
June 30, 2015 11:15 chernbook-9.75x6.5 BC: 9563 - Topics in Contemporary Mathematical Phys. preamMathBook˙1n2 page 533

Chapter 42

Chern-Simons Forms

Chern-Simons forms arise from the Chern classes by a procedure called trans-
gression, which involves pulling a characteristic form C on the base manifold
M of a bundle π : E → M back to the total space E by π∗, and thereby making
the pullback form an exact form on E:

π∗C = d(CS(C)) .

The Chern-Simons form CS(C) so obtained has generated numerous important
applications in physics, for example, in topological quantum field theory and
condensed matter physics (fractional statistics and the quantum Hall effect).

We will begin with an informal discussion on transgression. Following Chern
(see Chern 1990) we use the example of the two-dimensional Gauss-Bonnet
formula [c.f. (41.123), Theorem 41.6]. Let M be a two-dimensional oriented
Riemannian manifold and π : P → M be the orthonormal frame bundle of
M . A point in the total space P is then written (x; e1e2), where (e1, e2) is an
orthonormal frame with origin at x ∈ M , and the projection π sends (x; e1e2) to
its origin x. Choose a frame field (e01, e

0
2) with dual coframe field ((ω0)1, (ω0)2).

Then we have the local expressions

e1 = (cos τ)e01 + (sin τ)e02 , e2 = (− sin τ)e01 + (cos τ)e02 ; (42.1)

and

ω1 = (cos τ)(ω0)1 + (sin τ)(ω0)2 , ω2 = (− sin τ)(ω0)1 + (cos τ)(ω0)2 , (42.2)

where (ω1, ω2) is the dual coframe of (e1, e2), and τ , the angle between e01 and
e1, is the local fiber coordinate. Eqs. (42.2) show that ω1 and ω2 are globally
well-defined one-forms on P . Exteriorly differentiating ω1, we get

dω1 = − sin τdτ ∧ (ω0)1 + cos τdτ ∧ (ω0)2 + cos τd(ω0)1 + sin τd(ω0)2 . (42.3)

We can always write

d(ω0)1 = a (ω0)1 ∧ (ω0)2 , d(ω0)2 = b (ω0)1 ∧ (ω0)2 , (42.4)
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where a and b only depend on base manifold coordinates. By (42.2), we then
have

d(ω0)1 = a′ ω1 ∧ ω2 , d(ω0)2 = b′ ω1 ∧ ω2 , (42.5)

where a′ and b′ now are quantities depending on both base manifold coordinates
and the fiber coordinate τ , that is, functions on P . Substituting (42.5) in (42.3),
and performing a similar calculation for dω2, we obtain

dω1 = dτ ∧ ω2 +Aω1 ∧ ω2 , dω2 = ω1 ∧ dτ +B ω1 ∧ ω2 , (42.6)

where A and B are functions on P . Now define the following one-form on P ,

ω2
1 ≡ dτ +Aω1 +Bω2 = −ω1

2 . (42.7)

Then,

dω1 = ω2
1 ∧ ω2 = ω2 ∧ ω1

2 , (42.8)

dω2 = ω1 ∧ ω2
1 . (42.9)

These are precisely the structure equations given by (31.33): they completely
determine the 1-form ω2

1 , which, in fact, is the connection 1-form. The structure
equations (42.8) and (42.9) express the fact that the connection is torsion-free
[c.f. (39.123)]. Taking the exterior derivatives of both sides of (42.8) we find

0 = dω2
1 ∧ ω2 − ω2

1 ∧ dω2 . (42.10)

But, from (42.6) and (42.7),

ω2
1 ∧ dω2 = (dτ +Aω1 +Bω2) ∧ (ω1 ∧ dτ +B ω1 ∧ ω2)

= Bdτ ∧ ω1 ∧ ω2 +B ω2 ∧ ω1 ∧ dτ = 0 . (42.11)

Hence,
dω2

1 ∧ ω2 = 0 . (42.12)

Similarly, exterior differentiation of (42.9) yields

dω2
1 ∧ ω1 = 0 . (42.13)

The above two equations imply the following basic result of transgression:

dω2
1 = −K ω1 ∧ ω2 . (42.14)

It may be suspected that K is in general a function on P , but it is in fact just a
function onM , as can be shown easily as follows. Indeed, exterior differentiation
of (42.14) gives

0 = −dK ∧ ω1 ∧ ω2 −Kd(ω1 ∧ ω2)

= dK ∧ ω1 ∧ ω2 +K (dω1 ∧ ω2 − ω1 ∧ dω2) = dK ∧ ω1 ∧ ω2 ,
(42.15)
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where the last equality follows from the expressions of dω1 and dω2 given by
(42.6). Now (42.7) implies that

ω1 ∧ ω2 ∧ ω2
1 = ω1 ∧ ω2 ∧ dτ �= 0 . (42.16)

Since ω1, ω2 and hence ω2
1 are all globally defined, the above equation indicates

that P has a coframe field ω1, ω2, ω2
1 , and is thus parallelizable. If K did

depend on the fiber coordinate τ , dK would have a term proportional to dτ
and (42.16) would then imply that dK ∧ω1∧ω2 �= 0, which contradicts (42.15).
Thus K is a function on the base manifold M . We observe that ω1 ∧ ω2 is the
area element on M and K is the Gaussian curvature of M . [c.f. (39.166) and
the results of Exercises 39.14 to 39.17].

