

Multi-gap topology & non-abelian braiding in **k**-space

Outline

- General comments on topology
- Homotopy theory
 - Generalities
 - Anyons
 - Band structures
- Weyl points
- Multi-gap topology
 - Formality
 - Applications
- Conclusion & Outlook

Topology?

• Study *global* properties of theories

Robust experimental quantities

Method today: Homotopy theory

Homotopy theory

Study mappings of paths

Homotopy theory

Study mappings of paths

• N-th homotopy group: $\pi_N(M)$

Homotopy theory

Study mappings of paths

- N-th homotopy group: $\pi_N(M)$
 - Natural group structure: Composition of paths
 - Efficient algorithms exist to compute these groups

Homotopy examples

$$\pi_1(S^1) = \mathbb{Z}$$

$$\pi_1(S^2) = 0$$

$$\pi_1(T^2) = \mathbb{Z} \times \mathbb{Z}$$

$$\pi_2(S^2) = \mathbb{Z}$$

Homotopy in physics

• Identical particles: Configuration space

$$\pi_1(M_2^N) = B_N$$
 ----- Braid group

$$\pi_1(M_3^N) = S_N$$
 ——— Symmetric group

Homotopy in physics

$$\pi_1(M_2^N) = B_N$$
 ----- Braid group

- Abelian representations:
 - Anyons
- Non-abelian representations:
 - Non-abelian anyons

$$\pi_1(M_3^N) = S_N$$
 ——— Symmetric group

- Abelian representations:
 - Boson/Fermions
- Non-abelian representations:
 Not too relevant for point particles
 - Parastatistics

Central question

Can we find some non-abelian first-homotopy groups to realize braiding?

Adrien Bouhon NORDITA/Cambridge

Robert-Jan Slager Harvard/Cambridge

Tomáš Bzdušek Zürich

Homotopic ideas in condensed matter

 Periodic media – Bloch Hamiltonians defined on Brillouin zone:

$$H(\mathbf{k}) \quad \mathbf{k} \in T^d$$

For topology: Non-interacting, eigenstates form frame

$$|\psi_i(\boldsymbol{k})\rangle_{i\in\{1...N\}} \in \frac{U(N)}{[U(1)]^N}$$
 Bloch eigenstates Ordered by energy

Homotopic ideas in condensed matter k_y

$$H(\mathbf{k})$$
 $\mathbf{k} \in T^d$

- Study mappings: $T^d \to U(N)/[U(1)^N]$
 - On patches in Brillouin zone: $S^{D < d} \rightarrow U(N)/[U(1)^N]$
 - Impose gap conditions (equivalence relations):

$$T^d o \frac{U(N)}{U(N-M) \times U(M)} \simeq \operatorname{Gr}_{M,N}^{\mathbb{C}}$$

Impose symmetries: U(N) o O(N)

$$E_F = \frac{1}{m} M$$

Example: Weyl points

$$H(\mathbf{k}) \quad \mathbf{k} \in T^d$$

$$S^{D < d} \rightarrow U(N)/[U(1)^N]$$

Specialize to two-band subspace in 3D:

$$S^2 \to \frac{U(2)}{U(1) \times U(1)}$$

$$\pi_2 \left[\frac{U(2)}{U(1) \times U(1)} \right] = \mathbb{Z}$$

Example: Weyl points

- Well defined charges
- Well-defined dispersion
- Charge conservation (Nielsen-Ninomya)

Bzdušek et al., Phys. Rev. B 96, 155105 (2017)

$$\pi_2 \left[\frac{U(2)}{U(1) \times U(1)} \right] = \mathbb{Z}$$

Example: Weyl points

- Well defined charges
- Well-defined dispersion
- Charge conservation (Nielsen-Ninomya)

Bzdušek et al., Phys. Rev. B 96, 155105 (2017)

$$\pi_2 \left[\frac{U(2)}{U(1) \times U(1)} \right] = \mathbb{Z}$$

Particles in k-space!

Relationship to highenergy physics

- Various dispersions possible (not constrained by Lorentz symmetries)

Naturally realize chiral anomaly

 More generally: Crystals have been found to host axions, higher-spin particles, etc.

Ma et al., *Nature Communications*Volume 12, Article number: 3994 (2021)

Braiding of Weyl points?

$$\pi_1 \left[\frac{U(2)}{U(1) \times U(1)} \right] = 0$$

No non-trivial braiding

Bzdušek et al., Phys. Rev. B 96, 155105 (2017)

$$\pi_1 \left[\frac{\text{SO}(3)}{S[\text{O}(2) \times \text{O}(1)]} \right] = \mathbb{Z}_2$$

$$\pi_1 \left[\frac{\mathrm{SO}(3)}{S[\mathrm{O}(1) \times \mathrm{O}(1) \times \mathrm{O}(1)]} \right] = \mathbb{Q}$$

Quaternion group — Non-abelian!

