Here is the highly referenced seminar handout notes by Lawvere, 1962. The pen markings are mine; in
several places my initial thoughts are incorrect (e.g., P has products therefore... In fact P does not have
products or equalizers -only weak products and weak equalizers). Rather than “correcting them” by more
markings I left them incorrect; we have a rather detailed analysis of this category as we were trying to
determine if it had equalizers (we proved it doesn’t). Attached to his notes is a recent email exchange I had
with him concerning “probabilistic relations” using this category.
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THE CATEGORY OF PROBABILISTIC MA PPINGS

— With Applications to Stochastic Processes,
Statistics, and Pattern Recognition

- by F. W, Lawvere

1. Objects and Maps in the Category of Probabilistic Mappings

I.1 Measurable Spaces

1.1.1 The objects which we consider are nieasuratle spaces {¢. That is,

Q= <5,B> will be an ordered pair in which S is any set and B is any
o -algebra of subsets of S. This means that: £ akgfbl’é {S,B)
(0) Every member of B is a subset of 5. Lors 2 B les~ éﬁg“""—

41’;.}1&{1] The empty set P and the ''whole space'' S are members of B.“"‘J‘: )
L
e &) Q{Z} If B € B (i.e., if Bis a memnber of B) then the comiplement ,AB, 85V BS

.{
%ﬁb'b (S""B}SB. a“é_r{_ig{lj)fué.‘l’

=

S 2
«-/,Tpf‘"uév w1 (3) 1fB,,1=0,1,2,--- is any countable family of members of B, ~ -
i "“.r i - Tee +°F"(""J

then the union iQOBi is also a member of B. -rsﬁ
L
b a-2le. 18 (Ca‘u-mrp Lefe
1.2 If §= <S, B> is any measurable space and if  is a tum.tmn de ned on v (s

¢ gmh S with values in a partial ordared set /\, then f is said to be Q—A Leasur-
L pal 1y
oy by M eRva TR Xy
e r‘”u able if for each Ag A\ we have 1 f(w)< k]' ¢ B; that is, if the set of all
i‘“?au\- Ec{: We SN Jo 2 o~2lg. 5 » g:- W)

w £ © whose_ value under f pre

We also say that B is the class of measurable sets of Q.

es a giver A is measurable for each X,

lownla. L!""

L-"U"U'h"(-For example, we will use this notion when /\= R, the real number,

1.3 More generally, if Q= <S, B> and @' = <5', B'> are any measurable
spaces, and 1f,g is any function defined on S with values in 8', theng is

/
S = said to be a measurable mapping if and only if £ (B )¢ B for every B'¢ B',

where f-l{B') denotes the set of all x ¢ S for which f(x) ¢ B'., The foregoing
paragraph is seen to be a special case of this by considering Q= <A\, B(A)>
where B(/\) is the smallest o -algebra containing all sets of the form

{xlxs J\}foralll&!\.
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wlo, dan(P)= B (#S)
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1.4 If Q= <S, B> is a measurable space, then by a probability n.easure on {

is meant a function P which assigns to every measurable set BE B a real
number P({B), in such a way that:

(0) 0< P(B) <1 for every BE B

(1) P(S5)=1

(2) If Biﬁ Bfori=1,2,+- and if BinBj =0fori#jli.e., Bi are pair-

wise disjoint measurable sets) then
0 B)=L
P B.)= P(B.
(,9,B)=E PB)

1.5 In case S is a countable set and B consists of all subsets of 5, then for any

—

probability measure P on <S5, B> and any B ¢ lB.. we have

=
P(B)= I P({x})

where {x} is the ""singleton' subset of S whose only member is x, for each
P x £ B, Thus, in this case, a probability measure is already determined by
.\ 1S, Pie=1o,01

a function p(x) = P({x} ) of members of S; this function is arbitrary, save

for the two conditions 0 < p(x) < 1, x%S p(x) = 1.