The transgression result (42.14) contains the essence of Chern’s elegant proof
of the Gauss-Bonnet theorem. Its importance lies in the following observation.
By (42.16) and the fact that K is a function on M , −K ω1 ∧ ω2 is a 2-form
on M , and as such, is not exact. However, when pulled back to P , the LHS of
(42.14) indicates that it becomes the exterior derivative of a 1-form on P (the
connection 1-form ω2

1) and is thus exact on P . By the Gauss-Bonnet Theorem

the 2-form
1

2π
K ω1 ∧ ω2 is in fact the Euler class.

The transgression procedure described above rests on a basic fact: P is
always parallelizable, equivalently, a global frame field always exists on P , even
though it may not exist on the base manifold M . This fact is easily seen as
follows. Consider an arbitrary principal G-bundle π : P → M . Using the
projection operator π we can construct the pullback bundle π∗(P ) with base
manifold P , called the square bundle of P . This bundle admits the “diagonal”
global section p �→ (p, p), and hence, by Theorem 37.2, is always trivial. In this
sense, the total space P is always simpler than the base manifold M .

Let us now apply the transgression procedure to the Chern classes by pulling
them back to the frame bundle π′ : P → M associated with a complex vector
bundle π : E → M . Suppose in a local coordinate neighborhood of M we have
a local expression ω for a given connection with respect to a choice of a local
frame field {ei} on E. Under a local change of gauge, or a local change of frame
field,

(e′)i = gji ej , (gji ) ∈ G , (42.17)

we have [c.f. (35.17)] the following expression for the connection matrix:

ϕ = (dg) g−1 + g ω g−1 . (42.18)

If the elements gji of the matrix g are considered as local fiber coordinates, then
ϕ becomes the pullback of ω by (π′)∗, that is,

ϕ = (π′)∗ (ω) , (42.19)

and is a well-defined connection matrix of one-forms on P . The corresponding
curvature matrix of 2-forms

Φ = dϕ− ϕ ∧ ϕ = gΩ g−1 , (42.20)
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where Ω = dω − ω ∧ ω, is also well-defined on P .
Consider the first Chern class [(41.76)]

C1(Φ) =
i

2π
TrΦ . (42.21)

By (42.20), TrΦ is given by

TrΦ = Tr dϕ− Tr (ϕ ∧ ϕ) = Tr (dϕ) = d(Tr ϕ) , (42.22)

since
Tr (ϕ ∧ ϕ) = 0 , (42.23)

by virtue of the fact that

Tr (ϕ ∧ ϕ) = ϕj
i ∧ ϕi

j = −ϕi
j ∧ ϕj

i = −Tr (ϕ ∧ ϕ) . (42.24)

Thus,

C1(Φ) =
i

2π
d(Tr ϕ) . (42.25)

In other words, the first Chern class can be written explicitly as an exact form
on P .

Now consider the second Chern class [(41.77)]

C2(Φ) =
1

2

(
i

2π

)2

[TrΦ ∧ TrΦ− Tr (Φ ∧ Φ) ] . (42.26)

For the curvature form Φ on P we have the Bianchi identity [c.f. (35.36)]

dΦ = ϕ ∧ Φ− Φ ∧ ϕ . (42.27)

From (42.22),

TrΦ ∧ TrΦ = d(Tr ϕ) ∧ d(Tr ϕ) = d(Tr ϕ ∧ d(Tr ϕ)) . (42.28)

To show that the term Tr (Φ ∧ Φ) in C2(Φ) is also exact on P , we perform
the following calculations. First we have, using (42.20) for Φ and the Bianchi
identity (42.27),

d(Tr (ϕ ∧ Φ)) = Tr (d(ϕ ∧ Φ)) = Tr (dϕ ∧ Φ− ϕ ∧ dΦ)

= Tr (dϕ ∧ Φ)− Tr (ϕ ∧ dΦ)

= Tr ((Φ + ϕ ∧ ϕ) ∧Φ)− Tr (ϕ ∧ (ϕ ∧Φ− Φ ∧ ϕ))

= Tr (Φ ∧ Φ) + Tr (ϕ ∧ Φ ∧ ϕ) = Tr (Φ ∧Φ)− Tr (ϕ ∧ ϕ ∧ Φ) ,

(42.29)

where in the last equality we have used the fact that

Tr (ϕ ∧ Φ ∧ ϕ) = −Tr (ϕ ∧ ϕ ∧ Φ) , (42.30)
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which can be demonstrated as follows:

Tr (ϕ ∧Φ ∧ ϕ) = ϕj
i ∧Φk

j ∧ ϕi
k = ϕj

i ∧ ϕi
k ∧ Φk

j

= −ϕi
k ∧ ϕj

i ∧ Φk
j = −Tr (ϕ ∧ ϕ ∧ Φ) .

(42.31)

We also have, again from (42.20) and (42.27),

d[Tr (ϕ ∧ ϕ ∧ ϕ) ] = Tr [ d(ϕ ∧ ϕ ∧ ϕ) ] = Tr [ d(ϕ ∧ (dϕ− Φ)) ]

= Tr [ d(ϕ ∧ dϕ)− d(ϕ ∧ Φ) ] = Tr [ dϕ ∧ dϕ− (dϕ ∧Φ− ϕ ∧ dΦ) ]

= Tr [ (Φ + ϕ ∧ ϕ) ∧ (Φ + ϕ ∧ ϕ)− (Φ + ϕ ∧ ϕ) ∧Φ + ϕ ∧ (ϕ ∧ Φ− Φ ∧ ϕ) ]

= Tr [ Φ ∧ ϕ ∧ ϕ+ ϕ ∧ ϕ ∧Φ− ϕ ∧Φ ∧ ϕ+ ϕ ∧ ϕ ∧ ϕ ∧ ϕ ]

= 3Tr (ϕ ∧ ϕ ∧ Φ) .

