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Our aim is to investigate quasitoric manifolds, and their quaternionic analogues,
in the setting of cobordism theory.

A quasitoric manifold is said to be reducible if it can be viewed as the total space
of an equivariant bundle with quasitoric fibre and quasitoric base space. Buchstaber,
Panov and Ray have conjectured that any quasitoric SU -manifold is a boundary in
the complex cobordism ring. We prove this conjecture for complex projective space
CP n, and for reducible quasitoric manifolds with fibre CP 1.

We introduce the notion of a quaternionic tower, as the quaternionic analogue
of a certain family of quasitoric manifolds known as Dobrinskaya towers. We com-
pute their F -cohomology ring for a quaternionic oriented ring spectrum F , and the
properties of various subfamilies are investigated. Approaches to placing the towers
within a quaternionic analogue of the theory of toric topology are considered.

We undertake a study of one particular subfamily of quaternionic tower in the
quaternionic cobordism ring MSp∗. This allows us to construct a new set of man-
ifolds, and by studying their possible stably quaternionic structures, we prove that
they are simply-connected geometric representatives for an important class of torsion
elements in MSp∗.
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Chapter 1

Introduction

Toric topology encompasses the study of topological spaces that admit well-behaved

torus actions. The subject was initiated by the work of Davis and Januskiewicz

[16], who introduced the notion of a quasitoric manifold as the topological analogue

of a construction in algebraic geometry. In the fifteen years since their pioneering

paper, the subject has rapidly flourished, and links between more established areas

of topology have begun to be forged.

One of the first applications of toric topology was to the theory of complex cobor-

dism, the study of which stretches far back into twentieth century mathematics; for

instance, the coefficient ring MU∗ of complex cobordism was first determined by Mil-

nor [37] and Novikov [40] in the early sixties. Quasitoric manifolds M are amenable

to the methods of complex cobordism because once M and certain of its submanifolds

are oriented in a particular manner, M is furnished with a canonical stably complex

structure. This fact allowed Buchstaber and Ray [9] to fabricate an alternative basis

for MU∗ using quasitoric manifolds. Their work led to a solution to the topological

analogue of a long standing problem in algebraic geometry, first posed by Hirzebruch

in 1958 (see e.g. [5, Section 5.3]).

Our thesis continues the study of quasitoric manifolds in complex cobordism the-

ory. Buchstaber, Panov and Ray [7] have conjectured that every quasitoric manifold

with an SU -structure is a boundary in the complex cobordism ring, and it is this

problem which we investigate for complex projective space CP n, and for the class of

8



CHAPTER 1. INTRODUCTION 9

reducible quasitoric manifolds introduced by Dobrinskaya [17]. A quasitoric manifold

M2n is said to be reducible if it can be viewed as the total space of an equivariant

bundle, with quasitoric fibres and quasitoric base space.

In the second half of our thesis, we consider the effect of replacing the complex

numbers by the quaternions in some of the constructions of toric topology. In par-

ticular, we study a quaternionic analogue of a family of quasitoric manifolds known

as Dobrinskaya towers. The seemingly innocuous fact that the quaternions do not

commute throws up many obstacles, but the quaternionic viewpoint does allow us to

construct a collection of quaternionic towers with interesting applications in quater-

nionic cobordism theory.

As in the case of complex cobordism, the coefficient rings of the other clas-

sical cobordism theories MG∗(−), which arise from the Thom spectra MG, for

G = O,SO, SU, Spin, have long been understood (see e.g. [54]). In contrast, the

coefficient ring MSp∗ of quaternionic cobordism, remains something of an enigma.

In the past thirty years there have been several attempts to compute this ring.

Gargantuan calculations with spectral sequences that converge to MSp∗ were un-

dertaken by Kochman [30] and Vershinin [58], while more recent efforts utilised the

transfer map [4], and the theory of cobordism with singularities [59]. Though these

approaches offered many new insights into the structure of MSp∗, a full description

of the ring is still lacking.

However, it is clear that a collection of elements ϕm ∈ MSp8m−3 defined by Ray

in [42], play a crucial role in MSp∗. The ϕm are multiplicatively indecomposable

elements of order 2, and they have been the starting point for all of the investigations

described above.

Finding geometrical representatives for elements in MSp∗ is a key problem. Once

we have obtained such representatives, we would hope that we can gain further infor-

mation about the cobordism ring, which would have remained hidden, or been harder

to obtain by using purely algebraic methods.

Ray went on to realise the torsion elements ϕm geometrically in [47], with the

aid of a special subfamily of quaternionic tower. He conjectured that it would be
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possible to create another collection of geometrical representatives by constructing

(4n+ 1)-dimensional manifolds Y 4n+1 that are closely related to the original family.

Armed with our knowledge of quaternionic towers, we undertake a thorough inves-

tigation into the quaternionic cobordism of Y 4n+1, and work towards a confirmation

of Ray’s claim that they are geometric representatives for the torsion elements ϕm,

when n = 2m− 1.

There are several common themes and ideas, which tie our thesis together. The

spaces we study are either quasitoric manifolds, or manifolds inspired by constructions

in toric topology; whether quasitoric or not, manifolds constructed from sequences of

iterated bundles recur throughout our work. Once we have obtained our manifolds,

in all cases, our interest is in studying their algebraic topology using the tools of

cobordism theory, both complex and quaternionic.

The contents of each chapter can be summarised as follows.

Chapter 2 introduces the language, notation and background material that we

rely upon throughout our thesis. We introduce the various cohomology theories we

will require, and the idea of a stable tangential structure is explored in detail. Since

iterated bundle constructions and the Borel construction often feature in our work,

we establish some of their general properties at this early stage.

The essential ideas of toric topology are detailed in Chapter 3, from the viewpoint

recently given by Buchstaber, Panov and Ray [6]. The ordinary cohomology ring of

a quasitoric manifold is computed, and we explore their stably complex structures.

This is the foundation for the following two chapters.

Chapter 4 is concerned with the study of Dobrinskaya towers. They are introduced

as families of quasitoric manifolds, and we utilise the results of the previous chapter

to describe their cohomology rings and stably complex structures. We then construct

the towers out of a sequence of iterated bundles, and show that the two constructions

agree up to diffeomorphism. The special subfamilies of Bott towers and bounded flag

manifolds are introduced.

In Chapter 5 we offer a proof of Buchstaber, Panov and Ray’s conjecture for com-

plex projective space CP n and for the class of reducible quasitoric manifolds N2n with
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fibre the complex projective line CP 1. This latter class includes certain Dobrinskaya

towers and in particular, all Bott towers. We begin with a rigorous definition of a

reducible quasitoric manifold, and a review related results of Dobrinskaya. After es-

tablishing some cohomological properties of N2n in terms of those of the base space of

the reducible quasitoric manifold, we encode the possible choices of omniorientation

on N2n by attaching a collection of signs to its dicharacteristic matrix. We deduce

a result on the Chern classes of the stable tangent bundle of N2n, which leads to

confirmation of the conjecture for N2n. In the final section we study SU -structures

on complex projective space, and prove the conjecture for CP n. We would like here

to express our gratitude to Dmitry Leykin, with whom the concept of attaching signs

to the dicharacteristic matrix was developed.

The process of transferring the ideas of toric topology to the realm of the quater-

nions gets underway in Chapter 6. We investigate the properties of quaternionic line

bundles, which are then used to construct a quaternionic analogue of the Dobrinskaya

tower as an iterated bundle construction. The F -cohomology ring for a quaternionic

oriented ring spectrum F is computed. As in Chapter 4, we spend a little time in-

vestigating the subfamilies of quaternionic Bott tower and bounded quaternionic flag

manifold. Finally, we attempt to realise our towers as the quaternionic analogue of a

quasitoric manifold, and we survey other authors’ approaches to such a construction.

Our thesis concludes with Chapter 7, in which a subfamily of quaternionic tower is

studied inMSp∗. The torsion elements ϕm ∈MSp8m−3 are introduced and we explain

how the quaternionic bounded flag manifold can be used to create a geometrical

representative for ϕm. The related manifolds Y 4n+1 are constructed and we study

their geometry and F -cohomology rings. In the remainder of the chapter we follow the

programme of Ray, Switzer and Taylor [48] to study the different stably quaternionic

structures on Y 4n+1, and this allows us to prove Ray’s conjecture that Y 8m−3 is a

simply connected geometrical representative for ϕm.

As the first three chapters contain background material that is the foundation for

our thesis, there is little new here. We believe that some of the findings of Chapter 4

on Dobrinskaya towers have not appeared elsewhere, but they can be deduced easily
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from a combination of results in [12] and [10].

Chapter 5 seems to be the first attempt at a proof of Buchstaber, Panov and

Ray’s conjecture, since it was posited in [7]. Unless otherwise stated, we believe that

the results of this chapter concerning reducible quasitoric manifolds are original. In

particular the idea of incorporating signs into the dicharacteristic matrix, which leads

to a proof of the conjecture for the particular family of manifolds, does not seem to

have appeared elsewhere before. Our proof of the conjecture in the case of complex

projective space is deduced from observations about the topology of CP n, which we

believe are well-known, though we have not found explicit references for all of these

facts in the literature. Nevertheless, we believe that our interpretation of these results

in the context of toric topology, leading to our proof of the conjecture for CP n, is

original.

We believe that our construction of a quaternionic analogue of a Dobrinskaya

tower in Chapter 6, and calculations of its F -cohomology ring, are original. Results

related to special subfamilies of the towers are also new, though we acknowledge

that Ray [47] has previously worked with the subfamily of bounded quaternionic

flag manifolds. The final section concerns our tentative steps towards a quaternionic

analogue to the theory of toric topology. Though we believe that exactly such an

approach as ours has not been tried previously, several authors have made very similar

attempts, and so this section mixes old and new as we discuss and adapt their ideas.

Other than our concluding Chapter 7, we are not aware of any other studies of the

manifolds Y 4n+1. The first section recounts some well-known background material

from several sources. The rest of the chapter employs the aforementioned machinery

of Ray, Switzer and Taylor, and so it definitely the case that our methods, and many

of the proofs we offer, are often not in themselves original. However, we give the first

serious treatment of the geometry and F -cohomology of Y 4n+1, and we make many

new calculations related to stably quaternionic structures on these manifolds, which

culminates in what we believe to be the first proof of Ray’s conjecture.



Chapter 2

Notation and prerequisites

In this chapter we establish some of the fundamental concepts and notation that

feature throughout our thesis. Some of our terminology is nonstandard, so we begin

with a discussion of nomenclature. The next section describes the various cohomology

theories that appear in our thesis. Following this, notation related to bundles is

established, and we define certain structures on the tangent bundle of a manifold. A

brief section follows, where we detail the Borel construction, illustrating the concept

with a well-known example. Finally we explore the properties of iterated bundle

constructions, which will feature prominently in later chapters.

2.1 Nomenclature

Throughout our thesis we work with a class of manifolds, which were described by

Davis and Januskiewicz as toric [16]. We prefer to follow the more recent convention

of using the phrase quasitoric manifold, since the original terminology conflicts with

the class of smooth toric varieties in algebraic geometry.

In Chapter 7 we apply certain generalisations of quasitoric manifolds to MSp∗(−),

the cobordism theory that arises from the Thom spectrum MSp (see Example 2.2.9

below). We refer to MSp∗(−) as the quaternionic cobordism ring functor, rather than

symplectic cobordism, as it is classically known. We justify this as follows. We have

that quaternionic cobordism theory arises from the Thom spectrum of the infinite

13
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symplectic group Sp, which mirrors the convention that complex cobordism theory

arises from the infinite unitary group U . Though this is undeniably neat, there

is a more compelling reason to overturn tradition: in modern parlance the phrase

symplectic manifold refers to a manifold equipped with a symplectic form, and has

little relation to the objects studied in MSp∗(−). Therefore we feel it is sensible to

refer to the study of stably quaternionic manifolds as quaternionic cobordism theory,

thus avoiding any confusion with concepts arising from symplectic geometry.

2.2 Oriented cohomology theories

In this section we establish the basic properties of the various cohomology theories

that we will encounter in subsequent chapters. A comprehensive reference for the

material is the book of Adams [1], while characteristic classes in our cohomology

theories are described by Connor and Floyd [14] and Switzer [56].

A ring spectrum E is a spectrum equipped with a smash product map E∧E → E.

We work exclusively with ring spectra that are commutative and associative up to

homotopy, and are equipped with a map S0 → E that acts as a unit up to homotopy.

Associated to a ring spectrum E is a cohomology theory E∗(−) and a homology

theory E∗(−) (see e.g. [56, 8.33]); we denote the coefficient ring E∗(pt) ∼= E∗(pt) by

E∗. The reduced and unreduced cohomology rings of a space X will be written as

E∗(X) and E∗(X+) respectively.

Definition 2.2.1. The cohomology theory E∗(−) is complex oriented if there exists

an element xE ∈ E2(CP∞), such that E∗(CP 1) is a free E∗-module generated by

i∗xE ∈ E2(CP 1), where i is the inclusion map CP 1 → CP∞. Furthermore, in such

circumstances we say that the ring spectrum E is complex oriented.

We will take ζn to be the universal U(n)-bundle over BU(n), the classifying space

of the nth unitary group U(n). The direct limit of the natural inclusions BU(n) →

BU(n + 1) is given by the union BU =
⋃
n≥1BU(n), which forms the classifying

space of the infinite unitary group U . Then we let ζ denote the virtual bundle over
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BU given by the limit of the virtual bundles ζn − Cn over BU(n). By construction,

the restriction of ζ to any BU(n) is ζn − Cn.

In the case when n = 1, the universal line bundle ζ1 is simply the canonical

complex line bundle over BU(1) ∼= CP∞, whose fibre over each complex line in

CP∞ is the line itself. We will also write ζ1 for the restriction of this bundle to any

n-dimensional complex projective space CP n.

Example 2.2.2. When E is the Eilenberg-Mac Lane spectrum H associated with a

ring R, we obtain ordinary cohomologyH∗(−;R) and homologyH∗(−, R). A complex

orientation can be given by taking xH to be the usual generator in H2(CP∞).

We will often abbreviate the integral cohomology ring H∗(X; Z) to H∗(X).

Example 2.2.3. Complex K-theory is a complex oriented cohomology theory with

coefficient ring K∗ isomorphic to Z[z, z−1], where z ∈ K2 is represented by the virtual

bundle ζ1 − C over the 2-sphere S2 ∼= CP 1 (see e.g. [56, 13.92]). The complex

orientation xK in K2(CP∞) is represented by the product of z−1 with ζ1 − C ∈

K0(CP∞).

Example 2.2.4. The Thom spectrum MU arising from the infinite unitary group U

gives rise to the cohomology theory of complex cobordism MU∗(−), and the corre-

sponding homology theory, complex bordism MU∗(−). We take xU to be the complex

cobordism class representing the well-known homotopy equivalence CP∞ →MU(1),

thus determining a complex orientation for MU∗(−).

Complex cobordism is the universal complex oriented cohomology theory in the

following sense. For any complex oriented ring spectrum E, there is a one-to-one cor-

respondence between complex orientations xE ∈ E2(CP∞) and maps of ring spectra

gE : MU → E, such that gE∗ (xU) = xE.

We study complex cobordism in Chapter 5.

Any complex oriented ring spectrum E gives rise to Chern classes in E∗(−) (see

e.g. [56, (16.27)]). Given a U(n)-bundle θ over a space X, we will write cEi (θ) ∈

E2i(X) for the ith Chern class of θ, for 1 ≤ i ≤ n. The total Chern class cE(θ) of θ is
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defined to be the sum 1 + cE1 (θ) + cE2 (θ) + · · ·+ cEn (θ) in E∗(X). In the universal case

of CP∞ we will often denote cEi (ζ1) simply by cEi in E2i(CP∞). When there is no

danger of confusion, we may also use the symbol cEi to denote the Chern class cEi (ζ)

in E2i(BU). Furthermore, if the context is clear, we may drop the superscript E to

simplify our notation.

In analogy with Definition 2.2.1 we have the following notion.

Example 2.2.5. The cohomology theory F ∗(−) is quaternionic oriented if there

exists an element yF ∈ F 4(HP∞), such that F ∗(HP 1) is a free F∗-module generated

by i∗yF ∈ F 4(HP 1), where i is the inclusion map HP 1 → HP∞. Furthermore, in

such circumstances we say that the ring spectrum F is quaternionic oriented.

Denote by ξn the universal Sp(n)-bundle over BSp(n), the classifying space of the

nth symplectic group Sp(n). The direct limit of the natural inclusions BSp(n) →

BSp(n + 1) is given by the union BSp =
⋃
n≥1BSp(n), and forms the classifying

space of the infinite symplectic group Sp. Then let ξ denote the virtual bundle over

BSp given by the limit of the virtual bundles ξn−Hn over BSp(n). By construction,

the restriction of ξ to any BSp(n) is ξn −Hn.

In the case when n = 1, the universal line bundle ξ1 is simply the canonical

quaternionic line bundle over BSp(1) ∼= HP∞, whose fibre over each quaternionic

line in HP∞ is the line itself. We will also write ξ1 for the restriction of this bundle

to any n-dimensional quaternionic projective space HP n.

Example 2.2.6. Ordinary cohomology H∗(−;R) and homology H∗(−, R) as de-

scribed in Example 2.2.2 are quaternionic oriented by taking the usual generator in

H4(HP∞) as the quaternionic orientation yH .

Example 2.2.7. Real K-theory KO∗(−) is a quaternionic oriented cohomology the-

ory that will be central to our calculations in Chapter 7, so we establish here some

fundamental properties.

The coefficient ring KO∗ is given by

Z[α, β, γ]/(2α, α3, αβ, β2 − 4γ), (2.2.8)
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where α, β and γ are the elements represented respectively by the canonical virtual

line bundle over S1, the virtual quaternionic line bundle ξ1−H over S4, and the real

virtual bundle given by the tensor product (ξ1 −H)⊗H (ξ1 −H) over S4 ∧ S4 ∼= S8.

The quaternionic orientation yKO ∈ KO4(HP∞) is represented by the product

of γ−1 with the real virtual bundle (ξ1 − H) ⊗H (ξ1 − H) ∈ KO0(S4 ∧ HP∞) ∼=

KO−4(HP∞).

We relate quaternionic K-theory and real K-theory by the well-known isomor-

phism KSp0(−) ∼= KO−4(−), given by mapping a virtual quaternionic bundle θ ∈

KSp0(X) to (ξ1 −H)⊗H θ in KO0(S4 ∧X) ∼= KO−4(X) (see e.g. [14]).

Example 2.2.9. The Thom spectrum MSp that arises from the infinite symplectic

group Sp, yields the cohomology theory of quaternionic cobordism MSp∗(−) and the

dual theory of quaternionic bordism MSp∗(−). In analogy with the complex case,

we take the element ySp to be the quaternionic cobordism class that represents the

homotopy equivalence HP∞ →MSp(1).

Among quaternionic oriented cohomology theories, quaternionic cobordism is uni-

versal in the analogous fashion to complex cobordism. In other words, for any quater-

nionic oriented ring spectrum F , there is a one-to-one correspondence between com-

plex orientations yF ∈ F 4(HP∞) and maps of ring spectra gF : MSp→ F , such that

gF∗ (ySp) = yF .

We study quaternionic cobordism theory in Chapter 7.

Any quaternionic oriented ring spectrum F gives rise to quaternionic Pontryagin

classes in F ∗(−) (see e.g. [56, 16.34]). Given an Sp(n)-bundle bundle θ over a

space X, we denote by pFi (θ) in F 4i(X) the ith quaternionic Pontryagin class of

θ for 1 ≤ i ≤ n. The total quaternionic Pontryagin class pF (θ) of θ is given by

1 + pF1 (θ) + pF2 (θ) + · · · + pFn (θ) in F ∗(X). In the universal case of HP∞ we will

often denote pFi (ξ1) simply by pFi in F 4i(HP∞). If there is no danger of confusion,

we may also use the symbol pFi to denote the quaternionic Pontryagin class pFi (ξ) in

F 4i(BSp). Furthermore, if the context is clear, we may drop the superscript F to

simplify our notation.
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Remark 2.2.10. In our thesis we work exclusively with quaternionic Pontryagin

classes, which should not be confused with real Pontryagin classes. The latter are

defined in terms of the Chern classes of the complexification of a real bundle. Stong

explores the relationship between real and quaternionic Pontryagin classes in [53].

2.3 Tangential structures

In later chapters we study quasitoric manifolds and related constructions in the set-

ting of cobordism theory, where the existence of particular structures on the stable

tangent bundle of a manifold is of fundamental importance. In this section we estab-

lish the necessary concepts and notation needed to describe tangential structures on

manifolds.

We begin with the definition of a stably complex structure, and the related notions

of an SU -structure and stably quaternionic structure follow. A particular tangential

structure on a sphere bundle is then introduced, and in conclusion, we set up some

machinery to study the effect of changing structure on the stable tangent bundle.

Further details on the material in this section can be found in the books of Stong

[54] and Switzer [56].

We will write Rn, Cn and Hn for a trivial n-dimensional real, complex and quater-

nionic vector bundle, respectively, over any space X; in the case n = 1, we will usually

omit the superscript so that R, C and H are the appropriate trivial line bundles.

Given a vector bundle θ that is equipped with a suitable Riemannian metric (see

e.g. [38, Chapter 2]), we will denote by S(θ) its sphere bundle, whose fibres are the

unit spheres in the fibres of θ. Similarly D(θ) is the disc bundle of unit discs in the

fibres of θ. The Thom space of θ is the quotient space D(θ)/S(θ) and is written as

T (θ).

For a manifold M , we write τ(M) for its tangent bundle, though we will occa-

sionally simplify this to τ if M is understood.
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2.3.1 Stably complex structures

The following notion will be of particular importance in complex cobordism theory.

Definition 2.3.1. A stably complex structure on an n-dimensional manifold M is a

real isomorphism of vector bundles

τ(M)⊕ R2k−n ∼= θ, (2.3.2)

where θ is a k-dimensional complex vector bundle. We say such manifolds M are

stably complex.

We denote by τ s(M) the stable tangent bundle τ(M)⊕R2k−n of M , again simpli-

fying to τ s when there is no danger of confusion. Often we use the same symbol to

denote both a bundle and its classifying map. If the stable tangent bundle of M is

classified by τ s : M → BO(2k), we can view a stably complex structure on M as a lift

of τ s to BU(k) via the classifying map of θ, illustrated by the commutative diagram

BU(k)

r

��
M

τs
//

θ

<<zzzzzzzzzzzzzzzzzz
BO(2k)

in which r is realification, giving rθ = τ s. Then two isomorphisms of the form (2.3.2)

are considered equivalent if they are homotopic as lifts of the map τ s, and accordingly,

in such cases we call the structures homotopic.

2.3.2 Special unitary & stably quaternionic structures

We can impose stricter conditions on the stable tangent bundle of a manifold to define

additional tangential structures.

Suppose that we have a stably complex manifold M . If the first Chern class

c1(τ
s) ∈ H2(M) of the stable tangent bundle of M is zero, then the stably complex

structure is special unitary ; we say M is a special unitary manifold. Often we will
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abbreviate these notions to SU-structure and SU-manifold respectively. We study

SU -structures on quasitoric manifolds in Chapter 5.

Furthermore, we can extend the idea of a stably complex structure to the quater-

nionic setting, which will be crucial for the constructions of Chapter 6 and our work

with quaternionic cobordism in Chapter 7. In analogy with Definition 2.3.1 we have

the following notion.

Definition 2.3.3. A stably quaternionic structure on a manifold M is a real isomor-

phism of vector bundles

τ(M)⊕ R2k−n ∼= θ, (2.3.4)

where θ is a k-dimensional quaternionic vector bundle. Such M are said to be stably

quaternionic.

As in section 2.3.1, we will term two isomorphisms of the form (2.3.4) homotopic

if they are homotopic as lifts of τ s : M → BO(4k) to BSp(k).

2.3.3 Tangential structures on sphere bundles

Throughout this section we work with a bundle θ, which has fibre Kn, where K = R,C

or H. We will assume that θ is equipped with a suitable Riemannian metric. Let

E(θ) denote the total space of θ, and label by π the projection to the base space,

which is taken to be some manifold B(θ).

We write τF (θ) for the bundle of vectors in E(θ) that are tangent to the fibres of θ.

The bundle of vectors orthogonal to fibres in θ will be denoted by τ⊥(θ); it is obviously

isomorphic to π∗(τB(θ)). Furthermore there is an isomorphism of O(in)-bundles,

τE(θ) ∼= τF (θ)⊕ τ⊥(θ), (2.3.5)

where i = 1, 2 or 4 when K = R,C or H, respectively.

We now apply a result of Szczarba [57, Theorem 1.2] in the particular case of the

sphere bundle S(θ) to obtain the following.

Corollary 2.3.6. There is an isomorphism

τF (S(θ))⊕ R ∼= π∗(θ).
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This isomorphism and the splitting (2.3.5) combine to give an important propo-

sition that we will rely upon throughout the rest of our thesis.

Proposition 2.3.7. There exists a real isomorphism of vector bundles

τS(θ)⊕ R ∼= π∗(θ ⊕ τB(θ)). (2.3.8)

Similarly, we can apply Szczarba’s methods to determine an real isomorphism

τD(θ) ∼= π∗(θ ⊕ τB(θ)), (2.3.9)

on the tangent bundle of the disc bundle of θ.

In the case that θ is a complex vector bundle such that τB(θ) is stably complex,

the isomorphism (2.3.8) leads to a stably complex structure on S(θ). In a similar

fashion, for quaternionic θ we can obtain a stably quaternionic structure on S(θ) via

(2.3.8). These structures bound since they extend via (2.3.9) to D(θ).

2.3.4 Changes of tangential structure

In Chapter 7 we will consider the effect of changing the tangential structure on a

manifold, using the techniques described in the memoir of Ray, Switzer and Taylor

[48]. In this section we give a brief exposition of the theory that underlies their

methods, taking some ideas from an earlier paper by Ray [46] as our starting point.

Let G,H be stable subgroups of the infinite orthogonal group O such that G < H,

and choose integers iG, iH , such thatH(iHn) andG(n) act on RiGn. A typical example

is when H = U and G = Sp, then iU = 2 and iSp = 4.

Consider the fibration

H(iHn)/G(n)
ι−→ BG(n)

f−→ BH(iHn). (2.3.10)

The map f classifies the universal G(n)-bundle and ι is the inclusion of the fibre. The

nullhomotopic composition fι classifies a trivial H(iHn)-bundle over H(iHn)/G(n)

and induces a map of Thom spaces

SiHn ∧H(iHn)/G(n)+ −→MG(n).
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Let n→∞ and take the adjoint to obtain j : H/G+ → Ω∞MG, which in turn induces

a map

J : [X+, H/G] −→MG∗(X+). (2.3.11)

which we term the J-homomorphism.

In our thesis, we will only consider situations where H/G is equipped with an

infinite loop structure, so that the set of homotopy classes of maps [X+, H/G] forms

a group. In the case of H/G = O/U or U/Sp, the standard equivalences of Bott

periodicity give [X+, H/G] ∼= KO−2(X+) or KO−3(X+) respectively (see Lemma

2.3.13 below), and a suitable infinite loop structure on O/Sp is described in [43,

Section 2]. Henceforth we will denote [X+, H/G] by H/G∗(X+).

Now suppose we have an n-dimensional manifoldMn, whose stable tangent bundle

carries a G-structure g, that is, a class of lift g of the classifying map τ s : Mn → BO

to BG. This is the generalisation of concepts we defined earlier: in the case when

G = U or Sp we have a stably complex or stably quaternionic structure respectively

on Mn, as given by Definitions 2.3.1 and 2.3.4. We write [Mn, g] ∈ MGn for the

equivalence class under the G-bordism relation of a manifold Mn with G-structure g.

With the notion of a G-structure established, we can state the main aim of

this section. Suppose we have a manifold Mn, whose tangent bundle carries a

fixed H-structure and a G-structure g. We will work towards defining a function

Ψg : H/G
0(Mn

+) −→ MGn, whose image describes all the possible changes to the

G-structure on Mn. Then we will detail a systematic procedure for computing the

image of Ψg, and use this as the basis for our investigations in Chapter 7.

There is a useful geometric description of H/G0(Mn
+), which allows us to study

the effect of a change of G-structure on a manifold Mn, which already has a given

G-structure g.

Lemma 2.3.12. [48, Lemma 2.1] We can identify H/G0(Mn
+) with the homotopy

classes of G-structures on Mn, considered as a manifold with fixed H-structure.

Proof. An element δ ∈ H/G0(Mn
+) is represented by a map Mn → H/G. This can

be thought of as a new G-structure on the trivial H-bundle over Mn, as it gives a
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lift to BG by the inclusion of the fibre H/G→ BG. Adding this trivial H-bundle to

the stable tangent bundle τ s of Mn does not affect the H stability class of τ s, and so

we have identified H/G0(Mn
+) and the set of stable G-structures on τ s.

The new G-structure on Mn induced by δ is written as δ + g.

Since SO/U ' Ω2(BO) and U/Sp ' Ω3(BO) (see e.g. [29, Theorem 5.22]) we

can relate certain homotopy classes of tangential structures to real K-theory, the

cohomology theory of Example 2.2.7.

Lemma 2.3.13. The set of homotopy classes SO/U0(Mn
+) of stably complex struc-

tures on Mn as a fixed SO-manifold is in 1-1 correspondence with KO−2(Mn).

When a stably complex structure on Mn is fixed, the set of homotopy classes

U/Sp0(Mn
+) of stably quaternionic structures on Mn is in 1-1 correspondence with

KO−3(Mn).

Now that we have a convenient description of the homotopy classes of G-structures

on a manifold Mn, we are almost ready to fulfil our goal of establishing the func-

tion Ψg : H/G
0(Mn

+) −→ MGn. As far as possible we wish to retain the geometric

viewpoint of [46, Section 2]. Therein the group MGn(H/G+) is described as the

bordism group of n-dimensional manifolds Mn which carry independent G-structures

g1, g2 that are equivalent (i.e. they are homotopic, in the sense of Section 2.3.1) when

considered as H-structures. We denote such classes of MGn(H/G+) by [Mn, g1, g2].

Assume now that Mn carries a G-structure g. By Lemma 2.3.12, given δ ∈

H/G0(Mn
+), we have twoG-structures g and δ+g onMn, which agree asH-structures.

The induced map Bg : H/G
0(Mn

+) → MGn(H/G+), sends δ to [Mn, g, δ + g] in

MGn(H/G+).

We then define a map Ψg given by the composite

H/G0(Mn
+)

Bg−→MGn(H/G+)
L−→MGn, (2.3.14)

where the map L simply takes [Mn, g, δ + g] and considers it as a bordism class in

MGn so that

Ψg(δ) = [Mn, δ + g] ∈MGn, (2.3.15)



CHAPTER 2. NOTATION AND PREREQUISITES 24

for any δ in H/G0(Mn). Hence Ψg(δ) has the effect of changing the G-structure on

Mn by the addition of δ, in the sense of Lemma 2.3.12.

Remark 2.3.16. In general Ψg is not a homomorphism.

Lemma 2.3.17. [48, Lemma 2.2] The image of Ψg is independent of the G-structure

g on Mn.

Proof. Suppose we have a second G-structure g′ on Mn. As a consequence of Lemma

2.3.12 we can express g′ as g + ε, for some ε ∈ H/G0(Mn
+).

We have that Ψg(δ) = [Mn, δ + g] = [Mn, δ + g′ − ε] = Ψg′(δ − ε), and similarly

Ψg′(δ) = Ψg(δ + ε). So it follows that the images of Ψg and Ψg′ on Mn comprise the

same subset of MGn.

We will therefore write Ψ(Mn) for the image of Ψg on H/G0(Mn
+).

In [48] the authors show that there is an alternative and equivalent definition of

Ψg, which leads to a reduced map Ψ̃g. They introduce an additive homomorphism

Dg : MG0(Mn
+) → MGn, whose composite DgJ with the J-homomorphism (2.3.11)

is a map

H/G0(Mn
+) −→MGn, (2.3.18)

which is equivalent to Ψg [48, Lemma 1.3]. We will study Dg in greater detail later

in this section, as it has a simple geometric interpretation as part of a systematic

procedure for calculating Ψ(Mn)

We will use the new and equivalent definition of Ψg to obtain Ψ̃g; we first note

that the the composition H/G0(Mn) → H/G0(Mn
+) → MG0(Mn

+) → MG0(Mn),

gives a reduced J-homomorphism J̃ , where MG0(Mn) is given the circle operation

x ◦ y = x+ y + xy, so that

J̃(δ1 + δ2) = J̃(δ1) + J̃(δ2) + J̃(δ1)J̃(δ2), (2.3.19)

for any δ1, δ2 in H/G0(Mn). Then the composite DgJ̃ is Ψ̃g : H/G
0(Mn) −→ MGn,

and we denote the image of Ψ̃g on H/G0(Mn) by Ψ̃(Mn). Again, Ψ̃g is not necessarily

a homomorphism. We have introduced the reduced viewpoint as it will be useful for

some of our observations in Chapter 7.
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In our thesis, we will assume that H/G is connected (that is, H ≤ SO), thus

ensuring that our changes of G-structure do not affect the orientation of Mn. This

has various consequences, but in particular we will need the fact [48, Note 3.2] that

we can then relate our reduced and unreduced maps by the formula

Ψg(δ) = [Mn, g] + Ψ̃g(δ), (2.3.20)

so if g is a bounding G-structure we have Ψ(Mn) = Ψ̃(Mn).

