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1 Local Systems

Definition 1.1. Let X be a topological space and let S be a set (usually with additional structure, ring

module, etc). The constant sheaf SX is defined to be

SX(U) = {f : U → S | f is continuous and S has the discrete topology}

Remark. Equivalently, SX is the sheaf whose sections are locally constant functions f : U → S and

also is equivalent to the sheafification of the constant presheaf which assigns A to every open set.

Remark. When U is connected, SX(U) = S.

Definition 1.2. Let A be a ring. Then an A−local system on a topological space X is a sheaf L ∈
mod(AX) s.t. there exists a covering of X by {Ui} s.t. L|Ui = Mi where Mi is the constant sheaf

associated to the R−module Mi. In other words, a local system is the same thing as a locally constant

sheaf.

Remark. If X is connected, then all the Mi are the same.

Example 1. AX is an A−local system.

Example 2. Let D be an open connected subset of C. Then the sheaf F of solutions to LODE, namely

F (U) =
{
f : U → C | f (n) + a1(z)f (n−1) + . . .+ an(z) = 0

}
where ai(z) are holomorphic forms a C−local system. Existence and uniqueness of solutions of ODE on

simply connected regions means that by choosing a disc D(z) around each point z ∈ D, we see that the

initial conditions f (k) = yk give an isomorphism

F |D(z)
∼= Cn

Example 3. We can generalize the above example to differential equations with ”singularities” if we

have a flat connection. Let E → X be a vector bundle with a flat connection ∇, then E∇ will be a local

system where

E∇(U) = {sections s ∈ Γ(U,E) which are horiztonal: ∇s = 0}

Don’t think too much about the previous example. For our purposes A will be a field where A = R,C.

Then A−local systems are sort of like vector bundles in that the stalks will be vector spaces. But they

aren’t the same thing because local systems are “discrete.” However, local systems are essentially vector

bundles with a flat connection which is an incarnation of the Riemann-Hilbert correspondence.
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2 Monodromy

Sections of a vector bundle naturally form a sheaf and in fact, all sheaves can be thought of from this

point of view. That is for any sheaf F on a topological space X there is a topological space Et(F ),

called the étalé space of F , along with a projection map to X such that the sections of the projection

over an open set U will be the sections of F (U). The construction of Et(F ) proceeds as follows. As a

set it will be the disjoint union of the stalks

Et(F ) =
⊔
x∈X

Fx

A basis for the topology on Et(F ) will be generated by sets of the form

Us = {(x, sx) |x ∈ U, s ∈ F (U), U is open in X}

aka a certain set of elements in the stalks over each point in U , and we have exactly one element from

each stalk. Thus, under the subspace topology, each fiber will have the discrete topology. You can check

that under the projection π : Et(F ) → X, sections of π over U return F (U) (specifically they will be

sections of the sheafification of F .)

Lemma 2.1. The étalé space of the constant sheaf AX on a locally connected space X will be X × A
where A has the discrete topology.

Proof. As a set we have that Et(AX) = X × A as the stalks of AX are all A so it suffices to show

the étale topology coincides with the product topology. Since X is locally connected, any basic open

Us in the étale topology is the union of
{
Uisi

}
where Ui connected and si = restU,Ui(s). As AX is a

constant sheaf, AX(U) = A, so si = a is constant. Then the open set Uisi in Et(AX) will be of the form

Ui × ai which is open in the product topology as A has the discrete topology. Thus Us is the union

of opens in the product topology and thus is also open in the product topology. To go the other way,

note that every open U ×C in the product topology can be written as the union of opens Ui×aj where

∪Ui = U, aj ∈ C, Ui is connected since A has the discrete topology. But Ui × aj is an open set in the

étale topology because Ui is connected and thus U × C being the union of all these guys must also be

open in the étale topology as desired.

Lemma 2.2. Any A−local system L on a connected, simply connected, and locally connected space X

is a constant sheaf M for some A−module M .

