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Introduction

Despite the efforts of everyone here M-theory is still very poorly
understood.

AdS/CFT remains something of a miracle but offers a
non-perturbative window into M-theory via 3D and 6D SCFT’s.

But 6D SCFT’s are poorly understood.

With M2-branes one had to sacrifice manifest R-symmetry and
supersymmetry.

With M5-branes we need to sacrifice Lorentz invariance.



The last time I was hear I spoke about non-Lorentzian
approaches to the M5-brane.

This time I’d like to revisit M2-branes in a non-relativistic limit
and the corresponding AdS-duals: Interesting infinite
dimensional symmetries.

Non-relativistic limits have been studied by a number of authors
in recent years: [Gomis, Ooguri], [Gomis,Gomis,Kamimura],
[Bagchi, Gopakumar], [Harmark, Orselli], Bergshoeff, Hartong,
Obers, Oling,..., and no doubt see the talk by Blair



PART I: Non-relativistic limits of M2-brane
Chern-Simons-Matter Theories



Consider a Chern-Simons matter theory with action of the form

S = −1

c

󰁝 √
−ggµνtr(DµZMDνZ̄M ) + V (ZM , Z̄M ) + SCS

If the potential contains an explicit mass term

V (ZM , Z̄M ) = m2c2ZM Z̄M + V̂ (ZM , Z̄M )

then we can take a non-relativistic limit c → ∞, x0 = ct, g = η

ZM = e−imc2tẐM

S =

󰁝
tr(imẐMDt

ˆ̄ZM − imDtẐM ˆ̄ZM −DiẐMDi
ˆ̄ZM )

− V̂ (ẐM , ˆ̄ZM ) + SCS

Note that a divergence in the kinetic term is cancelled by a
diverging term from the potential.

The Lorentz group is reduced to the Schrödinger group.



In a CFT we can’t do this. But we can consider a similar limit

x0 → x0 z → ωz z = x1 + ix2

(This is conformally equivalent to x0 → cx0 with c = ω−1.)

In terms of the metric

gµν =

󰀳

󰁅󰁃
−1 0 0

0 0 ω2

2

0 ω2

2 0

󰀴

󰁆󰁄

We note that

√
−ggµν = ω2

󰀳

󰁃
−1 0 0
0 0 2

ω2

0 2
ω2 0

󰀴

󰁄 =

󰀳

󰁃
−ω2 0 0
0 0 2
0 2 0

󰀴

󰁄

Thus the limit ω → 0 is smooth and the action reduces to

S = −
󰁝

2tr(DZM , D̄Z̄M ) + 2tr(D̄ZM , DZ̄M ) + SCS



The equations of motion are now

Fzz̄ = 0

F0z =
2π

k

󰀃
ZMDZ̄M −DZM Z̄M

󰀄

(DD̄ + D̄D)ZM = 0

So the spatial gauge field is flat. Solutions are

Az = 0

A0 =
2π

k
ZM Z̄M

∂̄ZM = 0

i.e. ZM is holomorphic with any time dependence.



The action has an invariance under the infinite-dimensional set
of diffeomorphisms.

But these aren’t symmetries.

Symmetries are diffeomorphisms that preserve the metric, up
to a conformal factor:

∂xλ

∂x′µ
∂xρ

∂x′ν
gλρ(x) = Ω2gµν(x) ,

For finite ω, g ∼ η and this reduces to the finite dimensional
symmetry group SO(2, 3) of conformal transformations,
including Lorentz transformations.



At ω = 0 symmetries arise from

√
−ggµνdet

󰀕
∂x

∂x′

󰀖
∂x′λ

∂xµ
∂x′ρ

∂xν
=

√
−gΩgλρ = Ω

󰀳

󰁃
0 0 0
0 0 1
0 1 0

󰀴

󰁄

We find z′ is time-dependent holomorphic function of z and x′0

is any function of x0 with

Ω =
∂x0

∂x′0

This agrees with the solutions we found; namely the time
dependence was arbitrary and the scalars were holomorphic
functions.

But this is rather obscure point since we have removed all
notion of time and dynamics.