(42.32)

In the last equality, we have used (42.30) and the facts that

Tr (Φ ∧ ϕ ∧ ϕ) = Tr (ϕ ∧ ϕ ∧ Φ) , (42.33)

Tr (ϕ ∧ ϕ ∧ ϕ ∧ ϕ) = 0 . (42.34)

Exercise 42.1 Prove (42.33) and (42.34). Consult the derivation of (42.30)
given by (42.31).

It follows from (42.29) and (42.32) that

Tr (Φ ∧ Φ) = d(Tr (ϕ ∧Φ)) + Tr (ϕ ∧ ϕ ∧Φ)

= d(Tr (ϕ ∧ Φ)) +
1

3
d(Tr (ϕ ∧ ϕ ∧ ϕ)) = d [Tr (ϕ ∧ Φ) +

1

3
Tr (ϕ ∧ ϕ ∧ ϕ) ] ;

(42.35)

and hence

C2(Φ) = d

[
1

2

(
i

2π

)2

{Trϕ ∧ d(Tr ϕ)− CS(ϕ)}
]

, (42.36)

where CS(ϕ), known as the Chern-Simons 3-form, is given by

CS(ϕ) ≡ Tr (ϕ ∧ Φ) +
1

3
Tr (ϕ ∧ ϕ ∧ ϕ) . (42.37)

Thus, as for C1(Φ), the second Chern class C2(Φ) is also exact on P . Using
(42.20), the Chern-Simons 3-form can also be written as

CS(ϕ) = Tr (ϕ ∧ dϕ− 2

3
ϕ ∧ ϕ ∧ ϕ) . (42.38)
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There is a very simple reason why the pullback forms Ci(Φ) on P must be
exact. First, by naturality of the Chern classes,

Ci(Φ) = Ci((π
′)∗ Ω) = (π′)∗ (Ci(Ω)) . (42.39)

Thus Ci(Φ) is the pullback of the Chern class Ci(Ω), where the latter is defined
on the frame bundle π′ : P → M . In other words Ci(Φ) is a Chern class of the
square bundle (π′)∗ (P ) (with base space P ), which, as we have seen, is trivial.
Since Ci(Φ) ∈ H2i(P ), and all characteristic classes of trivial bundles are trivial
[by Corollary 41.1], Ci(Φ) must be exact (as a 2i-form on P ). One can then
always write

Ci(Φ) = (π′)∗ (Ci(Ω)) = d(TCi(ϕ)) , (42.40)

where TCi(ϕ) denotes the transgression of the i-th Chern class. TCi(ϕ) are
also referred to as the Chern-Simons forms. Note that they are not necessar-
ily characteristic classes, since TCi(ϕ) are not necessarily closed [d(TCi(ϕ)) =
Ci(Φ)].

The Chern-Simons forms can be given explicit general expressions by the
following theorem.

Theorem 42.1. Let Pj(Ω) be an ad-invariant polynomial of order j [c.f. (41.43)],
where Ω is the curvature form of a G-valued connection ω on a principal G-
bundle π′ : P → M (c.f. Defs. 37.7 and 37.11). Let Φ = (π′)∗ (Ω) and set

Φt ≡ tΦ+
1

2
(t2 − t) [ϕ, ϕ ]G , (42.41)

where [ , ]G is in the sense of (37.90) and ϕ = (π′)∗ (ω). Define the (2j−1)-form

TPj(ϕ) ≡ j

∫ 1

0

Pj(ϕ,Φt, . . . ,Φt︸ ︷︷ ︸
(j−1) times

)dt . (42.42)

Then
d(TPj(ϕ)) = (π′)∗ (Pj(Ω)) = Pj(Φ) . (42.43)

Proof. Let f(t) ≡ Pj(Φt). Then f(0) = 0 and f(1) = Pj(Φ), so that

Pj(Φ) =

∫ 1

0

dPj(Φt)

dt
dt =

∫ 1

0

f ′(t)dt .

We need to show that

f ′(t) = j dPj(ϕ,

(j−1) times︷ ︸︸ ︷
Φt, . . . ,Φt ) . (42.44)

By the definition of f(t),

f ′(t) =
dPj(Φt)

dt
= j Pj(

dΦt

dt
,

(j−1) times︷ ︸︸ ︷
Φt, . . . ,Φt ) . (42.45)
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From (42.41),
dΦt

dt
= Φ+ (t− 1/2) [ϕ, ϕ ]G . (42.46)

Thus

f ′(t) = j Pj(Φ,Φt, . . . ,Φt) + j (t− 1/2)Pj([ϕ, ϕ ]G ,Φt, . . . ,Φt ) . (42.47)

On the other hand, recalling the proof of (41.31),

j dPj(ϕ,Φt, . . . ,Φt) = j Pj(dϕ,Φt, . . . ,Φt)

− j(j − 1)Pj(ϕ, dΦt,Φt, . . . ,Φt︸ ︷︷ ︸
(j−2) times

) . (42.48)

Since, by the structural equation (37.116) of the connection ϕ,

Φ = dϕ+
1

2
[ϕ, ϕ ]G , (42.49)

(42.48) implies that

j dPj (ϕ,Φt, . . . ,Φt ) = j Pj(Φ,Φt, . . . ,Φt)

