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Foreword 

The techniques revolving around the concept of linear 

category are very widely used in nearly all branches of pure 

and applied mathematics. 1In this text we exploit the clarification 

which results from making this concept explicit, by applying it 

to the study of linear control systems., After a review of basic 

matri x theory, based on the explicit concept of rig (although 

using only the bare rudiments of the developed theory of rigs and 

rings), the linear category of Rematrices (which has sets 

"of indices"™ as objects) and the category of R-linear spaces are 

explicitly introduced as are the extensive and intensive functors 

relating them 

Mat (R) > Lin(R) «—— Mat (R)°P 

Of course, the simplified results in the case where R 1is a field, 

are reviewed as a basis for the study of specific linear systems. 

However, as much as possible is done for general rigs, because 

the latter often arise in applications: Not only constant, but 

also variable quantities, not only continuous, but also discrete 

quantities, not only positives with negatives, but also strictly 

nonnegative gquantities, not only quantities with additive can- 

cellation, but also additively idempotent quantities, all arise 

daily in physics, economics etc. as "scalars"™ where matrix 

techniques guided by linear concepts must be used. 

An important example of additively idempotent quantities 

is the following rig R:
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the scalar quantities are all nonnegative real numbers, including 

oQ ; but the addition and multiplication are defined by 

a+b the minimum of a,b def 

a s bde the usual sum of a,b 

The fact that the usual sum distributes over min 

shows that this definition of R indeed satisfies the rig axioms, 

and hence (by general principles) that Mat(R) and Lin(R) 

satisfy the axioms for linear categories. Note that the real 

number 0 is the "1" of this rig and o0 is its "0". If 

A and B are sets, then a matrix A ——i—a'B in Mat (R) 

might have the following interpretation: the elements of A are 

indices for certain states or products or locations, likewise B, 

and we have in mind a specific process for transforming any agA to any 

b&EB at cost f(b/a) in R ; if f(b/a) = "1", it means the 

cost of getting b from a by our process is 0, whereas if 

f(b/a) = "0", it means that the cost is infinite, i.e. in 

practice impossible for our specific process. Then if we wish 

to consider a two-step process 

£ g 
A—+——> B —— C 

the cost of gf (g following f) is given by the usual rule of 

matrix multiplication 

(gf) (c/a) = E%: g(c/b)«£f(b/a) 
B 

because (due to our definition of R ) this means 

(gf) (c/a) = MIN([g(c/b) + £(b/a)] 
beB 

usual sum 

and we would naturally choose the cheapest intermediate b &B,
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for given cEC, atA. For a one-point set 1, a matrix 

1l —}—> A might specify the costs of acquiring the states or 

things indexed by the elements of A and another matrix 

A —}—> 1 might specify the costs of disposing of them; then 

the matrix product /_‘_\ 

1 ——> 2 ——>1 

would be the single quantity in R obtained from choosing the 

index in A for which the usual sum of these two costs is 

cheapest, and associativity of////,———+-\\\\\ 

l ——> A ——¥—=> B —— 1 

~, 

means in particular that for any process f we can choose first 

the output which is cheapesé to dispose of or the input which is 

cheapest to acquire and arrive at the same resultant cost. 

While the general concept of category involves associativity 

of "multiplication®, the additional special feature of linear 

categories is that the "maps" from any object A to any object 

B can also be added, in a way that satisfies the distributive 

laws below (also known as bilinearity) 

£ 
Al s B-T)-B' 

f, 

(f1+f2)0(= £,X+ £,04 as maps A' —> B 

The objects of interest in the theory of control systems 

are not R-linear spaces as such, but concrete realizations in 

Lin(R) of the abstract diagram 
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These form a new linear category Lin(R):].D ; 1if we need to take 

into account the more detailed structure of the objective or 

subjective states of the system,.j) might be replaced by a more 

complicated abstract diagram or "directed graph", with a 

resulting richer category of concrete realizations with scalars 

o— e ’ and D have as 

their linear realizations the linear transformations (analyzed 

R ; simpler directed graphs such as 

in terms of "rank®) and the linear operators (analyzed in terms 

of "eigenvalues") which are the main objects of study of 

elementary linear algebra. The concrete realizations over R 

of the graph| ¢ |are just the R-linear spaces themselves, 

(which, if R is a field, can be analyzed merely in terms of 

"dimensions™). 

The analysis just referred to consists, in Lin(RJ;ID as in even 

more general linear categories of interest, in isolating certain 

"simple" concrete objects and determining how the arbitrary 

concrete objects can be expressed in terms of the simple ones 

via the "direct sum"™ operation or refinements of the latter; 

depending on the precise nature of R and J[), the distinct 

simple objects may form a "continuous" family (involving parameters 

from R such as eigenvalues. to specify them) or just a discrete 

family; in the case ])= El , with R a field, there is just 

one simple object, concretized as R itself,(for every linear 

space is a direct sum of copies of R ).



D 
A different family of concrete objects in Lin(R) is 

that of those which serve as domains in representing various 

types of elements in arbitrary objects. In the case of the 

one-dot graph, there is one main type of element of an object V 

and the single object R serves to represent these as linear 

maps R ——> V . In the more general case there is needed a 

small linear category R [HDJC Lin(R)ID to represent even the 

main types of elements; its maps consist roughly of R-linear 

combinations of meaningful "words" of arrows from the graphlfl) . 

But for example in the case of linear control systems 

X *2___4. Y 

there is still another type of "element" which is of primary 

concern: pairs <x,y> in which the subjective process vy 

"controls"™ the objective process x in the sense that the 

equation 

x = b(y -~ ax) 

is satisfied; here the controlling intervention b is acting 

on the discrepancy in Y between the subjective process y and 

the observation a of the objective process x; that the 

elements of the R-linear spaces X,Y have the interpretation of 

processes in time is implicit in the set-up itself, as calculation 

of the representing object for such controlled elements reveals. 

The spectral analysis based on the idealized "simple™ control 

systems plays a role in the engineering design of more complex 

control systems. 

“Beffulo 
&n.{q} 1992
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Preliminaries on Rigs 

0. A central example of "rig" is the field jEZ of real numbers, 

but for linear algebra it is helpful to explicitly recognize the 

possible role of other rigs as these occur in applications. 

Two roles of rigs in linear algebra are 

(1) the "base” ring of "scalars®” which is fundamental to the 

very definition of linear transformation, namely the extent 

of the homogeneity "T(Ax) =AT(x) for all inputs x of T" 

is the rig of scalarsl for which that equation is true, and 

(2) in the spectral analysis of diagrams as simple as the " Q" 

denoting a single linear operator, each "color" is associated 

with specific rigs which are usually larger than the base rig. 

Various rigs arise in applications for many different 

reasons: 

l) The linear space of all smooth vector fields on a region Ij 

in 3-space actually admits as scalars the rig:E{Lr of all 

smooth scalar fields, i.e. variable quantities as scalars, not 

just the constant scalars from lp\ . 

2) Often it is important to concentrate on linear transformations 

representable by matrices with whole-number entries, so that the 

appropriate rig of scalars might be the rig _N of natural 

numbers or the rig Z of integers. 

3) 1In statistics, economics, etc. it is often important to 

concentrate on "positivity", in which case the rig R+ of 

non-negative reals (we usually consider that 00&7'2.3 or a rig 

1R+ of nonnegative functions may be the relevant supply of



scalars. The simplest results in linear algebra (such as that 

dimension is the only invariant) hold only when the base rig 

is actually a field, but even so the usual applications deal 

with diagrams of linear maps, not merely with the linear spaces 

themselves, and even in the simplest cases !:D and ; the 

categories of such diagrams require a much richer collection 

of invariants than mere dimension. 

The word "rig®" was obtained by omitting the letter "n" 

from "ring", for a ring is nothing but a rig in which every 

quantity has a negative in the same rig. 

@ A rig R 1is a specified set of quantities together with 

two specified quantities 0,1 in it and two specified binary 

operations +,+ on it satisfying the conditions 

O+ x=Xx lex =x 

(a+b) +(x+y) ‘= (a+x)+(b+y) (a*b): (x-y) = (a-x).«(b.y) 

a0 =0 

a. (x+y) = a-x+b-y 

for all a,b,x,y in R. . The four-variable combination of the 

commutative and associative laws is the form which is most 

likely to come up in practice. The distributive laws as stated 

imply more general forms 

for any two lists a,x of quantities in R , where we apply the 

usual sigma notation for repeated + and where the sum on the right 

has nxm terms. The obvious naming procedure 2 = 1+1, 3 = 2+1, 

etc. uniquely maps the rig_fl\] into any rig R being considered,



and the distributive law also implies the binomial theorem 

;:Z: c..xiyj 
i+j=n HJ 

. . - - | i3 . 
for any x,y in R , any n in ij , where cij (ai') are ln_DJ- 

and the sum has n + 1 terms. 

(x+y)n 

DEFINITION: x has negative y iff x + y = O 

x has reciprocal y iff x+.y =1 

A . —— - 

EXERCISE: I1f Xq 1%y have negatives in R and if a is any 

quantity in R then X;+X%, and axy (and axz) also have negatives 

in R |, Hence if 1 has a negative in a rig R then R is 

actually a ring. 

Even in rings many non zero quantities may fail to have 

reciprocals. For example, the ring of all rational functions 

(in one variable t), for which 2,5 are not poles, contains 
S 3 

1 t t 1 
£ m)—z etc. but not -(m— v -(?—_—5)2 etc. 

DEFINITION: An idempotent pair in a rig is a pair of 

quantities p,q for which p+gq = 1 and p-q = O. 

EXERCISE: 1In any idempotent pair, each of the two quantities 

satisfies p2 =p . Ina Eiflfi' an idempotent pair is determined 

by a single quantity p satisfying p2 = p. Relative to any given 

idempotent pair p,q, the whole rig splits in two in the following 

sense: given any x there is a unique pair of quantities u,v 

satisfying the three conditions x = u+v Pu =u, qv= v 
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DEFINITION: A quantity x in a rig is nilpotent of order 

N H iff xn+1 = 0. Thus x2 = O means X is nilpotent of order 

x3 = O but x2 # O means x is nilpotent 

of order 2 etc. 

3) EXERCISE: If x is nilpotent of order n and a is any 

uantity in the rig in question, then ax is nilpotent of or- 

er € n. If some nilpotent has a reciprocal, then (] = 1 

and indeed there is only one gquantity in the whole rig. 

Q) EXERCISE: 1If x2 = 0, y2 = O then (x+y)3 = O. 

e could only say (3{+y)2 = 0 if we moreover know that xy = o, 

but that is usually not true. More generally (use the binomial 

theorem) 
if x is nilpotent of order £ n and y of order &€ m 

then x + y is nilpotent of order & n4m 

Caution: this result is NOT true in general without the 

condition xy = yx, which will itself not be true when x,y 

denote maps in a linear category rather than merely quantities 

in a riq. 

DEFINITION: A field is a ring in which every nonzero quantity 

has a reciprocal, and 0 # 1. 

The only nilpotent quantity in a field is 0. 
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@ Given a rig R it is often important to consider new rigs 

which contain R but which also contain a further quantity x 

satisfying an equation such as 

xz = a4+bx 

where a,b are some-previously-fixed quantities in R | his 

can always be done by considering the new rig to consist of 

ordered pairs of quantities from R with Od§f<b.dh 1dzf<3’q>' 

xdgf<b,l> and the obvious pair-wise addition, so that every 

new quantity is uniquely expressed as u + v x for u,v in R | 

but with a special multiplication rule depending on the given 

a,b. 

- N 

EXERCISE: Define the special multiplication of pairs u + v € 

which extends a given rig R to the rig R[é_] of "dual numbers"” 

over R , wherein the equation Eiz = Q is satisfied. 

EXERCISE: For a ring R ,define the multiplication for the ring 

R [i] of "complex numbers"” over R wherein the basic new 

element i satisfies i2 = -1, Show that if u2 + v2 = 1, then 

u + v 1 has a reciprocal in R [i:]. For what kind of u,v in 

is u + v i nilpotent of order = 1 in R[}] ?’ If R 1is a field, 

what stronger property must it have to insure that R E{] is also 

a field? 

Note that in the rig I![i] for R a ring and i2 = -1, 

we have in particular that i4 = 1; we can crudely picture that
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fact by pretending that R is a line (even if it isn't) and 

hence that R [i] is a coordinatized plane, then noting that 

multiplication by i is rotation through a right angle, 

However, to obtain an extension rig Il[i] containing a quantity 

2+l # 0, we need more than two "dimensions"; 

in such, every quantity could be expressed as u°+u1j + u2j2+u3j3 

5 with 3% = 1 but 3 

where the four u's come from R ., 

EXERCISE: For the equation 93 = 1, consider N[Q_] to consist 

f triples of natural numbers with 9-\@,1,0> and determine the 

Hpath followed by <k,n,m>upon being multiplied by Q, 92, 93 

EXERCISE: 1In any rig, if x + y =1 and x is nilpotent, 

then y has a reciprocal. 



Rings 

A ring is any set R of "quantities" which is furnished with the 

structure of 0,1, addition + and multiplication « in such a way that 0,1 are 

distinguished elements of R and 

Rx R —I— R 

R X R —» R 

are given mappinas subject to the following axioms: + assigns to any pair a 

of elements of R a unique sum a + b in R and * assigns to any pair a product 

ab in R (note that by contrast a ®"linear space" is closed under a given 

addition but has no_ given multiplication under which it is closed; we will 

often use several different multiplications on the same underlying additive 

system, which means we would be considering different rings; such a definitive 

of multiplication must be verified to satisfy the following equational axioms 

in order to be called a ring) so that 

(associative) a(bc) = (ab)c all a,b, ¢ in R 

(identity) la=a=al all a in R 

(distributive) (a1+a2)(b1+b2) = a1b1+a b2+a2b1+a2b2 all a; . bi in R 

a0=0=0a for all a in R 

and so that the addition by itself satisfies 

O+a=a=a+20 all a in R 

(a, +ax)+lbeby) = @ +b ) t{ageby) all 2, b, R 

l The two axioms above for addition alone imply the usual commutative 

and associative laws for addition. 

We will almost always assume that our ground rings are moreover 

commutative which means that the multiplication satisfies 

‘ ab = ba all a,b in R 

and also usually that they have negatives, i.e. that there is a mapping 

; 

R X2% R so that 
a+(-a) = 0 all a in R
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Wwhen R has negatives, we can define subtraction by 

a->b = a+ (-b) all a,b in R 
def 

However, very important in probability and many other fields is the linear 

algebra over the system T of non-negative real numbers, so all our results 

which do not depend on negatives will apply to these fields directly. 

EXERCISE IMany of the important formulas of algebra are valid in any ring sin 

they depend on the distributive law which is one of the defining axioms of 

rings. For exaggle e 

(Ct-'\f-' )(atb) =>a —"Oi' 

(&?h) = q%+Qabtb 
L 

‘L 

If we do not have commutativity at our disposal the last two eguations are 

false and the correct version is a little more complicated, for example 

(@)= +ab+ba rb" 

Of course we use the usual abbreviations 

at=zao 

2= 1+14 

LL=ZtT= €+1) 

ete 

More information on rings is contained in the sections of these notes called 

"Examples of commutative rings" and"Use of logical operations in algebra". 

. T . . . 
A mapping R —>» S between rings is called a ring homomorphism 

if it satisfies all of 

T(o)=0 

Ty vy =T(x )« TR 2) 

T(2)=1 

T(_vl'fiz\';.—r('i‘)-r(}’-z)
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or all Iy, I, in R, where the ring operations on R are used on the left, and 

those from S on the right, these operations being denoted by the same symbol 

in all rings even though they have differing meaning depending on which rina 

involved. 

| W — 

:‘{ EXERCISE‘ If R,S have negatives and T is a ring homomorphism then it follows 

‘  that -T('-JLB = =T(A) 

In a similar way if r happens to be an invertible element of R then T(r) is 

an invertible element of S and in fact their reciprocals correspond: 

L T(n) 

Only fragments of the category of (commutative) rings and ring 

homomorphisms are used in introductory linear algebra. The detailed study 

of this category is called Commutative Algebra or Algebraic Geometry. 