Proof. We claim that the étalé space of a locally constant sheaf will be a covering space for X. We

know that there exists a covering {Ui} of X for which L|Ui
∼= M , but by the previous lemma the étalé

space of the constant sheaf M will be the product space X ×M . In other words, π−1(Ui) ∼= Ui ×M
and so we see π : Et(L)→ X will be a fiber bundle. But since each fiber Ai is discrete, it follows that

Et(L) is actually a covering space for X

For X simply connected, π1(X) = {e}, but covering spaces correspond to subgroups of π1(X) by the

classification of covering spaces, so Et(L) must be a trivial covering of X and thus is of the form X×A.

By construction taking the sheaf of sections on Et(L) will return L and the sheaf of sections of X ×M
will precisely be M so L is a constant sheaf.
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Remark. As S2 is simply connected, locally path connected, any C local system is constant(trivial) on

S2. However, the same isn’t true for vector bundles. Complex line bundles on S2 up to isomorphism

are in bijection with π1(GL1(C)) = π1(C×) = Z by the clutching construction. Or if you like algebraic

geometry, then S2 = P1(C) and line bundles on P1 are exactly given by OX(n) for n ∈ Z. Thus local

systems are “simpler” in the sense that you only need the first homotopy group to vanish to be trivial

while vector bundles need all homotopy groups to vanish.

Theorem 1

Assume X is connected, locally connected, path-connected, paracompact, Hausdorff, etc. Then the

following categories are equivalent.

(i) A−local systems on X.

(ii) Covariant functors L from the fundamental groupoid of X to the category of A−modules.

(iii) Representations ρ : π1(X,x0)→ AutA(M), M is an A−module.

Proof. We describe how a local system L gives maps between fibers/stalks. Consider a path γ : I → X

between x0 and x1, then note that γ−1L will be a local system on [0, 1]. This follows from the étalé

space point of view as the pullback sheaf will be the sheaf of sections of the pullback bundle and locally

constant sheafs locally are products so we have the fiber square

γ−1(U)×A U ×A

γ−1(U) U

So we see that γ−1(U) will give us a trivializing set for γ−1L. Now as [0, 1] is simply connected by

Lemma 2.2, we see that γ−1L = M will be a constant sheaf. As [0, 1] is connected, M([0, 1]) = M .

It follows that the natural map γ−1L([0, 1]) = M([0, 1]) → Mx = (γ−1L)x sending m to the germ

(m, [0, 1]) is an isomorphism for any x ∈ [0, 1]. Applying this to x = 0, 1 we obtain a chain of explicit

isomorphisms γ∗ : Lγ(0) → Lγ(1) called the monodromy map

Lγ(0)
∼= (γ−1L)0

∼= γ−1L(I) ∼= (γ−1L)1
∼= Lγ(1)

where the first isomorphism is the isomorphism of the stalk of the pullback sheaf, i.e. we send (s, U) 7→
((s, U), γ−1(U)) and similarily with the last isomorphism. It turns out that γ∗ satisfy a bunch of nice

properties, namely

Lemma 2.3. Suppose L ∈ mod(AX). Then the monodromy map γ∗ is

1. A−linear: γ∗(v + aw) = γ∗(v) = aγ∗(w).

2. homotopy invariant: if γ ∼ γ′, then γ∗ = γ′∗.

3. compatible with composition of paths: γ′∗(γ∗(x)) = (γ′.γ)∗(x)

This shows that the assignment of each point of x to it’s stalk gives us a functor from the fundamental

groupoid Π(X) to A−modules. By considering loops, composition of paths and homotopy invariance
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gives us a group homomorphism π1(X,x0) → Aut(Lx0) := Aut(M) and by A−linearity it will land in

AutA(M). This map

π1(X,x0)→ AutA(M)

is called the monodromy representation of L. To go back consider the space (X̃ ×M)/π1(X,x0)

over X where π1(X,x0) acts on X̃ by monodromy and M has the discrete topology. Take it’s sheaf of

sections to recover L.

2.1 Cohomology of Local Systems

Definition 2.4. Let L be an A−local system on X. Then the i−th cohomology group of L will simply

be the sheaf cohomology group

H i(X,L) = H i
AX

(X,L)

i.e. pick an injective (acylic) resolution of L as an AX module and then take cohomology after applying

global sections.

