
Introduction to the Kontsevich Integral of Framed TanglesChristine Lescop �October 27, 2000AbstractThe Kontsevich integral is the most interesting knot invariant that has ever existed. It does notonly contain a lot of the previously known knot invariants, like the HOMFLY, Jones, Kau�manor Alexander polynomials which will be recovered from the Kontsevich integral in Pierre Vogel'slectures [V] or the Milnor invariants which will be recovered from the Kontsevich integral in GregorMasbaum's lectures [H-M]; but it also organizes them in a suitable way. Whether the Kontsevichintegral separates knots is still unknown, but the Kontsevich integral is known to separate braids(de�ned below). Furthermore, the Kontsevich integral admits a geometric construction.Here, we will follow the original approach of Kontsevich (and [Ba, C-D, LM1, LM2]) in orderto give a self-contained presentation of the Kontsevich integral and of all of its properties whichare useful for the study of the universal �nite type invariant of 3-manifolds of Le, Murakami andOhtsuki [LMO, Le1]. This LMO invariant is the main subject of our Summer School.
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1 The Kontsevich Integral for braidsFix two integers n and p, p � 1.We will �rst introduce some pieces of links where the Kontsevich integral is well- and easily-de�ned, the Cp-con�guration paths which can be seen as parametrized braids.1.1 Cp-con�guration pathsThroughout these lectures, C denotes the �eld of complex numbers. � denotes the big diagonal ofCp, that is the subset of Cp whose complement is the set of (ordered) con�gurations of p distinctpoints of C: Cp n� = f(z1; z2; : : : ; zp) j i 6= j ) zi 6= zjgThis section is devoted to constructing the Kontsevich integral for a path : [0; 1] �! Cp n�h 7! (z1(h); z2(h); : : : ; zp(h))of con�gurations. Our paths are continuous of course, and they are furthermore assumed to be piece-wise C1. These paths  will be called Cp-con�guration paths .We represent them as the graphs of the p complex-valued functions (h 7! zi(h)). These graphssit in R3 which is decomposed into the product R3 = C � R of the horizontal complex plane bythe vertical real axis pointing upward. The vertical axis represents the axis of the (height) parameterh 2 [0; 1], and, in the horizontal complex plane, the real axis runs from left to right in the blackboard(or paper sheet) plane and the imaginary axis points inward the blackboard as below.h 2 RiR RCExample 1.1 The torus braid (3; n): p = 3, � = n3 2i�.z1(h) = exp(�h); z2(h) = z1(h) exp(2i�3 ); z3(h) = z1(h) exp(4i�3 )Here is a picture of the torus braid (3; 2):
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We usually only draw the projections of the graphs onto the blackboard plane that is the planeof the real horizontal axis and the vertical real axis as in the following examples.Examples 1.2 Some C2-con�guration paths: p = 2, z1(h) = 0; z2(h) = exp(�h):
1"1 2� = Log"

1 2
� = i�

Example 1.3 The associator C3-con�guration path: p = 3,z1(h) = 0; z2(h) = "+ h(1� 2"); z3(h) = 1:
1 2 3" 1� " "

1.2 Coe�cients of the Kontsevich integral of Cp-con�guration pathsLet P = ffj; kg � f1; 2; : : : ; pgg denote the set of pairs of elements of f1; 2; : : : ; pg. We represent ann-tuple x = (fj1; k1g; fj2; k2g; : : : ; fjn; kng) 2 Pnby an n-chord diagram �x on p parallel vertical intervals numbered from left to right as shown in the�gure below, where we draw n horizontal chords at di�erent heights. The rth chord from bottom totop joins the jthr interval to the kthr vertical interval.Here is �x with x = (f1; 3g; f2; 3g; f1; 2g): 1 2 3With such an x 2 Pn, we associate a complex coe�cient Z(; x) of the Kontsevich integral. Thiscoe�cient Z(; x) is de�ned as the integralZ(; x) = Z�n !xof a complex-valued n-form !x 2 
n(�n;C)de�ned as follows on the simplex�n = f(h1; h2; : : : ; hn) 2 Rnj 0 � h1 � h2 � : : : � hn � 1g:!x(h1; h2; : : : ; hn) = � 12i��n ~!x1(h1)dh1 ^ ~!x2(h2)dh2 ^ : : : ~!xn(hn)dhnwhere ~!xr = (zjr � zkr)0(zjr � zkr )
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Example 1.4 In the examples 1.1 and 1.2, the function ~!xr is always constant, with value �. Thus,!x = ( �2i� )ndh1 ^ dh2 ^ : : : dhn and Z(; x) = ( �2i� )nVolume(�n), where the volume of �n is 1n! (forexample because the cube [0; 1]n is the union of n! simplices isometric to �n which intersect alongsets of measure zero). In these cases, for any x 2 Pn, we have:Z(; x) = ( �2i� )nn! (1.5)In general, the computation is not so simple as in the following exercise.Side-exercise 1.6 In the case of Example 1.3, computeZ(; (f1; 2g; f2; 3g)) = � 14�2  Log(")Log�1� "" �+ 1Xn=1 (1� ")n � "nn2 ! :1.3 The target of the Kontsevich integral: the space of diagramsLet X be a compact one-manifold.De�nition 1.7 An n-chord diagram on X is the datum of� an injection i of the set U of the 2n endpoints, called univalent vertices , of n closed intervals,called chords , into the interior of X , up to isotopy of X and isomorphism of the set of chords;(so far this is equivalent to the datum of the 0-dimensional submanifold i(U) (up to isotopy ofX) together with a partition of i(U) into n pairs).� for every point i(u 2 U), a cyclic order on the set the 3 half-edges (the chord and the two(natural) parts of a (natural) neighborhood of i(u) in X) which meet at i(u). This cyclic orderis called a (local) orientation at i(u). It is equivalent to the datum of a local orientation of Xnear i(u). Namely, number the dashed half-edge by 1 and the plain ones by 2 and 3 accordingto the cyclic order, then the induced orientation goes from edge ]2 to edge ]3.In pictures, the manifold X is represented by plain lines, the chords are represented by dashedlines, big dots represent the univalent vertices, and the local orientation is the trigonometric order ofthe 3 half-edges which meet at i(u). See the following example of a 4-chord diagram on X = j .
Let Dn(X) be the (�nite-dimensional !) C-vector space freely generated by the n-chord diagramson X . De�ne the antisymmetry relation (AS) and the four-term-relation (4T) as follows:AS : + = 0 and 4T : + + + = 0In words, (4T) reads: If four diagrams are identical except in the neighborhood of two chords,where they look as above, then their sum is zero. Similarly, AS means that the sum of two diagramswhich di�er only by the orientation at one vertex is zero.Let An(X) = Dn(X)AS; 4Tdenote the quotient of Dn(X) by these relations (that is the quotient of Dn(X) by the vector spacegenerated by the elements of Dn(X) of the form of the left-hand side of the relations). Equip An(X)with the standard topology of a complex �nite-dimensional vector space.4



Note that, by de�nition, A0(X) is the C-vector space freely generated by the unique diagramwith 0 chord, called the empty diagram, or the unit of A(X), and denoted by 1X .A0(X) = C1XWe let A(X) = Yn2NAn(X)denote the product of the An(X) equipped with its natural vector space structure and with theproduct topology. The element (xn 2 An(X))n2N is simply denoted by Pn2N xn by making use ofthe obvious inclusions from the An(X) to A(X). (Note that such a series always converges in A(X).)When X is made of p vertical numbered intervals, A(X = `pi=1 Ii) is denoted by A(p). In thatcase, there is a unique bilinear continuous productA(p)�A(p) �! A(p)(d; e) 7! desuch that, if d and e are (the projections in A(p) of) two chord diagrams on the p vertical numberedintervals drawn as below, de is obtained from d and e by stacking e above d as follows.� =Note that this product is well-de�ned (i.e. compatible with AS and 4T) and maps An(p)�Am(p) toAn+m(p). In particular, A(p) is an algebra with a well-de�ned and continuous exponential map:exp : A(p) �! A(p)x 7! exp(x) =Pn2N xnn!Let " denote the augmentation map from A(X) to C = A0(X), that is the natural projection.Then, there is a continuous logarithm:Log : "�1(1) � A(p) �! A(p)1 + x 7! Log(1 + x) = �P1n=1 (�x)nnSimilarly, when r 2 R, we de�ne the rth power of an element y 2 "�1(1) � A(p) by the usual formula:yr = exp(rLog(y)):and the (�1)th power of such a y is its inverse in A(p).Exercise 1.8 Prove that for any three distinct elements i, j, k of f1; 2; : : : ; pg, we have[�ij ][�jk ]� [�jk ][�ij ] = [�jk ][�ki]� [�ki][�jk ]in A2(p) where �ij = �ffi;jgg, and the brackets (which will be often omitted) are used to denote theprojections onto the quotients An(p).1.4 The Kontsevich integral for braidsUnder the hypotheses and notation above, the degree n part Zn() of the Kontsevich integral Z() of is Zn() = Xx2PnZ(; x)[�x] 2 An(p)and Z() = Xn2NZn() 2 A(p)5



Examples 1.9 In Example 1.2, we haveZ() = exp� �2i� �12�In Example 1.1, we have Z() = exp�n3 (�12 + �13 + �23)�If 0 is parametrized by h 2 [a; b] where a; b 2 R; a < b, then Z(0) is de�ned as above exceptthat �n is replaced anywhere by�n[a;b] def= f(h1; h2; : : : ; hn) 2 Rnj a � h1 � h2 � : : : � hn � bg:Z satis�es the following easy properties:Property 1.10 (Independence of the parameter) Let � : [a; b] �! [0; 1] be an increasing di�eo-morphism, then Z( � �) = Z()Property 1.11 (Invariance under transvection) Let f be a continuous function from [0; 1] to C,then Z( + f : h 7! ((z1 + f)(h); : : : ; (zp + f)(h))) = Z()Property 1.12 (Invariance under global homothety) Let A 2 C, thenZ(A : h 7! (Az1(h); : : : ; Azp(h))) = Z()Property 1.13 (Multiplicativity) Let 1; 2 : [0; 1] �! Cp n� be two Cp-con�guration paths suchthat 1(1) = 2(0), and let 12 be the composed path:12 : [0; 2] �! Cp n�h 7! � 1(h) if h � 12(h� 1) if h � 1Then Z(12) = Z(1)Z(2)Proof of the properties: It is easy to check that all the coe�cients Z(; x) are unchanged bythe operations of the 3 �rst properties. For the fourth one, just decompose�n[0;2] = [nk=0�k[0;1] ��n�k[1;2](= [nk=0f(h1; h2; : : : ; hn)j 0 � h1 � : : : � hk � 1 � hk+1 � : : : � hn � 2g)Denote by x!k the k-tuple made of the k �rst coordinates of x and xk+1! the (n-k)-tuple madeof the following ones so that �x = �x!k�xk+1! and observe thatZ�k[0;1]��n�k[1;2] !x(12) = Z�k[0;1] !x!k(1)� Z�n�k[1;2] !xk+1!(2(:� 1))
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This shows how Z(12; x)�x = nXk=0Z(1; x!k)�x!kZ(2; xk+1!)�xk+1!and allows us to easily conclude the proof. �We now give a more compact de�nition of Z:The Knizhnik-Zamolodchikov connection 
KZ 2 
1(Cp n�;A(p)) is the one-form valued in A(p)de�ned by: 
KZ = 12i� Xfj;kg�f1;2;:::;pg dzj � dzkzj � zk �jkThen the Kontsevich integral Z of  isZ() = Xn2NZ�n( � p1)�(
KZ) ^ ( � p2)�(
KZ) ^ : : : ^ ( � pn)�(
KZ)where pi : �n �! [0; 1] is the ith projection, pi(h1; : : : ; hn) = hi, and where, if !1 and !2 are twocomplex-valued forms, and if d1 and d2 are two elements of A(p), then !1d1 ^ !2d2 = !1 ^ !2(d1d2).Side-remark 1.14 Therefore, the Kontsevich integral is called the holonomy of the Knizhnik-Zamolodchikovconnection. For us, it is enough to know that Z is multiplicative with respect to the path composition.Side-exercise 1.15 Check that Z satis�es the other holonomy property:ddhZ(j[0;h])(u) = Z(j[0;u])
KZ (u)(0(u))1.5 The isotopy invariance of the Kontsevich integral of braidsTheorem 1.16 (Kontsevich, 1992) Let  be a C1 map from [0; 1]� [0; 1] to Cp n�. For u 2 [0; 1],let u denote the con�guration path:u : [0; 1] �! Cp n�h 7! u(h) = (u; h)Assume u(0) = 0(0) and u(1) = 0(1), for any u 2 [0; 1]. ThenZ(0) = Z(1)In other words, Z() only depends on the homotopy class1 with �xed extremities (0), (1) of . (Thisis also equivalent to say that 
KZ is at.)To prove the theorem, we will use the following lemma which will be proved later:Lemma 1.17 
KZ ^ 
KZ = 0Proof of the theorem: Observe that d
KZ = 0. More precisely, for any fj; kg 2 P , d�dzj�dzkzj�zk � =0 because dzj�dzkzj�zk can be written locally as dLog(zj � zk)). Thus, the usual Stokes theorem (appliedto the computation of all coe�cients of the �x) allows us to write:Z@([0;1]��n)( � (1� p1))�(
KZ) ^ ( � (1� p2))�(
KZ) ^ : : : ^ ( � (1� pn))�(
KZ) = 0where 1� pi : [0; 1]��n �! [0; 1]� [0; 1] maps (u;H 2 �n) to (u; pi(H)).The boundary @([0; 1]��n) of [0; 1]��n decomposes into the following parts:1Any homotopy between two C1 paths in (Cp n�) can be replaced by a C1 one. See [Hi, Chapter 2, Section 2].7



