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QUANTIFIERS AND SHEAVES 

by F. W. LAWVERE 

The unity of opposites in the title is essentially that between logic and geometry, 
and there are compelling reasons for maintaining that geometry is the leading aspect. 
At the same lime, in the present joint work with Myles Tierney there are important 
influences in the other direction: a Grothendieck " topology " appears most naturally 
as a modal operator, of the nature " it is locally the case that ", the usual logical opera­
tors such as V, 3, => have natural analogues which apply to families of geometrical 
objects rather than to propositional functions, and an important technique is to lift 
constructions first understood for " the " category S of abstract sets to an arbitrary 
topos. We first sum up the principal contradictions of the Grothendieck-Giraud-
Verdier theory of topos in terms of four or five adjoint functors, significantly generaliz­
ing the theory to free it of reliance on an external notion of infinite limit (in particular 
enabling one to claim that in a sense logic is a special case of geometry). The method 
thus developing is then applied to intrinsically define the concept of Boolean-valued 
model for S (BVM/S) and to prove the independence of the continuum hypothesis 
free of any use of transfinite induction. The second application of the method outlined 
here is an intrinsic geometric construction of the Chevalley-Hakim global spectrum 
of a ringed topos free of any choice of a " site of definition ". 

When the main contradictions of a thing have been found, the scientific procedure 
is to summarize them in slogans which one then constantly uses as an ideological 
weapon for the further development and transformation of the thing. Doing this 
for " set theory " requires taking account of the experience that the main pairs of oppos­
ing tendencies in mathematics take the form of adjoint functors, and frees us of the 
mathematically irrelevant traces (e) left behind by the process of accumulating (u) 
the power set (P) at each stage of a metaphysical " construction ". Further, experience 
with sheaves, permutation representations, algebraic spaces, etc., shows that a " set 
theory " for geometry should apply not only to abstract sets divorced from time, space, 
ring of definition, etc., but also to more general sets which do in fact develop along 
such parameters. For such sets, usually logic is " intuitionistic " (in its formal pro­
perties) usually the axiom of choice is false, and usually a set is not determined by its 
points defined over 1 only. 

1. By a topos we mean a category E which has finite limits and finite colimits, 
which is (a) cartesian closed and which (b) has a subobject classifier T. That is (a) 
on the one hand there is for each object A an internal horn functor ( )A right adjoint 
to cartesian product ( ) x A, and (b) on the other hand there is a single map true: 
1 -» T such that any monomorphism X' >+ X in E is the pullback of true along a 
unique characteristic map X -> T. This is the principal struggle in the internal 
theory of an arbitrary topos, and leads to very rapid development. The " set " T of 
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" truth-values " for E is shown to be a Heyting-algebra object which is complete in 
the sense that for any map f'.X -» Y in E there is a left adjoint ^ to the induced 
map Tf and also a right adjoint f 

\/:Tx -+ TY 

f 

to Tf. Usually T is not a Boolean-algebra; for example if E = all S-valued sheaves 
on a topological space, T is that sheaf whose sections over any LT is the set of open 
subsets of U9 while if E = Ç = CopS is set-valued functors on a small category Ç, 
then T(C) = all cribles of C. For any cp : X -> T9 we denote by { X/cp } the corres­
ponding subobject, correctly suggesting that to appropriate formulas of higher-order 
logic, a corresponding actual subobject exists. 

All of the usual exactness properties of a topos follow quickly, most of them from 
the fact that there is for a n y / : X -> Y a functor 

ft.E/X -> E/Y 
f 

right adjoint to pulling back families E -> Y over Y along / to families E x X indexed 

by X. This extends to the case where the fibers are being acted upon as follows: 
If C in Cat (E) is an internal category object-in E with object-of-objects X, we can 
consider all actions of C on arbitrary families E -• X of objects internally paramete­
rized by X, obtaining a new topos C = Cop E of internal E-valued presheaves on C. 
If / : C -> Ç'- is any internal functor, there is a right adjoint / # : Ç -• Ç' to the induced 
functor (as well as a left adjoint f0), which means that in a very useful sense, any topos 
(even if countable) is internally complete. 

Let us denote by ox the " support " functor which to any family E -> X assigns 
the caracteristic map of the image of the structure map. This then allows considera­
tion of particular direct contradictions between logic and geometry of a kind arising 
in proof theory and reminiscent of virtual vector bundles: 

(n) E/X j E/Y 

For every map / : X 
r 

aY 

V 
E(X9 T) i E(Y9 T) 

The above diagram commutes for permutation representations of a group, but not 
for the category 2 S of maps in sets. On the other hand, both in intuitionistic logic 
and algebraic geometry we have to consider the extent to which the internal algebraicly 
defined operator 3 actually means existence, which is essentially means whether 

(3) For every object E, the epi part splits in the following diagram 

E - # { l | f f l ( E ) } - 1 

Now the latter condition fails for G S, G a non-trivial group, but holds for PS_ where P 
is any well-ordered set (such as 2). Actually the conjunction of the two conditions (n) 
and (3) is equivalent to the condition that every epi splits, which geometrically we 
would call O-dimensionality and logically we would call the axiom of choice. If E 
is the category of equivalence classes of formulas in some higher theory, the condi-
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tion (3) is a Skolem condition, but the problem arises also if £ is of a geometrical nature 
since 3cp = true usually means actual existence only locally. 