Linear Algebra is an important tool in Commutative Algebra and hence 

in the study of algebraic spaces as well as differential geometry, etc., 

i and on the other hand Commutative Algebra and Algebraic Geometry yield 

important tools for more advanced Linear Algebra and its applications to 

‘ Circuit Theory, Systems Theory, Linear differential Equations, etc.
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Fields, Nilpotents, Idempotents 

The most basic properties of algebraic structures such as rings, linear 

spaces, categories are expressed by equations, for example the distributive 

property, nilpotence, associativity, the property of being a solution. However 

in working with these equations we must frequently use stronger logical operatms 

both in stating stronger axioms on the ground ring in linear algebra as well a 

in summarizing the meaning of our complicated calculations. (It should be 

remarked however that most of this logic again becomes equational when we pass 

to a higher realm). For example the additional axioms which state that a given 

ring R is a is that R is nondegenerate 

" 0o=1 | false, 

usually expressed by introducing "not" and saying 

true l—- 0#1) 

e_ngii that every non-zero quantity in R has a reciprocal 

N 0 = dylxy=1] 
When the law of excluded middle is valid the latter is equivalent to the (in 

general stronger) condition 

x=0 v Aylxy=1] 
being truep (which has the virtue of being invariant under more geometrical 

transformations but the drawback, in these cases like continuous functions whe 

the law of excluded middle is false, of being less likely to be true). Usually 

one expresses this field axiom u sing V)f? as?!(true |- ) 

V[ r#o SIylry=1) 
~#ith the understanding that the universe over which both x, y vary is R. Thus 

Z:g ‘3,‘))"',D' ')1;3.’$ is a ring R which is not a field since for example 

S # O but there is no y inE for which S5y = 1. Since in any ring we can deduce
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purely equationally from hypotheses 

Xy, = 1 

xy, =1 

that Y, = yz[:Here is the deduction, using only (commutative) ring axioms 

and the hypothesis: 

Ya= 4‘411 =15.1(%;\)(1\:(%1%]44,_:(&14\447_: 1437::‘37.] 

we can conclude that in any ring 

- Un, ('x-y:i) o artx 

and hence in any field that 

va[reo ALy [zy=1]] 
Further (since R is nondegenerate if it is a field) the (just justified) 

reciprocal of x cannot be zero either. 

EXERCISE If y is a reciprocal of x then x is a reciprocal of y; if)in 

any given ring R, O has a‘reciprocal then R is degenerate . Thus if we restri 

the universe to the set G of all non-zero elements of R (G is no longer a rin 

the slightly simpler statement 

vadlylay=1l 
is true over G. Since this is the criterion for the existence of a mapping, 

-\ 
G _Q__..>G 

called the reciprocal mapping whose graph is the statement 

there is a mapping 

X°y = 1’ 

that is y = x_ iff x.y = 1. 

A much better way of understanding the last construction is as 

follows. Let R be any commutative ring (not necessarily a field, maybe even 

degenerat%. Define G to be the subset of R consistinag of all elements x of R 

satisfying = 3 Lx‘g _ fl
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in R. Then there is a reciprocal mapping G—>G, 1 is in G, and G is clos 

3 3 . a > . 3 -‘— 

under multiplication, i.e. if Xy, X, are in G then X,X, 1s in G, since 1 =1 

(X”\L\_lf_x;’\(l‘( This means that G is a (commutative) group called 

"the multiplicative group of R". If O is in G then R is degenerate. For any 

X in G, -x is also in G. But X) 1%, in G do not imply Xq + X, in G. If R =B. 

the real numbers, then 1 + x2 is always in G for any x, and the same is true 

if R = C(X) = the ring of all continuous real-valued functfa‘nson any 

continuous domain ("topological space”) X. Now the condition that a ring R be 

a field is just that R be the disjoint union of {O& and G, i.e. that (readir 

the Vv form of the definition backwards) 

Al [7 6] 

Since any ring R has a special element 1 and since R has an addition 

operation, there are elements in R which may as well be denoted 

2 1 +1 

3 l1+1+1 

c
e
a
t
 

|| 

(not all of these need be distinct). Even if R is a field, not all of these 

need have reciprocals, for example there is an important field with only thre: 

elements in all in which 3 = 0. However most of the rings dealt with in detai: 

in this course, even those which are not fields, will involveR in such a wa: 

that all of the above do have reciprocals, which will be denoted as usual by 

4&, 1/3,.... Thus ¥1nG, 1/3 IKG..... where G denotes the multiplicative group 

of any such ring R. 

In any ring havi us{ 

\— \v‘xa*& [*1_1—‘4.37& 

cte.
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By a subring of a given ring R is meant a subset S of the elements of 

which contains O, 1 and is closed under the addition, subtraction, and the 

multiplication of R. Thus if p is any polynomial with coefficients in 2?' in 

several, say three, variables, and if x,y,z are in S then p(x,y,z) is also in 

EXERCIS If Ris a ring having % and if S is a subset containing 0,1, and 

closed under addition and the unary operation of multiplication by %, then S 

i 
is a subring if and only if S is closed under the unary operation of squaring 

(The answer is a frequently-used formula). 

Now a subring is not necessarily closed under division, even to the ex 

| tent to which the latter is defined in R. Thus fCR is a subring, but E is 

not a field even thoughffi,is a field. But any subring of any field does hawe 

‘ a special property not shared by all rings of interest, namely 

Xy =0 =[ x=0 V‘1=°] 

' EXERCISE Prove the statement just made, in any subring of a field .’ 

A nondegenerate ring S having this property for all x,y in S is called an 

. This is intimately related to the cancellation property 

Vx; Y2 [ax TAK =K, =Xz | 
for an element a, which (using subtraction) is easily proved equivalent to the 

"non zero divisio¥" property of a 

Vx [az=0 =9 x=0] 
where all universal quantifiers range over all x, X, X, in the ring in which 

we are considering a (We might call a "monomorphic" in that rin%. Note that the 

property uses the logical operators in an essential way, since when we want to 

prove 

a is monomorphic F— something else about a 

we can't always eliminate the ‘Vf)f;7 implicit on the left hand side. Of course 

if the "something else" is just an instance of the cancellation property, such
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proof will present no problem. Now clearly a = O can not be monomorphic in a 

nondegenerate ring, since 

ax=0x=0 

for any X, yet we could take x = 1, hence it wouldn't follow that x = O. Nov 

the idea of an integral domain is that (assuming the law of excluded middle) 

the only a which is not monomorphic in R is a = O. That is, the validity 

for all a in R of any one of 

a+0 =>Vr[ax=0=> Xx=o\ 

Ax[ax=oaxBO] U=0 

Yyl ax=o =>[az0 VX7 O_ll 

is equivalent (using LEM) to the condition that R is an integral domain. The 

last form with V is the one familiar from high school as a crucial step in 

the method of solving pDlynomial equations by factoring. This method is used 

proving 

THEOREM In any integral domain the equation 

2 
Xx° = x 

has precisely two solutions. 

Proof: if x2 = x then x2 - x = 0 and hence x(x-1) = 0, (since x(x-1l) = xz-x 

in any ring). Now use the integqral domain property to get x = O\ x-1 = O, i.e€ 

x = 0V x = 1. We say "precisely two" because the ring is nondegenerate. 

Commutative , | 
EXERCISE] In any'ring, an element satisfying x = x is called 

If x is an idempotent, then so is its "complement"” 1 - x. The product of any 

two idempotents is an idempotent. If x and y are idempotents and if xy = O, (o 

says X,y are "disjoint" or "orthogonal") then x + y is also an idempotent. One 

says a ring "has connected spectrum" if it has precisely two idempotents. In 

general the idempotents describe chunks of the "spectrum", for ex. of a linear 

transformation(which gives rise to a ring in a way we will study). 

Very important in analyzing linear transformations will be the 

nilpotentfelements in commutative rings, where x is nilpotent iff
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Aan+l 's 
_:—‘m,]:% =o] 

Here the 537L,does not range over the ring we are talking about but rather ove 

the set O, 1,2,3,..... of natural numbers, which act as exponents on 

elements of any ring (or indeed of any system wherein at least multiplicatior 

is defined). In more detail we could say that x is nilpotent of order 1 if 

while x # O, that x is nilpotent of order 2 if 

x3 =0 

while x2 # 0, etc. Of course O is nilpotent of order zero. In a nondegenerate 

ring x = 1 is not nilpotent of any order. Using commutativity, the product of 

a nilpotent with any - element is again nilpotent. Again using commutativity, 

the sum of any two nilpotent elements is nilpotent, however we have to care 
2 

for the order. For example if x2 = 0 and y = O, then we can calculate that 

(x+y)3 = O.JAs for (x + y)z, it might be O, but only in case xy = O, which 

is not always true. Analysis of the calculation leads to the idea that to be 

sure we have to add the orders of nilpotency: 

If xn+1 = 0, ym+1=0 in a commutative ring, then always 

PROOF: In any commutative ring the distributive law implies the binomial 

expansion P (: k: 

(ee) %p g¢ 
for any x,y in the ring and in p in n\T(note that [NC# and th&tZ can be used 

Sulbmachon are 

as coefficients in any ring, indeed in any system where addition i\ defined. 

In fact . ,) 

is in \fi]Jdbspite the denominators)where ! denotes "factorial",k;.pqscal‘) 

Thus the proof of the theorem reduces to the following fact about the elementa 

arithmetic of (N 3
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LEMMA . . P R , 
lllll' 1 +3:= Mim+d r- L2n+l \/,J S Yl 

Proof of Lemma asBEXERCISE 

In any case, since 
n .. 

xh?i=x .x 

is a product, it is immediately clear that 

THEOREM] In an integral domain the only nilpotent element is O 

An extremely important property (for analysis, linear algebra, compute 

science etc) is the following, showing that while the existence of nilpotent 

elements has the "negative" consequences that some elements (the ones"near" 

zero) are definitely not invertible, it also has the "positive" consequence t 

some other elements (those "near" 1) definitely are invertible, and there is 

even a specific formula for the reciprocals. 

THEOREMI If h is any nilpotent element in a ring, then 1l-h has a reciprocal 

the same ring. In fact if hn+1 = 0, then 
' _ n 

Sy 
PROOF Calculate that the right-hand side, multiplied by 1l-h, gives 1. 

REMARK In a ring furnished with a notion of convergence, the above can be 

generalized to h for which hq—)o as n-> , i.e to small h's not necessarily 

so small as "nilpotent”. But the formula of the Theorem is surprisingly often 

useful even just for the nilpotent case. 

EXERCISE} If u has a reciprocal and h is nilpotent then ut h has a reciproca 

(A formula/only slightly more complicated than that of the theorem)can either 

deduced from the theorem as a corollary or calculated and proved directly). 

EXERC&SE If u, = l-hl, u, = l-h2 are invertible elements of a ring of the 

form indicated with hl, h2 nilpotent (with orders of nilpotency Ny Ny say) the



- 8 - /12 

the product qu; is of course invertible; is it again of the special form, 

"jnfinitesimally near 1" in the sense that 

for some nilpotent h of some order? Start with the special case h12=o=h2 ’ 

' $+ ' . 2 
hyh, = o. What nfi Ri’t;’e wheve g*=0% 

REMARK (An Embedding) Any given integral domain R can be realized as subring 

of a field F, by construct?fi;F to consist of equivalence classes of fractior 

g where x in R, s in R and s # O. 

The condition that a ring R has "no" (i.e. no nonzero) nilpotent 

elements is often referred to in geometry and analysis by saying the R is 

IT IS MORE GENERAL THAN THE CANCELLATION (i.e. integral domain) 

property, since for example R =1Eflwith co-ordinatewise multiplication is 

reduced (i.e. has no nilpotent element) but not an integral domain since it 

has non trivial idempotent elements(b,f) ; <<1,0D§In logical notation with 

variables, R is reduced if and only if | . 

EE)L[:xr*lzcil I X=0O 

holds for all x inR . Since the E} occurs on the left, this is one of its 

eliminable cases. But more profoundly (i.e. using something of the quantitatn 

content of the theory of rings and not merely logical form)f 

Tf a ring sa '-fies 

Yx Xzo => X=0O 

then it is reduced. Hint: Show taat if xn+1 = 0 then x2n=o and hence using on 

main assumption then also x™ = o. B?; induction then the n can be knocked dow



1§ Commutative Rings 

Some important examples of commutative Rings which arise in 

real linear algebra. 

The ring [y of real numbers is in fact a field, as is the 

ring ‘E:LLl of complex numbers. The latter has the property 

Vadz [ L =] 
- ; 

which I\ does not, and in fact 12Le] nas solutions to any polynomial 

. z -1 

‘V’%Va, . vau—l 4 ’,};[’Lfl’: aofaizm,_'x.nfa,‘_ix" ] 

holds in TR(;‘t], for any n in .IJ\/ . On the other hand IR- permits 

equations? 

solutions to certain other equations which R[i] does not, for example 

3 B § LS VX 2 
fo VX + Xtk )_ ] 

1 2 g [. 13 (l 1 1 1 

holds inm but not in-m[:"l‘ 

The idea of adjoining to R an element satisfying a _certain 

equation, for example adjoining i satisfying iz=-1 to get R[‘L\,-ccan 

be used for other equations as well. For example 

R[] 
is obtained by adjoining ¢ with El=o. Since the equation is quadratic, 

'H{LE] shares with :U?Lll being "two-dimensional over JR " (in the linear 

sense which we will be studying in detail) but m[‘]is not a field nor 

even an integral domain since it contains a non-zero nilpotent element. 

In more detail every element of R[EIcan be uniquely expressed in the form 

ata't 

where a,a' are real. For example 

l1=1+o0¢t 

is the multiplicative identity of IR[_’J while 

O0=0+ 0t 

is the additive identity and 

f_=o+1-£
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- . ’}isl ' . . 
The addition in [ is performed in the obvious manner, and if we 

work out the multiplication using the distributive law and the speci 

2 
rule £ =0 we find 

(beb'e)= ab + (ab‘+a'b) 

where indeed ab , ab'+a'b is a new pair of real numbers obtained fro 

the two pair s a,a’ b,b' which we wanted to multiply. In particula 

if a=b =0 and a'=b'=1l we recover the fact that £Z=O, yet £ # 0 

since O is the element both of whose components are O. 

The significance of the above multiplication law can be better unde: 

stood if we consider first another)"infinite-dimensionalz example of 

a ring 

Tolt]= ring of all polynomials a°+alt+a2t2+...+antn 

of all possible degrees n with all possible 

real coefficients a, . 

As the notation suggests the polynomial ringlfitiflcan also be viewed 

as the result of adjoining an element t to flz-, but this t has no 

special properties[;hich, paradoxically, is itself a very special 

propertf] The polynomial ring is an integral domain, but definitely 

not a field since indeed the only (non-zero) polynomials whose 

reciprocals exist as polynomials are the constant ones a- 

However, the ring of all rational functions{R(%), which is too big 

to be of much use, is a field. An important ring between the two is 

- L 
/U{ L-‘L) t 

sometimes called the ring of "Laurent polynomialsB consists of all 

rational functions which can be expressed in the form



for some n,in EN with a, all real. The significance of this 
i 

ring for linear algebra is that t is invertible (i.e. has a 

reciprocal) but has no special properties beyond that. Now suppose 

R is eithermlq or flLt,t] and that « is any given real number 

Oor any given non-zero real number in the second case. Define a 

mapping R B> TR 

by sending any f in R to its value at X . 

p(f)=Fl)  govere £ R 

Then it is clear that p is not only a linear transformation, but 

Py piply) g e B3 R 
. P(1)=:L 

because of trivial properties of evaluation at & . But now define a 

mapping R v TR LE,—l 

as follows , , o 

(8)= FQHDf))E o ottf T 
where Df denotes the derivative of f (Recall that TQ: TR[_'CK 

- "+ 4 
CYy I? \RLtI + 

is a ring of functions in which differentiation makes sense.) 

THEOREM v is a ring homomorphism 

Proof =showing that Leibniz rule for differentiation is 

equivalent to the rule for multiplication in the ring /L&,LEI 

obtained by adjoining a nilpotent quantity tofi . : 

Remark: 1In differential geometry one considers the ring E—XS 

of all smooth real functions defined on a domainX_ in higher 

dimensional space. Then a homomorphism U\?*?R is determined by
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X 
a point F of -X and a homomorphism_R "7‘[&&1 is determined 

by differentiating in the direction of a certain tanagent vector ton- 

To finish this preliminary survey of examples of commutative 

rings which are basic to linear algebra, consider, for a given n, the 

set 1E£L of all n-tuples of real numbers, and define this time the 

multiplication too (as usually the addition) in coordinatewise fashion: 

<A "x‘b(;I - Yy = <X.#¢]*‘2jz) ey X fu? 

. Lot . . 
Then in particular l=(1,1,...l7 is the identity for'fi2 . This ring 

is closely connected with the important problem of diagonalizing 

linear transformations and matrices. 

. w L . 

EXERCISE With multiplication defined this way-“g is not a field; 

in fact it has precisely 2" idempotent elements.



2x2 Re al Matrices 

They form a four-dimensional linear space over IR. The multiplication rule 

Y qu ‘°|| bzl a"“’n*aubll a,,bZ‘+a2'ng; 

)i 

012 Qpn by by, acz"u"'qzzl"lz o'n.l’z:*ant’zz 

This rule is associative and is distributive with respect to addition, while 

having 1 =1, '(1 O) 

o 1 

as identity. 

The subsystem of all matrices of the form 

A O 

O A 
is closed under multiplic;tion and addition, and contains 1; any two matrices 

in this subsystem commute, i.e. AB = BA for the matrix product of any two 

A,B of this special form. Hence these special matrices form a commuéative 

ring. This ring is in fact isomorphic to'flgz‘with the latter's co-ordinatewis 

multiplication. For example 

are the two non-trivial idempotent elements. 