We can find a more interesting situation if we pick one ZM , say
Z1, and also rescale it:

Z1 → ω−1Z1 ZA → ZA (A ∕= 1)

This preserves the kinetic term for Z1 at ω = 0.

But now the DZ1D̄Z̄1 + D̄Z1DZ̄1 term diverges.

This can be cured by the following steps



• Note that

DZ1D̄Z̄1 = ∂(Z1D̄Z̄1)− ∂̄(Z1DZ̄1) + D̄Z1DZ̄1 − Z1[D, D̄]Z̄1

= D̄Z1DZ̄1 + ∂(Z1D̄Z̄1)− ∂̄(Z1DZ̄1)−iZ1Fzz̄(Z̄1)

• The red terms are a total derivative and are cancelled by
including a background C-field:

C = iω−2dx0 ∧ dZ1 ∧ dZ̄1

• The green term can be removed by shifting

A0 → A0 −
2π

kω2
Z1Z̄1

• This introduces an ω−4 term in the kinetic term that needs
to be cancelled by a (Z1Z̄1)

2ZAZ̄A term in the potential



So now we just have a diverging term −2ω−2D̄Z1DZ̄1.

• This is fixed (c.f. [Gomis, Ooguri]) by replacing

− 2

ω2

󰁝
D̄Z1DZ̄1 →

󰁝
D̄Z1H̄ +HDZ̄1 +

ω2

4
HH̄

• We can now set ω = 0 and H becomes a
Lagrange-multiplier imposing

D̄Z1 = 0



Specifically, for M2-branes, the action becomes

S =

󰁝
D0Z1D0Z̄1 +HDZ̄1 + D̄Z1H̄ − 2DZAD̄Z̄A − 2D̄ZADZ̄A

+
2πi

k
D0ZA[Z̄1, Z̄A;Z1] +

2πi

k
[Z1,ZA; Z̄1]D0Z̄A

− 4π2

3k2
[ZA,Z1; Z̄A][Z̄B, Z̄1;ZB] +

16π2

3k2
[ZA,Z1; Z̄B][Z̄A, Z̄1,ZB]

+
8π2

3k2
[ZA,ZB; Z̄1][Z̄A, Z̄B;Z1]− 4π2

3k2
[Z1,ZA; Z̄1][Z̄B, Z̄A;ZB]

− 4π2

3k2
[ZB,ZA; Z̄B][Z̄1, Z̄A;Z1]

+
ik

2π

󰀓
AL

0F
L
zz̄ +AL

z F
L
z̄0 +AL

z̄ F
L
0z + iAL

0 [A
L
z , A

L
z̄ ]− L → R

󰀔

This was previously found in [Owen,NL],[Mouland, NL] where it
was shown that it preserves all supersymmetries (with
Fermions added).



What are the Bosonic symmetries?

Well it turns out that there is a symmetry for

x′0 = x0 + 󰂃F (x0)

but now only if F (x0) = a+ bx0 + c(x0)2. These generate the
usual 1D conformal transformations of SO(1, 2)

We still find symmetries

z′ = z + 󰂃f(z, x0)

for any holomorphic but time-dependent function f

Lastly there is a U(1)× SU(3) R-symmetry and a Ũ(1) ‘Baryon’
symmetry as is familiar for M2’s.



What are the dynamics?

The equations of motion were obtained before [NL,Sacco] and
analysed in [Kucharski, Owen, NL] (for SU(2)× SU(2)):

H imposes the constraint

D̄Z1 = 0

A0 imposes a Gauss law constraint (for D0Z1 = 0):

FL
zz̄ =

4π2i

k2
(ZA[Z̄1, Z̄A;Z1]− [Z1,ZA; Z̄1]Z̄A)

FR
zz̄ =− 4π2i

k2
([Z̄1, Z̄A;Z1]ZA − Z̄A[Z1,ZA; Z̄1])

Thus we find a (3-algebra) version of Hitchin’s equations (when
the ZA are constant).

For D0Z1 ∕= 0 one can argue that the classical dynamics
corresponds to motion on Hitchin Moduli space



What is the physical interpretation of this?

