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Individuals do not set the course of events;  it is the social force.

Thirty-five or forty years ago it caused us to congregate in centers like

Columbia University or Berkeley, or Chicago, or Montreal, or Sydney, or

Zurich because we heard that the pursuit of knowledge was going on there.  It

was a time when people in many places had come to realize that category

theory had a role to play in the pursuit of mathematical knowledge.  That is

basically why we know each other and why  many of us are more or less the

same age.  But it’s also important to point out that we are still here and still

finding striking new results in spite of all the pessimistic things we heard,

even 35 or 40 years ago, that there was no future in abstract generalities.  We

continue to be surprised to find striking new and powerful general results as

well as to find very interesting particular examples.

 We have had to fight against the myth of the mainstream which says,

for example, that there are cycles during which at one time everybody is

working on general concepts, and at another time anybody of consequence is

doing only particular examples, whereas in fact serious mathematicians have

always been doing both.

1.  Infinitesimally Generated Toposes

In fact, it is the relation between the General and the Particular about

which I wish to speak.  I read somewhere recently that the basic program of

infinitesimal calculus, continuum mechanics, and differential geometry is

that all the world can be reconstructed from the infinitely small.

One may think this is not possible, but nonetheless it’s certainly a program

that has been very fruitful over the last 300 years.  I think we are now finally

in a position to actually make more explicit what that program amounts to.

As you know 30 years ago I made certain proposals in Chicago and then again



15 years ago in Buffalo.  There has since been a lot of work on what came to

be called synthetic differential geometry.  At least 20 people in the world

have made important advances in synthetic differential geometry;  indeed

several of these people are here.  And there are also very encouraging

developments about the simplification of functional analysis.  So I think that

on the basis of these developments we can focus on this question of making

very explicit how continuum physics etc. can be built up mathematically from

very simple ingredients.

To say that a topos can be built up from an object  T will mean here that

every object is a direct limit of finite inverse limits of exponentials of T.

By exponentials of T we mean TT ,T T2 etc. and of course the inverse limits

involve equalizers of maps between finite products of these.  Such equalizers

may be considered as varieties, and in particular the equalizers of maps

between finite products of  T  itself are intended to be infinitesimal varieties.

There are actually many interesting useful toposes which are built up in that

way from an object T which in some of several senses is infinitely small.  Of

course T is not just a single point;  but it may have only a single point, or

more generally the set of components functor may agree with the functor

represented by  1 on T and its products and sums.  One of these senses is that

it is a space whose algebra of functions is linearly finite-dimensional;  of

course that presupposes that we have some linear algebra in the topos, in

particular a base rig.  But actually it turns out that the base rig itself can be

constructed from T.

I’m going to assume T to be a pointed object

1 o →   T

This arrow itself is a kind of contradiction expressing that an instant of time

involves a point and yet is more than a point.  A crucial role is played by the

internal endomorphism monoid TT of T.  Also very important is the

submonoid of that consisting (in the internal sense) of those endomorphisms

which preserve the point.

I am actually going to define R  to be that part. If this works we can consider



RX

as the space of the simplest kind of intensively variable quantities.  We can

also consider the R-homogeneous part of the space of functionals

HomR(RX,R)

as representing the simplest kind of extensively variable quantities over the

domain X;  typically this means something like the space of distributions of

compact support in X.  The basic spaces which are needed for functional

analysis and theories of physical fields are thus in some sense available in any

topos with a suitable object  T.  It would be nice if we could prove that R is

commutative, but I don’t know how to do that from more basic assumptions.

You might ask “couldn’t  TT itself be commutative?”  But there is a very

general fact about cartesian closed categories:  If an object  T  has a

commutative internal endomorphism monoid, then T itself is a subobject of

1.  Intuitively, TT always includes constants, T →   TT and if constants

commute, they are equal.  Thus although T itself may be very small, we must

have that TT is a little bit bigger than R .  The idea is that a real quantity λ is

just a temporal speed-up or retardation

1 o →   Tcλ

As we will see, although R is in a sense the more familiar, the bigger monoid

TT  and its actions also play very important roles.  Again, there is a general

fact about cartesian closed categories.  For any monoid M in such a category

we can consider also the category of all internal right actions of M.  There are,

of course, the co-free actions (     )M, but we can also consider the action on

(   )T where  T  is the space of constants of M;  this functor will be right adjoint

to the fixpoint functor if  T  has a point.  In case M = TT, this right adjoint is

actually a full inclusion.  We want to think of  XT  as the tangent bundle of  X

with the evaluation at the point of  T  as the bundle projection.  (This idea is

already described by Gabriel in SGA3, for example.)  The fullness is in contrast

with the situation obtained, if we consider that the tangent bundles are

equipped only with the R-action, in which case maps between them are



essentially contact transformations, not necessarily induced by differentiating

(i.e. exponentiating) maps between the configuration spaces.  The space can be

recovered from its tangent space as the zero section, but even the maps

between the spaces can be recovered if we take into account the action of this

slightly larger monoid TT .