− 1

2
j Pj( [ϕ, ϕ ]G ,Φt, . . . ,Φt )− j(j − 1)Pj(ϕ, dΦt,Φt, . . . ,Φt︸ ︷︷ ︸

(j−2) times

) . (42.50)

Besides (37.116) we have the Bianchi identity [c.f. (37.125)]:

dΦ = [Φ, ϕ ]G . (42.51)

From these two equations

dΦt = d

(
tΦ+

1

2
(t2 − t) [ϕ, ϕ ]G

)
= tdΦ+

1

2
(t2 − t) d[ϕ, ϕ ]G

= t [ Φ, ϕ ]G +
1

2
(t2 − t) { [ dϕ, ϕ ]G − [ϕ, dϕ ]G}

= t [ Φ, ϕ ]G +
1

2
(t2 − t)

{
[ Φ− 1

2
[ϕ, ϕ ]G , ϕ ]G − [ϕ, Φ− 1

2
[ϕ, ϕ ]G ]G

}
= t [ Φ, ϕ ]G +

1

2
(t2 − t) { [ Φ, ϕ ]G − [ϕ, Φ ]G }

= t [ Φ, ϕ ]G + (t2 − t) [ Φ, ϕ ]G = t2[ Φ, ϕ ]G = t [ Φt, ϕ ]G ,

(42.52)

where in the third equality we have used (37.97) for the calculation of d [ϕ, ϕ ]G ,
and in the fourth and the last equality we have used the result [ [ϕ, ϕ ], ϕ ]G = 0,
which in turn follows from (37.96). Using (42.52) in (42.50) we have

j dPj (ϕ,Φt, . . . ,Φt) = j Pj(Φ,Φt, . . . ,Φt)−
1

2
jPj( [ϕ, ϕ ]G ,Φt, . . . ,Φt )

− j(j − 1) tPj(ϕ, [ Φt, ϕ ]G ,Φt, . . . ,Φt︸ ︷︷ ︸
(j−2) times

) . (42.53)
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We will next use the result (41.29), written in a slightly different form as

j∑
i=1

(−1)d1 + ...+ di Pj(A1, . . . , [Ai, θ ]G , . . . , Aj) = 0 . (42.54)

With A1 = θ = ϕ, A2 = · · · = Aj = Φt, it yields

−Pj([ϕ, ϕ ]G ,Φt, . . . ,Φt)− (j − 1)Pj(ϕ, [ Φt, ϕ ]G ,Φt, . . . ,Φt) = 0 . (42.55)

Applying this result to the last term on the RHS of (42.53) we finally have

j dPj(ϕ,Φt, . . . ,Φt) = j Pj(Φ,Φt, . . . ,Φt)−
1

2
jPj( [ϕ, ϕ ]G ,Φt, . . . ,Φt )

+ jtPj( [ϕ, ϕ ]G ,Φt, . . . ,Φt ) = f ′(t) , (42.56)

where the last equality follows from (42.47)

As an example let us consider P2(Φ) = Tr (Φ ∧ Φ). Formula (42.42) for the
transgression of P2(Φ) gives

TP2(ϕ) = 2

∫ 1

0

P2(ϕ,Φt)dt = 2

∫ 1

0

dt T r (ϕ ∧ Φt) . (42.57)

Eq. (42.41) gives

Φt = tΦ− 1

2
(t2 − t) 2ϕ ∧ ϕ

= t(dϕ− ϕ ∧ ϕ)− (t2 − t)ϕ ∧ ϕ = tdϕ− t2 ϕ ∧ ϕ ,
(42.58)

where we have used (37.135). Thus

TP2(ϕ) = Tr

∫ 1

0

dt (2t ϕ ∧ dϕ− 2t2 ϕ ∧ ϕ ∧ ϕ)

= Tr

(
ϕ ∧ dϕ− 2

3
ϕ ∧ ϕ ∧ ϕ

)
= CS(ϕ) ,

(42.59)

which is the same result as (42.38).
We note the following properties of transgression forms without proof.

Theorem 42.2. Let Pl be an ad(G)-invariant symmetric polynomial of degree
l and Qs be the same of degree s. Then

i) PlQs(

(l+s) times︷ ︸︸ ︷
Φ, . . . ,Φ ) = Pl(

l times︷ ︸︸ ︷
Φ, . . . ,Φ ) ∧Qs(

s times︷ ︸︸ ︷
Φ, . . . ,Φ ) . (42.60)

ii) T (PlQs (ϕ)) = TPl(ϕ) ∧Qs(Φ, . . . ,Φ) + exact form

= TQs(ϕ) ∧ Pl(Φ, . . . ,Φ) + exact form . (42.61)
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Theorem 42.3. Let ω(t) be a smooth one-parameter family of connections on
a principal G-bundle π : P → M with t ∈ [ 0, 1 ]. Let ϕ(t) = π∗ (ω(t)). Set
ϕ(0) = ϕ and

φ′ ≡ d

dt
ϕ(t)

∣∣∣∣
t=0

. (42.62)

If Pj is an ad(G)-invariant symmetric polynomial of degree j, then

d

dt
(TPj(ϕ(t))

∣∣∣∣
t=0

= j Pj(ϕ
′,

(j−1) times︷ ︸︸ ︷
Φ, . . . ,Φ ) + exact form , (42.63)

where Φ = dϕ− ϕ ∧ ϕ is the curvature form corresponding to ϕ.

Suppose dim(M) = m (where M is the base manifold of π′ : P → M). If
2j > m, then Pj(Ω) = 0 and so

Pj(Φ) = Pj((π
′)∗Ω) = (π′)∗(Pj(Ω)) = 0 .