[EXErcISE] ¢ . (o 1) 
(o) (0] 

is nilpotent under matrix multiplication. If A is any nilpotent 2 x 2 matrix 

the order of nilpotency is 1 (or 0). The set of all 2 x 2 real matrices of the 

form ‘X S ) 

O 
(the two diagonal entries being required to be equal in each matrix, but arbi» 

ry for various matrices in the set) is a 2-dimensional linear space overITi 

is closed under matrix multiplication, i.e. 



where the two ¢ entries are the same. Moreover the multiplication among thes: 

special matrices in our set is again commutative, i.e. 

/U )7 )\ S = same answer as above, not merely 0 /\J O } same kind 

Thus '(:kis is a commutative subring of the 2 x 2 matrices which is 

actually isomorphic to lR[E] , since 

N AN %o+08) 
——— 

o A o X oXe) 
= 21+ Se€ for Ly 

. fi*“:“(g 2) 

is also nilpotent under matrix multiplication. However (calculate) 

Ee¥=E ¥ 
and (in contrast to the commutative case where the sum of nilpotents is again 

A,Siwfi. 

nilpotent (albeit of higher order)) 3 

(E+E%)+0 
nor will any matrix power kill £ re* xS 

{ 

EXERCISE One can find two matrices of the form (O Az),diagonal entries 

not the same, which do not commute under matrix multiplication; 

but the product is at least again of the same form; these are 

called"triangular" matrices. 

The matrices of the form 

are closed under multiplication and commute among themselves, and two of ther 

satisfy the matrix equationIx2 +1=0 
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More Exercises on 2x2 matrices 

6) Assuming 52 = 0, 5*2 = 0, (8'*8*)2 =1 |, show 

that . 5 . 
* " 

(ESH? = €T (e'e)? =€'¢ 

greet - e (EEN (gD = (EEV(EEN 

Eer+e'€- 1 (E-€Eh% = a1 

and check by matrix maultiplication. 

7) Find a 2x2 matrix T which has a reciprocal T'lfor which 

T =E'r 

- * 

Express T 1 in terms of E, e 

8) The trace of a square matrix is the sum of the entries 

on the main diagonal 

1 ac) = tr(a) if ¢ 1is invertible, Then| tr(ab) = tr(ba) |, tr(c 

tr(atb) = tr(a) + tr(b), tr(ab - ba)= 0O 

9) What is the dimension of the space of all 2x2 matrices 

whose trace = 0 ?
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IM ATRICES satisfying SIMPLE EQUATIONS 

_ 

We will show later that anv 2»2 matrix t satisfies a quadratic equation 

("Cayley-Hamilton") !:2'- b’(t)t <+ de/t(t) = O 

where tr(t) and det(t) are scalars.In fact tr was defined in exercise 8 and 

tll tlz =t“ tzz’_ t t the determinant of a 2x2 matrix is defined by 
2 21 

ta Bz 
EXERCISE 10| Verify the above Cayley-Hamilton equation for t - 

(59) » Ge) s (88), (87)- 
EXERCISE 11| Assuming the Cayley-Hamilton equation (and that the scalars are 

a field (such as -I_R )) show that if det(t) ¥ O, then t is invertible , in fac 

for scalars X,d !'...8 &'(Xb - kz) 

EXERCISE 12| Assuming the Cayley-Hamilton equation, show that if t is a 

2x2 matrix having det(t)=0, then either t2=0 or t2 =)\t for A a non-zero scalz 

EXERCISE 13| t = \e, e? = e —__-> t2 = At ( Ascalar) . Any 2x2 matrix 

(overlR) is either invertible or nilpotent or a non zero scalar multiple 

of an idempotent. 

EXERCISE 14| There is a 3x3 (even upper triangular) matrix which is neither 

invertible nor nilpotent nor a scalar multiple of an idempotent. 

For example l 00 2 
t=(001] . t is an idempotent e, and there is a 

OO0 
. 3 2 

nilpotent £ such that t=e +£, eEcee =Q.Hence tT =t 

but t satisfies no simpler equation. Show that this t is neither invertible 

nor nilpotent nor a scalar multiple of a idempotent. 

* Recall that a square matrix is 1 called upper trian 
entries are on or above the main diagonglf. guier 1f all its nonzero
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15) Let V be a linear space (not necessarilsz) with two 

given linear operatorzOVQG satisfying the equations 

of exercise 6 . Can V be one-dimensional? If T 1is a 

. 2 . * 
given operator with T = 1 and we define A = TA T 

for any operator A, show that 

» * % 
(AB) =AB 

L2 

A = A 

If in particular T=€4 E*) i= 6 -6* 

* . * ® 
show that i = -iy (€) = € 

How must A be related to T, i, € in order that 

* * 

AA = AA? 

How must A,B be related to T, i,&in order that 

2 2 2 [a[2]e]* = |ne] 
vhere we define IAIZ = AA*? 

In the case V -=IR2, €=(g i) ’ 'r-(i é) show 

| ] 
that the set of all A for which A = 2 is a commutative 

ring and that



For any given ring R, there is a "linear category" (to be explained 

presently) of R-linear spaces and R-linear transformations. It is traditiona 

since Emmy N8ther, to call R-linear spaces "R-modules" when one wants to 

emphasize that R is not necessarily a field, and to call R-linear spaces 

"R-vector spaces" when one wants to insist that R is a field. In either case 

one often says that the quantities in R are being used as scal3rs for 
. ____________J 

"scalar-multiplying” the quantities in the R-linear spaces in the category 

of R-linear spaces, and also that R is the 2round ring for this category, 

which means the same thing. There is nothing wrong with the term "module" 

since it is appropriately abstract, though it does tend to obscure the fact 

that all that's involved in it is the widespread and important mathematical 

phenomenon of linearity , in weaker or stronger senses depending on fi . 

The term "vector space", though firmly rooted, is from a geometrical or 

physical point of view misleading in two ways: 

(:’ The vectors drawn as arrows denote quantities in a linear space which are 

acting by translation on the points of physical space (which is not the 

same space: there is a zero vector but no distinguished zero-point in 

physical space, there is vector addition of translations, but no 

distinguished addition of points); the linear spaces of linear algebra 

are slightly more abstract since they are not furnished with an action on 

points; we can and do consider the richer structure where this action is 

taken into account, but we no longer obtain a "linear category" but 

another kind of category. 

<:> Forces, pressures, momenta etc. varying over a region X do form linear 

spaces of "vectors" in the physical sense which can be multiplied byifil 

indeed, but can in fact usually also be scalar-multiplied by smooth 

functions from the ring R = fiir of smooth functions on X, and R is not 

a field in the algebraic sense.
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The term "linear space" should however occasion no confusion. 

DEFINITION OF LINEAR SPACE 

The first part of the structure characteristic of a linear space '\/ 

does not involve the ground ring R of scalars, it is an operation of 

WAV = 
which assigns to each pair of elements of.ifranother element of Q) .Thus 

addition 

to specify a particular linear space we must first tell what the elements 

of <7 are and how to add them. But there are some restrictions (or axioms 

on how this can be done: we must be sure that there is a zero-element O in 

_RZ.which satisfies 

’UJVO:V:O*"U/ for all\V in \/ 

relative to the specified addition, and further the addition must satisfy 

the commutative/associative law . 

U r0) + (W10, ) = (Vg tw ) ¢ (1 iz ) 

for all quadruples 'Ull) 'U’z)'wi , Wy in 

Then the scalar multiplication 

R —>V 
must be made clear; it must assign to each scalar a in R and each VU~ in ;; 

a "product" or "multiple" av infivr, and this must satisfy several axioms: 

_ - a( v, rV)= eV ra Uz 

aC =0 

where both additions are "vector" addition and both 0O's likewise, as well 

as 1.v:,u/ 

@bV = albv) 

where the multiplication "internal to R" is required to be compatible with 

the scalar multiplication between R and V, and finally



@vh)v = avU bV 

ov=0 

27 

where we have "internal" addition in R on the left and "vector" addition in 

-Kfron the right (and of course scalar multiplications on both sides). 

l EXERCISE l If (as usually assumed for rings) R has§ an operation of 

minus R—7 R satisfying q+ta]=£) for all a in R, then using the above axior 

on scalar multiplication we can construct an operation \J:‘)'V;on any 

R-linear space (call it again minus) for which we can prove 
— SN 

for all vV ¢ ‘U’f(-‘l)')—() 

EXAMPLE R itself is a basic example of an R-linear space, for any ring R. 

If X is any set, then the set 

Rx 
set of all R-functions on X 

set of all mappings with domain X and codomain R 

is an R-linear space where we define 

f+gqg 

to be the function whose values are given by 

(f+g) (x) = f(x)+g(x) for all x in X 

and similarly for a in R, £ in Rx 

af 

is the function given by 

(af) (x) = a(f(x)) all x in R 

since f(x) in R (for each x) it can be R-multipled.by a since R is a ring. 

In case X is a finite set, which is moreover ordered, it is usual 

to specify functions f on X just by listing their values and in view of 

conventions we will write these lists vertically and call them column vecto: 

Thus if'X:{i,l,}S is a three element set and -@.X %R has 

Cu=6 (=% F@=0
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then we can specify f as 

* e 
= A 

3 
10 

Then the addition of functions defined above tells to add two column 

vectors by adding at each level &.4. 

6\ /2 A 

43_ o ::43- 

iC - 2 

while scalar multiplication a f says to multiply each entry in a 

column vactor by the same a 

' b i ¢ a 

Ll=/ 2 
af 3-1 =3 for any a in R 

i O 

LINEAR TRANSFORMATION 

If V,W are two R-linear spaces, then a linear transformation from 

V to W is any mapping T 

NV —>W 

which satisfies these conditions (of "linearity") 

-T_('lf{r1J5)'==~T(ifi)'r-T-(X{L) 

'1“((1Ufi== cLTr{TY) 

for anylglfi{lfilh in V and any a in R; note that the operations of vector 

addition and scalar multiplication on the left hand side of the equation 

are those given by V, whereas on the right hand side of the equations they 

are those given by W, even though they are denoted by the same symbol 2and 

on both sides.
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/ Tr)=ots for all r 

where § is a given element of R. Conversely, if S is given and [ is 

T 
z\ EXERCISE The only R-linear transformations R——> R are those given by 

defined by this equation, then T is R-linear. 

\ 
;"- If Sl, 52 are two given scalars in R and if V is an R-linear 

/ : : 
space, then we can construct an R-linear transformation 

<~y SSus) Lx 7 

as follows. First we make the set V x V (of all ordered pairs of elements 

of V) itself into an R-linear space by defining the sum of V/and W (written 

as column vecto.rs) "y : UV +W - 
U ( +(w, | { &H"U’Juui NYORV, 

Uy 

and the scalar multiple 

| a. V) 
G od 

Up3 2V 

Then we define the mapping (Sl,Sz) on such "column vectors" by 

GaS)( Vi sv s, 
v t | 272 

2 

the result coming out in V., Verify that the mapping thus defined satisfies 

the linearity conditions, and so is an R-linear transformation. In particular 

addition V xV L) v is an R-linear transformation. 

Is multiplication —\7—S-> \V by a fixed scalar s an R-linear transformation? 

! EXERCISE] (In the case V = R) the only R-linear transformations 

"‘i‘ o 

RxR R 
are of the form T = (Sl,Sz) as in the previous exercise, with Sl,52 SCB[3Y5 

| determined (how¥)by T.
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The only R-linear transformations B ‘—?Te R 

are also given by pairs of scalars (better written this time as column 

vectors themselves, rather than rows) .How are the two scalars determined 

by the given R-linear transformation T? 

IEXERCISE ‘ Rz = R X R 

That is , the definition of addition and scalar multiplication comes out the 

same whether we reagard R2 as a special case of the function space constructic 

Rx in which X is an abstract set with two elements, or regard it as the 

special case V = R of the "square" \/»\/ construction for an arbitrary 

R-linear space V.



Linear Combinations 

If I is a finite index set and fliskfor each i€I and vi£V for each 

i€ I, where V is an R-linear space, then 

.Lza'.'\z"& 
is a sinqle element of V called the linear combination of the v's with 

coefficients the >\'s. For this to make sense the family of coefficients 

and the family of "vectors" must be indexed by a common set I (but there 

may be repetitions in one or both of the two families):; and of course each 

coefficient in the family ofA\'s must be a scalar and each vector in the 

family of v's must be in the same linear space V over the ring of scalars. 

For example if I is the set of all commodities available in a certain 

supermarket and if Ai is the price of the i-th commodity in dollars ner 

unit amount of the commodity, a specific operation of linear combination is 

thus determined. Narmely for each visit of a shopper to the sunermarket let 

vy be the amount the i-th’commodity purchased by the shopper. (Thus V is the 

one~-dimensional space of all possible amounts of commodities, e.a. of all 

possible weights - we could even imaagine these to be necative since the 

shopper may be returninoc some unsatisfactory oreviously-purchased items). 

Then of course the linear combination (with coefficients the aiven prices) 

of the amount-family (vi)iiI for anv shopper's visit is 

Z A . U. = amount of dollars which that shonner 
‘ Lt ¢ is expected to pay at the check-out. 
LE] 

In this example, V is one-dimensional, and in that respect only the example 

is very special compared to the ones we have to consider. But even here V 

is not the same as R, which latter consists of "pure" quantities, whereas 

V consists of "weiahts". The ratio of two weights is a nure quantity; i.e. 

a pure guantity multiplied by a weight (scalar multiplication) is another 

weicght. If we chose a fixed weiaht, like one kilogqram, then we can define 

a mapping R ) V 

by sendina any pure k to the weiaht equivalent to A kilograms: this 

(linear) mappinc so defined is invertible (hence an"isomorphism"). That is, 

the choice of unit permits us to "identify" the two spaces R,V. However, this 

identification is conditional; if we choose a different unit weicght A 

say the weioht of one pound, the two spaces R, V remain unchanaed (and distincl 
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but the mapping R w—egV (defined byk l—))%)via which we make the 

“identification” is different from the one based on kiloarams. 

Ifsz then the composition of one with the inverse of the 

other is a linear map from R to R, hence (by a previous exercise), determinel 

by multiplication by a fixed (pure) scalar, namely the conversion factor from 

one unit to the other. To simplify, we could also identify "dollar" as a 

certain weight of silver. 

In most of our examples V will not be one-dimensional, but a multi- 

dimensional linear space, for example a space of intensional functions defim 

on a region,or a space of extensional distributions on a reqionj or a space 

of translation vectors in physical affine space,or a space of column vectors 

or a space of matrices, etc. For any R-linear space V and any finite index 

set I we can forma new space VI 

Elements of V@ = all families of elements of V indexed by I 

Addition of 
: £ fami . v.). Elements of VI : The sum of two families (vi)lfil and (V:L):LG.I 

. is the family v + V whose i-th entry is the sum 
of the i-th entries of the two: 

(v#0); g3 VitVy 16T 

Scalar Multiplication 

of Elements of VI (Av)i def )Vi igx 

by Elements of R 

The dimension of vI is bigger than the dimension of V by a factor equal to b« 

cardinality (number of elements) of I. 

aim(vh) = [1]-dim(v) 
( In our supermarket example V is one-dimensional, but V 

if there are 341 commodities available: it is the space of all possible 

purchases bv all possible shoppers at the given store). Then if (Ai)ieI is 

any fixed family of scalars indexed by the finite set I, the nrocess of 

forming linear combination with those scalars as coefficients is a well- 

defined mapping VI 

PHED, L L 

" / tEL 

since any family (element of VI) can be substituted into the blank and 

the result will be a uniaue element of V itself.(Recall that the definition 
———— 

I is 34l-dimensional 

of ‘mapping”is any process which satisfies a condition of the type 

i Ve
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1) EXERCISE The operation, ki(){of forming linear combinations with : 
- t 

fixed family of scalars as coefficients,is a linear trans- 

formation between R-linear spaces. 

2) EXERCISE (Rz)I o (RI)2 i.e. construct a tautological invertible 

linear transformation between the two indicated linear space 

3) EXERCISE Not every R-linear transformation vl -V is of the form 

"linear combination with certain given coefficients" if 

dim(V) > 1. That is, construct a counterexample with V = R2 

[T HEOREM]J]Any R-linear transformation RI—L—3 R is of the form 

T =27\i()iwhere the coefficients 3" can be determined from the aiven 

fransformation T. 

PROOF : Assume I is a given finite index set and T is any given R-linear 

transformation RI—) R. Let e be the family of elements of R whose i-th 

dévwhose j-th entry is 1l. That is entry is O for any i # j, an 

(e.)i= . for all i 
0 i#j 

Thus we have a family of families, i.e. for each j£I ejeRI'. These 

"unit vectors"” ej are defined once and for all; but now for any given linear 

transformation T whose domain is RI we can apply T to these special elements 

of the codomain of T: since in our present case the codomain of T is the 

linear space R of scalars itself, we can thus define 

. T . . ¢ I 

Ay e T (] 3 
We now try to show that the operation of forming linear combination with 

these coefficients is the same as the given process T, when either is aopliec 

to any elements of r! (not only to the very few elements ej of RI used to 

define )j from T): Let xj be any family of elements of R(i.e. a sinale 

element of RI). Then 

Xag X, € 
d d Jet 

That is, since the xj themselves are actual scalars (in the special case 

considered in this theorem) they can be used as coefficients to form the 

linearjombination of the fixed vectors ej, and the result is x itself. 

