (strict or otherwise) M : A → B is said to be a biequivalence
if the functors M : A (A,A′) → B(MA,MA′) are equivalences for all objects A and A′ of A ;
and if moreover for every object B of B there is an object A of A and an equivalence MA ≃ B

in B; the notion of equivalence in a bicategory is recalled in Section 2 below. In [5], the weak
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equivalences in 2-Cat were defined to be the biequivalences — that is, those 2-functors which are
biequivalences; similarly, the weak equivalences in Bicats will be the (strict homomorphisms which
are) biequivalences. Thus a 2-functor will be a weak equivalence in 2-Cat if and only if it is one
in Bicats.

The reader is referred to the early sections and references of [5] for more information about
model categories and 2-categories.

1 Constructions involving bicategories

In this section we describe various adjunctions involving the category Bicats.
The structure of bicategory is essentially algebraic in the sense of Freyd, and so the category

Bicats is both complete and cocomplete, and in fact locally finitely presentable. Similarly, the
structure of 2-category is essentially algebraic and the category 2-Cat is locally finitely presentable.
Moreover the fully faithful inclusion of I : 2-Cat → Bicats is given by forgetting certain essentially
algebraic structure (actually the property that certain isomorphisms are identities), and so this
inclusion has a left adjoint L. We shall describe the left adjoint below.

A (directed) graph consists of a collection of vertices X, Y , Z, . . . , and for each pair (X,Y ) of
vertices a set G (X,Y ) of edges from X to Y . A Cat-graph [7] consists of a collection of vertices, as
above, and for each pair (X,Y ) of vertices a category G (X,Y ). The Cat-graphs form the objects
of an evident category Cat-Graph, with an evident forgetful functor U : Bicats → Cat-Graph.
Once again the structure of Cat-graph is essentially algebraic, so Cat-Graph is locally finitely
presentable, and once again the forgetful functor U is given by forgetting certain essentially algebraic
structure, and so it has a left adjoint F . In fact Bicats is the category of algebras for a 2-operad on
Cat-Graph — see [1, Section 10] for the details. (Of course 2-Cat is also the category of algebras
for a 2-operad on Cat-Graph.)

The left adjoint L : Bicats → 2-Cat may be described as follows. Given a bicategory B,
consider the underlying Cat-graph VB of B, and the free 2-category GVB on VB. (The free
2-category functor G : Cat-Graph → 2-Cat is of course the composite LF , but it may be
described more simply than either L or F using the idea of paths in a Cat-graph — see [7] for
the details.) The 2-category LB is obtained as a quotient of GVB; specifically, by the universal
2-functor GVB → LB for which the composite B → IGVB → ILB is a strict homomorphism of
bicategories. Clearly this B → ILB is the identity on objects and surjective on 1-cells. Moreover,
since it only identifies 1-cells which are isomorphic, this quotienting process does not result in the
creation of new 2-cells, and so the functors B(B,B′) → ILB(B,B′) are full. They need not be
faithful, as the following example shows. (A bicategory is said to have strict identities if the identity
law for composition of 1-cells holds, and the “identity isomorphisms” f1A

∼= f ∼= 1Bf are identities,
for any 1-cell f : A→ B.)

Example 1 Consider the bicategory B with strict identities, with objects A, B, C, D; with non-
identity 1-cells j : A → B, f, g : B → C, q : C → D, fj = gj = k : A → C, qf = qg = r : B → D,
and rj, qk : A → D; and with the only non-identity 2-cells being between rj and qk, these being
freely generated by α : rj ∼= qk and β : rj ∼= qk. The only non-trivial associativity isomorphisms
are (qf)j = rj ∼= qk = q(fj), given by α, and (qg)j = rj ∼= qk = q(gj), given by β. The monoid of
2-cells from rj to rj is clearly non-trivial. In the 2-category LB, however, there is only one 1-cell
(qf)j = q(fj) = q(gj) = (qg)j from A to D and no non-identity 2-cells.
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We summarize our results so far as:

Proposition 2 The strict homomorphism B → ILB is bijective on objects, surjective on arrows,
and locally full; it is not necessarily locally faithful, but if it is locally faithful then it is a biequiva-
lence.

