
Homotopy Type Theory October 19, 2017

The groupoid model of type theory
Ethan Lewis, Max Bohnet

1 The Logical Framework

Before we can discuss the groupoid model, it is important that we take a cursory glance
at the logical framework in which our type theory is formalized. In this framework,
there are three ways to form types:

Γ ` Set : Type
Γ ` A : Set

Γ ` El(A) : Type
Γ ` A : Type Γ, a : A ` B : Type

(a : A)B : Type

We will often write a : A as an abbreviation for a : El(A), and A→ B as an abbreviation
for (a : A)B if a does not occur in B. One can think of Set as a type of types.

Instead of giving formation, introduction, elimination, and computation rules, we define
sets by giving the types of their associated operations. For example, the types of the
identity set operations are as follows:

Id : (A : Set)A→ A→ Set
refl : (A : Set)(a : A)Id(A, a, a)

J : (A : Set)(C : (a1, a2 : A)Id(A, a1, a2)→ Set)
(
(a : A)C(a, a, refl(A, a))

)
→ (a1, a2 : A)

(
s : Id(A, a1, a2)

)
C(a1, a2, s)

J
(

A, C, d, a, a, refl(A, a)
)
= d(a) : C

(
a, a, refl(A, a)

)
Note that there is a natural correspondence between the types of these terms and the
typical formation, introduction, elimination, and computation rules for the identity
type.

2 The Groupoid Model

The primary purpose of the groupoid model is to show that identity proofs need not be
unique. Formally speaking, its purpose is to show that the type UIP (defined below) is
empty.

Definition 1. Uniqueness of identity proofs (UIP) is the claim that for every type A and
every a1, a2 : A, if s1, s2 : a1 = a2, then s1 = s2. In other words, UIP is the following type:

(A : Set)(a1, a2 : A)
(
s1, s2 : Id(a1, a2)

)
Id
(
Id(A, a1, a2), s1, s2

)
With this in mind, we turn our attention to the groupoid model. The model is a category
with families. Recall the definition of a category with families:

1

Homotopy Type Theory October 19, 2017

Definition 2. A category with families consists of the following data:

1. A category C of contexts and substitutions with terminal object [] corresponding to
the empty context.

2. A collection-valued functor Ty : Cop → Set associating with each context Γ the
collection of types depending on it. If f : ∆→ Γ and A ∈ Ty(Γ), one writes A{ f }
for Ty(f)(A). The type A{ f } corresponds to the substitution of f into A.

3. For every Γ ∈ C and A ∈ Ty(Γ), a collection of terms Tm(Γ, A), together with a
substitution function Tm(f , A) : Tm(Γ, A)→ Tm(∆, A{ f }) functorial in f : ∆→
Γ in the obvious sense.

4. For every A ∈ Ty(Γ), a context extension Γ.A, which has the property that the hom-
set C(∆, Γ.A) and {(f , M) | f : ∆ → Γ and M ∈ Tm(∆, A{ f })} are isomorphic
naturally in ∆.

5. Operations corresponding to the desired type, set, and term formers.

Our particular model is as follows:

Definition 3. The groupoid model consists of the following data:

1. The (large) category GPD of groupoids. (A groupoid is a category where every
morphism is an isomorphism. We will also be interested in the category Gpd
whose objects are the small groupoids, and whose arrows are the isomorphisms
between these small groupoids.)

2. The functor Ty : GPDop → Set, where Ty(Γ) is the collection of families of
groupoids over Γ, and Ty(f)(A) = A ◦ f . (A family of groupoids over Γ is a
functor A : Γ→ GPD. We will also be interested in the functor Se : Gpdop → Set,
where Se(Γ) is the collection of small families of groupoids over Γ [i.e. functors
A : Γ→ Gpd], and Se(f)(A) = A ◦ f .)

3. For every Γ ∈ GPD and A ∈ Ty(Γ), a collection Tm(Γ, A) of dependent objects of
A together with the substitution function Tm(f , A) : Tm(Γ, A) → Tm(∆, A{ f })
given by Tm(f , A)(a) = a ◦ f . (A dependent object of A ∈ Ty(Γ) consists of the
following data:

a) An A(γ)-object M(γ) for each γ ∈ Γ.

b) For every morphism p : γ → γ′, an A(γ′)-morphism M(p) : p · M(γ) →
M(γ′) [recall that p · _ : A(γ) → A(γ′) is the functor given by A(p)] such
that M(idγ) = idM(γ) and M(p′ ◦ p) = M(p′) ◦

(
p′ ·M(p)

)
.)