Verify Hence for the given mapping T



30 

T = Tije:l = ijT(ej) since T is linear 

= zxj)j by our definition of Zj 

= Zj xj since R is commutative 

jeI 

= the linear combination, with the coefficients 

of the arbitrary x§,RT 

Since this holds for all x, T =£Aj( )jas we wanted to show 

COROLLARfl If V is a one-dimensional R-linear space, the only R-linear tran¢ 

formations VI—;V are given by linear combination with a fixed family of 

coefficients. 

Sketchh of Proof: Choose a unit u of V (i.e. a non-zero element: multiplying 

it by arbitrary scalars is an invertible linear transformation R-'—"—)V with 

inverse ‘.7—-‘£'}R (the existence of such u's is the definition of "one 

dimensional”). Then if T is any linear VI——’V, u..‘O-r’u. is a linear 

transformation RI——}I which by the theorem is determined by coefficients >\ 

which can be transported back to‘/and be shown to work for T itself. 

We have used above the fact that any linear transformation T preserves 

(an equational condition) any linear combination; this is in fact really 

what one wants linear transformation to do, and so could very well be taken 

as the definition of "linearity" for a mappina T, except that it may seem 

excessive to invoke arbitrarily large finite sets I in a definition if one 

can avoid it, even though in the applications of the definiton it is pre- 

cisely the arbitrary finite sets which come up. Let us spell out this more 

liberal definition; first we need to make explicit a certain tautoloaical 

construction. 

If T is any mapping whose domain is a set V and whose codomain is 

a set W, and I is any finite index set then we define another mapninoc 

VI T W — 

with domain the set of all I-indexed families of elements of Vj;and codomain 

the set of all I-indexed families of elements of W,by the specific formula 

(TI(U)),; =Ty "6) 



Then 
3/2 

DEFINITION If V,W are R-linear spaces and V-—T—) W is any mapping, v 

say T is linear if and only if for any finite set I and any family(/\")‘:&' 

of scalars (i.e. I -2‘—) R is any mapping) the following diagramr is "commut 

tive", i.e. the indicated equai;gomes out true). 

M, \L ngz D—(zm;: > A T0r) 

>\n N oo ™ aenow 

The equality required is of elements of W, constructed in the two indicated 

ways; as is customary we have used the same notation 2);( ): for the linea: 

combination operation in the two different linear spaces V,W even though the 

concrete interpretation depends on the specific definition§of addition and 

scalar multiplication given in the specification of the linear structure on 

the two spaces. 

Now the liberal definitior of linearity implies the previously given 

definition of linearity as follows: Let the index set I be the two-element 

set whose only elements are 1,2, and let the family of scalars beAl=1’Az= 

Then Z)/\‘V,; = 'U’_L-t-'U/& 
itl 

i.e. for this particular choice of index set and family of coefficients, 
" . , . s . 
linear combination" reduces to simple "addition" of a pair of vectors: hence 

the general linearity condition on T implies in particular that 

V{t;z’; l >W{1,z’: 

t) 
v/ SIN¢ 

T 

In words, if T preserves general linear combinations, then T preserves 

addition in particular. Now if I is instead a one element set but [/\,:)(..&I 
is an arbitrary "family" (one element) ) , then linear "combination" with 

coefficient A is just simple scalar multiplication, so if T preserves qenera 

linear combinations then in particular T preserves scalar multiplication by 

any scalar A : M)\j I-)l‘l)'_“ TOw) ='2TM oLy’ 
vIw 

Thr v, )= T )TOR) 
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Note that if I has only one element, vi = v. Similarly, if I is emoty, viz 

the linear space with only the zero element, and we get T(0) = O. 

Briefly, the three clauses in the original definition of "linearity" 

of a mapping are special cases of the liberal definition{ Conversely, as 

needed in the applications, the three-clause definition implies that T pre- 

serves general linear combinations: this has the usual sort of proof for 

such things: (a) by mathematical induction and the associative and distribu 

tive laws, one proves it for arbitrarily large ordered sets of the form 

jihz{gzfiruig 
then (b) one uses the fact that for any finite set I there exists an n and 

=1 which can be used to transport a bijection (invertible mapping)‘gzln 

“( Y@ the theorem from I_ to I. C n 
The(g :In-—$>I just mentioned can be a source of confusion in 

applications, since Ks is not uniquely determined by I (though n is)—*gamount 

to counting the elements of I in a particular order, so that /%(/) is the 

"first" (according tOfg ) element of I'f3(2) is the "second" element of I 

according to»/S, etc. In the case where I is the set of commodities available 

in the supermarket, a mapping/g:In———€>I could be somebody's subjective choic 

of a "shopping list" written down in a particular order (more nrecisely, this 

would normally be injective but not bijective, since the shopper would not 

bother to list the items of which he plans to buy zero amount). If there 

exists a bijectiong :In—-—> I, one says (by definition) that 1] = n; but in 

that case there exist n! (factorial) different choices for/8 , none of which 

are to be preferrred in general, for example the objective meaning of the 

supermarket bill 

/B/\(V) =~ Z_ A i”’,; 
AN 

for given price family.:\ is indepe#dent of the subjective ordering in the 

shopper's shopping list)as wellvas:the subjectively chosen ordering in which 

the check-out person rings up the amounts vy 

The ordering of the index set of course is involved in the notation for 

families of quantities as column vectors, row vectors, and matrices: the 

meaning of matrix multiplication is objective, but the way the matrices are 

written in a particular case changes when the choice of ordering is changed - 

what must be maintained to maintain the meaning is the inteagrity of the index 

sets and of their elements. Thus if I, J are sets, by alJ x I matrix of scalar: 

is meant a doubly-indexed family 

b..% R i¢ J 

ji : it I 

and if K is a third set by a KxJ matrix is ment a doublv indexed family



S, . 

ad £ xex 
k3j 

jeg 

A, . , . . 
=ince the index set J is the same, the matrix product ab can be defined 

as the KxI matrix 

TR e i 
@bl =% 3b 1 o 

- A‘& i 

When we are moreover given orderings of the three index sets I,J,K, then 

a,b, and ab can be displayed rectangularly and the above definition is seen 

to be equivalent to the " each row of a times each column of b to get all the 

entries of ab" description where each of the "times" really means a di fferen 

linear combination with index set J. The matrix multiplication sitiiation coul 

conveniently be described as follows: 

S TING 
— NN 

I —+—— K 
ab 

where the mark on the arrows indicates that these are not ordinary mappings 

from I to J, etc. but matrices with entries in R. However, 

THEOREM A JxI matrix of scalars determines an actual manving 

RI--’.RJ which is R-linear, and all R-linear mappings from RI to RJ are 

so determined. 

PROOF : Let t) be a J x I matriX . We will define a mapping T as follows. 

For any x&RI we can view x as an Ix:l matri;_a_t (a "column vector"”, if I were 

ordered) , where I4 is a one element set, LIxIl—fl-:—} I‘] 

: B . 

T, ——T —30 

The matrix product is a JxIt- matrix, i.e. a J-indexed family of scalars, i.e 

an element of RJ. Recalling the definition of matrix nroduct, we see that we 

have defined [—;~_ : 

(T =2k 
| : 8L < 

It can then be verified that Ty, is R-linear and that, conversely, any R-line 

mapping R{—2—1’RJ is of this form, where the entries b;; can be recovered 

from T-as-a-process by feeding in the special O,l "column vectors" e as before 

aixi- 



o b a | 
1—»>J —+> K are matrices with scalar entries THEOREM 

then in 

we have Tb L Ta_ 

Te = B_" ‘b/ 
. . . . . I 
i.e. composition of linear transformations between these smecial spaces R™ i 

represented by matrix multiplication ab 

PROOF Calculate!



Linear Categories sl 

In general a specific cateocory is determined by speciffinjobjects 

and morphisms together with domain, codomain, composition, and identity 

subject to associativity and identity laws. The domain and codomain of 

a morphism are objects, and it is helpful to write 
el 

7( _4£Lg> :T/ X?D 

to mean that "f is a morphism whose domain is the object X and whose 

codomain is the object Y". An endomornhism of X is any morphism whose 

domain and codomain are both X. The composition of two morphisms is 

meaninoful iff the codomain of the first is the same object as the 

domain of the second, as in g 

xHy &H =z 
phere Y is the common object; in that case the cornposition is another 

morphism, denoted by gf, whose domain and codomain are as indicated in 

x—“—w 
K—yZ 

The associative law states that if X ———9 -—JL7 Z ———E) W;fthen v 

h(gf) = (ha)f, i.e. that in the diagram 

ysg& 
the two outer paths from X to W are actually the same mornhism. Finally 

for every object X there is an identity endomorphism lx, determined 

arono all the (in general many) endomorphisms of X by the conditions 

that for any morphism f with dorain X and any more_}sm x with cedomrain 

x K, T——?X 
fj.x=f, ,1xx-x l/ix 

X—3Y 
As two simple exarples of categories we mention 1) the category 

(here T,Y are any objects of the category). 

hose objects are all finite sets and whose morphisms are all possible 

appinas between finite sets, with composition the usual "substitution” 

nd 2) the catecory whose objects are again all possible finite sets 

thouoht of as "index sets") but whose morphisms I———> J are all 

ossible JxI matrices of real numbers with matrix multinlication as 

omposition
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N 

‘EXERCISE If af = as mappinas, then the matrix corresponding tof" 

B0 - 
This category(:Dmay be considered as "larocer" than the catecory( 1 351nc1 

any mapping I —7>J determines a matrix by 

£, = 1 if £(i) = 3 

)t O if £(i) # 3 

Such matrices may be characterized by the condition that in every "co- 

lumn” there is just one 1, the rest of the entries beinag 0; of course 

most matrlces do not meet this strincent requirement, which is whv we 

is equal to the ma- ix product of the matrices corresmponding to g.f. 

But there is also an important qualitative difference, namely the 

category whose morphisms are maépings is distributive Ax(B+C)=AxB+AxC 

for a natural sum and product on the objects (to be explained) whereas 

the category whose morphisms are matrices is linear » x B = A + B for 

the sum and product defined in the same wav . 

%Q:{;gflz Jfi\L 

i.e. the two composites define the same morphism ¥ —>W, then one savs 

we have a commutative square. A square 23s pictured is said to have a 

diagonal-fill-in if there exists a from Y to Z for which 

fi{i 1.: F;;j’z. Z:i 
Proposition If a saquare has a diaconAl fill-in, then it is a cormuta- 

tive square. 

Proof: This is easily seen to be a just restatement of the associative 

law. 

EXERCISE:| CGive simple examples in the cateaory of finite sets and 

mappings of a square that is not commutative and also of a sauare that 

is commutative but which does not have a diaconal £ill -in. 

If we have in a catecory four objects and four mornhisms for whi 

w
0
 



A morphism X ——£>'Y in a category is said to be invertible 

or to be an isomorphism if there exists in the same cateaory another 

morphism a for which the following two equations are true 45 

gf =1 

' 1.0 X ——= v 1 fg:lY z <———3— 7 

This g is unique if it exists or more stroneoly 

1 % . _ 

<:::> EXERCISE| If glf = lx and fgz = 1, then a, = a,. 

ri—:—;:T. where £ 1 Thus we can name g in terms of f is defined only 

if f is invertible and is called the inverse of f. 

EXERCISE lx is invertible 

£ f is invertible, so is f = and (g™l - ¢ 

1f £, D are both invertible and composable, then ?f is 

@) f ] xrytez 

1 

e 

The socks-and-sho principle) 
d mappings 

An isomorphism in the cateoory of setspg; often called a bijection. 

Two objects X,Y are sald to be isomorphic X 2¥Y iff there exists at 

least one isomorphism between them. In effect two isomorphic objects 

(though they may be different) are mathematically indistifi@uish@ble 

(unless more is known about them than just that they lie in the cate- 

gory in question), however in that case they are in fact coming from 

objects in a "richer" category where they may not be isomorphic). 

EXERCISEl In the category of sets and mappings, two sets are isomorphif 

iff they have the same number of elements. 

5 
O 

EXERCISE[ In the catecory of matrices, there exist isomorphisms Q =42 

which are not induced by mappings 2 —> 2 (However, if there exists 

an invertible matrix I~ J, it does follow that there exists also 

an invertible manning I—>J but some calculation is needed to 

produce it) 

But the problem of the existence of an isomorphismr between two 

given objects (and the resulting division of all objects into equiva- 

s of finite sets for each natural number n = 0,1,2,3...., and the 

corresponding to n consists of all finite sets isormormhic to 

the set [g]=-{l,2,....,n}-) by no means finishes the role of isomorphipm: 

because where there is one there are usually many: 

A morphism which is both an endomornhisr and also an isomorphisfi 

is called an automorphism, and the set Autc (X) of all automorphisms 

of the object X in the catecorv Gg is called the automorphism grouvp 

(D]
 

‘_
l 

1]
 

n 

0 1=
 

v n 1]
 

lence classes known as isomorphism classes - e.g. there is one isomorphi.



EXERCISE| In the category of sets and mappinos, if a set X has n ele-! 

ments, then Aut(X) has n! = n«(n-1) (n-2). .3.2.1 elements.ry!f;nn 

because in general the number of mappinas from X to Y is m® if X has 

n elements and Y has m elements. 

EXERCISE | In the category whose morphisms are real matrices Aut ([p]) 

whose determinant does not wvanish. 

EAERCISE| In any category, if X 2 v, then there is a bijection between 

to define this). Further, the number of isomorphisms X.——.Y¥Y is the 

same as the size of aut (X). 

A very important role is played by pairs of morphisms satisfy- 

ing the one equation 
f 

- — 

EXERCISE | In the category of sets and mappings, if we are given two 

sets X and Y, then there exists a pair f,o as above iff n &m where 

n = ii{l and m = PY|, 

In general the existence of a "section/retraction" nair f,g as above 

is a very strona proof that X is "smaller" then Y; in catégories'riche 

than sets "smaller than"is more aeneral than this but one still worK 

to use it in "local or" approximate ways because it is so explicit 

when one can get it. The importance is reflected in the many names tha 

have come into use to describe various aspetts: 

f is called a split monomorphism iff there exists a retraction 

c for £ E’L.e. _gg ng = lx]] 
g is called a split enimorphism iff there exists a section f for g 

[i.e. F£ [at = 1]/ 

A pair f,g is called a splittina for an endomorphism e of Y iff 

fg = e and gf = 1x 

An endomorphism e is called splittable iff 3 x}flg.... 

EXERCISF| Any splittable endomorphism e is idempotent ee = e. 

EXERCISEJ If e is an idempotent endomormhism of Y and if xl, xz occur 

in two splitting pairs for the same e, then xl g x2 

EXERCISEJ In the catecgory of linear spaces and linear transformations 

. 2 .. . . s s . 
is an n -dimensional (non-linear) space consisting of all n x n matric 

Aut (X) and Aut(Y) which preserves composition. (Choose X —> V¥ in ord?r 

i —_—— i = if X< - Y with of lx, let Yobe the kernel (nullspace) of the 

Show that anv element y of Y can be uniquely expressed as a sum 

split epimorphism g. Say (for f understood) that "yg X" iffg x[?x=i] ! 

es



Y = ¥1+Yg v1€X, vy, & Y, 45 

(The same is actually true in any linear category). 

In the category of linear spaces and linear transformations 

the case X = 0) we have a very explicit way of handling iraces, (which 

will not be directly available in more structural categories of linear 

systems, etc: A morphism f is called quasi-invertible if there exists 

another morphism g in the same category with lfgf = f 

EXERCISE | If £ is quasi invertible, then there exists a "quasi-inverse' 

g for which both fgf = £ and ofa = g [éint: given a g satisfyinc only 

the one equatioi, show that Edngfg is an improved version satisfying 

both. ‘Moreover g = g, so that no further improvement is possible with= 

out more information.[ If a is gquasi inverse to £ , then both af and fgqg 

re idempotent (endomorphisms of domain and codomain of £, resmectively) 

The following applies in particular to the category of 

linear spaces and linear transformations. 

Theorem: In a category in which every morphism has a quasi-inverse 

(I:\where j is a (split) monomorphism and p is a (split) epimorphism. 
| A 

and every idempotent has a splitting pair, it follows that every mor- 

phism £ has a factorization 

f = jp X 

roof: EXERCISEI Let g be a quasi-inverse for £ and lef X,i,p and 

x . 
DEFINITION X -F—}Y is a monomorphism iff v T v T__"%X [fx1= fxz";”‘l4 p———— 

X 
rA 

EXERCISEl Any split monomorphism is a monomorphism (has very simple 

Y',j,r be splittings for the idempotents gf and fq respectively. 