Next we describe a different sort of structure underlying a bicategory. We define a compositional
graph to be a (directed) graph, with a chosen identity 1X : X → X for each object X, and a chosen
composite gf : X → Z for each composable pair (f : X → Y, g : Y → Z), but with neither the
associative law nor the identity laws assumed to hold. The compositional graphs are the object
of an evident category CGraph, which once again is locally finitely presentable, and once again
the evident forgetful functor V : Bicats → CGraph has a left adjoint D. This time, however,
the forgetful functor also has a right adjoint, which sends a compositional graph G to the (unique)
bicategory with the same underlying compositional graph, and with a single (invertible) 2-cell
between any parallel pair of arrows. The counit of the adjunction V ⊣ C is clearly invertible, so C
is fully faithful; it follows that D is also fully faithful, and that the unit of the adjunction D ⊣ V

is invertible.
Finally observe that there is a further forgetful functor W : CGraph → Graph from the

category of compositional graphs to the category of (directed) graphs, and that once again Graph

is locally finitely presentable, and W has a left adjoint H.
The various adjunctions described in this section are summarized in the following diagram:

2-Cat
⊥

I
// Bicats

⊥

⊥
V //

L
vv

U⊣

��

CGraph
⊥

W
//

D
uu

C

ii Graph

H
uu

Cat-Graph

F

CC

G

[[

2 The model structure for bicategories

As described in the introduction, we use the same notion of weak equivalence in Bicats as was used
in 2-Cat. Similarly, we use the same notion of trivial fibration: a strict homomorphism F : A → B

is a trivial fibration if it is surjective on objects, and each functor F : A (A,A′) → B(FA,FA′) is
surjective on objects and an equivalence. Thus a 2-functor is a weak equivalence or trivial fibration
in 2-Cat if and only if it is one in Bicats.

Recall that an arrow b : B′
→ B in a bicategory is an equivalence if there exist an arrow

b∗ : B → B′ and invertible 2-cells bb∗ ∼= 1B and 1B′
∼= b∗b. A strict homomorphism F : A → B is

said to be a fibration if it satisfies the following conditions:

(i) For every object A in A and every equivalence b : B′
→ FA in B there is an equivalence

a : A′
→ A in A with FA′ = B′ and Fa = b;

(ii) For every 1-cell a : A′
→ A in A and every invertible 2-cell β : b′ → Fa in B, there is an

invertible 2-cell α : a′ → a in A with Fa′ = b′ and Fα = β.
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We also say that F has the equivalence lifting property; note that this refers both to the lifting of
1-cells which are equivalences, as in (i), and to the lifting of 2-cells which are equivalences (actually
isomorphisms), as in (ii).

We say that a 2-functor is a fibration if it has the equivalence lifting property; this is not the
same as the definition in [5], which involved the lifting not just of the equivalence b, but also of the
b∗ and the invertible 2-cells. We shall see in Proposition 6 below how the current definition allows
one to lift these other data as well, provided that one works with adjoint equivalences.

It is straightforward to check that the biequivalences are closed under retracts and satisfy the 2-
out-of-3 property, and that the trivial fibrations are precisely the biequivalences with the equivalence
lifting property. We define the cofibrations to be the arrows with the left lifting property with
respect to the trivial fibrations, and we define the trivial cofibrations to be the arrows with the left
lifting property with respect to the fibrations.

Next we show that the trivial cofibrations are weak equivalences, using the existence of path
objects in Bicats. Every bicategory B is clearly fibrant; moreover we can factorize the diagonal map
B → B×B as a weak equivalence D : B → PB followed by a fibration

(

P
Q

)

: PB → B×B (such

a PB is called a path object for B). Explicitly, an object of PB is an equivalence b : B′
→ B in

B; a morphism from b : B′
→ B to c : C ′

→ C consists of arrows g : B → C and g′ : B′
→ C ′ and

an invertible 2-cell ψ : cg′ ∼= gb; a 2-cell from (g, ψ, g′) to (f, ϕ, f ′) consists of 2-cells γ : g → f and
γ′ : g′ → f ′ satisfying the obvious condition expressing compatibility with ψ and ϕ. These objects,
arrows, and 2-cells form an evident bicategory PB, with strict homomorphisms P,Q : PB → B

sending b : B′
→ B to B′ and to B, and with a strict homomorphism D : B → PB sending an

object B to the identity 1B : B → B. We omit the routine details, and the verification that D is a
weak equivalence and

(

P
Q

)

: PB → B × B is a fibration.
The fact that trivial cofibrations are weak equivalences now follows by a standard argument:

if F : A → B is a trivial cofibration, then since A is fibrant there is a map G : B → A with
GF = 1; since

(

P
Q

)

is a fibration there is now a fill-in H as in

A
F //

DF

��

B

Hxxpppppppppppp

( 1

F G)
��

PB
(P

Q)
// B × B.

