Introduction to the Kontsevich Integral of Framed Tangles

Christine Lescop *

October 27, 2000

Abstract

The Kontsevich integral is the most interesting knot invariant that has ever existed. It does not
only contain a lot of the previously known knot invariants, like the HOMFLY, Jones, Kauffman
or Alexander polynomials which will be recovered from the Kontsevich integral in Pierre Vogel’s
lectures [V] or the Milnor invariants which will be recovered from the Kontsevich integral in Gregor
Masbaum'’s lectures [H-M]; but it also organizes them in a suitable way. Whether the Kontsevich
integral separates knots is still unknown, but the Kontsevich integral is known to separate braids
(defined below). Furthermore, the Kontsevich integral admits a geometric construction.

Here, we will follow the original approach of Kontsevich (and [Ba, C-D, LM1, LM2]) in order
to give a self-contained presentation of the Kontsevich integral and of all of its properties which
are useful for the study of the universal finite type invariant of 3-manifolds of Le, Murakami and
Ohtsuki [LMO, Lel]. This LMO invariant is the main subject of our Summer School.

*CNRS, Institut Fourier (UMR 5582)



1 The Kontsevich Integral for braids

Fix two integers n and p, p > 1.
We will first introduce some pieces of links where the Kontsevich integral is well- and easily-
defined, the CP-configuration paths which can be seen as parametrized braids.

1.1 CP-configuration paths

Throughout these lectures, C denotes the field of complex numbers. A denotes the big diagonal of
C?, that is the subset of C? whose complement is the set of (ordered) configurations of p distinct
points of C:

CP\A ={(z1,22,...,%p) | 1 #£ ] = 2 # 2}

This section is devoted to constructing the Kontsevich integral for a path

v: [0,]] — CP\A
h = (z1(h),z2(h), ..., zp(h))

of configurations. Our paths are continuous of course, and they are furthermore assumed to be piece-
wise C'*°. These paths v will be called CP-configuration paths.

We represent them as the graphs of the p complex-valued functions (h +— z;(h)). These graphs
sit in R? which is decomposed into the product R? = C x R of the horizontal complex plane by
the vertical real axis pointing upward. The vertical axis represents the axis of the (height) parameter
h € [0,1], and, in the horizontal complex plane, the real axis runs from left to right in the blackboard
(or paper sheet) plane and the imaginary axis points inward the blackboard as below.

heR
iR
R
C ?
Example 1.1 The torus braid (3,n): p =3, A = %2ix.
24 4im
z1(h) = exp(Ah), z2(h) = 21(h) exp(——), 23(h) = z1(h) exp(——)
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Here is a picture of the torus braid (3,2):




We usually only draw the projections of the graphs onto the blackboard plane that is the plane
of the real horizontal axis and the vertical real axis as in the following examples.

Examples 1.2 Some C2-configuration paths: p = 2, z;(h) = 0, z2(h) = exp(\h):

A = Loge

A =T
< \
1
1 1\

Example 1.3 The associator C3-configuration path: p = 3,

z1(h) = 0,22(h) = e+ h(1 — 2¢), 23(h) = 1.

1.2 Coefficients of the Kontsevich integral of CP-configuration paths

Let P = {{j,k} C {1,2,...,p}} denote the set of pairs of elements of {1,2,...,p}. We represent an
n-tuple
T = ({jlakl}a {j27k2}7 tey {]nakn}) € pn

by an n-chord diagram T, on p parallel vertical intervals numbered from left to right as shown in the
figure below, where we draw n horizontal chords at different heights. The r** chord from bottom to
top joins the ji* interval to the kX" vertical interval.

1 3
Here is T, with = = ({1,3},{2,3},{1,2}): i {J

-

-

With such an x € P™, we associate a complex coefficient Z (7, z) of the Kontsevich integral. This
coefficient Z(v, z) is defined as the integral

of a complex-valued n-form
wz € Q"(A™, C)

defined as follows on the simplex

Anz{(hl,hz,,hn)ERn|0§h1§h2SShngl}

1 n
wx(hl, hg, ceey hn) = (i) (:)1-1 (hl)dhl A (:)1-2 (hz)dhz AL (:an (hn)dhn
™
where
RS
(2j, = 2k,.)



Example 1.4 In the examples 1.1 and 1.2, the function @, is always constant, with value A. Thus,
wy = ($=)"dhy Adhy A ...dhy, and Z(v,z) = ($=)"Volume(A"), where the volume of A™ is X (for

2¢m !
example because the cube [0,1]™ is the union of n! simplices isometric to A™ which intersect along

sets of measure zero). In these cases, for any x € P™, we have:

A \n
Z(y.2) = 2] (15)

In general, the computation is not so simple as in the following exercise.

Side-exercise 1.6 In the case of Example 1.3, compute

201, (1.2), 2.3) = — 25 (Log(a)Log (=9)+5 &) |

n2
n=1

1.3 The target of the Kontsevich integral: the space of diagrams
Let X be a compact one-manifold.
Definition 1.7 An n-chord diagram on X is the datum of

e an injection i of the set U of the 2n endpoints, called univalent vertices, of n closed intervals,
called chords, into the interior of X, up to isotopy of X and isomorphism of the set of chords;
(so far this is equivalent to the datum of the 0-dimensional submanifold i(U) (up to isotopy of
X) together with a partition of 4(U) into n pairs).

e for every point i(u € U), a cyclic order on the set the 3 half-edges (the chord and the two
(natural) parts of a (natural) neighborhood of i(u) in X) which meet at i(u). This cyclic order
is called a (local) orientation at i(u). It is equivalent to the datum of a local orientation of X
near i(u). Namely, number the dashed half-edge by 1 and the plain ones by 2 and 3 according
to the cyclic order, then the induced orientation goes from edge 2 to edge £3.

In pictures, the manifold X is represented by plain lines, the chords are represented by dashed
lines, big dots represent the univalent vertices, and the local orientation is the trigonometric order of
the 3 half-edges which meet at i(u). See the following example of a 4-chord diagram on X = | O.

Let D, (X) be the (finite-dimensional !) C-vector space freely generated by the n-chord diagrams
on X. Define the antisymmetry relation (AS) and the four-term-relation (4T) as follows:

AS:—i— + -{'7— =0 and 4T:$"'+ + *—"L'+ + *"'% + *“““%":0

In words, (4T) reads: If four diagrams are identical except in the neighborhood of two chords,
where they look as above, then their sum is zero. Similarly, AS means that the sum of two diagrams
which differ only by the orientation at one vertex is zero.

Let
_ Dyp(X)

- AS 4T

denote the quotient of D,,(X) by these relations (that is the quotient of D, (X) by the vector space
generated by the elements of D,,(X) of the form of the left-hand side of the relations). Equip A, (X)
with the standard topology of a complex finite-dimensional vector space.

An(X)




Note that, by definition, Ag(X) is the C-vector space freely generated by the unique diagram
with 0 chord, called the empty diagram, or the unit of A(X), and denoted by 1x.

Ag(X) =Clx

neN

We let

denote the product of the A, (X) equipped with its natural vector space structure and with the
product topology. The element (z, € A, (X))nen is simply denoted by }_ _n #, by making use of
the obvious inclusions from the A, (X) to A(X). (Note that such a series always converges in A(X).)

When X is made of p vertical numbered intervals, A(X = [[}_, I;) is denoted by A(p). In that
case, there is a unique bilinear continuous product

A(p) x Alp) — A(p)
(d,e) > de

such that, if d and e are (the projections in A(p) of) two chord diagrams on the p vertical numbered
intervals drawn as below, de is obtained from d and e by stacking e above d as follows.

_______

Note that this product is well-defined (i.e. compatible with AS and 4T) and maps A, (p) X A, (p) to
Aptm(p). In particular, A(p) is an algebra with a well-defined and continuous exponential map:

exp: Alp) — AD) i
z = exp(w) = ZnGN %

Let € denote the augmentation map from A(X) to C = Ap(X), that is the natural projection.
Then, there is a continuous logarithm:

Log: e (1) c A(p) — Alp)
14z —  Log(l4z)=-S> &2

n=1 n

Similarly, when r € R, we define the " power of an element y € e~!(1) C A(p) by the usual formula:
y" = exp(rLog(y)).
and the (—=1)** power of such a y is its inverse in A(p).
Exercise 1.8 Prove that for any three distinct elements i, j, k of {1,2,...,p}, we have
[Lii][Cjk] = [Cjl[Cij] = [LjelCei] — [Cra] [Tl
in A>(p) where I';; = I'gy; 533, and the brackets (which will be often omitted) are used to denote the
projections onto the quotients A, (p)-
1.4 The Kontsevich integral for braids

Under the hypotheses and notation above, the degree n part Z, () of the Kontsevich integral Z(vy) of
v is

Zn(y) = Z Z('Yvw)[rx] € An(p)

and

=Y Zu(y) € Alp)

neN



Examples 1.9 In Example 1.2, we have

In Example 1.1, we have
n

Z(y) = exp (3

(T2 +Ts + F23))

If 4" is parametrized by h € [a,b] where a,b € R,a < b, then Z(") is defined as above except
that A™ is replaced anywhere by

ALy E {(hay oy hy) € R a < hy < hy < ... < hy < b
7 satisfies the following easy properties:

Property 1.10 (Independence of the parameter) Let ¢ : [a,b] — [0, 1] be an increasing diffeo-
morphism, then

Z(vo ) = Z(v)

Property 1.11 (Invariance under transvection) Let f be a continuous function from [0,1] to C,
then

Z(v+f:he (20 + £)R), . (2 + F)(R) = Z(7)

Property 1.12 (Invariance under global homothety) Let A € C, then

Z(Ay:hw— (Azi(h),...,Azy(h))) = Z(v)

Property 1.13 (Multiplicativity) Let y1,vs : [0,1] — CP\ A be two CP-configuration paths such
that 71 (1) = v2(0), and let v1y2 be the composed path:

ny2: [0,2] — CP\ A

Y1(h) ifh<1
h H{72(h—1) if h> 1

Then
Z(my2) = Z(n)Z(72)

PROOF OF THE PROPERTIES: It is easy to check that all the coefficients Z(v,z) are unchanged by
the operations of the 3 first properties. For the fourth one, just decompose
An

n—k
02 = UZZOAFOJ] X A[1,2]

(= Up_o{(ha, hay oo B 0 < By <o <y <1< By < ... < by < 23)

Denote by z_,;, the k-tuple made of the k first coordinates of x and x4y, the (n-k)-tuple made
of the following ones so that I', =T, _, T and observe that

Tk Th4+1—

/M xA"’sz<7172) - /A Wa_,, (1) X /nfszw_,(%(- - 1))

k
[0,1] [1,2] [0,1] [1,2]



This shows how

Z(71727 I)FI = Z Z(’}/h xﬁk)ri—mz(’y?a xk+14})rzk+1—>
k=0

n

and allows us to easily conclude the proof. o

We now give a more compact definition of Z:
The Knizhnik-Zamolodchikov connection Qg7 € Q'(CP\ A, A(p)) is the one-form valued in A(p)
defined by:

o 1 de—de
z=gm D S Ta

{kyc{1,2,..py 77

Then the Kontsevich integral Z of « is
2 =% / (yopr)* (Rcz) A (70 2)* (Qcz) A A (3 0 ) (U 2)
neN "

where p; : A — [0, 1] is the i** projection, p;(hi, ..., hn) = hi, and where, if w; and ws are two
complex-valued forms, and if d; and d» are two elements of A(p), then widi A wads = wi A wa(dids).