De fine 'x'—il—a»y' by f' = rfi. Then f'has an inverse q' defined in 

a ddal manner. (Thus we may identify X',Y' and assume f',q' are identi- 

ties) jf'p = f so £ is factored as required. 

Actually the mono-epi factorization is essentially determined 

Fy f (though the splittings g,i,r are not) and is called the image of f 

In general "epi" and "mono" are not such simple equational properties 

but involve a universal quantification over all (or at least many) mor-+ 

pbhisms of the category in question: 

EXERCISE | A morphism in the category of sets is a monomorphism iff if 15 

Enjective. 

(as well as in the category of sets and mappinas, with the excention of 

proof, as does the followinag "dual}.
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EXERCISE\ Any split epimorphism is an epimorphism, where 

DEFINITION: Y -27>Z is an epimorphism iff 

b/w b/z E%%; W [Y{g = w,g =~ W = wg;l 

EXERCISEW A mapping of sets is an epimorphism iff it is surjective 

© 
—Z?int: Take W a two-element set (of "Wahrheitswerte") 

’EXERCISE[ If every morphism has a quasi-inverse, then every epi- 

morphism and every monomorphism splits (in the two respective senses). 

Unfortunately in most categories the foregoing exercise does 

fot apply so we are forced to consider two distinct ways that an object] 

may be smaller than another; in fact we combine the two as follows 

Vx _éY'//means g x €—s —Y where heavy head means epi and tail 

means mono. Fortunately in most categories iterating this idea does 

not lead to more complications; i.e. < so defined is already transi- 

tive. 
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Why are categories like Lin, Lin", Lin‘/, andé Linw considered as 

"linear"” cateocories? There are essentiallvy two answer s, which can be 

shown to be essentially ecuivalent. The first is that "mans can be added 
~ 

For examnle, if VT'; VW are two linear transformations between two 

linear spaces, we can define a manninc 

A+B J w 

by the formula 

(A+B) (v) = A(v) + B(v) for all vgEvV 

Then A+4B is linear (if 2.,B are) because 

(A+R) (invi) = A(EZ NV, + B(Z)sivi)— definition of A+B 

= Ehipvi +SAtii — since A,B linear 

=Z)i (Avi+Bvi) — since W linear space 

=Z;‘i(A+B)vi — definition of 2+4R 
againl 

Now 1if 
) A 

U Bv—?,',w_s_,x 
are all linear then 

S (A+B) 

Together with the associative law of cornosition (which holds for any 

cateqgory) and the comrnutatlv:Ltv, associativity, and C laws for addltlo 

or mornhisms hetween each given pair V,7, the above édistributive laws 

i 

(A+B) T ! 

| 
| 

) 
are the essential axioms for "linear cateqory". 

We get a whole class of different examnles of linear categories 

as follows. (See theorem below). Consider any "directed graph"G which 

means a alven set I of "vertices”, a m.ven set G of "edges" ang a glven 

pair a BIJWGPSGAE'I thought of as assigning to each edge g its 

"source vertex" éo(a) and its "target veyteax él(q) No axioms are im- 

posed in general on the structural mavs ),,;31 of a oramh 68(1.6,5, §1> 

If I,G are finite sets, then the granh § can actually be pictured by 

drawing the vertices as dots and the edges as arrows; 



:In the pictured example, I has 5 elements, G has 8 elements and the 

| definitions of d,: ¢ are forced by the picture. ' 

Exercise: Find a pair of edges 519> in the above picture for which i 

i EI(g1 = é\ (g,) and Bi(gl = bi(gz) but g, # 95 (Parallel edges"”). 

!Flnd also a pair h;, h EG for which 9, (hy) = 91 (h,) and ai(h )= Qo(h ) 

l ("feedback edge"). Flnd also an edge g such that a (a) = zi(g) ("LooP") 

fas well as a vertex i such that VhE,G[b (h) # i and bL(h) # i : 

("Isolated vertex") and finally a vertex j such that ; [31(}1) = fl 

ana Y h €63, m # fl("sink?"). 
Some of the simplest basic examples of qraphs would be the ! 

following four. X J/ .,2 L@i‘ 

Now if we are aiven a ograph G and a category € (for example the 

category € = Lin of real linear spaces and real linear transForrnatlons' 

or the catecory C-= 5 of sets and arbitrary mannings) then we can 

construct an interestinag and useful category e as follows (in case 

C=Lin, we could call Lin Gthe catecgory of "linear systems of shane 6 

and G-linear mornhisms hetween such systems"): 

0) An object Wof 66 is any system of the followinag type: to everv 

vertex 1€ 1 of 6 we choose an chject V. of @, and to every edge 

g € G we choose a morphism T _of c subj'ectlonly to the condition that 

whenever i-g->j in G (i.e. whenever bo(g) = i and éi(g) = j)we must 

specify a €-morphisn Tg whose domain is the C-object A and whose 

codomain is the e—ob"!act VJ (i.e. 

i—Z 3 in & =V J—PV in €. 

1) 1£W =<V, T} 1’0 (W,S} are two objects of CG, then by a morphism! 

A\ \%2'4 is meant any assignment of a €-mornhism Pl to every 

vertex i €I of 43 which satisfies the » {5 -homomorprhism” or G—naturaht 

condition: for all edges g€ G in G the equation below must hold | 

(where i = bo(q) '3 —bi(q)) V, AL — W' 
L - Yy 

AJT3=59 Ai’ - S 

l4 9 

Vi ——> W, 
"Remark: We often just write g alone for Ta' Sq etc. when the context 

is understood.



2) If _" }_Bfi"\V%\/’are fiv‘: morphisms then the comnosition AB is 

defined as follows o e Y9 
comnosition in 

(AB.).i def AiBi for each vertex ig I of 6 
| 
| 

' Exercisel AB again satisfies the G—naturalitv conditions for each ; 

i 

l 

edge g & Gof G , and is hence acain a @ -morphism. 

Exercise: 

only 1 Ai 

main point is to show that the A 

itself is (and if the individual inverses exist) ). 

If we consider the particular oraph \y']/ with two vertices 

and two parallel edges, and take (o4 =S = the catetory of all sets and 

all mappings, then S*.‘/ is the cateaory of all graphs and graph-mornhils 

vwhere the latter means a pair of mappings, workinoc on edges and on 

vertices respectively, which "preserve" the source anéd target relatiors 

A is invertible (i.e. is an isomormhism) in efiif and 

| is invertible in € for each vertex i€ I of G.(Hint: the | 

1 (taken toagether) is (Z-natural if' 

of two given graphs. 

Now nearly all categorieg of mathematical interest can be viewqd 

as full subcategories % _Cl € where c =g or G=Lin and G is an 

appropriately chosen graph. Here "full" means that we take the sare 

definition (of G-natural) for the morphisms of@as for the morphisms 

of 6 G, but restrict the objects, often by equations. For example, 

if(E= s >, it is often 

Pty 
reasonable to restrict to the full subcategory Qof GGwhich consist 

of all T_V—=(V,'I> for which YTl T(b = Tfl in €& Note that in this 

example there are three e-objects' V:.L involved in each efi-object, and 

the equation definingfimight just be written "0<f:5= ", by the 

T-omission remark above. 

1f € itself is a linear category, then there are many more 

types of equations which would define reasonable @ , 8ince we can usd 

not only composition in @ but also_the linear structure of @ in makinqg 

up eaquations. For example if G = I,le then very im’portant in geometr'y 

and analysis is the subcateaorv{) < — Lin consisting of all V?d' 

for whichi{d eéd = 0O An examnle fundamental in ‘feedback controlljis 

the araph flf - X 

BT A T\c | 

and the subcategory 'C Lind defined by the eocuation 

C = B(l, - 20) | 
' More exactly, note that there is a subaranh U;O Cflrconsistinq of 

only A,B, and that such a subgranh induces a trivial "foraettina" 



50 

O 

Lin ¥ — Linflg 

which in this case just omits C from anyv iF:-system to aet the under 

lying I'EJ-system. Composing this with the inclusion we get a trivial 

C\J— — LinF" | 

Fhe first non-trivial problem of feedback control theory is, given any! 

linear [E-system X _B_‘A" Y in Lin'E , to find all IF -systems in (.j? 

process 

eguation C = B(1,-AC). 

In case the Lin-endomornhism 1Y+BA of ¥ is invertible (for 

example if BA is nilpotent), then the feedback-control problem has a 

unigue solution C. 

On a first reading one could skip to the theorem on the next pdge 

Lin itself can be considered as a full subcateqorv of the 

(non linear) category gwwhere _M is the (rather larae) graph whose 

vertices are the natural numbers 0,1,2,3.... and whose edges are all 

rectangular real matrices of all possible sizes, and éo(A)_ =m, 51(.1\). =n 

\f A is n x m. Hint: To a linear space V associate the [M-system in g 

whose n-th vertex is V' = the set of all n-tuples of vectors from V, 

with the matrices acting in a sensible way, and show that an M-natural 

morphism between such objects of gM is essentially just a lingar 

transformation between the linear smaces V (in pmarticular if A is a 

_LM-natural morphism, then all the mappinas An are actuallv determined 

by the one mapping Al). 

(Introduction to topology, advanced calculus, functional 

analysis), By a (symmetric) metric space X is meant a set X of points 

equipped with a "distance function", which means a function* 

X x X -—-d———)[O; Cb) (where[O, 00)=<[r £ 1R | r> O}) satisfying the 

four axioms 

d(x,y) + d(y,z) = d(x,z) for all x,y,z in X 

d(xIY) = d(YIx) 

d(x,x) =0 

d(x,y) = 0O @x = y. 

If X —£—-¢-‘Y is a mapping between two metric spaces, f is called a 

continuous map iff VXV€ > 038 >0 | | 

\V/X’[_dx(x,X')<5 = dY(S('L))'F(x’))<€] 

SO we get a cateagory "NHZ;L a full inclusion of cateocories 

. T 
@-mi’ C“% 

which restrict to it, i.e. to find all Y-gyx which are solutions of the 

The composition X -f-) Y «B’—D yA of two continuous maps is again contim,lou [3



if we_de'ine the grapn’ll’ as follows. There are only two vertlcbe‘s 1 

and _I_No, but many edges, as follows: There is exactly one edge ’fl"‘NN 

but there are edges _Nar—)’fl for each n=0,1,2,3.... and for n =0 as 

well there is exactly one edge 41 r—)fr( identity"), but between 

IN*—-"—‘) ]N°P there is an edge for each natural number n = 0,1,2,... 

The inclusion met C%g is defined by associating to each metric 

space X the T—system of sets Vl =X, V§ =Cgt (X) where Cgt(X) is the 

set of "convergent sfiuences in X", i.e. the set of all continuous 

o 

maps IN*-)X where |N is the metric space whose noints are 0,1..., 00 | 

the natural numbers together with one more noint called &© and whose 
. . . _|1 1 1 _ . . 

distance function is d(n,m)= i where oS dafo. The interpretatign 

of the abstract edces of f[' in the particularT -system corresnonding 

to a given metric space X is c 
s, & cQt(x)fi—_T, X 

where n evaluates a given sequence at n(in particular, the value at oo 

is the "limit" of the seauence ), C assians to any point the sequence 

which is constantly that point, and Sn shifts any secuence x 0’¥17 %o 

1by n, i.e. s (x* = %, 

’ s, (Xbo = Xoe 

Then the proof of fullness Er ct(.;.gm:s f:Lrst a simple calculatlon 

showing that any 'I'-natural £ CCgt(X) &I ; Cgf (Y)? 

? n 
ifl. 

is actually determined by fl via (fN (x))n = fl(xn) for any x £Cgt(X) 

and that this is true in particular for n =¢0 , i.e. that 

ei;n F(x,) = F(Um Xy, ) 
Ehich can be proved to be eauivalent to £, be:mg continuous. 

THEOREM For any oranh G and for €=Lin (or more generally any linear 

category @) , the cateqory Lin™" of a-linear systems is again a linear 

category 

Proof: If W-—%W in LinG , then define (A+B).-=A +B, in Lin 

(previously deflned) for each vertex ig I in G . Then A+B is again 

G-natural, for if 1—?—}j is any edge :mfi, then 

(A+B = (AJ+B )'r Aj'rfla'r since Lin itself Vv—(fi';)-i—)» W 
is a Lin Cat i i 

= SgA1+S B. since A,P assumed G-natural Tg Sg 

= S (AB) def 
i g Vj _(A_TB’———) Wj



—— 

Thus the addition of morphism in Lin Q;(with given domain and codomrain 

is well defined and fairly obviously satisfies the commutative, asso 

ciative, and zero laws (for given domain-\\/and codomainM since addit 

in Lin itself does and we have already Proved many times that "product 

| Lin (V‘, ) Wi ) 
of linear spaces agaln satls‘y the CAZlaws; we are dealino with the 

subspace LlnG( “_/.Tk./) of this product consistino of G-natural 

families (A, )1£I' but identities like the C A 2 laws are clearly 

inherited by subspaces, if omly they are closed under addition, and 

that is what we proved above. To finish the proof we need only shwuyi th 

Lin G satisfies the two distributive axioms characteristic of linea 

categories. So assume the 

U:\\/ —2- 
are all G -linear morphisms. Then for i a vertex of G, 

( (A+B) C); = (A + B)ici definition of commosition 

= (Ai +Bi)ci definition of addition 

= A,C, + B.C:.L since Lin satisfies distributige 

(AC) 4 ‘+(BC)i definition of composition 

(AC + BC)i definition of addition 

Hence (A + B)C = AC + BC since above holds for all i. 

Complete the proof by showing that 

D(A + C) = DA + DC 

The subcategories of systems defined by equations 1like 

A fi= 1‘-' ' d2 = 0, C = B(1l -AC) are all also 1linear categories. Hint: 

The main point here is to understand that there is nothing to prove 

since these were all full subcategories. 

Now we come to the second form of the condition that a category] 

be "linear", which involves the construction of (cartesian) products 

and of _coproducts. Let us start with the (non linear) examnle of 

coproducts X, + X, in the category Sof sets and mappings; it is 

simply the ("disjoint") uniom of the two sets Xl, X2 and hence comes 

with two injection mappings X —h‘—»*xl + X,, k =1,2 

X, PR 

1« 



where ik(X) = X consiue.ed as an element of the i(aisjoint) union xl+X2 

for x ¢ X » k = 1,2. This pair of injection mappings has the followina 

"universal mapping property" (UMP): if Y is any set and if xk -Ji;_9Y 

are any two mappings then there exists a unique (single) mapping £ 

for which f; = fLi.and f, = féz (c?gfositions) ~—ji~_§\\\ii 

1« — 
T 

Namely, we can define f for any x:le + x2 bv cases as follows: 

[%1(X) if x comes from Xl 
f(x) = 

(fz(x) if x comes from X, 

Since all x in X; + X, come from either X, or X,, f(x) is thus defined 

for all x, and without ambigquity since no x comes from both (i.e. the 

union is taken in the "disjoint" sense - in fact no other sense has 

sense since we did not assume that X, X, lie inside any common larager 

set in which they could "overlap"). By construction f satisfies the twb 

equations fk = fik for k = 1,2 and moreover these equations with fl, 

given, force this construction of f; so it is "unique", subject to 

those equations, as well. Since f is determined by fk's we may denote 

it by £ = (fl'fz)‘ 

As a very special case of the above, we could take'x1 = xz =Y|, 

fl = f2 = ly. Then we get (as the resulting f) a standard map 

Y@ v _é*__) Y 

sometimes called the "codiagonal"” map of Y: for each element y of VY, 

there are exactly two elements x of Y@Y for which A’ (x) =vy. 

Yoy it %:“:-‘é‘tfi Y 

suggest the equation Y@ Y = 2 Y which we will prove in a moment. 

Y may be identified with mappings 1 —j—Y 

and hence by the UMP of coproducts, mampings 2 —>¥ may be identified 

with ordered pairs of elements of Y: y =(y1,y2) 

1f 1 denotes any one-element set, then elemggts of a general seft 

"2



We will use tne UMP as the definition of the concept of co- 

product @ with "injections" in any category; it will tend to have 

radically different concrete internretations in each particular 

cateagory. 

The empty set @ 1is characterized by the fact that for any set 

Y, there is exactly one mapping @—=Y (called "the empty mapping with 

codomain Y"). In any category this "UMP" characterizes a particular 

object called the coterminal object; depending on the category, it may 

be far from "empty") 

Proposition; In any category having coproducts @and coterminal object 

@, we have ;hat Cé@)-(éx g,—\fii 

Proof: Consider any Y and Eafig fl,f2 
- - __;,\y 

then we can define f = fz; f2 1x = f2 by the 1dent1ty property, and 

fze = fl since there is only one @ —»Y no matter how we reoresent it. 

Thus the UMP for ¢®x is satisfied by X if we take the two injectiohs 

to be the empty map e and the identity lx. 

Now the one element set 4 is characterized by th%"dual" UMP": 

for any set X there is exactly one mapping X —>1 

In any category this 

characterizes the kind of object known as a terminal objeét. 