Remark. Our definition above uses the definition of a local system as a sheaf but the other equivalent

definitions will give rise to isomorphic cohomology theories. Covariant functors from the fundamental

groupoid will give singular cohomology with local coefficients while representations of π1(X,x0) will

give rise to a chain complex similar to group cohomology/equivariant cohomology (this is what’s in

Hatcher).

3 DeRham Cohomology

Recall that the slightly more general DeRham complex DR(X,V ) of a smooth n−dimensional manifold

X with values in an R vector space V = Rn is the complex

0→ Ω0(X,V )
d−→ Ω1(X,V )

d−→ . . .
d−→ Ωn(X,V )→ 0

where Ωk
X(X,V ) =space of smooth differential k−forms taking values in V . This means if Ωk(X) =

k∧
T ∗X1 and Rn is the trivial rank n vector bundle X × Rn → X, then

Ωk
X(X,V ) = Γ

(
X,Ωk(X)⊗ Rn

)
= HomC∞(X)

(
k∧

Vect(X), C∞(M)n

)
Note that the RHS means that we have an assignment at each point p ∈ X where we feed in k tangent

vectors in TpX and get back a vector in Rn such that the assignment is smooth in p. The differential

d : Ωk(X,V )→ Ωk+1(X,V ) is given by

dω(X0, . . . , Xk) =
∑

(−1)iXi·ω(X0, . . . , X̂i, . . . , Xk)+
∑
i<j

(−1)i+jω([Xi, Xj ], X0, . . . , X̂i, . . . , X̂j , . . . , Xk)

where ω ∈ Ωk(X) and ω⊗ v ∈ Ωk(X,V ) and X0, . . . , Xk are vector fields. The DeRham cohomology of

X with values in V , denoted by H∗(Ω∗(X,V )) will then be the cohomology of the above complex.

We can generalize above to define DeRham cohomology of X with values in a local system. However,

we will need a remark that I previously said you shouldn’t worry too much about, namely

1aka regular differential k−forms.
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Theorem 3.1. For X real smooth or complex analytic, we have an equivalence of categories between

R/C local systems on X and vector bundles on X with a flat connection.

Proof. We will just give the functors in both directions. Given a local system L, consider the sheaf

V = L ⊗RX
OX where OX(U) = C∞(U,R)2 is the sheaf of smooth functions on X. Then on an

trivializing cover {Ui} of L, we have that L|Ui will be a constant sheaf and thus is of the form M where

M is a R−module and thus is of the form Rn. It follows that

V|Ui = (L ⊗RX
OX) |Ui

∼= (RnX ⊗RX
OX) |Ui

∼= OnX

Thus V is a vector bundle. Using the fact that L is locally constant, we can then glue together the

trivial flat connection on OX to obtain a flat connection ∇L on V. Conversely given a flat connection

∇, take horizontal sections to get a local system like in the example above.

Definition 3.2. Given a vector bundle E on X, we can define the differential forms with values in E

as sections of

Ωk(X,E) = Γ(X,Ωk(X)⊗ E)

Definition 3.3. A connection on a (real) vector bundle E on a manifold M is a R−linear map

∇ : Γ(M,E)→ Ω1(M,E)

satisfying the Leibniz rule ∇(fs) = df ⊗ s+ f∇(s).

When ∇ is a flat connection on E we can then form the twisted DeRham complex

DR(X)∇E : 0→ Ω0(X,E)
∇−→ Ω1(X,E)

∇−→ . . .
∇−→ Ωn(X,E)→ 0

where the differential ∇ is given by

∇(ω ⊗ s) = dω ⊗ s+ (−1)|ω|ω ∧∇(s)

The fact that ∇ is flat is the statement that ∇◦∇ = 0, i.e. that we actually get a complex. Observe that

for E = OX the trivial bundle and ∇ the trivial connection this returns the regular DeRham complex.