If S is not countable, then probability measures on {lare not determined by
their values at singletons., For example, if S = {xl 0<£x < l} = the "unit
interval", and if B = the smallest g--algebra containing all closed subinter-

vals = the class of "Borel sets'', then there are a great many probability

measures P on = <5, B> for which P({x}) =0 for all x. For example,
in this case P = Lebesque measure = (generalized) length is a probability

measure but every singleton has zero probability,

1.6 1f O=<S, B> and Q' =<8', B'> are measurables spaces, if f is a
measurable mapping (1.3) from Qto Q', and if P is a probability measure
on €} then the probability measure Pf induced on { by P via f is defined
by

(peye") & p(e~ (")
for every B'£ B'. Note ot @:u{: f?nk. FRpPASS,
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To verify that Pf is probability measure (i.e., satisfies the conditions
-1

0, 1, 2 of 1.4) note that the mapping f from B' to B is a o -homomorphism;

i,e,, that

f'i(s'ﬁ.B'} - Srvf-l{Bl) for B'¢ B'

"‘l o 1 e 0o -1 ] 1 1

£ () Bi}—-u f {e.i) for BiEB
i=1 i=1

f'l(s‘)=s

From this it is obvious that P{ is a probability n.easure if P is, in fact,
any mapping fron: B' to B which satisfies the above conditions (whether
induced by a mapping from S to S' or not) will induce a mapping from

probability measures on Qto those on ',
If =<5, B> is a measurable space and, if x£ S, then Px defined by

_(lif xeB
Px{B) T lCif xgB

for any B¢ B, is a probability measure on }, known as a "one-point" or

"Dirac'" measure,

Let 1= <S5, B> be a measurable space, P a probability measure on {}

f a bounded measurable miapping from  to R = the space of real numbers
with Borel sets as the measurable sets ('""Bounded" means that for some
positive real number M, |f(x)| < M for all x£ S). Such an fis often called

a bounded random variable. We now wish to define the P-expectation of f,

also called the integral of f with respect to P, denoted by either

EGYe] rap

or by ‘[ f(x)P(dx)
9]
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s This can be done by considering approximations to the integral based on
doubly infinite increasing sequences ) )
K"""s—"u ’ SR Pk & sc:b__ £ ush dumbapis
N e < < <a <a_<a_<-‘-»
N Za _, _a‘l__an <a, <a, = e T e
I -Fb_o_ YN ) - 4, A A e
%  of real numbers. Given any such sequence a, define the upper approxima-
tion M! blt.w—({b;«nd-(z- mf o
s —
- o gt 3T (LPa = > Hh PR, e »
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Here Pf(a,b] =P {x‘a <f(x)<b } as defined in 1. The upper integral
is defined by

T (f, P) = inf J (f, P,a)
and the lower integral by

1(f,P)= sup J (f, P,a)

where the infimum and supremum are taken over all doubly infinite increas-
ing sequences a. IfI (f, P) =T (f, P), then the function { is said to be integrable

with respect to P, and the integral is defined to be the common value

I (£, P) = I fdP=T ({,P) .
o

It can be shown that every bounded measurable function (on £} is integrable
with respect to every probability measure (on 1), For each individual P,
there will ordinarily be many unbounded functions which are integrable with

respect to P.

1.9 If S is a countable set, B the family of all subsets of 5, f any bounded

measurable function on 0= <S, B>, and P any probability measure on {1,

5



then
~— jgf{xaptdx) = Efx)p(x)
where p(x) = P{ {x}) as defined in 1,5,

1.10 Let f,g be any two bounded measurable functions on a measurable space {,

and let P be any probability measure on {I. Then
Ju+rgrap=]ap+| gap .
(9] Q Q

If a is any real number, then

_[ af(x) Pldx) = a | f(x) P(dx) .
Q

T . . S — :

T e T R e L NS R S ST SRR I e S SO LN,

If fn is any sequence of bounded measurable functions such that fn is uniforn.ly

bounded {Ifn(x)lf_ M for all x,n) and if ni..iE)lm fn{x) = f(x) for each x £ §,

s 1isn ‘[ £ dp = .Jr fdP.
n —oo Qn 0

()

1,11 1f 0 <6 <1 and if Pl' PZ are any two probability measures on the measurable

space (), then P = BPl + (1--9)P2 is also a probability measure, and

_[nfdp =9 Jnfdpl +(1-6) jgfdPZ

for any bounded measurable function f on Q.

