GENERALIZED EQUIVARIANT BUNDLES

by R.K. LASHOF and J.P. MAY

Dedicated to Professor Guy HIRSCH

Let Π and G be compact Lie groups and let $p: E \to B$ be a principal Π -bundle, where B is a G-space. Informally, we say that p is an equivariant bundle if the action of G on B lifts appropriately to E. The classical way to make this precise is to require the Π -action on E to extend to a $G \times \Pi$ -action such that p is a G-map, and a detailed foundational study of such bundles was given in [2].

However, there are many naturally occurring examples which surely ought to count as equivariant bundles but which don't fit this description. Most simply, if Γ is an extension of G by Π , then one surely wants to consider the quotient homomorphism $q: \Gamma \to G$ as an equivariant bundle. Taking this example as a model, we fix such an extension and say that p is a principal $(\Pi; \Gamma)$ -bundle if E is a Π -free Γ -space and p is a Γ -map, where G acts through q on B; the classical case is obtained by taking $\Gamma = G \times \Pi$. If F is a Γ -space, we then refer to the induced G-map $E \times_{\Pi} F \rightarrow B$ as the associated $(\Pi; \Gamma)$ -bundle with fiber F, where $E \times_{\Pi} F$ denotes the orbit G-space $E \times F/\Pi$. This is our preferred general notion of a G-bundle, and it is the purpose of this note to point out that the basic theory of equivariant bundles set out in [2] generalizes without difficulty to this context. More discussion of examples and of the passage back and forth between principal and associated bundles may be found in [3; IV, § 1]. Our main result is an analysis of the fixed point spaces of equivariant classifying spaces, and the second author will use this analysis in [4] to prove a new generalization of the Segal conjecture.

Let $\rho: Y \to B$ be a G-map which is a Π -bundle with fiber F, where F is a Γ -space on which Π acts effectively. The discussion in [3; IV § 1] implies that ρ is the bundle with fiber F associated to a principal $(\Pi; \Gamma)$ -bundle $p: E \to B$ if and only if each composite

$$F \to \rho^{-1}(b) \to \rho^{-1}(gb) \to F$$

coincides with the action of a (necessarily unique) lift of g to Γ , where the

first and third arrows are admissible homeomorphisms and the middle arrow is action by $g \in G$. This characterization leads to the following natural examples of equivariant bundles in our sense which are not equivariant bundles in the classical sense.

EXAMPLE 1. — Let M be a smooth oriented n-manifold with a smooth orientation-reversing involution τ . The tangent bundle TM is an SO(n)-bundle, but the induced involution τ : TM \to TM is only an O(n)-bundle map. Regarding τ as a generator of $G = \mathbb{Z}_2$, we see that TM \to M is an (SO(n); O(n))-bundle with fiber \mathbb{R}^n .

EXAMPLE 2. — Let $\Pi \subset \Omega$ and let Γ be the normalizer of Π in Ω . If $\mu: \Omega/\Pi \to \Omega/\Gamma$ is the projection, then the pullback $\mu^*T(\Omega/\Gamma)$ is a $(\Pi; \Gamma)$ -bundle with fiber the Γ -representation $V = T_{e\Gamma}(\Omega/\Gamma)$. In fact, we may identify $\mu^*T(\Omega/\Gamma)$ with $\Omega \times_{\Pi} V$ and give it the G-action, $G = \Gamma/\Pi$, specified by $q(\gamma)[\omega,v] = [\omega\gamma^{-1},\gamma v]$.

We say that two $(\Pi; \Gamma)$ -bundles $\rho: Y \to B$ and $\rho': Y' \to B$ with fiber F are equivalent if there is a G-map $f: Y \to Y'$ which is an equivalence of Π -bundles over B. The discussion in $[3; V, \S 1]$ implies that f necessarily has the form $\tilde{f} \times_{\Pi} 1$ for a Γ -map $\tilde{f}: E \to E'$ which is an equivalence of principal Π -bundles over B, where E and E' are the associated principal $(\Pi; \Gamma)$ -bundles of Y and Y'. Therefore equivalence classes of $(\Pi; \Gamma)$ -bundles with fiber F over B correspond bijectively to equivalence classes of principal $(\Pi; \Gamma)$ -bundles over B. We shall concentrate on principal $(\Pi; \Gamma)$ -bundles henceforward.