Multi-gap topology

$$\pi_1 \left[\frac{\text{SO}(3)}{S[\text{O}(2) \times \text{O}(1)]} \right] = \mathbb{Z}_2$$

2+1 bands, symmetry making eigenstates real

$$\pi_1 \left[\frac{\text{SO}(3)}{S[\text{O}(1) \times \text{O}(1) \times \text{O}(1)]} \right] = \mathbb{Q}$$

1+1+1 bands (multi-gap), symmetry making eigenstates real

Reality condition

$$\pi_1 \left[\frac{\text{SO}(3)}{S[\text{O}(1) \times \text{O}(1) \times \text{O}(1)]} \right] = \mathbb{Q}$$

1+1+1 bands (multi-gap), symmetry making eigenstates real

$$C_2: \quad H(\mathbf{k}) = U_{C_2}H(C_2\mathbf{k})U_{C_2}^{\dagger}$$
 $\mathcal{I}: \quad H(\mathbf{k}) = U_{\mathcal{I}}H(-\mathbf{k})U_{\mathcal{I}}^{\dagger}$
 $\mathcal{T}: \quad H(\mathbf{k}) = U_{\mathcal{T}}H(-\mathbf{k})^*U_{\mathcal{T}}^{\dagger}$
 $\int [C_2\mathcal{T}]^2 = +1 \qquad [\mathcal{I}\mathcal{T}]^2 = \pm 1$

Reality condition

$$\pi_1 \left[\frac{\text{SO}(3)}{S[\text{O}(1) \times \text{O}(1) \times \text{O}(1)]} \right] = \mathbb{Q}$$

1+1+1 bands (multi-gap), symmetry making eigenstates real

Even spin and
$$\mathcal{I}\mathcal{T}$$
——— $H(\mathbf{k})$ real everywhere

Any spin and $C_2\mathcal{T} \longrightarrow H(k)$ real in plane

Braiding Weyl points

Multi-gap states in $C_2\mathcal{T}$ -invariant plane in k-space

Characterized by Quaternion group!

Quaternion group

Bouhon et al. Nature Physics volume 16, pages 1137–1143 (2020)

Physically:

- i: Node in first gap
- j: Node in both gaps
- k: Node in second gap
- -1: Double node

Braiding between nodes in different gaps!

	-				
	1	i	j	k	
1	1	i	j	k	
i	i	-1	k	-j	
j	j	-k	-1	i	
k	k	j	-i	-1	

Quaternion group

Bouhon et al. Nature Physics volume 16, pages 1137–1143 (2020)

$$\mathbb{Q} = \{\pm 1, \pm i, \pm j, \pm k\}$$

$$ij = k \neq ji = -k$$
 Non-abelian braiding!

	-				
	1	i	j	k	
1	1	i	j	k	
i	i	-1	k	- j	
j	j	-k	-1	i	
k	k	j	-i	-1	

Braiding Weyl points

Bouhon et al. Nature Physics volume 16, pages 1137–1143 (2020)

Braiding Weyl points

Bouhon et al. Nature Physics volume 16, pages 1137-1143 (2020)

Application: Acoustic phonons in 2D

Vibrations of atoms (phonons): $D({m q})v({m q})=\omega^2({m q})v({m q})$

Dynamical matrix

- Positive semi-definite
 - Local inversion symmetry

Lange et al., Phys. Rev. B 105,064301 (2022)

Phonon eigenstates

- Spin-0
- Automatically time-reversal invariant

Low-q dispersion in 2D

- Acoustic phonons (Goldstone bosons)
- 2 linear modes & 1 quadratic mode (flexural)

Charge?

Application: Acoustic phonons in

Artificially split degeneracies

Lange et al., Phys. Rev. B 105,064301 (2022)

Nodes characterized by Quaternions

Application: Acoustic phonons in

Lange et al., Phys. Rev. B 105, 064301 (2022)

Caveat: If system has ${\mathcal I}$ and ${\mathcal T}$ separately, possible charges at triple-point are ± 1

Application: Acoustic phonons in

Application: Phonons manipulated by electric field in silicates

Peng et al., Nature Communications volume 13, Article number: 423 (2022)

Application: Electron phase transitions manipulated by temperature in Cd₂Re₂O₇

Chen et al., Phys. Rev. B 105, L081117 (2022)

Conclusion/Outlook

- Many topological phases in band structures
- Weyl points feature interesting physics
- Multi-gap topology can interact with Weyl points
- Exists in phonons and electrons
- Lots of exciting things to come!

Acknowledgements

Gunnar Lange Cambridge

Adrien Bouhon

Robert-Jan Slager NORDITA/Cambridge Harvard/Cambridge

Peter Orth Iowa State

Thais Trevisan Iowa State / Berkley

Bartomeu Monserrat Cambridge

Bo Peng Cambridge

Siyu Chen Cambridge

Dominik Hamara Cambridge

Chiara Ciccarelli Cambridge