Now PD = QD = 1 and D is a weak equivalence, so P and Q are weak equivalences; thus H is
a weak equivalence since PH = 1, and FG is a weak equivalence since QH = FG. Finally the
diagram

A
F //

F
��

B

FG
��

G // A

F
��

B
1

// B
1

// B

exhibits F as a retract of FG, and so F is a weak equivalence as required.
In Section 6, we shall describe small (in fact finite) sets I and J of generating cofibrations

and generating trivial cofibrations, so that the trivial fibrations are the arrows with the right lifting
property with respect to the generating cofibrations, and the fibrations are the arrows with the right
lifting property with the generating trivial cofibrations. Since Bicats is locally finitely presentable,
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and so every object is small, this guarantees the existence of the required factorizations, and by [4,
Theorem 2.1.19] we have:

Theorem 3 There is a cofibrantly generated model structure on the category Bicats of bicategories
and strict homomorphisms, for which the weak equivalences are the biequivalences, and the fibrations
are the strict homomorphisms with the equivalence lifting property.

Notice that PB is a 2-category if B is one, and so everything in this section works with 2-Cat

in place of Bicats. The generating cofibrations and generating trivial cofibrations for 2-Cat are
obtained by applying L : Bicats → 2-Cat to those for Bicats; this is also described in Section 6.
We then deduce:

Theorem 4 There is a cofibrantly generated model structure on the category 2-Cat of 2-categories
and 2-functors, for which the weak equivalences are the biequivalences, and the fibrations are the
2-functors with the equivalence lifting property.

This corrects the faulty definition in [5]. Note that everything in [5] becomes correct if we replace
the generating trivial cofibration j1 : 1 → E given on page 179 of [5] by the new generating trivial
cofibration j′

1
: 1 → E′, described in Section 6 below, where in place of the free-living equivalence

E we have the free-living adjoint equivalence E′. The later sections of [5], concerning cofibrations,
the homotopy relation, properness, relations with monoidal structure, and so on, can all be read
unchanged, and we now have two different proofs of the model category axioms for 2-Cat.

3 Fibrations

In this section we look at an alternative characterization of the fibrations. We defined a 1-cell
b : B′

→ B in a bicategory B to be an equivalence if there exist a 1-cell b∗ : B → B′, and invertible
2-cells β1 : 1B′ → b∗b and β2 : bb∗ → 1B . We say that (b, b∗, β1, β2) is an adjoint equivalence from
B′ to B if moreover the triangle equations are satisfied: these assert the commutativity of the
diagrams

b1B′

bβ1 // b(b∗b)

��

1B′b∗
β1b∗ // (b∗b)b∗

��

b

99ttttttt

%%JJ
JJ

JJ
J b∗

88rrrrrrr

&&LL
LL

LL
L

1Bb (bb∗)b
β2b

oo b∗1B b∗(bb∗)
b∗β2

oo

of 2-cells in B in which the unnamed arrows are associativity and unit isomorphisms in the bicat-
egory.

Every equivalence b : B′
→ B is part of an adjoint equivalence; in fact we have the following

well-known result about adjoint equivalences:

Lemma 5 Let b : B′
→ B and b∗ : B → B′ be 1-cells in a bicategory, and let β2 : bb∗ → 1B′

be an invertible 2-cell. If b∗b ∼= 1, then there is a unique invertible 2-cell β1 : 1 → b∗b for which
(b, b∗, β1, β2) is an adjoint equivalence.

The promised charaterization of fibrations is:
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Proposition 6 A strict homomorphism F : A → B of bicategories is a fibration if and only if it
satisfies condition (ii) in the definition of fibration, and also:

(i′) for any object A of A and any adjoint equivalence (b, b∗, β1, β2) from B′ to FA in B, there
exists an adjoint equivalence (a, a∗, α1, α2) from A′ to A in A , with FA′ = B′, Fa = b, Fa∗ = b∗,
Fα1 = β1, and Fα2 = β2.
Similarly, a 2-functor F : A → B is a fibration if and only if it satisfies conditions (i′) and (ii).