4. For every A ∈ Ty(Γ), the context extension Γ.A, where the objects of Γ.A are
pairs (γ, a) such that γ ∈ Γ and a ∈ A(γ), and a morphism (γ, a) → (γ′, a′) is a
pair (p, q), where p ∈ Γ(γ, γ′) and q ∈ A(γ′)(p · a, a′). The identity on (γ, a) is
(idγ, ida), composition is given by (p′, q′) ◦ (p, q) =

(
p′ ◦ p, q′ ◦ (p′ · q)

)
, and the

inverse of (p, q) is (p−1, p−1 · q−1).

2

Homotopy Type Theory October 19, 2017

5. Operations corresponding to the desired type, set, and term formers. (We will only
discuss some of these in detail.)

3 Interpreting Identity Sets

To better understand the groupoid model and why it is a countermodel of UIP, we will
give interpretations of the identity set operations. Since identity sets will be interpreted
as discrete groupoids, we must first give the definition of a discrete groupoid:

Definition 4. For a set X, the discrete groupoid4(X) has as objects the elements of x
and its only morphisms are the identities. Instead of writing idx for the identity on x, we
will write ?. Note that ? : x → y if and only if x = y.

Now we can provide the desired interpretations:

3.1 Id

By currying (this will be explained in more detail later on), it suffices to define a small
family Id over the groupoid [A : Set, a1, a2 : A]. The objects of this groupoid are triples
(A, a1, a2), where A is a small groupoid and a1, a2 ∈ A. A morphism (A, a1, a2) →
(A′, a′1, a′2) is a triple (p, q1, q2), where p ∈ Gpd(A, A′) and qi ∈ A′(p(ai), a′i). We define
the family Id as follows:

Id(A, a1, a2) = 4
(

A(a1, a2)
)

Id(p, q1, q2)(s) = q2 ◦ p(s) ◦ q−1
1

One can easily verify that Id is a small family.

3.2 Refl

Let Iddiag be given by

Iddiag(A, a) = Id(A, a, a)

Iddiag(p, q) = Id(p, q, q)

By currying, it suffices to define a dependent object refl of Iddiag over the groupoid
[A : Set, a : A]. The objects of the groupoid [A : Set, a : A] are pairs (A, a), where
A is a small groupoid and a ∈ A. A morphism (A, a) → (A′, a′) is a pair (p, q),
where p ∈ Gpd(A, A′) and q ∈ A′(p(a), a′). To define refl, let the object part be
given by refl(A, a) = ida. For the morphism part, recall that the morphisms in a
discrete groupoid are ? : x → x for every x in the groupoid and that ? : x →

3

Homotopy Type Theory October 19, 2017

y if and only if x = y. Since Iddiag(A′, a′) is the discrete groupoid 4
(

A(a′, a′)
)
, it

must be that refl(p, q) = ? : (p, q) · refl(A, a)→ refl(A′, a′). Such a morphism exists if
(p, q) · refl(A, a) = refl(A′, a′), which is indeed the case:

(p, q) · refl(A, a) = q ◦ p
(
refl(A, a)

)
◦ q−1

= q ◦ p(ida) ◦ q−1

= q ◦ idp(a) ◦ q−1

= q ◦ q−1

= ida′

= refl(A′, a′)

One can easily verify the remaining morphism requirements on refl.

3.3 J

By currying, it suffices to define a dependent object J of C over the groupoid [Γ, a1, a2 :
A, s : Id(A, a1, a2)], where

Γ =
[
A : Set, C :

(
a1, a2 : A, s : Id(A, a1, a2)

)
Set, d : (a : A)C

(
a, a, refl(A, a)

)]
To be explicit, the groupoid [Γ, a1, a2 : A, s : Id(A, a1, a2)] has as objects tuples (γ, a1, a2, s),
where γ is a small groupoid, a1, a2 ∈ A(γ), and s ∈ Id(A(γ), a1, a2). A morphism
(γ, a1, a2, s)→ (γ′, a′1, a′2, s′) is a tuple (p, q1, q2, ?), where p ∈ Gpd(γ, γ′), qi ∈ A(γ′)(p ·
ai, a′i), and ? ∈ Id(A(γ′), a′1, a′2)

(
(p, q1, q2) · s, s′

)
, and composition of morphisms is given

by

(p′, q′1, q′2, ?) ◦ (p, q1, q2, ?) = (p′ ◦ p, q′1 ◦ (p′ · q1), q′2 ◦ (p′ · q2), ?)

Note that we can obtain C and a small family A ∈ Se(Γ) through projection on
[Γ, a1, a2 : A, s : Id(A, a1, a2)]. Similarly, we can also obtain a dependent object d of Cdiag
over the groupoid [Γ, a : A], where

Cdiag(γ, a) = C
(
γ, a, a, refl(A(γ), a)

)
Cdiag(p, q) = C(p, q, q, ?)