The M2-brane BPS equations are [Kim,Kim, Kwon,Nakajima]

D̄Z1 = 0 ,

DZA = D̄ZA = 0 ,

[Z1,Z2; Z̄2] = [Z1,Z3; Z̄3] = [Z1,Z4; Z̄4] ,

[Z1,ZA; Z̄B] = 0 (A ∕= B) ,

[ZA,ZB; Z̄C ] = 0 ,

D0Z1 =
2πi

k
[Z1,ZA; Z̄A] ,

D0ZA =
2πi

k
[Z1,ZA; Z̄1] ,

which we must supplement with the Gauss’s law constraints
k

2π
FL
zz̄ = ZMD0Z̄M −D0ZM Z̄M

k

2π
FR
zz̄ = Z̄MD0ZM −D0Z̄MZM



The green BPS condition is not invariant under the the
rescaling but we can make a shift

AL
0 = AL

0 − 2π

k
Z1Z̄1 ,

AR
0 = AR

0 − 2π

k
Z̄1Z1 ,

so that it becomes D0ZA = 0 then there is invariance under

Z1(t,ω−1z,ω−1z̄) = ω−1Z1(t, z, z̄) ,

ZA(t,ω−1z,ω−1z̄) = ZA(t, z, z̄) ,

A0(t,ω
−1z,ω−1z̄) = A0(t, z, z̄) ,

Az(t,ω
−1z,ω−1z̄) = ω−1Az(t, z, z̄) ,

Thus the limit corresponds to a non-relativistic expansion
around BPS states.



In summary we have a 3D supersymmetric non-relativistic field
theory with exotic ’symmetries’

• SO(1, 2) 1D conformal symmetry
• U(1)× SU(3) R-symmetry
• Ũ(1) Baryon symmetry
• arbitrary holomorhpic spatial transformations

z → z + 󰂃f(z, x0)

The last ones act more like gauge symmetries. In particular
their charges are boundary integrals (for ∂0f = 0):

Q[f ] =
i

2

󰁌
ftr(Z1D0Z̄1)dz̄ + c.c.

And there is a purely spatial conserved current ∂̄T = 0:

T = tr(Z1DH̄ + 4DZADZ̄A)



It is instructive to see what happened to the charges in the
latter case. Indeed even the total momentum, corresponding to
f = constant becomes a boundary term

In the original theory

P̂z = tr

󰁝
D0ẐMD ˆ̄ZM +DẐMD0

ˆ̄ZM .

After rescaling P̂z = ω−1Pz etc. and transforming we find

Pz = tr

󰁝 󰀗
DZ1D0Z̄1+

2πi

k

󰀕
[Z1,ZA; Z̄1]DZ̄A+DZA[Z̄1, Z̄A;Z1]

󰀖󰀘
,

Integrating by parts and using the constraints and equations of
motion we simply find

Pz = itr

󰁌
dz̄ tr(Z1D0Z̄1) .

A similar result occurs for rotations in the z-plane



PART II: Membrane-Newton-Cartan limit of AdS4 × S7



It is well-known that the M2-branes have a dual description as a
near horizon limit of

ĝ = Ĥ− 2
3 (−dt2 + dzdz̄) + Ĥ

1
3 (dudū+ dvadva)

Ĉ3 =
i

2
Ĥ−1dt ∧ dz ∧ dz̄ + k̂

where dk̂ = 0 and the function Ĥ is

Ĥ(uI , va) = 1 +
R̂6

(uū+ vava)3
.

where u ∼ Z1 parameterises C and va ∼ ZA parameterise R6

We need to consider the rescaling (this is conformally
equivalent to the limit we considered above)

(t, z, u, va) → (ct, c−
1
2 z, cu, c−

1
2 va)

that splits R11 → R3 ⊕ R8 and take the limit c → ∞ (with
R̂ = cR)



Who is crazy enough to look at this weird limit? Happily these
people: [Blair,Gallegos,Zinnato]

This is described by a Membrane-Newton-Cartan geometry

g = c2τµνdx
µ ⊗ dxν +

1

c
Hµνdx

µ ⊗ dxν

g−1 = cHµν∂µ ⊗ ∂ν +
1

c2
τµν∂µ ⊗ ∂ν

The key idea is that τ and H−1 exist and survive the limit
c → ∞.