Thus by (42.43), TPj(ϕ) is closed, and so defines an element (TPj(ϕ)) ∈
H2j−1(P ), that is, a cohomology class in P . We have the following basic the-
orem concerning the transgression forms TPj(ϕ), which will be stated without
proof.

Theorem 42.4. Let π′ : P → M be a principal G-bundle with connection ω
and corresponding curvature Ω; ϕ = (π′)∗(ω) and Φ = (π′)∗(Ω) be the pullback
connection and curvature on P , respectively. Suppose Pj(Ω) is an ad-invariant
polynomial of order j, and dim(M) = m. Then

i) If 2j − 1 > m, then TPj(ϕ) is closed and [TPj(ϕ) ] ∈ H2j−1(P,R) is
independent of the choice of the connection ϕ.

ii) If 2j − 1 = m, then TPj(ϕ) is closed and [TPj(ϕ) ] ∈ Hm(P,R) depends
on the connection ϕ.

For the case 2j − 1 > m, then, the transgression form TPj(ϕ) defines a
characteristic class called a secondary characteristic class. For example, for
dim(M) = m = 3, the Chern-Simons form CS(ϕ) = TP2(ϕ) (j = 2) is closed
but depends on the choice of the connection ϕ.

Suppose now that G = GL(m,R) and π : P → M is the (principal) frame
bundle of M , with a GL(m,R)-valued connection ϕ. This connection can be
restricted to a subbundle of orthonormal frames, π′ : P ′ → M , with structure
group O(m). We then have the following theorem (stated without proof).

Theorem 42.5. Let π : P → M be the frame bundle on M (dim(M) = m)
with connection ϕ. Suppose ϕ restricts to a connection on an O(m) subbundle
of P , and let the curvature form on this subbundle be Φ. Let

Qj(A1, . . . , Aj) =
1

j!

∑
σ ∈Sj

Tr (Aσ(1)Aσ(2) . . . Aσ(j) ) (42.64)
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be the symmetrized trace of the m×m matrices A1, . . . , Aj. Then

i) Q2j+1(

(2j+1) times︷ ︸︸ ︷
Φ, . . . ,Φ ) = 0 , (42.65)

ii) TQ2j+1(ϕ) is exact . (42.66)

i) and ii) imply that (TQ2j+1(ϕ)) is the trivial cohomology class on the subbundle
of orthonormal frames on M .

We will now specialize to the case where M is a Riemannian manifold with a
Riemannian metric g, and ω the corresponding Levi-Civita connection on TM .
Consider the frame bundle π : P → M and let ϕ = π∗(ω) be the pullback of ω
on P . ϕ restricts to a connection (still denoted by ϕ) on the O(m)-subbundle
of orthonormal frames π′ : P ′ → M . We say that two Riemannian metrics g
and ĝ are conformally related if

ĝ = eh g , (42.67)

where h ∈ C∞(M) (a smooth function on M). The transgression forms of an
ad-invariant, symmetric polynomial Pj then exhibit the following fundamental
result, stated without proof.

Theorem 42.6. Let g and ĝ be conformally related Riemannian metrics on a
Riemannian manifold M , and let ϕ, Φ, ϕ̂, Φ̂ denote the corresponding connec-
tion and curvature forms on the principal O(m)-bundle of orthonormal frames
on M , π′ : P ′ → M , where dim(M) = m. Then, for any ad-invariant, symmet-
ric polynomial Pj of m×m matrices,

i) TPj(ϕ̂)− TPj(ϕ) is exact . (42.68)

ii) Pj(

j times︷ ︸︸ ︷
Φ̂, . . . , Φ̂ ) = Pj(

j times︷ ︸︸ ︷
Φ, . . . ,Φ ) , (42.69)

iii) If Pj(Φ, . . . ,Φ) = 0 , then the cohomology class

(TPj(ϕ)) ∈ H2j−1(P ′,R) is a conformal invariant.

Note that iii) follows immediately from i), ii) and Theorem 42.1, while ii)
follows immediately from i) and Theorem 42.1.

Let us consider some applications of the Chern-Simons formCS(ϕ) in physics.
Instead of ϕ we will write A, the connection symbol usually used for gauge poten-
tials in physics. It turns out, for instance, that the Chern-Simons form CS(A)
is of considerable interest in a quantum field theory in 3 dimensions (Witten
1989). Consider the Chern-Simons action of the gauge potential A on a
vector bundle π : E → M associated with a principal G-bundle π′ : P → M :

SCS(A) =
∫
M Tr (A ∧ dA− 2

3
A ∧A ∧A) , (42.70)
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where M is a compact, oriented 3-dimensional manifold without boundary. The
Chern-Simons form, and hence the corresponding field theory given by (42.70),
is defined without reference to a metric in M .

The Chern-Simons action has the following interesting property

Theorem 42.7. The Chern-Simons action SCS [given by (42.70)] is “almost”
gauge-invariant: it is not invariant under a general gauge transformation of A,
but is so under a gauge transformation g ∈ G connected to the identity in G.