Proof: We prove the statement involving strict homomorphisms; the case of 2-functors is an
immediate consequence.

Since every equivalence is part of an adjoint equivalence, (i′) certainly implies (i). Suppose
conversely that F : A → B satisfies (i) and (ii), and let A be an object of A , and (b, b∗, β1, β2)
an adjoint equivalence in B from B′ to FA. By (i), there is an equivalence a : A′

→ A in A with
FA′ = B′ and Fa = b. By Lemma 5 there is an adjoint equivalence (a, a′, α′

1
, α′

2
) in A from A′ to

A. Since b is an equivalence and Fα′
2

is invertible, there is a unique invertible 2-cell ζ : b∗ → Fa′

in B for which the composite

bb∗
bζ // b.Fa′ = F (aa′)

Fα′

2 // 1B

is equal to β2. By condition (ii) there is an invertible 2-cell ξ : a∗ → a′ with Fa∗ = b∗ and Fξ = ζ.
Let α2 : aa∗ → 1 be the (invertible) composite

aa∗
aξ // aa′

α′

2 // 1

in A , so that Fα2 = β2. Since a∗a ∼= a′a ∼= 1, there is by Lemma 5 a unique invertible 2-cell α1

with (a, a∗, α1, α2) an adjoint equivalence in A . Since Fa = b, Fa∗ = b∗, and Fα2 = β2, by the
uniqueness aspect of Lemma 5 also Fα1 = β1. �

4 Cofibrations

In this section we study the cofibrations and cofibrant objects in Bicats using the adjunctions
D ⊣ V ⊣ C and H ⊣W .

We shall say that a morphism F : G → H of compositional graphs is full if for all objects X and
Y the map F : G (X,Y ) → H (FX,FY ) is surjective, and say that F is surjective if it is surjective
on objects and full. Finally we say that a compositional graph is projective if it is projective with
respect to the surjections in CGraph.

Proposition 7 A strict homomorphism of bicategories M : A → B is a cofibration if and only if
VM : VA → VB has the left lifting property with respect to the surjections in CGraph.

Proof: If M is a cofibration and

VA
V M //

S

��

VB

T

��
G

P
// H
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is a diagram in CGraph with P surjective, then the adjunction V ⊣ C induces a diagram

A
M //

S′

��

B

T ′

��
CG

CP
// CH

in Bicats with CP a trivial fibration. Since M is a cofibration, there exists a fill-in R′ : B → CG

for the latter square, and so a fill-in R : VB → G for the former square. This proves that VM has
the left lifting property with respect to the surjections in CGraph.

Suppose conversely that VM has the left lifting property with respect to the surjections in
CGraph and that

A
M //

S
��

B

T
��

E
P

// D

is a diagram in Bicats with P a trivial fibration. Applying V gives a diagram in CGraph with
V P a surjection, and so a fill-in R0 as in

VA
V M //

V S
��

VB

V T
��R0{{www

ww
ww

ww

V E
V P

// VD .

Since DVB has the same objects, arrows, composition, and identities as B, while P : E → D

is locally fully faithful, there is a unique strict homomorphism R : B → E with V R = R0 and
PR = T . Moreover, V (RM) = R0.V M = V S, so that RM agrees with S on objects and arrows,
while PRM = TM = PS ensures that RM agrees with S on 2-cells; thus RM = S, and so R

provides the desired fill-in to exhibit M as a cofibration. �

We shall say that a compositional graph is free if it is in the image of the left adjoint H :
Graph → CGraph.

Lemma 8 A bicategory is cofibrant if and only if it is a retract of a bicategory whose underlying
compositional graph is free.

Proof: By the proposition, a bicategory B will be cofibrant if VB is projective (with respect to
the surjections in CGraph). But any free compositional graph will clearly be projective. Since
a retract of a cofibrant object is cofibrant this proves one half of the lemma. Suppose conversely
that B is cofibrant, and consider its underlying compositional graph VB, which by Proposition 7
will be projective. The canonical map HWVB → VB is bijective on objects and surjective on
arrows, hence the same is true of DHWVB → DVB, while the canonical DVB → B is bijective
on objects and bijective on arrows. Thus the composite DHWVB → B is bijective on objects and
surjective on arrows, and when we factorize this composite as

DHWVB
E // QB

J // B

7



where E is bijective on objects and bijective on arrows and J is locally fully faithful, J will also
be bijective on objects and surjective on arrows, and so a trivial fibration. Since B is cofibrant, J
will have a section and so B is a retract of QB. But V QB = V DHWVB = HWVB, hence the
result. �

Our final result for this section will be crucial in the proof that Bicats and 2-Cat are Quillen
equivalent.