We will also require the following definition in Chapter 7.

Definition 2.3.21. A closed, connected G-manifold (Mn, g), with the property that

Ψg : H/G(Mn
+) → MGn is epimorphic, that is the image Ψ(Mn) = MGn, is said to

be an H-universal G-manifold.

To conclude this chapter we describe a systematic procedure for calculating the

image Ψ(Mn), which we will form the basis of our investigations in the final chapter.

In [48] the authors identify the homomorphismDg with 〈−, [Mn]g〉, where [Mn]g ∈

MGn(M
n
+) is the fundamental class of Mn with G-structure g, and 〈 , 〉 is the Kro-

necker product for the spectrum MG. Given any x in MG∗(Mn
+) we have that

〈x, [Mn]g〉 = c∗(x _ [Mn]g), where c collapses Mn to a point, and _ denotes cap

product in MG. Hence 〈x, [Mn]g〉 is nothing more than the image under the collapse

map of the Poincaré dual of x.

Therefore the process for determining Ψg(δ) breaks into the following steps. Begin

by taking the associated unit of δ, given by J(δ) ∈ MG0(Mn
+). Then compute the

associated dual, which is the Poincaré dual Γg(δ) = J(δ) _ [Mn]g ∈ MGn(M
n
+).

Finally, read off the G bordism class of a manifold that represents Γg(δ).

2.4 The Borel construction

The Borel construction features throughout our thesis, so we set out the salient details

here. A more thorough description and further applications can be found for example

in [15] or [22].



CHAPTER 2. NOTATION AND PREREQUISITES 26

Suppose that a topological group G acts freely on a space E by (g, e) 7→ ge, for

any g ∈ G and e ∈ E. Denote the orbit space under this action by B.

Definition 2.4.1. A principal G-bundle over B is a bundle π : E → B, with fibre G.

Now suppose that G acts on a space F by (g, f) 7→ gf , for any g ∈ G and f ∈ F .

Definition 2.4.2. The quotient space E × F/ ∼, under the equivalence relation

(e, f) ∼ (ge, gf), (2.4.3)

is the Borel construction, denoted by E ×G F .

For an equivalence class [e, f ] ∈ E ×G F , the map ω : [e, f ] 7→ π(e) gives rise to a

bundle

ω : E ×G F −→ B,

with fibre F , which is associated to the principal bundle π : E −→ B.

We have a well-known example that illustrates these concepts.

Example 2.4.4. Consider S2n+1 embedded in Cn+1 as the set {z = (z1, . . . , zn+1) :

|z1|2+ · · ·+ |zn+1|2 = 1}. Let t ∈ S1 act diagonally on the sphere S2n+1 by (t, z) 7→ tz,

yielding the standard principal S1-bundle S2n+1 → CP n. Now, given an action of S1

on C by (t, w) 7→ t−1w, the associated complex line bundle

S2n+1 ×S1 C −→ CP n,

is the canonical complex line bundle ζ1 over CP n.

2.5 Iterated bundle constructions

To simplify our presentation in Chapters 4 and 6 we will establish here some basic

facts about the cohomological properties of iterated bundle constructions, based on

the programme detailed in [12, Section 7].

We begin by stating the Leray-Hirsch Theorem for any ring spectrum E.
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Theorem 2.5.1. [56, Theorem 15.47] Let F
ι−→ Y

π−→ X be a fibre bundle in which

the base space X is 0-connected. Suppose there are elements y1, . . . , yr ∈ E∗(Y+),

such that ι∗(y1), . . . , ι
∗(yr) ∈ E∗(F+) form a basis of E∗(F+) as a module over E∗.

Then E∗(Y+) is a free E∗(X+)-module with basis {y1, . . . , yr}. The module action is

given by xy = π∗(x) ^ y for x ∈ E∗(X+) and y ∈ E∗(Y+).

For the remainder of this section we will work exclusively with complex oriented

ring spectra E.

Definition 2.5.2. A 2-generated connected CW-complex X is one whose integral co-

homology ringH∗(X) is generated by a linearly independent set of elements x1, . . . , xn

in H2(X). We say such elements are 2-generators and n is the 2-rank.

The first Chern class cH1 defines an isomorphism between the multiplicative group

of complex line bundles over X and H2(X; Z) ∼= Zn. Hence there exists line bundles

γi over X such that cH1 (γi) = xi, and the n-tuple (a(1), . . . , a(n)) ∈ Zn corresponds

to the tensor product bundle γ
a(1)
1 ⊗ · · · ⊗ γa(n)

n under the isomorphism.

In any complex oriented ring spectrum E, the first Chern class cE1 (γi), which we

will henceforth denote by yEi , lies in E2(X) for 1 ≤ i ≤ n. The Atiyah-Hirzebruch

spectral sequence, in which

Ei,j
2
∼= H i(X;Ej(pt)),

converges to E∗(X) (see e.g. [24, Chapter 3]), collapses, since the ordinary cohomol-

ogy of X is concentrated in even degrees, forcing all differentials to be zero. Therefore

E∗(X) is a free E∗-module, spanned by the collection of monomials
∏

R y
E
i , where R

is any subset of {1, . . . , n}; as a free E∗-algebra, E∗(X) is generated by yE1 , . . . , y
E
n .

Given an n-tuple (a(1; j), . . . , a(n; j)) ∈ Zn, write βj for the bundle γ
a(1;j)
1 ⊗ · · · ⊗

γ
a(n;j)
n over X. Now, for ln+1 such n-tuples, we can define a direct sum bundle

β := β1 ⊕ · · · ⊕ βln+1 . (2.5.3)

Then let Y denote the total space of the CP ln+1-bundle CP (β⊕C) over X, given

by projectivising the direct sum of β and a trivial complex line bundle C.
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Lemma 2.5.4. The E∗-module E∗(Y+) is a free module over E∗(X+), generated by

1, yEn+1, (y
E
n+1)

2, . . . , (yEn+1)
ln+1, where yEn+1 is an element of E2(Y+). A single relation

(yEn+1)(y
E
n+1 − cE1 (β1)) . . . (y

E
n+1 − cE1 (βln+1)) = 0, (2.5.5)

describes the multiplicative structure.

Proof. We will adapt the proof of Proposition 4.2.2. in [10]. We have a fibre bundle

CP ln+1 ι−→ Y
π−→ X, (2.5.6)

and Ej(CP ln+1) is a finitely generated E∗-module for all j. Consider the canonical

line bundle γn+1 over Y , whose total space consists of all pairs (λ, v), where λ is

a 1-dimensional subspace in the CP ln+1 fibres and v is a point in λ. The pullback

ι∗γn+1 is isomorphic to ζln+1 , the canonical line bundle over CP ln+1 . We have that

{1, ι∗(cE1 (γn+1)), . . . , ι
∗(cE1 (γn+1)

ln+1)} forms a basis for E∗(CP ln+1) over E∗. Denote

cE1 (γn+1) by yEn+1.

With these preliminaries in place, we can apply Theorem 2.5.1 and deduce that

E∗(Y+) is a free E∗(X+)-module generated by yEn+1, (y
E
n+1)

2, . . . , (yEn+1)
ln+1 , for yEn+1 ∈

E2(Y+). Furthermore, for any x ∈ E∗(X+) and y ∈ E∗(Y+), the module structure is

determined by xy = π∗(x) ^ y.

The pullback π∗(β ⊕ C) contains γn+1 as a subbundle. Therefore we may use

the standard inner product in the fibres of the complex bundle β, to define an ln+1-

dimensional bundle γ⊥n+1 over Y , such that π∗(β ⊕ C) ∼= γn+1 ⊕ γ⊥n+1. The fibre of

γ⊥n+1 is given by the orthogonal complement λ⊥ in β ⊕ C.

Now take the total Chern class cE of π∗(β ⊕ C) ∼= π∗(β)⊕ C to obtain

cE(π∗(β)) = cE(γn+1 ⊕ γ⊥n+1)

= (1 + cE1 (γn+1))c
E(γ⊥n+1)

= (1 + yEn+1)c
E(γ⊥n+1).

(2.5.7)
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Rearranging we have

cE(γ⊥n+1) = cE(π∗(β))(1 + yEn+1)
−1

= (1 + cE1 (π∗β1)) . . . (1 + cE1 (π∗βln+1))(1 + yEn+1)
−1

= (1 + cE1 (π∗β1)) . . . (1 + cE1 (π∗βln+1))(1− yEn+1 + . . .

· · ·+ (−1)i(yEn+1)
i + . . . ).

Note that by equating coefficients in degree 2ln+1 + 2 of the total Chern class (2.5.7)

we have that yEn+1c
E
ln+1

(γ⊥n+1) = 0, because the fibres of β are of dimension 2ln+1,

whence

yEn+1((−1)ln+1(yEn+1)
ln+1 + (−1)ln+1−1(yEn+1)

ln+1−1(c1(π
∗β1) + . . .

· · ·+ c1(π
∗βln+1)) + · · ·+ c1(π

∗β1) . . . c1(π
∗βln+1)) = 0.

After some simple but tedious manipulation we arrive at

(yEn+1)(y
E
n+1 − cE1 (π∗β1)) . . . (y

E
n+1 − cE1 (π∗βln+1)) = 0, (2.5.8)

and our above determination of the module structure of E∗(Y+) shows that the bundle

βi over Y is simply the pullback π∗(βi), for 1 ≤ i ≤ ln+1, thus giving our desired

cohomology relation.

Note that Lemma 2.5.4 implies that Y itself is 2-generated with 2-rank n+ 1.

By taking a nonzero vector in the C summand we have a section ω for the bundle

π : Y → X. The space obtained by the quotient of Y by the image of ω is homeomor-

phic to the Thom complex of β [54, page 66], which we denote by T (β). Label the

quotient map by ϑ. The section ω has left inverse π and so the induced cohomology

sequence

E∗(X)
ω∗←− E∗(Y )

ϑ∗←− E∗(T (β)), (2.5.9)

is split by π∗, thus ensuring it is short exact.

We illustrate Lemma 2.5.4 with a familiar example.

Example 2.5.10. Let X = CP∞ and choose β to be ζ1, the universal complex line

bundle over CP∞. It follows that T (ζ1) ∼= CP∞ (see e.g. [27, 15.1.7]). Therefore
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Y is the projectivisation CP (ζ1 ⊕C), which is homotopy equivalent to CP∞ ∨CP∞

[51, page 45]. We have that E∗(Y+) is free over E∗(CP∞
+ ) ∼= E∗[[x]], generated by

1 and y ∈ E2(Y+), with (y)2 = xy. Simplifying the cohomology relation to y = x,

illustrates the homotopy equivalence between Y and CP∞ ∨ CP∞.

Note that the first Chern class cE1 in E2(CP∞) induces a canonical Thom class

tE ∈ E2(T (ζ1)), and gives a Thom isomorphism E∗−2(X+) ∼= E∗(T (ζ1)). This allows

us to view y as the pullback ϑ∗tE.

An alternative proof for Lemma 2.5.4 is given in [12, Lemma 7.2]; a useful fact

that arises from this approach is that products of the form π∗(x)yEn+1 may be written

as ϑ∗(xtE), for any element x ∈ E∗(X).



Chapter 3

Quasitoric manifolds

Quasitoric manifolds can be thought of as a topological analogue of the nonsingular

projective toric varieties of algebraic geometry. They were introduced by Davis and

Januskiewicz [16], whose work is now regarded as the catalyst for the study of toric

topology.

In this chapter we introduce the key definitions and results that we rely upon

throughout the rest of our thesis.

We will follow the most recent approach to toric topology, as described by Buch-

staber, Panov and Ray in their work [6]; therein the reader will find any omitted

proofs, and a wealth of further detail is contained in [5].

We begin by setting out some preliminary details on torus actions and polytopes,

which leads to the definition of a quasitoric manifold. The concept of a dicharacteris-

tic function is introduced, which allows a second description of a quasitoric manifold

as a quotient of an object known as the moment angle complex. In the next section

the ordinary cohomology ring of a quasitoric manifold is computed, and we conclude

by considering stably complex and special unitary structures on such manifolds.

3.1 Torus actions and simple polytopes

Coordinatewise multiplication of the n-torus T n = (S1)n on Cn is called the standard

representation; the orbit space of this T n-action is the nonnegative cone Rn
≥, which

31
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consists of all vectors in Rn with non-negative coordinates. We call a 2n-dimensional

manifold M2n with an action of T n a T n-manifold.

Consider open sets U ⊂ M2n and V ⊂ Cn, which are closed under the action of

T n, and a homeomorphism h : U −→ V .

Definition 3.1.1. Given an automorphism ψ of T n, we say that a T n-action on

M2n is locally isomorphic to the standard representation if h(tu) = ψ(t)h(u), for all

t ∈ T n, u ∈ U .

Let Ti denote the ith coordinate circle in Tm, for 1 ≤ i ≤ m, and given a subset

I = {i1, . . . , ik} of {1, . . . ,m}, write TI for a product
∏

i∈I Ti < Tm. We shall set T∅

equal to {1}, the trivial subgroup.

Now consider n-dimensional Euclidean space Rn, endowed with the standard or-

thonormal basis e1, . . . , en, and inner product denoted by 〈 , 〉. Let H be the collec-

tion of closed half-spaces

Hi = {x ∈ Rn : 〈ai, x〉 ≥ −bi}, (3.1.2)

for 1 ≤ i ≤ m, where ai ∈ Rn and bi ∈ R. The boundary ∂Hi is the bounding

hyperplane of the half-space Hi; it has an inward pointing normal vector ai.

Definition 3.1.3. A bounded intersection ∩iHi of half-spaces is called an n dimen-

sional convex polytope, which we denote by P n. We assume H is as small as possible,

so that if any Hi is removed from H, the polytope would be enlarged.

A supporting hyperplane of P n is a hyperplane H, which intersects with P n and

contains the polytope in one of the two half-spaces it determines. The intersection

P n ∩H defines a face of the polytope, which is itself a convex polytope of dimension

< n. We will take P n to be an n-dimensional face of itself, and regard all other faces

as proper faces. In particular we have vertices, edges and facets as faces of dimensions

0, 1 and n− 1 respectively.

Definition 3.1.4. An n-dimensional convex polytope P n with exactly n facets meet-

ing at each vertex is called simple.
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Throughout our thesis we will work only with simple polytopes, and we will always

use m to denote the number of facets of a polytope.

Example 3.1.5. The standard n-simplex ∆n is the simple polytope given by the

intersection of the half-spaces

Hi =

 {x : 〈ei, x〉 ≥ 0} for 1 ≤ i ≤ n,

{x : 〈an+1, x〉 ≥ −1} for i = n+ 1,
(3.1.6)

in Rn, where an+1 = (−1, . . . ,−1). The vertices of ∆n are given by the origin 0 and

the points e1, . . . , en, while each facet is an (n− 1)-simplex ∆n−1.

Occasionally it will be helpful to view the n-simplex as the following subset of

Rn+1

∆n = {(x1, . . . , xn+1) ∈ Rn+1 : Σixi = 1, xi ≥ 0, for all i}. (3.1.7)

Example 3.1.8. The standard n-cube In is the simple polytope given by the inter-

section of the half-spaces

Hi = {x : 〈ei, x〉 ≥ 0} for 1 ≤ i ≤ n,

Hn+i = {x : −〈ei, x〉 ≥ −1} for 1 ≤ i ≤ n.

in Rn. The vertices of In are (δ1, . . . , δn), where δi = 0 or 1, for 1 ≤ i ≤ n, while each

facet is an (n− 1)-cube In−1.

Denote by F the set of facets {F1, . . . , Fm} of P n. Every codimension k face of

the polytope can be expressed uniquely as

FI = Fi1 ∩ · · · ∩ Fik , (3.1.9)

where I = {i1, . . . , ik} is a subset of {1, . . . ,m}. We order the FI lexicographically

for each 1 ≤ k ≤ n. Moreover, every point p ∈ P lies in the interior of a unique face

FIp , where Ip := {i : p ∈ Fi}. To simplify notation, we will abbreviate FIp to F (p),

and similarly, write T (p) for the subtorus TIp < Tm.

Permuting the order of the facets if necessary, we will assume F1 ∩ · · · ∩ Fn is a

vertex v?. We term such orderings fine and name v? the initial vertex of P n, the first

vertex with respect to the lexicographical ordering of faces (3.1.9).
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The fine ordering can be extended to a product of polytopes in the following

manner. Let P and P ′ be finely ordered polytopes of dimensions n and n′ and

respectively. The set of facets of the product P × P ′ may be written as a list

F1 × P ′, . . . , Fm × P ′, P × F ′
1 . . . , P × F ′

m′ , (3.1.10)

where Fi, for 1 ≤ i ≤ m, and F ′
i , for 1 ≤ i ≤ m′, are the facets of P and P ′

respectively. We can impose a fine order on P × P ′ by moving the facets P ×

F ′
1 . . . , P × F ′

n′ into positions n+ 1, . . . , n+ n′ in the list (3.1.10). We then have the

point (v?, v
′
?) ∈ Rn+n′ as the initial vertex of the product. Note that we will have a

different ordering if we instead consider P ′ × P .

We require one final concept before we define a quasitoric manifold.

Definition 3.1.11. A vector v1 ∈ Zn is called primitive if there exists n− 1 vectors

v2, . . . , vn−1 in Zn, such that {v1, . . . , vn} forms a basis for Zn

3.2 Quasitoric manifolds

Definition 3.2.1. Given a simple convex polytope P n, a T n-manifold M2n is a

quasitoric manifold over P n if

(i) the T n-action is locally isomorphic to the standard representation,

(ii) there is a projection π : M2n −→ P n, mapping every k-dimensional orbit to a

point in the interior of a k-dimensional face of P n, for k = 0, . . . , n.

The second condition implies that any points of M2n that are fixed under the

action of T n map to the vertices of P n, while points at which the action is free

project to the interior of the polytope. We define π−1(v?) to be the initial fixed point

x?.

Before we consider examples of quasitoric manifolds, we introduce some further

notions.
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Definition 3.2.2. The moment angle complex ZPn associated to a polytope P n is

the quotient space

Tm × P n/ ∼ (3.2.3)

where (t1, p) ∼ (t2, q) if and only if p = q and t−1
1 t2 ∈ T (p).

The free action of Tm on Tm × P n induces a Tm-action on ZPn , with quotient

P n. It is straightforward to check that the isotropy subgroups of the Tm-action are

given by T (p) for all p ∈ P n.

The moment angle complex associated to a product of polytopes splits in the

obvious fashion.

Proposition 3.2.4. [5, Proposition 6.4] If P is a product P1×P2 of simple polytopes

P1, P2, then ZP = ZP1 ×ZP2.

The following fact will also be useful in our thesis.

Lemma 3.2.5. [5, Construction 6.8] There is a Tm-equivariant embedding ZPn →

Cm.

Moment angle complexes lead to the construction of quasitoric manifolds, which

appear as the orbit space of ZPn under a certain Tm−n-action. To determine that

action we make the following definition.

Definition 3.2.6. A dicharacteristic function is a homomorphism l : Tm → T n,

satisfying the condition that if FI is a face of codimension k, the map l is monic on

TI .

We denote l(T (p)) by T (F (p)), so for a vertex v of P n we have T (F (v)) = T n,

while any point w in the interior of the polytope has T (F (w)) = {1}.

Remark 3.2.7. In [16], Davis and Januskiewicz introduced the notion of a charac-

teristic function, which mapped each facet Fi of P n to a vector λi determining the

isotropy subgroup of Fi. However, such a vector is only defined up to sign. On intro-

ducing the dicharacteristic function, Buchstaber and Ray [9] removed this ambiguity
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by insisting that each T (Fi) be oriented, therefore choosing the sign of each vector

λi. In Section 3.4 we will see that this has important consequences for the study of

quasitoric manifolds in complex cobordism theory, which is the subject of Chapter 5

of our thesis.

As we insisted on the first n-facets of P n intersecting in the initial vertex v?,

Definition 3.2.6 implies that the restriction of l to T1 × · · · × Tn is a monomorphism,

and so l is an isomorphism. Hence we can take T (F1), . . . , T (Fn) to be a basis

for the Lie algebra of T n. Then the epimorphism of Lie algebras associated to the

dicharacteristic l, may be described by a linear transformation λ : Zm −→ Zn. The

dicharacteristic matrix representing the map λ is the n×m matrix

Λ =


1 0 . . . 0 λ1,n+1 . . . λ1,m

0 1 . . . 0 λ2,n+1 . . . λ2,m

...
...

. . .
...

...
. . .

...

0 0 . . . 1 λn,n+1 . . . λn,m


. (3.2.8)

We can see that the isotropy subgroup associated to each facet Fi is given by

T (Fi) = {(e2πiλ1,iϕ, . . . , e2πiλn,iϕ) ∈ T n}, (3.2.9)

where ϕ ∈ R. The ith column of Λ is a primitive vector λi = (λ1,i, . . . , λn,i) ∈ Zn,

called the facet vector associated to Fi.

The partition of Λ into (In | S), where S is an n× (m−n) submatrix, is known as

the refined form of the dicharacteristic matrix, and we term S the refined submatrix.

Given any other vertex Fi1 ∩· · ·∩Fin , Definition 3.2.6 implies that the corresponding

columns λi1 , . . . λin form a basis for Zn with determinant equal to ±1.

As a consequence of the condition imposed by Definition 3.2.6, the kernel K(l) of

the dicharacteristic l is isomorphic to an (m−n)-dimensional subtorus of Tm. Further-

more, for any point [t, p] ∈ ZPn ∼= Tm × P n/ ∼, where p belongs to a codimension-k

face of P n, we know that the restriction of l to T (p) < Tm is monic, and fixes an

(m − k)-dimensional kernel K(p) ∼= Tm−k < Tm. Hence the intersection of K(p)

and T (p) is trivial, for every p ∈ P n. Since such T (p) are the isotropy subgroups of
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ZPn , it follows that K(l) acts freely on ZPn and thus defines a principal K(l)-bundle

ZPn −→M2n over the quotient space M2n.

We can view the base space M2n as the quotient space,

T n × P n/ ∼, (3.2.10)

where (t1, p) ∼ (t2, q) if and only if p = q and t−1
1 t2 ∈ T (F (p)). Again, the free action

of T n on T n×P n induces a T n-action on M2n, with quotient P n. In [5, Construction

5.12], it is shown that this action is locally standard, and that the projection to P n

behaves as in Definition 3.2.1(ii). Hence the space M2n is a quasitoric manifold.

For an automorphism ψ of T n, two quasitoric manifolds M2n
1 and M2n

2 are ψ-

equivariantly diffeomorphic if there is a diffeomorphism g : M2n
1 → M2n

2 , such that

g(tx) = ψ(t)g(x) for all t ∈ T n, and all x ∈ M2n
1 . This leads to the following

important result.

Proposition 3.2.11. [16, Proposition 1.8] Any quasitoric manifold M2n over P n is

ψ-equivariantly diffeomorphic to one of the form (3.2.10).

As a consequence, we will assume that every quasitoric manifold can be viewed

as a quotient of the form (3.2.10).

To illustrate some of the concepts we have introduced in this section, consider the

following example.

Example 3.2.12. Consider the n-simplex ∆n embedded in Rn+1, finely ordered as in

Example 3.1.5 so that the origin is the initial vertex. The associated moment angle

complex Z∆n is the (2n+ 1)-sphere S2n+1 (see e.g. [5, Example 6.7]).

The dicharacteristic function l is chosen so that the associated matrix takes the

form 
1 0 . . . 0 −1

0 1 . . . 0 −1

...
...

. . .
...

...

0 0 . . . 1 −1


, (3.2.13)
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Hence the kernel K(l) is equal to the diagonal subgroup D := {(t, . . . , t)} < T n+1.

The quotient of Z∆n under the action of D, is n-dimensional complex projective space

CP n. The n-torus acts on the homogeneous coordinates [z1, . . . , zn+1] of CP n by

(t1, . . . , tn) · [z1, . . . , zn+1] = [t1z1, . . . , tnzn, zn+1], (3.2.14)

with initial fixed point [0, . . . , 0, 1].

In Chapter 4 we will consider quasitoric manifolds known as Dobrinskaya towers,

the class of which includes the well known examples of Bott towers [12] and bounded

flag manifolds [47].

3.3 Cohomology of quasitoric manifolds

Davis and Januskiewicz proved that the integral cohomology ring of a quasitoric

manifold is a quotient of the Stanley-Reisner ring of its associated polytope. Their

result is described in this section with the aid of the dicharacteristic function. As an

illustration, we compute the cohomology ring of complex projective space.

Consider a quasitoric manifold π : M2n → P n. Let us assume that we have chosen

a dicharacteristic function l, so that the kernel K(l) is an (m− n)-torus of the form

{(tµ1,1

1 . . . t
µ1,m−n

m−n , . . . , t
µm,1

1 . . . t
µm,m−n

m−n )} < Tm, (3.3.1)

for fixed integers µi,j. The map of Lie algebras induced by l gives rise to a short exact

sequence

0 −→ Zm−n κ−→ Zm λ−→ Zn −→ 0, (3.3.2)

and from (3.3.1) we can see that the m× (m− n) matrix describing the injection κ

is given by 
µ1,1 . . . µ1,m−n
...

...

µm,1 . . . µm,m−n

 . (3.3.3)

For every facet of P n, we can associate to the principal K(l)-bundle ZPn −→M2n,

a complex line bundle ρi given by

ZPn ×K(l) Ci −→M2n, (3.3.4)
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where K(l) acts on Ci by zi 7→ t
µi,1

1 . . . t
µi,m−n

m−n zi, for 1 ≤ i ≤ m. These bundles are

known as the facial bundles of M2n.

By Definition 3.2.1, the preimage of a facet π−1(Fi) is a 2(n − 1)-dimensional

quasitoric facial submanifold Mi over Fi, with isotropy subgroup T (Fi). The normal

2-plane bundle of the embedding Mi ⊂ M2n is denoted by νi, and its total space is

isomorphic to ZFi
×K(l) Ci [9, p. 12]. Hence if we restrict ρi to Mi we recover νi.

Armed with the facial bundles, we can now describe the cohomology ring of the

quasitoric manifold, which is generated by u1, . . . , um, where ui is the first Chern

class c1(ρi) ∈ H2(M2n).

We express the cohomology ring ofM2n in terms of the Stanley-Reisner ring Z[P n]

of P n, which takes the form

Z[P n] ∼= Z[u1, . . . , um]/I, (3.3.5)

where I is the ideal generated by monomials ui1 . . . uij , which correspond to empty

intersections Fi1 ∩ · · · ∩ Fij = ∅ in P n. A comprehensive treatment of the Stanley-

Reisner ring and its applications in algebra and geometry is given in [52, Chapters

II, III].

Theorem 3.3.6. [16, Theorem 4.14] The integral cohomology ring H∗(M2n) is given

by

Z[u1, . . . , um]/(I + J ), (3.3.7)

where J is the ideal generated by the image of the elements

ui + λi,n+1un+1 + · · ·+ λi,mum, for 1 ≤ i ≤ n, (3.3.8)

in the Stanley-Reisner algebra.

Note that the linear relations (3.3.8) can be ascertained from the rows of the

refined submatrix S, and they imply that we only require the elements un+1, . . . , un+m

in order to generate H∗(M2n) multiplicatively.

Example 3.3.9. Consider CP n as in Example 3.2.12. Complex projective space is a

quasitoric manifold over the n-simplex ∆n, which has n + 1 facets. Hence the coho-

mology ring H∗(CP n) is generated by the elements u1, . . . , un+1. The only monomial
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relation generating I, is given by u1 . . . un+1 = 0, due to the empty intersection of

facets F1 ∩ · · · ∩ Fn+1 in P n.

With Λ as in (3.2.13), we obtain the linear relations, u1 = u2 = · · · = un+1 in J .

On applying Theorem 3.3.6 we recover the well-known (see e.g. [22, Theorem 3.12])

description of the cohomology ring

H∗(CP n) ∼= Z[u]/un+1,

where we set u = un+1.

3.4 Tangential structures

We now consider quasitoric manifolds with regard to the tangential structures we

introduced in Chapter 2. We describe a canonical stably complex structure on an

omnioriented quasitoric manifold, again using complex projective space as an illus-

trative example. In conclusion we give a simple test that determines whether an

omnioriented quasitoric manifold carries an SU -structure, and investigate the Chern

classes of a quasitoric manifold in terms of its dicharacteristic matrix.

A choice of orientation on each facial bundle ρi, or equivalently each facial sub-

manifold Mi, was termed an “omniorientation” of M2n by Buchstaber and Ray [9].

This is of course equivalent to a choice of dicharacteristic function. It is now the

convention to also include a choice of orientation on the manifold M2n itself.

Definition 3.4.1. An omniorientation of a quasitoric manifold M2n is a choice of

orientation on M2n and on each of the facial submanifolds Mi.

It follows that there are 2m+1 possible omniorientations on M2n.

The next result will be crucial in our investigation of quasitoric manifolds in

cobordism theory.

Proposition 3.4.2. [6, Proposition 4.5] Any omnioriented quasitoric manifold has

a canonical stably complex structure described by an isomorphism

τ(M2n)⊕ R2(m−n) ∼= ρ1 ⊕ · · · ⊕ ρm. (3.4.3)
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Note that even though there are 2m+1 possible omniorientations, due to the pos-

sibility that some may be homotopic to each other, there are not necessarily 2m+1

inequivalent stably complex structures on M2n.

Example 3.4.4. We complete our investigation of CP n (with omniorientation as

specified in Example 3.2.12), by noting that the facial bundle ρi over CP n is given

by

S2n+1 ×D Ci −→ CP n, (3.4.5)

Since D acts on Ci by multiplication by t for all i, by Example 2.4.4 we identify each

ρi with ζ1, the complex conjugate of the canonical line bundle ζ1 over CP n. When ζ1

over CP n is restricted to each facial submanifold CP n−1 we recover the appropriate

canonical line bundle ζ1 over CP n−1, which is the normal bundle of the embedding

CP n−1 ⊂ CP n.

Finally, Proposition 3.4.2 gives the well-known (see e.g. [38, p170]) isomorphism,

τ(CP n)⊕ R2 ∼= ζ1 ⊕ · · · ⊕ ζ1
∼= (n+ 1)ζ1. (3.4.6)

Proposition 3.4.2 illustrates the importance of the choice of orientation on each

facial submanifold, which was determined by the choice of dicharacteristic function.

If we wish to study quasitoric manifolds in complex cobordism theory, a choice of

omniorientation has to be made so that we can describe the canonical stably complex

structure on the manifold. Often in our thesis we will consider the effect of changing

the omniorientation on a quasitoric manifold, so we now look at how such changes

can be recorded by the machinery we have developed in this chapter.

Changing the orientation of a facial submanifold Mi, or equivalently a facet Fi,

has the effect of choosing a different sign for the facet vector λi, therefore negating

the ith column of the matrix Λ (3.2.8). If one or more of the first n columns of λ

are negated, then the refined form of the matrix will be destroyed; we wish to avert

this. Suppose we have changed the omniorientation so that columns i1, . . . , ij have

been negated, for 1 ≤ ik ≤ n. Denote the resulting matrix Λ′. To restore the refined

form, we need to multiply each column of Λ′ by the n×n change of basis matrix that
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converts the first n columns back to In. It is straightforward to check that this has

the effect of negating rows i1, . . . , ij of the refined submatrix S.

Henceforth, in order to preserve the refined form of the dicharacteristic matrix, if

any of the orientations on a facet Fi are switched, for 1 ≤ i ≤ n, the change will be

encoded in Λ by negating the ith row of S. For a change of orientation on any other

facet, we will continue to negate the appropriate column of S.

In terms of the cohomology ring of a quasitoric manifold M2n, switching the

orientation of Mi conjugates the complex line bundle ρi, and thus has the effect of

negating the cohomology generator ui ∈ H2(M2n).

To conclude this chapter, let us investigate the characteristic classes of τ(M2n).

Following Proposition 3.4.2 we know that the stable tangent bundle τ s of M2n splits

as a sum of complex line bundles, and so the total Chern class of τ s is given by

c(τ s) =
∏m

i=1(1 + ui) in H∗(M2n). This leads to the following result.

Corollary 3.4.7. [6, Corollary 4.8] The ith Chern class ci(τ
s) ∈ H2i(M2n) is given

by the ith elementary symmetric polynomial in u1, . . . , um, for 1 ≤ i ≤ n, and n < m.

Henceforth, we will denote the ith elementary symmetric polynomial in the vari-

ables x1, . . . , xj by σi(x1, . . . , xj).

Given a quasitoric manifold M2n, there is a simple test we can use to check

whether an omniorientation induces an SU -structure on M2n.

Lemma 3.4.8. [7] An omnioriented quasitoric manifold M2n has an SU-structure

precisely when every column sum of the refined dicharacteristic matrix Λ equals 1.

Proof. By Corollary 3.4.7, the first Chern class is given by c1(τ
s) = u1 + · · · + um.

Using the relations (3.3.8), we can rewrite this first elementary symmetric polynomial

as (
1−

n∑
i=1

λi,n+1

)
un+1 + · · ·+

(
1−

n∑
i=1

λi,m

)
um. (3.4.9)

As prescribed by our definition in Section 2.3.2, for M2n to have an SU -structure,

we require that the expression (3.4.9) be equal to zero. This happens precisely when

each column sum
∑n

i=1 λi,j of Λ is equal to 1, for n+ 1 ≤ j ≤ m.
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To conclude this chapter, we look at what further information can be extracted

from the dicharacteristic matrix associated to a quasitoric manifold.