Any subleading (in c) terms in τ and H can be neglected.

There are also local Galilean boosts that can be used to
change the form of H.



We also need to decompose the C-field:

Ĉ3 = −c3dvol(τ) + C3 + c−3C̃3 +O(c−6) .

The first term is the volume form along the ”large” dimensions
(t, u, ū)

Note that the diverging volume form corresponds in the brane
picture to a total derivative WZ-term:

SWZ =

󰁝
∗k̂ =

i

2
c3

󰁝
dtr(dx0 ∧ Z1 ∧ D̄Z̄1) + c.c

And indeed we used this to cancel a divergence above

C̃3 plays the role of a Lagrange multiplier imposing a
self-duality constraint on F = dC3.

[Blair,Gallegos,Zinnato] give the resulting action obtained from
eleven-dimensional supergravity in the limit c → ∞.



In our case we find

τ = −(uū)2

R4
dt⊗ dt+

R2

uū
du⊗ dū ,

H−1 =
2R4

(uū)2
󰀃
∂ ⊗ ∂̄ + ∂̄ ⊗ ∂

󰀄
+

uū

R2

󰀕
∂

∂va
⊗ ∂

∂va

󰀖
.

and

C3 =
i

2

󰀕
(uū)3

R6

󰀖
dt ∧ dz ∧ dz̄

C̃3 =
i

2

󰀕
3(uū)2vava

R6

󰀖
dt ∧ dz ∧ dz̄

and the self-duality constraint on dC3 is satisfied.

Geometrically this is AdS2 × S1 × R2 × R6 (warped with flux)

Therefore we claim that the dual gravity theory is described by
the [Blair,Gallegos,Zinnato] action about this background.



What About the Symmetries?

Since our QFT has the full supersymmetries (16+16 BLG or
12+12 ABJM) these should be present in the gravity dual

Recall the field theory had the symmetries:

• SO(1, 2)

• U(1)× SU(3)

• Ũ(1)

• z → z(z, x0)

The first three all have associated Killing vectors in the dual
geometry (as for M2’s for generic k the translations in R6 are
broken and the rotations reduced to Ũ(1)× SU(3))



But there is a caveat:

It was argued in [Bagchi, Gopakumar] that in theories with
AdS2 duals the SO(1, 2) should enhance to a full affine current
algebra due to asymptotic Killing vectors (i.e. diffeomorphisms
generated by vector fields which are only Killing as you
approach the boundary)

However for us such transformations induce extra terms in the
C-field at the boundary that cannot be cancelled.

Thus we don’t expect SO(1, 2) to enhance and indeed we don’t
see that in the gauge theory dual.



The transformations z → z + 󰂃f(z, x0) are more interesting.

In the gravity dual we certainly have Killing vectors for
translations and rotations in z.

However we don’t see the spatial scale symmetry z → λz. Nor
is there any indication of an infinite family of transformations.

Our claim is that most of these should be treated as gauge
symmetries in the QFT and therefore not visible in the gravity
dual: physical states are invariant.



Indeed the conserved charges are co-dimension two in the QFT
and hence would be co-dimension three in the gravity dual.

So at most we expect the ‘global’ part of the holomorphic
transformations are the ISO(2) symmetries.

However it is possible that, in the c → ∞ limit, even the ISO(2)
symmetries become trivial on the boundary and hence in the
gauge theory.



Conclusions
In this talk I have discussed an amusing, but hopefully
insightful, non-relativistic limit of M2-branes

• Novel Chern-Simons-Matter theory whose dynamics is
given by motion on Hitchin’s moduli space

• Infinite-dimensional spatial symmetry group
• Also gave the gravitational dual using the construction of

[Blair,Gallegos,Zinnato]

We also matched the symmetries:

• ‘predict’ that the [Blair,Gallegos,Zinnato] action is
supersymmetric

• spatial symmetries act trivially



Does AdS/CFT still work? Or have we broken it? If so how and
why?