Lemma 9 If B is cofibrant, and M : B → C is a homomorphism of bicategories, then there is a
strict homomorphism M ′ : B → C which is equivalent to M ; in particular, if M is a biequivalence
then M ′ will be one.

Proof: For an arbitrary bicategory B we have the strict homomorphism ε : FUB → B, and we
factorize this as

FUB
E //

B′
J // B

where E and J are strict homomorphisms, with E bijective on objects and arrows, and with J

locally fully faithful. Since ε is bijective on objects and surjective on arrows, the same is true of J ,
and so J is in fact a trivial fibration.

Given a homomorphism of bicategories M : B → C , there is an underlying morphism UM :
UB → UC of Cat-graphs, and so a strict homomorphism FUM : FUB → FUC . Consider the
following (non-commuting) square:

FUB
FUM //

ε

��

FUC

ε

��
B

M
// C .

The two paths around the square agree on objects, and on the arrows which are the “generators” of
the free bicategory FUB. They agree on all arrows only if the homomorphism M is strict, but they
will nonetheless agree on all arrows up to isomorphism. In fact we may take these isomorphisms as
the pseudonaturality isomorphisms of a pseudonatural equivalence between the two paths around
the square, with the components of the pseudonatural transformation being identity arrows in C .

Since E : FUB → B′ is bijective on objects and bijective on arrows, and J : C ′
→ C is locally

fully faithful, there is now a strict homomorphism M ′ : B′
→ C ′ for which the upper square in the

diagram

FUB
FUM //

E

��

FUC

E

��
B′

M ′

//

J

��

C ′

J

��

≃

B
M

// C
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commutes and the lower square does so up to (pseudonatural) equivalence: one uses FUM to define
M ′ on objects and arrows, and uses M to define M ′ on 2-cells. Finally if B is cofibrant, then there
is a strict homomorphism K : B → B′ with JK = 1, so we may take F ′ = JM ′K.

�

5 The Quillen equivalence

We now compare the model structures on 2-Cat and Bicats, using the adjunction L ⊣ I. Since I
preserves weak equivalences and fibrations, this is a Quillen adjunction. We shall show that it is
in fact a Quillen equivalence, so that the derived adjunction between the homotopy categories will
be an equivalence.

By [4, Proposition 1.3.13], the adjunction will be a Quillen equivalence provided that the com-
posites

B
ρ // ILB

Ir // IRLB

LQIC
Lq // LIC C

are weak equivalences whenever B is a cofibrant bicategory and C is a fibrant 2-category, where
q : QIC → IC is a cofibrant replacement in Bicats of IC , and r : LB → RLB is a fibrant
replacement of LB in 2-Cat. Since every 2-category is fibrant, this amounts to proving that
ρ : B → ILB is a weak equivalence if B is cofibrant, and that Lq : LQIC → LIC is a weak
equivalence for any C .

We first prove:

Lemma 10 If B is a cofibrant bicategory then ρ : B → ILB is a trivial fibration, and so in
particular a biequivalence of bicategories.

Proof: By Proposition 2 it will suffice to show that ρ : B → ILB is locally faithful. By the
coherence theorem for bicategories [6], there is a biequivalence M : B → IC for some 2-category
C . By Lemma 9, we can replace M by an equivalent 2-functor M ′ which will still be a biequivalence.
By the universal property of LB there is a 2-functor N : LB → C with M ′ equal to the composite
of ρ and IN . Now M ′ is locally faithful since it is a biequivalence, thus ρ is locally faithful, and so
ρ is in fact a trivial fibration. �

We are now ready to show:

Theorem 11 Consider the model structures on the categories Bicats, of bicategories and strict
homomorphisms, and 2-Cat, of 2-categories and 2-functors. The fully faithful inclusion of 2-Cat

into Bicats is the right adjoint part of a Quillen equivalence.