If a vertex v ∈ P n is the intersection of facets Fi1 , . . . , Fin , then the sign ε(v) of v

is the minor formed by the columns λi1 , . . . , λin of the dicharacteristic matrix of M2n.

Due to the conditions imposed on the dicharacteristic function in Definition 3.2.6, it

is straightforward to check that ε(v) = ±1.

The notion of the sign of a vertex was central to the work of Dobrinskaya [17],

which we will investigate in Chapter 5. However, the idea was first introduced by

Panov in [41]. He proved that the nth Chern class of the stable tangent bundle of a

quasitoric manifold M2n is given by the sum of the signs of its associated polytope

P n, that is

cn(τ
s(M2n)) =

∑
v∈Pn

ε(v). (3.4.10)

Remark 3.4.11. Since the first Chern class of a quasitoric manifold can be described

by a sum of the columns of Λ (in some sense, a sum of 1×1 minors), and the nth Chern

class is a sum of the n×n minors of Λ, it is natural to ask whether we can realise the

other Chern classes of M2n in terms of the matrix Λ. Unfortunately a sum of i × i

minors, for 2 ≤ i ≤ n− 1, related to codimension-i faces of P n does not give ci(τ
s) in

any obvious manner, even though this is analogous to the procedures for c1(τ
s) and

cn(τ
s). Certainly the information that determines all the Chern classes, and hence

the Chern numbers, of the quasitoric manifold is bound up in its dicharacteristic

matrix, so it would be extremely useful if a simple method of extraction could be

found.



Chapter 4

Dobrinskaya towers

In this chapter we study a family of quasitoric manifolds known as Dobrinskaya

towers. These spaces are named after N. Dobrinskaya, who introduced them as part

of her investigation into the classification of quasitoric manifolds [17]. Choi, Masuda

and Suh [11] augmented these results, incorporating Dobrinskaya towers under the

name “extended Bott manifolds”, and they played an important role in Carter’s study

of loop spaces on quasitoric manifolds [10].

We have chosen to give a detailed treatment of Dobrinskaya towers for two reasons:

they are part of a wider class of manifolds whose SU -structures are studied in Chapter

5, and in Chapter 6 we introduce a quaternionic analogue of the concept, whose role

in quaternionic cobordism theory is the subject of Chapter 7.

We begin by constructing Dobrinskaya towers as a sequence of quasitoric mani-

folds over a product of simplices. Using the methods of Chapter 3, we compute their

integral cohomology rings and describe the stably complex structure on an omnior-

iented tower. We detail a second construction of the tower using iterated bundles,

and in conclusion we consider two special subcases of Dobrinskaya towers.

4.1 Constructing the towers

A Dobrinskaya tower can be built out of an iterated sequence of bundles; alternatively,

we can realise each manifold in the sequence as a quasitoric manifold over a product

44
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of simplices ∆l1×· · ·×∆lk . We begin with the latter viewpoint: let L denote the sum

l1 + · · ·+ lk, and write PL for the product polytope ∆l1×· · ·×∆lk . Each simplex ∆li

in the product PL is finely ordered by (3.1.6), so we can use the procedure described

in (3.1.10) to finely order PL itself.

Let the facets of ∆li be finely ordered as Fi,1, . . . , Fi,li+1. The intersection of any

li facets is a vertex of ∆li , and the initial vertex vi = Fi,1 ∩ · · · ∩ Fi,li is the origin in

Rli .

In the product PL, the facets are of the form Ei,j := ∆l1 × · · · × ∆li−1 × Fi,j ×

∆li+1 × · · · ×∆lk , and they are finely ordered as

E1,1, . . . , E1,l1 , . . . , Ei,1, . . . , Ei,li , . . . , Ek,1, . . . , Ek,lk ,

E1,l1+1, . . . , Ei,li+1, . . . , Ek,lk+1.
(4.1.1)

The first L facets intersect in the initial vertex (v1, . . . , vk), which is the origin in RL.

To assist any bamboozled readers, we provide an illustration of this ordering of

facets in a low dimensional example.

Example 4.1.2. The facets of the polytope ∆2 ×∆1 ×∆2 are ordered

E1,1, E1,2, E2,1, E3,1, E3,2, E1,3, E2,2, E3,3,

which we can write in full as,

F1,1 ×∆1 ×∆2, F1,2 ×∆1 ×∆2,∆2 × F2,1 ×∆2,∆2 ×∆1 × F3,1,∆
2 ×∆1 × F3,2,

F1,3 ×∆1 ×∆2,∆2 × F2,2 ×∆2,∆2 ×∆1 × F3,3.

Facets E1,1, E1,2, E2,1, E3,1, E3,2 intersect in the initial vertex at the origin in R5.

We can give a complete description of the vertices of PL. For any li-tuple

{p1, . . . , pli} ⊂ {1, . . . li+1} the intersection of
⋂pli
j=p1

Fi,j is a vertex of ∆li . Therefore

in a product of simplices PL, the vertices are given by the intersection

k⋂
i=1

pli⋂
j=p1

Ei,j, (4.1.3)

as j ranges over all possible li-tuples {p1, . . . , pli} ⊂ {1, . . . li + 1}, for 1 ≤ i ≤ k.
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Example 4.1.4. Consider the product of simplices ∆2 × ∆1. The intersections of

any two facets of ∆2 with any one facet of ∆1 give the vertices of ∆2×∆1, which we

can list as

E1,1 ∩ E1,2 ∩ E2,1; E1,1 ∩ E1,2 ∩ E2,2

E1,1 ∩ E1,3 ∩ E2,1; E1,1 ∩ E1,3 ∩ E2,2

E1,2 ∩ E1,3 ∩ E2,1; E1,2 ∩ E1,3 ∩ E2,2.

As usual, the initial vertex is given by E1,1 ∩ E1,2 ∩ E2,1, the origin in R3.

In Example 3.2.12 we had that the moment angle complex Z∆li is the sphere

S2li+1. A simple application of Proposition 3.2.4 implies that ZPL is a product of

spheres S2l1+1× · · · × S2lk+1, which we may embed in Cl1+1× · · · ×Clk+1 via Lemma

3.2.5.

In order to describe the dicharacteristic function l : TL+k → TL, we now define a

list (a1(l2), . . . , ak−1(lk)) of integral li(i− 1)-vectors

ai−1(li) = (a(1, i; 1), . . . , a(i− 1, i; 1), . . . , a(1, i; li), . . . , a(i− 1, i; li)), (4.1.5)

for 1 < i ≤ k, which is associated to a sequence (l1, . . . lk) of nonnegative integers.

We choose a dicharacteristic l so that the associated L× (L+ k) dicharacteristic

matrix Λ takes the form (IL | S), where IL is the L × L identity matrix and S is of

the form 

1 0 ··· 0 0 ··· 0 0
1 0 ··· 0 0 ··· 0 0
...

...
...

...
...

...
1 0 ··· 0 0 ··· 0 0

−a(1,2;1) 1 ··· 0 0 ··· 0 0

...
...

...
...

...
...

−a(1,2;l2) 1 ··· 0 0 ··· 0 0

...
...

...
...

...
...

−a(1,i;1) −a(2,i;1) ··· −a(i−1,i;1) 1 ··· 0 0

...
...

...
...

...
...

−a(1,i;li) −a(2,i;li) ··· −a(i−1,i;li) 1 ··· 0 0

...
...

...
...

...
...

−a(1,k;1) −a(2,k;1) ··· −a(i−1,k;1) −a(i,k;1) ··· −a(k−1,k;1) 1

...
...

...
...

...
...

−a(1,k;lk) −a(2,k;lk) ··· −a(i−1,k;lk) −a(i,k;lk) ··· −a(k−1,k;lk) 1



. (4.1.6)

The ith column of Λ is the primitive vector λi assigned to the ith facet in the ordering

(4.1.1) by the dicharacteristic.

Proposition 4.1.7. The chosen dicharacteristic function l satisfies the condition

imposed by Definition 3.2.6.
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Proof. It will suffice to prove that if the facets E1,i1 , . . . , E1,il1
, . . . , Ek,i1 , . . . , Ek,ilk

intersect in a vertex of PL, then the matrix V comprised of the columns

λ1,i1 , . . . , λ1,il1
, . . . , λk,i1 , . . . , λk,ilk , (4.1.8)

from Λ, has determinant equal to ±1.

In the case k = 1, the dicharacteristic reduces to that considered in Example

3.2.12, and clearly the condition of Definition 3.2.6 is satisfied.

Our strategy now is to show that the dicharacteristic satisfies the condition of

Definition 3.2.6 in the case k = 2; the argument is then easily seen to generalise to

higher cases k ≥ 2. For k = 2 there are three scenarios to check, which cover all

possible situations.

First, let us consider the (l1 + l2)× (l1 + l2 + 2) dicharacteristic matrix Λ

1 0 · · · 0 0 0 · · · 0 1 0

0 1 · · · 0 0 0 · · · 0 1 0

...
...

. . .
...

...
...

...
...

...

0 0 · · · 1 0 0 · · · 0 1 0

0 0 · · · 0 1 0 · · · 0 −a(1, 2; 1) 1

0 0 · · · 0 0 1 · · · 0 −a(1, 2; 2) 1

...
...

...
...

...
. . .

...
...

...

0 0 · · · 0 0 0 · · · 1 −a(1, 2; l2) 1



, (4.1.9)

in the case when k = 2.

According to the ordering (4.1.1) of facets, the first l1 + l2 columns are the facet

vectors λ1,1, . . . , λ1,l1 , λ2,1, . . . , λ2,l2 , which are simply e1, . . . , el1+l2 , where ei denotes

the ith standard basis vector in Rl1+l2 ; hence they form an identity matrix Il1+l2 . The

final two columns of Λ are the vectors λ1,l1+1 and λ2,l2+1.

According to our description (4.1.3), the intersection of a choice of any l1 facets

from E1,1, . . . , E1,l1+1 and any l2 facets from E2,1, . . . , E2,l2+1 results in a vertex of

∆l1 ×∆l2 . We denote the set containing our chosen facets by

C = {E1,i1 , . . . , E1,il1
, E2,i1 , . . . , E2,il2

}.
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To prove the proposition for all possible sets C, it will suffice to consider 3 cases.

In the first instance, if C = {E1,1, . . . , E1,l1 , E2,1, . . . , E2,l2} we determine the initial

vertex, and the matrix V comprised of the appropriate columns, as described in

(4.1.8), is simply the identity matrix. Hence V has determinant equal to 1.

The second case is when the final facet E2,l2+1 is in C. To begin determining

a vertex we must now make l2 − 1 further choices for the set C from the facets

E2,1, . . . , E2,l2 . If we choose every such facet except E2,i2 , for some 1 ≤ i2 ≤ l2, we

can form a matrix V ′ whose columns are given by the set

{λ2,1, . . . , λ2,i2−1, λ2,i2+1, . . . , λ2,l2 , λ2,l2+1}

= {el1+1, . . . , el1+i2−1, el1+i2+1, . . . , el1+l2 , λ2,l2+1}.

By (4.1.9) we have λ2,l2+1 = (0, . . . , 0, 1, . . . 1), so using elementary column operations

in V ′, we can convert the column λ2,l2+1 into el1+i2 .

To finally determine our vertex, we must now make l1 choices from E1,1, . . . , E1,l1+1

to complete the set C; there are two further subcases to consider.

If E1,l1+1 /∈ C, the corresponding matrix V is simply the identity matrix Il1+l2 ,

with the column vector el1+i2 switched to the final column. Hence V has determinant

equal to −1.

If E1,l1+1 ∈ C, then the matrix V consists of columns

{λ1,1, . . . , λ1,i1−1, λ1,i1+1, . . . , λ1,l1 , λ2,1, . . . , λ2,i2−1, λ2,i2+1, . . . , λ2,l2 , λ1,l1+1, el1+i2}

= {e1, . . . , ei1−1, ei1+1, . . . , el1 , el1+1, . . . , el1+i2−1, el1+i2+1, . . . , el1+l2 , λ1,l1+1, el1+i2},

for some 1 ≤ i1 ≤ l1. Again, it is clear that we can use elementary column operations

to convert the vector λ1,l1+1 into ei1 . Then V is simply the identity matrix Il1+l2 , with

the column vectors ei1 , el1+i2 switched to the final two columns respectively, hence V

has determinant equal to 1.

The final case is for a vertex determined by a set C such that E1,l1+1 ∈ C, but

E2,l1+1 /∈ C. Using similar reasoning to the previous case, we can show that the

matrix V must be formed from columns

{e1, . . . , ei1−1, ei1+1, . . . , el1 , el1+1, . . . , . . . , el1+l2 , λ1,l1+1}, (4.1.10)
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and using elementary column operations we can convert λ1,l1+1 into ei1 . Then V is

Il1+l2 with the column vector ei1 shifted to the final column, hence V has determinant

equal to −1.

For k ≥ 2, we can follow a similar procedure. To determine a vertex of PL =

∆l1 × · · · × ∆lk we begin by making lk choices from the columns of the dicharac-

teristic matrix (4.1.6), which correspond to facets Ek,1, . . . , Ek,lk+1. Again, elemen-

tary column operations can be used to reduce the chosen vectors to a collection

Sk = {ek,i1 , . . . , ek,ilk} of distinct standard basis vectors ek,ij ∈ RL. We continue as in

the k = 2 case, making lj choices from Ej,1, . . . , Ej,lj+1 , for j = k−1, . . . , 1 in turn, to

determine a vertex in PL. After each choice of lj vectors is made, elementary column

operations can be used to reduce the vectors to a collection of distinct standard basis

vectors Sj = {ej,i1 , . . . , ej,ilj }; note that each element of the set Si is also distinct

from every element in the set Sj, for all i and all j. Therefore any choice of vertex in

PL ultimately determines a set C of L = l1 + · · ·+ lk distinct standard basis vectors

in RL, and so the matrix whose columns are comprised of the elements of the set C

has determinant ±1, as required.

Given our choice of dicharacteristic l, the k-dimensional kernel K(l) is equal to

{(t1, . . . , t1, t−a(1,2;1)
1 t2, . . . , t

−a(1,2;l1)
1 t2, . . . , t

−a(1,i;1)
1 . . . t

−a(i−1,i;1)
i−1 ti, . . .

. . . , t
−a(1,i;li)
1 . . . t

−a(i−1,i;li)
i−1 ti, . . . , t

−a(1,k;1)
1 . . . t

−a(k−1,k;1)
k−1 tk, . . .

. . . , t
−a(1,k;lk)
1 . . . t

−a(k−1,k;lk)
k−1 tk, t

−1
1 , . . . , t−1

k ) : ti ∈ T, 1 ≤ i ≤ k} < TL+k,

(4.1.11)

and the quotient of ZPL = S2l1+1×· · ·×S2lk+1 under the free, effective action of K(l)

is a 2L-dimensional manifold DOk. Since by Proposition 4.1.7 our dicharacteristic

function satisfies the conditions of Definition 3.2.6, it follows from Proposition 3.2.11

that DOk is a quasitoric manifold.

Definition 4.1.12. The sequence of quasitoric manifolds (DOk : k ≤ n) arising from

a list (a1(l2), . . . , an−1(ln)) associated to (l1, . . . , ln), is a Dobrinskaya tower of height

n (note that n may be infinite). The individual quasitoric manifold DOk is known as

the kth stage of the tower, for 1 ≤ k ≤ n.
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For any two adjacent stages DOk and DOk−1 in the tower, we have a projection

map πk : DOk → DOk−1, defined as follows. Given a point of DOk, which is the

equivalence class

[z1,1, . . . , z1,l1 , . . . , zk,1, . . . , zk,lk , z1,l1+1, . . . zk,lk+1],

of a point in ZPL under the action of the kernel (4.1.11), the map πk is given by

projecting onto the equivalence class

[z1,1, . . . , z1,l1 , . . . , zk−1,1, . . . , zk−1,lk−1
, z1,l1+1, . . . zk−1,lk−1+1],

of a point in DOk−1.

Finally we note that (t1, . . . , tL) ∈ TL+k/K(l) ∼= TL acts on the equivalence class

[z1,1 . . . , zk,lk , z1,l1+1, . . . , zk,lk+1] of DOk by

(t1, . . . , tL) · [z1,1 . . . , zk,lk , z1,l1+1, . . . , zk,lk+1] = [t1z1,1 . . . , tLzk,lk , z1,l1+1, . . . , zk,lk+1],

(4.1.13)

and the initial fixed point of DOk is [0, . . . , 0, 1, . . . , 1]. Label this TL-action on DOk

by αk.

4.2 Cohomology of Dobrinskaya towers

As described in Section 3.3, the integral cohomology ring H∗(DOk) is determined by

two sets of linear and monomial relations. We begin here by computing the monomial

relations that arise from the Stanley-Reisner ring Z[PL]. Let ui,j ∈ H2(DOk) be the

first Chern class cH1 (ρi,j) of the facial bundle ρi,j associated to the facet Ei,j. In a

simplex ∆li , we have that {Fi,1, . . . , Fi,li+1} is the only collection of nonintersecting

facets. It follows that in PL, we have

Ei,1 ∩ · · · ∩ Ei,li+1 = ∅,

for 1 ≤ i ≤ k. Therefore the Stanley-Reisner ring Z[PL] is isomorphic to

Z[u1,1, . . . , u1,l1 , . . . , uk,1, . . . , uk,lk , u1,l1+1, . . . , uk,lk+1]/Ik, (4.2.1)
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where Ik is the ideal

(ui,1 . . . ui,li+i : 1 ≤ i ≤ k).

The second set of relations in the cohomology ring are linear and arise from the

dicharacteristic function. We can use the matrix (4.1.6) to read off the following

equations

ui,j = a(1, i; j)u1,l1+1 + · · ·+ a(i− 1, i; j)ui−1,li−1+1 − ui,li+1, (4.2.2)

in H∗(DOk), for 1 ≤ j ≤ li, and for 1 ≤ i ≤ k. Hence the elements u1,l1+1, . . . , uk,lk+1

suffice to generate the cohomology ring multiplicatively; let us relabel these elements

v1, . . . , vk, respectively.

Proposition 4.2.3. The integral cohomology ring H∗(DOk) is isomorphic to

Z[v1, . . . , vk]/(Ik + Jk), (4.2.4)

where Ik + Jk is the ideal generated by

vi(a(1, i; 1)v1+ · · ·+ a(i− 1, i; 1)vi−1 − vi) . . .

. . . (a(1, i; li)v1 + · · ·+ a(i− 1, i; li)vi−1 − vi), for 1 ≤ i ≤ k.
(4.2.5)

Proof. Apply Theorem 3.3.6. The product ui,1 . . . ui,li of linear relations (4.2.2) be-

comes zero when multiplied by ui,li+1 := vi in Z[PL], yielding the required relations

(4.2.5).

4.3 Stably complex structure

To allow us to describe the facial bundles of DOk, we first define complex line bundles

µi : S
2l1+1 × · · · × S2lk+1 ×K(l) C −→ DOk, (4.3.1)

for 1 ≤ i ≤ k, where the action of the kernel K(l), as described in (4.1.11), on C is

defined by z 7→ t−1
i z.
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The action of K(l) on the moment angle complex ZPL
∼= S2l1+1 × · · · × S2lk+1 is

equivariantly diffeomorphic to that of (C×)k on (Cl1+1 \ 0)× · · · × (Clk+1 \ 0) by

(t1, . . . , tk) · (z1,1, . . . , z1,l1 , . . . zk,1, . . . , zk,lk , z1,l1+1 . . . zk,lk+1) =

(t1z1,1, . . . , t1z1,l1 , t
−a(1,2;1)
1 t2z2,1, . . . , t

−a(1,2;l2)
1 t2z2,l2 , . . .

. . . , t
−a(1,k;1)
1 . . . t

−a(k−1,k;1)
k−1 tkzk,1, . . . , t

−a(1,k;lk)
1 . . . t

−a(k−1,k;lk)
k−1 tkzk,lk ,

t−1
1 z1,l1+1, . . . , t

−1
k zk,lk+1),

(4.3.2)

where each complex coordinate zi,j is associated to a facet Ei,j of PL. Following our

definition in (3.3.4), we can now identify the facial bundles ρi,j associated to each

facet Ei,j as

ρi,j = µ
a(1,i;j)
1 ⊗ · · · ⊗ µa(i−1,i;j)

i−1 ⊗ µi, (4.3.3)

ρi,li+1 = µi,

for 1 ≤ j ≤ li and 1 ≤ i ≤ k. To simplify these expressions, let µ0 be the trivial

complex line bundle C, and define

αi−1,j := µ
a(1,i;j)
1 ⊗ · · · ⊗ µa(i−1,i;j)

i−1 .

After applying Proposition 3.4.2 we arrive at the following.

Proposition 4.3.4. The stably complex structure on DOk induced by the chosen

omniorientation is described by an isomorphism

τ(DOk)⊕ R2k ∼=
k⊕
i=1

(
µi ⊕ (µi ⊗ (

li⊕
j=1

αi−1,j))

)
. (4.3.5)

4.4 Dobrinskaya towers as iterated bundles

In this section we consider the second construction of a Dobrinskaya tower, built out

of an iterated sequence of bundles. Using the results of Section 2.5 we compute the

E-cohomology of each stage in the tower. Finally we check that the two constructions

agree.

Suppose we have a list (a1(l2), . . . , an−1(ln)) associated to a sequence of inte-

gers (l1, . . . ln). Our alternative construction of the Dobrinskaya tower is inductive,
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beginning with the assumption that for any integer k ≥ 1 we have constructed

a (k − 1)th stage DO′
k−1 as a smooth 2(l1 + · · · + lk−1)-dimensional manifold, 2-

generated by yHi ∈ H2(DO′
k−1), and carrying line bundles γi such that cH1 (γi) = yHi ,

for 1 ≤ i ≤ k − 1. Denote by βi−1,j the tensor product bundle,

γ
a(1,i;j)
1 ⊗ · · · ⊗ γa(i−1,i;j)

i−1 , (4.4.1)

for 1 ≤ j ≤ li and 1 ≤ i ≤ k, and define the ith bundle of the construction

β(ai−1) := βi−1,1 ⊕ · · · ⊕ βi−1,li . (4.4.2)

Then DO′
k is defined to be the total space of CP (β(ak−1)⊕ C), the projectivisation

of the direct sum of β(ak−1) and a trivial complex line bundle C.

We define DO′
0 to be the space consisting of a single point so that the first bundle

is trivial; it follows that the next stage DO′
1 is CP l1 . Lemma 2.5.4 implies that DO′

k

has 2-generators yHi for 1 ≤ i ≤ k, where yHk is the first Chern class cH1 (γk) of the

canonical line bundle γk over DO′
k; moreover, this result provides a description of the

cohomology ring E∗(DO′
k+), which is compatible with Proposition 4.2.3 when E is

the integral Eilenberg-Mac Lane spectrum H.

Proposition 4.4.3. The E∗-algebra E
∗(DO′

k+) is isomorphic to

E∗[y
E
1 , . . . , y

E
k ]/Kk (4.4.4)

where Kk is the ideal

((yEi )(yEi − cE1 (βi−1,1)) . . . (y
E
i − cE1 (βli−1,li

)) : 1 ≤ i ≤ k). (4.4.5)

As a consequence of the discussion that followed Lemma 2.5.4, we have projections

πk : DO′
k → DO′

k−1, sections ωk : DO′
k−1 → DO′

k and quotient maps ϑk : DO′
k →

T (β(ak−1)).

We claim that DO′
k is in fact the kth stage of a Dobrinskaya tower.

Proposition 4.4.6. [10, Prop. 4.2.3] Given a Dobrinskaya tower (DOk : k ≤ n),

there exists a diffeomorphism θk : DOk → DO′
k, for any 1 ≤ k ≤ n, which pulls back

γi to µi for all 1 ≤ i ≤ k.
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Proof. To simplify the algebra in what follows, we will change the omniorientation on

DOk by negating the first L columns of its dicharacteristic matrix Λ. It is straightfor-

ward to check that this has the effect of switching the last k coordinates of the kernel

K(l) described by (4.1.11) from (t−1
1 , . . . , t−1

k ) to (t1, . . . , tk). Such a change is per-

missible, since any change in omniorientation leaves the underlying smooth structure

of a quasitoric manifold unaffected.

The proof of the proposition is by induction. For the base case, simply take k = 0;

both DO0 and DO′
0 are a point, and then µ0 and γ0 are simply trivial complex line

bundles C.

For k ≥ 0 we will assume that we have the required diffeomorphism θk. Our

strategy is to pullback the individual line bundles βk,j along θk to allow us to identify

the pullback of their direct sum θ∗(β(ak)) = θ∗(βk,1 ⊕ · · · ⊕ βk,lk). This allows a

detailed description of the fibres of CP (θ∗kβ(ak)⊕C) as the total space of a projective

bundle, which we then identify with DOk+1 by studying the action of K(l) on ZPL .

To begin, the inductive hypothesis implies that θ∗k(βk,j) is the complex line bundle

S2l1+1 × · · · × S2lk+1 ×K(l) C −→ DOk,

where K(l) acts on C by z 7→ t
−a(1,k+1;j)
1 . . . t

−a(k,k+1;j)
k z. It follows that in the Clk+1+1

fibre of the direct sum bundle θ∗kβ(ak)⊕C, we identify (z1, . . . , zlk+1+1) ∈ Clk+1+1 with

(t
−a(1,k+1;1)
1 . . . t

−a(k,k+1;1)
k z1, . . . ,

t
−a(1,k+1;lk)
1 . . . t

−a(k,k+1;lk)
k zlk+1

, zlk+1+1).

Taking lines in each of the Clk+1+1 fibres, that is, identifying

(z1, . . . , zlk+1+1) ∼ z(z1, . . . , zlk+1+1) (4.4.7)

for some z ∈ C, we obtain the projectivisation CP (θ∗kβ(ak)⊕ C) ∼= θ∗k(DO
′
k+1).

We aim to show that this projectivisation is DOk+1. In (4.3.2) we described the

K(l)-action on ZPL = S2l1+1 × · · · × S2lk+1+1, whose quotient is DOk+1. Taking

account of the change of omniorientation, K(l) acts on (z′1, . . . , z
′
lk+1+1) in S2lk+1+1 ∼=
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(Clk+1+1 \ 0) by

(t
−a(1,k+1;1)
1 . . . t

−a(k,k+1;1)
k tk+1z

′
1, . . . ,

t
−a(1,k+1;lk)
1 . . . t

−a(k,k+1;lk)
k tk+1z

′
lk+1

, tk+1z
′
lk+1+1).

Setting z = tk+1 ∈ C in (4.4.7), we see that our above description of θ∗k(DO
′
k+1)

as CP (θ∗kβ(ak)⊕ C) is precisely DOk+1. Therefore DOk+1 is the pullback of DO′
k+1

along θk, and the required diffeomorphism θk+1 is given by the resulting map between

the total spaces of these projective bundles. Finally we have that µi is the pull back

θ∗k+1(γi) for 1 ≤ i ≤ k + 1.

As a consequence of Proposition 4.4.6 we will denote the kth stage of a Dobrin-

skaya tower by DOk, regardless of how it has been constructed.

4.5 Special cases

To conclude this chapter, we focus on two special subfamilies of Dobrinskaya tower

that will feature throughout the rest of our thesis: the Bott tower and the bounded

flag manifold. We use the results of Section 2.3.3 to describe stably complex structures

on such manifolds.

Assume we have the sequence of manifolds (DOk : k ≤ n), arising from a list

(a1(l2), . . . , an−1(ln)) associated to (l1, . . . , ln).

Definition 4.5.1. A Bott tower of height n is a Dobrinskaya tower in which li = 1

for all 1 ≤ i ≤ n.

To distinguish the Bott tower, we will denote the kth stage by Bk. Again for

convenience we set B0 to be the one-point space, and B1 is CP 1. At the second

stage B2 = CP (γa(1,2;1) ⊕C), if a(1, 2; 1) is even, B2 is CP 1 ×CP 1, while if a(1, 2; 1)

is odd, B2 is a Hirzebruch surface CP 2#CP 2
, that is, a connected sum of complex

projective planes with opposite orientations (see [5, Example 5.64], [12, page 10]).

Bott towers were first introduced in the context of algebraic geometry by Gross-

berg and Karshon [21]. The construction was translated into algebraic topology by
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Civan and Ray [12], who calculated the real K-theory of particular families of Bott

towers, and enumerated their possible stably complex structures. More recently Ma-

suda and Panov [34] have studied Bott towers that admit certain interesting circle

actions.

Each stage Bk = CP (βk−1,1 ⊕ C) is a CP 1 bundle over Bk−1. Since CP 1 is

homeomorphic to S2, we may equally consider the kth stage of the tower as the total

space of a 2-sphere bundle S(βk−1,1 ⊕ R).

Proposition 4.5.2. There is an isomorphism

τ(Bk)⊕ R ∼= R⊕

(
k⊕
i=1

βi−1,1

)
, (4.5.3)

which determines a bounding stably complex structure on Bk.

Proof. The isomorphism follows from Proposition 2.3.7. The structure bounds since

it extends to the 3-disc bundle D(βk−1,1 ⊕ R).

It turns out that this stably complex structure is isomorphic to the structure on

DOk described in Proposition 4.3.4, which was induced by our chosen omniorienta-

tion. To see this, begin by setting li = 1, for all i, in the stably complex structure

(4.3.5). We obtain

τ(Bk)⊕ R2k ∼=
k⊕
i=1

(µi ⊕ (µi ⊗ (αi−1,1))) . (4.5.4)

Now, Civan and Ray [12, p. 31] exhibit an isomorphism

C⊕ βi−1,1
∼= γi+1 ⊕ (γi+1 ⊗ βi−1,1),

which, coupled with the diffeomorphism θk : αi−1,1 7→ βi−1,1 of Proposition 4.4.6,

reduces (4.5.4) to

τ(Bk)⊕ R2k ∼= Ck ⊕

(
k⊕
i=1

βi−1,1

)
. (4.5.5)

Clearly this is isomorphic to the stably complex structure induced by the isomorphism

(4.5.3). Note that this is a special case: choosing a different omniorientation on Bk

can lead to a stably complex structure on the Bott tower, which is not isomorphic to

the bounding structure induced by Proposition 2.3.7.

In addition to the Bott tower, we can specialise further.
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Definition 4.5.6. Consider the Bott tower (Bk : k ≤ n) arising from the list

(a1(1), . . . , an−1(1)) in which ai(1) = (0, . . . , 0, 1) for all i. Then each stage Bk is

a bounded flag manifold.

The bounded flag manifold Bn is the space of all bounded flags V in Cn+1; that

is, the set of all sequences V = {V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂ Vn+1 = Cn+1}, in which

Vi contains the coordinate subspace Ci−1 spanned by the first i − 1 standard basis

vectors of Cn+1, for 2 ≤ i ≤ n (see e.g. [5, Example 5.36]). In our construction, these

manifolds are of the form Bk = CP (γk−1⊕C). In this guise they were studied by Ray

[47], who proved that bounded flag manifolds, and their quaternionic analogues, play

an important role in cobordism theory. We will return to the latter case in Chapter

7, where we extend Ray’s study of the quaternionic analogue of CP (γk−1 ⊕ C) in

quaternionic cobordism theory.



Chapter 5

Quasitoric manifolds with

SU-structure

Suppose we have a stably complex manifold Mn. Then there is an isomorphism

τ(Mn)⊕ R2k−n ∼= θ, for some k-dimensional complex vector bundle θ, as prescribed

by Definition 2.3.1. We will write [Mn, θ] for the equivalence class of a stably complex

manifold Mn under the bordism relation. Then the set of all such classes, equipped

with the two operations of disjoint union and Cartesian product, forms the complex

cobordism ring MU∗, the coefficient ring described in Example 2.2.4.

By virtue of Proposition 3.4.2, every omnioriented quasitoric manifold is stably

complex, so such manifolds are perfect candidates for investigation via the methods

of complex cobordism.

In Chapter 1 we discussed one of the first results that arose from this research:

the discovery by Buchstaber and Ray [8] that every 2n-dimensional stably complex

manifold is complex cobordant to a disjoint union of products of quasitoric manifolds.

By developing the notion of a connected sum of omnioriented quasitoric manifolds,

this result was refined to give a quasitoric basis for MU∗ in dimensions > 2.

Theorem 5.0.1. [6, Theorem 5.9] In dimensions > 2, every complex cobordism

class contains a quasitoric manifold M2n, which is necessarily connected. The stably

complex structure on M2n is induced by an omniorientation, ensuring it is compatible

with the action of the torus.

58
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More recently Buchstaber, Panov and Ray have made the following conjecture.

Conjecture 5.0.2. [7] A quasitoric manifold M2n whose omniorientation induces

an SU-structure on the stable tangent bundle of M2n, is complex cobordant to zero

in MU∗, for all SU-structures induced by omniorientations on M2n.

If the omniorientation on a quasitoric manifoldM2n induces such an SU -structure,

we will refer to M2n as a quasitoric SU-manifold.

To put Conjecture 5.0.2 into context, we first note that any quasitoric SU -

manifold M2n must lie in the image of the map F : MSU∗ → MU∗, which simply

forgets the SU -structure on M2n. We wish to investigate whether M2n bounds in the

complex cobordism ring, which is not the same as addressing the question of whether

M2n bounds in MSU∗. This is due to the fact that the kernel of F is comprised

of the torsion elements of MSU∗, which appear in MSU8n+1
∼= MSU8n+2 for all n;

this torsion is comprised of p copies of Z/2, where p is the number of partitions of n

[13]. Therefore any M2n ∈ TorsMSU∗ is mapped by F to zero in MU∗, regardless of

whether it is zero in MSU∗. Of course, in such cases the conjecture is trivially true.

