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Abstract. In this paper, we introduce tools from differential topology to an-

alyze functions between manifolds, and how functions on manifolds determine
their structure in the first place. As such, Morse theory and the Euler charac-

teristic are discussed, with the central result being a proof of the Poincare-Hopf

theorem, which states that the sum of the indices of a smooth vector field is
equal to the Euler characteristic. Though a variety of sources are consulted

and several of the arguments are original, the strategy of proof is based primar-

ily on that of Milnor’s Topology from the Differentiable Viewpoint. Knowledge
of basic point-set topology and multivariable calculus is assumed.
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1. Introduction

We start with the following question:

Question 1.1. To what extent does the structure of a shape (for example, its
number of holes) limit the ability of certain functions (i.e. smooth ones) to be
defined on it?

For example, we can consider assigning a tangent vector to each point on a
sphere, doing so in a way such that the vectors vary smoothly. How many different
ways can you assign these vectors? This might sound strange because there are two
distinct ideas at work which we don’t usually think of as too related. There are the
geometric properties of the sphere–it is round, has no holes, etc.–and properties of
vector fields, such as smoothness conditions.
As an idea for something that might unite these two ideas, consider the following
definition:
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Definition 1.2. Take a triangulation of a manifold M ; that is, triangles for a two
dimensional manifold, tetrahedra for a 3 dimensional manifold, and so on. The
Euler characteristic χ(M) is the alternating sum vertices minus edges plus faces
(minus number of tetrahedra, and so on).

One can show that the Euler characteristic is independent of the triangulation
and is invariant up to homeomorphism. At first glance, this definition seems like it
has nothing to do with any sort of smoothness condition we would impose on vector
fields. Indeed, since the stereographic projection of the sphere onto R2 allows us
to talk about the sphere and R2 in a similar manner (it is a smooth function),
you might be tempted to say that drawing arrows smoothly on a sphere is like
drawing arrows on R2 using the stereographic projection, or an open disk, since R2

is homeomorphic to an open ball. Noting that the Euler characteristic on a sphere
is not equal to the Euler characteristic on an open disk would prove the whole
discussion to be absurd.
Such an argument is flawed, however. As we show in this paper, the geometric
structure of a manifold–in particular the Euler characteristic–can impose significant
restrictions on which smooth vector fields are possible. Why is this the case?
Intuitively, we can think of a manifold as being put together from shapes of different
dimensions, where shapes of smaller dimensions guide the construction to higher
dimensions. If it is possible to define a differentiable function on our manifold,
then using Morse theory, it turns out that an appropriate function actually entirely
determines how the manifold is to be put together. At this point, we can compare
any vector field to the vector fields determined by the differentiable function (in
a way that will be explained in greater detail below) to show that they must all
preserve a few basic characteristics which are invariant for smooth vector fields.
We present these ideas as follows. In section 2, we define several terms which are
essential to the study of differentiable manifolds; tangent space, orientation, etc.
In section 3, we introduce the notion of degree and index, and prove some basic
theorems, such as the degree’s invariance. In section 4, we give some equivalent
formulations of the Euler characteristic which require the introduction of homology
theory. In section 5, we discuss Morse theory and indicate how it can be used
to identify a smooth vector field with the Euler characteristic. Section 6 quickly
proves the Poincare-Hopf theorem, tying everything together to easily demonstrate
the point made above, that the geometric structure (in this instance the Euler
characteristic) of a manifold places restrictions on a smooth vector field on a closed
manifold. Section 7 concludes with a few interesting consequences.

2. Preliminaries

We start off with a few basic and fundamental definitions, which arise naturally
and immediately in the study of differential topology. First we precisely define
manifolds, as discussed in the introduction.

Definition 2.1. Let M ⊂ Rn. We say that M is a k-dimensional smooth manifold
if, for every x ∈ M , there exists some open set U ⊂ Rn together with a function
f : U → Rk such that f : U → Rk is smooth, f |U∩M : U ∩M → Rk is bijective and
f−1 : f(U ∩M)→ Rn is smooth. Since f(U ∩M) = V ⊂ Rk would necessarily be
an open set, we say U ∩ M is diffeomorphic to V . We call f |U∩M a chart, and we
call a collection of charts an atlas.
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Remarks 2.2. The fact that U ∩M will often not be open in Rn prevents us from
outright saying that “M is a k-dimensional smooth manifold if, around every x ∈M
there is a neighborhood U such that U ∩M is diffeomorphic to an open subset of
Rk.” But, essentially, this is what we mean, and it is formalized in the above
definition.
We sometimes use a superscript to emphasize the dimension of M , and refer to our
manifold as Mk ⊂ Rn. In general, k and l will be dimensions of manifolds and n
and m will be dimensions of ambient spaces.