To define the object part of J, let u = (γ, a1, a2, s) be an object of [Γ, a1, a2 : A, s :
Id(A, a1, a2)], and define f (u) = (idγ, ida1 , s, ?), where ? : s → s. Note that f (u) :(
γ, a1, a1, refl(A(γ), a1)

)
→ (γ, a1, a2, s) because

(idγ, ida1 , s) · refl(A(γ), a1) = s ◦ A(idγ)
(
refl(A(γ), a1)

)
◦ id−1

a1

= s ◦ idA(γ)(ida1) ◦ ida1

= s

4

Homotopy Type Theory October 19, 2017

Therefore, since d(γ, a1) ∈ C
(
γ, a1, a1, refl(A(γ), a1)

)
, we can define J(u) = f (u) ·

d(γ, a1) ∈ C(γ, a1, a2, s).

For the morphism part, let u = (γ, a1, a2, s) and u′ = (γ′, a′1, a′2, s′) be objects of [Γ, a1, a2 :
A, Id(A, a1, a2)], and let h = (p, q1, q2, ?) : u→ u′. Define J(h) = f (u′) · d(p, q1). I claim
that J(h) : h · J(u)→ J(u′) in C(u′). To see why, observe that (p, q1) : (γ, a1)→ (γ′, a′1).
Since d is a dependent object of Cdiag, we have that d(p, q1) : (p, q1) · d(γ, a1)→ d(γ′, a′1),
so it follows from the definition of Cdiag that d(p, q1) : (p, q1, q1, ?) · d(γ, a1)→ d(γ′, a′1).
Thus,

f (u′) · d(p, q1) : f (u′) ·
(
(p, q1, q1, ?) · d(γ, a1)

)
→ f (u′) · d(γ′, a′1)

J(h) :
(

f (u′) ◦ (p, q1, q1, ?)
)
· d(γ, a1)→ J(u′)

Now we want to show that f (u′) ◦ (p, q1, q1, ?) = h ◦ f (u) because then(
f (u′) ◦ (p, q1, q1, ?)

)
· d(γ, a1) =

(
h ◦ f (u)

)
· d(γ, a1)

= h ·
(

f (u) · d(γ, a1)
)

= h · J(u)

which implies that J(h) : h · J(u) → J(u′). But before showing f (u′) ◦ (p, q1, q1, ?) =
h ◦ f (u), recall that (p, q1, q2, ?) : u → u′, so ? : q2 ◦ (p · s) ◦ q−1

1 → s′. Therefore,
q2 ◦ (p · s) ◦ q−1

1 = s′, so q2 ◦ (p · s) = s′ ◦ q1. Using this fact, we can now show that
f (u′) ◦ (p, q1, q1, ?) = h ◦ f (u):

f (u′) ◦ (p, q1, q1, ?) = (idγ′ , ida′1
, s′, ?) ◦ (p, q1, q1, ?)

= (p, q1, s′ ◦ q1, ?)
= (p, q1, q2 ◦ (p · s), ?)
= (p, q1, q2, ?) ◦ (idγ, ida1 , s, ?)
= h ◦ f (u)

Thus, J(h) : h · J(u) → J(u′). Demonstrating that J satisfies the remaining morphism
requirements is tedious but straightforward.

3.4 J = d

It follows from our definition of J that the desired equality between J and d holds:

J
(
γ, a, a, refl(A(γ), a)

)
= f

(
γ, a, a, refl(A(γ), a)

)
· d(γ, a)

= (idγ, ida, ida, ?) · d(γ, a)
= d(γ, a)

J(p, q, q, ?) = f
(
γ′, a′, a′, refl(A(γ′), a′)

)
· d(p, q)

= (idγ′ , ida′ , ida′ , ?) · d(p, q)
= d(p, q)

5

Homotopy Type Theory October 19, 2017

4 UIP Revisited

Now that we have the interpretation of identity sets, it becomes clear why the groupoid
model is a countermodel of UIP:

Theorem 1. The type UIP is empty.

Proof. Assume to the contrary that UIP is nonempty. Then there exists u ∈ Tm(UIP).
Let A be the group Z2 viewed as a one-object groupoid. More specifically, A has one
object ? and distinct morphisms id? and p such that p ◦ p = id?. Since u ∈ Tm(UIP), it
follows that u(A, ?, ?, p, id?) ∈ Id

(
Id(A, ?, ?), p, id?

)
, but Id

(
Id(A, ?, ?), p, id?