On the other hand, the image of the injection MSU∗/Tors → MU∗ realises a

significant portion of MU∗. Conner and Floyd described this image in [13, Theorem

19.1], by first introducing the subgroup W2n ⊂ MU2n of stably complex manifolds

whose Chern numbers vanish if they are divisible by the square of their first Chern

class c21(τ
s). Coupled with a boundary operator ∂ : W2n → W2n−2, they obtain a chain

complex (W∗, ∂). The image of MSU2n/Tors → MU2n is given by the cycle group

Z(W2n, ∂), when n 6= 8i + 4, while the image is described by the boundary group

B(W2n, ∂), when n = 8i + 4. In particular, the former group Z(W2n, ∂) is precisely

those 2n-dimensional stably complex manifolds whose Chern numbers vanish if they

are divisible by their first Chern class c1(τ
s) [13, (6.4)]. Therefore in the vast majority

of cases, the conjecture is far from trivial. Note though, that when n 6= 8k + 2 for

some k, the problem is in fact equivalent to deciding whether M2n bounds in MSU∗

or not.

Now let us consider the evidence supporting Conjecture 5.0.2. For some ring R,
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the generalised elliptic genus Tell∗ : MU∗ → R, is a particular type of Hirzebruch

genus (see e.g. [25]; for applications in toric topology see [5, Section 5.4]). In [7] the

authors prove that Tell∗ is such that for any quasitoric SU -manifold M2n

Tell∗([M
2n, θ]) = 0. (5.0.3)

Furthermore, Tell∗ is an isomorphism on cobordism classes [M2n, θ] when n < 5. It

follows that Conjecture 5.0.2 is true in dimensions < 10. However, the genus Tell∗

is only an epimorphism for n ≥ 5, and so (5.0.3) alone will not suffice to prove the

conjecture, since [M2n, θ] could lie in the kernel of Tell∗ .

Nevertheless, we have sufficient evidence to make an investigation of the conjecture

worthwhile.

Now suppose we are able to view a quasitoric manifold M2n as the total space of

an equivariant bundle, which has a quasitoric base space and quasitoric fibre. In these

circumstances, we follow the lead of Dobrinskaya [17] and term such M2n reducible;

this notion will be made precise in Definition 5.1.5 below.

In this chapter, we will prove Conjecture 5.0.2 for complex projective space CP n,

and for all reducible quasitoric manifolds N2n with fibre CP 1. This latter class

includes, for example, any stage DOk in a Dobrinskaya tower (4.1.12) with lk = 1,

and any stage Bk in a Bott tower (4.5.1).

We begin by introducing reducible quasitoric manifolds and we consider some

illuminating examples. Then we determine some cohomological properties of N2n,

which will be central to our proof of the conjecture in this case. Next we incorporate

a collection of signs into the dicharacteristic matrix Λ, in order to encode the chosen

orientation on each facet of the polytope associated to N2n. In the following section

we use our modified Λ to make a crucial observation about the Chern classes of the

stable tangent bundle τ s(N2n), which ultimately allows us to prove that when N2n

has an SU -structure, it is cobordant to zero in MU∗.

In the final part of this chapter, which is mostly independent of the earlier sections,

we study SU -structures induced by omniorientations on complex projective space

CP n, and confirm Conjecture 5.0.2 for this important class of spaces. Related results
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on Dobrinskaya towers and other quasitoric manifolds are given, and we conclude

with a discussion of potential strategies for a full proof of the conjecture.

We would like to express our gratitude to Dmitry Leykin, with whom the concept

of the signed dicharacteristic matrix of Section 5.2 was developed.

5.1 Reducible quasitoric manifolds

In the first half of this section we define reducible quasitoric manifolds and consider

examples and results that link the concept with ideas from the earlier chapters of

our thesis. The rest of the section is devoted to describing the cohomology ring

of a particular class of such spaces, in terms of the cohomology ring of their base

space and fibre. We begin by obtaining a partial description of the dicharacteristic

matrix associated to this class, which gives an insight into the linear relations in

their cohomology ring. Following this, we study their associated polytopes to garner

information on the monomial cohomology relations, which arise from the Stanley-

Reisner algebra of the polytope.

Suppose we have an (n1 + n2)-torus T n1+n2 , and a homomorphism

ψ : T n1+n2 → T n2 ,

for some positive integers n1, n2.

Given a space E with a T n1+n2-action g1, and a space B with a T n2-action g2, a

bundle π : E → B with fibre F is said to be ψ-equivariant if the diagram

T n1+n2 × E g1 - E

T n2 ×B

ψ×π

?

g2
- B,

π

?

(5.1.1)

commutes.

Consider some simple polytopes P nB and P nF , which have mB and mF facets

respectively. Let B2nB , F 2nF and E2(nB+nF ) be quasitoric manifolds over P nB , P nF

and P nB × P nF respectively. Assume these manifolds B2nB , F 2nF and E2(nB+nF ) are
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constructed as the quotients of moment angle complexes ZPnB ,ZPnF and ZPnB×PnF

by the kernels of respective dicharacteristic functions lB, lF and lE. By Proposition

3.2.4 we have that ZPnB×PnF = ZPnB ×ZPnF .

Now suppose that we have a bundle

F 2nF −→ E2(nB+nF ) −→ B2nB , (5.1.2)

with quasitoric base space, fibre and total space. We term a bundle of the form

(5.1.2) a quasitoric bundle.

Let K(lX) denote the kernel of the dicharacteristic function lX , for X = B,F or

E, and assume that the diagram

K(lF )
ι - K(lE)

π - K(lB)

TmF

ι

?
ι - TmB × TmF

ι

?
π - TmB ,

ι

?

(5.1.3)

commutes, where maps ι are inclusions and maps π are projections. Then by taking

quotients we have a short exact sequence

1→ TmF /K(lF )→ (TmB × TmF )/K(lE)
ψ→ TmB/K(lB)→ 1. (5.1.4)

With quasitoric manifolds B2nB , F 2nF and E2(nB+nF ) as defined above, we can

make the following definition.

Definition 5.1.5. If the quasitoric bundle F 2nF → E2(nB+nF ) → B2nB , is such that

the associated diagram (5.1.3) commutes, then the total space E2(nB+nF ) is a reducible

quasitoric manifold over P nB × P nF .

Note that in these circumstances, the quasitoric bundle (5.1.2) is a ψ-equivariant

bundle, with respect to the homomorphism ψ : (TmB × TmF )/K(lE) → TmB/K(lB)

that features in the short exact sequence (5.1.4)

If a quasitoric manifold does not satisfy the conditions of Definition 5.1.5, we may

refer to it as irreducible.
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The notion of reducibility is due to Dobrinskaya, [17, Section 4]; however, the

definition that is given therein is somewhat difficult to follow, so we have decided to

set out the full details to avoid any confusion in our thesis.

Before we consider some examples, we note that our quasitoric bundle with re-

ducible total space fits into the following diagram

ZPnF

ι - ZPnB ×ZPnF

π - ZPnB

F 2nF

K(lF )

?
ι - E2(nB+nF )

K(lE)

?
π - B2nB

K(lB)

?

P nF

TmF /K(lF )

?
ι - P nB × P nF

(TmB×TmF )/K(lE)

?
π - P nB ,

TmB /K(lB)

?

which commutes since the corresponding diagram (5.1.3) commutes. The maps ι are

inclusions and maps π are projections, and vertical maps X → Y in the diagram are

labelled by the groups acting on X to give orbit space Y .

The following familiar example should elucidate several of the ideas discussed

above.

Example 5.1.6. Consider the quasitoric manifold given by the third stage B3 in a

Bott tower (Bk : k ≤ 3), as defined in Section 4.5. The simple polytope associated

to B3 is the 3-cube I3. With dicharacteristic l3 as specified by the matrix (4.1.6), a

point [z1, . . . , z6] in B3 is an equivalence class

(z1, . . . , z6) ∼ (t1z1, t
−a(1,2;1)
1 t2z2, t

−a(1,3;1)
1 t

−a(2,3;1)
2 t3z3, t

−1
1 z4, t

−1
2 z5, t

−1
3 z6), (5.1.7)

where (z1, . . . , z6) ∈ C6, and (t1, t2, t3) ∈ T 3.

By definition, B3 is a bundle with fibre the quasitoric manifold CP 1 over I1, and

base space the quasitoric manifold B2 over I2, where B2 is the second stage in the

same Bott tower (Bk : k ≤ 3). Since I3 = I2 × I1, it follows that CP 1 → B3 → B2

is a quasitoric bundle.

It is straightforward to check from the descriptions of the dicharacteristic functions



CHAPTER 5. QUASITORIC MANIFOLDS WITH SU -STRUCTURE 64

involved, that the appropriate diagram of the form (5.1.3) commutes, and so B3 is a

reducible quasitoric manifold with fibre CP 1 and base space B2.

There is a canonical T 6/K(l3) ∼= T 3-action α3 on B3 given by [z1, . . . , z6] 7→

[s1z1, s2z2, s3z3, z4, z5, z6] for (s1, s2, s3) ∈ T 3, as described in (4.1.13). We also have

the homomorphism ψ : T 3 → T 2, such that (t1, t2, t3) 7→ (t1, t2), and the projection

π3 : B3 −→ B2, (5.1.8)

which acts by [z1, . . . , z6] 7→ [z1, z2, z4, z5]. Then the corresponding diagram of the

form (5.1.1) commutes as

π3 · α3((s1, s2, s3), [z1, . . . , z6]) = π3[s1z1, s2z2, s3z3, z4, z5, z6]

= [s1z1, s2z2, z4, z5]

= α2((s1, s2), [z1, z2, z4, z5])

= α2(ψ × π3)((s1, s2, s3), [z1, . . . , z6]),

where α2 is the canonical T 4/K(l2) ∼= T 2-action on B2. This confirms that our

quasitoric bundle is indeed ψ-equivariant.

Note that in a similar manner to the above example, any stage Bk in a Bott

tower (Bk : k ≤ n) is a reducible quasitoric manifold with fibre CP 1 and base space

Bk−1. Further examples of reducible quasitoric manifolds include the stages DOk in

a Dobrinskaya tower (DOk : k ≤ n), where the fibre of the corresponding quasitoric

bundle is CP lk and the base space is DOk−1.

Example 5.1.9. The basis for MU∗ given by Theorem 5.0.1, is in terms of qua-

sitoric manifolds Bi,j, with i ≤ j, over I i × ∆j−1. Each Bi,j is the total space of a

quasitoric bundle with fibre CP j−1, and base space the bounded flag manifold Bi.

A thorough description of these quasitoric manifolds is given in [6, Example 3.13],

and it is straightforward to use the details therein to check that each Bi,j is in fact a

reducible quasitoric manifold over I i ×∆j−1.

Remark 5.1.10. In defining reducible quasitoric manifolds, we insisted that the

polytope associated to the total space E2(nB+nF ) was the product of the polytopes



CHAPTER 5. QUASITORIC MANIFOLDS WITH SU -STRUCTURE 65

P nB and P nF that are associated to the base space B2nB and fibre F 2nF respectively.

Note that conversely a quasitoric manifold M2n over some product of polytopes is not

necessarily reducible; however, Dobrinskaya gave conditions on the dicharacteristic

function, in terms of the signs of each vertex, as defined at the close of Chapter 3, to

determine when this is the case [17, Theorem 6].

Let us put this work in context with some of the other themes in our thesis.

Suppose we have a quasitoric manifold M2L over a product of simplices PL = ∆l1 ×

· · · ×∆lk .

Lemma 5.1.11. [17, Section 4] If the sign of every vertex of PL is positive, then

M2L is the kth stage of a Dobrinskaya tower.

Note that on the other hand, if some of the signs are negative, then M2L could still

be the kth stage in a Dobrinskaya tower, or some other reducible quasitoric manifold,

or it could be an irreducible quasitoric manifold.

Reducible quasitoric manifolds certainly merit further study. The additional

knowledge of how such manifolds fibre over their base space should make them a

useful tool for studying problems in toric topology. It is precisely this information

that we will now utilise when studying Conjecture 5.0.2 in the second half of this

chapter.

To get underway, let N2n+2 denote a reducible quasitoric manifold over some poly-

tope P n+1, with base space a quasitoric manifold M2n over some P n, and fibre CP 1.

The latter is a quasitoric manifold over the 1-simplex ∆1, which is homeomorphic to

the interval I := [0, 1], so we have that

P n+1 = P n × I. (5.1.12)

The facets of I are the end points of the interval, finely ordered as F ′
1, F

′
2.

Before considering the cohomology ring of N2n+2 we must establish some prelim-

inary information on M2n.

As usual we will assume that P n has m facets, and the facets of the polytope

are finely ordered as F1, . . . , Fm. Furthermore, we will assume that a dicharacteristic
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function ln : Tm → T n has been chosen, and the kernel of ln is denoted by K(ln).

Then, as in Section 3.2, the dicharacteristic ln gives rise to a short exact sequence

0 −→ Zm−n κn−→ Zm λn−→ Zn −→ 0, (5.1.13)

describing the map of Lie algebras induced by ln. The n×m dicharacteristic matrix

Λn describing the map λn is written in refined form as

Λn =


1 0 . . . 0 λ1,n+1 . . . λ1,m

0 1 . . . 0 λ2,n+1 . . . λ2,m

...
...

. . .
...

...
. . .

...

0 0 . . . 1 λn,n+1 . . . λn,m


. (5.1.14)

Remark 5.1.15. Note that our quasitoric manifold M2n, which depends only on the

choice of dicharacteristic ln, may have a dicharacteristic matrix Λn of a different form

to (5.1.14) if we choose a different basis for the Lie algebra of T n. Similarly, if we

change the order of the facets of P n, then the order of the columns in Λn will change,

to give a different dicharacteristic matrix associated to M2n. However, as is made

clear in Section 3.2, we can always choose the basis for the Lie algebra of T n in such a

way that we can write Λn in refined form. Furthermore, if we change the order of the

facets of P n, this change does not affect the omniorientation of M2n. Therefore we

wish to make clear here that the main results of this chapter will not be dependent

on displaying Λn in the particular form (5.1.14). We will further emphasise this point

in Section 5.4.

The m× (m− n) matrix describing the injection κn will be written as

Kn =


µ1,1 . . . µ1,m−n
...

...

µm,1 . . . µm,m−n

 , (5.1.16)

for 1 ≤ i ≤ m, and some fixed µi,j ∈ Z, for 1 ≤ j ≤ m − n. By Lemma 3.2.5, we

can embed the moment angle complex ZPn in Cm, so that the action of K(ln) on the

complex coordinates of ZPn is given by

zi 7→ t
µi,1

1 . . . t
µi,m−n

m−n zi,
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for zi ∈ Ci, with 1 ≤ i ≤ m. Here Ci denotes the ith copy of C in the product Cm.

We will use this information in our description of the cohomology ring of N2n+2.

The polytope P n+1 = P n × I associated to N2n+2 has m + 2 facets. Using the

procedure described in (3.1.10) to finely order a product of finely ordered polytopes,

the facets of P n+1 should be ordered as

F1 × I, . . . , Fn × I, P n × F ′
1, Fn+1 × I, . . . , Fm × I, P n × F ′

2. (5.1.17)

By Proposition 3.2.4, the moment angle complex associated with P n+1 is described

by

ZPn+1 = ZPn × S3, (5.1.18)

where S3 is the 3-sphere {(z1, z2) | z1z1 + z2z2 = 1} ⊂ C2.

If the dicharacteristic function of N2n+2 is denoted by ln+1, we have a kernel

K(ln+1), such that the quotient of ZPn+1 by K(ln+1) is N2n+2. Following our splitting

(5.1.18), the kernel K(ln+1) must act on (z1, z2) ∈ S3 by

(z1, z2) 7→ (tα1
1 . . . t

αm−n+1

m−n+1 z1, t
β1

1 . . . t
βm−n+1

m−n+1 z2), (5.1.19)

for some αi, βj ∈ Z, for all i, j, while K(ln+1) acts on ZPn in the same manner as the

action of K(ln) on ZPn , because N2n+2 is reducible.

Example 5.1.20. If α1 = · · · = αm−n = β1 = · · · = βm−n = 0, αm−n+1 = ±1 and

βm−n+1 = ±1, then N2n+2 is simply the product M2n × CP 1. In terms of reducible

quasitoric manifolds, we can view N2n+2 as a trivial ψ-equivariant CP 1-bundle over

M2n, where ψ : Tm+2/K(ln+1)→ Tm/K(ln) is defined as in the short exact sequence

(5.1.4).

Associated to ln+1 we have a short exact sequence

0 −→ Zm−n+1 κn+1−→ Zm+2 λn+1−→ Zn+1 −→ 0, (5.1.21)

and taking into account the fine ordering (5.1.17), the matrix describing the map
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κn+1 is given by

Kn+1 =



µ1,1 . . . µ1,m−n 0

...
...

...

µn,1 . . . µn,m−n 0

α1 . . . αm−n αm−n+1

µn+1,1 . . . µn+1,m−n 0

...
...

...

µm,1 . . . µm,m−n 0

β1 . . . βm−n βm−n+1



. (5.1.22)

If we denote the dicharacteristic matrix associated to ln+1 by Λn+1, then by

(5.1.21) we have

Λn+1Kn+1v
t
n+1 = 0, (5.1.23)

where vtn+1 is the transpose of an arbitrary vector (v1, . . . , vm−n+1) ∈ Zm−n+1.

Lemma 5.1.24. The final column of Λn+1 is given by a vector (0, . . . , 0, a), for some

integer a.

Proof. Let us write Λn+1 as
1 0 . . . 0 a1,n+2 . . . a1,m+2

0 1 . . . 0 a2,n+2 . . . a2,m+2

...
...

. . .
...

...
. . .

...

0 0 . . . 1 an+1,n+2 . . . an+1,m+2


, (5.1.25)

for some ai,j ∈ Z, with columns corresponding to the ordering of facets (5.1.17).

The equation (5.1.23) provides n + 1 linear equations in v1, . . . , vm−n+1, the ith

equation being given by setting the product of the ith row of Λn+1 with Kn+1v
t
n+1

equal to zero. It is a matter of simple linear algebra to collect the terms in vm−n+1

in the (n+ 1)th equation, to ascertain that an+1,m+2 = −αm−n+1/βm−n+1.

Collecting terms in vm−n+1 in the remaining n linear equations, it is easy to deduce

that ai,m+2 = 0, for all 1 ≤ i ≤ n.
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We established in Section 3.2 that every column of an n × m dicharacteristic

matrix must be a primitive vector in Zn. Since the final column of Λn+1 must meet

this criterion, it follows that −αm−n+1/βm−n+1 = ±1, which completes the proof.

If (a1,m+2, . . . , an,m+2, an+1,m+2) = (0, . . . , 0,±1) in Λn+1, then the first n linear

equations arising from (5.1.23) reduce to the linear equations

ΛnKnv
t
n = 0, (5.1.26)

where vn = (v1, . . . , vn) ∈ Zn, which arise from the short exact sequence (5.1.13).

This observation is enough to prove the following result.

Proposition 5.1.27. The (n + 1) × (m + 2) dicharacteristic matrix Λn+1 takes the

form 

1 0 . . . 0 0 λ1,n+1 . . . λ1,m 0

0 1 . . . 0 0 λ2,n+1 . . . λ2,m 0

...
...

. . .
...

...
...

. . .
...

...

0 0 . . . 1 0 λn,n+1 . . . λn,m 0

0 0 . . . 0 1 an+1,n+2 . . . an+1,m+1 a


, (5.1.28)

where a = ±1.

We can see the dicharacteristic matrix of M2n inside the dicharacteristic matrix of

N2n+2 as the columns 1, . . . , n, n+2, . . . ,m+1, in rows 1, . . . , n. The dicharacteristic

matrix of the fibre CP 1 comprises columns n+1,m+2 in row n+1. Furthermore, it

is straightforward to check that N2n+2 = M2n×CP 1 as in Example 5.1.20, precisely

when an+1,n+2 = · · · = an+1,m+1 = 0.

Readers may find it helpful to keep in mind the following example, which illus-

trates each of these aspects of Λn+1.

Example 5.1.29. By Example 5.1.6, the 3rd stage of a Bott tower B3 over I3 = I2×

I, is reducible with base space B2 and fibre CP 1. From (4.1.6), the dicharacteristic

matrix for B3 is given by
1 0 0 1 0 0

0 1 0 −a(1, 2; 1) 1 0

0 0 1 −a(1, 3; 1) −a(2, 3; 1) 1

 ,
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where columns 1, 2, 4, 5 in rows 1 and 2 comprise the dicharacteristic matrix 1 0 1 0

0 1 −a(1, 2; 1) 1

 ,

for the base space B2 over I2.

Columns 3 and 6 in row 3 of the dicharacteristic matrix of B3 give the dicharac-

teristic matrix (1 1) for the fibre CP 1 over I1. Note that the omniorientation of CP 1

here differs from that of Example 3.2.12.

The third stage B3 of a Bott tower is the total space of the projective bundle

CP ((γ
a(1,3;1)
1 ⊗γa(2,3;1)

2 )⊕C) over B2. For the trivial case when a(1, 3; 1) = a(2, 3; 1) =

0, we see that B3 becomes B2 × CP 1, the total space of CP (C⊕ C) over B2.

Our description (5.1.28) of Λn+1 provides us with information about the linear

relations in the cohomology ring H∗(N2n+2). To fully understand this ring, we must

now shed light on the monomial relations in H∗(N2n+2), which arise from the Stanley-

Reisner ring Z[P n+1] of the polytope P n+1.

With the facets of N2n+2 ordered finely as in (5.1.17), let ui ∈ H2(N2n+2) be the

generator associated to the ith facet in the ordering.

The polytope P n+1 = P n × I is, in some sense, an (n + 1)-dimensional analogue

of a prism, in that it is composed of two copies of P n, viewed as P n × F ′
1 and

P n × F ′
2, joined through Fi × I for 1 ≤ i ≤ m. Hence we can immediately deduce

that P n × F ′
1 ∩ P n × F ′

2 = ∅, and so we have a relation un+1um+2 = 0 in Z[P n+1].

Now consider the quasitoric manifold M2n over P n, the base space of our reducible

quasitoric manifold N2n+2. Assuming that the Stanley-Reisner ring of P n is given by

Z[P n] ∼= Z[v1, . . . , vm]/In,

then the remaining relations in Z[P n+1] are given by the image of the ideal In under

the map r : Z[P n]→ Z[P n+1], which relabels the elements vi by

vi 7→ ui for 1 ≤ i ≤ n,

vi 7→ ui+1 for n+ 1 ≤ i ≤ m,
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to take account of the ordering (5.1.17). This follows from the fact that if Fi1 ∩ · · · ∩

Fik = ∅ in P n, then

Fi1 × I ∩ · · · ∩ Fik × I = ∅,

in P n+1.

Denoting the image of In under r by r(In) we can collect our observations together

as follows.

Proposition 5.1.30. The Stanley-Reisner ring of P n+1 is described by

Z[P n+1] ∼= Z[u1, . . . , um+2]/In+1, (5.1.31)

where In+1 is r(In) ∪ {un+1um+2}.

We have now attained adequate information on the cohomology ring of N2n+2 to

conclude this section with an observation that we will rely upon in Section 5.4.

Suppose we have a relation ui1 . . . uij = 0 in r(In) ⊂ In+1, where ui1 , . . . , uil are

such that 1 ≤ ik ≤ n, and uil+1
, . . . , uij are such that n+2 ≤ ik ≤ m+1. Then using

the linear cohomology relations, our monomial ui1 . . . uij can be rewritten to give the

following relation in the cohomology ring H∗(N2n+2)

(−λi1,n+1un+2 − · · · − λi1,mum+1) . . . (−λil,n+1un+2 − · · · − λil,mum+1)uil+1
. . . uij = 0.

(5.1.32)

By multiplying out the above expression (5.1.32), and rearranging as necessary, we

are able to deduce the following result.

Lemma 5.1.33. The relations in the cohomology ring of N2n+2 are such that the

cohomology class uli can be expressed as a polynomial p over Z in un+2, . . . , um+1, for

some integer l, and for n+ 2 ≤ i ≤ m+ 1.

So there is no relation in H∗(N2n+2) that allows us to rewrite a product of Chern

classes ui1 , . . . , uij , for ik 6= n + 1,m+ 2, so that it contains a term in um+2, since

any such relation ui1 , . . . , uij must be of the form (5.1.32), and clearly we cannot

rearrange this expression so that terms in um+2 appear.
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5.2 Encoding omniorientations in Λ

A quasitoric manifold M2n has 2m+1 possible omniorientations; if one such induces

an SU -structure which bounds in MU∗, then we cannot conclude that Conjecture

5.0.2 is true for M2n, as one of the 2m alternative omniorientations might induce a

nonbounding SU -structure on the manifold. In this section we introduce the notion

of a signed dicharacteristic matrix that allows us to deal with this problem.

Following the definition of the dicharacteristic matrix Λ (3.2.8), we discussed the

effect on Λ of changing omniorientation. To preserve the refined form of the matrix

after such a change, if a facet Fi, for 1 ≤ i ≤ n is switched, then we negate the ith row

of the refined submatrix S. While if the orientation on a facet Fi, for n+ 1 ≤ i ≤ m

is switched, we negate the ith column of S. We wish to encode this data in Λ.

Let ε(m) := (ε1, . . . , εm) be a list of signs εi, which can take values ±1 for 1 ≤

i ≤ m.

Definition 5.2.1. Given a dicharacteristic matrix Λ, and a list of signs ε(m), the

signed dicharacteristic matrix Λε(m) is the n ×m matrix (In | Sε(m)), where Sε(m) is

given by 
ε1εn+1λ1,n+1 . . . ε1εmλ1,m

ε2εn+1λ2,n+1 . . . ε2εmλ2,m

...
. . .

...

εnεn+1λn,n+1 . . . εnεmλn,m


. (5.2.2)

The sign εi represents the choice of omniorientation on the facet Fi and so, on the

facial bundle ρi. The initial omniorientation is given by εi = 1, for all 1 ≤ i ≤ m, as

in this case Λε(m) reverts to the original Λ.

We encode the effect in a change in omniorientation as follows. Begin with the

initial omniorientation ε(m) := (1, . . . , 1); if the complex line bundles ρi1 , . . . , ρij are

conjugated, then map εk 7→ −εk for i1 ≤ k ≤ ij. This ensures that the appropri-

ate rows and columns in Sε(m) are negated to give the correct representation in the

dicharacteristic matrix.

Incorporating the εi allows us to work with a completely general omniorientation,
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but it will also be easy to consider special cases by substituting in particular values

for εi if necessary.

5.3 Chern classes

In Section 3.3 we observed that un+2, . . . , um+2 suffice to generate H∗(N2n+2) multi-

plicatively. This is due to the fact that, referring to the signed dicharacteristic matrix

of N2n+2, we can write

ui = −εiεn+2λi,n+1un+2 − · · · − εiεm+1λi,mum+1,

for 1 ≤ i ≤ n, and

un+1 = −εn+1εn+2an+1,n+2un+2 − · · · − εn+1εm+1an+1,m+1um+1 − εn+1εm+2aum+2,

(5.3.1)

where a = ±1. Note that the element um+2 only appears in two of the expressions

for the first Chern classes ui of the facial bundles ρi; namely c1(ρn+1) = un+1 as in

(5.3.1), and c1(ρm+2) = um+2. This observation will be important in the proof of our

main theorem in the penultimate section.

As noted in Remark 3.4.11, we do not have a simple method that will extract

the Chern classes of the stable tangent bundle τ s(M2n) of a quasitoric manifold M2n

directly from its dicharacteristic matrix. However, for our manifolds N2n+2 we have

the following result, which gives us enough information on the Chern classes to help

to determine Chern numbers in the next section.

From the introductory discussion above, it is clear that the Chern classes of the

stable tangent bundle of N2n+2 are polynomials over Z in un+2, . . . um+2.

Proposition 5.3.2. Whenever the element um+2 appears as a term in a Chern

class of the stable tangent bundle of N2n+2, its coefficient contains a factor of (1 −

εn+1εm+2a).

To illustrate Proposition 5.3.2, consider the Chern classes of B3, the third stage

of a Bott tower considered in Example 5.1.6. The generators of H∗(B3) are u4, u5
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and u6 ∈ H2(B3), and in this case a = 1.

c1(τ
s) = u4(1− ε1ε4 + ε2ε4a(1, 2; 1) + ε3ε4a(1, 3; 1)) +

u5(1− ε2ε5 + ε3ε5a(2, 3; 1)) + u6(1− ε3ε6),

c2(τ
s) = u4u5(1− ε1ε4 − ε2ε5 + ε1ε2ε4ε5 + ε3ε4a(1, 3; 1)−

ε2ε3ε4ε5a(1, 3; 1) + ε3ε5a(2, 3; 1)− ε1ε3ε4ε5a(2, 3; 1) +

ε3ε4a(1, 2; 1)a(2, 3; 1)) +

−u4u6(1− ε3ε6)(ε1ε4 − ε2ε4a(1, 2; 1)− 1) +

−u5u6(ε2ε5 − 1)(1− ε3ε6),

c3(τ
s) = −u4u5u6(ε1ε4 − 1)(ε2ε5 − 1)(1− ε3ε6).

With each occurrence of u6, the coefficient contains a factor of (1− ε3ε6).

Proof of Proposition 5.3.2. Denote the stable tangent bundle of N2n+2 by τ s. By

Corollary 3.4.7 the ith Chern class of τ s is given by ci(τ
s) = σi(u1, . . . , um+2).

We noted above that the element um+2 only appears in c1(ρn+1) and c1(ρm+2),

so when we evaluate this ith elementary symmetric polynomial the only terms that

contain um+2 are monomials of the form uj1 . . . uji−2
un+1um+2, for i ≥ 2, where ujk 6=

un+1, um+2, or sums of monomials

ul1 . . . uli−1
un+1 + ul1 . . . uli−1

um+2, (5.3.3)

for i ≥ 1, where ulk 6= un+1, um+2. By the Stanley-Reisner relations described in

Proposition 5.1.30 , the former are zero since un+1um+2 = 0, and if the relations

cancel out one of the monomials in the sum (5.3.3), then clearly they will cancel out

the other. So we can assume that after applying the relations, if any terms in um+2

remain, we are left only with terms of the form (5.3.3).

Using the linear relations in H∗(N2n+2), we can rewrite the ith Chern class as

ci(τ
s) =σi(−ε1εn+2λ1,n+1un+2 − · · · − ε1εm+1λ1,mum+1, . . . ,

− εn+1εn+2an+1,n+2un+2 − · · · − εn+1εm+1an+1,m+1um+1 − εn+1εm+2aum+2,

un+2, . . . , um+2).
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The coefficient of um+2 in c1(ρn+1) = un+1 is −εn+1εm+2a and the coefficient of um+2

in c1(ρm+2) = um+2 is just 1. So collecting together the terms in um+2 we have the

following term in our Chern class

(1− εn+1εm+2a)um+2p,

for some polynomial p that does not contain any terms in um+2. Hence we can write

ci(τ
s) = (1− εn+1εm+2a)um+2p+ q,

where p and q are polynomials over Z in un+2, . . . , um+1.

5.4 Characteristic numbers

In this section we present our proof of Conjecture 5.0.2 for reducible quasitoric man-

ifolds N2n+2.

We follow the description in [38], that for each partition Q = q1, . . . , qk of n, the

Qth Chern number of an n-dimensional manifold Mn, cQ[Mn] = cq1 . . . cqk [M
n] is, by

definition, the integer

< cq1(τ
s) . . . cqk(τ

s), [Mn] >, (5.4.1)

where [Mn] ∈ Hn(M
n; Z) is the fundamental homology class of the manifold, and τ s

is its stable tangent bundle. For any partition Q of n, the element cq1(τ
s) . . . cqk(τ

s)

lies in the top dimension of the cohomology ring of Mn.

Note that we are working with tangential characteristic numbers, rather than the

more commonly used normal characteristic numbers. In the latter case cqj(τ
s) is

replaced by cqj(ν
s) in (5.4.1), where νs is the stable normal bundle of Mn.

We can make the following observation about the Chern classes of the stable

tangent bundle of N2n.

Lemma 5.4.2. Given a partition q1, . . . , qk of n+ 1, the product cq1(τ
s) . . . cqk(τ

s) of

Chern classes in H2n+2(N2n+2) is equal to a sum of terms that each contain a factor

of the cohomology class um+2 ∈ H2(N2n+2).
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Proof. A product cq1(τ
s) . . . cqk(τ

s) ∈ H2n+2(N2n+2) can be written as a sum of terms

of the form u
in+2

n+2 . . . u
im+2

m+2 , for integers ij ≥ 0, with in+2 + · · ·+ im+2 = n+ 1.

Now suppose that our product cq1(τ
s) . . . cqk(τ

s) does not contain any terms with

factors of um+2. It follows that the product must be comprised of a sum of terms of

the form u
in+2

n+2 . . . u
im+1

m+1 , with in+2 + · · ·+ im+1 = n+ 1.