Often in a topos we have to make use of a further adjoint reflecting the contradiction 
between primitive recursion data and the family of sequences which it defines (T-valued 
sequences being the case known as mathematical induction), for example in analyzing 
a coequalizer or forming the free group or free ring object generated by a given object: 

(co) E^ -> E is not an equivalence and has a left adjoint ( ) x co. Here E^ 
is the usual category of objects-together-with an-endomap. However we did not 
include this axiom in the definition of topos partly because of the useful generality 
and partly because it is automatically lifted to any topos E " defined over " another 
one E0 in which it is true. 

" Defined over " refers to a given geometrical morphism of topos, by which we mean 
a functor having an exact left adjoint. There are also logical morphisms of topos, 
which means a functor preserving up to isomorphism all the structure involved in 
the concept of topos. The two unite in local homeomorphism9 which is a geometrical 
morphism u whose left adjoint part w* is actually a logical morphism. 

THEOREM. — Any geometrical morphism « : £ ' - > E" of topos can be factored 
i n t ° E' -*-> ET 

E 

Where E is also a topos, where u'9 u" are geometrical morphisms of topos with the 
additional properties that (u'% is full and faithful E -> E" while the left adjoint 
(«')* : E -> E! reflects isomorphisms. Further, u" (hence any full and faithful geo­
metrical morphism) is entirely determined by a single map ju : T" -* T" in Ê" of the 
kind we call a Grothendieck " topology ", in fact as the ju-sheaves. 

Shifting to a topos denoted by E (rather than E") the conditions which such a modal 
operator; : T -> T should satisfy are that it is (a) idempotent and that it (b) commutes 
with true and with the conjunction map A : T x T -> T. Such induces functorially 
a closure operator on the set of subobjects of any object (not a Kuratowski closure ; 
for example in presheaves on a topological space the appropriate j assigns to any 
order ideal of open sets the principal ideal determined by its union). In order to show 
that j yields a full and faithful geometrical morphism Ej -> E of topos, we show that 
the usual condition of being a /sheaf is equivalent to having a diagonal /closed in 
the square (" separated ") and being /-closed in any separated object into which 
embedded. Then the associated sheaf functor is constructed without any appeal 
to infinite direct limits by using the following four observations about a Grothendieck 
" topology " (= modal operator; satisfying axioms (a) and (b): 1) The image 7} of; 
is a;'-sheaf. 2) Yx is a/sheaf if Y is. 3) For any X9 the/closure i n l x l of the diagonal 
is an equivalence relation. 4) If X -• Y is any mono of X into any sheaf Y9 then the 
/closure in Y of X is the associated sheaf of X. (The first step (prior to applying 
the four observations) is to consider the singleton map { } : X -> Tx). One then 
proves that the associated sheaf functor is exact by studying the morphisms which 
it inverts. 

An important example in which we use the above factorization theorem is (lifted 
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to an arbitrary base topos E instead of S) the Godement construction of sheaves on a 
topology basis by the method of resolving the contradiction between presheaves and 
(" discrete ") espace étalé. By a topology basis is meant a triplet consisting of an 
object X (of " points "), an object A (of " indices for the basis elements "), and a pairing 
X x A -> T which satisfies a directness condition so that the induced pair of adjoints 

lim 

E/X tzps AopE 

is a geometrical morphism of topos (Here by A we mean the poset whose " horn " 
order relation F =t A on" objects " in A is just thepullback along A -> Tx of the 
standard order relation on subobjects of X). Then the " image " topos is the usual 
category of sheaves, describable either using a Grothendieck " topology " in A?PE 
or a left exact cotriple (standard construction) in E/X. 

There is a standard Grothendieck topology in any topos, namely double negation, 
which is more appropriately put into words as " it is cofinally the case that ". The 
category u h i of double negation sheaves always satisfies the additional condition 
that the logic is classical: 

(I) 1 + 1 => T 

which is equivalent with the condition that T (e. g. T-]-, in E-,-,) is a Boolean algebra 
object, which again geometrically is equivalent with the condition that every mono 
X' >-> X is part of a (unique) direct sum diagram X' + (~| X') ^ X. 

For constructing logical morphisms of topos we need to use geometrical morphisms, 
but also another construction, a generalized ultraproduct, which does not give a geo­
metrical morphism in general and hence leads outside the realm of externally complete 
(i. e. defined over given £0) topos considered up to now in geometry. The data needed 
for the generalized ultraproduct is a pair consisting of a functor u^: E -> E0 between 
two topos, which may be a geometrical morphism but which in general is only required 
to preserve finite inverse limits, and of a homomorphism h'.uJJT) -> T0 of Hey ting 
algebra objects of E0. A new category Eh is then obtained from E by formally invert­
ing all monomorphisms X' >-> X in E whose " universal quantification belongs to the 
ultrafilter " in the sense that 

M"*Mn^))) = true0 

THEOREM. — Eh is a topos and E -> Eh a logical morphism. Eh is defined over E0 

in the sense of closed categories but usually not in the geometrical sense of topos. 