Probabilistic Mappings
2.1 Let =<5, B> and Q' =<S', B'> be any measurable spaces. We say T is

a probabilistic mapping from Qto @' and write 050 and only if T assigns,

to each point in £, a probability measure on §', and does so in a measurable
P P Y

way. More precisely, T is a function of two variables x £ S, B'£ B' having the

properties
Tt fist 3ol (9) 0 < T(x,B') < 1 for all xS, B's B'
s 0l ek~
< (1) T(x,8")=1 for all x& 5
Sor
() ies 6
s durts W ﬂ[



(2) T(x,ul BL) = Z: T(x,B' } for each x ¢ S and for each disjoint
il n) 1=

&, w- (o, ﬁ“[sk%-uhnce B! of measurable sets of 0.
‘T{.B)S‘—'—)(lll i

3 \T(x,B") < B 2 h0<a<1and each B'E B'.
t‘_i,ﬁ'ﬁ)‘{v,.«,a)c’- ® = {x] b }___a.}g for each 052 < 1 and each B'E B

We will refer to T(x,B') as the (conditional) T=-probability of the event

-1-{-,(5'\ amnst 2 le

we (& Be) B in Q', given the elementary event x in {}, or as the T-probability that

x is mapped into B'. 1In case S' is countable and B' consists of all subsets)«
IT‘.)’-,E')":
T(x,g:[_-;.‘s\:

of S', then a probabilistic mapping 0-?—) Q' is entirely detern.ined by a

function t of two point variables x ¢S, x'e S'. (See 1.5) 2 T = 5 £ k)
' ret

2.2 Every measurable mapping f from 0 to Q' (thee being measurable spaces)@ @' >R
-__._..-_,_ﬁv
n.ay be regarded as a probabilistic ma.ppmg Q—-——) Q' as follows: %
" g " V‘
\ -‘—"‘X K-—-——-;T( ; . {1 &)&EB‘
x t %_(XJB =
hw=J1 f(x)eB 0 otheror
U TxB)=10 fx) B ° : {‘, P
- \ 25ur 4
N e i (g ,0)
That is, T assigns to x the one-point measure (on Q') which 1s concentrated
&

2.(%,8) “&tb at f(x)., Probabilistic mappings of this special sort we call deterministic,

St B Let Q—T-)G‘ —g) Q' be probabilistic mappings, We define the composition
TolU .

Q——5 Q" to be the probabilistic mapping defined by
bk ""5:"% Note Tlege e
“ - SkAML G Distrlodke
ToU)}x,B") = | T(x,dx') . U(x',B") , re. -
. ‘rn’{x SRS )’m"s Q8™ ) ——
ﬂ" \Tpeoh eure. oN '(]--'I

That is, (TOoU)x,B") is the T(x,0)-expectation of U(e,B"),
This is the correct law for composition of conditional probabilities in
physical and other situations,

2.4 If {1 is a countable space is 2,3, then (ToU)}{x,B") = t(x,x"). U(x',B") .

=g 5!
1f " is also countable, then

(ToU ){x,ﬁ_x"}) = %I tx, x’) .u{x" x") . —T; ( Bf) (_U ix' ?)

xeg’
\
\J = —_—
s el T2 Tix k%)
Y7, SR e,
(f-*m-\{,\o,y:") = rhos, ) Ll
"2 tix, x')
xeg'

b=




Z.hi M Q-—f-} Q' -85 Q" are measurable n.appings then

T{ogz’rfo T

where fog is the usual composition of functions (thus the deterministic

n.appings cons.titute a subcategory (2.7) of the category of all probabili?;- 5
i n;appirgg?.m %C)ﬁ?"a é,{- las. olu"]«-h = rcrsurzble Space s ' Meag