Remark. One can alternatively define the DeRham complex for vector bundles with flat connections

(aka local systems) L like so. Let VL = L ⊗RX
OX be the vector bundle associated to L. Define the

twisted DeRham complex to be

Ωk(X,L) := Ωk(X)⊗OX
VL = Ωk(X)⊗OX

(L ⊗RX
OX) = Ωk(X)⊗RX

L

Then let {Ui}i∈I be a connected cover which trivializes both Ωk(X) and L. Given ω ⊗ s ∈ Ωk(X,L) =

Ωk(X)⊗RX
L, by choosing a basis of local sections, we have (ω ⊗ s)|Ui = ωi ⊗ si ∈ Ωk(Ui,L). Then we

claim the local differential defined by

d|Ui : Ωk(Ui,L)→ Ωk+1(Ui,L), ωi ⊗ si 7→ dωi ⊗ si

is well defined, aka is RX−linear. But since Ui is connected, RX(Ui) = R and d is clearly R linear.3 One

then checks that the set of {dω}i∈I are compatible and thus glue back up to a global section. Moreover

as locally d2|Ui = 0, d2 = 0 globally as well so we do have a complex.
2Aka OX is the trivial bundle on X.
3Note if we had tried to show it was OX−linear then d(fω) = df ∧ ω + fdω which is a problem and thus why we need

∇ to be the differential instead.
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Remark. Letting E = Rn × X → X be the trivial rank n vector bundle with the trivial connection

∇ = d, we recover Ω(X,V ) as defined originally.

Definition 3.4. Given a local system L on a real smooth manifold M , the twisted deRham cohomology

of L is defined to be

H∗dR(M,L) = H∗(Ω∗(M ;V,∇L))

where V = L ⊗RX
OX as in above.

Theorem 3.5 (Twisted de Rham). Let L be a local system on a smooth real manifold M . Then there

is an isomorphism

Hk(M,L) ∼= Hk
dR(M,L)

Remark. For complex analytic, one needs to replace the RHS with hypercohomology.

4 Main Result for XΓ

All representations are over R or C and likewise any local system will be in RX or CX where X = G/K

where K is a maximal compact subgroup of G. Let XΓ = Γ \ X be the coset/orbit space of Γ ⊆ G

acting on X. We first need

Theorem 4.1 (Cartan, Iwasawa, Malcev). Any connected Lie group G has a maximal compact subgroup

K. All maximal compact subgroups are conjugate to each other and moreover G/K is diffeomorphic to

Euclidean space.

This is actually true without the connectedness assumption but the person who proved it isn’t as

recognizable, so we do not state it. Now consider the fiber bundle Γ → X → XΓ. By the long exact

sequence in homotopy groups

. . .→ πn(X)→ πn(XΓ)→ πn−1(Γ)→ . . .→ π1(X)→ π(XΓ)→ π0(Γ)→ π0(X)→ π0(XΓ)→ 0

X is diffeomorphic to Euclidean space, so is contractible and thus πk(X) = 0 ∀k, Γ being discrete has

the same fate except π0(Γ) = Γ from which it follows that π1(XΓ) = Γ and all other homotopy groups

of XΓ vanish. Thus, we see that XΓ is a K(Γ, 1). Also, Γ being discrete again means that X → XΓ is

a covering map and so since X is simply connected, it’s the universal cover for XΓ.

Now given a representation V of Γ, since π1(XΓ) = Γ recall that we then get an associated local system

Ṽ on XΓ as the sheaf of sections of X ×Γ V → XΓ since X is the universal cover. But since XΓ is a

K(Γ, 1) we also have

Hk(Γ, V ) = Hk(K(Γ, 1), Ṽ ) = Hk(XΓ, Ṽ ) (1)

because the complex corresponding to the standard bar resolution of the trivial module Z

. . .→ (Z[G]⊗Z Z[G]⊗Z . . .⊗Z Z[G])→ . . .→ Z→ 0

coincides with the complex of singular/simplicial chains of the geometric realization of the simplicial

set

. . .
−→
−→
−→

G×G×G −→−→ G×G→ G

gotten by the bar construction which turns out to be a K(G, 1). Applying HomZ[G](−, V ) will corre-

spond to twisting the singular chains by Ṽ and since the complexes are the same we get the desired
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isomorphism of group cohomology of Γ with singular cohomology of K(Γ, 1).