� @[0; 1]��n whose contribution to the above integral is Zn(1)� Zn(0),� the face [0; 1]�f(h1; : : : ; hn) 2 �njh1 = 0g where ( � (1�p1))�(
KZ) = 0 because u(0) is con-stant and which therefore does not contribute to the integral, and the face [0; 1]�f(h1; : : : ; hn) 2�njhn = 1g which does not contribute either for the same reason,� for k = 1; 2; : : : ; n� 1; the faces of [0; 1]��n: f(h1; : : : ; hn) 2 �njhk = hk+1g where 1� pk =1� pk+1 and which therefore will not contribute because of Lemma 1.17.Except for the proof of Lemma 1.17, the theorem is proved. �Proof of Lemma 1.17: 
KZ = 12i� Xfj;kg2P !jk�jkwhere !jk is the complex-valued 1-form !jk = dzj�dzkzj�zk . Therefore,
KZ ^ 
KZ = � 12i��2 X(fa;bg;fc;dg)2P 2(!ab ^ !cd)�ab�cdSince !ab ^!ab = 0, the pairs (fa; bg; fa; bg) do not contribute to the sum. When the pairs fa; bgand fc; dg are disjoint, �ab and �cd commute and therefore, the contributions of (fa; bg; fc; dg) and(fc; dg; fa; bg) cancel each other. Thus, the only remaining contributions to the sum come from thepairs where fc; dg\fa; bg contains one element, that are the pairs where the cardinality of fc; dg[fa; bgis 3, and we have:
KZ ^ 
KZ = � 12i��2 Xfi;j;kg�f1;2;:::;pg0@ !ij ^ !jk(�ij�jk � �jk�ij)+ !jk ^ !ki(�jk�ki � �ki�jk)+ !ki ^ !ij(�ki�ij � �ij�ki) 1AWe know from Exercise 1.8 that (�ij�jk � �jk�ij) is invariant under any circular permutationof i, j and k. Thus, 
KZ ^ 
KZ can be rewritten as
KZ ^ 
KZ = � 12i��2 Xfi;j;kg�f1;2;:::;pg(!ij ^ !jk + !jk ^ !ki + !ki ^ !ij)(�ij�jk � �jk�ij)And it su�ces to prove that (!ij ^!jk+!jk^!ki+!ki^!ij) is zero. To do it, we express the sumas a combination of dzi ^ dzj , dzj ^ dzk and dzk ^ dzi, and compute the coe�cient of dzi ^ dzj sincethe other ones can be deduced by circular permutation. This coe�cient is zero. Thus, the lemma, andhence the isotopy invariance of Z are proved. �From now on, we will consider the con�guration paths  up to homotopy with �xed extremitiesand translation by a function f since these operations do not a�ect Z(). If  is a path from b = (0)to t = (1) such that b and t are in Rp, then it (or its class modulo these operations) is determinedby a regular2 planar projection of  with the under/over-crossing datum, and by b and t which areconsidered up to translation. The class of such a path will be denoted by (D; b; t) or (Dtb) whereD is a picture projection of . The letters b and t stand for bottom and top, respectively. For b,t 2 Rp \ (Cp n�), we will denote the (class of a) con�guration path  from b to t whose planarprojection has no double point by 1tb or by (1; b; t).Examples 1.18 Let �, �0, � and � 2 R.Z(1; (�; �+ �); (�0; �0 + �)) = Z(1; (0; �); (0; �)) = Z(1(0;�)(0;�)) = Z(1(0; �� )(0;1) ) exp�Log( �� )2i� �12�Z( ; (0; 1); (0; 1)) = exp( 12�12)Z( ; (0; 1); (0; 1)) = exp(�12 �12)2A regular projection is a projection which is an immersion whose onlymultiple points (points with several preimages)are transverse (the two tangent vectors are independent) double points.8



Recall that the inverse of a path  : [0; 1] �! X in a topological space X is the path  : [0; 1] �!X which maps h to (1 � h) so that there is a homotopy with �xed extremities from the composedpath  to the constant path to (0). Applying this remark to X = Cp n� yieldsZ() = Z()�1:Also note that the numerotation of the strands (order of the coordinates zi) is immaterial. Theonly thing that matters is to number the components of the braids and the intervals used to de�neA(p), accordingly.1.6 Some unpleasant features of the Kontsevich integralLet X and Y be two 1-manifolds. Let X`Y or X 
 Y denote their disjoint union. In pictures, wedraw Y on the right-hand-side of X . There is a natural bilinear continuous operation called the tensorproduct from A(X)�A(Y ) to A(X`Y ) which maps (d; e) to the disjoint union d
 e of d and e, forany two diagrams d 2 A(X) and e 2 A(Y ).When applied to the case where X and Y are unions of intervals, this construction yields, forany two integers p and q: 
 : A(p)�A(q) �! A(p+ q)Assume that we have a (class of a) Cp-con�guration path L from bL 2] � 1; 0]p to tL 2] �1; 0]p, denoted by (DL; bL; tL), and a (class of a) Cq-con�guration path R from bR 2 [1;+1[qto tR 2 [1;+1[q, denoted by (DR; bR; tR). Assume furthermore that the images of L and R arecontained in (] �1; 0] + iR)p and ([1;+1[+iR)q, respectively. Denote the Cp+q-con�guration pathdiagram obtained by putting DR on the right-hand-side of DL by DL 
DR.First bad feature:Z(DL 
DR; (bL; bR); (tL; tR)) 6= Z(DL; bL; tL)
 Z(DR; bR; tR)because there are unwanted contributions of diagrams with chords involving both the left-hand sidepart and the right-hand side part.Exercise 1.19 Prove that Z(DL; bL; tL)
Z(DR; bR; tR) is exactly the contribution of the other dia-grams (whose chords are either on the LHS part or in the RHS part) to Z(DL
DR; (bL; bR); (tL; tR)).(See the proof of Property 1.13.)Nevertheless, we will be able to diminish the unwanted contributions. In order to estimate theirbehaviour, we will use the following notation.Notation 1.20 Let d = (dn(" > 0))n2N 2 A(X). Let (fn :]0;+1[�! R)n2N be a family ofcontinuous maps. We use the notation d = O(f�(")) to say: 8n 2 N, 9Mn 2]0;+1[ such that:kdn(")k � Mnfn(") where k:k denotes one of the (equivalent) norms on the �nite-dimensional C-vector space An(X). We omit the subscripts � and n when fn does not depend on n.Let us simultaneously perform the following two homotheties "(:) and "(:�1)+1 of the complexplane with ratio ". The �rst one has center 0 and is performed on the left-hand-side path L while thesecond one has center 1 and is performed on R. These homotheties do not change Z(DL; bL; tL) 
Z(DR; bR; tR). Then, a quick look at the behaviour of the coe�cients of the boring diagrams shows:Lemma 1.21Z(DL 
DR; ("bL; "(bR � 1) + 1); ("tL; "(tR � 1) + 1)) = Z(DL; bL; tL)
 Z(DR; bR; tR) +O(")
9



�This is our �rst motivation to study the behaviour of Z() for con�guration paths which reachsome limit con�gurations. Another motivation for that is that we want to de�ne a link invariant, andwe would like to de�ne Z(T) from lim"!0 Z(1; (0; 1); (0; ")).Second bad feature: Z(1; (0; 1); (0; ")) = exp(Log(")2i� �12) does not converge when " approaches 0.Another wish that we have is to get rid of the heavy-to-carry data of the coordinates of thebottom and top con�gurations. A possible way to do it would be to restrict ourselves to the case whenthese con�gurations are (1; 2; 3; : : : ; p) but the study above suggests that it may not be a very goodidea. So let us begin to study some limit behaviours of Z.1.7 A two-point collisionDe�nition 1.22 Let Cp(2) denote the subset of Cp made of the elements (z1; z2; : : : ; zp) of Cp whichexactly have two equal coordinates zj = zk, j 6= k (zi = zl =) i = l or fi; lg = fj; kg).A two-point collision of Cp is an element of Cp(2), with the additional datum of the superscript� on one of the two equal coordinates, say zj in the above example, and the superscript + on theother one. Intuitively, these superscripts mean: zj is in�nitely close to zk, and it is on the left-handside of zk. Let Cp2 be the set of two-point collisions of Cp.By de�nition, a path  : [0; 1] �! (Cp n�)[Cp2 is a continuous (piecewise C1) path from [0; 1]to (Cp n�) [Cp(2) such that:for any hd 2 �1(Cp(2)), one of the two equal coordinates of (hd), zj(hd), is equipped with � andthe other one zk(hd) is equipped with +, and there exists a neighborhood N(hd) of hd in [0; 1] suchthat, for any h 2 N(hd) n fhdg, Re(zk(hd)(h)� zj(hd)(h)) > 0.This section is devoted to extending Z for such paths  : [0; 1] �! (Cp n�) [Cp2 as suggestedby the following graphic formula.
Z0BBBBBBBBBBBBB@ +� 1CCCCCCCCCCCCCA = lim"!0Z