The elements un+2, . . . , um+1 are in the image of the map r : Z[P n]→ Z[P n+1] of

Stanley-Reisner rings, which was introduced at the close of Section 5.1. We have that

r(v
in+2

n+1 . . . v
im+1
m ) = u

in+2

n+2 . . . u
im+1

m+1 , where the element v
in+2

n+1 . . . v
im+1
m lies in the coho-

mology ring H∗(M2n) of the base space of the quasitoric bundle CP 1 → N2n+2 →

M2n. We have that v
in+2

n+1 . . . v
im+1
m = 0, since this element lies in the cohomology

group H2n+2(M2n), which is zero for dimensional reasons. Therefore we can de-

duce that u
in+2

n+2 . . . u
im+1

m+1 = 0 in H2n+2(N2n+2). Hence to ensure that the product

cq1(τ
s) . . . cqk(τ

s) of Chern classes lies in H2n+2(N2n+2), we require that it is com-

prised of sums of terms of the form u
in+2

n+2 . . . u
im+2

m+2 , with in+2 + · · · + im+2 = n + 1,

and im+2 6= 0.

By combining Lemma 3.4.8 and Proposition 5.1.27 we obtain the following fact.

Corollary 5.4.3. The quasitoric manifold N2n+2 has an SU-structure induced by an

omniorientation on its stable tangent bundle, only if εn+1εm+2a = 1.

Now everything is in place for us to prove our main theorem.

Theorem 5.4.4. If a reducible quasitoric manifold N2n+2 with fibre CP 1 has an

SU-structure induced by an omniorientation, then N2n+2 is cobordant to zero in the

complex cobordism ring MU∗.

Proof. Let q1, . . . , qk by a partition of 2n + 2 so that cq1 . . . cqk [N
2n+2] is a Chern

number given by

< cq1(τ
s) . . . cqk(τ

s), [N2n+2] >, (5.4.5)

where [N2n+2] is the fundamental class of N2n+2 in the top dimension of its homology;

it is determined by the chosen omniorientation on N2n+2.
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By Lemma 5.1.33, the relations in the cohomology ring of N2n+2 imply that any

element uji ∈ H2j(N2n+2), for n + 2 ≤ i ≤ m + 1, can be rewritten in terms of

un+2, . . . , um+1, but never in terms of um+2. For example, at the third stage B3 of a

Bott tower we have

u3
5 =

(
ε4a(1, 2; 1)u4

ε5

)2

u5, (5.4.6)

and it is not possible for u6 to arise from a combination of powers of u4 and u5.

It follows that for a product of Chern classes cq1(τ
s) . . . cqk(τ

s) to contain the term

um+2, which Lemma 5.4.2 implies is necessary if it is to lie in the top dimension of

H∗(N2n+2), at least one of the terms cql(τ
s) in the product has to have a term in

um+2 in its polynomial expression.

By Proposition 5.3.2, if a Chern class cql(τ
s) contains a term in um+2, then that

term has a factor of (1 − εn+1εm+2a) in its coefficient. Hence the product of Chern

classes cq1(τ
s) . . . cqk(τ

s) has at least one factor of (1 − εn+1εm+2a), and so must the

Chern number cq1 . . . cqk [N
2n+2]. By Corollary 5.4.3, if N2n+2 is an SU -manifold then

εn+1εm+2a = 1. It follows that the Chern number cQ[N2n+2] = cq1 . . . cqk [N
2n+2] = 0

for any partition Q of 2n+ 2, and so N2n+2 is cobordant to zero in MU∗.

Remark 5.4.7. In light of Remark 5.1.15 we emphasise that Theorem 5.4.4 holds for

the reducible quasitoric SU -manifold N2n+2, regardless of the ordering of the facets

of its associated polytope P n+1. While our proof of Theorem 5.4.4 did require us to

use a particular ordering of the facets of P n+1, since we can always reorder the facets

accordingly without affecting the omniorientation of N2n+2, and thus its complex

cobordism class, then Theorem 5.4.4 holds for N2n+2 with any choice of ordering for

the facets of P n+1.

5.5 Complex projective space

One of the most natural examples of quasitoric manifolds are the complex projective

spaces CP n, which we introduced in Example 3.2.12. If we could prove Conjecture

5.0.2 in the case of CP n, then since these spaces are so fundamental in toric topology,
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it would offer compelling evidence to support the full conjecture. This is the main

aim of our final section.

We begin by studying the case when n = 2k is even and show that there are

no SU -structures on CP 2k that are induced by omniorientations. Following this we

prove Conjecture 5.0.2 for CP n in the case when n = 2k + 1 is odd. In conclusion,

we speculate on several possible approaches to a complete proof of the conjecture.

To reiterate our comments from Chapter 1, we feel we should make clear that some

of the results in this section follow from what are probably well-known observations

about CP n, though we do not always have specific references to call upon. However,

our interest is in reinterpreting these results in the new context of toric topology.

To begin, we note that for CP n, we need only verify Conjecture 5.0.2 in cases

when n is odd, courtesy of the following observation.

Proposition 5.5.1. There is no omniorientation on CP 2n that induces an SU-

structure on the stable tangent bundle τ s(CP 2n).

Proof. By Example 3.2.12, the signed refined submatrix of an omnioriented CP 2n

is the column vector v = (−ε1ε2n+1, . . . ,−ε2nε2n+1) in Z2n. By Lemma 3.4.8, the

omniorientation on CP 2n induces an SU -structure on its stable tangent bundle if

and only if the column sum satisfies

−ε1ε2n+1 − ε2ε2n+1 − · · · − ε2nε2n+1 = 1. (5.5.2)

Suppose that CP 2n is omnioriented so that a of the entries −εi1ε2n+1, . . . ,−εiaε2n+1 of

v become +1. Then the remaining 2n− a entries −εiε2n+1 of v, where i 6= i1, . . . , ia,

must be equal to −1. There are two subcases to consider:

If a = n, then the column sum (5.5.2) is zero. Therefore such an omniorientation

does not induce an SU -structure on CP 2n.

If a 6= n, then the column sum (5.5.2) is 2a− 2n. Since both a and n are integers,

2(a − n) 6= 1, and hence such an omniorientation does not induce an SU -structure

on CP 2n.

Let us consider some of the implications of this result. In Section 5.1 we saw that

we can view the reducible quasitoric manifold DOk, the kth stage of a Dobrinskaya
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tower (DOk : k ≤ n), as the total space of a quasitoric bundle CP lk → DOk →

DOk−1.

Lemma 5.5.3. The quasitoric manifold DOk has an SU-structure induced by an

omniorientation, only if, when viewed as a quasitoric bundle, the fibre CP lk has an

SU-structure induced by an omniorientation.

Proof. This result is easily seen to be true by looking at the final column of the

dicharacteristic matrix (4.1.6) for DOk.

In particular, if lk is even so that the fibre of DOk is some CP 2j, then it follows

from Proposition 5.5.1 and Lemma 5.5.3 that there is no omniorientation on DOk

that induces an SU -structure on its stable tangent bundle.

Following Proposition 5.5.1, confirmation of Conjecture 5.0.2 for complex projec-

tive space CP n reduces to verifying the conjecture in the cases when n is odd; in such

cases the signed refined submatrix induced by an omniorientation on CP 2n+1 is the

column vector

v = (−ε1ε2n+2, . . . ,−ε2n+1ε2n+2) ∈ Z2n+1.

In a similar fashion to the even dimensional case above, the omniorientation induces

an SU -structure on CP 2n+1 if and only if the column sum satisfies

−ε1ε2n+2 − ε2ε2n+1 − · · · − ε2n+1ε2n+2 = 1. (5.5.4)

Only if CP 2n+1 is omnioriented so that n+ 1 of the entries in v become +1, and the

remaining n of the entries in v become −1, is equation (5.5.4) satisfied, inducing an

SU -structure on CP 2n+1.

Assume now that we have satisfied the condition (5.5.4) so that the omniorien-

tation has induced an SU -structure on CP 2n+1. Without loss of generality, we may

then assume that v is the vector (1, . . . , 1,−1, . . . ,−1) ∈ Z2n+1, in which the first

n + 1 entries are 1; this explicit choice is justified in Remark 5.5.7 below. Label

by t the SU -structure induced by this choice of v. If the cohomology generators of

H∗(CP 2n+1) are given by elements u1, . . . , u2n+2 in H2(CP 2n+1), then the linear re-

lations arising from associated dicharacteristic matrix, with refined submatrix v, are
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as follows

u1 = u2 = · · · = un+1 = −u2n+2,

un+2 = un+3 = · · · = u2n+1 = u2n+2.
(5.5.5)

To simplify notation, we will denote u2n+2 ∈ H2(CP 2n+1) by x. Then by Corollary

3.4.7, the pth Chern class of the stable tangent bundle of CP 2n+1 is given by

cp(τ
s(CP 2n+1)) = σp(x, . . . , x,−x, . . . ,−x), (5.5.6)

that is, the nth elementary symmetric polynomial in n + 1 copies of x and n + 1

copies of −x.

Remark 5.5.7. We are able to make our choice (1, . . . , 1,−1, . . . ,−1) for v without

loss of generality, because for the remainder of this section we are interested only in the

cohomology generators u1, . . . , u2n+2 ∈ H2(CP 2n+1). If CP 2n+1 has an SU -structure

then we know that n+ 1 of the entries in v must be +1, and the remaining n of the

entries in v must be −1. So whatever the choice of omniorientation that determines

the vector v explicitly, we know that the cohomology generators will always be of the

form (5.5.5), albeit in a different order to that shown above. This will be sufficient

for our purposes below.

Following Remark 5.5.7, we will assume that in the remainder of this chapter,

CP 2n+1 is equipped with the SU -structure t. We have the following result on the

odd Chern classes of the stable tangent bundle τ s(CP 2n+1) of the quasitoric SU -

manifold CP 2n+1.

Lemma 5.5.8. If an omniorientation on CP 2n+1 induces an SU-structure on its

stable tangent bundle, then the Chern classes c2k+1(τ
s(CP 2n+1)) in H4k+2(CP 2n+1)

are zero, for all k ≥ 0.

Proof. Since an omniorientation has induced the SU -structure t on CP 2n+1, we know

that the Chern classes of τ s(CP 2n+1) are given by elementary symmetric polynomials

of the form (5.5.6). As is well-known (see e.g. [38, p. 189]), this is equivalent to

writing the total Chern class c(τ s(CP 2n+1)) ∈ H∗(CP 2n+1) as

c(τ s(CP 2n+1)) = (1 + x)n(1− x)n

= (1− x2)n.
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By expanding (1 − x2)n it is clear that the total Chern class has no terms in x2k+1,

so it follows that the Chern classes c2k+1(τ
s(CP 2n+1)) in H4k+2(CP 2n+1) are zero, for

all k ≥ 0.

Lemma 5.5.8 is the foundation for the following result, which confirms Conjecture

5.0.2 in the case of odd dimensional complex projective space.

Theorem 5.5.9. If the quasitoric manifold CP 2n+1 has an SU-structure induced by

an omniorientation, then CP 2n+1 it is cobordant to zero in the complex cobordism

ring MU∗.

Proof. Let q1, . . . , qk by a partition of 2n + 1 so that cq1 . . . cqk [CP 2n+1] is a Chern

number given by

< cq1(τ
s) . . . cqk(τ

s), [CP 2n+1] >, (5.5.10)

where [CP 2n+1] is the fundamental class of CP 2n+1 in the top dimension of its ho-

mology; it is determined by the chosen omniorientation on CP 2n+1.

Every partition q1, . . . , qk of 2n+ 1 must be such that at least one qi is odd. For

if q1, . . . , qk were all even, then their sum would be even, which cannot be true since

by definition we have q1 + · · · + qk = 2n + 1. So it follows that at least one of the

Chern classes cqi(τ
s) that contributes to the Chern number cq1 . . . cqk [CP 2n+1], must

be such that qi = 2j + 1.

Then since CP 2n+1 has an SU -structure, by Lemma 5.5.8 the Chern number

cq1 . . . cqk [CP 2n+1] is zero, for all possible partitions q1, . . . , qk of 2n + 1. Hence we

have that CP 2n+1, with SU -structure induced by an omniorientation, is a boundary

in MU∗.

It is worth noting that we can prove Theorem 5.5.9 geometrically by constructing

the quasitoric SU -manifold CP 2n+1 as the boundary of a (4n+3)-dimensional stably

complex manifold. If CP 2n+1 has SU -structure t, which is induced by an omniori-

entation, then it follows from our description (5.5.5) of the cohomology generators

ui ∈ H2(CP 2n+1), for 1 ≤ i ≤ 2n+2, and Example 3.4.4 that there is an isomorphism

τ(CP 2n+1)⊕ R2 ∼= ζ1 ⊕ · · · ⊕ ζ1 ⊕ ζ1 ⊕ · · · ⊕ ζ1 ∼= (n+ 1)ζ1 ⊕ (n+ 1)ζ1, (5.5.11)
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on the stable tangent bundle of CP 2n+1.

Given ξ1, the universal quaternionic line bundle over HP n, it is well-known (see

e.g. [3] or [4]) that there is an isomorphism of real bundles

ξ1 ⊗H ξ1
∼= L⊕ R, (5.5.12)

for some real 3-plane bundle L over HP n. In [4, Section 2], the authors show that

the 2-sphere bundle π : S(L) → HP n, is such that S(L) = CP 2n+1; moreover, they

give an isomorphism of complex bundles

π∗(ξ1) ∼= ζ1 ⊕ ζ1. (5.5.13)

By Proposition 2.3.7, and using the isomorphism (5.5.12), we have

τ(S(L))⊕ R2 ∼= π∗(L⊕ R⊕ τ(HP n))

∼= π∗((ξ1 ⊗H ξ1)⊕ τ(HP n)). (5.5.14)

In Chapter 6 we will see that there is an isomorphism on the tangent bundle of HP 2n

given by

τ(HP n)⊕ (ξ1 ⊗H ξ1)
∼= (n+ 1)ξ1,

so pairing this with the isomorphism (5.5.13) we reduce (5.5.14) to

τ(S(L))⊕ R2 ∼= (n+ 1)ζ1 ⊕ (n+ 1)ζ1. (5.5.15)

This isomorphism is precisely the isomorphism (5.5.11). Hence if CP 2n+1 is a

quasitoric SU -manifold, we may consider it as the 2-sphere bundle S(L) over HP 2n.

Then CP 2n+1 is cobordant to zero in the complex cobordism ring, because the sta-

bly complex structure given by the isomorphism (5.5.11) bounds, as it extends via

(2.3.9) to the 3-disc bundle D(L) over HP 2n. This illustrates the geometry underlying

Theorem 5.5.9.

Further work should of course be devoted to verifying Conjecture 5.0.2.

Let F : MSU∗ → MU∗ be the map that simply forgets the special unitary struc-

ture on a manifold, and let R be a subring ofMSU∗ generated by the projective spaces

CP 2n+1 and manifolds of the form N2n. If the image Im(F ) = F (R), then Conjecture
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5.0.2 is true, because it follows from Theorems 5.4.4 and 5.5.9 that F (M2n) = 0, for

any M2n ∈ R. In other words, any quasitoric SU -manifold M2n is cobordant in MU∗

to a combination of products and connected sums of SU -manifolds of the form N2n

and CP 2n+1, which necessarily bound in MU∗. Of course, it is almost certainly not

the case that Im(F ) = F (R), but we could conceivably prove the conjecture for a

larger class of manifolds than CP 2n+1 and the N2n alone if we knew how much of

the image of F is comprised by F (R). The memoir of Conner and Floyd [13], where

the image of F is studied in detail, would be a good starting point for any such

investigations.

It is unclear how to extend Theorem 5.4.4 to reducible quasitoric manifolds M

with a general quasitoric fibre F . The proof of our result relied on the fact that the

final column of Λ was of the form (0, . . . , 0, a). If, for example, M was the kth stage

DOk of a Dobrinskaya tower, so that F = CP lk ; if lk 6= 1, then the proof would fail

as the final column of Λ would be of the form (0, . . . , 0, a1, . . . , alk). However, given

Theorem 5.5.9, perhaps a first step in this direction would be a proof of the conjecture

for any reducible quasitoric manifold with fibre the quasitoric SU -manifold CP 2n+1.

Suppose we relax the condition of reducibility on M . Then even if its associated

polytope reduces to P n × I, the final column of Λ can take a form that differs from

(0, . . . , 0, a), and so an attempt to extend Theorem 5.4.4 to such manifolds M would

also founder.

In Example 5.1.9 we considered the reducible quasitoric manifolds Bi,j over I i ×

∆j−1, with i ≤ j, which comprised the basis for MU∗ given by Theorem 5.0.1. Since

Bi,j is the total space of a quasitoric bundle with base space the bounded flag manifold

Bi and fibre CP j−1, in light of Theorems 5.4.4 and 5.5.9 it would be natural to hope

that we could go on to prove that every Bi,j with SU -structure bounds in MU∗.

However, we have the following observation.

Lemma 5.5.16. There is no omniorientation on the reducible quasitoric manifold

Bi,j that induces an SU-structure on its stable tangent bundle.

Proof. In [9, Example 4.5], the dicharacteristic matrix of Bi,j is shown to contain a
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column of the form v = (0, . . . , 0,−1, 0, . . . , 0, 1, 0, . . . , 0) ∈ Zi+j−1, which has only

two nonzero entries. No matter how we manipulate the omniorientation of Bi,j, it is

impossible to make the entries in the vector v sum to 1. It follows from Lemma 3.4.8

that Bi,j is never a quasitoric SU -manifold.

Consequently it seems unlikely that calculations with the Bi,j manifolds will lead

to a full solution to Conjecture 5.0.2.

Suppose instead that we could construct an alternative basis for MU∗ comprised

of quasitoric manifolds V 2n, which could admit SU -structures induced by omnior-

ientations. If we could prove the conjecture for any quasitoric SU -manifold V 2n,

then a proof of the full conjecture would require confirmation that every quasitoric

SU -manifold is complex cobordant to a connected sum of products of V 2n with SU -

structure, which would then necessarily be a boundary. This is by no means straight-

forward because if M1 has an SU -structure, and [M1, θ1] ∼ [M2, θ2] in MU∗, it does

not follow that M2 should necessarily have an SU -structure.



Chapter 6

Quaternionic towers

In this chapter we define a quaternionic analogue of the Dobrinskaya towers of Chap-

ter 4. Due to the noncommutativity of the quaternions H, the process is not entirely

straightforward, but by refining our definitions where necessary, we are able to carry

over many aspects of the Dobrinskaya tower to the new setting.

The first problem we encounter is that the tensor product over H of two quater-

nionic line bundles is not itself a quaternionic bundle. To overcome this difficulty,

in the first section we describe an operation on quaternionic bundles, which will

play the role of the tensor product when we construct our quaternionic towers. We

then verify that the preliminary results of Section 2.5 still hold when reformulated

in the quaternionic milieu. This is the foundation for the second section, in which

we define the quaternionic tower using an iterated bundle construction, determine its

F -cohomology ring and consider stably quaternionic structures on the tower. We will

find that unlike Dobrinskaya towers, in which each stage is a stably complex manifold,

the manifolds comprising a quaternionic tower are not in general stably quaternionic.

In the next section we concentrate on some exceptional cases of quaternionic tower

that do admit stably quaternionic structures.

In addition to the iterated bundle construction, Dobrinskaya towers have a second

description as quasitoric manifolds. Therefore we devote the final section to consid-

ering the possibility of constructing a quaternionic analogue of a quasitoric manifold

to describe our quaternionic towers.

85
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Throughout this chapter, F will denote a quaternionic oriented ring spectrum, as

defined in Section 2.2.

6.1 Quaternionic line bundles

Quaternionic line bundles over a space X are classified by homotopy classes of maps

X → HP∞. However, HP∞ is not an Eilenberg-Mac Lane space, so in contrast with

complex line bundles, there is no isomorphism between the multiplicative group of

quaternionic line bundles over X and the cohomology group H4(X).

As a consequence, we will have much less freedom when building our quaternionic

towers. Each stage DOk in a Dobrinskaya tower is determined by a vector ak−1(lk)

of integers (4.1.5), which represents the tensor powers over C of the complex line

bundles used to build each stage. We cannot carry over this idea to the quaternionic

construction, as the tensor product over H of two quaternionic line bundles is not

itself a quaternionic line bundle, it is only a real bundle. This follows from the

fact that if H and H denote the quaternions considered as right and left H-modules

respectively, then we have the well-known isomorphism H⊗H H ∼= R4.

In this section, we consider an operation on quaternionic line bundles, which we

will use in place of the tensor product when we construct our quaternionic towers in

Section 6.2. We will focus on using self-maps HP n → HP n of quaternionic projective

space, using the paper of Granja [20] as our primary reference.

With pH1 (ξ1) ∈ H4(HP n) denoting the first quaternionic Pontryagin class of the

canonical quaternionic line bundle ξ1 over HP n, we have the following notion.

Definition 6.1.1. The degree d ∈ Z of a self-map g : HP n −→ HP n (n may be

infinite), is such that g∗pH1 (ξ1) = dpH1 (ξ1).

This allows us to classify self-maps of HP∞, courtesy of the following result by

Mislin.

Theorem 6.1.2. [39] Self-maps of infinite quaternionic projective space HP∞ are

classified up to homotopy by their degree.
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Moreover, in [18, Theorem 1.2] Feder and Gitler show that there exists a self-map

g of HP∞ if and only if the degree of g is zero or an odd square integer (2r+ 1)2, for

r ∈ Z. Sullivan constructed explicit maps with such degrees [55, Corollary 5.10].

Self-maps of HP 1 are also classified up to homotopy by their degree, and it is

well known that a self-map HP 1 → HP 1 of degree d exists for any integer d, but for

general n, self-maps of HP n are not classified by degree [19], [33].

Remark 6.1.3. The permissible degrees of self-maps HP n → HP n for general n are

unknown, but their determination is the subject of the Feder-Gitler Conjecture, a

summary of which, and details of its confirmation in degrees n ≤ 5, can be found in

[20].

Though the picture is far from complete, we now have enough information to use

self-maps of quaternionic projective space to define an operation on quaternionic line

bundles.

Any quaternionic line bundle θ over a space X is the pullback along the classifying

map θ : X → HP∞ of the universal quaternionic line bundle ξ1. Hence, for a degree

d self-map gd of HP∞, we can define θ[d] to be the pullback of ξ1 along gdθ. By

Theorem 6.1.2, self-maps of HP∞ are classified up to homotopy by their degree, so

the bundles θ[d] are distinct for each d; moreover, by Definition 6.1.1, we have that

pF1 (θ[d]) = dpF1 (θ) in F 4(X).

By Feder and Gitler’s result on the permissible degrees of self-maps HP∞ → HP∞,

we have the following result.

Proposition 6.1.4. Given a quaternionic line bundle θ over a space X, there exists

distinct quaternionic line bundles θ[d] over X, where d = (2r + 1)2, for r ∈ Z, or

d = 0.

When d = 1, the bundle θ[1] is θ itself, and we interpret θ[0] as the trivial quater-

nionic line bundle H. We use the notation θ[d] to emphasise that our operation is

different to the tensor product of d copies of θ, which is usually written as θd.

Remark 6.1.5. Since the Feder-Gitler conjecture has been verified in dimensions

n ≤ 5, we could be bolder and consider a larger pool of bundles θ[d] over n-dimensional
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spaces, for all the known degree d self-maps of HP n. However, for simplicity and

consistency, we will limit ourselves to maps of odd square or zero degree throughout

our thesis.

Thus we have shown that we can replace the ill-behaved tensor product of quater-

nionic line bundles, with our operation built out of self-maps of quaternionic projec-

tive space. This will be central to our construction of quaternionic analogues of the

Dobrinskaya tower in the remainder of this chapter. As a first step towards that goal,

we now confirm that the preliminary results of Section 2.5 hold when translated to

the quaternionic setting.

Definition 6.1.6. A 4-generated connected CW-complex X is one whose integral co-

homology ringH∗(X) is generated by a linearly independent set of elements x1, . . . , xn

in H4(X). We say such elements are 4-generators and n is the 4-rank.

Suppose there exist quaternionic line bundles χi over X, such that the first quater-

nionic Pontryagin class pH1 (χi) ∈ H4(X) is the 4-generator xi. For any quaternionic

oriented ring spectrum F , the quaternionic Pontryagin class pF1 (χi) also lies in F 4(X),

for 1 ≤ i ≤ n. Henceforth, we will denote pF1 (χi) by yFi .

As in the complex scenario, the Atiyah-Hirzebruch spectral sequence converging

to F ∗(X) collapses, since the ordinary cohomology of X is again concentrated in

even degrees, which forces all differentials to be zero. It follows that F ∗(X) is a free

F∗-module, spanned by the collection of monomials
∏

R y
F
i , where R is any subset of

{1, . . . , n}; as a free F∗-algebra, F ∗(X) is generated by yF1 , . . . , y
F
n .

In contrast to complex line bundles, the tensor product of two quaternionic line

bundles is not itself quaternionic, as we discussed earlier in this section. To take ac-

count of this, we now make our first serious deviation from mimicking the programme

of Section 2.5. Rather than working with a tensor product bundle χ
a(1)
1 ⊗ · · · ⊗ χa(n)

n

for integers a(i), we must choose only one of the bundles, χi say, from χ1, . . . , χn.

Now we are able to form χ
[a(i)]
i , where a(i) is (2r + 1)2, for some r ∈ Z, or a(i) = 0,

as prescribed by Proposition 6.1.4.
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We now make l choices of bundles χi1 , . . . , χil from χ1, . . . , χn, allowing the possi-

bility of choosing any of the bundles more than once, and define a direct sum bundle

χ := χ
[a(1)]
i1
⊕ · · · ⊕ χ[a(l)]

il
, (6.1.7)

This bundle will play the role of (2.5.3) in our quaternionic setting.

Given our 4-generated space X, which carries the n quaternionic line bundles χi,

for 1 ≤ i ≤ n, let Y denote the total space of the HP l-bundle HP (χ⊕H) over X.

Lemma 6.1.8. The F∗-module F ∗(Y+) is a free module over F ∗(X+), generated by

1, yFn+1, (y
F
n+1)

2, . . . , (yFn+1)
ln+1, where yFn+1 is an element of F 4(Y+). A single relation

(yFn+1)(y
F
n+1 − pF1 (χ

[a(1)]
i1

)) . . . (yFn+1 − pF1 (χ
[a(l)]
il

)) = 0,

describes the multiplicative structure.

Proof. We need only note that the Leray-Hirsch Theorem (2.5.1) holds for a quater-

nionic oriented cohomology theory. Then the proof of Lemma 2.5.4, with obvious

adjustments to take account of the quaternionic setting, will suffice.

Lemma 6.1.8 implies that Y itself is 4-generated with 4-rank n+ 1.

Taking a nonzero vector in the H summand yields a section ω for the bundle

π : Y → X. As in the complex case, the space obtained by the quotient of Y by the

image of ω is homeomorphic to the Thom complex T (χ) of χ. Label the quotient

map by ϑ. The section ω has left inverse π and so the induced cohomology sequence

F ∗(X)
ω∗←− F ∗(Y )

ϑ∗←− F ∗(T (χ)), (6.1.9)

is split by π∗, thus ensuring it is short exact.

We record here a particular case of Lemma 6.1.8, which we will call upon in

Chapter 7.

Example 6.1.10. Let X = HP∞ and choose χ to be ξ1, the universal quaternionic

line bundle over HP∞. It follows that T (ξ1) ∼= HP∞. Therefore Y is the projectivi-

sation HP (ξ1 ⊕ H), and it is straightforward to extend Segal’s reasoning [51, page

45] to the quaternionic case to show that Y is homotopy equivalent to HP∞ ∨HP∞.
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We have that F ∗(Y+) is a free module over F ∗(HP∞
+ ) ∼= F∗[[x]], generated by 1 and

y ∈ F 4(Y+), with (y)2 = xy, and simplifying the cohomology relation to y = x

illustrates the homotopy equivalence between Y and HP∞ ∨HP∞.

Note that the first quaternionic Pontryagin class pF1 ∈ F 4(HP∞) induces a canon-

ical Thom class tF ∈ F 4(T (ξ1)), and so we have a Thom isomorphism F ∗−4(X+) ∼=

F ∗(T (ξ1)). This allows us to view y as the pullback ϑ∗tF .

As in the complex case, products of the form π∗(x)yFn+1 may be written as ϑ∗(xtF ),

for any x ∈ F ∗(X).

6.2 Constructing the towers

Having established the fundamentals, we are able to define quaternionic towers using

a construction analogous to that of the Dobrinskaya towers of Section 4.4. Following

this, we calculate the F -cohomology ring for each stage in the tower and consider

their stably quaternionic structures.

Suppose we are given a sequence of nonnegative integers (l1, . . . , ln), to which we

associate a bundle list (j(l1), . . . , j(ln)), where j(li) is an li-vector (ji,1, . . . , ji,li) with

entries taken from the set {1, . . . , i− 1}. Note that we allow repetition of choices, so

that if, say l3 = 5, then (1, 1, 2, 1, 1) or (2, 1, 2, 1, 2) are both valid examples of the

vector j(l3). The quaternionic Dobrinskaya tower will be constructed inductively:

the (k − 1)th stage carries k − 1 quaternionic line bundles, and we will choose lk of

them to construct the kth stage. The vector (j(lk)) records the chosen bundles.

Furthermore, to (l1, . . . , ln) we associate a quaternionic list (a1(l2), . . . , an−1(ln))

of li-vectors

ai−1(li) = (a(i, 1), . . . , a(i, li)), (6.2.1)

with entries a(i, j) = (2r + 1)2, for some r ∈ Z, or a(i, j) = 0.

For the inductive construction of the tower, assume we have already built the

(k−1)th stage QTk−1 as a smooth 4(l1+ · · ·+lk−1)-dimensional manifold, 4-generated

by yHi and carrying quaternionic line bundles χi, such that pH1 (χi) = yHi , for 1 ≤ i ≤
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k − 1. Define the ith bundle of the construction to be

χ(ai−1) := χ
[a(i,1)]
ji,1

⊕ · · · ⊕ χ[a(i,li)]
ji,li

. (6.2.2)

Then QTk is defined to be the total space of HP (χ(ak−1)⊕H), the projectivisation

of the direct sum of χ(ak−1) and a trivial quaternionic line bundle H.

We define QT0 to be the space consisting of a single point so that the first bundle

is trivial, then the next stage QT1 is HP l1 . Lemma 6.1.8 implies that QTk has 4-

generators yHi for 1 ≤ i ≤ k, where yHk is the first Pontryagin class pH1 (χk) of the

canonical line bundle χk over QTk.

Definition 6.2.3. Given the nonnegative integers (l1, . . . , ln), the sequence of man-

ifolds (QTk : k ≤ n), arising from a bundle list (j(l1), . . . , j(ln)) and a quaternionic

list (a1(l2), . . . , an−1(ln)), is a quaternionic tower of height n (which may be infinite).

The individual manifold QTk is known as the kth stage of the tower, for 1 ≤ k ≤ n.

As a consequence of the discussion that followed Lemma 6.1.8, we have projec-

tions πk : QTk → QTk−1, sections ωk : QTk−1 → QTk and quotient maps ϑk : QTk →

T (χ(ak−1)).

From our preliminary investigation of 4-generated projective bundles, we can de-

termine the F -cohomology ring of any stage QTk.

Proposition 6.2.4. For any quaternionic oriented ring spectrum F , the F∗-algebra

F ∗(QTk+) is isomorphic to

F∗[y
F
1 , . . . , y

F
k ]/Lk

where Lk is the ideal

((yFi )(yFi − pF1 (χ
[a(i,1)]
ji,1

)) . . . (yFi − pF1 (χ
[a(i,li)]
ji,li

)) : 1 ≤ i ≤ k). (6.2.5)

Proof. The result follows from k − 1 applications of Lemma 6.1.8.

Note further that when a(i, j) = 0 for all 1 ≤ j ≤ li, so that QTi ∼= HP li , we

recover from (6.2.5) the usual relation (yFi )li+1 = 0, on F ∗(QTi+) ∼= F ∗(HP li
+).

In general, each stage QTk in a quaternionic tower does not carry a stably quater-

nionic structure. Essentially this is because each QTk is a HP lk-bundle over QTk−1,
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and HP lk does not have a stably quaternionic structure when lk 6= 1. This is due to

the fact (see e.g. [26, Theorem 1.1]) that its tangent bundle admits an isomorphism

τ(HP l1)⊕ (ξ1 ⊗H ξ1)
∼= ξ1 ⊕ · · · ⊕ ξ1 ∼= (lk + 1)ξ1, (6.2.6)

and ξ1 ⊗H ξ1 is not quaternionic. In the exceptional case when lk = 1, Proposition

2.3.7 implies that HP 1 carries a trivial stably quaternionic structure, and there is an

isomorphism ξ1⊗H ξ1
∼= ξ1⊕ ξ1 of real bundles over HP 1 (for more details see [3] and

[26]). In the following section, we pay particular attention to this exceptional case,

to define quaternionic towers in which each stage does carry a stably quaternionic

structure.

6.3 Special cases

In this section we concentrate on two particular subfamilies of quaternionic tower.

We begin by defining the quaternionic analogue of a Bott tower, and describe a

quaternionic structure on the stable tangent bundle of each stage. Then we specialise

further to define a bounded quaternionic flag manifold.

Suppose we have a quaternionic tower (QTk : k ≤ n), arising from the sequence

of integers (l1, . . . , ln), as in Definition 6.2.3.