Side-remark 1.14 Therefore, the Kontsevich integral is called the holonomy of the Knizhnik-Zamolodchikov
connection. For us, it is enough to know that Z is multiplicative with respect to the path composition.

Side-exercise 1.15 Check that Z satisfies the other holonomy property:
d !
T Ziom) () = Z(¥j0,u) ¥k 7 (7' (w))

1.5 The isotopy invariance of the Kontsevich integral of braids

Theorem 1.16 (Kontsevich, 1992) Let vy be a C* map from [0,1] x[0,1] to CP\ A. For u € [0, 1],
let 7y, denote the configuration path:

Y i [0,1] — CP\A
h = vu(h) = vy(u, h)

Assume v, (0) = v(0) and v, (1) = v0(1), for any u € [0,1]. Then
Z(v0) = Z(m)

In other words, Z(v) only depends on the homotopy class' with fived extremities (0), v(1) of . (This
is also equivalent to say that Q7 is flat.)

To prove the theorem, we will use the following lemma which will be proved later:

Lemma 1.17
Dz ANQrz=0

PROOF OF THE THEOREM: Observe that dQx = 0. More precisely, for any {j,k} € P, d (%) =
iz
dzj—dzy
Zj—Zk
to the computation of all coefficients of the I',,) allows us to write:

0 because can be written locally as dLog(z; — zx)). Thus, the usual Stokes theorem (applied

/0([0 | A71)(70 (1% p ) (Qez) A (v o (1% po))* (Qxz) Avo A (yo (1 p)) (Qez) =0

where 1 x p; : [0,1] x A™ — [0,1] x [0,1] maps (u, H € A™) to (u,p;(H)).
The boundary 9([0, 1] x A™) of [0,1] x A™ decomposes into the following parts:

L Any homotopy between two C'* paths in (CP \ A) can be replaced by a C* one. See [Hi, Chapter 2, Section 2].



e 0]0,1] x A™ whose contribution to the above integral is Z,(y1) — Zn (),

o the face [0,1] X {(h1,...,hy) € A" hy = 0} where (yo (1 xp1))*(Qxz) = 0 because v,,(0) is con-
stant and which therefore does not contribute to the integral, and the face [0, 1] x {(h1,...,hy) €
A™| hy, = 1} which does not contribute either for the same reason,

e for k=1,2,...,n — 1, the faces of [0,1] x A™: {(h1,...,h,) € A"|hy = hj41} where 1 X p;, =
1 X py1 and which therefore will not, contribute because of Lemma 1.17.

Except for the proof of Lemma 1.17, the theorem is proved. o

PROOF OF LEMMA 1.17:

1
Oz = 5 Z wieljk
{j,k}eP

. dz;—d
where wjy, is the complex-valued 1-form wj;, = z’fz:’“ Therefore,
2

1\?
Oz NQkz = <—> > (Wab Awea)Tapled

2
7 (a b {edheP?

Since wep Awep = 0, the pairs ({a, b}, {a,b}) do not contribute to the sum. When the pairs {a, b}
and {ec,d} are disjoint, T'yp and I'rq commute and therefore, the contributions of ({a,b}, {¢,d}) and
({c,d},{a,b}) cancel each other. Thus, the only remaining contributions to the sum come from the
pairs where {¢, d}N{a, b} contains one element, that are the pairs where the cardinality of {¢, d}U{a, b}
is 3, and we have:

1\2 wij Awik(Di; Dk — Tjel'ij)
Oz ANz = <%> Z + wjir Awki(TjeThi — Triljx)
(i k}c{1,2,p} \ +  Whi Awij(Crilsj — TijTki)

We know from Exercise 1.8 that (I';;T'j, — I';jxI'i;) is invariant under any circular permutation
of i, j and k. Thus, Qxz A Q7 can be rewritten as

1 2
Oz ANQrz = (%) Z (wij A Wik +wjk/\wki+wki/\wij)(I‘iijk _ijrij)
{i.5,k}C{1,2,....p}

And it suffices to prove that (w;j Awjr +wjr Awk; +wi; Aw;j) is zero. To do it, we express the sum
as a combination of dz; A dz;, dz; A dz;, and dzi, A dz;, and compute the coefficient of dz; A dz; since
the other ones can be deduced by circular permutation. This coefficient is zero. Thus, the lemma, and
hence the isotopy invariance of Z are proved. o

From now on, we will consider the configuration paths v up to homotopy with fixed extremities
and translation by a function f since these operations do not affect Z (). If v is a path from b = v(0)
to t = (1) such that b and t are in R?, then it (or its class modulo these operations) is determined
by a regular? planar projection of v with the under/over-crossing datum, and by b and ¢ which are
considered up to translation. The class of such a path will be denoted by (D;b,t) or (D}) where
D is a picture projection of . The letters b and ¢ stand for bottom and top, respectively. For b,
t € RPN (CP\ A), we will denote the (class of a) configuration path v from b to ¢ whose planar
projection has no double point by 1% or by (1;b,t).

Examples 1.18 Let a, o/, 8 and 7 € R.
T (071) Log(%
2(1; (0,0 + B), (', o' + 7)) = Z(15(0,8), 0,7) = ZA075) = 2T yexp (“2E T
Z(X) (07 ]‘)3 (07 1)) = el‘p(%r12)
Z(X;(0,1),(0,1)) = exp(F:T1»)

2 A regular projection is a projection which is an immersion whose only multiple points (points with several preimages)
are transverse (the two tangent vectors are independent) double points.




Recall that the inverse of a path 7 : [0,1] — X in a topological space X is the path 7 : [0,1] —
X which maps h to y(1 — h) so that there is a homotopy with fixed extremities from the composed
path 47 to the constant path to 4(0). Applying this remark to X = CP \ A yields

Also note that the numerotation of the strands (order of the coordinates z;) is immaterial. The
only thing that matters is to number the components of the braids and the intervals used to define
A(p), accordingly.

1.6 Some unpleasant features of the Kontsevich integral

Let X and Y be two 1-manifolds. Let X [TY or X ® Y denote their disjoint union. In pictures, we
draw Y on the right-hand-side of X. There is a natural bilinear continuous operation called the tensor
product from A(X) x A(Y) to A(XJ]Y") which maps (d, e) to the disjoint union d ® e of d and e, for
any two diagrams d € A(X) and e € A(Y).

When applied to the case where X and Y are unions of intervals, this construction yields, for
any two integers p and ¢:

®: A(p) x Alq) — A(p+q)

Assume that we have a (class of a) CP-configuration path 77 from by, €] — 00,0]? to t; €
] — 0,0]?, denoted by (Dp;br,tr), and a (class of a) C?-configuration path yg from bp € [1,+o0[?
to tg € [1,+o0[?, denoted by (Dg;bg,tr). Assume furthermore that the images of v;, and g are
contained in (] — 00,0] 4+ iR)? and ([1, +o0o[+iR)?, respectively. Denote the CP*?-configuration path
diagram obtained by putting Dy on the right-hand-side of Dy by Dy ® Dp.

First bad feature:
Z(Dr @ DR; (br,br), (tr,tr)) # Z(Dr;br,tL) ® Z(DR;br,tr)

because there are unwanted contributions of diagrams with chords involving both the left-hand side
part and the right-hand side part.

Exercise 1.19 Prove that Z(Dy,;br,,t1.) ® Z(Dg;br,tr) is exactly the contribution of the other dia-
grams (whose chords are either on the LHS part or in the RHS part) to Z(Dr ® Dg; (br,br), (tL,tR))-
(See the proof of Property 1.13.)

Nevertheless, we will be able to diminish the unwanted contributions. In order to estimate their
behaviour, we will use the following notation.

Notation 1.20 Let d = (dp(e > 0))pen € A(X). Let (fn :]0,+00[— R)npen be a family of
continuous maps. We use the notation d = O(f.(¢)) to say: Vn € N, IM,, €]0,+o0[ such that:
lldn(e)|l < My fn(e) where ||.|| denotes one of the (equivalent) norms on the finite-dimensional C-
vector space A, (X). We omit the subscripts * and n when f,, does not depend on n.

Let us simultaneously perform the following two homotheties €(.) and (. — 1) 4+ 1 of the complex
plane with ratio . The first one has center 0 and is performed on the left-hand-side path 7 while the
second one has center 1 and is performed on yg. These homotheties do not change Z(Dy;by,t1) ®
Z(DRg;br,tgr). Then, a quick look at the behaviour of the coefficients of the boring diagrams shows:

Lemma 1.21

Z(DL ® Dpg; (8bL,€(bR — 1) + 1), (atL,s(tR — 1) + 1)) = Z(DL;bL,tL) & Z(DR; bR,tR) + O(E)



<

This is our first motivation to study the behaviour of Z () for configuration paths which reach
some limit configurations. Another motivation for that is that we want to define a link invariant, and
we would like to define Z () from lim._,o Z(1;(0,1), (0,¢)).

Second bad feature: Z(1;(0,1),(0,¢)) = emp(%ff)l“m) does not converge when ¢ approaches 0.
Another wish that we have is to get rid of the heavy-to-carry data of the coordinates of the

bottom and top configurations. A possible way to do it would be to restrict ourselves to the case when

these configurations are (1,2,3,...,p) but the study above suggests that it may not be a very good

idea. So let us begin to study some limit behaviours of Z.

1.7 A two-point collision

Definition 1.22 Let CP(2) denote the subset of CP made of the elements (z1, 2, . . ., z,) of CP which
exactly have two equal coordinates z; =z, j # k (z; =21 = i =l or {i,l} = {j, k}).

A two-point collision of CP is an element of CP(2), with the additional datum of the superscript
— on one of the two equal coordinates, say z; in the above example, and the superscript + on the
other one. Intuitively, these superscripts mean: z; is infinitely close to z;, and it is on the left-hand
side of 2. Let CE be the set of two-point collisions of CP.

By definition, a path v : [0,1] — (C? \ A) UC?} is a continuous (piecewise C*°) path from [0, 1]
to (CP \ A) U CP(2) such that:
for any hy € v 1(CP(2)), one of the two equal coordinates of y(hg), Zj(ha)» 18 equipped with — and
the other one 2, is equipped with +, and there exists a neighborhood N (hg4) of hg in [0, 1] such
that, for any h € N(hg) \ {ha}, Re(zk(hd) (h) — Zj(hd)(h)) > 0.

This section is devoted to extending Z for such paths v : [0,1] — (CP \ A) U C} as suggested
by the following graphic formula.