0BBBBBBBBBBBBB@ "1 1CCCCCCCCCCCCCANotation 1.23 If z 2 Cp2 is as in De�nition 1.22, for " 2]0;1[, we de�nez(+") = (z1(+"); z2(+"); : : : ; zp(+")) 2 Cpby zk(+") = zk + " and zi(+") = zi if i 6= k.In general for two points b = (b1; b2; : : : ; bp) and t = (t1; t2; : : : ; tp) in Cp, let Btb denote thebarycentric path from b to t that isBtb : [0; 1] �! Cph 7! (1� h)b+ ht = ((1� h)b1 + ht1; : : : ; (1� h)bp + htp))De�nition 1.24 Z is de�ned as follows for paths  : [0; 1] �! (Cp n�) [Cp2.1. If  : [0; 1] �! (Cp n�) [Cp2 is a path such that �1(Cp(2)) = f0g, thenZ() = lim"! 0; " > 0h �! 0; h > 0 exp(Log(")2i� �j(0)k(0))Z(B(h)(0)(+")j[h;1])
10



2. For any path  : [0; 1] �! (Cp n�) [Cp2Z() = Z()�13. Z is still multiplicative under path composition.To prove that the de�nition makes sense, we need the following lemma which is proved at theend of this subsection:Lemma 1.25 Let b = (b�1 ; b+2 ; b3; b4; : : : ; bp�1; bp) 2 Cp2, (b1 = b2), let "0 > 0. Assume that b(+") 2Cp n� for any " such that 0 < " � "0. Then the limitlim"!0 exp(Log(")2i� �12)Z(Bb(+"0)b(+") )exists.Proof of consistency of the definition: Let us �rst prove that the de�nition of Z makes sensein the �rst case. Let b = (0). The hypotheses on  guarantee the existence of "0 > 0 and h0 > 0 suchthat:1. for any ("; h) such that 0 < " � "0 and 0 < h � h0, the barycentric path B(h)b(+") avoids � andRe(z2(h)� z1(h)) > 02. the homotopy class of B(h)b(+")j[h;1] does not depend on the choice of h and coincides with thehomotopy class of Bb(+"0)b(+") B(h)b(+"0)j[h;1]:Thus, by the former properties of Z, Z(B(h)b(+")j[h;1]) is independent of h such 0 < h < h0 and isequal to Z(Bb(+"0)b(+") )Z(B(h)b(+"0)j[h;1]), and, according to Lemma 1.25, the de�nition of Z makes sensein the �rst case.Now, de�ne Z() for a path  : [0; 1] �! (Cp n�) [Cp2 such that �1(Cp(2)) = f1g byZ() = Z()�1In other words, if (1) = t,Z() = lim"! 0; " > 0h �! 1; h < 1 Z(j[0;h]Bt(+")(h) ) exp(�Log(")2i� �j(1)k(1))Now any path  : [0; 1] �! (Cp n�) [Cp2 is a composition of paths for which Z is de�ned, andwe de�ne Z of a such a composition as the product of the values on elementary paths. The form of the�rst de�nition of Z makes clear that Z() does not depend on the decomposition of Z as a product.Thus, Z is compatible with products and Z is easily seen to be compatible with the passage to theinverse, too. �Note that Z is still independent of the parametrization, and invariant by transvection. But welose the invariance under homothety.Exercise 1.26 Let  : [0; 1] �! (Cp n�) [ Cp2. Let A 2]0;+1[. If (h) = (z1(h); : : : ; zp(h)), thenA(h) = (Az1(h); : : : ; Azp(h)). Show that:If �1(Cp(2)) = f1g, then Z(A) = Z() exp��Log(A)2i� �j(1)k(1)�If �1(Cp(2)) = f0g, then Z(A) = exp�Log(A)2i� �j(0)k(0)�Z()
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Proof of Lemma 1.25: Let  : h 2 [0; "0] 7! (z1(h); : : : ; zp(h)) be de�ned so that j[";"0] representsBb(+"0)b(+") by zj(h) = � bj if j 6= 2b1 + h if j = 2Let x = (x1; : : : ; xn) 2 Pn and let r 2 f0; : : : ; ng be such that xj = f1; 2g for any j � r andxr+1 6= f1; 2g unless r = n. Let cx(") be the complex coe�cient of �x in exp(Log(")2i� �12)Z(j[";"0]) thatis cx(") = � 12i��n rXj=0 (Log")jj! Z Z : : : Z"�hj+1�hj+2�:::�hn�"0 nYk=j+1 ~!xk(hk)dhkIt su�ces to prove the existence of lim"!0 cx(") for any x, that is for ours.If r = n, then the multiple integral is equal to the coe�cient of �n�j12 in (2i�)n�jZ(1(0;"0)(0;") ) thatis (Log( "0" ))n�j(n�j)! (see Example 1.4). Thus,cx(") = � 12i��n (Log"+ Log( "0" ))nn! = � 12i��n (Log"0)nn! :and the same argument shows that if r < n, thencx(") = � 12i��n Z "0" f(h)dhwhere (h = hr+1 and)f(h) = (Logh)rr! ~!xr+1(h) Z Z : : : Zh�hr+2�hr+3�:::�hn�"0 nYk=r+2 ~!xk(hk)dhkNow, remember that ~!f1;2g(h) = 1=h, and note that there exists a C > 0, such that, for allh 2]0; 1], and for all i > r + 1,j~!xi(h)j � C ~!f1;2g(h) and j~!xr+1(h)j � CThus, jf(h)j � Cn�r jLoghjrr! (Log "0h )n�r�1(n� r � 1)! � C 0jLog(h)jn�1for some C 0 > 0. This proves that R "0" f(h)dh converges and concludes the proof of the lemma. �Remark 1.27 Thus, the de�nition of Z for a path which reaches some two-point collision b is ex-plained in the graphic formula just after De�nition 1.22. Indeed, we just slightly modify the givenpath so that it reaches b(+") instead of reaching b. Under our hypotheses, the choice of the modi�edpath is canonical up to homotopy. Then, we correct the evaluation of Z on the modi�ed path bya multiplication by "��122i� = Z(1(0;1)(0;")) which involves the same " acting on the two strands of thecollision; and we take the limit.Remark 1.28 In De�nition 1.24, we choose to modify a two-point collision b = (0) 2 Cp2 into b(+")so that the two equal coordinate b�j and b+k become bj and bk + ", respectively. Let � 2 [0; 1], wecan de�ne b(�;+") so that bj(�;+") = bj � �" and bk(�;+") = bk + (1 � �)" and bi(�;+") = bi, ifi 6= j; k. Note that for a two-point collision b, Z(Bb(�;")b(") ) = 1+O("). Therefore changing (0)(+") into(0)(�;+") in De�nition 1.24 would not change the de�nition.
12



1.8 Duplication of a strand in a braidLet X be a one-manifold, and let X0 be a connected component of X . LetX(r �X0) = (X nX0)a rai=1X(i)0 !be the manifold obtained from X by duplicating X0 (r-1) times that is by replacing X0 by r copies ofX0 and let �(r �X0) : X(r �X0) �! Xbe the associated trivial covering, that is the identity on (X nX0), and the trivial r-fold covering from`ri=1X(i)0 to X0.Recall from [V] that if � : Y �! X is a smooth map between two one-manifolds X and Ysuch that �(@Y ) � @X , then one can unambiguously de�ne the linear degree-preserving map : �� :A(X) �! A(Y ) which only depends on the homotopy class of � such that: If d is (the class of)a diagram on X whose univalent vertices avoid the critical values of �, then ��(d) is the sum of alldiagrams on Y obtained from d by lifting each vertex to one of its preimages under �. (These diagramshave the same set of chords as d and the local orientations at vertices are naturally induced by thelocal orientations of the corresponding vertices of d.)In particular, we have a natural linear duplication map:�(r �X0)� : A(X) �! A(X(r �X0)):When X = `pi=1 Ii and X0 = Ij , this map is simply denoted by �(r � j)� : A(p) �! A(p + r � 1).Note that �(r � j)� is a morphism of algebras. The local de�nition of �(2� p)� reads:�(2� p)� : k 7! k if k < pk 7! k+1 if k > pp 7! p p+1 + p p+1For example: �(2� 3)� ! = + + +On the other hand, we may duplicate the pth coordinate of an element z = (z1; : : : ; zp) of Cp n�to get an element z(2 � p) = (z1; : : : ; zp�1; z�p ; z+p ) 2 Cp+12 Let  : [0; 1] �! Cp n� be our usualCp-con�guration path which maps h to (z1(h); : : : ; zp(h)). Let(2� p)(+") : [0; 1] �! Cp+1 n�h 7! (z1(h); : : : ; zp(h); zp(h) + ")be obtained from  by replacing the pth strand by two parallel copies of this strand.Lemma 1.29 Z((2� p)(+")) = �(2� p)�(Z()) +O(")Proof: Replacing Z((2 � p)(+")) by �(2 � p)�(Z()) amounts to replace dzp+1�dzjzp+1�zj by dzp�dzjzp�zj inthe iterated integrals, where zp+1 = zp + ". �Lemma 1.30 Let (2� p)(+") : [0; 1] �! (Cp+1 n�) [Cp+12h 7! (z1(h); : : : ; zp(h); zp(h) + ")
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be a path from a two-point collision(2� p)(+")(0) = (z�1 (0); z+2 (0); z3(0); : : : ; zp(0); zp(0) + ")such that (2� p)(+")(]0; 1]) � Cp+1 n�. ThenZ((2� p)(+")) = �(2� p)�(Z()) +O("):Proof: The proof is the same as above once it has been noticed that the majorations of the proof ofLemma 1.25 can be made uniform. �Now, we know enough about the Kontsevich integral of braids, which may be seen as embed-dings of trivial cobordisms between two Cp-con�gurations, to be able to extend it on more generalcobordisms between limit con�gurations (including the links themselves) called tangles .
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2 The Kontsevich Integral for general tanglesThis section is devoted to constructing the Kontsevich integral for framed tangles using what we knowof the Kontsevich integral of braids by the preceeding section. We �rst de�ne framed tangles.2.1 Some limit con�gurationsDe�nition 2.1 A non-associative word or n.a. word w in the letter � is an element of the free non-associative monoid generated by �. The length of such a w is the number of letters of w. Equivalently,we can de�ne a non-associative word by saying that each such word has an integral length `(w) 2 N,the only word of length 0 is the empty word , the only word of length 1 is �, the product w0w00 of twon.a. words w0 and w00 is a n.a. word of length (`(w0) + `(w00)), and every word w of length `(w) � 2can be decomposed in a unique way as the product w0w00 of two n.a. words w0 and w00 of nonzerolength.Example 2.2 The unique n.a. word of length 2 is (��). The two n.a. words of length 3 are ((��)�) and(�(��)). There are �ve n.a. words of length 4.De�nition 2.3 Let Op;k be the set of equivalence classes [(a1;w1); (a2;w2); : : : ; (ak;wk)] of the k-tuples ((a1;w1); (a2;w2); : : : ; (ak;wk)) such that:� for i = 1; : : : ; k, ai is a real number and wi is a non-empty n.a. word,� a1 < a2 < : : : < ak and Pki=1 `(wi) = pwhere two such k-tuples are equivalent if and only if they are obtained from one another by a realtranslation. (For any T 2 R, [(a1;w1); : : : ; (ak;wk)] = [(a1 + T ;w1); : : : ; (ak + T ;wk)].)An object of length p is an element of the set Op de�ned by:Op = [pk=1Op;kThe objects ofOp;p are the sequences [(ai; �)i=1;:::;p] which will be simply denoted by (a1; a2; : : : ; ap)and represent actual3 con�gurations of (Rp n�) =translation). Among these, (1; 2; : : : ; p) will be sim-ply denoted by [p].The objects of Op;p�1 represent two point-collisions: in these objects, there is one word of theform (::) whose left-hand-side letter represents the left-hand side point of the collision and whose RHSletter represents the RHS point of the collision.In general, an object of length p is a limit con�guration of p points (that is an element ofa suitable4 compacti�cation of (Rp n�) =translation). In the object [(a1;w1); (a2;w2); : : : ; (ak;wk)],there is a collision of `(wi) points at ai, and the word wi will tell us the way of seeing this collision asa composition of two-point collisions and duplications in Subsection 3.3.The objects of Op;1 are of the form [(0;w)] for a n.a. word w of length p and will be simplydenoted by w. They are simply n.a. words.An object [(1;w1); (2;w2); : : : ; (k;wk)] is simply denoted by (w1; w2; : : : ; wk) and is called a wordsequence.2.2 Framed tanglesDe�nition 2.4 Let T be an embedding5 of a one-manifold X into a compact submanifold M ofR3 = C�R. It is understood in the word embedding thatT (X) \ @M = T (@X)3For us, an actual con�guration is an element of Cp n�, i. e. it is not a limit con�guration.4Suitable compacti�cations can be found in [Po]. For us, it is enough to keep this interpretation in mind at anintuitive level.5See [Hi] for the basic concepts of di�erential topology.
15