Proof. Let gt ∈ G, t ∈ [ 0, 1 ] be a family of gauge transformations such that
g0 = 1 (the identity in G) and g1 = g. In other words, g is connected to the
identity. Starting with a connection A, with corresponding curvature 2-form F ,
the gauge-transformed connection

At ≡ gt d(gt)
−1 + gtA (gt)

−1 (42.71)

is well-defined on the total space P . We need to prove that

d

dt
SCS(At)

∣∣∣∣
t=0

= 0 . (42.72)

Let

T ≡ d

dt
gt

∣∣∣∣
t=0

. (42.73)

Then, from

0 =
d

dt
gt(gt)

−1 =

(
dgt
dt

)
(gt)

−1 + gt

(
d(gt)

−1

dt

)
, (42.74)

we have
d

dt
(gt)

−1 = −T . (42.75)

Thus

A′ ≡ d

dt
At

∣∣∣∣
t=0

=
d

dt

(
gt d(gt)

−1 + gtA (gt)
−1

)∣∣∣∣
t=0

= (TA(gt)
−1 − gtAT + T d(gt)

−1 − gt dT )
∣∣
t=0

= [T, A ]gr − dT ,

(42.76)

where [T, A ]gr (= TA−AT ) was given by (35.65). From Theorem 42.3 we have

d

dt
SCS(At)

∣∣∣∣
t=0

=

∫
M

d

dt
CS(At)

∣∣∣∣
t=0

= 2

∫
M

Tr (A′ ∧ F ) +

∫
M

dθ , (42.77)

where F = dA−A ∧A. By Stokes’ Theorem∫
M

dθ =

∫
∂ M

θ = 0 ,
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since by assumption, ∂M = 0. It follows from (42.76) that

d

dt
SCS(At)

∣∣∣∣
t=0

= 2

∫
M

Tr { ( [T, A ]gr − dT ) ∧ ( dA− A ∧A ) }

= 2

∫
M

Tr { [T, A ]gr ∧ dA− [T, A ]gr ∧A ∧A+ dT ∧A ∧A } ,

(42.78)

where the term dT ∧ dA does not contribute since, again by Stokes’ theorem,∫
M

Tr (dT ∧ dA) =

∫
M

Tr d(T ∧ dA) =

∫
M

d(Tr (T ∧ dA))

=

∫
∂ M

Tr (T ∧ dA) = 0 .

(42.79)

Next we note that ∫
M

Tr ( [T, A ]gr ∧A ∧A) = 0 , (42.80)

since by the graded cyclic property of the trace [see (42.82) below],

Tr (TA ∧A ∧A) = Tr (AT ∧A ∧A) . (42.81)

Note that by definition, T is a matrix of 0-forms.

Exercise 42.2 Prove the graded cyclic property of the trace, which states that

Tr (θ ∧ φ) = (−1)pq Tr (φ ∧ θ) , (42.82)

where θ and φ are matrices (of the same size) of p- and q-forms, respectively.

Eq. (42.78) then implies

d

dt
SCS(At)

∣∣∣∣
t=0

= 2

∫
M

Tr { [T, A ]gr ∧ dA+ dT ∧A ∧A }

= 2

∫
M

Tr (T ∧A ∧ dA−A ∧ T ∧ dA+ dT ∧A ∧A )

= 2

∫
M

Tr d(T ∧A ∧A) = 2

∫
M

d {Tr (T ∧A ∧A) }

= 2

∫
∂ M

Tr (T ∧A ∧A) = 0 ,

(42.83)

where the last two equalities follow from Stokes’ Theorem.

         
 10:56:04.



August 18, 2015 11:3 chernbook-9.75x6.5 BC: 9563 - Topics in Contemporary Mathematical Phys. preamMathBook˙1n2 page 545

Chapter 42. Chern-Simons Forms 545

The following fact is especially relevant for the formulation of a generally
covariant quantum field theory (one without an a priori choice of a metric
on M) based on the Chern-Simons action.

Theorem 42.8. Let A and A′ be connection 1-forms on a principal G-bundle
π : P → M related by a gauge transformation g ∈ G:

A′ = (dg)g−1 + g A g−1 . (42.84)

Then

SCS(A
′)− SCS(A) = 8π2n , n ∈ Z , (42.85)

where the Chern-Simons action SCS is defined in (42.70).

Proof. Let A(t), t ∈ [ 0, 1 ], be a 1-parameter family of connections on π : P →
M such that A(0) = A and A(1) = A′. Let us consider the 4-dimensional mani-
fold S1 ×M , where M is a compact 3-dimensional manifold without boundary.
Defining the projection map p : S1 ×M → M by (t, x) �→ x, t ∈ S1, x ∈ M , we
have the induced bundle P̃ = p∗(P ) and the corresponding induced connection
Ã = p∗(A), whose local expression is given by A(t), if S1 is coordinatized by
t ∈ [ 0, 1 ] with the two ends of the interval identified. Let F̃ be the correspond-
ing curvature form. Now, according to the fact that the Chern classes Cj(F̃ )
[as defined by (41.74)] are integral cohomology classes [c.f. (41.73)], it follows
from the expression for C2 [(41.77)] that

1

8π2

∫
S1 ×M

Tr (F̃ ∧ F̃ ) = n , n ∈ Z . (42.86)

On the other hand, by (42.35) and the Stokes Theorem∫
S1 ×M

Tr (F̃ ∧ F̃ ) =

∫
[ 0,1 ]×M

d(CS(Ã))

=

∫
∂( [ 0,1 ]×M)

CS(Ã) = SCS(A
′)− SCS(A) . (42.87)

Eqs. (42.86) and (42.87) then imply the theorem.