AN\ _D ||\ _S
<\ <\

Notation 1.23 If z € C% is as in Definition 1.22, for € €]0, 0o[, we define

z(+€) = (z1(4€), z2(+€), ..., zp(+€)) € C?

by zp(+¢€) =z, + € and z;(+¢) = z; if i # k.
In general for two points b = (by,bs,...,by) and t = (t1,ts,...,t,) in CP, let Bf denote the
barycentric path from b to ¢ that is

Bt: [0,1] — CP
h = (L—Rb+ht=((1—h)b +hty,...,(1—h)b,+ ht,))

Definition 1.24 Z is defined as follows for paths v : [0,1] — (CP \ A) U C5.
1. If v:[0,1] — (CP? \ A) U C?} is a path such that y~1(C?(2)) = {0}, then

. Log(e) (h)
2= lim e (o) 2] gy e i)
h—0,h>0

10



2. For any path v :[0,1] — (C?\ A)U C}

3. Z is still multiplicative under path composition.

To prove that the definition makes sense, we need the following lemma which is proved at the
end of this subsection:

Lemma 1.25 Let b = (b, ,b],b3,b4,...,b, 1,b,) € Ch, (by = by), let g9 > 0. Assume that b(+¢) €
CP\ A for any ¢ such that 0 < & < eg. Then the limit

Log(e) b(+e0)
lesp (3T 2

exists.

PROOF OF CONSISTENCY OF THE DEFINITION: Let us first prove that the definition of Z makes sense
in the first case. Let b = v(0). The hypotheses on 7 guarantee the existence of g > 0 and ho > 0 such
that:

1. for any (g, h) such that 0 < e < gy and 0 < h < hg, the barycentric path BYM  avoids A and

Re(22(h) — 21(h)) > 0

b(+5

2. the homotopy class of Bﬂf))'ﬂ (h,1] does not depend on the choice of h and coincides with the

homotopy class of Bb(izo)BV(ﬁlo Nk ]-

Thus, by the former properties of Z, Z(Bg((fz)y‘ (h,1]) is independent of A such 0 < h < hy and is

equal to Z(Bb(iso)) (Bb(+50)fy|[h 1), and, according to Lemma 1.25, the definition of Z makes sense

in the first case.
Now, define Z(v) for a path 7 : [0,1] — (C? \ A) U C} such that y~1(CP(2)) = {1} by

Z[) =2
In other words, if y(1) = ¢,
. c Log(e)
Z(y) = lim Z(y 0,h BtH ))exp(—fl“- k(1))
e 0,60 [[0,h] P (h) DYP(COLICY
h—1,h<1

Now any path v : [0,1] — (C? \ A) U C? is a composition of paths for which Z is defined, and
we define Z of a such a composition as the product of the values on elementary paths. The form of the
first definition of Z makes clear that Z() does not depend on the decomposition of Z as a product.
Thus, Z is compatible with products and Z is easily seen to be compatible with the passage to the
inverse, too.

S

Note that Z is still independent of the parametrization, and invariant by transvection. But we
lose the invariance under homothety.

Exercise 1.26 Let v : [0,1] — (C?P \ A) U Ch. Let A €]0,4+o0[. If v(h) = (21(h), ..., zp(h)), then
Ay(h) = (Az1(h),. .., Az,(h)). Show that:
If v 1(CP(2)) = {1}, then

Log(A
2(47) = 20 exp (- BTy )

If 4~ (C?(2)) = {0}, then

0w

Z(Ay) = exp (Log(A) Fj(O)k(O)) Z()

11



PROOF OF LEMMA 1.25: Let v: h € [0,g0] = (21(h),...,2p(h)) be defined so that 7. .,] represents

+e0)
Bb(+50 by
b if j # 2

Z](h)_{ b1+h lf]:2
Let ¢ = (z1,...,2,) € P™ and let r € {0,...,n} be such that z; = {1,2} for any j < r and
Zry1 7 {1,2} unless r = n. Let ¢, () be the complex coefficient, of I';, in exp(L%ff)Fm)Z(’yHMO]) that
is

n

1 (Loge)? -
ea(e) = (== & I @e.(he)dh
0T
.: e<hjp1<hjra<  <ha<eo 2]

i+1

It suffices to prove the existence of lim._,q ¢, (¢) for any z, that is for ours.

If r = n, then the multiple integral is equal to the coefficient of T in (QiW)”_jZ(IEg:Z‘;)) that

is (Log(s_o.)),n_j (see Example 1.4). Thus,

=i . <L>" (Loge + Log(%2))" _ <L>HM
2im

n! 21T n!

and the same argument shows that if » < n, then
1\" [
== h)dh
)= (=) [ rm

Logh .
F(ny = (Logh)” : S // / I @ (he)dhs
r! h<hy2<hyi3<..<hn<eo 2 1o

Now, remember that @ y(h) = 1/h, and note that there exists a C' > 0, such that, for all
h €]0,1], and for all i > r + 1,

where (h = h,4+1 and)

|z (R)] < Cop1 23 (h) and |&g, ., (R)] < C

Thus,
|Logh|" (Log=>)"~"~!
r! (n—r—1)!

[f(m] <™ < C'|Log(h)|"

for some C' > 0. This proves that [*° f(h)dh converges and concludes the proof of the lemma. ¢

Remark 1.27 Thus, the definition of Z for a path which reaches some two-point collision b is ex-
plained in the graphic formula just after Definition 1.22. Indeed, we just slightly modify the given
path so that it reaches b(+¢) instead of reaching b. Under our hypotheses, the choice of the modified
path is canonical up to homotopy. Then, we correct the evaluation of Z on the modified path by
a multiplication by e~ = Z(lgg:i;) which involves the same ¢ acting on the two strands of the

collision; and we take the limit.

Remark 1.28 In Definition 1.24, we choose to modify a two-point collision b = v(0) € C} into b(+¢)
so that the two equal coordinate b; and b} become b; and by, + €, respectively. Let n € [0,1], we
can define b(n, +¢) so that b;(n,+¢) = b; — ne and bi(n, +¢) = by, + (1 — n)e and b;(n, +¢) = by, if
i # j, k. Note that for a two-point collision b, Z(Bbgn)s)) =1+ O(e). Therefore changing v(0)(+¢) into
7(0)(n, +¢) in Definition 1.24 would not change the definition.

12



1.8 Duplication of a strand in a braid

Let X be a one-manifold, and let Xy be a connected component of X. Let

X(rx Xo) = (X \ Xo) [] <]_[ X(’)>

be the manifold obtained from X by duplicating X, (r-1) times that is by replacing X, by r copies of
Xp and let

7T(’I“ XXU)CX(T‘ XX[)) — X
be the associated trivial covering, that is the identity on (X \ Xp), and the trivial r-fold covering from
H;:l Xél) to Xo.

Recall from [V] that if 7 : ¥ — X is a smooth map between two one-manifolds X and YV
such that 7(0Y) C X, then one can unambiguously define the linear degree-preserving map : 7*
A(X) — A(Y) which only depends on the homotopy class of = such that: If d is (the class of)
a diagram on X whose univalent vertices avoid the critical values of 7, then 7*(d) is the sum of all
diagrams on Y obtained from d by lifting each vertex to one of its preimages under 7. (These diagrams
have the same set of chords as d and the local orientations at vertices are naturally induced by the
local orientations of the corresponding vertices of d.)

In particular, we have a natural linear duplication map:

m(r x Xo)* : A(X) — A(X(r x Xp))-

When X = [[?_, I; and X, = I}, this map is simply denoted by n(r x j)* : A(p) — A(p+r —1).
Note that 7(r x 7)* is a morphism of algebras. The local definition of 7(2 x p)* reads:

(2 X p)* : “+k — “+k ifk<p
2 SO S ifk>p

__.+p = m+p|p+1 + _._|.;+p+1

oo (L) = b L L

For example:

On the other hand, we may duplicate the p'* coordinate of an element z = (21,...,z,) of C?\ A
to get an element 2(2 X p) = (21,...,2p-1,2, ,z*) € C™' Let v : [0,1] — CP \ A be our usual
CP-configuration path which maps h to (z1(h),. (h)) Let

Y2 xp)(+e): [0,1] — CPI\A
h = (Zl(h)a---azp(h)azp(h)+€)

be obtained from + by replacing the p** strand by two parallel copies of this strand.

Lemma 1.29 Z(y(2 x p)(+¢)) = 7 (2 x p)*(Z(7)) + O(e)

PRrROOF: Replacing Z(v(2 x p)(+¢)) by m(2 x p)*(Z(vy)) amounts to replace di:i:fjj N dz::g:f

the iterated integrals, where 2,1 = 2z, +¢. o

in

Lemma 1.30 Let

v(2xp)(+e): [0,1] — (CPHT\ A)uCEH!
h = (z1(h),...,zp(h), zp(h) + &)

13



be a path from a two-point collision
(2 x p)(+€)(0) = (21 (0), 257 (0), 23(0), - .., 25(0), 2 (0) +€)
such that (2 x p)(+£)(]0,1]) C CPT\ A. Then
Z(v(2 x p)(+e)) = 7(2 x p)"(Z(7)) + O(e).-

PROOF: The proof is the same as above once it has been noticed that the majorations of the proof of
Lemma 1.25 can be made uniform. o

Now, we know enough about the Kontsevich integral of braids, which may be seen as embed-
dings of trivial cobordisms between two CP-configurations, to be able to extend it on more general
cobordisms between limit configurations (including the links themselves) called tangles.

14



2 The Kontsevich Integral for general tangles

This section is devoted to constructing the Kontsevich integral for framed tangles using what we know
of the Kontsevich integral of braids by the preceeding section. We first define framed tangles.

2.1 Some limit configurations

Definition 2.1 A non-associative word or n.a. word w in the letter - is an element of the free non-
associative monoid generated by -. The length of such a w is the number of letters of w. Equivalently,
we can define a non-associative word by saying that each such word has an integral length £(w) € N,
the only word of length 0 is the empty word, the only word of length 1 is -, the product w'w" of two
n.a. words w’ and w" is a n.a. word of length (¢(w') + £(w")), and every word w of length £(w) > 2
can be decomposed in a unique way as the product w'w” of two n.a. words w’ and w"” of nonzero
length.

Example 2.2 The unique n.a. word of length 2 is (--). The two n.a. words of length 3 are ((--)-) and
(:(--))- There are five n.a. words of length 4.

Definition 2.3 Let O, be the set of equivalence classes [(a1;w1), (a2;w2), ..., (ar; wg)] of the k-
tuples ((a1;wy), (az;ws), ..., (ax; wg)) such that:

e fori=1,...,k, a; is a real number and w; is a non-empty n.a. word,
e a; <as <...<ayand Zlef(wi) =p

where two such k-tuples are equivalent if and only if they are obtained from one another by a real
translation. (For any T' € R, [(a1;w1), ..., (ar;we)] = [(a1 + T;w1), ..., (ar + T;wg)].)
An object of length p is an element of the set O, defined by:

Op = Uz:1 Op.k

The objects of O, , are the sequences [(a;; -)i=1,....p) Which will be simply denoted by (a1, as, ..., ap)
and represent actual® configurations of (R? \ A) /translation). Among these, (1,2,...,p) will be sim-
ply denoted by [p].

The objects of O, 1 represent two point-collisions: in these objects, there is one word of the
form (..) whose left-hand-side letter represents the left-hand side point of the collision and whose RHS
letter represents the RHS point of the collision.

In general, an object of length p is a limit configuration of p points (that is an element of
a suitable* compactification of (RP \ A) /translation). In the object [(ai;w1), (az;ws),. .., (ar; w)],
there is a collision of £(w;) points at a;, and the word w; will tell us the way of seeing this collision as
a composition of two-point collisions and duplications in Subsection 3.3.