and that the tangent vectors of X at the boundary points of X are transverse to the boundary @Mof M (i. e. are not contained in the tangent space to @M). For us, an extremum of T (X) is a pointT (x) where the tangent vector T 0(x) to T (X) is horizontal (2 C = C� f0g � C�R), and where, ifpV : C�R �!: R denotes the vertical projection, (pV �T )00(x) 6= 0. We will say that an embedding asabove is almost admissible if all of its horizontal tangent vectors are real (2 R � C) and correspondto extrema. Such an embedding is said to be admissible if furthermore, the extrema occur at distinctheights.De�nition 2.5 A tangle is a triple (T ; b; t) where� T is an admissible embedding of a one-manifold X into C� [0; 1] such that:T (@X) � R� f0; 1gconsidered up to almost admissible isotopy6 and rescaling7 [0; 1]. In particular, T provides apartition of the boundary @X of X into two subsets, namely the bottom b(X) = T�1(R� f0g)and the top t(X) = T�1(R � f1g) of X , each of which inherits the standard order of R; thetriple (X; b(X); t(X)) is called the support of T .� b is an object whose length is the cardinality of b(X). Similarly, t 2 O]t(X).The triple (T ; b; t) will also be denoted by T tb or simply by T .Note that such a tangle is completely determined by b, t and the orthogonal projection of one ofits representatives on the blackboard plane together with the under and over-crossing datum as soonas the chosen representative projection is regular. Again, (T ; b; t) will often be denoted by (D; b; t)where D is a regular projection of T . Again, 1 will be used to denote p vertical parallel intervals.Because of the condition on horizontal tangencies, the normal bundle of each component T (X0)of T (X) admits a natural trivialization given by the horizontal imaginary direction, and thereforeone or two (up to boundary-�xing homotopy) other ones for which the vectors are always in theblackboard plane (one if X0 is a circle, two otherwise). In other words, T (X = X � f0g) admits aparallel that is another embedding T (X � f1g) satisfying the conditions of the de�nition such thatTjX�f0;1g extends to an embedding of X� [0; 1] (satisfying the conditions for any X�fug) such that,for any x 2 X , T (fxg � [0; 1]) is contained in a plane parallel to the blackboard plane. The isotopyclass of T (X � f0; 1g) is well-de�ned provided that we allow exchanges of X0 � f0g and X0 � f1g foreach component X0 with non-empty boundary. In pictures, the two copies of T (X0) are parallel.In particular, we have a well-de�ned operation of duplication of a set of connected componentsT (X0) of (T (X); b; t) which consists in replacing:1. X by X(2�X0) = X [X0 � f1g,2. T = TjX�f0g by its above extension on X � f0g [X0 � f1g3. every letter � corresponding to a boundary point of X0 by the word (��).The obtained duplicated tangle will be denoted by T (2�X0).A tangle whose bottom and top objects are n.a. words is called a q-tangle. When T1 = (T1; b1; t1)and T2 = (T2; b2; t2) are q-tangles, we can build their tensor product :T1 
 T2 = (T1 
 T2; b1b2; t1t2):When the top of a tangle T1 = (T1(X1); b; c) coincides with the bottom of a tangle T2 =(T2(X2); c; t), then we can form the product tangle T1T2 = (T1T2; b; t) by stacking T2 above T1.6An almost admissible isotopy between two admissible embeddings T0 and T1 is a C1 map T : [0; 1]�X �! C�[0; 1]such that, for any u 2 [0; 1], Tu = Tjfug�X is an almost admissible embedding such that Tu(@X) � R� f0; 1g.7Rescaling [0; 1] means composing T by the product of the identity of C by an increasing di�eomorphism whichmaps [0; 1] onto another compact interval of R. 16



Then, X1X2 is de�ned as the support of T1T2, and we have a natural product obtained by "stackingabove" from A(X1) � A(X2) to A(X1X2). In other words, X1X2 is de�ned from the disjoint unionX1 
 X2 of X1 and X2 by identifying b(X2) and t(X1), and the product is the composition of thenatural maps: A(X1)�A(X2) �! A(X1 
X2) �! A(X1X2)A component of a tangle is said to be regular if it has no extremum. A tangle is regular if all itscomponents are regular.2.3 From the language of braids to the language of tangles.A con�guration path  : [0; 1] �! Cp n� such that (0) and (1) are in Rp gives rise to a well-determined regular tangle T () = (T ()(X);�b((0)); �t((1)))where the image of T () is the graph of , and, �b((0)) and �t((1)) coincide with (0) and (1),respectively, up to a permutation of the coordinates.Conversely, any regular tangle T whose bottom and top objects are actual con�gurations, maybe written as T () for some con�guration path which is well-determined up to homotopy with �xedboundary (and permutation of the strands). Thus, for such a tangle T (), we unambiguously set:Z(T ()) = Z():Now, if (T ; b; t) is a regular tangle such that b is a 2-point collision and t is an usual con�guration,then represent T (X) as the image of a path  such that (0) = b(+"), for some very small ", and (1)coincides with t up to a permutation of the coordinates, and setZ(T ; b; t) = Z(Bb(+")b )where, of course, b(+") is obtained form b by changing [: : : ; (ai; (��)); : : :] into [: : : ; (ai; �); (ai+"; �); : : :].Proceed similarly when t is a 2-point collision.Thus, Z is well-de�ned for regular tangles whose bottom and top con�gurations are either actualcon�gurations or two-point collisions. Furthermore, Z is compatible with the product (and inverse) forthese tangles.Example 2.6Z(1(�;(��))((��);�)) = Z(1[(0;�);(1;(��))][(0;(��));(1;�)]) = lim"! 0" > 0 exp(Log(")2i� �12)Z(1(0;1�";1)(0;";1) ) exp(�Log(")2i� �23)(See Remark 1.28.)Side-exercise 2.7 Recall that P1n=1 1n2 = �26 . ComputeZ(1(�;(��))((��);�)) = 1jjj + 124(�23�12 � �12�23) +O(3)where O(3) makes up for a sum of terms of degree � 3.Examples 2.8 Z(1(��)(0;1)) = 1jjZ(1(0;1)(��) ) = 1jjZ( (��)(��)) = exp(12�12)Z( (��)(��)) = exp(�12�12)
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As another example, we prove a little lemma which will be useful later.Lemma 2.9 Let  : [0; 1] �! Cp�1 n� be a con�guration path. Let X0 denote a strand of . ThenZ (T ()(2�X0)) = �(2�X0)�Z(T ())Proof: Assume that the duplicated strand is the �rst one, whose copies are labeled by ]1 and ]2.Then by de�nition,Z (T ()(2�X0)) = lim"! 0" > 0 exp(Log(")2i� �12)Z (()(2�X0)(+")) exp(�Log(")2i� �12)Now, using Lemma 1.29 together with the fact that lim"!0 "(Log")n = 0 allows us to replaceZ (()(2�X0)(+")) by �(2 �X0)�Z(T ()) in the above expression. In order to conclude the proof,observe that (4T ) implies that �12 commutes with the image �(2�X0)�. (It is also a consequence ofLemma 2.16 which will be proved in Subsection 2.6). �2.4 The theoremDe�nition 2.10 An element of A(1) is said to be symmetric if it is unchanged by the involution ofA(1) induced by the ip of the interval. This involution reverses the order of the vertices (and reversestheir orientations (in even number!)). It is unknown whether there exist elements of A(1) that are notsymmetric under this symmetry.We can now state the main theorem which gives the general de�nition of the Kontsevich integralZ for tangles.Theorem 2.11 There is a unique extension of Z to tangles which satis�es the following properties:Isotopy invariance: For any tangle T = (T (X); b; t), Z(T ) 2 A(X), Z0(T ) = 1, and Z(T ) onlydepends on b, t, and the usual8 isotopy class of T (2�X).Functoriality: For any two tangles T1 = (T1; b; c), T2 = (T2; c; t) whose product is de�nedZ(T1T2) = Z(T1)Z(T2)Monoidality: For any two q-tangles, T1 = (T1; b1; t1) and T2 = (T2; b2; t2)Z(T1 
 T2) = Z(T1)
 Z(T2)Duplication: For any component T (X0) of a tangle T = (T (X); b; t), such that either T (X0) isboundary-less or T (X0) runs from bottom to top,Z(T (2�X0)) = �(2�X0)�(Z(T ))Extremum: Z(S(��)) is a symmetric element � of A(1) and:Z((��)[) = Z(\(��)) = �In particular, Z provides an invariant of parallelized links , that are links each component of whichis equipped with a parallel (up to isotopy). Indeed, links can be represented by boundary-less tangles(with top and bottom objects of length 0). The theorem will be proved in Section 4. Its proof willonly use the results of Subsection 2.6 which is completely independent of the rest of the notes. In theother subsections of this section, we assume the theorem, and, of course, we will not use their resultsin Section 4.8The admissibility condition is dropped: here, a usual isotopy between two admissible embeddings T0 and T1 isa C1 map T : [0; 1] � X �! C � [0; 1] such that, for any u 2 [0; 1], Tu = Tjfug�X is an embedding such thatTu(@X) � R� f0; 1g. 18