Definition 6.3.1. A quaternionic Bott tower of height n is a quaternionic tower in

which li = 1 for all 1 ≤ i ≤ n.

To distinguish the quaternionic Bott tower, we will denote the kth stage by Qk.

Again for convenience we set Q0 to be the one-point space, while Q1 is HP 1. When

a(2, 1) = 0, the second stage Q2 = HP (χ
[a(2,1)]
j2,1

⊕ H) takes the form HP 1 × HP 1,

while for a(2, 1) = 1 we can interpret Q2 as HP 2# HP 2
, that is, a connected sum of

quaternionic projective planes with opposite orientations.

Remark 6.3.2. Unlike the situation for Bott towers, which we documented in Section

4.5, the isomorphism class of the direct sum bundle χ
[a(2,1)]
j2,1

⊕H does not depend only

on the parity of a(2, 1). Therefore unless a(2, 1) = 0 or 1, we cannot necessarily view

Q2 as either HP 1 ×HP 1 or HP 2# HP 2
.
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At the close of Section 6.2, we saw that HP 1 carries a stably quaternionic struc-

ture. This fact is especially relevant for the quaternionic Bott tower since each stage

Qk = HP (χ
[a(k,1)]
jk,1

⊕ H) is an HP 1-bundle over Qk−1. Since HP 1 is homeomorphic

to the 4-sphere S4, we may equally consider the kth stage of the tower as the total

space of a 4-sphere bundle S(χ
a(k,1)
jk,1

⊕R). We prefer this viewpoint because it allows

us to easily describe a stably quaternionic structure on Qk.

Proposition 6.3.3. The tangent bundle of Qk admits an isomorphism

τ(Qk)⊕ R ∼= R⊕

(
k⊕
i=1

χ(ai)

)
, (6.3.4)

where χ(ai) = χ
[a(i,1)]
ji,1

. The isomorphism determines a bounding stably quaternionic

structure on Qk.

Proof. The isomorphism follows from Proposition 2.3.7. The structure bounds since

it extends to the 5-disc bundle D(χ
[a(k,1)]
jk,1

⊕ R).

We also have the quaternionic analogue of Civan and Ray’s result [12, Proposition

3.3], which gives a decomposition of the suspension ΣQk as a wedge of suspensions

of Thom complexes.

Proposition 6.3.5. Given a quaternionic Bott tower (Qk : k ≤ n), there is a homo-

topy equivalence

hk : ΣQk → ΣS4 ∨ ΣT (χ(a1)) ∨ · · · ∨ ΣT (χ(ak−1)), (6.3.6)

for each 1 ≤ k ≤ n.

Proof. First consider the map hi : ΣQi → ΣQi−1 ∨ ΣT (χ(ai−1)), given by the sum

Σπi + Σϑi. Now for the homotopy inverse, take the cofibre sequence

Qi = S(χ(ai−1)⊕ R)
πi−→ Qi−1

ιi−→ T (χ(ai−1)⊕ R)
%i−→ ΣQi −→ . . . ,

in which ιi is the inclusion of the zero section, and the map %i collapses this copy of

Qi−1 in T (χ(ai)⊕R). Since T (χ(ai)⊕R) ∼= ΣT (χ(ai)) [27, Corollary 15.1.6], and the

section ωi is π−1
i , our inverse is given by Σωi ∨ %i.

Having established the homotopy equivalence hi, a simple inductive argument,

with the base case k = 1 provided by taking T (χ(a0)) = S4, completes the proof.
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We can interpret this result in terms of the F -cohomology of Qk, again following

the lead of Civan and Ray. From Proposition 6.2.4, we have that F 4i(Qk
+) is the

F∗-module generated by monomials
∏

R y
F
i , for subsets R ⊆ {1, . . . , k} of cardinality

i. The homotopy equivalence hk induces an isomorphism in F -cohomology, which

desuspends to give an additive splitting of the F∗-module F ∗(Qk) as

F ∗(Qk) ∼=
〈
yF≤1

〉
⊕ · · · ⊕

〈
yF≤k
〉
, (6.3.7)

where
〈
yF≤i
〉

denotes the free F∗-submodule of F ∗(Qk), generated by monomials
∏

R y
F
i

with R ⊆ {1, . . . , i} and i ∈ R.

We can specialise further to define a subfamily of quaternionic Bott towers.

Definition 6.3.8. Consider the quaternionic Bott tower (Qk : k ≤ n) arising from

a bundle list (j(l1), . . . , j(ln)), in which each j(li) = (i − 1), and a quaternionic list

(a1(l2), . . . , an−1(ln)), in which each ai−1(li) = (1) for all i. Then each stage Qk is a

bounded quaternionic flag manifold.

The bounded quaternionic flag manifold Qn is the space of all bounded quater-

nionic flags V in Hn+1; that is, the set of all sequences V = {V1 ⊂ V2 ⊂ · · · ⊂ Vn ⊂

Vn+1 = Hn+1}, in which Vi contains the coordinate subspace Hi−1 spanned by the

first i − 1 standard basis vectors of Hn+1, for 2 ≤ i ≤ n. In our construction, these

manifolds are of the form Qk = HP (χk−1 ⊕ H), or equivalently S(χk−1 ⊕ R). As in

the complex case, Ray [47] studied such manifolds in cobordism theory, and the final

chapter of our thesis will be concerned with extending this work.

6.4 Quaternionic quasitoric manifolds

Each stage in a Dobrinskaya tower can be realised as a quasitoric manifold, therefore

it is natural to try to construct each stage QTk of our quaternionic tower as a quater-

nionic analogue of a quasitoric manifold. The possibility of such a construction is the

subject of this final section. We want to take the fundamental ideas of toric topol-

ogy, as outlined in Chapter 3, and explore to what extent we are able to formulate a
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quaternionic analogue of the theory. In conclusion, we briefly survey other authors’

approaches to quaternionic toric topology.

The unit sphere in the quaternions is the 3-sphere S3. Though S3 is not commu-

tative, we would like the quaternionic n-torus (S3)n to play the role of the n-torus

T n in our construction of a quaternionic theory of toric topology. Coordinatewise

left multiplication of (S3)n on Hn is called the standard representation of (S3)n and

a 4n-dimensional manifold M4n with an action of (S3)n is termed an (S3)n-manifold.

Then we have the notion of an (S3)n -action on M4n being locally isomorphic to the

standard representation in the obvious manner, similar to Definition 3.1.1.

Complex projective space CP n, viewed as a quasitoric manifold over the n-simplex

∆n, is one of the fundamental constructions in toric topology. Before we consider

the more complicated case of a quaternionic tower, let us construct quaternionic

projective space HP n by analogy with Example 3.2.12.

Example 6.4.1. In place of the moment angle complex Z∆n = S2n+1 we will take

the (4n+3)-sphere S4n+3; such a choice will be valid if the orbit space of S4n+3 under

the standard left action of (S3)n+1 is the n-simplex ∆n.

Let us consider the case when n = 2. We view S11 as the set {(a1, a2, a3) ∈

H3 : |a1|2 + |a2|2 + |a3|2 = 1}, and a point in (S3)3 is denoted by (v1, v2, v3). Our

quaternionic torus (S3)3 acts freely on the left of S11 by coordinatewise multiplica-

tion. Then the orbit of a point (a1, a2, a3) under this action of (S3)3 is given by

{(v1a1, v2a2, v3a3) : vi ∈ S3}, which we can rewrite as{(
v1a1|a1|
|a1|

,
v2a2|a2|
|a2|

,
v3a3|a3|
|a3|

)}
= {(v′1, v′2, v′3) · (|a1|, |a2|, |a3|) : v′i ∈ S3},

where v′i = viai/|ai|. So the orbit space of S11 under the free action of (S3)3 is

homeomorphic to the space of points (b1, b2, b3) ∈ R3, where bi = |ai|. Now, since

bi ≥ 0 and b1+b2+b3 = 1, we have that {(b1, b2, b3)} is exactly ∆2 as in the description

(3.1.7).

In a similar manner, if we define a diagonal subgroup DH to be {v, v, v} < (S3)3,

the orbit space of S11 under the action of DH can be seen to be HP 2.
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It is straightforward to generalise these arguments to show that we can view both

HP n, and the associated polytope ∆n, as quotients of S4n+3 by appropriate actions

of DH < (S3)n+1 and (S3)n+1 respectively.

Now we can turn to the quaternionic tower. Continuing our analogy with the

complex scenario, the polytope associated with QTk is the product of simplices ∆l1×

· · · × ∆lk , which we earlier denoted by PL, where L = l1 + · · · + lk. Following

Example 6.4.1, we replace the moment angle complex ZPL = S2l1+1× · · · ×S2lk+1 by

S4l1+3 × · · · × S4lk+3, which we denote by QPL .

As with the Dobrinskaya tower, we would like to realise each stage QTk of the

quaternionic tower as a quotient of QPL by the action of a group of the form

{(v1, . . . , v1, v
−a(1,1)
j1,1

v2, . . . , v
−a(1,l1)
j1,l1

v2, . . . , v
−a(i,1)
ji,1

vi, . . . , v
−a(i,li)
ji,li

vi, . . .

. . . , v
−a(k,1)
jk,1

vk, . . . , v
−a(k,lk)
jk,lk

vk, v
−1
1 , . . . , v−1

k ) : vj ∈ S3, 1 ≤ j ≤ k} < (S3)L+k.

However, due to the noncommutativity of the quaternions the above subspace does

not form a group under multiplication, unless a(i, j) = 0 for all i, j. In light of

Example 6.4.1, it is easy to see that this exceptional case corresponds to a tower in

which each stage QTi is the product

HP l1 × · · · ×HP li .

Otherwise, without a suitable group to act on QPL , we cannot continue to mimic the

quasitoric manifold construction of the Dobrinskaya tower for our quaternionic case.

A näıve transfer of the ideas of Chapter 3 to the realm of the quaternions therefore

fails. We now consider two alternative approaches, giving a brief outline of each, and

explaining the implications for our goal of realising QTk as a quaternionic analogue

of a quasitoric manifold.

Mazaud [35] [36] studies closed, orientable 8-dimensional manifolds M8, which

are equipped with an action of S3 × S3, and whose orbit space M2 is a surface with

boundary. Assume that the interior of the orbit space consists entirely of free orbits,

while points of M8 with nontrivial isotropy subgroups occur over the boundary of M2.

In this situation Mazaud obtains a complete equivariant classification of (S3 × S3)-

actions on such manifolds M8.
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If M2 is viewed as a 2-dimensional polytope P 2, such that fixed points under

the (S3 × S3)-action project to the vertices of P 2 and points with 3-dimensional

isotropy subgroups project to the facets of P 2, then M8 is a quaternionic analogue

of a quasitoric manifold. Mazaud identifies the manifolds that arise in precisely this

situation, and he views them, in similar fashion to construction (3.2.10), as

S3 × S3 × P 2/ ∼, (6.4.2)

where the identification ∼ depends on the isotropy subgroups of the (S3×S3)-action.

We record here some possible examples of M8.

Example 6.4.3. [35, Examples 2.4]

(i) When P 2 is the 2-simplex ∆2, the manifold M8 is either HP 2 or HP 2
, that is,

quaternionic projective planes with opposite orientations.

(ii) When P 2 is the square I2, the manifold M8 is either S4 × S4 or the connected

sum HP 2#HP 2
.

(iii) In general, for polytopes P 2 with 4 or more vertices, M8 is a connected sum of

copies of S4 × S4 or a connected sum of copies of HP 2 and HP 2
.

As we saw in Section 6.3, the manifolds S4 × S4 and HP 2#HP 2
are the second

stage of a Bott tower Q2 = HP (χ
[a(2,1)]
j2,1

⊕ H), when a(1, 2) = 0 and 1, respectively.

However, as Remark 6.3.2 indicates, it is unclear how to represent any other Q2 with

a(1, 2) 6= 0, 1 in the form (6.4.2). Nevertheless, Example 6.4.3 does show that some

special cases of our quaternionic towers can be viewed as a quaternionic analogue of

a quasitoric manifold.

Remark 6.4.4. Notice that since χj2,1 = χ1, the connected sum HP 2#HP 2
is in fact

the bounded quaternionic flag manifold HP (χ1 ⊕ H). Since a sequence of bounded

quaternionic flag manifolds is the simplest nontrivial quaternionic tower, extending

Mazaud’s analysis to higher dimensions to include HP (χk⊕H), for k > 1, would be a

good starting point for any further investigations. Unfortunately, such an extension

does not follow in any obvious manner from the results of [35] and [36].
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A second approach to a quaternionic version of toric topology is due to Scott [50],

who constructs spaces M called quaternionic toric varieties, which are inspired by

Davis and Januskiewicz’s quasitoric manifolds. They are of the form

(S3)n × P n/ ∼, (6.4.5)

where P n is a simple polytope, and the equivalence relation, which is distinct from

that of construction (6.4.2), depends on certain self-diffeomorphisms of (S3)n. This

identification does not always preserve the left (S3)n-action on (S3)n × P n due to

the noncommutativity of the unit quaternions S3. However, every unit quaternion

u gives rise to an inner automorphism on S3, given by au : v 7→ uvu−1, for v ∈ S3.

Since we have au = a−u, the group of such inner automorphisms on S3 is exactly

SO(3). Therefore, in general Scott’s spaces do not have a full (S3)n-action, but only

a diagonal action of SO(3), given by u · [v1, . . . , vn, p] 7→ [uv1u
−1, . . . , uvnu

−1, p], for

u ∈ SO(3) and [v1, . . . , vn, p] ∈M (see [50, Property 2.3]).

Though the methods of Mazaud and Scott are closely related to those of toric

topology, we are no closer to constructing each stage QTk of a quaternionic tower

as a quaternionic analogue of a quasitoric manifold. Aside from trivial cases, we

were only able to represent Q2 = HP (χ1 ⊕H) in the form (6.4.2), but only because

we knew beforehand that this Q2 was homeomorphic to HP 2#HP 2
. In general,

even if we were able to define some QT ′
k as an (S3)L-manifold using an identification

of the form (6.4.2) (or as a quaternionic toric variety with an SO(3)-action using

(6.4.5)), it is unclear how we would prove that this manifold is diffeomorphic to QTk.

Simply modifying the proof of Proposition 4.4.6 to take account of the quaternions

is inadequate, since this relies on viewing QTk as a quotient of QPL , and as we

discovered above, such an approach is unavailable to us.

Clearly there is scope to further develop the ideas discussed in this section, perhaps

starting with the suggestion of Remark 6.4.4. We emphasise that while our attempt

to mimic the programme of Chapters 3 and 4 to construct a quaternionic analogue

of a quasitoric manifold failed, we do not rule out the possibility that our manifolds

QTk could yet fit into the schemes developed by Mazaud and Scott.



Chapter 7

Quaternionic towers and

cobordism theory

Quaternionic towers play an important part in the search for geometrical representa-

tives of elements in the quaternionic cobordism ring MSp∗. Ray [47] utilised the sub-

family of bounded quaternionic flag manifolds to help describe the torsion elements

ϕm ∈ MSp8m−3, and he claimed that a collection of simply connected manifolds

Y 4n+1, which are related to the Dobrinskaya towers, could also serve as representa-

tives for ϕm.

In this chapter we will verify Ray’s conjecture by constructing the manifolds Y 4n+1

and proving that they can indeed represent ϕm, when n = 2m − 1. We achieve this

by applying the machinery of Ray, Switzer and Taylor [48], which evaluates all the

possible stably quaternionic structures on our manifolds by computing the image

Ψ(Y 4n+1) of the map Ψg : SO/Sp
0(Y 4n+1

+ ) −→ MSp4n+1, which we introduced in

Section 2.3.4.

We begin with some preliminaries on quaternionic cobordism, defining the tor-

sion elements ϕm and obtaining their original geometrical representatives. In the

next section we consider the geometry of the manifolds Y 4n+1 and calculate their

F -cohomology rings, for any quaternionic oriented ring spectrum F . The remainder

of the chapter is devoted to computing Ψ(Y 4n+1), beginning with descriptions of the

99
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groups U/Sp0(Y 4n+1) and SO/Sp0(Y 4n+1). This allows us to determine the associ-

ated units of Y 4n+1 in the following section. Then we obtain fundamental classes in

MSp∗(Y
4n+1), which leads finally to our calculation of Ψ(Y 4n+1).

Throughout this chapter F will be a quaternionic oriented ring spectrum, but note

that in order to simplify our presentation, when the context is clear we frequently

drop the superscript F from our notation for characteristic classes and F -cohomology

generators.

7.1 Torsion in MSp∗

In this section we consider the role of a particular subfamily of quaternionic tower

in MSp∗. We state some well-known results in quaternionic cobordism theory and

give the various definitions that we will need for our work in the remainder of this

chapter. Our main objective is to define the torsion elements ϕm, and study Ray’s

original geometrical representatives.

In Definition 6.3.8 we described a quaternionic tower in which each stage Qk =

HP (χk−1 ⊕H) was a bounded quaternionic flag manifold, carrying quaternionic line

bundles χ0, . . . , χk. Since HP 1 ∼= S4, we may equally view Qk as a 4-sphere bundle

S(χk−1 ⊕ R) over Qk−1.

Applying Proposition 6.3.3 in the case of Qk, we obtain an isomorphism

τ(Qk)⊕ R ∼= R⊕

(
k−1⊕
i=0

χi

)
. (7.1.1)

To describe νs(Qk), the stable normal bundle of Qk, we introduce a quaternionic

bundle χ⊥k over Qk, which satisfies

χk−1 ⊕H ∼= χ⊥k ⊕ χk.

Over each point l ∈ Qk, which is a quaternionic line in χk−1 ⊕ H, the orthogonal

compliment l⊥ in χk−1 ⊕ H is taken as the fibre of χ⊥k ; in fact, we can pull back

similarly defined orthogonal bundles from each lower stage Qi to define χ⊥i over Qk,

such that

χi−1 ⊕H ∼= χ⊥i ⊕ χi,
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for i = 1, . . . , k−1. By [47, Proposition 1.4], this allows us to describe an isomorphism

on νs(Qk), the stable normal bundle of Qk, which is given by

νs(Qk) ∼=
k−1⊕
i=1

(k − i)χ⊥i . (7.1.2)

The following properties of BSp, the classifying space of the infinite symplectic

group Sp, are well-known (see e.g. [56, (16.34)]).

The quaternionic cobordism ring of BSp is isomorphic to the algebra of formal

power series

MSp∗(BSp+) ∼= MSp∗[[p1, p2, . . . ]], (7.1.3)

generated by the universal Pontryagin classes pi = pi(ξ) ∈MSp4i(BSp+), for i ≥ 1.

We now introduce a particular collection of elements in MSp∗(BSp), which will

be useful throughout this chapter. To begin, suppose we have a Hopf algebra H,

equipped with a coproduct f : H → H ⊗H.

Definition 7.1.4. An element x of a Hopf algebraH is primitive if f(x) = x⊗1+1⊗x.

Primitive elements are important, for if a Hopf algebra H is generated as an

algebra by a collection of such elements, then the coproduct f is uniquely determined

by the product H ⊗H → H.

Since BSp is a loop space, it has an H-space structure, and so MSp∗(BSp)

is a Hopf algebra (see e.g. [22, Section 3C]). The coproduct f : MSp∗(BSp) →

MSp∗(BSp)⊗MSp∗(BSp) is induced by the Whitney sum operation on quaternionic

bundles. In [42] the collection of primitive elements of MSp∗(BSp) is described as

having one additive generator Pi ∈MSp4i(BSp) for all i. To express these generators

as polynomials in quaternionic Pontryagin classes pi ∈ MSp4i(BSp), with P1 = p1,

we have an inductive formula

Pi =
i−1∑
j=1

(−1)j+1pjPi−j + (−1)i+1ipi. (7.1.5)
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In low dimensions this yields

P1 = p1,

P2 = p2
1 − 2p2,

P3 = p3
1 − 3p1p2 + 3p3,

P4 = p4
1 − 4p2

1p2 + 2p2
2 + 4p1p3 − 4p4.

In this chapter we often work with quaternionic line bundles. If θ denotes a

quaternionic line bundle over a space X, then θ is classified by a map X → HP∞.

Restricting (7.1.3) to BSp(1) ∼= HP∞, we have that the quaternionic cobordism ring

of HP∞ is isomorphic to the algebra of formal power series

MSp∗(HP∞
+ ) ∼= MSp∗[[p1]],

generated by the first universal Pontryagin class p1 = p1(ξ1) ∈ MSp4(HP∞
+ ). The

dual quaternionic bordism module MSp∗(HP∞
+ ) is described as follows.

Proposition 7.1.6. [56, (16.34)] The free MSp∗-module MSp∗(HP∞
+ ) is generated

by q0, q1, q2, . . . , where qk ∈MSp4k(HP∞
+ ), and q0 = 1 ∈MSp0(HP∞

+ ).

The usual properties of duality imply that the cap product of qn in MSp4n(HP∞
+ )

with the first universal quaternionic Pontryagin class p1 gives

p1 _ qn = qn−1, for n = 1, 2, . . . , (7.1.7)

so that pi1 ∈MSp4i(HP∞
+ ) is dual to qi ∈MSp4i(HP∞

+ ), for all i.

The bounded quaternionic flag manifolds Qk now come to prominence as geomet-

rical representatives for the generators of MSp∗(HP∞).

Proposition 7.1.8. [47, Proposition 2.2] The generators qk ∈ MSp4k(HP∞) are

represented by the manifolds

χk : Qk −→ HP∞, (7.1.9)

where χk is the classifying map of the canonical quaternionic line bundle χk over Qk.
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Proposition 7.1.8 will allow us to fabricate geometrical representatives for the

torsion elements ϕm in MSp8m−3.

First we must define the ϕm. Let gFn ∈ F n(Sn) be a generator of the cohomology

ring F ∗(Sn), and take η to be the real Hopf line bundle over S1. The tensor product of

η with the universal quaternionic line bundle ξ1 over HP∞, yields a new quaternionic

bundle η ⊗R ξ1 over S1 ×HP∞.

Given the isomorphism

MSp∗(S1 ×HP∞) ∼= MSp∗[[p1, g1]]/g
2
1, (7.1.10)

we can expand p1(η ⊗R ξ1) ∈MSp4(S1 ×HP∞) to give

p1(η ⊗R ξ1) = p1 +
∑
k>0

g1θkp
k
1, (7.1.11)

where θk ∈MSp4k−3 for k = 1, 2, . . . .

The element θ1, represented by the circle with suitable stably quaternionic struc-

ture, generates MSp1 [44, Lemma 4.1]; Roush [49] proved that θ2k+1 = 0, for k > 0.

We follow the notational convention of relabelling the remaining θ2k ∈ MSp8k−3

as ϕk, for k = 1, 2, . . . . These elements were first described by Ray [42], who proved

that they are multiplicatively indecomposable and generate part of the 2-torsion in

MSp∗.

Later Ray utilised the bounded quaternionic flag manifolds to manufacture geo-

metrical representatives for ϕn.

Proposition 7.1.12. [47, Proposition 4.2] The torsion element ϕn ∈MSp8n−3 can be

represented geometrically by S1×Q2n−1, with a suitable stably quaternionic structure.

Proof. For notational convenience we will often denote S1 ×Qk by W 4k+1.

Using the expansion (7.1.11), and the duality property (7.1.7) of the elements

qk ∈MSp4k(HP∞
+ ) we have

ϕn = 〈p1(η ⊗R ξ1), h1 ⊗ q2n〉 , (7.1.13)

where h1 ∈MSp1(S
1) denotes the dual generator to g1, and 〈−,−〉 is the Kronecker

product for MSp.
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We represent h1 ⊗ q2n by f2n : S1 × Q2n → HP 2n, where f2n is the classifying

map for the quaternionic bundle η⊗R χ2n, and we obtain ϕn by making the map f2n

transverse to the inclusion HP 2n−1 → HP 2n.

The transversality construction yields the following diagram

W 8n−3 j - W 8n+1

HP 2n−1

f2n−1

?
i- HP 2n,

f2n

?

(7.1.14)

where i is inclusion into the first 2n homogeneous coordinates of HP 2n, and j embeds

Q2n−1 in Q2n = HP (χ2n−1 ⊕H) as the subspace of quaternionic lines in χ2n−1.

Now we describe the normal and tangent bundles of W 8n−3. Diagram (7.1.14)

gives rise to an isomorphism

νs(W 8n−3) ∼= ν(j)⊕ j∗νs(W 8n+1). (7.1.15)

The normal to the embedding i satisfies ν(i) ∼= ξ1, where ξ1 is the canonical quater-

nionic line bundle over HP 2n−1, and pulling back ξ1 along f2n−1, we attain ν(j) ∼=

η ⊗R χ2n−1.

Coupling the description of the stable normal bundle of Q2n (7.1.2) with the

isomorphism (7.1.15) yields

νs(W 8n−3) ∼= (η ⊗R χ2n−1)⊕

(
R⊗R

(
2n−1⊕
k=1

(2n− k)χ⊥k

))
,

determining a stably quaternionic structure on W 8n−3.

In a similar manner, there is an isomorphism between the stable tangent bundle

of W 8n−3 and a direct sum of quaternionic bundles, given by

τ s(W 8n−3) ∼= (η ⊗R χ2n−1)⊕

(
R⊗R

(
2n−1⊕
k=0

χk

))
. (7.1.16)

7.2 The manifolds Y 4n+1

We have established that S1×Q2n−1, equipped with a particular stably quaternionic

structure, is a geometrical representative for ϕn ∈ MSp8n−3. Now consider the
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following conjecture of Ray.

Conjecture 7.2.1. [47] A simply-connected geometrical representative for ϕn may

be constructed by choosing a suitable stably quaternionic structure on the S5-bundle

S(χ2n−2 ⊕ R2) over Q2n−2.

We will denote the S5-bundle S(χn−1 ⊕R2) over Qn−1 by Y 4n+1, with projection

πn : Y 4n+1 → Qn−1.

The remainder of our thesis is devoted to studying all the possible stably quater-

nionic structures on Y 4n+1 by computing the image Ψ(Y 4n+1). Consequently, we

will prove Conjecture 7.2.1. As a first step towards this goal, in this section we

study the geometry of the manifolds Y 4n+1, which allows us to then determine their

F -cohomology rings.

From the discussion that followed Lemma 6.1.8, it should be clear that a choice of

nonzero vector in the R2 summand of χn⊕R2 gives a section ωn : Qn−1 → Y 4n+1, while

ϑn : Y 4n+1 → T (χn ⊕ R) is the usual quotient map. Then we have a commutative

diagram

Qn−1 ωn - Y 4n+1 ϑn- T (χn−1 ⊕ R)

∗

6

- S5

ι

6

1 - S5,

ι

6

(7.2.2)

in which ι is inclusion of fibres and 1 is the identity map.

Proposition 7.2.3. There is an isomorphism

τ(Y 4n+1)⊕ R ∼= R2 ⊕

(
n−1⊕
i=1

χi

)
, (7.2.4)

which determines a bounding stably quaternionic structure on Y 4n+1.

Proof. There is a stably quaternionic structure on the base space Qn−1 of the S5-

bundle Y 4n+1 → Qn−1, which arises from the isomorphism (7.1.1). Therefore we can

apply Proposition 2.3.7 to get the required isomorphism on τ(Y 4n+1)⊕R, which ex-

tends to the 6-disc bundle in the usual manner, to give a bounding stably quaternionic

structure on Y 4n+1.
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We denote the resulting stably quaternionic structure by s, so that the cobordism

class [Y 4n+1, s] equals zero in MSp4n+1. Similarly, we will take s′ to be the bounding

stably quaternionic structure on Qn given by the isomorphism (7.1.1). As explained

in [44, Lemma 4.1], a framing of the circle S1, given by an element of π1(O) ∼= Z/2,

leads to a stably quaternionic structure on S1. This is due to the fact that the 2-

skeleton of the MSp spectrum is simply the sphere spectrum. Then the generator

of π1(O) represents the nontrivial framing of S1 that generates θ1 ∈ MSp1, which

appeared in the expansion (7.1.11). On the other hand, the trivial framing of S1

gives rise to a trivial stably quaternionic structure on the circle, which we will denote

by t.

Lemma 7.2.5. There is a quaternionic bordism between [Y 4n+1, s] and [W 4n+1, t×s′]

in MSp∗.

Proof. The 6-disc bundle with total space D(χn−1 ⊕ R2) over Qn−1, contains the

subbundles whose total spaces are Y 4n+1 = S(χn−1 ⊕R2) and Qn = S(χn−1 ⊕R). It

will be convenient to assume that the 6-disc and 5-sphere fibres of D(χn−1⊕R2) and

Y 4n+1 respectively, have radius 2, and that the 4-sphere fibres of Qn have radius 1.

The tubular neighbourhood of the embedding of Qn in D(χn−1 ⊕ R2) is framed

by the outward pointing normal vector of Qn, and a choice of vector in the second R

summand of χn−1 ⊕ R2. Hence we have an embedding of D2 ×Qn in D(χn−1 ⊕ R2).

Therefore we can define

X4n+2 := D(χn−1 ⊕ R2)− (D2 ×Qn), (7.2.6)

and so X6 is simply D6 − (D2 × S4). Then we have that X4n+2 is the total space

of an X6-bundle over Qn−1. The boundary of X4n+2 is homeomorphic to a disjoint

union

∂X4n+2 ∼= (S1 ×Qn)q Y 4n+1, (7.2.7)

and so X4n+2 provides a bordism between Y 4n+1 and S1 ×Qn = W 4n+1.

Since X4n+2 is the total space of a disc bundle, an isomorphism of the form (2.3.9)

leads to a stably quaternionic structure s′′, which obviously restricts to s on Y 4n+1,
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since s also arose from an isomorphism of the form (2.3.9). It is also straightforward

to check that the restriction of s′′ to S1×Qn simply gives t×s′. It follows that X4n+2

provides a quaternionic bordism between [Y 4n+1, s] and [W 4n+1, t× s′].

We now construct a retraction map, which will prove useful throughout this chap-

ter.

Lemma 7.2.8. There exists a retraction rn : X4n+2 → Y 4n+1, whose restriction r′n =

rn|W 4n+1 is of degree 1.

Proof. Consider the bundle πn : D(χn−1 ⊕ R2) → Qn−1, and its subbundles Y 4n+1

and Qn, with fibres as described in the proof of Lemma 7.2.5. Define a section

ωn : Qn−1 → D(χn−1 ⊕ R2) by taking ωn(l) to be +1 in the first R summand of

χn−1 ⊕ R2, for each point l in Qn−1. Denote this first R summand by R1. Then

remove a 6-disc D6
ε of small radius ε centred on ωn(l) in each D6-fibre π−1

n (l).

When we form X4n+2 as in (7.2.7), our 6-discs D6
ε are removed from D(χn−1⊕R2)

as subspaces of D2 × Qn. Then in each X6-fibre of X4n+2 we can project radially

from the centre of D6
ε onto the 5-sphere fibres of Y 4n+1. This leads to a retraction

rn : X4n+2 → Y 4n+1, as the radial projection is clearly the identity on the 5-sphere

bundle Y 4n+1 itself.

In each fibre of the X6-bundle X4n+2, the radial projection from the centre of D6
ε

in the direction of the vector +1 ∈ R1 passes through the point w of S1 × S4 ∈ X6

that has the highest value in the R1 coordinate; eventually it meets the end point p of

the vector +2 ∈ R1, which lies on S5 ⊂ ∂X6. Therefore the restriction r′n = rn|W 4n+1

has degree 1 since by choosing the point p in each fibre of Y 4n+1, the inverse image

(r′n)
−1(p) consists of the single point w in each of the fibres of W 4n+1. Furthermore,

the restriction r′n preserves stably quaternionic structure (and thus orientation), since

by Lemma 7.2.5, the radial projection line joining the points w ∈ S1×S4 and p ∈ S5,

is in fact a stably quaternionic bordism between w and p in each fibre.

It is straightforward (see e.g. [48, Lemma 10.3]) to show that the retraction r′n
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gives rise to a homotopy commutative diagram

S1 × S4 1×ι - S1 ×Qn 1×ϑn - S1 × T (χn−1)

S5

r′1

?
ι - Y 4n+1

r′n

?
ϑn - S1 ∧ T (χn−1),

c

?

(7.2.9)

where c is the map which collapses onto the smash product, and ι is inclusion of

fibres.

We now devote our attention to determining the F -cohomology of our manifolds

Y 4n+1. To begin we restate Proposition 6.2.4 in the special case of a bounded quater-

nionic flag manifold.

Proposition 7.2.10. For a bounded quaternionic flag manifold Qn = S(χn−1 ⊕ R),

the F∗-algebra F
∗(Qn

+) is isomorphic to

F∗[y
F
1 , . . . , y

F
n ]/Ln (7.2.11)

where Ln is the ideal

((yFi )(yFi − yFi−1)) : 1 ≤ i ≤ n). (7.2.12)

By pulling back from the universal case of Example 6.1.10, we can view the

generator yFn as ϑ∗n(t
F
n ), where tFn is a Thom class in F 4(T (χn−1)).

Lemma 7.2.13. There is a virtual bundle λn ∈ KSp0(T (χn−1)) such that pF1 (λn) =

tFn .

Proof. From the discussion that followed Lemma 6.1.8 we have a split short exact

sequence

KSp0(Qn−1)
ω∗n←− KSp0(Qn)

ϑ∗n←− KSp0(T (χn−1)), (7.2.14)

and since ω∗n(χn) = 0, there must exist some λn ∈ KSp0(T (χn−1)) with ϑ∗n(λn) = χn.