The objects of O, are of the form [(0;w)] for a n.a. word w of length p and will be simply
denoted by w. They are simply n.a. words.

An object [(1;wy), (2;w2),. .., (k;wyg)] is simply denoted by (wy,ws,...,wy) and is called a word
sequence.

2.2 Framed tangles

Definition 2.4 Let T be an embedding® of a one-manifold X into a compact submanifold M of
R? = C x R. Tt is understood in the word embedding that

T(X)NOM = T(9X)

3For us, an actual configuration is an element of CP \ A, i. e. it is not a limit configuration.

4Suitable compactifications can be found in [Po]. For us, it is enough to keep this interpretation in mind at an
intuitive level.

5See [Hi] for the basic concepts of differential topology.
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and that the tangent vectors of X at the boundary points of X are transverse to the boundary M
of M (i. e. are not contained in the tangent space to OM). For us, an extremum of T'(X) is a point
T'(x) where the tangent vector T'(x) to T'(X) is horizontal (¢ C = C x {0} C C x R), and where, if
py : CxR —: R denotes the vertical projection, (py oT)"(z) # 0. We will say that an embedding as
above is almost admissible if all of its horizontal tangent vectors are real (¢ R C C) and correspond
to extrema. Such an embedding is said to be admissible if furthermore, the extrema occur at distinct
heights.

Definition 2.5 A tangle is a triple (T';b,t) where
e T is an admissible embedding of a one-manifold X into C x [0, 1] such that:
T(0X)C R x{0,1}

considered up to almost admissible isotopy® and rescaling” [0, 1]. In particular, T provides a
partition of the boundary dX of X into two subsets, namely the bottom b(X) = T (R x {0})
and the top t(X) = T (R x {1}) of X, each of which inherits the standard order of R; the
triple (X, b(X), #(X)) is called the support of T

e bis an object whose length is the cardinality of b(X). Similarly, ¢ € Oy (x).
The triple (T';b,t) will also be denoted by T} or simply by T

Note that such a tangle is completely determined by b, t and the orthogonal projection of one of
its representatives on the blackboard plane together with the under and over-crossing datum as soon
as the chosen representative projection is regular. Again, (T';b,t) will often be denoted by (D;b,t)
where D is a regular projection of T'. Again, 1 will be used to denote p vertical parallel intervals.

Because of the condition on horizontal tangencies, the normal bundle of each component T'(Xy)
of T(X) admits a natural trivialization given by the horizontal imaginary direction, and therefore
one or two (up to boundary-fixing homotopy) other ones for which the vectors are always in the
blackboard plane (one if Xy is a circle, two otherwise). In other words, T(X = X x {0}) admits a
parallel that is another embedding T'(X x {1}) satisfying the conditions of the definition such that
T\x x 0,1} extends to an embedding of X x [0, 1] (satisfying the conditions for any X x {u}) such that,
for any x € X, T({z} x [0,1]) is contained in a plane parallel to the blackboard plane. The isotopy
class of T'(X x {0, 1}) is well-defined provided that we allow exchanges of Xy x {0} and X x {1} for
each component X, with non-empty boundary. In pictures, the two copies of T'(Xj) are parallel.

In particular, we have a well-defined operation of duplication of a set of connected components
T(Xo) of (T(X),b,t) which consists in replacing:

1. X by X(2 x Xo) = X UX, x {1},
2. T = Tix x{o} by its above extension on X x {0} U X x {1}
3. every letter - corresponding to a boundary point of Xy by the word (-+).

The obtained duplicated tangle will be denoted by T'(2 x Xj).

A tangle whose bottom and top objects are n.a. words is called a g-tangle. When Ty = (T; b1, 1)
and Ty = (T»; ba, t2) are g-tangles, we can build their tensor product:

T1 ®T2 = (T1 ®T2;b1b2,t1t2).

When the top of a tangle Th = (T1(X1);b,c) coincides with the bottom of a tangle To =
(T>(X3); ¢, t), then we can form the product tangle Th'To = (T1T»;b,t) by stacking To above T;.

6 An almost admissible isotopy between two admissible embeddings Tp and Ty is a C* map T : [0,1]x X — Cx [0, 1]
such that, for any u € [0,1], Ty = Tj{u}xx is an almost admissible embedding such that T, (0X) C R x {0,1}.

"Rescaling [0, 1] means composing T by the product of the identity of C by an increasing diffeomorphism which
maps [0,1] onto another compact interval of R.
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Then, X7 X, is defined as the support of 717>, and we have a natural product obtained by ”stacking
above” from A(X;) x A(X2) to A(X1X32). In other words, X; X is defined from the disjoint union
X1 ® X5 of Xj and X5 by identifying b(X5) and #(X;), and the product is the composition of the
natural maps:

A(Xl) X A(XQ) — A(Xl &® XQ) — A(XlXQ)

A component of a tangle is said to be regular if it has no extremum. A tangle is regular if all its
components are regular.

2.3 From the language of braids to the language of tangles.

A configuration path v : [0,1] — CP” \ A such that y(0) and (1) are in R” gives rise to a well-
determined regular tangle

T(v) = (T(7)(X);05(7(0)), ¢ (v(1)))

where the image of T'(7y) is the graph of 7, and, o4(v(0)) and o¢(y(1)) coincide with (0) and (1),
respectively, up to a permutation of the coordinates.

Conversely, any regular tangle 7' whose bottom and top objects are actual configurations, may
be written as T'(y) for some configuration path which is well-determined up to homotopy with fixed
boundary (and permutation of the strands). Thus, for such a tangle T'(y), we unambiguously set:

Z(T (7)) = Z(7).
Now, if (T'; b, t) is a regular tangle such that b is a 2-point collision and ¢ is an usual configuration,

then represent T'(X) as the image of a path « such that v(0) = b(+¢), for some very small €, and (1)
coincides with ¢ up to a permutation of the coordinates, and set

Z(T;b,t) = Z(By ™))

where, of course, b(+¢) is obtained form b by changing [..., (a;; (-)),...] into [..., (as:;-), (a; +€;-),.. ]
Proceed similarly when ¢ is a 2-point collision.

Thus, Z is well-defined for regular tangles whose bottom and top configurations are either actual
configurations or two-point collisions. Furthermore, Z is compatible with the product (and inverse) for
these tangles.

Example 2.6
Ny — O LEDN Log(e) (0,1-,1) Log(e)
2040 = ZMey o) = lim - exp(=7 =) 201, - ) ) exp(= =7 = Tas)
e—0
e>0

(See Remark 1.28.)

Side-exercise 2.7 Recall that " | & = %2. Compute

(o 1
Z(IE(’_(_ );) =1+ 2—(F23F12 —T2l23) + O(3)

4

where O(3) makes up for a sum of terms of degree > 3.

Examples 2.8

Z(1)) =1
za%)) =1y
2O N 1

Z( N( )) = exp(2F12)
1
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As another example, we prove a little lemma which will be useful later.
Lemma 2.9 Let v :[0,1] — CP~1\ A be a configuration path. Let Xy denote a strand of vy. Then
Z(T(7)(2%x Xo)) =m(2 x Xo)"Z(T'(7))

PRrROOF: Assume that the duplicated strand is the first one, whose copies are labeled by 1 and £2.
Then by definition,

Z(T(H)2 x X)) = lim exp(L‘;g(E)rm)Z (7)(2 x Xo)(+¢)) exp(—L(;g(E)Flg)

e—=0 v
e>0
Now, using Lemma 1.29 together with the fact that lim._,qe(Loge)™ = 0 allows us to replace

Z ((7)(2 x Xo)(+¢)) by 7(2 x X0)*Z(T'(y)) in the above expression. In order to conclude the proof,
observe that (47 implies that I';2 commutes with the image 7(2 x Xp)*. (It is also a consequence of
Lemma 2.16 which will be proved in Subsection 2.6). o

2.4 The theorem

Definition 2.10 An element of A(1) is said to be symmetric if it is unchanged by the involution of
A(1) induced by the flip of the interval. This involution reverses the order of the vertices (and reverses
their orientations (in even number!)). It is unknown whether there exist elements of .A(1) that are not
symmetric under this symmetry.

We can now state the main theorem which gives the general definition of the Kontsevich integral
Z for tangles.

Theorem 2.11 There is a unique extension of Z to tangles which satisfies the following properties:

Isotopy invariance: For any tangle T = (T'(X);b,t), Z(T) € A(X), Zo(T) = 1, and Z(T) only
depends on b, t, and the usual® isotopy class of T(2 x X).

Functoriality: For any two tangles Ty = (T1;b,c), To = (T; ¢, t) whose product is defined
Z(WTy) = Z(T1)Z(T»)
Monoidality: For any two g-tangles, Ty = (T1;b1,t1) and To = (Ts; b, t2)
Z(Ni @ Tz) = Z(Th) ® Z(T>)
Duplication: For any component T(Xy) of a tangle T = (T(X);b,t), such that either T(Xy) is
boundary-less or T'(Xo) runs from bottom to top,

Z(T(2x Xp)) =7(2 x Xo)"(Z(T))

Extremum: Z(U(")) is a symmetric element v of A(1) and:

In particular, Z provides an invariant of parallelized links, that are links each component of which
is equipped with a parallel (up to isotopy). Indeed, links can be represented by boundary-less tangles
(with top and bottom objects of length 0). The theorem will be proved in Section 4. Its proof will
only use the results of Subsection 2.6 which is completely independent of the rest of the notes. In the
other subsections of this section, we assume the theorem, and, of course, we will not use their results
in Section 4.

8The admissibility condition is dropped: here, a usual isotopy between two admissible embeddings Ty and T} is
a C>® map T : [0,1] x X — C x [0,1] such that, for any u € [0,1], Tu = Tj{u}xx is an embedding such that
T,(0X) C R x {0,1}.
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2.5 First computations of 7/ on tangles

Example 2.12 Let us compute the Drinfeld associator

Orz = Z(1;(()), ()

By Example 2.8 and by the Duplication property (D),

()
z(1(:

(_))) = 71'(2 X 2)*(1“) = lm

Similarly,
()

() —
2 y) =1y
Thus, by the Functoriality property,

Srez = Z(1())

whose expression has been defined in Example 2.6 and whose low degree terms are given in the exercise
immediately after. A complete expression of ® 7 in terms of generalized n-functions can be found in
[LM2].

Example 2.13 Let w be a n.a. word of length p. Let T} be a g-tangle. Let lx(TT”t) be the tangle

obtained from 1 by replacing the i*” strand of 1 by T (replacing in particular the i*" letter of the
bottom w by b and the i*" letter of the top w by t and removing unneeded parentheses if one of b and

t
t is empty). We will similarly denote the bottom word of 15(%) by w(%). Then, by the Monoidality
property, and by induction on p, we have that

T

EHE

) = ]-A(i—l) ®Z(T)® ]-A(p—i)

Thus, for example,

, . 1
AGIEEEE |i—1X|i+2 cprw(2 x i), w(2 x i) = emp(ir{i,i+1})

and .
AGIEEEE |i—1X|i+2 cprw(2 x i), w(2 x i) = emp(—ir{i,iﬂ})

for any n.a. word w of length p. (Note that any n.a. word which contains the two-letter word that
groups the i*" letter with the (i + 1)** one, as a subword, can be written as w(2 x i).)
As another example, let wq, ws and w3 be three n.a. words, then by the duplication property

Z(1; (wyw2)ws), (wi (waws))) = w(€(wr) x 1, l(wa) x 2,l(w3) x 3)* (Pxz)

where we use an obvious generalisation of the notation of Subsection 1.8. Let w be our n.a. word of
length p. Then

((w11l{2)w3) ). w( (w1 (11{2103)) )

Z(1;
(1R Z

= 1ai—1) @T(L(w1) x 1,L(w2) x 2,l(w3) x 3)*" (Prz) @ 1 4(p—s)

Before going any further in example computations, we will need to know a little more about
diagrams, namely a commutation principle.