2.5 First computations of Z on tanglesExample 2.12 Let us compute the Drinfeld associator�KZ = Z(1; ((��)�); (�(��)))By Example 2.8 and by the Duplication property (D),Z(1(�(��))(�;(��))) = �(2� 2)�(1jj) = 1jjjSimilarly, Z(1((��);�)((��)�) ) = 1jjjThus, by the Functoriality property, �KZ = Z(1(�;(��))((��);�))whose expression has been de�ned in Example 2.6 and whose low degree terms are given in the exerciseimmediately after. A complete expression of �KZ in terms of generalized �-functions can be found in[LM2].Example 2.13 Let w be a n.a. word of length p. Let T tb be a q-tangle. Let 1ww(T tbi ) be the tangleobtained from 1ww by replacing the ith strand of 1ww by T (replacing in particular the ith letter of thebottom w by b and the ith letter of the top w by t and removing unneeded parentheses if one of b andt is empty). We will similarly denote the bottom word of 1ww(T tbi ) by w( bi ). Then, by the Monoidalityproperty, and by induction on p, we have thatZ(1ww(T tbi )) = 1A(i�1) 
 Z(T )
 1A(p�i)Thus, for example,Z(j1j2 � � � ji�1 ji+2 � � � jp+1;w(2� i); w(2� i)) = exp(12�fi;i+1g)and Z(j1j2 � � � ji�1 ji+2 � � � jp+1;w(2� i); w(2� i)) = exp(�12�fi;i+1g)for any n.a. word w of length p. (Note that any n.a. word which contains the two-letter word thatgroups the ith letter with the (i+ 1)th one, as a subword, can be written as w(2� i).)As another example, let w1, w2 and w3 be three n.a. words, then by the duplication propertyZ(1; ((w1w2)w3); (w1(w2w3))) = �(`(w1)� 1; `(w2)� 2; `(w3)� 3)�(�KZ)where we use an obvious generalisation of the notation of Subsection 1.8. Let w be our n.a. word oflength p. ThenZ(1;w( ((w1w2)w3)i ); w( (w1(w2w3))i )) = 1A(i�1) 
�(`(w1)� 1; `(w2)� 2; `(w3)� 3)�(�KZ)
 1A(p�i)Before going any further in example computations, we will need to know a little more aboutdiagrams, namely a commutation principle.2.6 Commutation principle in ALet us �rst introduce a graphical notation. An edge with a free vertex drawn as a circle, and a setof little hooks like ( ) elsewhere on a diagram, denotes the sum over the set of hooks of all(classes of) diagrams obtained by attaching the free vertex to the attaching point of a hook, wherethe neighborhood of the new vertex is the same as the hook neighborhood.
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With this notation, (4T) reads = 0;while (AS) implies: = 0 and = 0:This allows us to prove the following commutation identities on classes of diagrams.First commutation identity: . . . = 0 (2.14)Second commutation identity: . . . = 0 (2.15)In each of these identities, the sum over the hooks relates diagrams which are arbitrary butidentical inside the box and outside the represented parts, such all the outputs of the box (connectionsbetween inside and outside) are represented and such that there are no boundary points of the supportX of the diagrams inside the box.We prove the identities: by AS, we may add two hooks on each plain edge in the inside diagram,one near each extremity of the plain edge, which show the left-hand side to someone located on thecorresponding vertex like without changing the sum. Now, every vertex inside the box isequipped with two hooks which turn left like . For each chord inside the box, the contribution ofits two vertices vanishes by the above hook version of 4T. This proves the �rst identity, since the onlyinitial hooks which are not near a vertex can be grouped in pairs which vanish by AS ( = 0).In the second case, we further use that vanishes.The �rst commutation identity applied to the case when the box contains nothing but an elementof A(1) shows how the choice of a connected component X0 of a one-manifold X and an orientation ofX0 provides a natural A(1)-module structure on A(X), that is given by the bilinear continuous map:A(1)�A(X) �! A(X)(�; d) 7! �dwhere, if � and d are (classes of) diagrams, then �d is obtained by inserting � somewhere in X0 sothat the orientation of X0 matches the orientation from bottom to top of the vertical interval. Theindependence on the chosen insertion locus is a consequence of the �rst commutation identity (and ofAS). Of course, if � is a symmetric element of A(1), there is no need to specify the orientation of X0in order to de�ne �d.With this module structure in mind, the extremum property of the theorem is better written as:Z((��)[) = �1[Z(\(��)) = �1\
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Similarly, note that exp(12�12jj)1\ = exp(�12�11)1\where �11 2 A(1) denotes the one-chord diagram on the vertical interval such that the local orienta-tions at its two vertices give rise to the same orientation of the interval.Note that the �rst commutation identity also implies that the algebra A(1) is commutative.Let X be a compact one-manifold whose boundary is made of two points, and let X be thequotient of X obtained by identifying these two boundary points. The second commutation identityapplied to the case when the box contains nothing but an element of A(X) deprived from a neighbor-hood of @X and half a dashed edge is exactly the relation of "closing the circle" that should be puton A(X) in order to build A(X) from A(X). Thus, since it is true in A(X), it shows that the naturalmap from A(X) to A(X) is an isomorphism. In particular, A(1) is isomorphic to A(S1).The �rst commutation identity applied to the case when the box contains nothing but an elementof A(r) can be redrawn as below, and stated as in the following lemma:=Lemma 2.16 An r-duplicated vertex always commutes with an element of A(r).2.7 More examples and corollariesExample 2.17 By the Monoidality property (M),Z([ "((��)�)) = Z([(��))
 Z(") = �1[ 
 1"Similarly, Z(" \(�(��))) = 1" 
 �1\Now, by functoriality, Z( ) = Z([ "((��)�))�KZZ(" \(�(��))) = �21["�KZ1"\By isotopy invariance, this expression must be equal to Z(") = 1". Thus, by the condition that thedegree 0 part of � is 1, we get the de�ning formula of �:� = (1["�KZ1"\)� 12 2 A(")Lemma 2.18 Any q-tangle may be written as a product of elementary tangles of the form 1ww(Ti ) (as inExample 2.13) where T = (��)(��), (��)(��), \(��), [(��), (1; ((w1w2)w3); (w1(w2w3))) or (1; (w1(w2w3)); ((w1w2)w3)).The proof is easily reduced to the proof of the lemma for a q-tangle (1; a; b) which is left as an exercise.�By Examples 2.13 and 2.17, we know how to express Z as a function of the associator �KZ (ofExample 2.12) for all the elementary q-tangles that are mentioned in the above lemma. More precisely,these examples and the lemma show that the statement of the theorem together with the values ofZ( (��)(��)) and Z(1; ((��)�); (�(��))) completely de�nes Z on q-tangles. (Of course, the consistency of thede�nition will be a consequence of the theorem.)Example 2.19 The Kontsevich integral of the trivial knot isZ() = Z([)Z(\) = �21�It has been recently computed by D. Bar-Natan, T. Le and D. Thurston (see D. Thurston's lectures).21



Example 2.20 Let us now compute the Kontsevich integral of twisted extrema:Z( (��)) = Z( (��)(��))Z(\(��)) = exp(�12�12)�1\Thus, by commutation, Z( (��)) = exp(12�11)�1\Similarly, Z( (��)) = exp(�12�11)�1\Z( (��)) = exp(12�11)�1[Z( (��)) = exp(�12�11)�1[Thus, the Kontsevich integral varies during these twists. However, one can observe that if wequotient A out by the relation 1T which identi�es the diagrams which have an isolated chord, that is aninserted �11, to zero, then the Kontsevich integral becomes a usual isotopy invariant of unparallelizedtangles (since it is easy to observe that the above twists allow us to go from any parallelized tangleto any other isotopic tangle with another parallelization). The quotient of An(X) by (1T ) will bedenoted by An(X), and the image of a diagram class d in this quotient will be denoted by d.2.8 Universality of Z among �nite type invariantsGiven an invariant I of oriented knots, valued in an abelian group, we extend it to an invariant ofknots with transverse double points9 by making use of the following local formula:I( ) = I( )� I( )Such an invariant is said to be of �nite type or of �nite degree less or equal to n, if it maps allthe knots with (n+1) double points to zero. Let A�n(S1) = �ni=0Ai(S1). For a knot K, let Z�n(K)denote the natural projection of Z(K) onto A�n(S1). In this section, we will prove the universalityof Z which can be stated as follows:Theorem 2.21 (Kontsevich, 1992) If I is a complex-valued knot invariant of degree � n, thenthere exists a linear map � : A�n(S1) �! Csuch that I = � � Z�n.To every oriented singular knot K : S1 �! R3 whose only singularities are n transverse doublepoints, we associate its diagram D(K) 2 Dn(S1)which is the n-chord diagram obtained by relating the two preimages of every double point by a chordand giving the vertices the orientation induced by the local orientations of the crossing strands .The following lemma implies in particular that Z�n is a �nite type invariant of degree less orequal than n, so that the above theorem exactly describes the degree less or equal than n complex-valued knot invariants.Lemma 2.22 If K is a singular knot with n double points, then Z�n(K) = D(K).9When we are dealing with other non-necessarily oriented 1-manifolds, we demand that, near every double point,the two strands of the 1-manifold are equipped with a local orientation.
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Proof: We can represent K as a product of singular tangles K = T0S1T1S2T2 : : : SnTn so that the Tiare usual tangles and every Si is of the form Si = 1ww( (��)(��)1 ) for a n.a. word w = wi (see Example 2.13for the notation) with exactly one double point whose two strands point upward. Let S+i = 1ww( (��)(��)1 )and S�i = 1ww( (��)(��)1 ). Then, by functoriality and by de�nition,Z(K) = Z(T0) �Z(S+1 )� Z(S�1 )�Z(T1) : : : Z(Tn�1) �Z(S+n )� Z(S�n )�Z(Tn)where, since the Ti are usual tangles Z0(Ti) = 1, and according to Example 2.13,Z�1(S+i )� Z�1(S�i ) = �12is exactly the one-chord diagram whose chord connects the two preimages of the double point in theprescripted way. The conclusion is now easy. �Lemma 2.23 Every chord diagram on S1 is the diagram of a singular knot. Furthermore, two singularknots which have the same diagram are related by a �nite number of crossing changes (where a crossingchange is the modi�cation which transforms into ).Proof: Though the �rst assertion is very easy, we prove it because its proof is the beginning of theproof of the second assertion. Let d be an n-chord diagram on S1. Put 4n cutting points, numberedfrom 1 to 4n along S1, on the support S1 of d, one near each extremity of the 2n intervals separatedby the vertices, so that 2i� 1 and 2i are on the same interval. Next embed the neighborhoods of then double points, bounded by the 4n cutting points, into n �xed disjoint 3-balls R3 so that the cuttingpoints lie on the boundary of the closure C of the complement of our n �xed balls.Then, in order to construct our �rst representative K0 of d, it is enough to notice that we haveenough room to embed the remaining 2n intervals of S1 (the [2i� 1; 2i]) into C. The projections ofthese three steps are represented in the following example:
+

++
+

+
++

+ 123456 7 8 �! 12 3 4 567 8 �! 12 3 4 567 8Let K be another representative of d. After an isotopy, we may assume that K intersects ourn balls like K0 does. Then, since �1(C) is trivial, there is a boundary-�xing homotopy in C thatmaps the remaining 2n intervals for K to the remaining 2n intervals for K0. Such a homotopy maybe approximated by a �nite sequence of (isotopies and) crossing changes, and we are done.Minor changes in the proof show that the result remains true for knots without double points. �Lemma 2.24 Let I be a degree less or equal than n complex-valued invariant. Let K be a singularknot with n double points. Then I(K) only depends on D(K) mod (1T) and (4T). In other words, Iinduces a map I : An(S1) �! CD(K) 7! I(D(K)) = I(K)Proof: That I(K) only depends on D(K) is an immediate corollary of the preceeding lemma. SetI(D(K)) = I(K). Thus, it remains to show that I maps the relations (4T) and (1T) to zero. To seethat (1T) is mapped to zero, it su�ces to represent a diagram with an isolated chord by a diagramwith a loop like so that the two desingularizations are isotopic. For (4T), locally represent theinvolved diagrams by embedding the three arcs of S1 (which inherit their local orientations from the
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cyclic orders of the �rst diagram) so that the two arcs of the crossing of the �xed chord sit in theblackboard plane and the other one points to us. ThenI(4T ) = I0BB@ 1 23 + 1 23 1CCA� I0BB@ 1 23 + 1 23 1CCA= I0BBBB@ 12 3
b