There is a description of principal $(\Pi; \Gamma)$ -bundles in terms of the classical kind of equivariant bundles that the reader may find illuminating. If $p: E \to B$ is a principal $(\Pi; \Gamma)$ -bundle, then the induced map $E \times_{\Pi} \Gamma \to B$ is a principal $(\Gamma; G \times \Gamma)$ -bundle with a given reduction of its structural group from Γ to Π . Here $E \times \Gamma$ is given the diagonal left action by Γ and $E \times_{\Pi} \Gamma$ is the orbit G-space. The right action of Γ on itself gives rise to a right action of Γ on $E \times_{\Pi} \Gamma$ which commutes with the left G-action. The reduction may be viewed as given by the section

$$s: \mathbf{B} \to \mathbf{E} \times_{\mathbf{\Pi}}(\Gamma/\Pi) \cong \mathbf{B} \times \mathbf{G}$$

specified by s(b) = (b, 1), and s satisfies $s(gb) = gs(b)g^{-1}$. Note that s is not a $(G \times \Pi)$ -reduction since it is not equivariant with respect to the left G-action. Conversely, if $\phi: Z \to B$ is a principal $(\Gamma; G \times \Gamma)$ -bundle with a reduction $s: B \to Z/\Pi$ of its structural group to Π such that $s(gb) = gs(b)g^{-1}$, then Z is Γ -homeomorphic over B to $E \times_{\Pi} \Gamma$ for a principal Π -bundle E over B. The Π -action on E extends to a Γ -action; E can be identified with the space of admissible homeomorphisms

 ψ : $\Gamma \to \varphi^{-1}(b)$, and $\gamma \psi$ is the composite

$$\Gamma \stackrel{\gamma^{-1}}{\hookrightarrow} \Gamma \stackrel{\cancel{4}}{\hookrightarrow} \varphi^{-1}(b) \stackrel{q(\gamma)}{\hookrightarrow} \varphi^{-1}(q(\gamma)b).$$

We conclude that principal $(\Pi; \Gamma)$ -bundles correspond bijectively to principal $(\Gamma; G \times \Gamma)$ -bundles together with given reductions of their structural group from Γ to Π which satisfy the specified formula.

A principal $(\Pi; \Gamma)$ -bundle is said to be trivial if it is equivalent to one of the form $\Gamma \times_{\Lambda} V \to G \times_{H} V$, where $H \subset G$, $\Lambda \subset \Gamma$, $\Lambda \cap \Pi = e$, Λ maps isomorphically to H under $q: \Gamma \to G$, and V is an H-space regarded as a Λ -space via q. The following observation on the local structure of principal $(\Pi; \Gamma)$ -bundles makes clear that this definition is appropriate.

LEMMA 3. — Let $p: E \to B$ be a principal $(\Pi; \Gamma)$ -bundle, where E and therefore B is completely regular. Let $b \in B$ and $z \in p^{-1}(b)$ and let G_b and Γ_z be the respective isotropy groups.

- (i) $\Gamma_z \cap \Pi = e$ and q maps Γ_z isomorphically onto G_b .
- (ii) If W is a slice through b in B, there is a slice V through z in E such that p maps V homeomorphically onto a neighborhood V' of b in W and thus $p \mid \Gamma V$ is trivial.

PROOF. — (i) $\Gamma_z \cap \Pi = e$ since Π acts freely on E; $q(\Gamma_z) = G_b$ since, for $\gamma \in \Gamma$, $q(\gamma)b = b$ if and only if $\gamma z = \nu z$ for some $\nu \in \Pi$, in which case $\nu^{-1}\gamma z = z$ and $q(\nu^{-1}\gamma) = q(\gamma)$.