Definition 2.3. Let M ⊂ Rn. We say that M is a k-dimensional smooth manifold
with boundary if, for any x ∈M , there exists some open set U such that U ∩M is
diffeomorphic to some open subset of Hk = Rk−1 × {x ∈ R | x ≥ 0}. Other terms
are defined analogously as above. The subset of M which maps to Rk−1 × {0} in
a parameterization is called the boundary. Note that the boundary of M does not
depend on the chart.

Definition 2.4. We say that N is a submanifold of M if N is a manifold and
N ⊂M . Note that N and M do not necessarily have the same dimension.

Examples of manifolds abound. A few useful ones are listed below.

Examples 2.5. (i) Trivially, Rn is an n dimensional manifold, with parameter-
ization given by the identity map. Additionally, the unit interval [0, 1] is a 1-
dimensional manifold with boundary, since [0, 1) is open in {x ∈ R | x ≥ 0}, and
[0, 1) is diffeomorphic to (0, 1].
(ii) The unit circle in R2, henceforth referred to as S1, is a 1-dimensional man-
ifold. Let f1, f2, f3, f4 : (0, 1) → S1 be defined by f1(x) = (x,

√
1− x), f2(x) =

(x,−
√

1− x), f3(x) = (
√

1− x, x) and f4(x) = (−
√

1− x, x). Then each fi is a
diffeomorphism between R and U ∩ S1 for some U ⊂ R2, and also such a U exists
for any x ∈ S1. Hence S1 is a differentiable manifold. A few slight modifications
of this argument show that, for any n ≥ 2, the set {x ∈ Rn| ||x|| = 1} is an n − 1
dimensional manifold.
(iii) The Cartesian product of two manifolds, as it is usually defined, is a manifold.
To see this, suppose X and Y are manifolds without boundary. Consider x ∈ X×Y .
Then there exist diffeomorphisms f : Rk → U ∩ X and g : Rp → V ∩ Y . Under
the product topology, U × V is open in X × Y . Additionally, define a function
h : Rp+k → U ×V ∩X×Y by h(x, y) = (f(x), g(y)). Then h is a diffeomorphism of
Rp+k and an intersection between an open set and X × Y . Since this can be done
for every x ∈ X × Y , we have X × Y is a manifold.
(iv) The product of a manifold with boundary and a manifold (without boundary)
is a manifold with boundary. The proof is nearly identical to the case of the prod-
uct of two manifolds. In particular, if X is a manifold with boundary and Y is a
manifold, then the boundary of X × Y is the boundary of X.
(v) By the above, Tn =

∏n
i=1 S

1, that is, the n-torus, is an n dimensional manifold.
(vi) Also by the above, the cylinder, S1 × [0, 1] is a manifold with boundary equal
to S1 × {0} ∪ S1 × {1}.

As an aside, one might wonder how many example 1 dimensional manifolds there
are. The following classification, which we state without proof, definitively answers
that question.
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Theorem 2.6 (Classification of 1-Manifolds). Any smooth, connected 1-dimensional
manifold is diffeomorphic to the circle S1 or an interval in R.

Theorem 2.7. Let M be a k-dimensional manifold with boundary. Then the bound-
ary of M is a k − 1 dimensional submanifold.

Proof. Consider any x ∈ ∂M . Then there exists some open set U ⊂ Rn containing
x such that f : U ×M → Rk−1 × [0,∞) is a diffeomorphism. By definition of the
boundary, f |∂MU ∩ ∂M → Rk−1×{0} is a diffeomorphism of U ∩ ∂M and V ×{0}
where V is an open subset of Rk−1. Forgetting about the last coordinate, we see
that it is a diffeomorphism of U ∩ ∂M and V ⊂ Rk−1. Doing this for all x ∈ ∂M
demonstrates that ∂M is a k − 1 dimensional manifold. �

Definition 2.8. Consider a differentiable manifold M ⊂ Rn of dimension k, and
let f : U →M be a chart of M . Let dgu : Rm → Rn be the derivative of g, that is,

dgu(v) = lim
t→0

g(u+ tv)− g(u)
t

.