Thus the classical Chern-Simons action is not gauge-invariant. But in a
quantum field theory based on the Chern-Simons action formulated in terms
of path integrals, we can define the vacuum expectation value 〈 f 〉 of an
observable f (considered as a gauge-invariant function of the connection A) as

〈 f 〉 = 1

Z

∫
A/G

f(A) exp

{
ik

4π
SCS(A)

}
DA , k ∈ Z , (42.88)

Z ≡
∫
A/G

exp

{
ik

4π
SCS(A)

}
DA , (42.89)
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in which exp

{
ik

4π
SCS(A)

}
is clearly gauge-invariant, by the result of Theo-

rem 42.8. In analogy to a similar quantity in statistical mechanics, Z is called
the partition function. The path measure DA, in the space of gauge poten-
tials (up to gauge transformations) has, in fact, not been rigorously defined.
But this has not prevented mathematical physicists from working formally with
expressions like (42.88) and (42.89) to obtain extremely interesting and useful
results.

Recall that we have studied one physical example of the integrality of Chern
classes already, namely, the quantization of the magnetic charge [c.f. (38.32)].
That result is just a consequence of the fact that the first Chern number

c1 =

∫
M

C1(Ω)

is an integer. The integrality condition

Cj(Ω) ∈ H2j(M,Z) (42.90)

in particular implies that

cm
2
=

∫
M

Cm
2
(Ω) , m = dim(M) , (42.91)

is a topological invariant of bundles with even-dimensional base manifolds.
When m = 4, these are called instanton numbers, and are special examples
of so-called Chern numbers, or topological quantum numbers in physics.
Thus the magnetic monopole is described by a U(1)-bundle over S2, and the
quantized magnetic charge M is given by

M =

(
�c

2e

)
c1 , c1 ∈ Z . (42.92)

As a further example, we will consider instantons described by SU(2)-
bundles over S4. For a particular connection A with associated curvature F ,
the instanton number k is defined in terms of the second Chern character by
[c.f. (41.83)]

−k ≡
∫
S4

Ch2(F ) = − 1

8π2

∫
S4

Tr (F ∧ F ) . (42.93)

In fact, for instantons, �F = ±F (where � denotes the Hodge star) [recall the
discussion following (36.42)]. Thus the Yang-Mills action functional [(36.36)]
can be written as

SY M = ∓
∫
S4

Tr (F ∧ F ) , (42.94)

where the signs (−) and (+) give the self-dual and anti self-dual instantons,
respectively. S4 can be considered as the one-point compactification of R4, and
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Figure 42.1

similar to S2, can be covered by two coordinate patches, UN (the “northern
hemisphere”) and US (the “southern hemisphere”), defined by

UN = { x ∈ R
4 | |x| ≤ R+ ε } , US = { x ∈ R

4 | |x| ≥ R − ε } , (42.95)

where R > 0 (see Fig. 42.1). The region of overlap (in the limit ε → 0) can
be contracted to S3 ∼ SU(2) [recall (11.71)]. Thus the connections A can be
classified by homotopy classes of transition functions

gSN : S3 → SU(2) ∼ S3 ,

or the homotopy group

π3(S
3) = Z . (42.96)

The integer characterizing the homotopy class is called the degree of the map
gSN . Without loss of generality we can set

A(S) = 0 , x ∈ US . (42.97)

Thus

A(N) = (dgSN ) (gSN )−1 , x ∈ UN . (42.98)

We will denote a transition function of degree n by g
(n)
SN . Analogous to (38.14)

for the magnetic monopole, we have

g
(1)
SN : S3 →

⎛⎜⎝1 0

0 1

⎞⎟⎠ ∈ SU(2) (the constant map) , (42.99)

g
(1)
SN (x) = (x4 + i xjσj) , j = 1, 2, 3, (the identity map) , (42.100)

where

|x|2 = (x1)2 + (x2)2 + (x3)2 + (x4)2 = 1 ,
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and σi, i = 1, 2, 3 are the Pauli matrices given by (11.16), and

g
(n)
SN = (x4 + ixjσj)

n . (42.101)

In the evaluation of the instanton numbers [(42.93)] we can use Stokes’ The-
orem as follows.∫

S4

Tr (F ∧ F ) =

∫
UN

Tr (F ∧ F ) +

∫
US

Tr (F ∧ F )

=

∫
UN

Tr (F ∧ F ) =

∫
UN

d{CS(A)} =

∫
∂ UN

CS(A) =

∫
S3

CS(A) ,

(42.102)

where the local Chern-Simons form CS(A) is given by [c.f. (42.37)]

CS(A) = Tr (A ∧ F ) +
1

3
Tr (A ∧A ∧A) . (42.103)

Note that in the above equation, as distinct from (42.37), the connection A and
curvature F are local forms on S4 (the base manifold), and Tr (F ∧F ), regarded
as a 4-form on S4, is only locally exact. Since in US , A

(S) = F (S) = 0, which
implies F (N) = gSN F (S) g−1

SN = 0, Eqs. (42.102) and (42.103) imply that

k =
1

8π2

∫
S4

Tr (F ∧ F ) =
1

24π2

∫
S3

Tr (A(N) ∧A(N) ∧A(N) )

=
1

24π2

∫
S3

Tr ( dg g−1 ∧ dg g−1 ∧ dg g−1 ) , (42.104)

where we have written g for gSN . We will show that this integral yields precisely

the degree of the map g : S3 → SU(2) (where g is understood to be g
(n)
SN).