2.6 Commutation principle in A

Let us first introduce a graphical notation. An edge with a free vertex drawn as a circle, and a set
of little hooks like (L ) elsewhere on a diagram, denotes the sum over the set of hooks of all
(classes of) diagrams obtained by attaching the free vertex to the attaching point of a hook, where
the neighborhood of the new vertex is the same as the hook neighborhood.
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With this notation, (4T) reads

while (AS) implies:

This allows us to prove the following commutation identities on classes of diagrams.
First commutation identity:

o =0 (2.14)

T

Second commutation identity:

=0 (2.15)

o,

T

In each of these identities, the sum over the hooks relates diagrams which are arbitrary but
identical inside the box and outside the represented parts, such all the outputs of the box (connections
between inside and outside) are represented and such that there are no boundary points of the support
X of the diagrams inside the box.

We prove the identities: by AS, we may add two hooks on each plain edge in the inside diagram,
one near each extremity of the plain edge, which show the left-hand side to someone located on the

corresponding vertex like —‘J—r‘— without changing the sum. Now, every vertex inside the box is

equipped with two hooks which turn left like _r‘J_ . For each chord inside the box, the contribution of
its two vertices vanishes by the above hook version of 4T. This proves the first identity, since the only

initial hooks which are not near a vertex can be grouped in pairs which vanish by AS ( /\ = 0).

Fand
In the second case, we further use that —r‘J— vanishes.
The first commutation identity applied to the case when the box contains nothing but an element
of A(1) shows how the choice of a connected component Xy of a one-manifold X and an orientation of
Xo provides a natural A(1)-module structure on A(X), that is given by the bilinear continuous map:

A1) x AX) —  AX)
(a,d) —  ad

where, if @ and d are (classes of) diagrams, then ad is obtained by inserting « somewhere in Xy so
that the orientation of Xy matches the orientation from bottom to top of the vertical interval. The
independence on the chosen insertion locus is a consequence of the first commutation identity (and of
AS).

Of course, if « is a symmetric element of 4(1), there is no need to specify the orientation of X,
in order to define ad.

With this module structure in mind, the extremum property of the theorem is better written as:

(-
Z()) = viy

Z((") = vln
()
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Similarly, note that . .
ea:p(§F12||)lm = ea:p(—il"n)lm

where T'1; € A(1) denotes the one-chord diagram on the vertical interval such that the local orienta-
tions at its two vertices give rise to the same orientation of the interval.

Note that the first commutation identity also implies that the algebra A(1) is commutative.

Let X be a compact one-manifold whose boundary is made of two points, and let X be the
quotient of X obtained by identifying these two boundary points. The second commutation identity
applied to the case when the box contains nothing but an element of A(X) deprived from a neighbor-
hood of 0X and half a dashed edge is exactly the relation of ”closing the circle” that should be put
on A(X) in order to build A(X) from A(X). Thus, since it is true in A(X), it shows that the natural
map from A(X) to A(X) is an isomorphism. In particular, A(1) is isomorphic to A(S?).

The first commutation identity applied to the case when the box contains nothing but an element
of A(r) can be redrawn as below, and stated as in the following lemma:

Lemma 2.16 An r-duplicated vertex always commutes with an element of A(r).

2.7 More examples and corollaries
Example 2.17 By the Monoidality property (M),
ZU Ay = 2 @ Z(1) = vy ® 14

Similarly,
AG ﬂ(.(..))) =1 ®vln

Now, by functoriality,

2(\)) = 20U 18k, Z(1 () = Vi Brslin

By isotopy invariance, this expression must be equal to Z(1) = 14. Thus, by the condition that the
degree 0 part of v is 1, we get the defining formula of v:

_1
v=(1u®rzln)"% € A1)
Lemma 2.18 Any g-tangle may be written as a product of elementary tangles of the form 13(%) (as in

Ezample 2.19) where T = Y|}, X}, Ny, U, (L5 (wywa)wa), (w1 (waws)) or (1 (wy (waws)), (wws)ws)).

The proof is easily reduced to the proof of the lemma for a g-tangle (1;a, b) which is left as an exercise.
o

By Examples 2.13 and 2.17, we know how to express Z as a function of the associator ®x » (of
Example 2.12) for all the elementary g-tangles that are mentioned in the above lemma. More precisely,
these examples and the lemma show that the statement of the theorem together with the values of

Z(XE;) and Z(1;((--)-), (-(--))) completely defines Z on g-tangles. (Of course, the consistency of the
definition will be a consequence of the theorem.)

Example 2.19 The Kontsevich integral of the trivial knot is
Z(0O) = Z(V)Z(N) = V1,

It has been recently computed by D. Bar-Natan, T. Le and D. Thurston (see D. Thurston’s lectures).
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Example 2.20 Let us now compute the Kontsevich integral of twisted extrema:

(1) 1
2R ) = 20X (D20 = eap(~ Lot
Thus, by commutation,
A

)
1
(Q(._)) = emp(il"n)ylm
Similarly,
1
Z(Q(“)) = exp(—g[‘n)ulm

() 1
25 ) = eap(;T s

N () 1
Z(é )=emp(—§[‘11)y1u

Thus, the Kontsevich integral varies during these twists. However, one can observe that if we
quotient A out by the relation 17" which identifies the diagrams which have an isolated chord, that is an
inserted I'11, to zero, then the Kontsevich integral becomes a usual isotopy invariant of unparallelized
tangles (since it is easy to observe that the above twists allow us to go from any parallelized tangle
to any other isotopic tangle with another parallelization). The quotient of A, (X) by (17) will be

denoted by A, (X), and the image of a diagram class d in this quotient will be denoted by d.

2.8 Universality of 7 among finite type invariants

Given an invariant I of oriented knots, valued in an abelian group, we extend it to an invariant of
knots with transverse double points® by making use of the following local formula:

I(X) =103K) = 1(X)

Such an invariant is said to be of finite type or of finite degree less or equal to n, if it maps all
the knots with (n+1) double points to zero. Let A<, (S') = &7, A;(S'). For a knot K, let Z<,(K)
denote the natural projection of Z(K) onto A<,(S'). In this section, we will prove the universality
of Z which can be stated as follows:

Theorem 2.21 (Kontsevich, 1992) If I is a complex-valued knot invariant of degree < n, then
there exists a linear map

¢: A<, (S") — C
such that I = ¢ o 7Sn-

To every oriented singular knot K : S — R? whose only singularities are n transverse double

points, we associate its diagram
D(K) € D,(S")

which is the n-chord diagram obtained by relating the two preimages of every double point by a chord

and giving the vertices the orientation induced by the local orientations of the crossing strands ——

The following lemma implies in particular that 7§n is a finite type invariant of degree less or
equal than n, so that the above theorem exactly describes the degree less or equal than n complex-
valued knot invariants.

Lemma 2.22 If K is a singular knot with n double points, then Z<,(K) = D(K).

9When we are dealing with other non-necessarily oriented 1-manifolds, we demand that, near every double point,
the two strands of the 1-manifold are equipped with a local orientation.
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PROOF: We can represent K as a product of singular tangles K = Ty 51715215 ... S, T, so that the T;
&)

are usual tangles and every S; is of the form S; = 1% (£=

) for a n.a. word w = w; (see Example 2.13
X7 ()

for the notation) with exactly one double point whose two strands point upward. Let S;" = 13(%)

7 ()

X

1

and S; = 1%( ). Then, by functoriality and by definition,

Z(K) = Z(To) (Z(SF) — Z(S7)) Z(T) ... Z(Taer) (Z(SH) — Z(S;)) Z(Ty)
where, since the T; are usual tangles Zy(T;) = 1, and according to Example 2.13,
Z<1(87) = Z<1(S;7) = T2

is exactly the one-chord diagram whose chord connects the two preimages of the double point in the
prescripted way. The conclusion is now easy. o

Lemma 2.23 FEvery chord diagram on S* is the diagram of a singular knot. Furthermore, two singular
knots which have the same diagram are related by a finite number of crossing changes (where a crossing
change is the modification which transforms )X into X ).

ProoOF: Though the first assertion is very easy, we prove it because its proof is the beginning of the
proof of the second assertion. Let d be an n-chord diagram on S'. Put 4n cutting points, numbered
from 1 to 4n along S', on the support S' of d, one near each extremity of the 2n intervals separated
by the vertices, so that 2¢ — 1 and 2¢ are on the same interval. Next embed the neighborhoods of the
n double points, bounded by the 4n cutting points, into n fixed disjoint 3-balls R? so that the cutting
points lie on the boundary of the closure C' of the complement of our n fixed balls.

Then, in order to construct our first representative K of d, it is enough to notice that we have
enough room to embed the remaining 2n intervals of S* (the [2i — 1,2i]) into C'. The projections of
these three steps are represented in the following example:

Let K be another representative of d. After an isotopy, we may assume that K intersects our
n balls like K° does. Then, since 7 (C) is trivial, there is a boundary-fixing homotopy in C that
maps the remaining 2n intervals for K to the remaining 2n intervals for K°. Such a homotopy may
be approximated by a finite sequence of (isotopies and) crossing changes, and we are done.

Minor changes in the proof show that the result remains true for knots without double points. ¢

Lemma 2.24 Let I be a degree less or equal than n complez-valued invariant. Let K be a singular
knot with n double points. Then I(K) only depends on D(K) mod (1T) and (4T). In other words, I
induces a map
I: A,(8") — C
D(K) = I(D(K))=I(K)

Proor: That I(K) only depends on D(K) is an immediate corollary of the preceeding lemma. Set
I(D(K)) = I(K). Thus, it remains to show that I maps the relations (4T) and (1T) to zero. To see
that (1T) is mapped to zero, it suffices to represent a diagram with an isolated chord by a diagram
with a loop like Q so that the two desingularizations are isotopic. For (4T), locally represent the
involved diagrams by embedding the three arcs of S* (which inherit their local orientations from the
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cyclic orders of the first diagram) so that the two arcs of the crossing of the fixed chord sit in the
blackboard plane and the other one points to us. Then

3 3

E R L e

>< X 2\3 1 2 3/1
=1 —TI +

= 1 3 XX - | K- XK - X

I
~

I(4T)

i

PROOF OF THEOREM 2.21: The proof of the theorem is now easy by induction on n. An invariant
of degree 0 is nothing but a constant map on the set of maps, according to Lemma 2.23. Now,
for I as in the statement of the theorem, the above lemma and Lemma 2.22 show the existence of
I:A,(S") — C such that I = I o Z, on singular knots with n double points. In particular, if we
extend I to I : A<,(S') — C so that it maps all diagrams with less than n chords to zero, then
I —To Z<, is an invariant of degree at most (n-1) and we easily conclude. o

Side-remark 2.25 Let (X,b(X),#(X)) be a tangle support. Let b € Oy(x) and let ¢ € Oyy(x). In all
this subsection, we can replace S! by X, and, knot by tangle (without parallelisation, in this remark)
from b to t with support X = (X, b(X),#(X)), simultaneously. Everything works exactly in the same
way in this setting.