As we know, there are many examples of such categories:  algebraic

geometry, smooth geometry, analytic geometry (real or complex), and many

variations on those;  actually, in my Chicago lectures I pointed out that there

are many potentially interesting intermediate examples of such toposes, for

example obtained by adjoining the single operation

exp(−(1/(  )))

to the ordinary theory of real polynomials, so that we can obtain the typical

partitions of unity of smooth geometry and yet work in a concrete “algebraic

extension” context.  (But these are algebraic extensions of systems of

quantities of various arieties, so appropriately modeled as a category, rather

than just as a differential ring.)  All these examples have something in

common, and part of the program was to figure out what that “something” is,

while at the same time providing a language powerful enough to make all

significant distinctions between them.  Part of what they have in common is

that they are all defined over a simple base topos, the classifying topos for a

pointed instant T acted on by a pointed monoid M and satisfying some rather

remarkable special axioms.  In this base topos  M  probably is TT since there is

nothing else between, although without additional hypotheses that

isomorphism will not persist into arbitrary toposes defined over this base.  In

the standard examples, exponentiation by T (the tangent bundle concept)  is

actually preserved up to isomorphism by the inverse of the classifying

morphism although this is not a general topos-theoretic fact.  Those examples

differ mainly in the higher types, that is, in the precise determination of the

maps whose domain is the finite-dimensional space  TT .  Anyway, since R  is

a basic definable sub-object of M, we see why the usual examples are

infinitesimally generated in the sense of this lecture;  smoothness of

morphisms between infinite-dimensional spaces has been successfully tested

via smooth maps from finite-dimensional varieties for 300 years.  In the



standard examples the functor to this infinitesimal base topos has additional

adjoints so that the latter is actually even an essential sub-topos;  this implies

that there is a comonad on the big topos which deserves the name of

infinitesimal skeleton.

In all the standard examples the object  T  is isomorphic to the

spectrum of the algebra of dual numbers.  This implies some rather

remarkable axioms that the pair  M,T may be required to satisfy.  For example,

T has a fixed point operator

TT→ T

assigning to each endomap a fixed point of it;  in this case this operator is

nothing but the bundle projection (evaluation at zero) and can be interpreted

as a map with domain M.  This is a consequence of a more general

remarkable axiom, namely if β is in M and if λ is in the zero-preserving part

R   of  M, then

βλβ  = β2λ

Of course, this striking commutation relation is interpreted as a commutative

square whose domain is  M × R   in our infinitesimal base topos.

The speedups/retardations λ of the temporal instant  1 o →   T

should actually form a rig  R .  The multiplication is just composition of

speedups, but the addition is also intrinsic, somewhat as in Mac Lane’s 1950

analysis of linear categories.  More precisely, the requirement is that the

extensive-quantity functor
HomR(RX,R)

is additive in the sense that it takes finite coproducts of spaces  X  to cartesian

products, the needed projections coming ultimately from the point 0 of  T.  Of

course, it suffices to assume this for the case  X = 2.  It is the expectation, that

in the smooth world  R-homogeneous maps are automatically linear, that

underlies this axiom.

Many people have thought about related questions.  For example, Peter

Freyd had many unpublished ideas, and David Yetter’s thesis develops some

of our suggestions quite far.  The part of  R   consisting of elements of square



zero may be called  D  as has become customary in synthetic differential

geometry.  An isomorphism between T and D should amount to the same

thing as a choice of a unit of time.

There is another striking property which seems to be frequently

correlated with being very small.  In order to settle once and for all the

various terminological differences, perhaps we can use

a. t. o.m.

as an abbreviation for “amazingly tiny object model”.  Whatever we call it,

the property is that of the exceptional existence of an additional right adjoint.

Since I first wrote about this in 1980, it occurred to me that a suggestive name

for this adjoint is fractional exponentiation.  Briefly, certain very special

objects  T  may be not only exponentiable, but also fractionally so in the sense

that there is an adjointness where the new functor is denoted as the fractional

exponent 1/T.