Consider the 3-form

α =
1

24π2
Tr ( dg g−1 ∧ dg g−1 ∧ dg g−1 ) (42.105)

on S3, where both g and dg are expressed in terms of the local coordinates of
S3. It is equal to the pullback of some 3-form β on SU(2):

α = g∗ β . (42.106)

Observe that α is closed on S3, since dα is a 4-form and S3 is 3-dimensional.
By the integrality of Chern classes, α thus determines a cohomology class [α ] ∈
H3(S3,Z) = Z. Consider a map h : S3 → SU(2) homotopic to g (h ∼ g). Then
we have, by Theorem 38.1

[ g∗ β ] = [h∗ β ] . (42.107)

This implies that
g∗β = h∗β + dφ , (42.108)
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where φ is some 2-form on S3. By Stokes’ Theorem,∫
S3

α =

∫
S3

g∗β =

∫
S3

h∗β . (42.109)

Thus the instanton number only depends on the homotopy class of the map
g : S3 → SU(2) (which is given by an element of π3(S

3)), or the degree of

the map g. Now suppose g = g
(1)
SN (degree 1) and h = g

(n)
SN (degree n). Let

α(1) = g∗β = (g
(1)
SN )∗β and α(n) = h∗β = (g

(n)
SN )∗β. Since H3(S3,Z) = Z, we see

that [α(1) ] = 1 and [α(n) ] = n (as cohomology classes). Thus

[α(n) − nα(1) ] = [α(n) ]− n[α(1) ] = 0 ∈ H3(S3,Z) . (42.110)

In other words, α(n) − nα(1) is the trivial class, and so must be exact. We then
have

α(n) − nα(1) = dη , (42.111)

for some 2-form η on S3. Integration over S3 gives∫
S3

α(n) = n

∫
S3

α(1) . (42.112)

We will calculate the integral on the RHS,∫
S3

α(1) =
1

24π2

∫
S3

Tr ( dg
(1)
SN (g

(1)
SN )−1 ∧ dg

(1)
SN (g

(1)
SN )−1 ∧ dg

(1)
SN(g

(1)
SN )−1 ) ,

(42.113)
explicitly. Using (42.101) we have

(g
(1)
SN )−1 = x4 − ixjσj . (42.114)

Exercise 42.3 Write g
(1)
SN as a 2× 2 matrix [∈ SU(2) ]. Then use the explicit

expressions for the Pauli matrices σj [given by (11.6)] to verify (42.114).

So
(dg

(1)
SN )(g

(1)
SN )−1 = (dx4 + i(dxj)σj)(x

4 − ixjσj) . (42.115)

The value of the integral (42.113) is not changed if we push the “equator”
(∼ S3) in Fig. 42.1 up the “northern hemisphere” towards the north pole (see
Fig. 42.2). In each of these retracted boundaries, dx4 = 0. In the limit
of vanishing radius of the S3 boundary of the northern coordinate patch, this
boundary approaches the north pole, at which point x4 = 1, x1 = x2 = x3 = 0.
We then have, at the north pole,

(dg
(1)
SN )(g

(1)
SN )−1 = iσj dx

j , (42.116)

and the integrand of (42.113) becomes

Tr (A(N) ∧ A(N) ∧A(N) ) = i3 Tr (σjσkσl) dx
j ∧ dxk ∧ dxl . (42.117)
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N

S3

Figure 42.2

Using the properties of the σ-matrices (c.f. Exercise 11.5), we have

Tr (σjσkσl) = Tr (σj(δkl + iεkl
mσm) )

= iεkl
m Tr (σjσm) = iεkl

m Tr ( δjm + iεjm
nσn )

= iεkl
mδjm Tr (e) = 2iεklj .

(42.118)

Hence

Tr (A(N)∧A(N)∧A(N)) = 2εklj dx
k ∧dxl ∧dxj = 12 dx1∧dx2 ∧dx3 , (42.119)

where dx1∧dx2∧dx3 is the volume element of S3. Since the integral in (42.113)
cannot depend on the radius of the boundary S3 [compare the present situation
with that of the magnetic monopole given by (38.8)], we can use the volume of
the unit S3, that is, ∫

S3

dx1 ∧ dx2 ∧ dx3 = 2π2 , (42.120)

and get, finally,∫
S3

α(1) =
1

24π2

∫
S3

Tr (A(N) ∧A(N) ∧A(N) ) =
12(2π2)

24π2
= 1 . (42.121)

This result, together with (42.112), show that the instanton number k(n), cor-
responding to a gauge potential A(n) characterized by n ∈ π3(S

3) [the degree
of the map g(n) : S3 → SU(2)], is just given by

k(n) = n . (42.122)

In conclusion we mention that a quantum field theory with a Chern-Simons
action term, in addition to couplings between fermion fields and a gauge po-
tential describing a magnetic flux tube, has been found to be very useful in
describing the physics of the fractional quantum Hall effect, and the as-
sociated phenomenon of fractional statistics (see, for example, E. Fradkin

         
 10:56:04.



June 30, 2015 11:15 chernbook-9.75x6.5 BC: 9563 - Topics in Contemporary Mathematical Phys. preamMathBook˙1n2 page 551

Chapter 42. Chern-Simons Forms 551

1991). The geometrical setup, analogous to the case of the integral quantum
Hall effect, is a U(1)-bundle whose base space is a compact (2 + 1)-dimensional
space M (2 spatial and 1 time) without boundary. Since the gauge group U(1)
is abelian, the Chern-Simons action is

SCS = θ

∫
M

Tr (A ∧ dA) , (42.123)

where θ is a “strength” constant. On another front, the study of a topological
quantum field theory based on the Chern-Simons action has revealed deep con-
nections between quantum field theory on the one hand, and the topology of
three-dimensional spaces on the other, through certain invariants of knot theory
(E. Witten 1989, S. Hu, 2001). In short, the study of topological invariants of
fiber bundles through the Chern classes and their transgression forms via Chern-
Simons theory has brought vast areas of physics and mathematics together in a
stunning fashion.
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