We could also have given more algebraic statements. Namely, let V(X') denote the complex vector
space freely generated by the tangles from b to ¢ with support X. Let 0 denote the desingularisation
map which maps a singular tangle S, which can be represented as a product S = 7517152715 ... STy,

e8)
where the T; are usual tangles and the S; are of the form S; = 15(@), to the sum
d(S) = 3 (—1)E T O Tss VT sE AT, ST, € Y(X)
e:{1,2,...n}—{+,—}
(-9 \
where S = 1%(£3%2) and S; = 15(%) Let V,(X) denote the subspace of V(X) generated

i
by the images of the singular tangles from b to ¢t with support X with n double points under the

desingularisation map. Observe that:
Vi1 (X) CVp(X) C ... CWo(X) = V(X)

Thus, (Va(X))nen is a filtration of V(X). Tt is called the Vassiliev filtration (of the space of knots when
X = S'). What can be proved following the lines of that section is that Z,, induces an isomorphism

from V5+(1)(()2’) to An(X) (which furthermore sends the desingularisation of a singular tangle to the

diagram of the singular tangle). In other words, the graded space associated to the Vassiliev filtration
is isomorphic to A, (X), and is thus finite-dimensional at each degree.
With this notation, a complex-valued invariant of degree less or equal than n is an element of

the dual of VL)?X) Let 7,,(X) = Hom(%, C) = (%) be the space of these invariants.

Then Ifig)(())() is isomorphic to (%) = (./Tln(X))*.
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3 The proof of the theorem

3.1 Sketch of the proof

Let v € A(1) be defined in Example 2.17. We do not know yet that it is symmetric. Define an e-tangle
as a tangle where the number of extrema and their relative heights are fixed that is as an admissible
embedding up to admissible isotopies!®.

There are six steps in the proof.

1. Extend Z to all the oriented e-tangles whose bottom and top configurations are actual configu-
rations so that:

e Z(T(X)) is defined as follows for a tangle T'(X) which only has one extremum at height c.
If this extremum is a maximum, then let 7; : [0,¢] — CP*? denote the (natural up to a
permutation of the numbering of the strands) path whose graph is TN (C x [0,¢]). It is a
path from an actual configuration to a 2-point collision. Define:

Z(T)=Z(m)vlx Z(T N (C x [¢,1]) \ {maximum})

where v acts on the maximum of X according to the given orientation of X.
If this extremum is a minimum, then define similarly the path 75 : [¢, 1] — CP*2 as the
path going from a two-point collision to an actual configuration whose graph is TN(Cx|c, 1])
and define:

Z(T)=Z(T N (C x[0,¢]) \ {minimum})vlxZ(y2)

where v acts on the minimum of X according to the given orientation of X.
e 7 satisfies the functoriality property for these tangles.

e 7 is invariant under admissible isotopies and rescaling. Since, by the former properties of
Z, the two first bullets define Z unambiguously for a given embedding of a tangle up to
rescaling, the only thing which remains to be proved in this step is this invariance under
admissible isotopy which will occupy Subsection 3.2.

2. Define Z for all the tangles (1;a,b) where a and b are two objects of the same length p € N so
that:

e It coincides with our Z when a and b are actual RP-configurations or RP-two-point colli-
sions.

e It satisfies the duplication property for these tangles.
e It is functorial on these tangles: Z(1;a,b)Z(1;b,c) = Z(1;a,c).

and prove that these conditions define Z unambiguously on these tangles. In other words, prove
that these conditions define Z unambiguously on these tangles and are consistent, this will be
the goal of Subsection 3.3.

3. Define Z for a general e-tangle (T';b,t) where b is an object of length p and ¢ is an object of
length q by
Z(T;b,t) = Z(1;0, [p]) Z(T' [p], [a]) Z (15 [q], 1)

Thus, after the first two steps, the so-defined Z is a functorial invariant of e-tangles which takes
the value v at extrema and coincides with our Z when b and ¢ are actual RP-configurations or
RP-two-point collisions.

4. Prove that the so-defined Z is invariant under almost admissible isotopies and satisfies the
monoidality property. This will be done in Subsection 3.4.

10An admissible isotopy between two admissible embeddings Tp and T} is a C* map T : [0,1] x X — C x [0, 1]
such that, for any u € [0,1], T = Tj{,}x x is an admissible embedding such that 7%, (8X) C R x {0,1}. Note that the
number of extrema and the relative heights of the extrema are fixed during such an admissible isotopy.
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5. Prove that Z is invariant under any isotopy which does not change the parallelisation. Prove
that v is symmetric. This will be the goal of Subsection 3.5. Therefore the definition of Z does
not depend on the chosen orientation!!.

6. Prove that the so-defined Z satisfies the duplication property. This will be done in Subsection
3.6.

The unicity comes from the following easy facts. Any tangle is isotopic to a product of elementary
tangles of the form (1;a,b) or (13(%)) (as in Example 2.13) where T' = XE;, xg;, N(..y or U,
For the tangles of the latter form, the definition is imposed by the statement of the theorem as shown
in Examples 2.13 and 2.17. For the tangles Z(1;a,b), according to the second step, the definition is
also imposed by the statement of the theorem.

We will close this section by the computation of Z for iterated torus knots.

3.2 The admissible isotopy invariance of 7

Let T : [0,1] x X — C x [0, 1] be an isotopy between two admissible tangle embeddings that fixes
the boundary'2. Let py : C x [0,1] — [0, 1] denote the vertical projection. T is said to be horizontal
if, for any x € X, py o Tjp,1)x {2} 18 constant.

Note that the definition of Z(T(X)) for a given embedding only depends on the image of
T(X) and not on the parametrization. Furthermore, rescaling the vertical parameter does not change
Z(T(X)). Thus, up to rescaling [0, 1], any admissible isotopy may be considered as a horizontal one.

Lemma 3.1 7 is invariant under admissible isotopies.

PROOF: For a C* homotopy 7 : [0,1] x [a,b] — CP \ A we let (. ) be the path described by the
homotopy at height c: () (h) = v(h, c). With this notation, even if v _,) and v( ;) are not constant,
Yo is homotopic by a boundary-fixing homotopy to 7(...)717(.s), and hence

Z(v0) = Z(v(,a))Z() Z(v(.5y) "

Thus, in general the (boundary-fixing) isotopy invariance of the functorial Z is equivalent to the above
equation for not boundary-fixing isotopies. And the good behaviour of the above equation under the
vertical product allows us to restrict ourselves to the case of an admissible boundary-fixing horizontal
isotopy T of a tangle with only one extremum, for which we are about to prove Z(Ty) = Z(Tp).

Assume that this extremum is a maximum at height c.

Let u € [0,1]. Let 7% : [a,c] — (CPT2\ A) U C5™? denote a configuration path to a two-point
collision - occuring between the two last strands and corresponding to the maximum - whose graph is
the image of T,(X) N (C x [a,c]). Let 7% : [¢,b] — CP \ A denote a configuration path whose graph
is Ty (X) N (C % [e,b]) \ {maximum}.

Then, by definition

Z(T.) = Z(v)vixZ(v,)

where as in the introduction to the proof,

Z(n) = Z(v.0) 2 (1)

Now, note that if the isotopy moves neither the points at the critical height ¢ nor the tangent
vector at the maximum, then the invariance comes from the properties of the Kontsevich integral for
braids. Thus, we are allowed to modify our isotopy by this kind of isotopy, and, we suppose without
loss that, for some g > 0, the restriction of 72 to [c — €2, ] has the following form:

yh [e—ed,c] — CPt2
h

c— h? — (z1(u, ), z2(u,c),. .., 2p(u,¢), 2pr1(u,c) — %,zpﬂ(u,c)-l-E)

-
1Orient S!. Let K be an oriented knot, and let K denote the knot obtained from K by reversing the orientation. If

P
Z(K) € A(S!) were not symmetric, then Z(K) and Z(K) would still be different elements of A(S?').
12For any € 0X, Tjg,11x {z} is constant.
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where {z1(u, ), 22(u, ¢), ..., zp(u, c), zp+1(u, c)} is the configuration occuring at the maximum. Let
C:u€l0,1] = (z1(u,c), 22(u, ), .., 2p(u,c), zpt1(u, c))

be the path described by the homotopy at the maximum height. The above normalisation of the
isotopy shows that the tangle T'(7?) is equal to the product of the tangles T'(75) and T'(C)(2 x (p+1)).
Thus,

Z(m) = Z()Z (T(C)(2 % (p+ 1))
where, by Lemma 2.9, Z (T'(C)(2 x (p+1))) = 7(2x (p+1))*(Z(C)). Therefore, to conclude the proof
it suffices to prove that

m(2 % (p+1))(Z(C)1x = i(Z(Y( )

where i : A(p) — A(X) is induced by the inclusion. Observe that 7(2 x (p+1))*(Z(C))1x is nothing
but 7*(Z(C)) where 7 : X — ]_[fill I; identifies the two strands going up to the maximum to some
bottom part of I;1. Now, since 7 is homotopic to the map which sends the whole component of
the maximum to the bottom point of I,,11, 7* amounts to forget the contribution of diagrams which
have univalent vertices on the maximum component. (See the beginning of Subsection 1.8.) Thus,
™(Z(C)) =i(Z (76,0))) and we are done. Of course, the minimum case works exactly in the same way.

o

3.3 From an actual real configuration to a limit one

We fix an integer p.
We first define Z for all the tangles (1;a,b) where a and b are two word sequences of length p.
Let W = (wq,w2,...,wy) be a word sequence of length p. For i < k, W (i) denotes the word sequence

W (i) = (wy,wa, ..., WiWig1, Wig2, ..., Wk).