Any two terminal objects in the same catecory are isomorphif. 

similarly we can "dualize" the UMP for comnroducts to obtain the 

important notion of (cartesian) product of two objects Yl' Y, in a 

category: it should be an object Y,x Y, eaquipped with "obrojections"” 

Py P such that for any object X and any pair of morphisms x-fi%er 

X —-fi-—;Yz there exists a unique morphism f for wg/lch both f kf 
/———\%/ k =1,2 /f A 1 

Since f is uniquely determined by fl, f2' we may denote it £ = 

If there is an object F in our category (such as E = 1 in the category S 

of sets) for which we consider morphisms E-Z3X to be "elements" of X 

for all X, then the above UMP for the nrojections just says (taking 

X = E) thdt the 

elements of Yl b 4 xz "are" ordered mairs of elements of Yl' Y2 



That lS, any ele're"‘t E—-—)Ylgyz of course defines 

elements E ——-PK—-—}Y k = 1,2, but the UMP says that conversely 

picture Yl sz as 

an orde{é’d pair of 

every such pair comes from a unique y. Thus we may 

"rectangularized" by Dy/P,y. , E~: 

T — 1 
l‘Pi 

though the Yl, Y2 showing why these products are called "cartesian", 

are arbitrary sets and are only very schematically shown above as ,iwii 

"Dual"” to the isomorphism @& X = X, we have 

In any category with broducts x and a terminal object 1, 

X =51 xX. 

There is a diagonal morphism X —L25% x X. 

m The meaninag of f = (;Q in general can be understood on 

arbltrary elements by usinag the diagram 

7( \ 

. P2 

and the uniaueness in the UMP to qet . 

l'f, o - £,% 
£,19) = e x 2 2 

Hint: Do both sides have the same composite with each projection? 

Combininag the UMP's of conroducts and nroducts we obtain the 
. . . f 

following in any cateqory that has both: Any mornhism Xlgxz._g{lez 

is unigquely represented by a "matrix" whose entries are themselves 

morphisms (between "smaller"ibjects). / >/1 

f. .= p, fi, R : 
kj k™73 \\Xi@ XZI_‘L:, Yl.( YL 

e ] g s ™ Caution: These matrices cannot in general be "multiplied”. 

In particular, there is a "canonical"” morphism 

d (Vv x XN x x,) SV x(X,@X,) 

(for any three objects 1in any cateagory oth coproducts and 

Py dz;( = P kK = 1.2 products) defined by 

" e
 

< 0
 

= x
 

] Y ) Pad®,



5 © |where Vv i(xlexz) L£L >V x(Xl@ X2) _Ee_.)xle.xz, ‘ 

vV x xk—-£4—->V, vV x xk—‘l&-yv are projections, and xk_‘x._;. xl@xz, 

VvV x Xk—"JL—fV x xlev x X, are injections (draw a manning diagram). 

Xxercise 

el ; 

XA : Vxlil , ! Z X 

: ) SR +.
 

v 

m Any category ;S‘G,i where G is any givenvc_rraph and S is tl 

category ~f sets, satisfies distributivity of products over coproducts 

in tne &euse that all the canonical morphisms d are isomorphisms. 

Hint: Coproducts and products not only exist in SC" but may be compuj 

i the naiw manner, i.e. for each vertex i of @at a time. 

Caution “Distributivity" (i.e. 4 isomorphism) will often not hold in 

subcateagories 93 of Sfibecause the meaning of coproducts may 

change to_a highly non-naive interpretation; the "U" in UMP refers to 

all Y in only, and moreover the xl + X, which works in 3 may 

not lie in @ . 

The distributive law d does not hold true in the categofy Lin 

of linear spaces and linear transformations. To understand this we mus| 

calculate what coproducts and products in Lin mean. For the case of 

nroducts this is easy: if Yl'YZ are linear snaces, then the set leYz 

eguipped with co-ordinate-wise addition and scalar multiplication is 

again a linear space, the projections Py are linear transformations 

by construction, and if fl,f2 are any two linear transform_i\tions with 

a common linear space X as domain, then f defined by fx =£::1:) 

is_acain linear. But for conroducts somethinc very differ % from the 

>case hanpens. 

THEOREM | For any two linear spaces Vl’ v, there is a canonical linear 

isomorphism 

Vi@V, === Vix\} 
PROOF: First we note that the single-element linear smace 0 is both 

coterminal and terminal in Lin. This implies(we knew it already) that 

between anv two linear smaces V,W, there is a zero linear transforma- 

V> 
w v 

tion 

et 



Since mcrphisms from coprciducts to products are always defined by b‘? 

 "matrices" of smaller morphism, we can in our case define a morphism 

by means of the "identity matrix" whose entries are 

Ly . v 
1 271 

o 1 
V1V2 2 

We finish the proof by showinag that the familiar le V, satisfies 

also the UMP of cooroduct in Lin if we define appropriate injections 

vk____‘:k_—) \4,.% kti.b 

v 

obviously these have to be 
. _[v 
11(v) -(o for any vEV, 

iz(u) =(8) for any uev, 

Now to verify the UMP we have to consider any linear space W and any 

two linear transformations vk_f'k__,w k = 1,2; then we define 

v, x vz_L_;, W 
[ 4 

Al = A+ Ao, 
Then note that (A\ (1.)) A A v qu, ’Dé \A_ 

(AL,_, (W) = A A o all weVay 

by using the formul 

so that Aik = A‘k 1, as requi e_ ‘ and on the other hand 

since A is required to be a morphism in Lin, i.e. to preserve sums in 

particular, the definition is forced by the agreement with 

Ak on 1k' so that A is urugue as also reaquired by the @UMP 

With a little more care, using the propertles of the "identity 

matrix" above instead of elements u,v. etc, the above theorem is 

proved to hold in any linear category which has products (or conroduct 

duvalizing..). Either us:.ng that, or calculating d:u.rectly, we get 

M M@WL V WQ, In Llh ———r 

m In a linear cateaory, block matrices can be multiplieqd 

(of course taking care of the order whem "multiplying” (i.e. composing 

the components L)i9 UL V1 *\4‘ <= \/1 & \{b ——7W4Y\ 

&%) (e &) 

g
 

p’bi Bz 

(AR, = S-A, B, 



5¢ 
s uk_B;.L_>vj. Aid >H 

In practice, in a linear catecgory we just identify levz = VleB‘Vz. But 

it is well to keep in mind how different they are in a non-linear 

category, which at the opposite extreme often satisfies the"distributiye 

law" for objectsithat the canonical map 4 is an isomorphism. 

Since in a non-linear catecory there is no "addition" for mornhisms in 

general, there should be no confusion between the distributive law 

for addition of linear transformations which holds in a linear cateocory 

on the one hand, and the distributive law for "addition" (i.e. coprodu¢t: 

of objects in some typical non-linear catecories like 8, S*, 82‘ SJ.Ta 

an e other hand. 
‘* 

e cunnscns mo Vi X, @ ViZ,— 2>V (%, + X, ) 
is usually not an isomorphism in a linear category. Hint: Take 

V=X =X =‘IF( in Lin and compare the dimensions of the two sides 

of d. - ——— 

Since the codiagonal map in a limear category is (up to the 

"identity" matrix) just the internal addition operation of the given 

Wx W Wa W 5 
él“(::L ==.tk%1 +\A%U -- - ' . k4 

we see that the addition of morphisms \IEE;'W can be reconstructed 
N - - T, - 

as the composite L 

o V=25 VeV Ve VoW <5y 
using only the fact that the "identity matrix" for W is an isomorphism| 

Since in turn the very existence of the "identity matrix" for all 

object (e.a. linear space) W: 

minal object to the terminal object is invertible (thus the coterminal 

object has a unique element (the inverse of the canonical map) which 

may be called 0), and since the concepts of coterminal and terminal 

objects, coproduct and product objects of pairs of objects, and co- 

diagonal and diagonal maps (A (x) = :5 ) of an object, depend only on 

the composition of morphisms in the given category, we see that our 

second characterization of "linear categories", namely 

VO W "3 VxW, 
implies the first, namely the existence of a good notion of addition 

for morphisms, provided only that we prove the 

In any category with coproducts, pnroducts etc. in which thefe 



are zero maps and VW3V xW is always an isomorphism, define add_ll; 
- s 

tion of morphisms by@above. Then this addition satisfies the commu- 

tativity and associative laws for V __; W and the distributive laws 

Conversely in any cateaory equipped with a good notion of addinpg 

morphisms, we can characterize the injections and projections of an 

object Viéa Vo which serves simultaneously as coproduct and product, 

by purely "alaebraic" equations as follows 

ppi; =0 Vi . 1 

pliZ =0 \C{\\ [ 

1)P + 1,P, = 1v1$v7 

|Exercisefl Recalling that i () =(g), i, (v) =(3), Pl(.; = x,pz(;)= v 

on elements, prove the above equations for the morphisms. The equationg 

imply that ey 45f ikpk is an idempotefit endomorpliiism of X for k=1,2, 

and that e, + e, = 1., where X = vavé, while e;e, = O = e,e,. Such a 

pair of idempotent endomorphisms of an object X in a linear catecory 

(i.e. with products = O and sum ='1x) is often called a "decompo§ition 

of the identity into disjoint idemmotents" and plays an important role 

in all kinds of spectral analysis. We can recover the component smpaces 

from a space X equipped with such a decomposition of the identity, singe 

A4 
V2 = Ker(el) 

Ker(ez) 

with il,i2 as the inclusions, and that Px is constructed by using the 

same rule as e, but proving that all values of ey actually lie in the 

vkg,x. 

In a linear cateaory the coproduct and product universal 

mapping properties follow from the algebraic equations discussed above|. 

For example if Vk_fk__)w are any two morphisms, we can define _ 

Vl@VZ——A—)W using as the sum A = Alpl + A2p2 of two morphisms obtaipec 

by composing with the pk's. Then the algebraic equations governing the 

p's and i's imply that the A so defined is the unique morphism satis- 

fyinag both A, = Ail and A2 = Aiz. Dually, if we are given U—Ek->vk 
1 

we can define a sinagle B usinag addition and the i's, then use the 

subspace 

governinag equations to prove B is the unigue morphism allowing recovery 

of the B 82 using the p's. 1I 



7Xe, 
CANONICAL FORI{S AND EIGENVALUES IF{ .] . 

There is a process of construction S — ? Lln 

as follows. For each set S, TR[_SJ is the linear space of all those 

real valued functions on S which have finite support. (So that 

TR[S]C—) P\s is actually an equality if S is finite). Moreover if 

S——f—‘/T is any mapping, then a linear transformation 

R[s]-RLfA 4 KIT] 
teT is defined by 

The process ]R[]ls "funéi:o'vhl", i.e. if S———»T__>U 

(RIFO) =3 % cerls] 
(s)>t 

are any mappings of sets, then 'R[g F’J R[fl] TR[FJ 
as linear transformations ‘R[S]——%TREJ 

Propos:.tlon' Consider the mapplng 

= 
defined by 5 (8) (s = g ;i : 4 :. 

f 
Then for any linear space W and any mapping § ———5W,_there is a 

unique linear transformation ]R[s_]__—,w for which fo S = f 

Proof: Define ' Dy 

o f(v) =Z v - F6) - 
The sum is well-defined since v has finite support and clearly has the 

three stated properties. 

DEFINITION| A "farmily of vectors"” S—-)W is 

1) linearly independent iff its linear extension IR[‘%]—-——)W is 

injective 

2) linearly spanning iff f is surjective 

3) a linear basis iff f is an isomporphism 

A linear space W is said to have dimension = S iff there exists a basis 

family £ for V with domain S. 

[THEOREM| (Rank) Thi above theorem remalns/\true if is remlaced by 

¥ and Lin by LinY. However this does not aeneralize to graphs G 

THEOREM (Rls a field) Every W in Lin has a dimension. 

K9y Rgz # 9, = 92+ for any mappings T _él_,‘!"'* U in g . I£ there 

exlsts an isomorphism IR,[S] ——J@ in Lin, there exists one induced 

by an isomorphism S -£23 T in S lhost 

with loops. 
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Rank of a Linear Transformation 

The spectral analysis of the diagram L is much simpler 
o 

than that of the diagram i:) 

The latter involves the continuous infinity of eigenvalues as 

®"colors", whereas the former involves only a whole number 

called "rank", at least when the groundrig of scalars is 

a field. This is basically because the maps in the category 

Lin ? (whose objects are linear transformations A,B), are 

arbitrary commutative squares 

even if A,B happen to be endomaps (linear "operators®") we do not 

require that the To and T1 be the same; this means in 

particular that there are "many®" isomorphisms in our category, 

hence "few" invariants. In fact, besides the dimensions of the 

domain and codomain of A , the only invariant is the dimension 

of the image of A (assuming that Lin itself is the category 

of linear spaces over a field of scalars).
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Exercise 1) Given any three whole numbers.<n, r, m)> 

for which r € min(n,m), construct a map n —> m of finite 

sets of the indicated cardinalities whose image has cardinality 
Rn 

r , and show that the induced linear map QL has image 

m 
of dimension r , in fact R 

n 

T 
7 o oF 
R’"/ 

Exercise 2) If R is a field, show that for any linear 

R 
factorize it into epic and y 

Bl 

monic linear maps 

v 

transformation i A with finite dimensional Vv, W 

W 

there exists a unique triple (n,r,m} for which A is isomo'rphic 

in Lin: to your example B above. 
R 

Exercise 3) Knowing the invariant <n,r,m> of a linear 

transformation A we can detect two properties which A may 

have: show that 

"A is epi " iff r=m € n 

"A is mono” iff r=n £ nm 

(Just as for finite sets) 

Exercise 4) The dimension of the kernel of A is n - r, 

(the "nullity” of A ; the other difference m - r might 

be called the "co-nullity").
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Spectral Analysis 

Recall that Newton analyzed sunliocht (by passina it throuch a 

prism) into a "Spectrum" consistinag of various colors 2 each of which 

has a certain intensity mea - A basigc nrooram for analyzina an ob- 

ject in a linear catecory such as LinG is to show that it is 

.1somorph1c to a big sum (in the @ sense) of relatively simple ob- 

ljects Z\. (which _A_ themselves cannot be further broken down as a 

I("parallel connection") e of still simpler objects: the number L 

‘of summands of each given tvnel\ln the decompositon oFV is 

~usua11v called the multinlicity(rather than intensity) of the "color" 

A in v 

In each linear catecorv, we have to determine first what the 

flrreduc:.ble "color" <A should be (see below for some of the simmler 

lexamples) and then to analyze an "arbitrary" object V, we study for, 

yeach ,/\.the "eigenvectors" of tvne /\. in.v in the sense of 

lDEFINITION :I In a oiven categorv, an eiocenvector of type /\_ in Vis 

just any morphism (in the cateaory in auestion) _A_ —3»N\/ . That is, 

an eiaenvector is really nothino but a morphism in the annropriate 

category, except that we imagine that the domain is some kind of 

extremely smecial object (the "eigenvalue” in auestion should be 

thouaht of as the smecial information reauired to smecifv A_ in.'par- 

ticular amonc all mossible objects). We say that J\, is an eioenobjec 

forv if there exists an injective eicenvector AG-—& ; thus an 

"eigenvalue" ofV would be special information determining an eigen-- 

object of V , i.e. one which will actually occur at least once in 

ithe expression of V as a @ of "colors" (in those catecories where 

U
 
S
 

the proaram succeeds. ; 

Einquist' ark: Terms like "eigenvalue”, etc. are hybrids as follows 

German: 

'British: Characteristic, 
i 

E 
The hybrid is widely used by American chemists, enaineers, mathemati- ' 

. . . . < i 
cians, economists, etc. nerhaps nartly because it helns discriminate | 

from other kinds of values that miaght be "characteristic" of a agiven 

E ituation. ; 

. . . i 
For example, if we consider Lin itself, then the basis theorem 

says that every YV is isomorrhic to some Rn which is actually 

_RO RO“.GR(n terms). Thus we could say that Lin is "monochromatic" 

with R as the only "color", which can occur with various "intensitv" 

(=dimension) as we consider different objects V : in fact knowino 
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object in the case of Lin. There is no need for "eigenvalues" since 

no information is reauired to distinouish between colors since there 

is only one. G 

The catecory of central importance in this connection is Lin 

where G ={ is a single loop, i.e. the catecory whose objects are 

(single) linear operators, however, sipce the answer will be simpler 

we will consider first the case G = 

whose objects are arbitrary linear transformations (whose domain and 

codomain dimensions may differ) which are to be mormhically comnared 

comparison arrows £rom Lin 

category is actually 

., i.e. the cateoory Lin? 

by commutative squares involvina two 

(since G has two vertices). Any object in this 

isomorphic in this cateaory to one of the form 

R" 
11 where the number of 1l's is the 

J’ 10 (isomorphism-invariant) rank, which 

n I"() is of course 5 min(n,m) 

There exist no isomorphisms 

R . ,Rn 

4 0o o0 ~ 10cCo 
O 4100 \1/ C1100 
(o} © o0 

in Lin¥. 
Recall that @ in LinG , for examnle Lin is calculated 

"vertex by vertex" so that 

with the internal struc®®ral man bel jJust "parallel connection, no 

interaCti(i’l’:;S)(;;) N 11:3 n V@ (4)1 for (;t)& Ve W, 
As in arithmetic we use natural numbers as coefficients when larae 

sums with repeated summands are involved, for examnle 

2Ve W -VeVoeWeo W W 



@ S b oth A, ave non -Zeig 

> |V ] &> o 
TP\, bo‘H"‘ 2 =/U = O 

Thus if we denote the three "colors" for Lin as follows 

R R 

AN 
@ 

{ " i I 

DD K 
then every object of LinY is isomorphic to a uniaque object of the forn 

2K @ D @ wyD¥ 

where m, :dn‘m (“/Jj - i’anK (T) 

L =rank (T) 

my = dim (V;) = rank (T) 



The three colors of LinY are not completely inderendent é}?i 

since there are morphisms DL> ID—-)K 

where the first is injective (a monomorphism which is however no: a 

is however not a split epimorphism) and the composite of the two in O. 