)
is empty

because p 6= id?. Hence, UIP is empty. a

5 ∏-types

For this section, let A ∈ Ty(Γ), B ∈ Ty(Γ.A). First we define groupoid structure on
Tm(A). The leading idea here is that terms of a type over Γ correspond 1− 1 to sections
of the canonical projection pA : Γ.A→ Γ — which in the groupoid model are functors
– so we can define a groupoid of terms in terms of a category of functors and natural
isomorphisms.

Definition 5 (Groupoid of terms). The category Tm(A) is then defined as follows:

Objects Tm(A)

Morphisms Let M ∈ Tm(A). Define a functor M : Γ→ Γ.A by letting

M(γ) = (γ, M(γ)) M(p) = (p, M(p))

A morphism τ : M → N is a family of morphism τγ : M(γ) → N(γ) s.t. τ :=
{(idγ, τγ)}γ∈Γ is a natural transformation τ : M⇒ N.

Since M(γ), N(γ) ∈ A(γ) ∈ GPD we have τ−1
γ for every τγ. It is easy to check that

τ−1 := {τ−1
γ }γ∈Γ is a morphism and an inverse to τ. Hence Tm(A) is a groupoid.

Definition 6 (ΠLF, λ). Let γ ∈ Γ. Define γ̂ : A(γ) → Γ.A by γ̂(a) = (γ, a), γ̂(p : a →
a′) = (idγ, p).
Let Bγ : B{γ̂}. Then the functor ΠLF(A, B) : Γ→ GPD is defined as follows:

ΠLF(A, B)(γ) = Tm(Bγ)

ΠLF(A, B)(p : γ→ γ′) =: p · _ : Tm(Bγ)→ Tm(B′γ)
p · _ on objects (a, a′ ∈ A(γ′)):

(p ·M)(a) = (p, ida) ·B M(p−1 ·A a)

(p ·M)(q : a→ a′) = (p, ida) ·B M(p−1 ·A q)

6

Homotopy Type Theory October 19, 2017

p · _ on morphisms τ : M→ M′

(p · τ) : (p ·M)→ (p ·M′)
(p · τ)a = (p, ida) ·B τp−1·Aa

Now let M ∈ Tm(B). We define a term λA,B(M) ∈ Tm(ΠLF(A, B)). First we need an
object λA,B(M)(γ) ∈ ΠLF(A, B)(γ) = Tm(Bγ), i.e. another term, given by:

λA,B(M)(γ)(a) = M(γ, a) λA,B(M)(γ)(q) = M(idγ, q)

Now we need for p : γ→ γ′ a morphism p ·ΠLF(A,B) λA,B(M)(γ)→ λA,B(M)(γ′), i.e. a
family indexed by A(γ′) inducing a natural transformation between the corresponding
functors. The component at a ∈ A(γ′) is given by

(λA,B(M)(p))a := M(p, ida)

This gives us the interpretation for λ-abstraction.

Conversely, given a term N ∈ Tm(Π(A, B)) we want to recover its ‘matrix’, i.e. the
dependent term λ−1

A,B(N) ∈ Tm(B). We define this on objects by

λ−1
A,B(N)(γ, a) = N(γ)(a)

Let (p, q) : (γ, a)→ (γ′, a′) be a morphism (in Γ.A), i.e. p : γ→ γ′ an q : p · a→ a′. We
need to define λ−1

A,B(N)(p, q) : (p, q) · λ−1
A,B(N)(γ, a)→ λ−1

A,B(N)(γ′, a′), i.e. a morphism
(p, q) · N(γ)(a)→ N(γ′)(a′). This is given by

λ−1
A,B(N)(p, q) := N(γ′)(q) ◦ (idγ′ , q) · N(p)p·a

Application of N to O ∈ Tm(A) can now be defined as λ−1
A,B(N){O}.

Fact 1. The groupoid model supports Π-types.

6 The universe of sets

Definition 7 (Universe of sets and its elements). Set : [] → GPD, ∗ 7→ Gpd, i.e. the
groupoid of all metatheoretically small groupoids with isomorphisms as morphisms.
Since they are isomorphic, we can identify [].Set and Gpd.
El : Gpd ↪→ GPD. If A is a small family, i.e. A : Γ → Gpd, then A = J[KEl(A)] =
El{A} = El ◦ A : Γ → GPD, so we can treat small families over Γ as a subset Se(Γ) (
Ty(Γ) of all types over Γ.

Since the groupoid ΠLF(A, B) is small if A and B are, we can interpret Π-sets simply as
small Π-types.