Therefore ϑ∗np
F
1 (λn) = pF1 (χn) = yFn , and so pF1 (λn) = tFn as required.

As a consequence of the remarks following Example 6.1.10, by considering the

element tFn y
F
i1
. . . yFij ∈ F

4j+4(T (χn−1)), we have the following equations

ϑ∗n(t
F
n y

F
i1
. . . yFij ) = yFn π

∗
n(y

F
i1
. . . yFij ) = yFn y

F
i1
. . . yFij , (7.2.15)
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for any {i1, . . . , ij} ⊆ {1, . . . , n− 1}.

Now we consider Y 4n+1 over Qn−1. Let σ denote the suspension isomorphism

F ∗(T (χn−1))
σ→ F ∗(S1 ∧T (χn−1)) ∼= F ∗(S1)⊗F ∗(T (χn−1)), where the latter isomor-

phism is given by the Künneth isomorphism for F -cohomology (see e.g. [56, Theorem

13.75]). Since the Thom space T (χn−1 ⊕ R) is homeomorphic to S1 ∧ T (χn−1), the

isomorphism σ gives a Thom class gF1 ⊗ tFn = σtFn in F 5(T (χn−1 ⊕ R)), where gF1

generates F 1(S1).

We will write vFn ∈ F 5(Y 4n+1) for the pullback ϑ∗n(σt
F
n ) along ϑn : Y 4n+1 →

T (χn−1 ⊕ R).

Lemma 7.2.16. The element vFn restricts to a generator of F 5(S5) in each fibre.

Proof. By definition the Thom class tFn ∈ F 4(T (χn−1)) restricts to a generator of

F 4(S4) in a fibre. Therefore σtFn restricts in a fibre to a generator of F 5(S5), and the

result then follows from the commutative diagram (7.2.2).

This allows us to describe the F -cohomology of our manifolds Y 4n+1.

Proposition 7.2.17. The F∗-algebra F ∗(Y 4n+1
+ ) is a free module over F ∗(Qn−1

+ ),

generated by 1 in dimension 0 and vFn ∈ F 5(Y 4n+1
+ ). The multiplicative structure is

described by the single relation (vFn )2 = 0.

Proof. Given Lemma 7.2.16, the result follows from the Leray-Hirsch Theorem 2.5.1.

The relation is due to the fact that vFn is a pullback of a suspension σtFn , and suspen-

sion kills all cup products.

We conclude with a result that plays the role of [48, (11.13)] in our setting.

Lemma 7.2.18. In F 4j+5(Y 4n+1) we have that ϑ∗n(σt
F
n y

F
i1
. . . yFij ) = vFn y

F
i1
. . . yFij .

Proof. Referring to the commutative diagram (7.2.9), we have

r′n
∗
(vFn ) = r′n

∗
ϑ∗n(σt

F
n ) = (1× ϑn)∗c∗(σtFn ) = (1× ϑn)∗(gF1 ⊗ tFn ) ∈ F 5(S1 ×Qn).

By definition of yFn ∈ F 4(Qn), this implies r′n
∗(vFn ) = gF1 ⊗ yFn .
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Now consider the element tFn y
F
i1
. . . yFij ∈ F

4j+4(T (χn−1)), a similar string of equal-

ities leads to

r′n
∗
ϑ∗n(σt

F
n y

F
i1
. . . yFij ) = gF1 ⊗ yFn yFi1 . . . y

F
ij
. (7.2.19)

Now suppose that ϑ∗n(σt
F
n y

F
i1
. . . yFij ) = lvFn y

F
i1
. . . yFij , for some integer l. This would

give

r′n
∗
ϑ∗n(σt

F
n y

F
i1
. . . yFij ) = l(gF1 ⊗ yFn )(1⊗ yFi1 . . . y

F
ij
) = lgF1 ⊗ yFn yFi1 . . . y

F
ij
, (7.2.20)

and so, referring to equation (7.2.19), we have l = 1.

Note that since σtFn is itself a Thom class, the result of Lemma 7.2.18 also follows

by applying the usual properties of iterated bundle constructions, which are discussed

at the close of Section 6.1. However, we have presented the above reasoning to

illustrate some of the properties of the retraction r′n, which we will call upon in

Section 7.5.

7.3 Tangential structures

Suppose we have a manifold Mn, which carries a G-structure g on the stable tangent

bundle τ s(Mn). If G < H, this also induces a H-structure on Mn. Recall that in

Lemma 2.3.12, we described an element δ ∈ H/G0(Mn) as a homotopy class of G-

structure on the trivial H-bundle over Mn. Then we can change the G-structure on

Mn by adding this trivial H-bundle, equipped with G-structure δ, to τ s(Mn). We

denoted the resulting G-structure on Mn by g + δ. Note that since we only added a

trivial H-bundle to τ s(Mn), the H-structure on Mn is unchanged.

In this section we use our cohomology calculations to study U/Sp0(Y 4n+1), which

leads to a determination of SO/Sp0(Y 4n+1). In other words, we obtain a complete de-

scription of all possible changes of stably quaternionic structure on Y 4n+1, which, re-

spectively, leave the stably complex structure and orientation (that is, SO-structure)

on Y 4n+1 fixed. To aid our work with associated units in the next section, we then rep-

resent certain elements in U/Sp0(Y 4n+1) by constructing appropriate virtual bundles

in KSp0(Y 4n+1).
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For the lists of real K-theory generators that feature throughout this section, it

will be helpful to recall the description (2.2.8) of the coefficient ring KO∗. As we

remarked in the introduction, we will drop the superscript F from the notation for

our cohomology generators when it is clear which cohomology theory F ∗(−) we are

working with.

We commence with the computation of U/Sp0(−) for the bounded quaternionic

flag manifold Qn and the S5-bundles Y 4n+1. From Lemma 2.3.13, this reduces to

calculating KO−3(−) of our manifolds, so we can read off the following descriptions

of U/Sp0(−) from Propositions 7.2.10 and 7.2.17.

Theorem 7.3.1. The group of stably quaternionic structures on Qn, considered as a

fixed stably complex manifold, is given by an isomorphism

U/Sp0(Qn) = 0. (7.3.2)

The bounded quaternionic flag manifold Qn has the bounding stably quaternionic

structure s′ as given by Proposition 6.3.3. Therefore Theorem 7.3.1 implies that it

is impossible to change the stably quaternionic structure on Qn, keeping the stably

complex structure fixed, so that Qn does not bound in MSp∗.

Let R(j) denote a subset of length j from [n − 1] = {1, . . . , n − 1}, so that if

R(j) = {i1, . . . ij}, then yR(j) denotes the element yi1 . . . yij . We write P [n − 1] for

the power set of [n− 1].

Theorem 7.3.3. The group of stably quaternionic structures on Y 4n+1, considered

as a fixed stably complex manifold, is given by an isomorphism

U/Sp0(Y 4n+1) ∼=
⊕
2n−1

Z, (7.3.4)

on generators

{γvn, βγvnyR(1), γ
2vnyR(2), βγ

2vnyR(3), . . . , βγ
mvnyR(n−1) : R(j) ∈ P [n− 1]},

when n = 2m, and generators

{γvn, βγvnyR(1), γ
2vnyR(2), βγ

2vnyR(3), . . . , γ
m+1vnyR(n−1) : R(j) ∈ P [n− 1]},

when n = 2m+ 1.
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Proof. The total number of Z summands in U/Sp0(Y 4n+1) is equal to the cardinality

of the power set P [n− 1], namely
∑n−1

i=0

(
n−1
i

)
= 2n−1.

Remark 7.3.5. For simply connected manifolds X = Qn or Y 4n+1, we have that

SU/Sp0(X+) ∼= U/Sp0(X+). This follows from the fact that there is a deformation

retract rU of U onto SU (to prove this we can use an argument analogous to the

deformation retract of the group GL+(R) of invertible linear transformations of R∞,

with positive determinant, onto SO, as given by Hatcher [23, p. 26]). Any based map

f : X+ → U sends the basepoint of X+ to SU < U , so by composing with rU we have

a homotopy of f to a map X+ → SU . This then induces the required isomorphism

SU/Sp0(X+) ∼= U/Sp0(X+).

Now we wish to calculate SO/Sp0(−), which will describe the stably quaternionic

structures on Qn and Y 4n+1 when they are considered as manifolds with a fixed

orientation.

Consider the fibration SO → SO/Sp → BSp, which gives rise (see e.g. [15,

Theorem 6.42]) to the exact sequence

· · · → Sp0(−)
h→ SO0(−)→ SO/Sp0(−)→ KSp0(−)

h→ KSO0(−)→ · · · , (7.3.6)

in which the map h : KO−4(−)→ KO0(−) can be taken to be multiplication by γ−1β.

Furthermore, SO0(X) is the group of homotopy classes [X,SO] ∼= [X,ΩBSO] ∼=

[ΣX,BSO] = KSO−1(X); the group Sp0(X) ∼= KSp−1(X) ∼= KO−5(X) is de-

fined in a similar manner. Now, by Proposition 7.2.10, Sp0(Qn) consists entirely

of torsion generated by elements of the form αγi+1yR(2i+1), while by Proposition

7.2.17, Sp0(Y 4n+1) consists entirely of torsion generated by elements of the form

αγi+1yR(2i+1) and α2γi+1vnyR(2i). Therefore when X = Qn or Y 4n+1, the image of

h : Sp0(X) → SO0(X) is zero because αβ = 0 in KO∗. Similar reasoning confirms

that the image of h : TorsKSp0(X) → KSO0(X) is also zero, so we have a short

exact sequence

0 −→ SO0(X) −→ SO/Sp0(X) −→ TorsKSp0(X) −→ 0. (7.3.7)

Lemma 7.3.8. [48, (12.6)] The short exact sequence (7.3.7) is split.
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Proof. The splitting is given by a map TorsKSp0(X) → SO/Sp0(X), which is the

composite

TorsKSp0(X)
d−→ KO−3(X) ∼= U/Sp0(X)

jU−→ SO/Sp0(X), (7.3.9)

where jU is induced by the inclusion U → SO, and d acts by αy 7→ y, on generators

αy ∈ TorsKO−4(X).

We are now able to describe the groups SO/Sp0(−) for our manifolds Qn and

Y 4n+1 in terms of the splitting of the sequence (7.3.7).

Theorem 7.3.10. The group of stably quaternionic structures on Qn, considered as

a fixed SO-manifold, is given by an isomorphism

SO/Sp0(Qn) ∼= SO0(Qn) ∼=
⊕

2n−1−1

Z/2, (7.3.11)

on generators

{αγyR(2), αγ
2yR(4), αγ

3yR(6), . . . , αγ
myR(n) : R(j) ∈ P [n]},

when n = 2m, and generators

{αγyR(2), αγ
2yR(4), αγ

3yR(6), . . . , αγ
myR(n−1) : R(j) ∈ P [n]},

when n = 2m+ 1.

Proof. We can read off SO0(Qn) ∼= KO−1(Qn), and deduce its generators, from

Proposition 7.2.10 as follows. The generators of KO∗(Qn) are of the form yR(i) ∈

KO4i(Qn), for 0 ≤ i ≤ n. It is straightforward to check that we cannot multiply

yR(2i+1) by any coefficient in KO∗ so that the resulting product is an element of

KO−1(Qn). Therefore the generators of KO−1(Qn) are of the form αγiyR(2i) as listed

above. We can use similar methods to verify that TorsKSp0(Qn) = 0, since we have

KSp0(−) ∼= KO−4(−). The total number of Z/2 summands is given by
(
n
2

)
+
(
n
4

)
+

· · · +
(
n

2m

)
, for both n = 2m and n = 2m + 1. The sum of the even terms in the

binomial expansion satisfies
n∑
i=0

(
n

2i

)
= 2n−1, (7.3.12)

so our number of summands is 2n−1 − 1.
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Theorem 7.3.13. The group of stably quaternionic structures on Y 4n+1, considered

as a fixed SO-manifold, is described by an isomorphism

SO/Sp0(Y 4n+1) ∼= SO0(Y 4n+1)⊕ TorsKSp0(Y 4n+1) ∼=
⊕

2n−1−1

Z/2
⊕
2n−2

Z/2,

on generators

{α2γvnyR(1), αγyR(2), α
2γ2vnyR(3), αγ

2yR(4), . . . , α
2γmvnyR(n−1) : R(j) ∈ P [n− 1]},

{αγvn, αγ2vnyR(2), . . . , αγ
mvnyR(n−2) : R(j) ∈ P [n− 1]},

(7.3.14)

when n = 2m, and generators

{α2γvnyR(1), αγyR(2), α
2γ2vnyR(3), αγ

2yR(4), . . . , αγ
myR(n−1) : R(j) ∈ P [n− 1]},

{αγvn, αγ2vnyR(2), . . . , αγ
m+1vnyR(n−1) : R(j) ∈ P [n− 1]},

(7.3.15)

when n = 2m+ 1.

Proof. We can read off SO0(Y 4n+1) and deduce its generating set, from Proposition

7.2.17 as follows. The generators of KO∗(Y 4n+1) are of the form yR(i) ∈ KO4i(Y 4n+1)

and vnyR(i) ∈ KO4i+5(Y 4n+1), for 0 ≤ i ≤ n − 1. It is straightforward to check that

we cannot multiply elements of the form yR(2i+1) or vnyR(2i) by coefficients in KO∗ so

that the resulting respective products lie in KO−1(Y 4n+1). Hence KO−1(Y 4n+1) ∼=

SO0(Y 4n+1) is generated by elements of the form αγiyR(2i) and α2γi+1vnyR(2i+1) as

listed above. The generators of TorsKSp0(Y 4n+1) are determined in a similar manner.

As usual, the enumeration of the Z/2 summands follows from well-known identities

on binomial coefficients.

Arising from the fibration U → U/Sp→ BSp is a long exact sequence

· · · → Sp0(−)→ U0(−)→ U/Sp0(−)→ KSp0(−)
h→ KSO0(−)→ · · · , (7.3.16)

that we can link with the sequence (7.3.6) via maps

iU : U0(−) −→ SO0(−), jU : U/Sp0(−) −→ SO/Sp0(−),

which are induced by the inclusion U → SO.
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Proposition 7.3.17. For X = Qn, Y 4n+1 we have an isomorphism

Im(jU) ∼= Im(iU)⊕ TorsKSp0(X). (7.3.18)

For X = Qn the image of iU is zero, while for X = Y 4n+1 we have an isomorphism

Im(iU) ∼=
⊕
2n−2

Z/2

on generators

{α2γvnyR(1), α
2γ2vnyR(3), α

2γ3vnyR(5), . . . , α
2γmvnyR(n−1) : R(j) ∈ P [n− 1]},

when n = 2m, and on generators

{α2γvnyR(1), α
2γ2vnyR(3), α

2γ3vnyR(5), . . . , α
2γmvnyR(n−1) : R(j) ∈ P [n− 2]},

when n = 2m+ 1.

Proof. By applying exactly the same reasoning as in [48, Theorem 12.7], studying

the interaction between the long exact sequences (7.3.6) and (7.3.16) will lead to the

isomorphism (7.3.18). The descriptions of Im(iU) for Qn and Y 4n+1 follow from the

SO0(−) groups determined in Theorems 7.3.10 and 7.3.13; therein, TorsKSp0(−) is

also described for each of our manifolds Qn and Y 4n+1.

In light of Remark 7.3.5 we have that Im(iSU) = Im(iU), and so Im(jSU) = Im(jU).

To conclude this section, we will study the elements of SU/Sp0(Y 4n+1) in detail,

which will allow us to describe associated units in Section 7.4. First we present the

necessary background from [48, Chapter 12].

Applying the long exact sequence (7.3.16) to the suspension S1 ∧BSp we have,

· · · −→ U/Sp0(S1 ∧BSp) a−→ KSp0(S1 ∧BSp) −→ K0(S1 ∧BSp) −→ · · · ,

where the map a can be taken to be multiplication by α ∈ KO∗. The virtual

quaternionic bundle (η − R) ⊗R ξ in KSp0(S1 ∧ BSp) vanishes when mapped to

K0(S1 ∧ BSp) = 0, and so the exactness of the above sequence implies that (η −

R)⊗R ξ ∈ Im(a). In [42, Lemma 3.2] it is shown that the first real K-theory quater-

nionic Pontryagin class p1((η − R)⊗R ξ) = g1 ⊗ αp1 in KO4(S1 ∧BSp).
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Now consider the element Ω ∈ SU/Sp0(S1 ∧ BSp), represented by a map S1 ∧

BSp → SU/Sp, which arises by adjointing the equivalence BSp ' Ω(SU/Sp) (see

e.g. [29, Theorem 5.22]).

Lemma 7.3.19. [48, Lemma 12.9] The map a sends Ω to (η−R)⊗R ξ ∈ KSp0(S1∧

BSp), and Ω corresponds to g1 ⊗ γp1 ∈ KO−3(S1 ∧BSp).

We will regard Ω as a particular SU trivialisation of the virtual quaternionic

bundle (η − R) ⊗R ξ. Moreover, under the map jSU : SU/Sp0(−) → SO/Sp0(−) we

have that jSU(Ω) := ∆ is a particular SO trivialisation of (η − R)⊗R ξ.

Given a map f : X → S1 ∧BSp, we can pull back these notions, as illustrated by

the commutative diagram

SU/Sp0(X)
jSU - SO/Sp0(X)

SU/Sp0(S1 ∧BSp)

f∗

6

jSU - SO/Sp0(S1 ∧BSp),

f∗

6

(7.3.20)

so that we have elements Ω(f) := f ∗(Ω) and ∆(f) := f ∗(∆). This will allow us to give

an explicit description of some of the elements in SU/Sp0(Y 4n+1) and SO/Sp0(Y 4n+1)

as specific SU and SO trivialisations of virtual quaternionic bundles over Y 4n+1,

which we will construct in due course. Ultimately this facilitates our calculations

with associated units in the next section.

First we require some preliminary facts on virtual bundles.

Suppose we have virtual bundles θi over spaces Xi, for i = 1, 2, 3. The usual

properties of commutativity and associativity apply to tensor products of virtual

bundles to give respective isomorphisms

θ1 ⊗K θ2
∼= θ2 ⊗K θ1, (7.3.21)

of virtual bundles over X1 ∧X2, and

(θ1 ⊗K θ2)⊗K θ3
∼= θ1 ⊗K (θ2 ⊗K θ3), (7.3.22)

over X1∧X2∧X3, where K = R,C or H when the θi are real, complex or quaternionic,

respectively. In the quaternionic case, when we consider the tensor product θ1 ⊗H θ2
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it will be understood to mean that the quaternions act on the right of θ1 and on the

left of θ2.

Assume now that θ1 and θ2 are virtual quaternionic bundles, and that θ3 is a

virtual real bundle. We have an isomorphism of virtual real bundles

(θ1 ⊗H θ2)⊗R θ3
∼= θ1 ⊗H (θ2 ⊗R θ3), (7.3.23)

in KO0(X1 ∧ X2 ∧ X3) (see e.g. [32, Proposition 5.15]). It follows that we have a

second isomorphism of virtual real bundles

(θ1 ⊗H θ2)⊗R (θ1 ⊗H θ2) ∼= (θ1 ⊗H θ1)⊗R (θ2 ⊗H θ2), (7.3.24)

in KO0(X1 ∧X1 ∧X2 ∧X2), since the tensor product of two quaternionic bundles is

a real bundle, as discussed in Chapter 6. These isomorphisms will prove crucial in

our calculations below.

Now let θ be a virtual quaternionic bundle over X. Let θ〈2k〉 denote the virtual

real bundle

(θ ⊗H θ)⊗R · · · ⊗R (θ ⊗H θ), (7.3.25)

over the smash product X∧· · ·∧X of 2k copies of X. Furthermore, let θ〈2k+1〉 denote

the virtual quaternionic bundle

(θ ⊗H θ)⊗R · · · ⊗R (θ ⊗H θ)⊗R θ = θ〈2k〉 ⊗R θ, (7.3.26)

over the smash product of 2k + 1 copies of X. Of course, θ〈1〉 should be interpreted

as θ itself, and virtual bundles of the form θ〈i〉 are subject to the usual properties of

commutativity and associativity of tensor products, as discussed above. By pulling

back along diagonal maps of the form ∆ : X → X ∧ · · · ∧X, we can also define

θ2k := ∆∗θ〈2k〉 in KO0(X),

θ2k+1 := ∆∗θ〈2k+1〉 in KSp0(X).
(7.3.27)

With these notions in place, we have the following result.

Lemma 7.3.28. In KO4(HP∞) the first quaternionic Pontryagin class of the virtual

quaternionic line bundle (ξ1 −H)2i+1 satisfies

p1((ξ1 −H)2i+1) = γip2i+1
1 . (7.3.29)
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Proof. Our proof is based on the reasoning given in [48, page 41]. First recall that in

Section 2.2 we saw that the generator γ ∈ KO∗ is represented as a virtual bundle by

(ξ1 − H) ⊗H (ξ1 − H). Then we can use the associativity and commutativity of the

tensor product, the virtual real bundle isomorphisms (7.3.24) and (7.3.23), and well-

known properties of the real K-theory spectrum (see e.g. [56, page 302]) to attain

the equations

γi ∧ γp1(ξ
〈2i+1〉) = (ξ1 −H)〈2i〉 ⊗R ((ξ1 −H)⊗H ξ

〈2i+1〉)

= ((ξ1 −H)⊗H ξ)
〈2i+1〉

= γp1 ∧ · · · ∧ γp1 ∈ KO0(S8i+4 ∧BSp ∧ · · · ∧BSp).

Since we only work with quaternionic line bundles, we will restrict from BSp to

BSp(1) ∼= HP∞ throughout to obtain

γi ∧ γp1((ξ1 −H)〈2i+1〉) = γp1 ∧ · · · ∧ γp1 ∈ KO0(S8i+4 ∧HP∞ ∧ · · · ∧HP∞),

and pulling back along the diagonal map HP∞ → HP∞ ∧ · · · ∧HP∞ gives

γi+1p1((ξ1 −H)2i+1) = γ2i+1p2i+1
1

⇒ p1((ξ1 −H)2i+1) = γip2i+1
1 ∈ KO4(HP∞).

This result will prove crucial for our constructions in SU/Sp0(Y 4n+1), which are

now given in the following theorem.

Theorem 7.3.30. Given any subset {l1, . . . , l2j} ⊆ {1, . . . , n−1} of even cardinality,

there is a quaternionic bundle µn,l1,...,l2j
over Y 4n+1, which is trivial when viewed as an

SU-bundle, and is such that the element Ω(µn,l1,...,l2j
) ∈ SU/Sp0(Y 4n+1) corresponds

to γj+1vnyl1 . . . yl2j
in KO−3(Y 4n+1).

Proof. We adapt the proof of Theorem 12.11 in [48].

Recalling the definition of λn from Lemma 7.2.13, write θn,l1,...,l2j
for the virtual

quaternionic bundle λn⊗R (χl1−H)⊗H · · ·⊗H (χl2j
−H) ∈ KSp0(T (χn−1)). It follows

from equation (7.2.15) that ϑ∗n(θn,l1,...,l2j
) ∈ KSp0(Qn) is equal to

(χn −H)⊗R ((χl1 −H)⊗H (χl2 −H))⊗R · · · ⊗R ((χl2j−1
−H)⊗H (χl2j

−H)).
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Now define a virtual quaternionic bundle µn,l1,...,l2j
to be the pullback

ϑ∗n((η − R)⊗R θn,l1,...,l2j
) ∈ KSp0(Y 4n+1). (7.3.31)

A map Y 4n+1 → S1 ∧BSp is given by the composite

Y 4n+1 ϑn−→ S1 ∧ T (χn−1)
f−→ S1 ∧BSp, (7.3.32)

where f is the suspension of the classifying map for θn,l1,...,l2j
, and so Ω(µi) is defined.

This gives a lift of the classifying map of µn,l1,...,l2j
to SU/Sp, and thus an SU -

trivialisation of µn,l1,...,l2j
. It follows from Lemma 7.3.19 that Ω(µn,l1,...,l2j

) corresponds

to

γϑ∗n(σp1(θn,l1,...,l2j
)) ∈ KO−3(Y 4n+1). (7.3.33)

As in the universal example of Lemma 7.3.28 we can pullback (ξ1 −H)〈2j+1〉 over

HP∞ ∧ · · · ∧HP∞ to Qn ∧ · · · ∧Qn to obtain

p1(ϑ
∗
n(θ̂n,l1,...,l2j

)) = γjyn ∧ yl1 ∧ · · · ∧ yl2j
∈ KO4(Qn ∧ · · · ∧Qn),

where θ̂n,l1,...,l2j
denotes the external tensor product λn⊗R((χl1 −H)⊗H (χl2 −H))⊗R

· · · ⊗R ((χl2j−1
−H)⊗H (χl2j

−H)) over Qn ∧ · · · ∧Qn. Pulling back once more to Qn

via the diagonal map Qn → Qn ∧ · · · ∧Qn we have

p1(ϑ
∗
n(θn,l1,...,l2j

)) = γjynyl1 . . . yl2j
∈ KO4(Qn),

and applying Lemma 7.2.18 yields

ϑ∗n(σp1(θn,l1,...,l2j
)) = γjϑ∗n(σtnyl1 . . . yl2j

)

= γjvnyl1 . . . yl2j
∈ KO5(Y 4n+1).

So by (7.3.33) we have that our SU trivialisation Ω(µn,l1,...,l2j
) corresponds to

γj+1vnyl1 . . . yl2j
in KO−3(Y 4n+1).

Corollary 7.3.34. The TorsKSp0(Y 4n+1) summand that appears in the splitting

of SO/Sp0(Y 4n+1) in Theorem 7.3.13 is generated by ∆(µn,l1,...,l2j
), as {l1, . . . , l2j}

ranges over all subsets of {1, . . . , n− 1} that have even cardinality.

Proof. We defined ∆(−) to be jSUΩ(−), so the result follows by combining Proposi-

tion 7.3.17 and Theorem 7.3.30.
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7.4 Associated units

In Section 2.3.4, we defined the associated unit of δ ∈ H/G0(Mn
+) to be the image of

δ under the J-homomorphism J : H/G0(Mn
+)→MG0(Mn

+). Let As(Mn) denote the

group {J(δ) : δ ∈ H/G0(Mn
+)}. In this section we will determine As(Y 4n+1) in the

case when H/G = SO/Sp.

The elements of As(Y 4n+1) may be divided into two disjoint types: type A are

elements arising from SU0(Y 4n+1) or SO0(Y 4n+1), forming a subgroup A(Y 4n+1) <

As(Y 4n+1); type B are elements arising from TorsKSp0(Y 4n+1), forming a subgroup

B(Y 4n+1) < As(Y 4n+1). This dichotomy follows from our calculations of the groups

U/Sp0(Y 4n+1) and SO/Sp0(Y 4n+1), and Proposition 7.3.17.

To deal with the elements of type A, we will rely heavily on the theory expounded

in [48, Sections 13, 14]. Rather than regurgitate all of this background detail, we will

give a rapid summary of the specific results that we need to reach a description

of A(Y 4n+1); any omitted proofs can of course be found in [48]. We conclude by

determining B(Y 4n+1), using the quaternionic bundles µn,l1,...,l2j
, which we defined at

the end of the previous section.

Suppose we have a finite CW complex X and a ring spectrum E. Let ET (X) <

KO0(X) denote the subgroup of virtual bundles over X, which are E orientable; that

is, bundles for which an appropriate Thom class in E∗(X) exists.

Definition 7.4.1. The exotic J group of X associated with the spectrum E is the

quotient KO0(X)/ET (X), which we denote EJ(X).

When E is the sphere spectrum, EJ(X) reduces to the group J(X), introduced

by Atiyah in [3]; the notation is due to the fact that when X is a sphere Sn, J(X) is

the image of the classical stable J-homomorphism J : πi(O(n))→ πn+i(S
n) (see e.g.

[15, Chapter 8]).

We will focus on the case when the spectrum E is taken to be the MSp spectrum

of Example 2.2.9, which is associated with quaternionic cobordism theory. In the

case of quaternionic projective space, we have the following result.
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Lemma 7.4.2. [48, (14.6), (14.7)] For all n ∈ Z, the exotic J groups MSpJ(HP n)

and MSpJ(S1 ∧HP n) are zero.

The notion of the exotic J group is intimately linked to the type A associated

units of X.

Lemma 7.4.3. [48, Lemma 15.1] The subgroup A(X) of associated units of type A

is isomorphic to MSpJ(S1 ∧X).

So our aim is to compute MSpJ(S1 ∧ Y 4n+1). To begin, we consider the case of

the bounded quaternionic flag manifold Qn.

Theorem 7.4.4. The exotic J groups MSpJ(Qn) and MSpJ(S1 ∧Qn) are zero, for

all n.

Proof. The proof will be by induction on n. The base case MSpJ(S4) = 0 is con-

firmed by Lemma 7.4.2.

The classifying map of the bundle λn, as defined in Lemma 7.2.13, induces an

epimorphism

KO∗(HP n) −→ KO∗(T (χn−1)), (7.4.5)

as λ∗n(t
KO) = tKOn ∈ KO4(T (χn−1)), where tKO is the universal Thom class of Exam-

ple 6.1.10. It follows that MSpJ(T (χn−1)) = 0.

Now assume that MSpJ(Qi) = 0 for i ≤ n− 1. We have that (6.1.9) in the case

of Qn induces a short exact sequence

MSpJ(Qn−1)
ω∗n←−MSpJ(Qn)

ϑ∗n←−MSpJ(T (χn−1)). (7.4.6)

Since MSpJ(T (χn−1)) = 0, the inductive hypothesis implies that MSpJ(Qn) = 0,

and so by induction the result holds for all n.

Similar reasoning shows that MSpJ(S1 ∧Qn) = 0, for all n.

This allows us to determine a similar result for Y 4n+1.

Theorem 7.4.7. The exotic J groups MSpJ(Y 4n+1) and MSpJ(S1 ∧ Y 4n+1) are

zero, for all n.
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Proof. Since we have a short exact sequence

MSpJ(Qn−1)
ω∗n←−MSpJ(Y 4n+1)

ϑ∗n←−MSpJ(T (χn−1 ⊕ R)), (7.4.8)

similar reasoning to Theorem 7.4.4 will suffice to prove the result by induction; the

base case MSpJ(S5) = MSpJ(S1 ∧ S4) is given by Lemma 7.4.2.

So we have established that A(Qn) and A(Y 4n+1) are both zero.

Now we turn our attention to the associated units of type B, which arise from

TorsKSp0(−). Following Theorem 7.3.30, the elements in B(Y 4n+1) are of the form

J∆(µn,l1,...,l2j
). We will describe our type B associated units by pulling back from the

universal case of S1 ∧BSp. We have a composition

S1 ∧BSp ∆−→ SO/Sp
j−→ Ω∞MSp, (7.4.9)

using the map j, which was introduced in Section 2.3.4. The unit represented by

the composite j(∆) ∈ MSp0(S1 ∧ BSp+) is called the universal unit, denoted by U .

Using the torsion elements ϕn ∈ MSp8n−3, and the generators Pi ∈ MSp4i(BSp) of

primitive elements in MSp∗(BSp), we can describe U as follows.

Theorem 7.4.10. [48, Theorem 16.2] The universal unit is given by

U = 1 + g1 ⊗
∑
i≥1

ϕiP2i−1 in MSp0(S1 ∧BSp+).

This allows us to describe J∆(µn,l1,...,l2j
) ∈MSp0(Y 4n+1), which is represented by

the composite map

Y 4n+1 ϑn→ T (χn−1 ⊕ R) ∼= S1 ∧ T (χn−1)
f−→ S1 ∧BSp ∆→ SO/Sp

j→ Ω∞MSp(∞),

where f is the smash product of the identity and the classifying map for the virtual

bundle θn,l1,...,l2j
. By Theorem 7.4.10 we have

J∆(µn,l1,...,l2j
) = 1 + ϑ∗n

(
g1 ⊗

∑
i≥1

ϕiP2i−1(θn,l1,...,l2j
)

)
. (7.4.11)

From the short exact sequence (7.4.6) we have ϑ∗n : MSp∗(T (χn−1))→ MSp∗(Qn) is

a monomorphism, so we may work with P2i−1(ϑ
∗
nθn,l1,...,l2j

) ∈ MSp8i−4(Qn), which is

equal to

P2i−1((χn −H)⊗R ((χl1 −H)⊗H (χl2 −H))⊗R · · · ⊗R ((χl2j−1
−H)⊗H (χl2j

−H))),
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in place of P2i−1(θn,l1,...,l2j
).

First we consider the universal case of P2i−1((ξ1 − H)〈2j+1〉) in MSp8i−4(HP∞ ∧

· · · ∧HP∞), which may be expanded as

P2i−1((ξ1 −H)〈2j+1〉) =
∑

k1,...,k2j+1≥1

cik1,...,k2j+1
pk11 ⊗ · · · ⊗ p

k2j+1

1 , (7.4.12)

for some coefficients cik1,...,k2j+1
∈ MSp4(k1+···+k2j+1−2i+1), and with the summation

taken over all possible combinations of k1 ≥ 1, . . . , k2j+1 ≥ 1. We will return to study

the cobordism classes cik1,...,k2j+1
in detail later.