b + 12 3
b

b

1CCCCA� I0BBBB@ 12 3
b

b

+ 12 3
b

b

1CCCCA= I0@ � + � 1A� I0@ � b + b � 1A = 0 �Proof of Theorem 2.21: The proof of the theorem is now easy by induction on n. An invariantof degree 0 is nothing but a constant map on the set of maps, according to Lemma 2.23. Now,for I as in the statement of the theorem, the above lemma and Lemma 2.22 show the existence ofI : An(S1) �! C such that I = I � Zn on singular knots with n double points. In particular, if weextend I to I : A�n(S1) �! C so that it maps all diagrams with less than n chords to zero, thenI � I � Z�n is an invariant of degree at most (n-1) and we easily conclude. �Side-remark 2.25 Let (X; b(X); t(X)) be a tangle support. Let b 2 O]b(X) and let t 2 O]t(X). In allthis subsection, we can replace S1 by X , and, knot by tangle (without parallelisation, in this remark)from b to t with support X = (X; b(X); t(X)), simultaneously. Everything works exactly in the sameway in this setting.We could also have given more algebraic statements. Namely, let V(X) denote the complex vectorspace freely generated by the tangles from b to t with support X . Let ~@ denote the desingularisationmap which maps a singular tangle S, which can be represented as a product S = T0S1T1S2T2 : : : SnTnwhere the Ti are usual tangles and the Si are of the form Si = 1ww( (��)(��)1 ), to the sum~@(S) = X":f1;2;:::;ng�!f+;�g(�1)]"�1(�)T0S"(1)1 T1S"(2)2 T2 : : : S"(n)n Tn 2 V(X)where S+i = 1ww( (��)(��)1 ) and S�i = 1ww( (��)(��)1 ). Let Vn(X) denote the subspace of V(X) generatedby the images of the singular tangles from b to t with support X with n double points under thedesingularisation map. Observe that:Vn+1(X) � Vn(X) � : : : � V0(X) = V(X)Thus, (Vn(X))n2N is a �ltration of V(X). It is called the Vassiliev �ltration (of the space of knots whenX = S1). What can be proved following the lines of that section is that Zn induces an isomorphismfrom Vn(X)Vn+1(X) to An(X) (which furthermore sends the desingularisation of a singular tangle to thediagram of the singular tangle). In other words, the graded space associated to the Vassiliev �ltrationis isomorphic to An(X), and is thus �nite-dimensional at each degree.With this notation, a complex-valued invariant of degree less or equal than n is an element ofthe dual of V(X)Vn+1(X) . Let In(X) = Hom( V(X)Vn+1(X) ;C) = � V(X)Vn+1(X)�� be the space of these invariants.Then In(X)In�1(X) is isomorphic to � Vn(X)Vn+1(X)�� = �An(X)��.
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3 The proof of the theorem3.1 Sketch of the proofLet � 2 A(") be de�ned in Example 2.17. We do not know yet that it is symmetric. De�ne an e-tangleas a tangle where the number of extrema and their relative heights are �xed that is as an admissibleembedding up to admissible isotopies10.There are six steps in the proof.1. Extend Z to all the oriented e-tangles whose bottom and top con�gurations are actual con�gu-rations so that:� Z(T (X)) is de�ned as follows for a tangle T (X) which only has one extremum at height c.If this extremum is a maximum, then let 1 : [0; c] �! Cp+2 denote the (natural up to apermutation of the numbering of the strands) path whose graph is T \ (C� [0; c]). It is apath from an actual con�guration to a 2-point collision. De�ne:Z(T ) = Z(1)�1XZ(T \ (C� [c; 1]) n fmaximumg)where � acts on the maximum of X according to the given orientation of X .If this extremum is a minimum, then de�ne similarly the path 2 : [c; 1] �! Cp+2 as thepath going from a two-point collision to an actual con�guration whose graph is T\(C�[c; 1])and de�ne: Z(T ) = Z(T \ (C� [0; c]) n fminimumg)�1XZ(2)where � acts on the minimum of X according to the given orientation of X .� Z satis�es the functoriality property for these tangles.� Z is invariant under admissible isotopies and rescaling. Since, by the former properties ofZ, the two �rst bullets de�ne Z unambiguously for a given embedding of a tangle up torescaling, the only thing which remains to be proved in this step is this invariance underadmissible isotopy which will occupy Subsection 3.2.2. De�ne Z for all the tangles (1; a; b) where a and b are two objects of the same length p 2 N sothat:� It coincides with our Z when a and b are actual Rp-con�gurations or Rp-two-point colli-sions.� It satis�es the duplication property for these tangles.� It is functorial on these tangles: Z(1; a; b)Z(1; b; c) = Z(1; a; c).and prove that these conditions de�ne Z unambiguously on these tangles. In other words, provethat these conditions de�ne Z unambiguously on these tangles and are consistent, this will bethe goal of Subsection 3.3.3. De�ne Z for a general e-tangle (T ; b; t) where b is an object of length p and t is an object oflength q by Z(T ; b; t) = Z(1; b; [p])Z(T ; [p]; [q])Z(1; [q]; t)Thus, after the �rst two steps, the so-de�ned Z is a functorial invariant of e-tangles which takesthe value � at extrema and coincides with our Z when b and t are actual Rp-con�gurations orRp-two-point collisions.4. Prove that the so-de�ned Z is invariant under almost admissible isotopies and satis�es themonoidality property. This will be done in Subsection 3.4.10An admissible isotopy between two admissible embeddings T0 and T1 is a C1 map T : [0; 1] � X �! C � [0; 1]such that, for any u 2 [0; 1], Tu = Tjfug�X is an admissible embedding such that Tu(@X) � R� f0; 1g. Note that thenumber of extrema and the relative heights of the extrema are �xed during such an admissible isotopy.25



5. Prove that Z is invariant under any isotopy which does not change the parallelisation. Provethat � is symmetric. This will be the goal of Subsection 3.5. Therefore the de�nition of Z doesnot depend on the chosen orientation11.6. Prove that the so-de�ned Z satis�es the duplication property. This will be done in Subsection3.6.The unicity comes from the following easy facts. Any tangle is isotopic to a product of elementarytangles of the form (1; a; b) or (1ww(Ti )) (as in Example 2.13) where T = (��)(��), (��)(��), \(��) or [(��).For the tangles of the latter form, the de�nition is imposed by the statement of the theorem as shownin Examples 2.13 and 2.17. For the tangles Z(1; a; b), according to the second step, the de�nition isalso imposed by the statement of the theorem.We will close this section by the computation of Z for iterated torus knots.3.2 The admissible isotopy invariance of ZLet T : [0; 1] �X �! C � [0; 1] be an isotopy between two admissible tangle embeddings that �xesthe boundary12. Let pV : C� [0; 1] �! [0; 1] denote the vertical projection. T is said to be horizontalif, for any x 2 X , pV � T[0;1]�fxg is constant.Note that the de�nition of Z(T (X)) for a given embedding only depends on the image ofT (X) and not on the parametrization. Furthermore, rescaling the vertical parameter does not changeZ(T (X)). Thus, up to rescaling [0; 1], any admissible isotopy may be considered as a horizontal one.Lemma 3.1 Z is invariant under admissible isotopies.Proof: For a C1 homotopy  : [0; 1] � [a; b] �! Cp n� we let (:;c) be the path described by thehomotopy at height c: (:;c)(h) = (h; c). With this notation, even if (:;a) and (:;b) are not constant,0 is homotopic by a boundary-�xing homotopy to (:;a)1(:;b), and henceZ(0) = Z((:;a))Z(1)Z((:;b))�1Thus, in general the (boundary-�xing) isotopy invariance of the functorial Z is equivalent to the aboveequation for not boundary-�xing isotopies. And the good behaviour of the above equation under thevertical product allows us to restrict ourselves to the case of an admissible boundary-�xing horizontalisotopy T of a tangle with only one extremum, for which we are about to prove Z(T1) = Z(T0).Assume that this extremum is a maximum at height c.Let u 2 [0; 1]. Let bu : [a; c] �! (Cp+2 n�) [Cp+22 denote a con�guration path to a two-pointcollision - occuring between the two last strands and corresponding to the maximum - whose graph isthe image of Tu(X) \ (C� [a; c]). Let tu : [c; b] �! Cp n� denote a con�guration path whose graphis Tu(X) \ (C� [c; b]) n fmaximumg.Then, by de�nition Z(Tu) = Z(bu)�1XZ(tu)where as in the introduction to the proof,Z(t1) = Z(t(:;c))�1Z(t0)Now, note that if the isotopy moves neither the points at the critical height c nor the tangentvector at the maximum, then the invariance comes from the properties of the Kontsevich integral forbraids. Thus, we are allowed to modify our isotopy by this kind of isotopy, and, we suppose withoutloss that, for some "0 > 0, the restriction of bu to [c� "20; c] has the following form:bu : [c� "20; c] �! Cp+2c� h2 7! (z1(u; c); z2(u; c); : : : ; zp(u; c); zp+1(u; c)� h2 ; zp+1(u; c) + h2 )11Orient S1. Let K be an oriented knot, and let  K denote the knot obtained from K by reversing the orientation. IfZ(K) 2 A(S1) were not symmetric, then Z(K) and Z( K) would still be di�erent elements of A(S1).12For any x 2 @X, T[0;1]�fxg is constant. 26