7

Homotopy Type Theory October 19, 2017

7 Functional extensionality

Theorem 2. The type

Fun_Ext
def
= (A : Set)(B : (a : A)Set)(f , g : Π(A, B))((a : A)Id(B(a), f (a), g(a)))→ Id(Π(A, B), f , g)

is inhabited in the groupoid model

Proof. Let Γ := [A : Set, B : (a : A)Set, f , g : Π(A, B)] and PE := ΠLF(A, Id(B(a), f (a), g(a))).
Let γ ∈ Γ. The groupoid Id(ΠLF(A, B), f , g)(γ) is defined as the discrete groupoid over
the set homΠLF(A,B)(γ)(f (γ), g(γ)). More precisely, f (γ), g(γ) ∈ Tm(Bγ), so morphisms
between them are natural transformations indexed by A(γ). Objects of PE(γ) are func-
tors M : A(γ)→ 4(hom(f (γ), g(γ)), i.e. M(a) is a morphism f (γ)(a)→ g(γ)(a) and
M(q) : (idγ, q) ·M(a)→ M(a′) since the identity set is a discrete groupoid, this yields
the same commuting diagram, with M(a) in place of τa. This induces an isomorphism
between PE(γ) and Id(ΠLF(A, B))(γ), which is moreover natural in γ, thus establishing
a natural isomorphism between the functors PE and Id(ΠLF(A, B)). a

In fact, this isomorphism can be uniquely (up to propositional equality) specified by
adding three axioms to the theory, which are true in the groupoid model.

8 Universe Extensionality

It is possible to add more universes than that of all types (Set) to the theory, together
with type formers for all the types it should be closed under, in particular identity sets.
This allows us to express identity of types. If we have a subuniverse V of the universe
we used to interpret Set available in our metatheory, we can interpret this additional
universe by Gpd(V) or Gpd4(V), defined analogously with Gpd under the additional
proviso that the sets of objects and morphisms of the groupoids be in V. We then have
the following

Fact 2. If U is interpreted by Gpd4(V) then identity types Id(U, A, B) are isomorphic to the
isomorphism type

Iso(A, B)
def
= Σ([f : A→ B]Σ([g : B→ A]Id(g ◦ f , id)× Id(f ◦ g, id)

This represents a restricted form of univalence.

8

Homotopy Type Theory October 19, 2017

9 Exercise

The point of this exercise is to give a partial interpretation of sum types in the groupoid
model.

1. We first want to define an interpretation for

+ : Set→ Set→ Set

By currying it suffices to find a family over Gpd× Gpd, i.e. a functor + : Gpd×
Gpd→ GPD.

a) Recall that the objects of Gpd× Gpd are pairs (A, B) with A, B ∈ Gpd and a
morphism (A, B)→ (A′, B′) is a pair of morphisms (f : A→ A′, g : B→ B′),
with obvious identities composition defined pointwise.

Check that Gpd× Gpd so defined is indeed a groupoid.

b) Recall that the objects of the coproduct of A and B are {(0, a) | a ∈ Ob(A)} ∪
{(1, b) | b ∈ Ob(B)} and a morphism (0, a) → (0, a′) is a morphism a → a′

in A, and a morphism (1, b) → (1, b′) is a morphism b → b′ in B with the
obvious identities and compositions.

The functor + on objects will be given by (A, B) 7→ A + B, where A + B is
the coproduct of A and B.

Give the action of + on morphisms and check functoriality.

2. Next we want to define an interpretation for the left inclusion map

i : (A, B : Set)A→ A + B

By currying it suffices to define a dependent object i over the family +{pA} : [A :
Set, B : Set, a : A]→ GPD.

The groupoid [A : Set, B : Set, a : A] has as objects triples (X, Y, x) where X, Y ∈
Gpd and x ∈ X. A morphism (X, Y, x) → (X′, Y′, x′) is a triple (f , g, h) where
f : X → X′ and g : Y → Y′ are isomorphisms of groupoids, and h : f (x)→ x′.

The family +{pA} : [A : Set, B : Set, a : A]→ GPD is the following functor:

+{pA}(X, Y, x) = X + Y + {pA}(f , g, h) = +(f , g)

Define a suitable dependent object of +{pA}, checking all the conditions.

9

Homotopy Type Theory October 19, 2017

3. (Optional!) Define suitable interpretations for

j : (A, B : Set)B→ A + B
D : (A, B : Set)(C : (A + B)→ Set)((a : A)C(i(a)))→ ((b : A)C(j(b)))→ (c : A + B)C(c)

such that

D(d, e, i(a)) = d(a) : C(i(a))
D(d, e, j(b)) = d(b) : C(j(b))

10