The above is needed, for example, to show that a BVM/S can always be collapsed 
to a two-valued model, allowing most work on independence results to take place in 
higher topos without actually choosing h and making the collapse. 

2. We can now make more precise what it is usually necessary to assume about 
" the " category S of abstract sets: it can be any topos satisfying conditions (n), (3), 
(co), (~I) above as well as the following " irreducibility of 1 " condition: 

(V) If cpi'.l -+ T and cpt V cp2 = true, 
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then 
cpl = true or cp2 = true. 

Now conditions (~~|) and (V) together imply that there are only two subobjects of 1, 
but not conversely as MopS, for M a monoid but not a group, shows. On the other 
hand (3) and (""|) together imply that the subobjects of 1 (which form a " complete " 
Boolean algebra then) also form a generating family for the category; a topos satisfy­
ing (3) and (~|) we call " Boolean ", and in such usually write 2 = T. By a Boolean-
valued model E of S (in symbols EeBVM/S) we mean then simply that £ is a Boolean 
topos defined over JS. We can then show that any BVM over S actually also satis­
fies (n) i. e. the axiom of choice, and indeed that the bi-category BVM/S_ is equivalent 
to the category CBAjS) of 5-complete Boolean algebra objects in S. 

Actually the BVM's can be constructed another way, namely as double negation 
sheaves P = (PS)-n in the category of 5-valued functors on some poset P in 5. In 
this case (as well as others) the terminology of Cohen is suggestive: if XeP, q> p 
in P, cp: X -> 2 and x is an element of X defined at p, say that " q forces cp(x) " iff 
cp(x/q) — true. Then in P, q forces cp(x) iff r forces cp(x) for a set of r cofinal beyond q. 

To refute the continuum hypothesis in some BVMP we also follow Cohen by choos­
ing a set I in S with 2*° < J in the sense that there is a mono but no epi. Then P is 
the poset (ordered by extension) of all partial maps co x J -> 2 with finite domain 
(definable as an object in any topos). Then in P 

œ < M*(2W) < 2W 

where u* is the " constant sheaf " functor left adjoint to the " global sections " functor 
w* : £ -*• ±L For the proof, one notes that P itself is essentially the definition of a 
map u*(I) >+ 2e0 on a covering, hence for sheaves there is such a map. The main 
point is then the 

LEMMA. — If P is any poset in 5 satisfying a suitable " countable chain condition ", 
X in S and Y in S with Y x co ^ Y, then 

Epi (X, Y) = 0 in S implies Epi (u*(X), u*(Y)) = 0 in P. 

Here Epi (X, Y) is an object defined in any topos by pulling back " image " along 
" true ". 

3. A particular sort of topology basis arises if an object A has the structure of a 
(multiplicative) commutative monoid and one is given a homomorphism u: A -> Tx 

into the monoid of subobjects of an object X, where multiplication is defined as conjunc­
tion (intersection). In this case we have moreover that the order-relation-object F =£ A 
determines a submonoid of the constant functor ./Tin AopE and that the "membership " 
relation P >-> X x A induced by the pairing determines a submonoid of the constant 
family À in E/X. We may then form fractions to obtain new commutative monoid 
objects (À)P in E/X and (Ä)F in AopE and in particular A (in the intermediate sheaf 
category) which is the reflection of (A)F and which is reflected to (À)P. 

Suppose now that A is actually a commutative ring in E. Because of the intui-
tionistic nature of logic (already for E = 2R) we are forced to define a prime x of A 
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to be, not an ideal, but a subobject of A satisfying rather four conditions of the form 

1) [ l ex ] = true 
2) [f.gex] =[fex]A\gex] 
3) [0 e x] = false 
4) [f+g^x]<[fex]y\gex] 

Note that 2) is an if-and-only-if condition and that the disjunction in the conclusion 
of the implication in 4) means essentially sup of two subobjects, which in a general 
topos may mean actual disjunction only locally. We further say that a ring is local iff 
the subobject of units is a prime. By a finite inverse limit, we get X >-> TA, " the 
subobject of TA consisting of all subobjects of A which are prime ". This gives a 
topology basis in E whose sheaves form the topos Spec (4) known as the global spec­
trum of E, A ; in Spec (A), ^îis a local ring object, and indeed the universal local ̂ 4-algebra 
in topos defined over E. Note that in the process, the membership relation is exactly 
transformed into its opposite. 

4. While the application of our method to algebraic geometry has only begun, 
other questions also immediately arise. Unpublished work of George Rousseau 
shows that the semantics often given for intuitionistic logic is simply ordinary (i. e. for 
abstract sets) semantics done in a suitable topos AS; a similar statement is true for 
Läuchli's proof-theoretic interpretation, as was recently shown by Anders Kock. 
But it would seem also possible to consider parameters designed to be applied to 
actual materialist time rather than just to stages in an imagined " construction ". 
In any topos satisfying (co) each definition of the real numbers yields a definite object, 
but it is not yet known what theorems of analysis can be proved about it. 
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