2rrows s measunble Aachat . —

2.6 A probabilistic m.apping 1 —P) {0, where 1 is a one-point space, is just a
probability n.easure on ), If Q-Igvﬁ is a probabilistic n.apping, then

Po T is the induced distribution on D', This is familiar in case §}' is
T ws & Be tor lebationt of whuied divbrnbofion G 2 Gemend prodocbi lote woppig T

Euclidean space and T a detern.inistic mapping (i.e., T is a "random T is detormrcncsie
qlos redoces ho
variable'). Another special case is that where (= <S, B>, Q' = <S5, B'>, 1= 6b~loar

1.4
and B' is a sub-0-algebra of B, while T is the "identity" n.apping; then

PoT is the restriction of P from ® to B! i
NOBIERD))
2.t It ( }
oL oY an Y on
then

To(UoV)=(ToU)oV.

Also, if iQ denotes the probabilistic mapping defined by the (deterministic)

identity map on {2, then
idoT=T=Toin¢

whenever N—3 0'. Thus, the class P of all probabilistic n.appings between

measurable spaces, together with our notion of con.position, is a category

in the sense of Filenberg~-MacLane. Thus, the notions of functor, natural

transformation, and adjoint functor have a well-defined meaning in connec-

5 Q_A\Zion with # . |The 'objects" of ¥ are arbitrary measurable spaces,
A J———-"—~ ]

ﬁg{,ﬁ\‘z.s Let, for each object Bin P, £ () = the set of all probability measures
s

on {), equipped with the sn.allest 0-algebra such that for each neaaurable

PT(x.8) = Phf'te)
[
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A..%Q. the evaluation ) () — [0, l] at A is n.easurable. Thus, D (0)

is also an object in # . For any Q—I-? Q' in P , define the deterministic

map H () MD (') by

r
HTHPNAY) =| | PAw) T (w,A)
Q

for every Pg © (D) and every fueasurable A' € Q'. Thus, £ (TNP) = PoT
for P B (Q); i.e., viewed as|a probabilistic mapping, 1_1’_.551_3'._.,_91

PoTEQ

pawe.an={, por’G

!
for every element P of P ({]), and for every nieasurable set A" of proba-

o1 &>
bility measures on Q".”"om') bwhw-,@é’
: o
Define also the probabilistic mapping ) e T&zwnhw ; :g 2\
Po € T s b et <€
9o-sa eﬂ( comc3

for each object £ in P by the formula

PP A) = P(A) 1o POx,A) l—-;?.o..

for each element P of £) () and each measurable AC Q. Then for any

Q._.T.:; Q' in P, the diagram o, d: @.._sp Vg

P LY.

DT l g id
b(Q'}"ﬁ 6)
Q' ("
is commutative, so that P is a natural transformation of the functor nﬁ
into the identity functor on‘@.

Actually £ is co-adjoint to the inclusion of the deterministic subcategory

into @ ;i.e. ,m%—.—ie-mmﬁ QE‘—-’ ' is any probabilistic
mapping then there is a unique deterministic n.apping f such that the
b 9
e s
Q.e2®

g
(™3

gt oo —ddp
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— @) BEN— 0 Q
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a o) g(n') a1y a7 ‘T@/A
SE o @ o ()

is commutative. (In particular, there is a deterministic inclusion

w(ﬁ(ﬂ),ﬂug Q— B ( Q) and this is actually a retract with associated retraction ®

o)
rJ . - -
cf:"gmﬁ is expected that this adjointness observation will aid in the analysis
4 i) ¢ T of various n.ethodological problems such as Bohm's questions about
o

quantum n.echanics,
1.3 Stochastic Processes and Decision Maps

3.1 A fairly general class of decision problems may be formulated as follows,
There is a basic space {I and a measurable partition A of Q{ elements