1f QO — U— v——-—> wW—> O 
is an exact sequence in any Lln(E‘ and if either U-*\,\/ is split 

(in Linq:7 ) as a monomorphism or —'*W is split as an enimorphism, 

then \l\/@u&)V (Hint: use the aloebraic eauations which characte- 

rize & in any linear cateaory). This shows "why" neither morphism 

in jf&—-vD—BIK splits, since JK @ D" is not isomorphic to [D. 

M If W= T is any object of L:Ln* , then in it an 

V5 
eigenvector of type D is essentially any vector in -K , an eiaen- 

vectorq~ type [DY‘ is essentially any vector in V IK—~>V is essen- 

tially any vector in the kernel of T. Thus T is 1n1ect1ve iff _}( is 

not an "eigenvalue" of SS/ . If we consider any 

DK==V 
then the composite "is" v, but considered as a vector of _Vo , rather 

than (as given) as a vector of Ker("") . If we consider any © E.% 

then in 

the composite "1 " T—o in \ (All statements in this exercise are 

essentially obv1ous if one draws the rectancular diacrams in Lin which 

they describe). 

m In LinY, the three endomorphism rinas (i.e. consistina of 

endomorphisms in the sense of Lin{') of all three distinct colors 

D*'ID. )K are actually isomornhic to the same ring, namely IR it 

self. 

The most strikino feature of Lin‘/‘7 from the smectral point of 

view is that there is a continuous infinitv of possible "colors" '\ 

(;he ones which are usually called ordinary possible eiagenvalues) and 

which have one-dimensional underlying smaces) as well as a further 

necessary infinite family of colors which is partly continuous and 

partly discrete (these are connected with nilpotency phenomena and 

have all possible dimensions, although thev are much simmler than the 

general operator (cbject of LinC?) which we need to analyze) and 

finally another continuous family of two-dimensional "colors" which 

are usuallv referred to as "complex". 

split monomorphism) and the second is surjective (an epimorphism which 

T 



©d Let us consider first an example of the last-mentioned comnlex 

"color" 4: : It is nothing but the rotation throuah a right angle in 

an object of Lin® : 

o — | 

| C 

m (Ecannot be decomposed in LinD . Since a non-trivial de- 

comr)osilon would have to involve one-dimensional summands, it must be 

shown that there is no isomorphism (O - 

“Re B i 
= — > R 

i.e. that the indicated equations for a 2 x 2 matrix 0/\ and a pair of 

1 x 1 matrices a,b has no solution with o& invertible, i.e. that therd 

is no choice of basis for —R‘ with respect whlch the right-anale ro- 

tation is expressed by a matrix of the form 0 b (which intuitively 

would just stretch ‘T\?' without rotating it). Determine all Li - endo- 

morphisms of , 1i.e. all 2 x 2 matrlces A for which 

two-dimensional srace, consi 

I f \ /p is any(o]b Qc>t of L:Ln‘ , then in it an "eigenvector" of typd 

q: is any choice of family of two vectors in Vfor which 

-Tui.-. J’To,- ,i.e. to a choice of a s:male vector 01 for whigh 

| vy = - oi. d: is an "eiaenvalue"” ofv iff such a family of two 

}vhlch is 11nearll independent exists, i.e. iff there exists a nlane 

in V which is closed under the operation T and on which T looks 

like (up to R-llnear isomorphism) rotation throuch a right angle. 

What does linear indemendence of such a family of two mean in terms of 

the single v which generates it? 

Now we notice that all operators on one-dimensional space must 

pe considered as distinct possible colors or eigenvalues in analyzing 

objects 1n Lin 

If R O/Uare ny two real numbers for which there 

p X1sts an 1somorphlsm7‘ ’{-——R /’ 'L‘m,Q, then )\=/U If on an 

prbitrary linear space v of dimension n, we consider the very special 

Eperator of multiplication by 2 r_then there exist isomorphisms 
)C;TRO oz, \-vb 

in Lin(() (In fact in this very special case, any isomorphism ¢X_ in Lin 

will be one in Lan . Of course 

=(OAO) R 
2 when operatinoc on “ . 

X LR ( 
FCV = , a & of n copies. Thus our obiject has 
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only one eigenvalue » but of multiplicity n. But we could have, for 

example, on an n + m dimensional space just two eiaenvalues 

noRQA@ msR@b’:“ Rm@ 6‘2} 
where the matrix has n )\'s and m o 's on the diagonal. 

m An eigenvector of type 

da vector v ofv for whichl To =T 

in éT of type R is just a vector in Ker(7T ) and indeed an 

eigenvector of type A TR may also be considered as a vector in the 

kernel of the operator T- (which leads to_a method for calculatino 

which eigenvalues A\ actually occur in —\/ , hamely by solvina the 

n-th dearee polynomial eauation det(T-A ) = O; the latter is often 

called the "characteristic eauation"” of T, but to be consistent in 

lanquage-mixina one should call it the "eiaeneauation of T ", 

T 
in V‘D is essentially just 

In particular an eigenvector 

m Is the complex number i isomorphic to the complex number 

-1 e category Lin? of real linear operators? In other words, is 

there any invertible solution a to the matrix eauation 

o -1 all 312 

1 o 
a1 452 

As the last exercise suagests, it is not always the most effec- 

tive procedure to insist on the spectral philosophy in its purest form 

but to choose for example a class of identif)-able objects which in- 

cludes all the colors but which may contain many pairs of "different" 

objects which are actually isomorphic. For example any nilpotent 

operator in Lin is isomorphic to a strictly upper~triancular matrix 

V]
 

V]
 

N b~
 1]

 
[+)

 

N
I
 

\
_
/
 

S
 

[
 

O 

o
~
 

I
 

where there are zeroes below and on the main diagonal, but a more pre- 

cise analysis would show that any such is in turn isomorphic to one 

having only 1's (and 0O's) above the diaaonal, with the precise arranaget 

ment of 1's reflecting the way in which the various Lin -@- ands are 
either coupled through T or actually split off as Lin @ -@- ands. 
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EXERCISE:f An eigenvector of type ( ‘ji ' \2;:> 
N 

0O 1 
is essentially a vector v of \f' for which T’y = o. The object(O O) 

is an eigenvalue in X/ iff such a v exists for which the family 

v, Tv of two vectors in ‘k- is linearly indemendent. 

. 0o 1 . o " " The object of Lin has to be accented as a "color EXERCISE: o O 

in 1ts own richt, since it ‘cannot be represented as a QEB of two 

one-dimensional objects in LingJ . On the other hand "colors" are 

again not completely unrelated, as there exists an exact seauence 

°G : Ow RQO 

in Lin£> (which however by the first part of the exercise does not 

split.) 

Determine explicitly which 2 x 2 matrices are isomorphic 

in Lin to an upper-trianaular matrix, and that any upper-triangula 

matrix (% b)is either a color (i.e. 659 -irreducible) in its own 

right (if b # 0) or is.isomorphic to the € of two one-dimensional 

eigenvalues, i.e. to 6\2) . Hint: If @( )15 the given arbitrary 

matrix, then since we know that determinants, trace, and eiagenvalues 

remain unchanced under isomorphism, the A , /L/ must be determlned by 

the two  enuations Ap =k R 
7\f//" o<+ F¢ 

Knowing this, isomorphisms can be found. Or alternatively, an undeter- 

mined putative isomorphism can be con51dered 

R RE 
then the one eauation statlng that 

L.—[ (?;) L has [.Otv'ir LaFf- cerner (O 

can be shown to have a solution with non-zero determinant, provided a 

suitable discriminant involving trace and determinant is positive. 

s 
if both b are non-zero, but if bl =1, b2 = 0 they are not 

1somorph1c. 



. ) ) / 
Find a simple example of a 2 x 2 matrix A which is not r 

gular but which is isomorphic LT = AL to an upper triangu- 

lar T by means of an (invertible) lower triangular L. Show that this 

could not possibly be done with an upper-triancular L, since LTL -1 is 

upper-triangular whenever L and T are. Show that the lower-triancular 

L can be taken to be in the manifestly invertible form 1 - H where 

H‘ is nilpotent, or a composition of such. 

Some useful properties of operators (even of a "spectral” 

nature) can be proved more easily without explicit spectral analysis 

ISE:@ If we have an exact_sequence /)b 

Q _Q'S < 

in Lin'Q and if az = 0, b2 =0, then T4 = O. (Though not necessarily 

T® = 0). Use the fact that U ® W=,V "in Lin 
G:hough not in Lin@ ) to show first that 

= (0o b 
where W U is an arbitrary linear transformation. 

The spectral approach is extremely important for solving linear 

differential equations. We will consider instead an example of linear 

difference equations, which are both of importance in their own right 

and as a method of computerized solution of differential equations, 

as well as analogous in many respects. Whereas for (ordinary) differen 

tial equations we would consider the operator gf on an infinite- 

dimensional space of smooth functions, for difference eaquations we may 

L4 

consider a different object of Lin‘a as follows: Let ]R denote 

the infinite-dimensional space of sequences of real numbers, so that 

a typical vector x in IR is an arbitrary infinite sequance 

Xyo Xyreene of real numbers, which (x + y)n = x{yn, etc. for all n{ 

On this space we consider the shift operator 

R QS (SX) =Xea alln=01 2, qLLxEIRN 

which assigns to each sequence the new one obtained by shiftinga: S is 

clearly jR-llnear. In order to consider "second-order" eauations in 

particular, we consider the JR -linear map 

R R e =(2) 
We want to relate this to certain operators on ’R" but not in such 

a way that ‘T' is a Lln@ morphlsm. Rather it will be of interest to 

consider ogperators T onJR together with Lin <9 -morphisms in the 



+ irection opposite to i 7‘ 

F f§<;fiizyv {:' = ]FQ:ZE::> l5371_ _ SS(E;Y 

i.e. CES is an "eigenvector" of S; with "eicenvalue" 1— , which 

moreover satisfies the initial condition 

To G = identity on R® 
For example consider the equation studied by Fibonacci (=Leonardo of 

Pisa 1250, who participated in mathematical contests sponsored by the 

Emperor Frederick II of Sicily): 

7<n+n2 ='><h¢-1 1':xr1, 

It is clear that if we start with any given pair of initial values 

s Xq then recursively applyina Fibonacci's equation, we aenerate 

a uniquely determined complete sequence X. Let G be the mapping from 

pairs to sequences thus generated; by construction we havei}EG%ddentity 

and C§ may be referred to as the solution operator for Fibonacci's 

equation. However, when we speak of "solving" an equation we usually 

intend that the solution be expressed in terms of agenerally-understood 

mathematical operations; thus if we started with say x, = 1, X, = 1, 

but need to know the 1013th value of the resultinag sequence, can we 

calculate it by means of operations known from high-school algebra 

Lithout actually aoing throuch the 1011 steps suagested by the equation 

itself? Note that the equation can be expressed in terms of our shift 

pperator_Sas 2 

Sx =5Sx+x 

(S*-S-4)%x =0 
vhere “combination in parentheses’is a sinale new operator on igfbr. 

Centuries of experience with difference equations suaaest lookina for 

special solutions (analoaous to the special solutions ef\t anpropriate 

for differential eauations)in the form of "geometrical proagressions”: 
n 

Xn = A aln=0,1,2..-. 
where A is to be determined. In fact if we substitute this into the 

equation we find that A must be one of the two numbers 

4t VE 
Ay = T2 

or 

-f 

of the "aolden mean". Thus there are two special solutions 

,\{;l_a;j/_?)n ! \\/1_2/}’5"‘) " 
of Fibonacci's eauation, and we will see that every solution can be 

uniquely expressed as a linear combination of these two 

-



a, b. 

EXERCISE: | Given Xor X solve the equation a + b = X 

aA++ bA_= x4 for a,b 

xn = a(2slE Zb(a__—fi)“ s 
2 2 

where the coefficients a, b can be determined from the initial values 

Thus the solutions constitute a two-dimensional subspace of the 

infinite-dimensional spnace _TR—'N , With 6 as the inclusion.( A diffe 

rent second-order eguation from Fibonacci's would involve a different 

pair of eigenvalues and a different@ ). Now notice that if x is a 

solution of Fibonacci's equation 2 

Sx =Sx+x 
then its shift y = Sx is another solution: . 

3 529 = Sx = 5(57( +7<) =5@5x)+<5x)=5~(1 g 
In other words the inclusion R? —Q-;\ TRN is actually a sub-object in 

Lin? (not only in Lin). This means that G is a Lin 3 -morphism, if 
< s 2 . _ 

we only make explicit the operator T on I-R for which GT— S G 

Since 
) xo 

CS Xo _ X 

1 X, + x1 

xo + 2x1 

2x° + 3xl 

3x0 + le 

. SxO T Bxl 

we have \SG(;),_E) but GT(CL yhence t,; =0 

> tyy = L. 
t 

3 21 

? 

1 on the other hand 56 (vo ) 1\ but GT(?) - t)5 hence £, 1 

1 2 t _ 
22 t,= 1 

\ £, + t 22 
12 21 

Thus it appears that - 

. . [o 1) 
1 1 

m The statement that all values of 6 satisfy Fibonacci's 
- 

equation 1s equivalent to the eaquation ™ G- S@G+G for linear trans- 

formation. If QT =0, then using the latter twice we aet 

GT‘?’;GT,.G ,Or G(TZ’—T_‘l);O_Since also T|\'6=1, we aet TZ’-T-1 =0 

oc T* =T+, 



7"7‘ m Verify that for the above T, we have indeed that G T = 56 

where is the map obtained by interating the Fibonacci equation wi th 

given initial values, and also where 6 is expressed in the "closed 

form" with powers of >\i- = 1’;7:1 and coefficients a,b obtained from 

Xgr ¥y with help of Vfi__—_ o ~ 
s 

The initial values emphasized by Fibonacci were whole numbers 

X, = 1, xl = 1, which leads to the "Fibonacci numbers" 1,1, 2, 3, 

5, 8, 13, 21, 34,... all of which are whole: it is thus striking that 

the "closed form" expressing all of them as a fixed linear combination 

of two powers An' must involve not only denominator %n but even the 

irrational number 1/;: . On the other hand, what is considered "explicit" 

depends on the problem at hand: if we want rational approximation to 

a solution (like 'LE) of a nolynomial equation (like AZ-A-1= O), 
2 

one way to obtain them is by just iterating the corresponding difference 

eguation, as follows 

[m Investigate the claim: If x is "any" solution of 

Sx=aSXJ, . ibr. . K K-1 
then &im Xg +1 = the larcest solution of A= a) + .- 4b>\+C. 

N oo . 
‘xfl 



Determ inants computed by Linear Categories IS 

_ and Nilpotents 

While certain invariants such as the trace and the multiplicity 

of all non zero eigenvalues are (not only invariant under isomornhism 

in Lin€ but also) the sare for T and § which are "weakly equivalent" 

in the sense of the definition 

T~3<& 3a8[BAT A AB=9), 
some other invariants such as the determinant can be changed by weak 

equivalence, so other methods are needed to compute them. 
e ——— 

Exercise | Prove that isomorphism implies weak equivalence, i.e. that 
e ———— — 

if for given T*}V' S there is known to exist at least one 

A4 —|=-'r W for which LT = SL and L-l exists, then it is possible to 
A 

construct V‘——’ W for which BA = T and 2B = §. 
) 

There exist R(:é_" R2 such that BA = 1 (hence has determi- 

nant 1) but S = AR has determinant O. 