(ii) Let D be a bi-invariant normal disc to $\Pi\Gamma_z$ through e in Γ . Then q maps D homeomorphically onto a bi-invariant normal disc D' to G_b through e in G, and $q(\gamma d\gamma^{-1}) = gq(d)g^{-1}$ if $\gamma \in \Gamma$ and $g = q(\gamma)$. The action of G on B maps D' \times W homeomorphically onto a G_b -invariant neighborhood of b. Choose a slice \overline{V} through z sufficiently small that $p(\overline{V}) \subset D' \times W$ and let $\lambda \colon \overline{V} \to D$ be the composite Γ_z -map $q^{-1}\pi_1 p$, where $\pi_1 \colon D' \times W \to D'$ is the projection. It is easily checked that $V = \{\lambda(x)^{-1}x | x \in \overline{V}\}$ is then a slice through z which maps homeomorphically into W under p.

A principal $(\Pi; \Gamma)$ -bundle $p: E \to B$ is said to be locally trivial if there is an open cover $\{GV_{\alpha}\}$ of B such that V_{α} is an H_{α} -slice and $p/p^{-1}(GV_{\alpha})$ is trivial; p is numerable if, in addition, the cover can be chosen to have a G-equivariant partition of unity $\{\lambda_{\alpha}: GV_{\alpha} \to I\}$. With these definitions, we have the following generalizations of [2, 1.5] and [2, 1.13].

PROPOSITION 4. — A principal $(\Pi; \Gamma)$ -bundle with completely regular total space is locally trivial.

Proposition 5. — A locally trivial principal $(\Pi; \Gamma)$ -bundle over a paracompact base space is numerable.

Using Lemma 3, the arguments of [2, §2] generalize to give the following analogs of [2, 2.10-2.12 and 2.14].

THEOREM 6. — A numerable principal $(\Pi; \Gamma)$ -bundle E over B \times I is equivalent to $(E \mid B \times \{0\}) \times I$.

COROLLARY 7. — The pullbacks of a numerable principal $(\Pi; \Gamma)$ -bundle along homotopic G-maps into its base space are equivalent.

COROLLARY 8. — A numerable principal $(\Pi; \Gamma)$ -bundle satisfies the equivariant bundle covering homotopy property.

THEOREM 9. — A numerable principal $(\Pi; \Gamma)$ -bundle $p: E \to B$ is universal if and only if E^{Λ} is contractible for all (closed) subgroups Λ of Γ such that $\Lambda \cap \Pi = e$.

We let $B(\Pi; \Gamma)$ denote the base space of a universal principal $(\Pi; \Gamma)$ -bundle; it is uniquely determined up to G-homotopy type. Our main result, which generalizes [2,2.17], gives the homotopy types of the fixed point spaces of such a classifying G-space.

Theorem 10. — For $H \subset G$,

$$B(\Pi;\Gamma)^H=\coprod B(\Pi\cap N_\Gamma\Lambda;W_\Gamma\Lambda),$$

where the union runs over the Π -conjugacy classes of subgroups Λ of Γ such that $\Lambda \cap \Pi = e$ and $q(\Lambda) = H$. In particular, $B(\Pi; \Gamma)^H$ is empty if there is no such Λ .

Here $N_{\Gamma}\Lambda$ is the normalizer of Λ in Γ and $W_{\Gamma}\Lambda = N_{\Gamma}\Lambda/\Lambda$. When $\Lambda \cap \Pi = e$, $\Pi \cap N_{\Gamma}\Lambda$ is a normal subgroup of $W_{\Gamma}\Lambda$ since Π is a normal subgroup of Γ . Actually, since the theorem is only a statement about nonequivariant spaces, the Λ^{th} summand on the right may be viewed simply as the ordinary classifying space $B(\Pi \cap N_{\Gamma}\Lambda)$, with $W_{\Gamma}\Lambda$ ignored. However, it is crucial to the application to the Segal conjecture in [4] to know the structure of $B(\Pi;\Gamma)^H$ as a W_GH -space, or, more generally, as a W_KH -space for any K containing H, and the theorem admits the following elaboration.

COROLLARY 11. — If $H \subset K \subset G$, then, as a W_KH -space,

$$B(\Pi;\Gamma)^H = \coprod W_k H \times {}_{V(\Lambda;\Omega)} B(\Pi \cap N_{\Omega}\Lambda; W_{\Omega}\Lambda),$$

where $\Omega = q^{-1}(K)$, the union runs over the $q^{-1}(N_K H)$ -conjugacy classes of subgroups Λ of Ω such that $\Lambda \cap \Pi = e$ and $q(\Lambda) = H$, and $V(\Lambda; \Omega) = W_{\Omega} \Lambda / \Pi \cap N_{\Omega} \Lambda$ is the image of $W_{\Omega} \Lambda$ in $W_K H$.