X →    Y 1  /  T

--------------------------

XT  →     Y

Of course,   (  )T itself is defined by another adjointness (lambda conversion)

W  →    X T

--------------------------

T  ×  W  →     X

More generally, if  A   is any object (not necessarily an a.t.o.m. ) which is

exponentiable, then we even have fractional exponents A/T .  These fraction

symbols compose as right adjoint right operators.  When the denominators

are trivial, this composition is just represented by cartesian product of the

numerators.  When the denominators are general a.t.o.m.’s the composition

is not commutative, but nonetheless can be reduced to the simple fractional

form.  That is, it follows from the assumed adjointnesses that (right actions)

(1/T)B = BT/ T

These fractional exponents will play a crucial role in what follows.



2.  Galilean ‘monoids’ for 2nd order ODE’s in toposes

Nowadays many mathematicians study abstract objects that are called

dynamical systems.  Dynamical systems conceptually are intended as what

one might call an analysis of Becoming.  Already with Aristotle it became

customary to analyze Becoming into two aspects, Time and States, with the

Time somehow acting on the States.  There are many variants on this model,

but it is the one we still have.  The action of Time on the States is the

particular law of motion.  More precisely, a given model of Time (a discrete

monoid, a continuous group, etc. etc.) serves as an Abstract General which is

accompanied by the Concrete General which is the category of all dynamical

systems, i.e. systems of states, acted on by that model of Time.

  But in a sense much of the current work on dynamical systems is

within a framework that still hasn’t caught up with Galileo.  Galileo made a

big advance on the basic idea.  In his book “Dialogues concerning two new

sciences” written toward the end of his life, Galileo put forward the

dynamical refinement of the Time/States analysis which involves the

following features.

(1) States are states of Becoming.  This again admits many variants:  the

States may involve velocities, or memories, or destinies, but in any case they

themselves should be more structured than just points which abstract static

Being particularized as configurations.  [In Birkhoff’s 1919 Palermo paper

which gave rise to the theory of fiber bundles, states are fibered over

configurations.]

(2) The particular law of actual motion is accompanied by another law

which is not the actual law, but which “would be if there were no forces”, as

Newton put it.  This accompanying law is called inertial or geodesic or spray.

The latter merely means that the law is homogenous with respect to the

monoid  R   of time−speedups.  Thus the Abstract General itself is more

detailed and refined than just a group.  (It is of course not excluded that the

actual law may be itself homogenous in some particular cases, but the

accompanying inertial law always is, it seems.)  Although the notion of affine

connection is given a much more complicated explanation in most text

books, in fact it just expresses this homogeneity idea:  if we speed up by a

factor λ, then move ahead inertially in time for duration t, we arrive at the



same state as if we had proceeded without speedup for a duration λt and then

sped up.

(3) Typically, all the laws constitute an infinite-dimensional affine space

which is not a vector space, but the specification of the inertial law provides

an origin in this space.  Thus we can define the specific force to be the

difference between an actual law and the inertial law, and the forces can be

added vectorially.

There could be no science or technology without something like

feature (3).  The actual motion of a piece of chalk thrown into the air is

influenced by Jupiter’s third moon and any number of other things.  But the

most important thing is gravity, or the most important thing is wind

resistance, or wind resistance and gravity, etc., i.e. we can make an

understandable theory of a law of motion which depends only on a few

forces, and to the extent that other forces really are negligible that theory will

lead to workable technological design.  It is the specification of the inertial law

as a zero in the affine space of all laws which permits the vectorial addition of

individual simplified laws (or rather of their corresponding specific forces).