For calculating deterrinants, the following Axioms for deterri- 

nants (of onerators on finite dimensional snaces) are useful: 

Py 1. 1%V, W5 e such that T & 5 , i.e. 

dV— W [L? exiske and LT = S[J 
then det(T) = det(S) : 

2. For anv W,‘)s with dim(V) = n, there ex::L'g.ts an upper triangqular 

nx n matrix T and an isomorphism in LinQ C.IR"—:-QWO 

3. If T = f; ----- is any upper triangular nxn matrix, then 

0 4;) [detG=tit, - tn] 
the nroduct of the n diagonal elements | Caution: for a square 

matrix which has non-zero elements both above and below the main 

diaaonal, the deterrinant is not given by such a simple formula, 

but bv a much more comnlicated FomulaJ 

% . . Ps 
4. If is a given matrix [and recall that given any V 

we can find a matrix isomorphic to it by choosina eny bhasis 

n_;_pv 5cg: V and defining S = (3.1 S (BJ,then an isomorphisn 

TC n o can be iti i i constructed as a commosition of isomwo is RR—>1R rph " 
o L = LyL,..L  of the extremely simple kind known as "elerentary r 

and column o;ze’;:.t;ions":osp-z QSP‘3 05; /kfi 

?;
Qm

 

_ I -1 :r s 
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[Erereiee] m fact, ir, [ Sl eo co10 
L_"() =ct C) oboo 

where "elementarv" means in particular that each Ly (while not an 

endomorphism in LinQ)is an endomorphism in Lin of R"" of the snecial 

form T . n 
Lk-ckoin + Hk v Ck 4- O, Hk mLpof‘e.hf endo OFR 

so that it is trivial to see that L;r exists! 

C_ o000 000 .0 

cC oo 
Co 

with the 1 in the i-th row and j-th column onlv, then for any scruare 

matrix A of the same size T L.1A L 

LT 
is just like A except that the -th row of A has been replaced by the 

sum of the original -th row nlus C times the -th row. Thus by choosinag 

C # 0 and the 'pivotal" position i,j correctly we can arrange that thF 

entry in the second row and first colurmn of A is 0. Then by a sccond 

choice of € and i,j (hence an L), we can arrange the f = _I,,:l n L 

has still more zeroes, and continue until_the result has _all enktries 

below the main diagonal 0. Since 2, X, K,...etc. are also isororphid 

in Lin@ » all isororphism-invariant properties, such as the value of 

the determinant, remain the same for each of A, F, ;,..., We can cCom- 

pute the determinant of A by computing the determinant of ?\ , but if 

that is upper triancular, then its determinant is just sirfiply the 

product of the n diaconal entries of 1? This is very often the hLest 

way to calculate the determinant of a large square matrix R (unless 

perhans we know a lot a priori about the structure of 3). 
A 

Exercise § (Followina problem 1 on the "last" test) If V(—B—w’ are 

any linear transformations (with V,W not necessarily Rn , then 

tr (BA) = tr(AB). IfTQV is an idempotent onerator(Tz = T} thern tr(T) 

is a whole number and tr(T) € Aim(V). 

Hint: If W d;f{v}:T, Tv = v} , and B is the inclusion map of W into 

V, then we can construct an 2 (essentiallv the "rule"” of A is the 

same as that of T, but the idemmotence of T must be used to show that 

- 1 

TC‘V 4-—? WQ ¥ BA=T, AB=1y 

But the ‘l:r-(iw) = cdim (W) can be proved for any identity endo- 

morphism by using any basis. 

it goes into W) for which 
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DEFINITIONS TO BE USED ON TEST 

If A is an nxn square matrix, its trace is defined 

as the sum of the diagonal entries 

n 

tr(a) = ?'1: ay 

where a are entries of A . If T is a linear endomorphism 
ij 

(operator) on a linear space V , and if R -iy- vV is a 

linear isomorphism (or coordinate sy stem for V) then 

(provisionally) the trace of T relative to X may be 

defined as the trace of the matrix which represents T relative 

to 

= 1 tr < (T) txr (O( Td) 

1f >\ is any scalar, then 

V5 () -{vev I TV -;\v} 

is a linear subspace of V called the a-th eigenspace of T, 

whose dimension dim VA (T) is called the multiplicity of A 

as an eigenvalue of T; if the multiplicity dim \J ('r)> o, 

i.e. if gv [v ¥ 0 and Tv c)v] then one says A igs an 

eigenvalue of T. 

T LS 
Two linear operators VO ' W are weakly equivalent 

A > W, W —2—> v if there exist linear transformations V 

for which BA=T and AB = S . A map (in the category 

LinQ) from T to S is a linear transformation V A > W 

for which AT = SA]|; T and S are isomorphic (as linear 

operators) if there exists an invertible map A from T to S 
1 (then A" will be amap from S to T ).
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A map (in the category Lin !) from one linear transfor- 

mation Vo T >-Vl to another wo S > W1 is a pair 
A 

V. ———i—f>.w. of linear transformations for which A,T = SA ; 
i i 1 o) 

the map is an isomorphism iff both Ai are. 

1. If A is an nxm matrix and B is an mxn matrix, 

show that tr(AB) = tr(BA). 

2. Show that the trace of a linear operator T is well- 

defined independently of a coordinate system, i.e. that ifO(,fis 

are two coordinate systems on the space V on which T acts, 

then (although the matrices K" lp( and (5-1'1'/4 are usually 

different) the numbers Trd(T) = trfi (T) are always equal. 

3. Prove that if two linear operators T, S are weakly 

equivalent, then tr(T) = tr(s). 

4. If T,S are weakly equivalent (witnessed by A,B) 

show that 'r2 ’ s2 are weakly equivalent (by constructing A , 

so that A, B witness this new equivalence). 

How are tr(Tz), tr(Sz) related? what about T3, 33 ? 

5. Show that if A,B witness the weak equivalence of T, S 

) then A,B are in particular maps in Lin¥. If A is a map 

from T to S and if A is invertible, construct B so that 

A,B witness the weak equivalence of T,S. But construct a simple 

example of V('jr, Wos which are weakly equivalenf-7 but for which 

dim VvV = 1, dim W = 2 (so that no invertible A could exist.)
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6. If T, S are weakly equivalent linear operators and 

if A is an invertible scalar (i.e. a non-zero scalar if the 

scalars form a field), show that the multiplicity of 2 as 

an eigenvalue of T equals the multiplicity of/.] as an 

eigenvalue of S ; do this by constructing a linear isomorphism 
A 

VA (T) A WA(S) and constructing its inverse. 

7. Give a simple example of a pair of linear transformations 
A 

v > W for which A = 0 is an eigenvalue of S = AB, but 
B 

71 = 1 is the only eigenvalue of T = B A. [In fact, one 

example correctly chosen will work both for problem 7 and for 

the last part of problem SJ 

Conclusion: The hypothesis A ¥ O 1is needed in problem 6, 

8) Given two scalars A ,/(/ , multiplication defines 

linear transformations R Jfi-R, R —7L)-R between one- 

dimensional spaces Vo = Vl = R, wo = wl = R. How must ;] ,/l/ 

be related in order that these two transformations are isomogghic 

as objects of the category Lin g ? 

5. but consider: o7, L . ut considering two scalars as operators R r R 

how must they be related to be isomorphic in Lin ? 

lo. Consider an arbitrary 2x2 matrix as an object 

O t51 %12 

: (t21 t22) -7 

of the category Ling of linear operators, Try to find an 

upper triangular matrix 2: > Cll 5)2 
R = S 

o S22 



and an isomorphism A in Lin@D between S and the given 

T . Find conditions on the four scalar entries of T for 

which such an S and A exist, explaining why the condition 

is different in the two cases R = real numbers and 

R = complex numbers, giving a simple example in the real case 

for which the condition is not satisfied. 

Hint: S would have the same determinant as T , 

and determinant A # O.



Application of the “Geometric Series” Formula 
o) 

I = < 
I-D - Z__)D &1 

to Differential Equations. K=C 

The above formula can be valid for "nilpotency reasons" even when D is 

not nilpotent, in situations where D is acting on a big linear space in 

"locally nilpotent" fashion. For example consider the space of all polynomials 

in one variable t and interpret D as ordinary differentiation: Q 

N C linear C. quadratic C cubic C (- all 'D 
U polynomials polynomials polynomials ° polynomials 

While 1 .is not nilpotent in acting on all polynomials (since there exist 

polynomjd‘s of degree > any given n), for each given polynomial g, 

D\Ht ) 

if we take n = deg(g) , because applying D decreases the degree by one and 

hence interating D enough times kills the given polynomial g. That is 

) an\/g D‘"fg 2> (s;{a‘sc ‘B'v—t Vgaw Dwg,:o is Tyue 

(This of course would not be true if we allowed g to be a rational function 

or an exponential function). - 

Suppose we need to find all solutions U of the differential equation 

U-U'=g 
' where g is a given polynomial "forcing term". Now a basic general principle 

of linear algebra is that, if T is any linear transformation, then the set 

of all solutions WU of TZ("g_ 

can be parameterized by the linear space of all solutions f of the 

"homogeneous equation” T 'F"O 

provided we can find one "particular”" solution w ‘to = 

The parameterization is just -S —> 'ufe{:fi J').E, TZ :8 ‘:..’>3 

ohe -Te-oue (vaea‘ftm‘leu(e) 2_‘ le:i-;k{:———\" {-u. l"‘h‘g.k 

where the inverse of the bijection is ‘}'{%u-u' 

EXERCISE’ Prove this basic principle of linear algebra. 

Now in applying this basic principle to the above differenti:



52 
equation we take | = ’_]_—D , so that the homogeneous equation is just 

{-f'= 
whose solutions are well known from elementary calculus to be parameterize: 

by integration constants A . fe)=hAe® 

Thus we need only find a particular solution a to our differential 

equation w - U / """jr 

But since g is a p_olynorniogl, our "local nilpotency" geometric series 

tells us that ’t\:— ; ng' 

is the unique"polynomial solution; in fact the degree of 'L is the same as 

the degree of g. L 

EXERCISE: Verify this for %U:)-: I -T+7#, 

Thus the general solutlon of 

. [ 4 
is u=Aet +20 

K=o 
where the series is actually finite for any given polynomial g. 

While we have tak;'.-n]) =( Y to keep the solution of the homogeneous 

equation simple and thus emphasize the method of findinc the particular 

solutionjexactly the same method could be used if D-“]O( \l'{'?(\”"‘l( yl 

Then the solution f of u‘D)F?-O would involve periods of oscillation,dampin¢ 

and growth constants, etc. but so long as the forcing term g is a polynomia. 

the particular polynomial solutionflcould still be found by iterating 

(this more complicated)D on g and adding the results, since even this 

more complicated D is still "locally nilpotent” when acting on polynomials 

Further (going beyond pure alcebra into analysis) even if g is not a 

polynomial it can be approximated by a polynomial if we are interested in 

studying the fine structure of a solution W over a brief period of time 

(say over a time span of a few days when the shortest period of g is annual 

* Siwce 'U‘u'fl)flb) ne wou-Zeve PC(;**“‘-“ selutions,



Multi - Dimensional Calculus 

g3 

If ‘F is a (smooth) real-valued function defined on an open interva 

in the line such that the values of ‘F lie in an open interval Y, and if 

% is another smooth function defined on Y, then the chain rule of 

elementary calculus _states that i P 

(%c-f)’(x) =q (fm)-f'(2) 

For a multitude of applications in geometry, physics, economics, etc. it 

is necessary to give the chain rule a meaning and validity also in higher- 

dimensional situations. If XLY 3->Z are mappings of three higher- 

dimensional non-linear spaces, the meaning of OF is clear: 

X _‘g’fi:;z gcf)(x) =q(H) o Zin X 

But what of ( )' and what of the "multiplication"e gon the right-hand 

side of the chain rule? Note that even in the one-dimensional case, even 

though x is restricted to X, if Q_=-'F‘(Z) "‘“j\(flht:fi:h the product av” 

makes sense for _a_n_y_'l/ ; similarly if b‘g'(*‘\ for a certain QJ bca’m be 

multiplied by any W (not necessarily in Y). Moreover 

(ba)¥ = blav)  dor 2llV | 

The chain rule gives another meaning to the product bd :i.:x___:__g_g_;se .g_:F(’l) 

namely if C = (%cf)'('x) af the same x) Ehewn 
c=ba 

1He. {or all v, (v=z(bo)v= bla V) 

Now if X,Y,2 are not necessarily l-dimensional (nor linear) we can 

still attach to each point % a linear space Vx called the tangent space 

to X at (for example X might be a sphere) and similarly Wa_ a linear space 

attached to each point 4& of Y. Then the derivative of‘!’ at 1 

i i - fita) will be a linear transformation Vs —=>Weio 

- | 8 (nmve) =2 FaY 3, S0 i.e. S'('t)l,"t\«jfl,;) Lox atl veVy L ') (Avieh vy ‘ (702 Z 

Now composition of linear transformations may be considered as a generaliz 

"multiplication". If we have another non-linear map 3Y">2 and if we hav
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84 chosen 'X/d , then we can chose not only 4g.f'{?h«)but also Z=—3('g)=g”'(7'u 

and if we denote the tangent spaces to Z by Uz. {ov EEZ 

then 

X c"iffi) — 

X —31 7 Vy geb A 
7l z=4(y) 

N, Ny, A gt 

The chain rule says that the last diagram is commutative, as composition 

of linear transformations (i.e. "multiplication") 

In case all three X,Y,Z of the non linear spaces are included 

< MeU 
in (affine) linear spaces X€© V) YC,W) 4C it is often possible to 

identify the various tangent spaces with a common linear subspace VOC\/) 

W cW )UOC«U  of the containing space by rotation and subtractio 
0 

of vectors, for example \-,/ . 

P o all twside vV 
(4 

g X 

o Vo 

so that x corresponds to the origin. If we omit all these identifications, 

f' (x) becomes (somewhat confusingly) a linear transformation (I(’x)'-vo%wa 

between fixed linear spaces, but in general a different linear transformati 

for each x. 1If X,Y,Z are open (for example balls) in V,W)U)"HW'\ t’J-Q;U 

but in general they will be lower-dimensional, as in our picture. W 

While the "co-ordinate free" description is necessary for describing 

the objective motion of bodies in everyday life and in conceptual physics, 

equally necessary for numerical calculations is the introduction of 

(subjectively chosen) Ycoordinate systems"; such induce among other thinas



(fi- 

the choice of a basis in each tangent space (which in turn induces an 

identification of the various tangent spaces with each other which may . 

have to be untangled by subtracting and rotating etc.) Thffs if XCI’/\"‘: ‘ff—fi?': 

are open, then for each x j_ fld we have linear transformations? 

=_™ ;(1,) a, 3/;)5 RF 

e 
Then -?'{y)'\f is a matrix product for each column vector e lI" where 

f'(x) "is" the matrix whose entries are 

*&( )= ';7(‘ 43h - m 

)i BZZ g = -y 

3 

where the ‘i’) are the components of the nonlinear map £ 

$(x)=CF 3500 F (2 
and similarly the chosen bases for the tancent spaces to Y and 2 wJ".ll 

give g'(y) the matrix entries 

Since composition of linear transformations is represented, relative to 

given coordinates, by matrix multiplication, the chain rule becomes 

y L . K, -. 

¢ = ' o D.Fa, »of 
Q% #)(7')’(1 L— sjyj( gxl, 3y —ym 

where it must be understood that the éf}" are to be evaluated at y = f(x) 

and not some other y. 333 

Another important construction in calculus is Newton's method, both 

in the nroof of theorems like the implicit function theorem as well as in 

a great variety of numerical approximations. Here one needs to find x for 

which f(x) = y, where f is a given non-linear map and y is a aiven noint



§b 
in the codomain Y of £f. Newton's method is to iterate the (even more 

nonlinear) ma - ' -"'( ' 

1 e n{- ()= 2+ i:”(—:t%]_ I 
starting from a point < which one believes is "nearly" a solution and 

repeating‘??_ again and again hoping that the resulting sequence l 

X,CNE) =X, Y UE)=%, - 
of points in X will "converge" to an actual solution x of f(x) = y. 

While this hope is amazingly often justified, the discussion of that 

is given in courses on analysis. Here we just point out that since, if X, 

are more than onedimensional, f£'(x) is not a number but a linear trans- 

formation, to even get the Newton procedurecfi, going one has to deal with 

the inverse /, $(2) 
of a linear transformation (and indeed deal with it in a way that can be 

repeated when one changes from.i to a new X , thus getting a whole 
4 

new linear transformation) and this is one of the important problems 

of linear algebra. (More precisely, if dim(X) > dim(Y), it is only a one 

sided inverse S(X)for f£'(x), i.e. -V(I)'S(‘E)f-iw ,rather than an actual 2-$§ide 

inverse, which is possible because of the geometry and required for Newton' 

method.) 

The operators grad, cur]. div, lap, are linear transformations betwee 

infinite -dimensional linear spaces of functions. For example if X is open 

in TR™ , then RT = the linear space of all smooth real-valued functions on 

admits the linear self-transformation a 

2o =1 TE 
121 axl'_ 

named after Laplace, who was instrumental in using it to develop the theory 

of gravitational and electrical potential. 

._.PExercise: Use lap to define a new (non associative) product on functions 

KK as follows (Here we use the fact that [R™ is a ring as well as a 

- — — (s ( )F] get M-;Lg[flof(gf) 320('” %g 

Thim %O(uv): (céou\'v -t-u(%-v'\ Liflmé M“-D 

xXpu= 3L [hete; x; ' o gadiendery] 
3 

linear space ).