where fz1(u; c); z2(u; c); : : : ; zp(u; c); zp+1(u; c)g is the con�guration occuring at the maximum. LetC : u 2 [0; 1] 7! (z1(u; c); z2(u; c); : : : ; zp(u; c); zp+1(u; c))be the path described by the homotopy at the maximum height. The above normalisation of theisotopy shows that the tangle T (b1) is equal to the product of the tangles T (b0) and T (C)(2� (p+1)).Thus, Z(b1) = Z(b0)Z (T (C)(2� (p+ 1)))where, by Lemma 2.9, Z (T (C)(2� (p+ 1))) = �(2� (p+1))�(Z(C)). Therefore, to conclude the proofit su�ces to prove that �(2� (p+ 1))�(Z(C))1X = i(Z(t(:;c)))where i : A(p) �! A(X) is induced by the inclusion. Observe that �(2� (p+1))�(Z(C))1X is nothingbut ��(Z(C)) where � : X �! `p+1i=1 Ii identi�es the two strands going up to the maximum to somebottom part of Ip+1. Now, since � is homotopic to the map which sends the whole component ofthe maximum to the bottom point of Ip+1, �� amounts to forget the contribution of diagrams whichhave univalent vertices on the maximum component. (See the beginning of Subsection 1.8.) Thus,��(Z(C)) = i(Z(t(:;c))) and we are done. Of course, the minimum case works exactly in the same way.�3.3 From an actual real con�guration to a limit oneWe �x an integer p.We �rst de�ne Z for all the tangles (1; a; b) where a and b are two word sequences of length p.Let W = (w1; w2; : : : ; wk) be a word sequence of length p. For i < k, W (i) denotes the word sequenceW (i) = (w1; w2; : : : ; wiwi+1; wi+2; : : : ; wk):In particular, [k](i) = [(1; �); (2; �); : : : ; (i; (��)); : : : ; (k � 1; �)], and there is a natural tangle from W toW (i) obtained by duplicating the jth strand of (1; [k]; [k](i)) (`(wj)�1) times for any j 2 f1; 2; : : : ; kg.Set Z(W !W (i)) = �(`(w1)� 1; `(w2)� 2; : : : ; `(wk)� k)�Z(1; [k]; [k](i))and Z(W (i)! W ) = Z(W !W (i))�1De�ne a path P of word sequences from a word sequence W 0 to another one W r as a sequenceP = (W 0 ! W 1 !W 2 ! : : :!W r�1 !W r)where all the W j are word sequences, and, for any j 2 f1; 2; : : : ; rg, there exists i such that eitherW j(i) =W j�1 or W j =W j�1(i). Then de�ne:Z(P ) = Z(W 0 !W 1)Z(W 1 !W 2) : : : Z(W r�1 !W r)Lemma 3.2 Let W = (w1; w2; : : : ; wk) be a word sequence of length p. Let i and j be two integerssuch that 1 � i � j � 2 � k � 3. Then W (i)(j � 1) =W (j)(i) andZ(W ! W (i)!W (i)(j � 1)) = Z(W !W (j)!W (j)(i))Proof: We may assume that W = [k], since the general case can be deduced from this particularcase by duplications. In this case, using Notation 1.23,Z([k]! [k](j)) = lim"! 0" > 0 Z(1; [k]; [k](j)(+")) exp��Log(")2i� �j;j+1�
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andZ([k](j)! [k](j)(i)) = �(2� j)�0BBB@ lim"! 0" > 0 Z(1; [k � 1]; [k � 1](i)(+")) exp��Log(")2i� �i;i+1�1CCCANow, the continuities of the product and of �(2 � j)� and the commutation lemma allow us towrite: Z(W !W (j)!W (j)(i)) =lim"! 0" > 0 Z(1; [k]; [k](j)(+"))�(2�j)�(Z(1; [k�1]; [k�1](i)(+"))) exp��Log(")2i� �j;j+1� exp��Log(")2i� �i;i+1�where�(2� j)�(Z(1; [k � 1]; [k � 1](i)(+"))) = Z(1; [k](j)(+"); ([k](j)(+")) (i)(+")) +O("jLog��1(")j):(See the proofs of Lemmas 1.25 and 1.29.) Thus, and because of the horizontal isotopy invariance andof the multiplicativity of Z for braids, we �nd thatZ(W !W (j)! W (j)(i)) = lim"! 0" > 0 Z(1; [k]; ([k](j)(+")) (i)(+"))"� 12i��i;i+1"� 12i��j;j+1Since this form is symmetric in i and j, the lemma is proved. �Let P = (W 0 ! : : :!W r�1 !W r) be a path of word sequences. The inverse of P is the pathP = (W r ! : : : ! W 1 ! W 0). By de�nition, we have that Z(P ) = Z(P )�1. Every word sequenceW of length p is connected to [p] by a path (i.e. there exists P as above such that W 0 = [p] andW r =W ). If a word sequence P as above is such that W 0 =W r = [p], we say that P is a loop basedat [p].Lemma 3.3 Let P = W 0 ! W 1 ! W 2 ! : : : ! W r�1 ! W r be a path of word sequences, thenZ(P ) only depends on W 0 and W r.Proof: Because of the remarks before the lemma, it is su�cient to prove the lemma when P is aloop based at [p], that is to prove that Z maps such a loop P to 1.De�ne the complexity of a word sequence W = (w1; w2; : : : ; wk) of length p as the non-negativeinteger c(W ) = p�k so that the only word sequence of complexity 0 is [p]. Then de�ne the complexityof P as the sum c(P ) = Pri=0 c(W i) so that the only path of complexity zero is the constant pathP0 = ([p]).Then it su�ces to prove that for any non-trivial loop P based at [p], there exists a loop P 0based at [p] such that c(P 0) < c(P ) and Z(P 0) = Z(P ), in order to conclude by induction on c(P ). Insuch a loop P , there exists some word sequence W i of maximal complexity. By de�nition of a path,W i = W i�1(j) = W i+1(k) for some integers j and k. If j = k, then W i�1 = W i+1, we can remove(!W i !W i+1) from the path without changing Z and we are done. Otherwise, there exists a wordsequence W such that c(W ) = c(W i)� 2, andW i�1 =W (k + 1); W i+1 =W (j) if j < k; and;W i�1 =W (k); W i+1 =W (j + 1); if j > k :
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Thus, we may decrease the complexity of P by replacing W i by W without changing Z(P ), thanksto Lemma 3.2. �For any two word sequences W and W 0, choose a path P of word sequences from W to W 0, setZ(1;W;W 0) = Z(P )The above lemma guarantees that this de�nition is unambiguous.Now, for any object a = [(a1; v1); (a2; v2); : : : ; (aj ; vj)] of length p, setZ(1; a; V ) = �(`(v1)� 1; `(v2)� 2; : : : ; `(vj)� j)� (Z(1; (a1; a2; : : :); [j]))where V = (v1; v2; : : : ; vj) is the word sequence corresponding to a, andZ(1;V; a) = Z(1; a; V )�1Now, for any object b = [(b1;w1); (b2;w2); : : : ; (bk;wk)], setZ(1; a; b) = Z(1; a; V )Z(1;V;W )Z(1;W; b)where W = (w1; w2; : : : ; wk) is the word sequence corresponding to b. Note that this �nal de�nitionof Z(1; a; b) was imposed by the announced properties.By Lemma 2.9, this de�nition coincides with the one we knew for path from an actual con�gu-ration to a two-point collision.Now, the de�nition of Z is obviously mutiplicative, and behaves like we want with respect ofduplication, and we are done for the second step. According to Step 3, Z is well-de�ned for e-tangles.3.4 MonoidalityNote the following property of the extension of Z for e-tangles.Property 3.4 Let T (X0) be a regular component of an e-tangle T , thenZ(T (2�X0)) = �(2�X0)�(Z(T ))Proof: Decompose T as a product of� regular tangles whose bottom and top are actual con�gurations,� tangles with only one extremum (not on X0) whose bottom and top are actual con�gurations,� tangles of the form (1; a; b).For all of these, the property is true. For the third ones, it comes from the de�nition. For the�rst ones, this is Lemma 2.9. The second case can be proved exactly like Lemma 2.9 using Lemma1.30. Thus, the general property is true. �Lemma 3.5 Assume that T2 is the trivial tangle with one vertical strand.Let T1 = (T1; a = ((a1; v1); (a2; v2); : : : ; (0 = aj ; vj)); b = ((b1;w1); (b2;w2); : : : ; (0 = bk;wk))) bea tangle so that the real coordinates of the limit con�gurations (the ai and the bi) are in ]�1; 0]. Let� 2]0;+1[. Set �a = ((�a1; v1); (�a2; v2); : : : ; (0 = aj ; vj)) and �T1 = (T1; �a; �b). Let �T1 ~
T2 denotethe tangle obtained by putting T2 as one vertical strand from 1 to 1 on the right-hand side of �T1.Then Z(�T1 ~
T2)� Z(�T1) = O(�jLog��1(�)j):Since this property of T1 is compatible with products and with (linear, degree-preserving) dupli-cation of strands we can restrict ourselves to the case where T1 is either:1. a regular tangle whose bottom and top are actual con�gurations (done by Lemma 1.21),29



2. a tangle with only one extremum whose bottom and top are actual con�gurations,3. a tangle of the form (1; a; b) where one of a and b is a two-point collision, and the other one isan actual con�guration.Since the second case may be seen as a particular case of the third one, we may only deal withthe third one where the coe�cients are easy to analyze. �Applying this lemma when T1 is a q-tangle (for which �T1 = T1 and Z(�T1 ~
T2) = Z(T1 
 T2),for any �) yields: Z(T1 
 j) = Z(T1)Thus, by the above duplication property (3.4), for any n.a. word w,Z(T1 
 (1;w;w)) = Z(T1)
 1`(w)A symmetry of center 1=2 of the proof or of the result yields: for any n.a. word w0, and for any q-tangleT2, Z((1;w0; w0)
 T2) = 1`(w0) 
 Z(T2)Thus, if T1 = (T1; b1; t1) and T2 = (T2; b2; t2) are two q-tangles such that T1 
 T2 has at mostone extremum (so that T1 
 T2 is de�ned as an e-tangle), we have:Z(T1 
 T2) = Z(T1 
 (1; b2; b2))Z((1; t1; t1)
 T2)= (Z(T1)
 1`(b2))(1`(t1) 
 Z(T2)) = Z(T1)
 Z(T2)Now, for any two e-q-tangles, T1 = (T1; b1; t1) and T2 = (T2; b2; t2), we have several13 e-tanglesT� which represent the tangle T1 
 T2. To each of them, we associate a product of elementary tensorproducts as above, and the good behaviour of the above formula under product tells us that for anychosen e-representative T� of T1 
 T2, we haveZ(T�) = Z(T1)
 Z(T2)In particular, we may use this independence property to prove that me may exchange the height oftwo extrema without changing Z: using the functoriality and the invariance under admissible isotopy,we may assume that the two extrema to be exchanged are in the two parts of a tensor product of twoq-tangles and are the only extrema of the tensor product. We have just proved:Lemma 3.6 Z is invariant under almost admissible isotopies. �Now, Z is an invariant of tangles, the tensor product of tangles makes sense, and the monoidalityproperty is proved in its full generality.3.5 The general isotopy invariance of ZWe know that we have a monoidal invariant Z of oriented tangles.The replacement of a trivial ascending strand " by an ascending snake with two extremafrom right to left is called an ascending snake move. The replacement of a trivial descending strand #by a descending snake from right to left is called an descending snake move.Lemma 3.7 Z is invariant under ascending and descending snake moves.13corresponding to the shu�e permutations of the extrema
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By monoidality, and by de�nition of � (2.17), Z is invariant under an ascending snake move. Startwith a maximum \ = \(��) oriented from right to left, and perform an ascending snake move, thisdoes not change Z. Now, exchange the heights of the two extrema, this does not change Z either andthe new tangle is obtained from \ by a descending snake move. Therefore� = Z(\) = Z(descending snake)Z(\)and since � is inversible, Z(descending snake) = 1 and we are done. �Lemma 3.8 Let T0(X) and T1(X) denote the images of two isotopic admissible embeddings, then T1is obtained from T0 by a �nite sequence of the following operations:1. almost admissible isotopies,2. ascending and descending snake moves,3. twists of the extrema as in Example 2.20.Sketch of proof: The reader may read [Hi] to complete this proof. The embeddings T of a compactone-manifold X in C� [0; 1] which have only non-degenerate critical points at di�erent heights form adense open subset in the set of embeddings (with �xed boundary) equipped with a suitable topology(C1S ). Here, a critical point is a point x such that (pV �T )0(x) = 0 where pV is the vertical projection,and it is non-degenerate when (pV �T )00(x) 6= 0. In other words, this property of embeddings is generic(density) and stable under small deformations (openness).The C1 isotopies from I � X to C � [0; 1] whose restrictions to fug � X satisfy the aboveconditions except for a �nite number of u where one of the accidents "two critical points at the sameheight" or "one degenerate critical point at which (pV � T )000(x) 6= 0 does not vanish" occur also forma dense open subset of the set of C1 isotopies from I � X to C � [0; 1] equipped with a suitabletopology (C1S ).We may see these isotopies at the neighborhoods of the isotopy times u of the accidents ascompositions of isotopies without accidents and isotopies where the modi�cations occur only nearthe pieces which constitute the accident. Thus, when it cannot be trivially removed, the �rst acidentis just an exchange of the heights of two extrema that may be supposed real, and, when it cannotbe trivially removed, the second accident may be transformed into an ascending snake move or adescending one. Now, we are left with isotopies without accident where the only bad thing is that thehorizontal tangent vectors are not necessarily real. Nevertheless, when these vectors are real at thebeginning and at the end of the isotopy, it is not hard to compose this kind of isotopy by twists ofthe extrema in order to see them as compositions of admissible isotopies modulo rescaling and twistsof the extrema. �Lemma 3.9 Z is an isotopy invariant of unframed tangles.Proof: We already know that Z itself is invariant under the two �rst moves. The invariance of Zunder the third one come from the computations of Example 2.20 which are now allowed for our Z. �De�nition 3.10 Let K1 and K2 be two oriented disjoint components of a tangle T . Then the linkingnumber lk(K1;K2) of K1 and K2 is equal to half the sum of the signs (+1 or �1) of the crossingsinvolving both K1 and K2 in a regular projection of the tangle K1[K2, where the sign of the crossingis +1 and the sign of is �1. That this sum is independent of the projection can be provedfrom a Reidemeister-type theorem. It can also be deduced from the following exercise.Exercise 3.11 Let T = T (X) be an oriented q-tangle. Assume X = X1`X2. Let ~D1 be the complexvector space freely generated by one-chord diagrams such that the local orientations at the verticesmatch the orientations of the tangles. Let ~A1 denote the quotient of ~D1 by the relations which identifythe diagrams whose two vertices are either on X1 or on X2 to zero and which identify all the otherdiagrams to some d12. Let ~Z1(T ) denote the projection of Z1(T ) in ~A1. Show that ~Z1(K1 [ K2) =lk(K1;K2)d12.(Hint: See Lemma 2.18 and note that the degree one part of the associator is zero.)31