For example, a viable law  s  of Becoming might be (without mentioning

forces explicitly) an alternating sum

s = s1 −s0+ s2

(so that the coefficients add up to 1 as required for an affine combination),

wherein the inertial law s0 is homogeneous with respect to all of  R  , whereas

the others (without themselves being linear in the usual sense), might enjoy

some restricted homogeneities.  For example, s1 might be a purely reactive

law homogeneous with respect to those lambdas in  R   which are

involutions, while s2 might be a purely dissipative law homogeneous for the

lambdas in  R  which are idempotent;  the first is often expressed by saying

that a purely reactive force (no friction present) enjoys reversibility in time,

while the second expresses roughly that pure friction or viscosity is

inoperative when the velocity happens to be zero.  Each of these three laws s1,

s0 , or  s2 could be considered as a simple model in its own right, but the

alternating sum will often be more accurate.  Expressed in terms of the

specific force laws this combination is



si− s0  =  fi           i = 1, 2

f1 + f2 = f

s − s0  =  f

What, more precisely, do we mean by a ‘law’?  and how could the laws

possibly form a topos as promised in my title?  First, note that the usual

‘dynamical systems’ involving for example the smooth actions of a monoid,

if properly construed, will surely form a topos with all the virtues that that

entails such as internal logic, good exactness, function space of ‘dynamical

systems’, etc.  Likewise, the infinitesimal version of such systems i.e. vector

fields or first-order ODE’s, will also form a topos as I pointed out in my

Chicago lecture.  But what about actual dynamical systems in the spirit of

Galileo, for example, second-order ODE’s?  [Of course, the symplectic or

Hamiltonian systems that are also much studied do address this question of

states of Becoming versus locations of Being, but in a special way which it

may not be possible to construe as a topos;  in any case, most systems arising

in engineering are not conservative.]

To specify an Abstract General whose corresponding Concrete General

will consist of state spaces, each equipped with its own genuinely dynamical

law, I propose the following.  Consider any given map

T →    A

in a topos of spaces, subject only to the restriction that its domain should be

an a.t.o.m. (the codomain  A  need not be an a.t.o.m., although it often will

be).  If I have any space  X  I can consider the restriction

XT ←   XA

along the map induced by my given map on the map spaces.  The kind of

structure that I want to consider is that of a given section s   to this restriction

map
XT → XA

s



This section will serve as a law of Becoming in the sense that given a map

from T to X, considered as a state of instantaneous Becoming, the law will

provide a definite extension to    A   considered as a distinctly longer instant.

T   →      A

x              


↓

s(x) 

        X

The standard example has  T as a first-order infinitesimal instant and  A

as a second-order instant.  In that case the choice of a unit of time would

identify  A   with the part  D2  of  R  consisting of elements of  cube zero in TT.

An actual motion following a law  s  would be a map (in the dynamical topos)

whose domain is a relatively small object idealizing the state space of a clock,

i.e. an interval of time equipped with its own (often homogeneous) law

which the map must preserve.

Theorem:  For any given map  T →      A   in a topos with natural number

object, where  T  is an  a.t.o.m., the category of all pairs  X, s as above, with the

obvious motion of morphism, is a topos lex-comonadic over the given topos.

In fact, the resulting ‘surjective’ geometric morphism is essential.

Proof:  By the basic adjointness such a section is equivalent to a map

X →   XA/T

which, when ‘evaluated at’ the given T →      A  reduces to the identity on X.

The co-pointed endofunctor (pullback of the fractional exponentiation) has a

left adjoint.  Therefore, iterating it and passing to the sequential limit yields a

lex-comonad which even has a left adjoint monad.  Since the comonad is left

exact, the coalgebra/algebras for this pair constitute a new topos, but they are

equivalent to the laws of motion  s  under discussion.  The essentiality is thus

a special case of the Eilenberg-Moore theorem about adjoint monads.

Thus we see that there is a Galilean generalization of the notion of

monoid.  Recall that any monoid in a ‘cartesian’ closed category is equivalent

to a pair consisting of an adjoint monad with its right adjoint comonad.  But

the converse of that statement is true only if the adjointnesses are internal.

In our case the right adjointness of the comonad is defined only over some



lower topos (as was discussed in my 1981 Cambridge lecture and investigated

in Yetter’s thesis).  This is, however, still a very special kind of lex comonad

since it is generated by this fractional exponent.

To sum up, the actions of such a Galilean ‘monoid’ thus constitute a

topos of laws of motion in the Galilean dynamical sense.  For example, if  A

consists of second-order infinitesimals, all the usual smooth dynamical

systems, including the infinite-dimensional ones, (elasticity, fluid mechanics,

and Maxwellian electro-dynamics) are included as special objects.

3.  Infinitesimals bodies too?

Galileo’s second new science, as interpreted by Noll,  concerns the

particularity of the ways in which constitutive relations of actual materials

give rise to laws of motion  s  on the configuration space  X  of a body, when

the body is subjected to arbitrary external conditions.  While there was no

time at the AMS lecture to elaborate on that, I did discuss it in my 1992 lecture

in the engineering faculty at Pisa and in my talk at the 1993 Nollfest.  In

addition to providing a flexible general conceptual setting for considerations

of materials science, the methods involving infinitesimal objects in toposes

seem to also offer a definite particular model for the kind of surfaces studied

by the Cosserat brothers and for the pseudorigid or zero-dimensional bodies

studied by Muncaster and Cohen.