By way of contrast, we note that in [48], the universal case of P2i−1((ξ1−H)2j+1)

in MSp8i−4(HP∞) is considered, in which case the expansion is

P2i−1((ξ1 −H)2j+1) =
∑
k≥0

εi,j,kp
2j+1+k
1 , (7.4.13)

for some εi,j,k ∈ MSp4(2j+k+2−2i). We will also look at the relationship between εi,j,k

and cik1,...,k2j+1
in due course.

Now, pulling back (7.4.12) first to Qn ∧ · · · ∧Qn, and then to a single copy of Qn

via the diagonal map, we have

P2i−1(ϑ
∗
n(θn,l1,...,l2j

)) =
∑

k1,...,k2j+1≥1

cik1,...,k2j+1
yk1n y

k2
l1
. . . y

k2j+1

l2j
. (7.4.14)

Therefore, using the relation yk1n = yny
k1−1
n−1 in the quaternionic cobordism ring

of Qn (6.2.4), and recalling that ynπ
∗
n(x) may be written as ϑ∗n(tnx), for any x ∈

MSp∗(Qn−1), we can express (7.4.11) as

J∆(µn,l1,...,l2j
) = 1 +

bn+1
2

c∑
i=1

ϕi
∑

k1,...,k2j+1≥1

cik1,...,k2j+1
ϑ∗n(σtny

k1−1
n−1 y

k2
l1
. . . y

k2j+1

l2j
),

where bxc denotes the greatest integer less than or equal to x. The first summation

runs only between i = 1 and bn+1
2
c, because P2i−1(ϑ

∗
n(θn,l1,...,l2j

)) ∈ MSp8i−4(Qn), as

in equation (7.4.14), vanishes once 8i−4 > 4n. As in the proof of Theorem 7.3.30, we

are able to rewrite this expression to describe our type B associated units as follows.

Theorem 7.4.15. The associated unit J∆(µn,l1,...,l2j
) ∈ B(Y 4n+1) is given by

J∆(µn,l1,...,l2j
) = 1 +

bn+1
2

c∑
i=1

ϕi
∑

k1,...,k2j+1≥1

cik1,...,k2j+1
vny

k1−1
n−1 y

k2
l1
. . . y

k2j+1

l2j
, (7.4.16)
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for 2j ≤ n− 1, and k1 + · · ·+ k2j+1 ≤ n.

Proof. We insist that k1 + · · · + k2j+1 ≤ n, because the relations in the cohomology

ring (7.2.17) of Y 4n+1 give vny
k1−1
n−1 y

k2
l1
. . . y

k2j+1

l2j
= 0, if k1 + · · · + k2j+1 > n. The

constraint that 2j ≤ n− 1 is a necessary consequence of Theorem 7.3.30.

Remark 7.4.17. In light of Proposition 7.3.17, since A(Y 4n+1) = 0, the units in

MSp0(Y 4n+1) associated with SU/Sp0(Y 4n+1) are the same as those associated with

SO/Sp0(Y 4n+1), namely the type B associated units arising from TorsKSp0(Y 4n+1).

Let us now investigate the elements cik1,...,k2j+1
∈ MSp4(k1+···+k2j+1−2i+1). Though

we have no systematic procedure for determining these cobordism classes in terms of

known generators of MSp∗, we can combine a variety of approaches to study some

low dimensional examples.

The case when i = 1 appeared in a paper of Ray [44], who denoted the sum of all

c1k1,...,k2j+1
with k1 + · · ·+ k2j+1 = p by m(j+ 1,∆p). This helped determine examples

of the classes εi,j,k, which appeared in the expansion (7.4.13), in [48, Lemma 16.3].

Our cobordism classes are related to εi,j,k by the equation

εi,j,k =
∑

k1,...,k2j+1≥1

cik1,...,k2j+1
, such that k1 + · · ·+ k2j+1 = 2j + 1 + k,

where as usual, the summation is over all possible combinations of k1 ≥ 1, . . . , k2j ≥ 1.

For example, we have

ε1,1,2 = c11,2,2 + c12,1,2 + c12,2,1 + c13,1,1 + c11,3,1 + c11,1,3

ε1,2,0 = c11,1,1,1,1

ε2,1,1 = c22,1,1 + c21,2,1 + c21,1,2

ε2,1,0 = c21,1,1

The case i = 1 was also studied in detail by Imaoka [28], whose results were utilised

in [4]. By a combination of all of the above methods, and some slight modifications

for our particular situation, we can determine some examples of the classes cik1,...,k2j+1

in low dimensions by studying their relationship with εi,j,k. In common with other



CHAPTER 7. QUATERNIONIC TOWERS AND COBORDISM THEORY 125

authors, we will express our answers in terms of certain generators 2xi ∈ MSp4i,

using the notation established in [45].

We can determine

cik1 = 0, if k1 6= 2i− 1,

ci2i−1 = 1,

c11,1,1 = 36x2 + x2
1,

c12,1,1 = 60x3 − 15x1x2,

c21,1,1 = 36,

c22,1,1 = 110x1,

c11,1,1,1,1 = 302400x4 + 10800x1x3 + 12096x2
2 + 972x2

1x2 + x4
1.

(7.4.18)

Clearly no obvious pattern arises from this list to allow us to describe more ex-

amples of cik1,...,k2j+1
in terms of known generators of MSp∗.

Remark 7.4.19. Due to the associative (7.3.22) and commutative (7.3.21) nature

of the tensor product of virtual bundles, we were able to obtain virtual real bundle

isomorphisms of the form (7.3.24) and (7.3.23). Various combinations of these iso-

morphisms are enough to show that cik1,k2,k3 = cik′1,k′2,k′3
for any permutation k′1, k

′
2, k

′
3

of k1, k2, k3. Of course, any other relation between tensor products of virtual bundles

will yield similar relations on the elements cik1,...,k2j+1
.

Now suppose that we can represent the element c1k1,...,k2j+1
∈MSp4(k1+···+k2j+1−2i+1)

geometrically by a 4(k1+· · ·+k2j+1−2i+1)-dimensional stably quaternionic manifold

Mk1,...,k2j+1
. Then the following fact could prove helpful in describing c1k1,...,k2j+1

.

Lemma 7.4.20. The manifold Mk1,...,k2j+1
may be embedded as a codimension-(8i−4)

submanifold of Qk1+···+k2j+1.

Proof. With qk ∈ MSp4k(HP∞
+ ) as in Proposition 7.1.6, and with reference to the

expansion (7.4.12), it is straightforward to check that the Kronecker product

〈p1((ξ1 −H)2j+1), qk1+···+k2j+1
〉, (7.4.21)

yields c1k1,...,k2j+1
in MSp4(k1+···+k2j+1−1).
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In Proposition 7.1.8, we proved that the generator qk1+···+k2j+1
is represented

by the map QK → HPK classifying the quaternionic line bundle χK , where K =

k1 + · · · + k2j+1. The Kronecker product (7.4.21) with the first Pontryagin class is

equivalent to making this classifying map transverse to the inclusion HPK−1 ⊂ HPK .

Therefore, in a similar manner to the transversality construction illustrated by di-

agram (7.1.14), we have an embedding of the manifold Mk1,...,k2j+1
, representing

c1k1,...,k2j+1
, as a codimension-(8i− 4) submanifold of QK .

While we do not have a complete understanding of the elements cik1,...,k2j+1
in terms

of generators of MSp∗, we have gleaned enough information to conclude this section

with a list of the type B associated units for Y 4n+1 in low dimensions.

Corollary 7.4.22. For n ≤ 4 the associated units B(Y 4n+1) in MSp0(Y 4n+1
+ ) are as

follows.

For n = 1, J∆(µ1) = 1 + ϕ1v1.

For n = 2, J∆(µ2) = 1 + ϕ1v2.

For n = 3, J∆(µ3) = 1 + ϕ1v3 + ϕ2v3y2y1,

J∆(µ3,2,1) = 1 + ϕ1x
2
1v3y2y1.

For n = 4, J∆(µ4) = 1 + ϕ1v4 + ϕ2v4y3y2,

J∆(µ4,3,2) = 1 + ϕ1(x
2
1v4y3y2 + x1x2v4y3y2y1),

J∆(µ4,3,1) = 1 + ϕ1x
2
1v4y3y1,

J∆(µ4,2,1) = 1 + ϕ1(x
2
1v4y2y1 + x1x2v4y3y2y1).

7.5 Fundamental classes

Having determined our associated units, we must now obtain the fundamental class

[Y 4n+1]s ∈MSp4n+1(Y
4n+1), so that we can calculate Ψ(Y 4n+1).

To get started, since MSp∗(Qn) and MSp∗(Y 4n+1) are free over MSp∗ by Propo-

sitions 6.2.4 and 7.2.17 we can dualise to deduce the following results.
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Corollary 7.5.1. A basis for the quaternionic bordism module of Qn is given by

MSp∗(Q
n) = MSp∗{zR(i) : R(i) ∈ P [n]}, (7.5.2)

where the monomial zR(i) ∈MSp4i(Q
n) is the dual homology element to the monomial

yR(i) ∈MSp4i(Qn), for 1 ≤ i ≤ n.

A basis for the quaternionic bordism module of Y 4n+1 is given by

MSp∗(Y
4n+1) = MSp∗{wn, zR(i), wnzR(i) : R(i) ∈ P [n− 1]}, (7.5.3)

where wn ∈ MSp5(Y
4n+1), zR(i) ∈ MSp4i(Y

4n+1) and wnzR(i) ∈ MSp4i+5(Y
4n+1)

are the dual homology elements to vn ∈ MSp5(Y 4n+1), yR(i) ∈ MSp4i(Y 4n+1) and

vnyR(i) ∈MSp4n+5(Y 4n+1) respectively, for 1 ≤ i ≤ n− 1.

Given the bounding stably quaternionic structure s′ on Qn from Proposition

6.3.3, we will determine the fundamental class [Qn]s′ in terms of the above basis

of MSp∗(Q
n).

Proposition 7.5.4. The fundamental class of Qn with stably quaternionic structure

s′, is given by [Qn]s′ = znzn−1 . . . z1 ∈MSp4n(Q
n
+).

Proof. Referring to Corollary 7.5.1, the fundamental class is of the form

[Qn]s′ =
∑

R(i)∈P [n−1]

ζ{R(i)}zR(i) + znzn−1 . . . z1, (7.5.5)

where ζ{R(i)} ∈ MSp4(n−i). Using the projection πn : Qn → Qn−1 we can determine

these coefficients ζ{R(i)} to be

ζ{R(i)} = 〈yR(i), [Q
n]s′〉

= 〈π∗n(yR(i)), [Q
n]s′〉

= 〈yR(i), (πn)∗[Q
n]s′ , 〉

but (πn)∗[Q
n]s′ = 0 ∈ MSp4n(Q

n−1), since πn maps the bounding Qn into Qn−1,

representing zero in MSp4n(Q
n−1). It follows that ζ{R(i)} = 0, for any subset R(i) ∈

P [n− 1], and so the expression (7.5.5) reduces to [Qn]s′ = znzn−1 . . . z1.
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Using similar methods, the fundamental class of [S1 × Qn, t × s′], where t is

the trivial stably quaternionic structure on S1, is given by [S1 × Qn]t×s′ = h1 ⊗

znzn−1 . . . z1, where h1 ∈MSp1(S
1) is the dual generator to g1 ∈MSp1(S1).

In Lemma 7.2.8 we defined a degree 1 retraction r′n, which arose from the quater-

nionic bordism between [S1×Qn, t×s′] and [Y 4n+1, s]. We can easily dualise the action

of (r′n)
∗, as described in Lemma 7.2.18, to determine (r′n)∗([S

1 ×Qn]t×s′) = [Y 4n+1]s.

Proposition 7.5.6. The fundamental class of Y 4n+1 with stably quaternionic struc-

ture s, is given by [Y 4n+1]s = wnzn−1zn−2 . . . z1 in MSp4n+1(Y
4n+1
+ ).

7.6 Determination of Ψ(Y 4n+1)

We now have all the information we need to compute the image Ψ(Y 4n+1) of the map

Ψs : SO/Sp
0(Y 4n+1

+ )→MSp4n+1. After comparing our results with those in [48], we

prove Conjecture 7.2.1.

According to the instructions that concluded Section 2.3.4, to compute Ψ(Y 4n+1)

we must form the associated dual Γs(∆(µn,l1,...,l2j
)) = J∆(µn,l1,...,l2j

) _ [Y 4n+1]s and

take the quaternionic bordism class of a manifold that represents Γs(∆(µn,l1,...,l2j
)).

Theorem 7.6.1. The image Ψ(Y 4n+1), which is a subgroup of MSp4n+1, is generated

by 
bn+1

2
c∑

i=1

ϕi
∑

k1,...,k2j+1≥1

cik1,...,k2j+1


where 2j ≤ n− 1, and the integers k1, . . . , k2j+1 are such that

yk1−1
n−1 y

k2
l1
. . . y

k2j+1

l2j
= yn−1yn−2 . . . y1 ∈MSp4K(Y 4n+1), (7.6.2)

where K = k1 − 1 + k2 + · · ·+ k2j+1.

Proof. Compare the expressions for the associated units (7.4.16) and the fundamental

class (7.5.6). Clearly the associated dual is nonzero only when k1 ≥ 1, . . . , k2j+1 ≥ 1

are such that the monomial yk1−1
n−1 y

k2
l1
. . . y

k2j+1

l2j
reduces to yn−1yn−2 . . . y1 under the

cohomology relations in MSp4K(Y 4n+1). Hence we have the generators of Ψ(Y 4n+1)

in MSp∗ as described above.
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To see that Ψ(Y 4n+1) is a subgroup in MSp4n+1, we utilise the reduced map Ψ̃.

Given a1, a2 ∈ SO/Sp0(Y 4n+1), in equation (2.3.19) the reduced J homomorphism J̃

was shown to have the property that J̃(a1 + a2) = J̃(a1) + J̃(a2) + J̃(a1)J̃(a2). Then

we have

Ψ̃s(a1 + a2) = 〈J̃(a1) + J̃(a2) + J̃(a1)J̃(a2), [Y
4n+1]s〉

= Ψ̃s(a1) + Ψ̃s(a2) + 〈J̃(a1)J̃(a2), [Y
4n+1]s〉.

By Theorems 7.4.7, 7.4.15, any J̃(a) ∈ As(Y 4n+1) is in the ideal generated by vn,

but v2
n = 0 in MSp10(Y 4n+1), so it follows that J̃(a1)J̃(a2) = 0. Therefore Ψ̃ is a

homomorphism.

The stably quaternionic structure s bounds, so by the formula (2.3.20) we have

Ψ(Y 4n+1) = Ψ̃(Y 4n+1), which completes the proof.

Note that every element in the subgroup Ψ(Y 4n+1) has order 2, since the genera-

tors all have factors the 2-torsion elements ϕi.

Following Remark 7.4.17, the units associated to SO/Sp0(Y 4n+1) coincide with

those associated to SU/Sp0(Y 4n+1), coming from TorsKSp0(Y 4n+1). Therefore the

changes of stably quaternionic structure on Y 4n+1 that give rise to the elements in

Ψ(Y 4n+1) are such that they leave the SU -structure on the manifold unchanged. Since

we started with a bounding stably quaternionic structure s on Y 4n+1 (and hence by

forgetting, a bounding SU -structure), then [Y 4n+1, s + δ] also bounds in MSU∗, for

any δ ∈ SO/Sp0(Y 4n+1).

As an illustration of our results, in low dimensions the subgroups Ψ(Y 4n+1) <

MSp4n+1, and their generators are

Ψ(Y 5) = Z/2, {ϕ1},

Ψ(Y 9) = 0,

Ψ(Y 13) = Z/2⊕ Z/2, {ϕ2, x
2
1ϕ1},

Ψ(Y 17) = Z/2, {x1x2ϕ1},

In the case when n = 5, there is a subgroup Z/2 ⊕ Z/2 ⊕ Z/2 < Ψ(Y 21) generated

by {ϕ3, x
4
1ϕ1, x

2
2ϕ1}. Unfortunately, obtaining a complete description of Ψ(Y 21), and
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indeed Ψ(Y 4n+1), for n > 5, is hampered by difficulties in computing the elements

cik1,...,k2j+1
∈ MSp4(k1+···+k2j+1−2i+1). Without further work, we can only describe the

remaining generators of Ψ(Y 21) as g2,2,1 = x2
2ϕ1 + ϕ2c

2
2,2,1 + ϕ3c

3
2,2,1 and g3,1,1 =

(x1x3 + ex2
2)ϕ1 + ϕ2c

2
3,1,1 + ϕ3c

3
3,1,1, for some e ∈ Z/2.

Remark 7.6.3. By comparing our results with the description of MSp∗ in low di-

mensions given in [45], we have that Y 5 and Y 13 are SO-universal stably quaternionic

manifolds, in the sense of Definition 2.3.21. While we do not have a complete descrip-

tion of Ψ(Y 21), we do not rule out the possibility that Y 21 is also an SO-universal

stably quaternionic manifold; to prove this we would need to represent x2
1ϕ2 ∈MSp21

via a stably quaternionic structure on Y 21. Again, further investigation into the ele-

ments cik1,...,k2j+1
is needed before we can say anything more about the possibility of

Y 4n+1 being SO-universal stably quaternionic manifolds, for n ≥ 5.

Let us briefly compare our results with those of [48], where Ψ(−) was calculated

on the (4n + 1)-dimensional manifolds A4n+1 defined by Alexander in [2] (note that

these calculations of Ψ(A4n+1) are in MSp∗/V∗, where V∗ is a certain ideal in MSp∗).

The manifolds A4n+1 are defined to be S(ξ1 ⊗H ξ1 ⊕ R2), the total space of a

5-sphere bundle over HP n−1. Each A4n+1 carries a bounding stably quaternionic

structure via the usual application of Proposition 2.3.7. Alexander’s manifolds rely

on a technique used by Landweber [31], to build stably quaternionic manifolds over

quaternionic projective space, which is itself not stably quaternionic. In contrast, the

manifolds Y 4n+1 are built over a quaternionic tower (Qk : k ≤ n − 1) of bounded

quaternionic flag manifolds, each of which is stably quaternionic. So in terms of

quaternionic cobordism theory, it is perhaps more natural to work with Y 4n+1.

Certainly we are able to represent more elements in MSp∗ using the various

stably quaternionic structures on Y 4n+1: in dimensions when n is even, Ψ(Y 4n+1) is

not necessarily zero, while Ψ(A4n+1) = 0 for all n = 2m. In the case when n is odd,

we have the following.

Corollary 7.6.4. The image Ψ(A8m−3) is a subgroup of Ψ(Y 8m−3), which is generated
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by the quaternionic bordism classes of the associated duals

Γs(∆(µn)),Γs(∆(µn,n−1,n−2)),Γs(∆(µn,n−1,n−2,n−3,n−4)), . . . ,Γs(∆(µn,n−1,...,1)).

Proof. It is straightforward, though long-winded, to show this, so we offer only a

sketch here.

The proof relies on the fact that for virtual bundles µn,n−1,...,n−2j, the associated

units will arise from an expansion of the form

P2i−1((χn −H)2j+1) =

n−2j−1∑
k=0

εi,j,kyny
2l+1+k
n−1 ,

which plays the role of (7.4.14) in this case. Following the reasoning as in Section

7.4, we obtain the expression for the associated units to be

J∆(µn,n−1,...,n−2j) = 1 +

bn+1
2

c∑
i=1

ϕi

n−2j−1∑
k=0

εi,j,kvny
2j+k
n−1 , (7.6.5)

for 2j ≤ n − 1. The result follows by comparing (7.6.5) with the corresponding

expression for the associated units in B(A8m−3) given by [48, Theorem 16.6].

Returning to the manifolds we have been working with, we can easily relate our

results to bounded quaternionic flag manifolds.

Proposition 7.6.6. There is an isomorphism Ψ(S1 ×Qn) ∼= Ψ(Y 4n+1).

Proof. The isomorphism is induced by the degree 1 map r′n : W 4n+1 = S1 × Qn →

Y 4n+1 of Lemma 7.2.8. First we will prove that there is an injection f : Ψ(Y 4n+1)→

Ψ(W 4n+1), and then show that f is in fact an epimorphism.

From the proof of Lemma 7.2.18, we know that r′n
∗(vn) = g1⊗yn ∈MSp5(W 4n+1).

So using r′n and Theorem 7.3.30, we can pull back Ω(µn,l1,...,l2j
), which corresponds

to γj+1vnyl1 . . . yl2j
in KO−3(Y 4n+1), to the SU -trivialisation Ω((η −R)⊗R θn,l1,...,l2j

)

corresponding to γj+1g1 ⊗ ynyl1 . . . yl2j
in KO−3(W 4n+1).

Applying the techniques of Section 7.4 toW 4n+1, it is straightforward to determine

the formula

J∆((η − R)⊗R θn,l1,...,l2j
) = 1 + g1 ⊗

bn+1
2

c∑
i=1

ϕi
∑

k1,...,k2j+1≥1

cik1,...,k2j+1
yk1n y

k2
l1
. . . y

k2j+1

l2j
,
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for 2j ≤ n− 1, and k1 + · · ·+ k2j+1 ≤ n.

Recall from Section 7.5, that the retraction map induces an equality between

fundamental classes (r′n)∗([S
1 ×Qn]t×s′) = [Y 4n+1]s, so that

(r′n)∗(h1 ⊗ znzn−1 . . . z1) = wnzn−1 . . . z1. (7.6.7)

Now, at the beginning of this section we computed Ψ(Y 4n+1) by forming the associ-

ated dual Γs(∆(µn,l1,...,l2j
)) = J∆(µn,l1,...,l2j

) _ [Y 4n+1]s, but using (7.6.7), we have

Γs(∆(µn,l1,...,l2j
)) = J∆(µn,l1,...,l2j

) _ (r′n)∗(h1 ⊗ znzn−1 . . . z1)

= J(r′n)
∗(∆(µn,l1,...,l2j

)) _ (h1 ⊗ znzn−1 . . . z1)

= J∆((η − R)⊗R θn,l1,...,l2j
) _ (h1 ⊗ znzn−1 . . . z1)

= Γt×s′(∆((η − R)⊗R θn,l1,...,l2j
)) ∈MSp4n+1(W

4n+1),

and then we clearly have an injection f : Ψ(Y 4n+1)→ Ψ(W 4n+1), given by

f(Γs(∆(µn,l1,...,l2j
))) = (Γt×s′(∆((η − R)⊗R θn,l1,...,l2j

))). (7.6.8)

We must show that f is in fact an epimorphism. It is straightforward to check

that r′n induces an injection (r′n)
∗ : KO−3(Y 4n+1) → KO−3(W 4n+1), but not an iso-

morphism, as there are elements in KO−3(W 4n+1) of the form βγjg1 ⊗ yR(2j), for

R(2j) ∈ P [n], and of the form γj+1g1 ⊗ yR(2j+1), for R(2j + 1) ∈ P [n− 1], neither of

which are in the image of (r′n)
∗. No associated units arise from the former elements,

while it can be shown that for R(2j + 1) = {l1, . . . , l2j+1}, the latter give rise to

associated units in MSp0(W 4n+1) of the form

J∆(κl1,...,l2j+1
) = 1 + g1 ⊗

bn+1
2

c∑
i=1

ϕi
∑

k1,...,k2j+1≥1

cik1,...,k2j+1
yk1l1 . . . y

k2j+1

l2j+1
, (7.6.9)

for some virtual quaternionic bundle κl1,...,l2j+1
. However, the corresponding asso-

ciated dual Γt×s′(∆(κl1,...,l2j+1
)) in MSp4n+1(W

4n+1) is always zero, since the cap

product of (7.6.9) and the fundamental class [S1×Qn]t×s′ is zero. This can be proved

by using the fact that n /∈ R(2j + 1) and applying similar reasoning to that of

Lemma 5.1.33. Hence we have no new elements in Ψ(W 4n+1) arising from the ele-

ments βγig1⊗ yR(2i) and γi+1g1⊗ yR(2i+1) in KO−3(W 4n+1). It is also easy to use the
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tools of Section 7.4 to show that, as for Qn and Y 4n+1, there are no type A associated

units for W 4n+1 that would contribute to the image Ψ(W 4n+1). This is enough to

show that f : Ψ(Y 4n+1) → Ψ(W 4n+1) is indeed an epimorphism, and so we have the

required isomorphism.

Remark 7.6.10. With suitable modifications, it should be possible to use our results

to gain an insight into the images Ψ(S1 × Y 4n+1) and Ψ(Y 4n+2), where the simply-

connected manifold Y 4n+2 is the total space of the 6-sphere bundle S(χn−1⊕R3) over

Qn−1.

The spur for our investigation of Ψ(Y 4n+1) was Ray’s Conjecture 7.2.1, which we

are now able to verify.

Proposition 7.6.11. The element ϕm ∈MSp8m−3 may be represented geometrically

by the simply-connected manifold Y 8m−3, equipped with stably quaternionic structure

s+ ∆(µ2m−1).

Proof. By putting n = 2m− 1 in the basis described by Theorem 7.6.1, we have that

the associated dual Γs(∆(µ2m−1)) = J∆(µ2m−1) _ [Y 8m−3]s in MSp8m−3(Y
4n+1
+ )

satisfies

Γs(∆(µ2m−1)) = ϕ1c
1
2m−1 + ϕ2c

2
2m−1 + · · ·+ ϕmc

m
2m−1.

This expression reduces to ϕm since from the list (7.4.18) we see that cik1 = 0, if

k1 6= 2i− 1, and ci2i−1 = 1.

Recall that the indecomposable torsion elements ϕn ∈ MSp8n−3 are actually the

coefficients θ2n in the expansion (7.1.11). On the other hand, the elements θ2n+1 ∈

MSp8n+1 are zero for n > 0. However, there is nothing to stop us rewriting the

expression of Theorem 7.4.10 to give the universal unit purely in terms of the elements

θn, for all n. Checking through the original calculation in [48, Chapter 16] it is clear

that the universal unit then takes the form

U = 1 + g1 ⊗
∑
i≥2

θiPi−1 in MSp0(S1 ∧BSp+). (7.6.12)
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Subsequently, the associated unit J∆(µn,l1,...,l2j
) given in Theorem 7.4.15 can be

rewritten as

J∆(µn,l1,...,l2j
) = 1 +

bn+1
2

c∑
i=1

θ2i

∑
k1,...,k2j+1≥1

cik1,...,k2j+1
vny

k1−1
n−1 y

k2
l1
. . . y

k2j+1

l2j

+

bn+1
2

c∑
i=1

θ2i+1

∑
k1,...,k2j+1≥1

dik1,...,k2j+1
vny

k1−1
n−1 y

k2
l1
. . . y

k2j+1

l2j

(7.6.13)

for 2j ≤ n − 1, and k1 + · · · + k2j+1 ≤ n, and some coefficients dik1,...,k2j+1
∈

MSp4(k1+···+k2j+1−2i). In a similar manner to the elements cik1,...,k2j+1
of (7.4.12), this

set of coefficients has its true origins in an expansion of the form

P2i((ξ1 −H)2j+1) =
∑

k1,...,k2j+1≥1

dik1,...,k2j+1
pk11 . . . p

k2j+1

1 ∈MSp8i(HP∞). (7.6.14)

Now, the restriction of the primitive element Pi ∈MSp4i(BSp) to HP∞ is simply pi1

(see e.g. [42, page 263]). By restricting (7.6.14) to the case when j = 0, this fact is

enough to show that

dik1 = 0, if k1 6= 2i,

di2i = 1.
(7.6.15)

This leads us to our final result.

Proposition 7.6.16. The element θ2m+1 ∈ MSp8m+1 may be represented geometri-

cally by Y 8m+1 equipped with stably quaternionic structure s+ ∆(µ2m).

Proof. The proof follows the same reasoning as that of Proposition 7.6.11. The

associated dual Γs(∆(µ2m)) = J∆(µ2m) _ [Y 8m+1]s satisfies

Γs(∆(µ2m)) = θ3d
1
2m + θ5d

2
2m + · · ·+ θ2m+1d

m
2m,

which reduces to θ2m+1 via (7.6.15).

Consequently, we have the intriguing conclusion that when Y 4n+1 is equipped

with the stably quaternionic structure associated to ∆(µn) ∈ SO/Sp0(Y 4n+1), our

manifolds bound only when n is even; moreover when n is odd, since ϕn is of order

two, we must have that the disjoint union of two copies of Y 8n−3 is a boundary. It

would be very interesting to understand the geometry underpinning these phenomena.
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[19] D. L. Gonçalves and M. Spreafico. Quaternionic line bundles over quaternionic

projective spaces. Mathematical Journal of Okayama University, 48:87–101,

2006.

[20] G. Granja. Self maps of HP n via the unstable Adams spectral sequence. arXiv

Preprint math/0305315v1 [math.AT], 2003.



BIBLIOGRAPHY 137

[21] M. Grossberg and Y. Karshon. Bott towers, complete integrability, and the

extended character of representations. Duke Mathematical Journal, 76(1):23–58,

1994.

[22] A. Hatcher. Algebraic Topology. Cambridge University Press, 2002.

[23] A. Hatcher. Vector Bundles and K-Theory. Electronic copy available at

http://www.math.cornell.edu/˜hatcher/VBKT/VBpage.html, 2003.

[24] P. Hilton. General Cohomology Theory and K-Theory. London Mathematical

Society Lecture Note Series, 1. Cambridge University Press, 1971.

[25] F. Hirzebruch. Topological Methods in Algebraic Geometry. A Series of Compre-

hensive Studies in Mathematics, 131. Springer-Verlag, third edition, 1978.

[26] W. C. Hsiang and R. H. Szczarba. On the tangent bundle of a Grassman mani-

fold. American Journal of Mathematics, 86:698–704, 1964.

[27] D. Husemoller. Fibre Bundles. Graduate Texts in Mathematics, 20. Springer-

Verlag, second edition, 1975.

[28] M. Imaoka. Symplectic Pontrjagin numbers and homotopy groups of MSp(n).

Hiroshima Mathematical Journal, 12:151–181, 1982.

[29] M. Karoubi. K-Theory. A Series of Comprehensive Studies in Mathematics,

226. Springer-Verlag, 1978.

[30] S. O. Kochman. The symplectic cobordism ring. I, II, III. Memoirs of the

American Mathematical Society, 24(228), 1980; 40(271), 1982; 104(496), 1993.

[31] P. S. Landweber. On the symplectic bordism groups of the spaces Sp(n), HP (n),

and BSp(n). Michigan Mathematical Journal, 15:145–153, 1968.

[32] B. A. Magurn. An Algebraic Introduction to K-Theory. Encyclopedia of Math-

ematics and its Applications, 87. Cambridge University Press, 2002.



BIBLIOGRAPHY 138

[33] H. J. Marcum and D. Randall. A note on self-mappings of quaternionic projective

spaces. Anais da Academia Brasileira de Cincias, 48(1):7–9, 1976.

[34] M. Masuda and T. Panov. Semifree circle actions, Bott towers, and quasitoric

manifolds. arXiv Preprint math/0607094v2 [math.AT], 2007.

[35] P. Mazaud. Spin(4) actions on 8-dimensional manifolds (I). Illinois Journal of

Mathematics, 44(1):183–211, 2000.

[36] P. Mazaud. 8-dimensional manifolds with S3 × S3 actions. Topology and its

Applications, 115:63–95, 2001.

[37] J. W. Milnor. On the cobordism ring Ω∗ and a complex analogue. I. American

Journal of Mathematics, 82:505–521, 1960.

[38] J. W. Milnor and J. D. Stasheff. Characteristic Classes. Annals of Mathematics

Studies, 76. Princeton University Press, 1974.

[39] G. Mislin. The homotopy classification of self-maps of infinite quaternionic pro-

jective space. The Quarterly Journal of Mathematics. Oxford. Second Series,

38:245–257, 1986.

[40] S. P. Novikov. Some problems in the topology of manifolds connected with the

theory of Thom spaces. Soviet Mathematics. Doklady, 1:717–720, 1960.

[41] T. Panov. Combinatorial formulae for the χy-genus of a polyoriented quasitoric

manifold. Russian Mathematical Surveys, 54(5):1037–1039, 1999.

[42] N. Ray. Indecomposables in TorsMSp∗. Topology, 10:261–270, 1971.

[43] N. Ray. The symplectic J-homomorphism. Inventiones Mathematicae, 12:237–

248, 1971.

[44] N. Ray. Realizing symplectic bordism classes. Proceedings of the Cambridge

Philosophical Society, 71:301–305, 1972.



BIBLIOGRAPHY 139

[45] N. Ray. The symplectic bordism ring. Proceedings of the Cambridge Philosophical

Society, 71:271–282, 1972.

[46] N. Ray. Bordism J-homomorphisms. Illinois Journal of Mathematics, 18(2):290–

309, 1974.

[47] N. Ray. On a construction in bordism theory. Proceedings of the Edinburgh

Mathematical Society, 29:413–422, 1986.

[48] N. Ray, R. Switzer, and L. Taylor. Normal structures and bordism theory, with

applications to MSp∗. Memoirs of the American Mathematical Society, 12(193),

1977.

[49] F. W. Roush. Transfer in Generalized Cohomology Theories. PhD thesis, Prince-

ton University, 1972.

[50] R. Scott. Quaternionic toric varieties. Duke Mathematical Journal, 78(2):373–

397, 1995.

[51] G. Segal. The topology of spaces of rational functions. Acta Mathematica, 143(1-

2):39–72, 1979.

[52] R. P. Stanley. Combinatorics and Commutative Algebra, Second Edition.

Progress in Mathematics, 41. Birkhäuser, 1996.
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