determncstic u-n-ﬁu.g

of A being called "patterns' or "decisions'', We denote the quotient

mapping £—> A by {, (Actually, for the formulation of the problem we
could allow f itself to be ""fuzzy'"; i.e., probabilistic.) There is also a
space T of "observable states" and a probabilistic n.apping Q—E@I
expressing the conditional probability F(w, A) that the observed state lies
in any A& T, given that the basic state is we ). The problermn. is then

to find a "best" completion 8 of the diagram

One of the ''virtues'" of probability theory (and hence of the cate-
gory -P ) is that this general proHen., when properly explicated, has a

solution in many cases in which the corresponding detern.inistic problen:

™

T does not; a basic reason for this is the possibility in P of forming convex
Q—J¢cy
:-Tj con.binations of maps, whereas there is no corresponding operation which
L

‘(‘Luw produces detern.inistic rr.aps, Of course, if there exists 8 such that

-7,
&ﬂ;ﬂ( 10

Sus

-
) (OTe L-T) (x,-) = 6T ) « (O Tl ) ~ B —2IR



Fod ={, we would choose such 8 as the solution to our problen;; unfortun-
ately, this is not possible for many F,f of interest. One popular schen.e
for making definite the criterion for choosing 6 is to work with a given

distribution 1 — 2 on ) and to choose § so as to maxin.ize the quantity
uujw??thfli' “:lj"‘":z‘_‘_)_ '6 [Ht ? Sl.&k‘; WL‘-‘. st
— . —— . WWW ] .
Vob (-, Gl ) dLPGe )| | (Fobix, {Hm}) P(ax)  § % 2 P T LT () ke
HQ %{ﬂ“‘ bzm |a(‘“‘i¢',ZMA
st & e

which represents the average (with respect to P) of the probability of

making the correct decision by first making the observation F and then

following the decision rule 8. The probability measure P clearly expresses

the relative importance attached to various basic states xt () when evaluat-

ing the decision rule 8, In the abmence of any such P, one could choose §

S0 as to n.axin:ize

inf (Fod)(x,E(x} .
xe80

The existence of solutions & to these optin.ization problen.s can be

o established in very great generality by topological argunients,

3.2 We consider stochastic processes with discrete tinie, Let N be the cate-
gory with countably many objects and no non-identity maps, and let 'UDN
denote the category whose objects are sequences QO' P.l, -+ - of objects
in ® . We define a functor t??*{"

Rl

<t -
Qb 7

pN 2, pN

sy of

for each sequence Q of n.easurable spaces, where kT;I-n Qk denotes the

n.easurable space whose elements are all n-t uples *ixo, e

by

+ % > with
n-1

X, & G-i, equipped with the smallest 0-algebra which n.akes each projection

1T Gk——) Qj measurable, If Rn is thought of as the space of all possible
k<n

11
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states of a system: at tin.e n, then @(Q}n is the space of all possible

histories of the systen: up to time n. We define a general ten.poral

discrete stochastic process'in 0 to be any map

iz Sadpdeegrens By Poe TP

(' 4

b1y s 0 €

N :
in®", Given any two processes

'THfSIS Ez&yﬂﬁgﬁir
TB (hkSSkM“# .?

b—2, oo ‘Ey“
/

the general theory of categories indicates that a map P —£—)P' of stochastic

processes should be defined as a sequence

£
n E I
Qn nn ngﬁ&
(&P"“"‘
of maps in ‘fP, such that for each tine nE.N the dlagran (—o(Lzsl‘:;g

wh = :
b f,,-' Wa,:& yue 78 el é(-(zw 6"1@:{9‘1&.
(F)n

¢ @) —n—s fa)’ "
: ~
T g g
P 1 p! ¢ —
n 0 ,r
. .
=7, s«a-gw"*""" E’wg;
e \;G,ﬁ
is comimutative. Since there is also an obvious notion of conlposition ’}Br*@"’)ﬁ
such maps, all stochastic processes and all n:aps of such deﬂHrn ine a ":‘
category ot oA “"H (,sz\“‘,?ﬁvﬁ
% N &
(¢, g \
4
= S
which we call the category of temporally discrete stochastic processes, ,\Q\._ \‘;
ool A

All the machinery developed in the general theory of categories, as well Y
as that which can be developed for the particular category &, can thus
be applied to formulate, explicate, and solve many methodological

problen.s within the category [{) .ﬂ) N).