In particular, [k](7) = [(1;-),(2;-),..., (4 (), ..., (k — 1;-)], and there is a natural tangle from W to
W (i) obtained by duplicating the j** strand of (1; [k], [k](i)) (¢(w;)—1) times for any j € {1,2,...,k}.
Set
ZW = W(3E)) =n(l(w) x 1,0(w2) x 2,...,L(wy) x k)" Z(1; k], [k] (7))

and
ZW(@E) > W)=2Z(W — W(z’))*1

Define a path P of word sequences from a word sequence WP to another one W as a sequence
P=W’'sW!'sW2 5 ... oW W

where all the W/ are word sequences, and, for any j € {1,2,...,r}, there exists i such that either
Wi(i) = Wi=! or W/ = Wi=1(j). Then define:

Z(P)=Z(W° = WhHzW!' = W?)...ZW"t - W")

Lemma 3.2 Let W = (wq,wa,...,wy) be a word sequence of length p. Let i and j be two integers
such that 1 <i<j—2<k—3. Then W(i)(j — 1) = W(j)() and

ZW = W(i) > W(i)([§ - 1) =2ZW = W(j) = W(5)(@)

ProOOF: We may assume that W = [k], since the general case can be deduced from this particular
case by duplications. In this case, using Notation 1.23,

20095 WG) = tin 20 K0 ) e (-2, )
e—0 &

e>0
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and

2(090)  HOO) = w2 )" | tim 20050k = 11 - 1) () exp (-2, )
e—0 v

e>0

Now, the continuities of the product and of 7(2 x j)* and the commutation lemma allow us to
write:

Z(W - W(j) = W) (i) =
lim Zam%wwxﬁ»ﬂWﬁ%mnw—mw—mowa»mpQE%E%MH)mpﬁﬁ%“%mﬂ)

e 0 um 24w
e>0

where

(2% )" (Z(1; [k = 1), [k = 1) (+€))) = Z(L; [k]() (+e), (k) (+¢)) (i) (+€)) + O(e|Log™ ™" (¢)])-

(See the proofs of Lemmas 1.25 and 1.29.) Thus, and because of the horizontal isotopy invariance and
of the multiplicativity of Z for braids, we find that

Z(W — W(j) = W(j)(0) = @Oﬂuwmmummwwﬁﬂwfﬁmﬂ
&
e>0

Since this form is symmetric in ¢ and j, the lemma is proved. o

Let P=(W°%— ... > W" ! = W") be a path of word sequences. The inverse of P is the path
P=W"—...» W' — W°. By definition, we have that Z(P) = Z(P)~!. Every word sequence
W of length p is connected to [p] by a path (i.e. there exists P as above such that W% = [p] and
W7 =W). If a word sequence P as above is such that W% = W" = [p], we say that P is a loop based
at [p].

Lemma 3.3 Let P = W° = W' = W2 = ... = W™ ! = W" be a path of word sequences, then
Z(P) only depends on W° and WT.

PRrROOF: Because of the remarks before the lemma, it is sufficient to prove the lemma when P is a
loop based at [p], that is to prove that Z maps such a loop P to 1.

Define the complezity of a word sequence W = (wy,ws, ..., wy) of length p as the non-negative
integer ¢(W) = p— k so that the only word sequence of complexity 0 is [p]. Then define the complexity
of P as the sum c¢(P) = Y.;_,c(W?) so that the only path of complexity zero is the constant path
Py = ([p))-

Then it suffices to prove that for any non-trivial loop P based at [p], there exists a loop P’
based at [p] such that ¢(P") < ¢(P) and Z(P') = Z(P), in order to conclude by induction on ¢(P). In
such a loop P, there exists some word sequence W# of maximal complexity. By definition of a path,
Wi = Wi-l(j) = Witl(k) for some integers j and k. If j = k, then Wi~1 = Wi*t! we can remove
(— Wi — Witl) from the path without changing Z and we are done. Otherwise, there exists a word
sequence W such that ¢(W) = ¢(W?) — 2, and

Wil =W(k+1), Wit =W(j) if j <k, and,
Wil = W (k), Wl =W(j+1), ifj>k '
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Thus, we may decrease the complexity of P by replacing W¢ by W without changing Z(P), thanks
to Lemma 3.2. o

For any two word sequences W and W', choose a path P of word sequences from W to W', set
Z(L;W,W') = Z(P)

The above lemma guarantees that this definition is unambiguous.
Now, for any object a = [(a1;v1), (a2;v2), ..., (a;;v;)] of length p, set

Z(1;a,V) =7m(l(vr) x 1,€(v2) x 2,...,L(v;) x §)* (Z(1; (a1, as,-..),[j])
where V = (v1,vs,...,v;) is the word sequence corresponding to a, and
Z(1;V,a) = Z(1;a,V) !
Now, for any object b = [(b1;w1), (ba; wa), ..., (bx; wg)], set
Z(1;a,b) = Z(1;a,V)Z(1;V,W)Z(1; W, b)

where W = (wy,ws,...,wg) is the word sequence corresponding to b. Note that this final definition
of Z(1;a,b) was imposed by the announced properties.

By Lemma 2.9, this definition coincides with the one we knew for path from an actual configu-
ration to a two-point collision.

Now, the definition of Z is obviously mutiplicative, and behaves like we want with respect of
duplication, and we are done for the second step. According to Step 3, Z is well-defined for e-tangles.

3.4 Monoidality

Note the following property of the extension of Z for e-tangles.
Property 3.4 Let T'(Xy) be a regular component of an e-tangle T, then
Z(T(2 x Xo)) = m(2 x Xo)* (Z(T))
PRrROOF: Decompose T as a product of
e regular tangles whose bottom and top are actual configurations,
e tangles with only one extremum (not on Xj) whose bottom and top are actual configurations,
e tangles of the form (1;a,b).

For all of these, the property is true. For the third ones, it comes from the definition. For the
first ones, this is Lemma 2.9. The second case can be proved exactly like Lemma 2.9 using Lemma
1.30. Thus, the general property is true. o

Lemma 3.5 Assume that Ts is the trivial tangle with one vertical strand.
Let Th = (Th;a = ((a1;v1), (a2;v2), ..., (0 = aj;v5)),b = ((br;w1), (b2; w2), ..., (0 = by;wg))) be
a tangle so that the real coordinates of the limit configurations (the a; and the b;) are in | — 00, 0]. Let
n €]0, +oo[. Set na = ((nar;v1), (nas; va), ..., (0 = a;;v;)) and nTy = (T1;na,nb). Let nT1 Ty denote
the tangle obtained by putting T> as one vertical strand from 1 to 1 on the right-hand side of nT; .
Then
Z(T&Ts) — Z(nTr) = O(n|Log™™* (n))).

Since this property of T} is compatible with products and with (linear, degree-preserving) dupli-
cation of strands we can restrict ourselves to the case where T is either:

1. a regular tangle whose bottom and top are actual configurations (done by Lemma 1.21),
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2. a tangle with only one extremum whose bottom and top are actual configurations,

3. a tangle of the form (1;a,b) where one of a and b is a two-point collision, and the other one is
an actual configuration.

Since the second case may be seen as a particular case of the third one, we may only deal with
the third one where the coefficients are easy to analyze. o
Applying this lemma when T} is a g-tangle (for which nT; = Ty and Z(nT\®Ts) = Z(T) @ Tv),
for any n) yields:
ZMh ®|)=Z(Th)
Thus, by the above duplication property (3.4), for any n.a. word w,

Z(Ty @ (L;w,w)) = Z(T1) @ Ly(w)

A symmetry of center 1/2 of the proof or of the result yields: for any n.a. word w’, and for any g-tangle
T27
Z((Lw',w'") @ Ty) = 1y @ Z(Th)

Thus, if Ty = (T1;b1,t1) and Ty = (T»;ba,t2) are two g-tangles such that 77 ® T» has at most
one extremum (so that T} ® T» is defined as an e-tangle), we have:

Z(M @ T) =Z(T1 @ (1;b2,b2)) Z((1;t1,11) @ T)

= (Z(Th) @ Ly)) (Leey) ® Z(T2)) = Z(Th) @ Z(T>)

Now, for any two e-q-tangles, T} = (T1;b1,t1) and Ty = (Ty; b2, t2), we have several'® e-tangles
T, which represent the tangle T; ® T». To each of them, we associate a product of elementary tensor
products as above, and the good behaviour of the above formula under product tells us that for any
chosen e-representative T, of T ® Ts, we have

2(T,) = Z(Th) ® Z(T>)

In particular, we may use this independence property to prove that me may exchange the height of
two extrema without changing Z: using the functoriality and the invariance under admissible isotopy,
we may assume that the two extrema to be exchanged are in the two parts of a tensor product of two
g-tangles and are the only extrema of the tensor product. We have just proved:

Lemma 3.6 Z is invariant under almost admissible isotopies.

S
Now, Z is an invariant of tangles, the tensor product of tangles makes sense, and the monoidality

property is proved in its full generality.

3.5 The general isotopy invariance of 7

We know that we have a monoidal invariant Z of oriented tangles.

The replacement of a trivial ascending strand 1 by an ascending snake A\ with two extrema
from right to left is called an ascending snake move. The replacement of a trivial descending strand |
by a descending snake ¢\J from right to left is called an descending snake move.

Lemma 3.7 Z is invariant under ascending and descending snake moves.

L3corresponding to the shuffle permutations of the extrema,
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By monoidality, and by definition of v (2.17), Z is invariant under an ascending snake move. Start
with a maximum N = M., oriented from right to left, and perform an ascending snake move, this
does not change Z. Now, exchange the heights of the two extrema, this does not change Z either and
the new tangle is obtained from N by a descending snake move. Therefore

v = Z(N) = Z(descending snake)Z(N)

and since v is inversible, Z(descending snake) = 1 and we are done. o

Lemma 3.8 Let To(X) and T (X) denote the images of two isotopic admissible embeddings, then Ty
is obtained from Ty by a finite sequence of the following operations:

1. almost admissible isotopies,
2. ascending and descending snake moves,
3. twists of the extrema as in Example 2.20.

SKETCH OF PROOF: The reader may read [Hi] to complete this proof. The embeddings T of a compact
one-manifold X in C x [0, 1] which have only non-degenerate critical points at different heights form a
dense open subset in the set of embeddings (with fixed boundary) equipped with a suitable topology
(CZ°). Here, a critical point is a point & such that (py oT')'(z) = 0 where py is the vertical projection,
and it is non-degenerate when (py oT)"(x) # 0. In other words, this property of embeddings is generic
(density) and stable under small deformations (openness).

The C* isotopies from I x X to C x [0,1] whose restrictions to {u} x X satisfy the above
conditions except for a finite number of u where one of the accidents ”two critical points at the same
height” or ”one degenerate critical point at which (py o T')"'(z) # 0 does not vanish” occur also form
a dense open subset of the set of C* isotopies from I x X to C x [0,1] equipped with a suitable
topology (C°).

We may see these isotopies at the neighborhoods of the isotopy times u of the accidents as
compositions of isotopies without accidents and isotopies where the modifications occur only near
the pieces which constitute the accident. Thus, when it cannot be trivially removed, the first acident
is just an exchange of the heights of two extrema that may be supposed real, and, when it cannot
be trivially removed, the second accident may be transformed into an ascending snake move or a
descending one. Now, we are left with isotopies without accident where the only bad thing is that the
horizontal tangent vectors are not necessarily real. Nevertheless, when these vectors are real at the
beginning and at the end of the isotopy, it is not hard to compose this kind of isotopy by twists of
the extrema in order to see them as compositions of admissible isotopies modulo rescaling and twists
of the extrema. o

Lemma 3.9 Z is an isotopy invariant of unframed tangles.

ProOF: We already know that Z itself is invariant under the two first moves. The invariance of Z
under the third one come from the computations of Example 2.20 which are now allowed for our Z. ¢

Definition 3.10 Let K; and K5 be two oriented disjoint components of a tangle T'. Then the linking
number 1k(Ky,K>) of K; and K5 is equal to half the sum of the signs (+1 or —1) of the crossings
involving both K; and K in a regular projection of the tangle K3 U K5, where the sign of the crossing
X is +1 and the sign of x is —1. That this sum is independent of the projection can be proved
from a Reidemeister-type theorem. It can also be deduced from the following exercise.