Proof: It remains to show that Lq : LQIC → LIC is a weak equivalence for any 2-category C .
Consider the diagram

ILQIC
ILq // ILIC

QIC

ρ

OO

q
// IC

ρ

OO
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which commutes by naturality of ρ. Now ρ : IC → ILIC is invertible, and q : QIC → C is a weak
equivalence, while ρ : QIC → ILQIC is a weak equivalence since QIC is cofibrant. Thus ILq is a
weak equivalence, and so finally Lq is one. �

6 Generating cofibrations and trivial cofibrations

In this section we describe the generating cofibrations and generating trivial cofibrations for the
model structure on Bicats, using the forgetful functor U : Bicats → Cat-Graph and its left
adjoint F .

We say that a morphism M : G → H of Cat-graphs is a trivial fibration if it is surjective
on objects and each M : G (X,Y ) → H (FX,FY ) is a surjective equivalence; clearly a strict
homomorphism M : A → B of bicategories is a trivial fibration in Bicats if and only if UM is a
trivial fibration in Cat-Graph. We shall describe “generating cofibrations” in Cat-Graph, and
then apply F : Cat-Graph → Bicats to obtain generating cofibrations in Bicats.

Let 0 denote the empty Cat-graph, and 1 the Cat-graph with a single object ∗ and 1(∗, ∗) equal
to the empty category. To give a morphism 1 → G is to give an object of G , and so a morphism
of Cat-graphs is surjective on objects if and only if it has the right lifting property with respect
to the unique map ! : 0 → 1. If C is a category, write 2C for the Cat-graph with objects X and
Y , and hom-categories 2C(X,X) = 2C(Y, Y ) = 2C(Y,X) = 0 and 2C(X,Y ) = C; this is obviously
functorial in C, so that a functor f : C → D induces a morphism 2f : 2C → 2D of Cat-graphs.
To give a morphism 2C → G is to give objects X and Y of G, and a functor C → G(X,Y ). A
morphism M : G → H of Cat-graphs has each G (X,Y ) → H (MX,MY ) a surjective equivalence
if and only if M has the right lifting property with respect to 2i, 2i′ , and 2i′′ , where i, i′, and i′′

are the three generating cofibrations for the model structure on Cat [5, Example 1.1]. (Explicitly,
i is the unique functor from the empty category to the terminal category, i′ is the identity-on-
objects functor from the discrete category with two objects to the “arrow category” 2, and i′′ is
the identity-on-objects functor from the category with two objects and two parallel non-identity
arrows to the arrow-category 2.) Thus we have four “generating cofibrations” ! : 0 → 1, 2i, 2i′ , and
2i′′ in Cat-Graph, and now applying the left adjoint F : Cat-Graph → Bicats we obtain the
desired generating cofibrations F !, F2i, F2i′ , and F2i′′ in Bicats.

Next we consider the fibrations and generating trivial cofibrations. Condition (ii) in the defi-
nition of fibration can once again be expressed using the adjunction F ⊣ U . If j is the generating
trivial cofibration of [5, Example 1.1] (from the terminal category to the “free-living isomorphism”),
then a strict homomorphism of bicategories has the right lifting property with respect to F2j if
and only if it satisfies condition (ii). We now turn to condition (i′). Here we use the bicategory
E with two objects x and y, freely generated by 1-cells s : x → y and t : y → x, and invertible
2-cells 1 → ts and st→ 1 satisfying the triangle equations. An explicit construction is complicated
by the fact that composition will not be strictly associative, but all we really need is the existence
of E , and about this there is no doubt. To give an adjoint equivalence in B is now precisely to
give a strict homomorphism E → B. The Cat-graph morphism 1 → UE picking out the object
x induces a strict homomorphism k : F1 → E , and the right lifting property with respect to k is
precisely condition (i′). Thus the fibrations are precisely the strict homomorphisms with the right
lifting property with respect to the generating trivial cofibrations F2j and k.

This completes the missing step in the proof of Theorem 3.
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Finally we observe that applying the left adjoint L : Bicats → 2-Cat to the generating cofibra-
tions recovers the generating cofibrations in 2-Cat given in [5]; and applying L to F2j recovers the
generating trivial cofibration j2 of [5]. Applying L to k gives j′

1
: 1 → E′, which is what “should”

have been taken as the final generating trivial cofibration. It is easier to describe concretely than
k; the domain is the terminal 2-category 1, and the codomain has objects x and y, 1-cells given
1x, 1y, and all “alternating non-empty words in s and t”, such as sts, tststs, and so on; there is a
unique 2-cell between any parallel pair of 1-cells, and every 2-cell is invertible.

This completes the missing step in the proof of Theorem 4.
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