Side-remark 3.12 The author usually prefers the following de�nition for the linking number: Fortwo disjoint knots K1 and K2, the linking number of K1 and K2 is equal to the algebraic intersectionnumber of K1 and an oriented compact surface embedded in R3 bounded by K2.The framing of a component T (X0) is equal to the linking number of the two copies of T (X0) inT (2�X0). We denote it by lk(T (X0); T (X0)). By the above exercise, it only depends on the isotopyclass of T (2�X0) which only depends on the parallelized isotopy class of T .De�ne Ẑ(T (X)) from Z(T (X)) by multiplying Z(T (X)) by exp(� lk(T (Xi);T (Xi))2 �11) acting onthe component Xi for each component Xi of X .Then as in Lemma 3.9, Ẑ(T ) is a usual unparallelized invariant of oriented tangles. This provesthat Z is an invariant of oriented framed tangles.Lemma 3.13 � is symmetric.Proof: Since the framed oriented round circle is isotopic to itself with its orientation reversed Z() =�2 is symmetric. �Now, the proof of the isotopy invariance of Z is complete.3.6 DuplicationBy Property 3.4, we know that Z behaves like we want under duplication of regular components.Simply denote \(��)(2� \) by (2� \(��)) and setA = Z(2� \(��))Use similar notation to set B = Z(2� [(��))We do not know whether A = �(2 � \)�(Z(\(��))). We consider A and B as elements of A(2). Notethat they are symmetric under the simultaneous symmetry of the two vertical intervals (because theinvariance of the Kontsevich integral under a homothety of ratio (�1) is preserved in the regularisa-tions).Let T (X0) be a component of a tangle T (X). We decompose T as a product of tangles so thatthe extrema of T (X0) are in factors of the form 1ww(\(��)1 ) or 1ww([(��)1 ). By the monoidality property(as in Example 2.13), the contribution of such a tangle to Z(T (2 � X0)) is an insertion of A, if wehave a maximum, and B otherwise, on the two strands of the involved duplicated extremum. Thecontribution of the same tangle to �(2�X0)�(Z(T )) is the insertion of �(2�1)�(�) at the same place.Lemma 3.14 Let T (X0) be a component of a tangle T (X). Assume that either T (X0) is a circle orT (X0) is an interval running from bottom to top. Let ? be the bottom point of T (X0) if X0 is aninterval, and a regular point of T (X0) otherwise. Orient X0 so that it runs from bottom to top near?. Let M be the number of maxima of X0. ThenZ(T (2�X0)) = (AB)M�(2�X0)�(��2M )�(2�X0)�(Z(T ))where � acts on X0, and (AB)M acts on 2�X0 at the duplicated ?.Remark 3.15 About the case of duplication of circular components. The action of (AB)M 2 A(2)is an insertion of (AB)M 2 A(2) at the duplicated ?. In fact, this duplicated ? does not show up indiagrams of A(X0) when X0 is a circle. So, in order to give sense to that sentence, we cut X0 at ? totransform it into an interval I0 whose boundary is made of two copies of ?, and we call X(I0=X0) thenew support. Now, when ? is at the intersection of two tangles, then Z(T n ?) 2 A(X(I0=X0)) has anatural de�nition (which depends on our product decomposition), and in this case, the result shouldbe written as Z(T (2�X0)) = i �(AB)M�(2�X0)�(��2M )�(2� I0)�(Z(T n f?g))�32



where i is the natural map from A(X(I0=X0)(2 � I0)) to A(X(2�X0)). (Though Z(T n f?g) is notcanonical, the RHS of the above equation is well-de�ned. See the proof below.)Note that when X has no boundary, by Subsection 2.6, the natural map from A(X(I0=X0)) toA(X) is an isomorphism. Thus, in this case, Z(T n ?) is nothing but the preimage of Z(T ) under thisisomorphism and is well-de�ned.Proof of Lemma 3.14: (��2M )Z(T ) is the Kontsevich integral of T where the contribution ofthe elementary tangles containing the extrema is replaced by 1. By Proposition 3.4, its duplication�(2 � X0)�((��2M )Z(T )) contains the contribution of all the other tangles to Z(T (2 � X0)). Thus,Z(T (2�X0)) is obtained by inserting the A and B corresponding to the extrema in this duplicatedelement between duplicated parts. Since, by Lemma 2.16, A and B commute with duplicated vertices,and since maxima and minima occur alternatively, starting from ? with a maximum, we get theannounced lemma. �Apply this lemma when T (X0) = T (X) is a snake. ThenZ(T (2�X0)) = (AB)�(2�X0)�(��2)�(2�X0)�(Z(T ))where T and T (2�X0) are isotopic (by a parallelisation-preserving isotopy) to the trivial tangles 1��and 1(��)(��), respectively. Thus, the above equation implies that(AB)�(2 �X0)�(��2) = 1 2 A(2)Now, the above lemma implies that the duplication property is true in its full generality, and thetheorem is proved.Also note that we have the more speci�c result for duplication of link components:Lemma 3.16 Let T (X0) be a component of a link T (X). Let ? be a regular point of T (X0). Use thenotation of Remark 3.15 above. ThenZ(T (2�X0)) = i � �(2� I0)�(Z(T n f?g))where i is the natural map from A(X(I0=X0)(2� I0)) to A(X(2�X0)) �3.7 The Kontsevich integral of iterated torus knotsWe see the circle S1 as the boundary of the complex disk D2 = fz 2 C j jzj � 1g. Let K be acomponent of a framed link L. With this framed knot K, we associate an embedding�K : D2 � S1 �! R3whose image intersects L along �K(f0g � S1) = K and such that �K(f1g � S1) is the parallel of Kgiven by the framing. Let U denote the unknot with the 0-framing, then �U is nothing but a standardembedding of the solid torus.Let p and q be two coprime integers. Let�p;q : S1 �! S1 � S1z 7! (zq; zp)Then the framed torus knot Kp;q is the image of �U ��p;q equipped with its parallel which is embeddedon the torus (boundary of the solid torus). Let L(Kp;q=K) denote the link obtained from L by replacingK by �K � �p;q(S1) which is equipped with its parallel lying on �K(S1 � S1).This section is devoted to proving the following propositions:
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Proposition 3.17 Let i : A(p) �! A(S1) be the map induced by gluing the top of the ith interval tothe bottom of the (i+1)th interval for any integer i mod p. Recall that �11 is the one-chord diagram onthe vertical interval such that the local orientations at its two vertices give rise to the same orientationof the interval. Then Z(Kp;q) = i � �(p� 1)���2 exp� q2p�11��Proposition 3.18 Let ? be a point of K. See the underlying abstract circle X0 corresponding to Kas an interval I0 whose two endpoints are identi�ed with ?. ThenZ(L(Kp;q=K)) = i��(p� 1)� exp� q2p�11��(p� I0)�(Z(L n f?g))�where i : A(L(I0=X0)(p� I0)) �! A(L) is the extension of the map i of the statement of the previousproposition by the identity on the other components of L.Proof: Proposition 3.17 is clearly a corollary of Proposition 3.18, so we prove Proposition 3.18. WriteL as a product of 2 q-tangles L = T1T2so that ? is a letter of the top wordW of T1. By iterating Lemma 3.16, we know that if we duplicate thecomponent K, cut at ?, (p-1) times, with respect to a length p word w, then the resulting Kontsevichintegral is obtained by duplication. This can be written asZ((L n f?g)(w � I0)) = �(p� I0)�(Z(L n f?g)):Now, we construct a tangle Tp;q from w to w so thatL(Kp;q=K) = T1(w � (I0 \ T1))1WW (Tp;q? )T2(w � (I0 \ T2))Let p;q : [0; 1] �! Cp n�h 7! (z1(h); z2(h); : : : ; zp(h))be the Cp-con�guration path de�ned byzk(h) = exp(qh+ kp 2i�)Let p : [0; 1] �! Cp n� be a Cp-con�guration path from p(0) = (1; 2; : : : ; p) = [p] to p(1) =p;q(0) and let �p;q(p) be the path obtained by permuting the strands of p in such a way that�p;q(p)(0) = p;q(1). Thus, pp;q�p;q(p) represents a tangle from [p] to [p].Now, it is easy to see that the tangle~Tp;q = 1[p]w T (pp;q�p;q(p))1w[p]works, up to parallelisation. To obtain a tangle Tp;q with the right parallelisation, �rst observe thatthe di�erence between the parallelisations of Tp;q and ~Tp;q does not depend on K. Then, observe thatthe framing of Kp;q is pq while the framing of the knot obtained by inserting ~Tp;q on a duplication ofthe unknot with zero framing is (p � 1)q. So Z(Tp;q) is obtained from Z( ~Tp;q) by letting exp( q2�11)act on one strand of Z( ~Tp;q). Now,Z( ~Tp;q) = Z(1[p]w )Z(p)Z(p;q)Z(�p;q(p))�1Z(1w[p])and by monoidality, Z(L(Kp;q=K)) is obtained from Z((L n f?g)(w � I0)) by letting Z( ~Tp;q) act onw � I0 at w � ?, and then by letting exp( q2�11) act on the torus component.Let us now describe the action of Z( ~Tp;q) on w�I0. We will let the RHS partZ(p;q)Z(�p;q(p))�1Z(1w[p])of Z( ~Tp;q) act on the bottom part of w � I0, and the LHS part Z(1[p]w )Z(p) act on the top part of34



w� I0. Thus, since Z((Lnf?g)(w� I0)) is a duplicated element, the LHS part commutes along w� I0,and therefore cancels the inverse action of Z(�p;q(p))�1Z(1w[p]). The only remaining action is theaction of Z(p;q) where, as in Example 1.4,Z(p;q) = exp0@qp Xfi;jg�f1;2;:::;pg�ij1Aand Xfi;jg�f1;2;:::;pg�ij = 12�(p� 1)�(�11)� 12( pXi=1 �ii)Thus, Z(p;q) = �(p� 1)��exp� q2p�11�� pYi=1 exp��q2p �ii�Now, note that the contribution of the big product to the Kontsevich integral of the torus knotmakes up for the framing correction. Also note that since we have a duplicated element on the copiesof I0, these copies play a symmetric role, and the rebuilding of S1 from these copies can be made asin the statement in any case. �Now, if Lkp;kq denotes the torus link obtained from Kp;q by duplicating (k�1) times the framedknot Kp;q , then by the iterated duplication property, we have:Z(Lkp;kq) = �(k � S1)�(Z(Kp;q)):Thus, as soon as we know the Kontsevich integral of the unknot, we will know the Kontsevichintegral of all iterated torus links by the above proposition.
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