Exercise 3.11 Let T = T'(X) be an oriented g-tangle. Assume X = X [ X». Let D, be the complex
vector space freely generated by one-chord diagrams such that the local orientations at the vertices
match the orientations of the tangles. Let A, denote the quotient of D; by the relations which identify
the diagrams whose two vertices are either on X; or on X5 to zero and which identify all the other
diagrams to some di». Let A (T) denote the projection of Z,(T) in Ai. Show that Z; (K1 UK») =
lk(Kl,Kg)dlg.

(Hint: See Lemma 2.18 and note that the degree one part of the associator is zero.)
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Side-remark 3.12 The author usually prefers the following definition for the linking number: For
two disjoint knots K; and Ks, the linking number of K; and K> is equal to the algebraic intersection
number of K; and an oriented compact surface embedded in R? bounded by K.

The framing of a component T'(Xj) is equal to the linking number of the two copies of T'(Xp) in
T (2 x Xp). We denote it by Ik(T(Xo),T(Xo)). By the above exercise, it only depends on the isotopy
class of T'(2 x Xy) which only depends on the parallelized isotopy class of T'.

Define Z(T(X)) from Z(T(X)) by multiplying Z(T(X)) by exp(—%l"n) acting on
the component X; for each component X; of X.

Then as in Lemma 3.9, Z (T') is a usual unparallelized invariant of oriented tangles. This proves
that Z is an invariant of oriented framed tangles.

Lemma 3.13 v is symmetric.

PROOF: Since the framed oriented round circle is isotopic to itself with its orientation reversed Z(Q) =
v? is symmetric. o

Now, the proof of the isotopy invariance of Z is complete.

3.6 Duplication

By Property 3.4, we know that Z behaves like we want under duplication of regular components.
Simply denote N(..y(2 x N) by (2 x N(..,) and set

A=2Z(2xnNy)

Use similar notation to set
B =Z(2x U")

We do not know whether A = m(2 x N)*(Z(N(..))). We consider A and B as elements of .A(2). Note
that they are symmetric under the simultaneous symmetry of the two vertical intervals (because the
invariance of the Kontsevich integral under a homothety of ratio (—1) is preserved in the regularisa-
tions).

Let T'(Xp) be a component of a tangle T'(X). We decompose T' as a product of tangles so that
the extrema of T'(Xy) are in factors of the form 15(%) or 13(%) By the monoidality property
(as in Example 2.13), the contribution of such a tangle to Z(T'(2 x Xy)) is an insertion of A, if we
have a maximum, and B otherwise, on the two strands of the involved duplicated extremum. The
contribution of the same tangle to 7(2 x Xo)*(Z(T)) is the insertion of 7(2 x 1)*(v) at the same place.

Lemma 3.14 Let T(X,) be a component of a tangle T(X). Assume that either T'(Xy) is a circle or
T(Xo) is an interval running from bottom to top. Let x be the bottom point of T(Xo) if Xo is an
interval, and a regular point of T(Xo) otherwise. Orient Xg so that it runs from bottom to top near
*. Let M be the number of mazima of Xo. Then

Z(T(2 x Xo)) = (AB)M7(2 x Xo)*(v=*M)m(2 x Xo)*(Z(T))
where v acts on Xo, and (AB)M acts on 2 x Xy at the duplicated *.

Remark 3.15 About the case of duplication of circular components. The action of (AB)M € A(2)
is an insertion of (AB)M € A(2) at the duplicated %. In fact, this duplicated * does not show up in
diagrams of A(Xy) when Xj is a circle. So, in order to give sense to that sentence, we cut Xy at x to
transform it into an interval Iy whose boundary is made of two copies of x, and we call X (Ip/Xy) the
new support. Now, when % is at the intersection of two tangles, then Z(T \ x) € A(X (Ip/Xo)) has a
natural definition (which depends on our product decomposition), and in this case, the result should
be written as

Z(T(2 x Xp)) =i (AB)YM7(2 x Xo)*(v*M)m(2 x Ip)*(Z(T \ {x})))
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where 7 is the natural map from A(X (Iy/X0)(2 x Ip)) to A(X(2 x Xp)). (Though Z(T \ {*}) is not
canonical, the RHS of the above equation is well-defined. See the proof below.)

Note that when X has no boundary, by Subsection 2.6, the natural map from A(X (Ip/Xo)) to
A(X) is an isomorphism. Thus, in this case, Z(T' \ ) is nothing but the preimage of Z(T') under this
isomorphism and is well-defined.

PROOF OF LEMMA 3.14: (v 2M)Z(T) is the Kontsevich integral of T where the contribution of
the elementary tangles containing the extrema is replaced by 1. By Proposition 3.4, its duplication
7(2 x Xo)*((v™2M)Z(T)) contains the contribution of all the other tangles to Z(T(2 x X;)). Thus,
Z(T(2 x X)) is obtained by inserting the A and B corresponding to the extrema in this duplicated
element between duplicated parts. Since, by Lemma 2.16, A and B commute with duplicated vertices,
and since maxima and minima occur alternatively, starting from * with a maximum, we get the
announced lemma. o

Apply this lemma when T'(X,) = T'(X) is a snake. Then

Z(T(2 x X)) = (AB)7(2 x Xo)*(v"2)m(2 x Xo)*(Z(T))

where T and T'(2 x Xj) are isotopic (by a parallelisation-preserving isotopy) to the trivial tangles 1:

and 1(";

()7 respectively. Thus, the above equation implies that

(AB)m(2 x Xo)* (v 2) =1 € A(2)

Now, the above lemma implies that the duplication property is true in its full generality, and the
theorem is proved.
Also note that we have the more specific result for duplication of link components:

Lemma 3.16 Let T(X,) be a component of a link T'(X). Let * be a regular point of T(X,). Use the
notation of Remark 3.15 above. Then

Z(T(2%x Xp)) =iom(2 x Ip)"(Z(T \ {*}))
where i is the natural map from A(X (Io/Xo)(2 % Ip)) to A(X (2 x X))

3.7 The Kontsevich integral of iterated torus knots

We see the circle S' as the boundary of the complex disk D? = {z € C | |z] < 1}. Let K be a
component of a framed link L. With this framed knot K, we associate an embedding

b :D>x S —R?

whose image intersects L along ® ({0} x S') = K and such that ®x ({1} x S!) is the parallel of K
given by the framing. Let U denote the unknot with the O-framing, then ®¢ is nothing but a standard
embedding of the solid torus.

Let p and ¢ be two coprime integers. Let

®,,: S — S'xg!

z = (29,2P)
Then the framed torus knot K, , is the image of ¢rr0 ¢, , equipped with its parallel which is embedded
on the torus (boundary of the solid torus). Let L(K, ,/K) denote the link obtained from L by replacing

K by ¢ o ¢, 4(S") which is equipped with its parallel lying on ¢ (S' x S1).
This section is devoted to proving the following propositions:
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Proposition 3.17 Let i : A(p) — A(S") be the map induced by gluing the top of the ith interval to
the bottom of the (i+1)t" interval for any integer i mod p. Recall that T'1y is the one-chord diagram on
the vertical interval such that the local orientations at its two vertices give rise to the same orientation
of the interval. Then

Z(Kpq) =iom(px 1)* (;ﬂ exp (%Fn))

Proposition 3.18 Let x be a point of K. See the underlying abstract circle Xy corresponding to K
as an interval Iy whose two endpoints are identified with x. Then

2D/ 50) =i (0% 0 exp (00 ) mlp x 1) (22 (+1) )

where i : A(L(Io/Xo)(p % In)) — A(L) is the extension of the map i of the statement of the previous
proposition by the identity on the other components of L.

PRrROOF: Proposition 3.17 is clearly a corollary of Proposition 3.18, so we prove Proposition 3.18. Write
L as a product of 2 g-tangles
L=TT,

so that % is a letter of the top word W of T;. By iterating Lemma 3.16, we know that if we duplicate the
component K, cut at %, (p-1) times, with respect to a length p word w, then the resulting Kontsevich
integral is obtained by duplication. This can be written as

Z((L\ {xD(w x Io)) = 7(p x 1o)"(Z(L \ {x}))-
Now, we construct a tangle T}, , from w to w so that
L(Ky./K) = Tylw x (I AT () Ty 0 x (I 1 T3)
Let

Yoot 10,1] — CP\A
h = (z1(h), z2(h), ..., zp(h))

be the CP-configuration path defined by

qh

k
zi(h) = exp( 2im)

Let v, : [0,1] — CP \ A be a CP-configuration path from v,(0) = (1,2,...,p) = [p] to (1) =
Yp,¢(0) and let oy, 4(7,) be the path obtained by permuting the strands of 7, in such a way that

p,a(7p)(0) = Yp,g(1). Thus, 7,75,40p,¢(7,) represents a tangle from [p] to [p].
Now, it is easy to see that the tangle

Tp,q = 1%]T(7p7p,q‘7p,q(7p))1fz]

works, up to parallelisation. To obtain a tangle 7T, , with the right parallelisation, first observe that
the difference between the parallelisations of T}, , and T}, , does not depend on K. Then, observe that
the framing of K, , is pg while the framing of the knot obtained by inserting T}, , on a duplication of
the unknot with zero framing is (p — 1)g. So Z(T},) is obtained from Z(T, ,) by letting exp(2I1)
act on one strand of Z(T},,). Now,

Z(Tp,q) = Z(lg])z(’yp)z(%},q)z(op,q(’Vp))ilz( ﬁ))])

and by monoidality, Z(L(K, ,/K)) is obtained from Z((L \ {*})(w x Iy)) by letting Z (T}, ,) act on
w x Iy at w x *, and then by letting exp(4T'11) act on the torus component.

Let us now describe the action of Z(T), ;) on wx Iy. We will let the RHS part Z(v, ) Z(0p.4 ('yp))*lZ(lfz”)])
of Z(T,,) act on the bottom part of w x Iy, and the LHS part Z(1£€])Z(7,,) act on the top part of
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w X Ip. Thus, since Z((L\ {*})(w x Ip)) is a duplicated element, the LHS part commutes along w x Iy,
and therefore cancels the inverse action of Z(o, 4(7,)) 12 (lfz”)]). The only remaining action is the
action of Z(,,,) where, as in Example 1.4,

q
Z(Vpq) =exp | = > Lij
{i,7}C{1,2,...,p}

and
p

Y Ty grex 10 - 53T

{i,7}C{L,2,...p} i=1

Z(Yp.q) = 7(p x 1)* <exp <2iprn>> ilf[lexp (;—gr)

Now, note that the contribution of the big product to the Kontsevich integral of the torus knot
makes up for the framing correction. Also note that since we have a duplicated element on the copies
of Iy, these copies play a symmetric role, and the rebuilding of S from these copies can be made as
in the statement in any case. o

Thus,

Now, if Ly, 1q denotes the torus link obtained from K, , by duplicating (k— 1) times the framed
knot K, 4, then by the iterated duplication property, we have:

Z(Lip,kq) = m(k % Sl)*(Z(KP,q))-

Thus, as soon as we know the Kontsevich integral of the unknot, we will know the Kontsevich
integral of all iterated torus links by the above proposition.
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