The reason why we defined deRham cohomology with values in a vector space is that groups can now

act on the cochains. Explicitly,

Definition 4.2. Given a group G that acts on a manifold M by diffeomorphisms and a linear repre-

sentation (V, ρ) of G, then G acts on Ωk(M,V ) by

(g · ω)p(X1, . . . , Xk) = ρ(g)ωg−1·p(g
−1 ·X1, . . . , g

−1 ·Xk)

Alternatively, since Ωk(M,V ) = Γ(M,Ωk(X) ⊗ V ), this is equivalent to the map sending ω ⊗ v 7→
(g−1)∗(ω)⊗ g · v.

Theorem 2

Let Γ be a discrete subgroup of a Lie Group G with X = G/K and XΓ = Γ \X and let V be a real

representation of Γ. Then there is a canonical isomorphism

H∗(Γ, V ) ∼= H∗(Ω∗(X,V )Γ)

Proof. Case 1: Γ acts freely on X (E.g. when Γ is torsion free as stablizers must be finite by the proper

action of Γ but torsion free implies they are all trivial) In this case XΓ = Γ \X will be a manifold being

the quotient of a free and proper action. Thus we can apply Eq. (1) and Theorem 3.5 to obtain

H∗(Γ, V ) ∼= Hk(XΓ, Ṽ ) ∼= Hk
dR(XΓ, Ṽ )

Consider the map π : X → XΓ. We then have a map on forms given by

π∗ : Ωk(XΓ, Ṽ )→ Ωk(X,π∗(Ṽ ))→ Ωk(X,V )Γ

ω ⊗ s 7→ π∗(ω)⊗ π∗(s)

where we claim that Ωk(X,π∗(Ṽ )) = Ωk(X,V ) and that the image of the map lands in the Γ invariant

forms. Recall that X is the universal cover for XΓ and so Ṽ is defined to be the sheaf of sections of

π̃ : X ×Γ V → XΓ where the map is just π in the first component. Pulling this back along π which

is essentially the same map, it follows that the pullback bundle will just be X × V by the definition

of pullback. But the sheaf of sections of this will be the trivial rank n local system and thus when

tensoring up we get the trivial rank n vector bundle and thus we have Ωk(X,V ). Since π is seen to be

Γ equivariant we have

γ · (π∗(ω ⊗ s)) = γ · (π∗ω ⊗ π∗s) = (γ−1)∗π∗ω ⊗ γπ∗s = π∗(γ−1)∗ω ⊗ π∗γs = π∗ω ⊗ π∗s

Moreover, this map is an isomorphism because any Γ invariant form in Ωk(X,V )Γ will descend to the

quotient XΓ and one can check these two maps are inverses to each other. Since the complexes are

isomorphic, their cohomologies will be the same and so we get that

Hk
dR(XΓ, Ṽ ) ∼= H∗(Ω∗(X,V )Γ)
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Case 2: Γ has a torsion free normal subgroup of finite index Let H ⊆ Γ be the torsion free normal sub-

group of finite index. Note that Γ/H acts on H∗(H,V ) by (g · f)(h1, . . .) = g · f(g−1h1g, . . .). By the

Hochschild-Serre spectral sequence we have that

Hp(Γ/H,Hq(H,V )) =⇒ Hp+q(Γ, V )

Notice that Hq(H,V )) is a cohomologically trivial Γ/H module because Hq(H,V ) is a vector space and

Γ/H is finite and so higher cohomology dies for p ≥ 1 and thus we have the equality

H∗(Γ, V ) = H∗(H,V )Γ/H

On the other hand, as (−)Γ =
(

(−)H
)Γ/H

, we have

H∗
(
Ω∗(X,V )Γ

)
= H∗

((
Ω∗(X,V )H

)Γ/H)
= H∗

(
Ω∗(X,V )H

)Γ/H
where the last equality is because taking invariants of a finite group on a vector space is exact in

characteristic 0 and thus we can take invariants after taking cohomology. But now we can use Case 1

and the proof is finished. Case 2 is sufficient for our purposes when Γ is an arthimetic subgroup.
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