Can we reconstruct the finite c from the c = ∞ limit? i.e.
recover Lorentz invariance in the gauge theory and bulk?

We would like to have a better understanding of the bulk
geometry and its boundary

Is there is a non-trivial sector of the gauge theory where the ZA

are dynamical?

M2-branes also admit a string theory dual on AdS4 × CP 3

[Arutyunov,Frolov],[Stefanski]. Can we make sense of our limit
here?



THANK YOU





Some Old Slides
The (2, 0) superalgebra is [NL,Sacco][NL,Papageorgakis]

δXi = i󰂃ΓiΨ

δY µ =
i

2
󰂃ΓλρC

µλρΨ

δHµνλ = 3i󰂃Γ[µνDλ]Ψ+ i󰂃ΓiΓµνλρ[Y
ρ, Xi,Ψ]

+
i

2
󰂃(󰂏C)µνλΓ

ij [Xi, Xj ,Ψ] +
3i

4
󰂃Γ[µν|ρσC

ρσ
λ]Γ

ij [Xi, Xj ,Ψ]

δAµ(·) = i󰂃Γµν [Y
ν ,Ψ, · ] + i

3!
󰂃CνλρΓµνλρΓ

i[Xi,Ψ, · ] ,

δΨ = ΓµΓiDµX
i󰂃+

1

2 · 3!HµνλΓ
µνλ󰂃− 1

2
ΓµΓ

ij [Y µ, Xi, Xj ]󰂃

+
1

3! · 3!CµνλΓ
µνλΓijk[Xi, Xj , Xk]󰂃

Γ012345󰂃 = 󰂃 Γ012345Ψ = −Ψ



XI , Ψ and Hµνλ are dynamical, Aµ and Y µ are auxiliary but
Cµνλ is a background (abelian) 3-form

A standard (but trust me tedious) calculation shows that this
system indeed closes on the following equations of motion

0 = ΓρDρΨ+ ΓρΓ
i[Y ρ, Xi,Ψ] +

i

2 · 3!C
ρστΓρστΓ

ij [Xi, Xj ,Ψ]

0 = D2Xi + [Y µ, Xj , [Yµ, X
j , Xi]] +

1

2 · 3!C
2[Xj , Xk, [Xj , Xk, Xi]]

+ fermions

0 = D[λHµνρ] +
1

2
(󰂏C)[µνλ[X

i, Xj , [Yρ], X
i, Xj ]]

+
1

4
εµνλρστ [Y

σ, Xi, DτXi] + fermions



As well as constraints:

Fµν(·) = [Y λ, Hµνλ, · ]− (󰂏C)µνλ[X
i, DλXi, · ] + fermions

0 = DµY
ν − 1

2
HµλρC

νλρ

0 = [Y µ, Dµ(·), ·′ ] +
1

3
[DµY

µ, · , ·′ ]

0 = CµνλDλ(·)− [Y µ, Y ν , · ]
0 = C ∧ Y

0 = Cσ[µνC
σ
λ]ρ

Somewhat unconventional (ugly? beautiful?).



There is a conserved supercurrent:

Sµ = 2πi〈DνX
i,ΓνΓµΓiΨ〉+ 2πi

4
〈Hνλρ,Γ

νλρΓµΨ〉

− 2πi

2
〈[Yµ, Xi, Xj ],ΓνΓµΓijΨ〉

+
2πi

3!2
Cνλρ〈[Xi, Xj , Xk],ΓνλρΓµΓijkΨ〉

and energy-momentum tensor :

Tµν =
π

2
〈Hµλρ, Hν

λρ〉+ 2π〈DµX
i, DνX

i〉 − πηµν〈DλX
i, DλXi〉

− π

2
ηµν〈[Yλ, Xi, Xj ], [Y λ, Xi, Xj ]〉

+
2π

3!
(CµλρCν

λρ − 1

6
ηµνC

2)〈[Xi, Xj , Xk], [Xi, Xj , Xk]〉

+
π

3!
Cµλρ(󰂏C)ν

λρ〈[Xi, Xj , Xk], [Xi, Xj , Xk]〉+ fermions

One can also compute the superalgebra and central charges.