3.3 If N denotes the additive n.onoid of non-negative integers, conside red

as a category with one object 0, then the functor category

~ 12 N

1]«
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is the category of temporally discrete Markov processes. Explicitly,

N - 3 o
an object in s just a measurable space {) together with a probabilis-

tic n.apping Q-——T—)Q , and maps finﬁ’ B satisiy a commn.utative diagram

' f
£a——s Q7
2

(AR s I

67 (o L

If we are 1%iw.-n a Markov process <{), T> together with an initial
A . g o : ; ; ;
distribution 1 —= 0, we can view our situation as a general stochastic
process in which

1. Qn= Q forallng N
2, @{Q}o—-}ﬂo is just Po
3 @ (Q}n —arﬂn is just the con.position

T
T a—-sn =0
k(nnk n-1

where the first is the projection; i.e,, the dependence on the past is
really only on the preceding moment and, furthermore, the law of
transition {rom: one tin.e to the next does not change with tin e,

If we denote by (1, P h) the category of Markov processes augn.ented

with initial distributions, then the foregoing discussion detern.ines a functor

1L, PYN—3,0N).

This assertion carries the additional information that the various n.appings
match up properly, and also raises the question of whether the above
functor has an adjoint (or co-adjoint), That is, is it possible to extend

any process to a Markov process in a fashion which is universal with

respect to maps to (or fron) Markov processes? ?
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Inbox {3) - kirksturtz@universalmath.com - Register.com Webmail 8/5/114:26 PM

From: wlawvere@buffalo.edu
Subject: Re: Probabilistic Relations
Date: 07/19/2011 08:23 AM

To: kirksturtz@universalmath.com

Dear Dr. Sturtz

For this and many other constructions,

for example an internal Hom, it seems

that one needs to consider the category of

all convex spaces and not just its full subcategory P.
That is, the whole Eilenberg-Moore category of

the commutative pr monad, not only the Kleisli
category of free algebras (="simplices" in this case).

In group theory one deals with actual groups not only
their presentations (= maps in the Kleisli category).

The most obvious property of this monad that most
do not have is that the free on 1 is 1, with the result
that the tensor product has projections ("marginals")
which however do not have the universal property of
the associated cartesian product.

The commutativity of the monad means that all sorts of
diagram categories arising in statistics can be enriched.

Thanks for your interest and | look forward to your
further comments.

Best wishes
Bill Lawvere

On Tue 07/19/11 9:39 AM , "kirksturtz@universalmath.com" kirksturtz@universalmath.com sent:
> Dear Prof. Lawvere, | have been trying to develop the concept of

> probabilistic relations using the Category of Probabilistic Mappings,

> P, via Rel(P). Such an approach requires P be regular - it is not.

> It only has weak equalizers; given a parallel pair f.g: X--—>Y,

> the weak equalizer is the extreme set of the set of all probability

> measures P on X which satisfy f P = g P, along with the evaluation

> map. (Choquet Theory) In P arrows to 2 with the powerset

> algebra correspond to measurable functions, and seemingly the

> apparent alternative to the Rel(P) approach is to define a

> probabilistic relation as either aP map X x Y —--—-—-> 2, which

> for finite spaces correspond directly to fuzzy relations, oras a P

> map X XY -—-->[0,1] . Defining composition is the challenge.

> | am familiar with the current literature - it falls short of

> capturing this critical concept. Any thoughts are greatly

> appreciated. Respectfully,
> Kirk Sturtz, Ph.D.

> Universal Mathematics
> Dayton, OH

> 937-610-8704

>
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