To prove Theorem 10 and Corollary 11, we shall analyze the fixed point structure of general principal $(\Pi; \Gamma)$ -bundles. For notational simplicity, we agree to write $\Pi^{\Lambda} = \Pi \cap N_{\Gamma}\Lambda$ when $\Lambda \subset \Gamma$ and $\Lambda \cap \Pi = e$. It is perhaps worth observing that Π^{Λ} is also equal to $\Pi \cap Z_{\Gamma}\Lambda$, where $Z_{\Gamma}\Lambda$ is the centralizer of Λ in Γ .

THEOREM 12. — Let $p: E \to B$ be a principal $(\Pi; \Gamma)$ -bundle, where E is a completely regular Γ -space. Let $H \subset G$ and $\Lambda \subset \Gamma$, with $\Lambda \cap \Pi = e$.

- (i) E^{Λ} is a principal $(\Pi^{\Lambda}; W_{\Gamma}\Lambda)$ -bundle and $E^{\Lambda}/\Pi^{\Lambda} = p(E^{\Lambda})$.
- (ii) $p^{-1}(p(E^{\Lambda})) = \coprod E^{\theta}$, where the union runs over the distinct Π -conjugates θ of Λ .
- (iii) $B^H = \coprod p(E^\Lambda)$, where the union runs over the Π -conjugacy classes of subgroups Λ of Γ such that $\Lambda \cap \Pi = e$ and $q(\Lambda) = H$.
- (iv) As a W_GH-space, B^H = \coprod W_GH × $_{V(\Lambda)}p(E^{\Lambda})$, where the union runs over the $q^{-1}(N_GH)$ -conjugacy classes of subgroups Λ of Γ such that $\Lambda \cap \Pi = e$ and $q(\Lambda) = H$ and where $V(\Lambda) = W_{\Gamma}\Lambda/\Pi^{\Lambda}$ is the image of $W_{\Gamma}\Lambda$ in $W_{G}H$.

PROOF. — (i) Obviously Π^{Λ} acts freely on E^{Λ} . If $z \in E^{\Lambda}$, $v \in \Pi$, and $vz \in E^{\Lambda}$, then $v \in \Pi^{\Lambda}$ since, for any $\lambda \in \Lambda$, $vz = \lambda vz = \lambda v\lambda^{-1}\lambda z = \lambda v\lambda^{-1}z$, hence $v = \lambda v\lambda^{-1}$. Therefore the natural map $E^{\Lambda}/\Pi^{\Lambda} \to p(E^{\Lambda})$ is a homeomorphism.

- (ii) Since $\gamma E^{\Lambda} = E^{\gamma \Lambda \gamma^{-1}}$ for $\gamma \in \Gamma$, $p(z) \in p(E^{\Lambda})$ if and only if $z \in E^{\gamma \Lambda \gamma^{-1}}$ for some $v \in \Pi$. If $z \in E^{\Lambda} \cap E^{\gamma \Lambda \gamma^{-1}}$, $v \in \Pi$, then $\lambda z = \nu \lambda \nu^{-1} z$ for all $\lambda \in \Lambda$, hence $\lambda^{-1} \nu \lambda = \nu$ and $\Lambda = \nu \Lambda \nu^{-1}$.
- (iii) Certainly $p(E^{\Lambda}) \subset B^{H}$ if $q(\Lambda) = H$. If $b \in B^{H}$ and $z \in p^{-1}(b)$, then $q(\Gamma_z) = G_h$ and there is a subgroup Λ of Γ_z such that $q(\Lambda) = H$. If $z \in E^{\Lambda} \cap E^{\theta}$, where $\Lambda \cap \Pi = e = \theta \cap \Pi$, and $q(\Lambda) = H = q(\theta)$, then $z \in E^{\Lambda \theta}$, hence $(\Lambda \theta) \cap \Pi = e$, and $q(\Lambda \theta) = H$. Therefore $\Lambda = \Lambda \theta = \theta$. With (ii), this implies that $B^H = \coprod p(E^A)$ as sets, where Λ runs over the appropriate II-conjugacy classes. It is to ensure that this decomposition is a homeomorphism that we require E to be completely regular. Certainly $p(E^{\Lambda})$ is a closed subspace of B^{H} . We must show that it is also open. Let b = p(z), where $z \in E^{\Lambda}$. Let $\Sigma = \Gamma_z$ and $K = q(\Sigma) = G_b$. Then z has a slice neighborhood $\Gamma V \cong \Gamma \times_{\Sigma} V$ whose image under p is a slice neighborhood $GV' \cong G \times_K V'$ of b, where p maps V Σ -homeomorphically onto V' regarded as a Σ -space via $q: \Sigma \cong K$. Let D and D' be as in the proof of (ii) of Lemma 3. $D' \times V'$ is a K-invariant neighborhood of b, and $p^{-1}(D' \times V') = D\Pi \times V$. Since p maps $D \times V$ Σ -homeomorphically onto D' \times V', it maps the open neighborhood (D \times V)^{\wedge} of z homeomorphically onto the open neighborhood $(D' \times V')^H$ of b in B^H .
- (iv) For each subgroup Λ of Γ such that $\Lambda \cap \Pi = e$ and $q(\Lambda) = H$, $p(E^{\Lambda})$ is fixed by $V(\Lambda)$, hence the action of W_GH on B^H induces a W_GH -map

 $W_GH \times_{V(\Lambda)} p(E^{\Lambda}) \to B^H$. If $g = q(\gamma) \in N_GH$, then $q(\gamma \Lambda \gamma^{-1}) = H$, $\gamma \Lambda \gamma^{-1} \cap \Pi = e$, and $gp(E^{\Lambda}) = p(\gamma E^{\Lambda}) = p(E^{\gamma \Lambda \gamma^{-1}})$. It is easily checked that, as the images in W_GH of such elements g run through a set of $V(\Lambda)$ -coset representatives, the groups $\gamma \Lambda \gamma^{-1}$ run through one group in each Π -conjugacy class of subgroups Σ of Γ such that $\Sigma \cap \Pi = e$, $q(\Sigma) = H$, and Σ is $q^{-1}(N_GH)$ -conjugate to Λ . Thus, as Λ runs over $q^{-1}(N_GH)$ -conjugacy classes, the images of the cited W_GH -maps account for all of B^H .

The following observation makes clear that parts (iii) and (iv) are consistent with the topology.

LEMMA 13. — For each Λ , $V(\Lambda)$ has finite index in W_GH .

PROOF. — It is standard that the group $N_{\Gamma}\Lambda/(Z_{\Gamma}\Lambda)\Lambda$ is finite since, via conjugation, it is a compact subgroup of the discrete group of automorphisms modulo inner automorphisms of Λ . Applying this with Λ replaced by $\Lambda\Pi$ and observing that $Z_{\Gamma}(\Lambda\Pi) \subset Z_{\Gamma}\Lambda \subset N_{\Gamma}\Lambda$, we see that $(N_{\Gamma}\Lambda)\Pi$ has finite index in $N_{\Gamma}(\Lambda\Pi)$. Since $q^{-1}(H) = \Lambda\Pi$, $q^{-1}(N_{G}H) = N_{\Gamma}(\Lambda\Pi)$. Therefore $q(N_{\Gamma}\Lambda)$ has finite index in $N_{G}H$.

Finally, we turn to the proofs of Theorem 10 and Corollary 11. It is convenient to think of the universal principal $(\Pi; \Gamma)$ -bundle in terms of families. A family \mathscr{F} of subgroups of Γ is a set of subgroups closed under subconjugacy. (Subgroups are understood to be closed.) A Γ -space X is said to be an \mathscr{F} -space if all of its isotropy groups are in \mathscr{F} or, equivalently, If X^{Λ} is empty for Λ not in \mathscr{F} . An \mathscr{F} -space $E\mathscr{F}$ is said to be universal if any \mathscr{F} -space maps into it, uniquely up to Γ -homotopy. (We restrict attention to Γ -CW homotopy types to avoid technical problems.) It is equivalent to require $E\mathscr{F}^{\Lambda}$ to be contractible for Λ in \mathscr{F} . A pleasant conceptual construction of universal \mathscr{F} -spaces $E\mathscr{F}$ has been given by Elmendorf [1]. Let $\mathscr{F}(\Pi;\Gamma)$ be the family of subgroups Λ of Γ such that $\Lambda \cap \Pi = e$ and let $E(\Pi;\Gamma) = E\mathscr{F}(\Pi;\Gamma)$. Either quoting Theorem 9 or using $E(\Pi;\Gamma)$ to prove it, we see that $E(\Pi;\Gamma)$ is a universal principal $(\Pi;\Gamma)$ -bundle, so that $B(\Pi;\Gamma) = E(\Pi;\Gamma)/\Pi$. We insert a few general observations about universal \mathscr{F} -spaces. The proofs are easy.

LEMMA 14. — Let \mathcal{F} be a family in Γ and let Λ be a subgroup of Γ .

(i) E F regarded as a Λ -space is $E(\mathcal{F}|\Lambda)$, where

$$\mathscr{F}|\Lambda = \{\theta | \theta \subset \Lambda \text{ and } \theta \in \mathscr{F}\}.$$

(ii) If $\Lambda \in \mathcal{F}$, then $(E\mathcal{F})^{\Lambda}$ regarded as a $W_{\Gamma}\Lambda$ -space is $E(\mathcal{F}^{\Lambda})$, where \mathcal{F}^{Λ} is the family in $W_{\Gamma}\Lambda$ specified by

$$\mathscr{F}^{\Lambda} = \{\theta | \theta = \Sigma/\Lambda, \text{ where } \Lambda \subset \Sigma \subset N_{\Gamma}\Lambda \text{ and } \Sigma \in \mathscr{F}\}.$$

Specializing to $\mathcal{F}(\Pi;\Gamma)$, we obtain the following conclusions.

LEMMA 15. — Let Π be a normal subgroup of Γ and Λ be any subgroup.

(i) $\mathscr{F}(\Pi;\Gamma)|\Lambda=\mathscr{F}(\Pi\cap\Lambda;\Lambda)$, hence $E(\Pi;\Gamma)=E(\Pi\cap\Lambda;\Lambda)$ as a Λ -space and

$$E(\Pi;\Gamma)/\Pi \cap \Lambda = B(\Pi \cap \Lambda;\Lambda)$$

as a $(\Lambda/\Pi \cap \Lambda)$ -space.

(ii) If $\Lambda \in \mathcal{F}(\Pi; \Gamma)$, then $\mathcal{F}(\Pi; \Gamma)^{\Lambda} = \mathcal{F}(\Pi^{\Lambda}; W_{\Gamma}\Lambda)$, hence $E(\Pi; \Gamma)^{\Lambda} = E(\Pi^{\Lambda}; W_{\Gamma}\Lambda)$ as a $W_{\Gamma}\Lambda$ -space and

$$E(\Pi;\Gamma)^{\Lambda}/\Pi^{\Lambda} = B(\Pi^{\Lambda};W_{\Gamma}\Lambda)$$

as a $V(\Lambda)$ -space.

PROOF OF THEOREM 10. — This is now immediate from (ii) of Lemma 15 and (i) and (iii) of Theorem 12.

PROOF OF COROLLARY 11. — By (i) of Lemma 15 (with Λ replaced by Ω of Corollary 11), it suffices to consider the case K = G and thus $\Omega = \Gamma$. Here the conclusion is immediate from (iv) of Theorem 12.

BIBLIOGRAPHIE

- [1] A. ELMENDORF. Systems of fixed point sets. Trans. Amer. Math. Soc. 251 (1979), p. 275-284.
- [2] R.K. LASHOF. Equivariant bundles. Ill. J. Math. 26 (1982), p. 257-271.
- [3] L.G. Lewis, Jr., J.P. MAY, and M. Steinberger (with contributions by J.E. McClure). Equivariant stable homotopy theory. Springer Lecture Notes in Mathematics, vol. 1213 (1986).
- [4] J.P. MAY. A further generalization of the Segal conjecture. (In preparation.)

University of Chigago 5734 University Avenue Chicago, Ill. 60637

(Received November 27, 1985)