Recall from multivariable calculus that the derivative as defined is, indeed, a linear
map. We say that the tangent space TMu is the image of Rm under dgu, that is,
dgu(Rm).

Note that the tangent space is defined for every point in our manifold. In fact,
as the next definition shows, it is also unique for every point in our manifold.

Theorem 2.9. The tangent space as defined is independent of choice chart.

Proof. Suppose that f : U → M and g : U → M are two charts of a manifold.
We wish to show that the tangent space is the same substituting each of these into
the definition. Assume without loss of generality that f(U) = g(U), that is, that
f and g parameterize the same part of M . Then let h = g−1 ◦ f . Then h is the
composition of diffeomorphisms and is hence a diffeomorphism. But f = g ◦ h,
so by the chain rule, dfx = dgx ◦ dhx. Hence dfx(Rk) = dgx ◦ dhx(Rk), so that
dfx(Rk) ⊂ dgx(Rk). Switching f and g and making the same argument shows that
dgx(Rk) ⊂ dfx(Rk), so that the tangent space defined by each chart is identical. �

Note that we have not yet discussed maps between manifolds. The next definition
rectifies this problem.

Definition 2.10. Now let M and N be two manifolds, and f : M → N be a
function between them. For some x ∈ M , pick charts φ : U → M and ψ : V → N
such that x ∈ φ(U) and f(x) ∈ ψ(V ). Let g : U → V be defined by g = ψ−1 ◦ f ◦φ.
We define the derivative of f at x to be the map dfx = dψψ−1(f(x)) ◦dgφ−1(x) ◦dφ−1

x .
Note that dfx : TMx → TNf(x) is a linear transformation, since the derivative is.

Remarks 2.11. The trick in this definition is to transform the question of derivatives
on manifolds to a question of derivatives between Euclidean spaces and manifolds,
and a question of derivatives between different Euclidean spaces. Otherwise, the
definition is mostly a formality. That this definition does not depend on choice of
chart is almost identical to the proof above. That the chain rule holds is an exercise
in drawing commutative diagrams.
On this note, it is useful to further emphasize that charts allow all of our definitions
and theorems from multivariable calculus to be used for manifolds. In other words,
having a chart allows us to change the question of maps between manifolds to maps
between Euclidean spaces, which is simply the subject of multivariable calculus.
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Definition 2.12. Let f : M → N be a smooth map between manifolds of the
same dimension. If dfx as a linear map described above is singular, that is, the
determinant of the matrix is 0, then x ∈M is called a critical point. We say y ∈ N
is a critical value if some x ∈ f−1(y) is critical. Conversely, if dfx is not singular
at x ∈M , then x is called a regular point, and y ∈ N is called a regular value if all
x ∈ f−1(y) are regular.

It is of utmost important that the reader distinguish between regular points
(which are in the domain) and regular values (which are in the co-domain), as it
will avoid a lot of confusion over some of the following proofs.
We might wonder how many critical points there can be for such a function f :
M → N . In general, critical points are difficult to work with because they prevent
us from inverting our functions, which is usually very important, and they also make
it more difficult to define the degree, which we explain in the next section. Hence
we do not want there to be too many critical points. Fortunately, the following
theorem (which we state without proof) tells us that this is not really too much to
ask for.

Theorem 2.13 (Sard). Let f : U → Rm be a smooth map, defined on U ⊂ Rn,
and let C ⊂ U be the set of points x ∈ U such that the rank of dfx is less than m.
Then f(C) has Lebesgue measure zero, and hence Rm\f(C) is everywhere dense.

Remark 2.14. At this point it is appropriate to comment on the smoothness hy-
pothesis made above. We have made smoothness hypotheses so that, in the future,
we can apply Sard’s theorem and know that we are not only dealing with critical
values, and that regular values will be able to be found in the following section so
that our definitions can make sense. However, though we do not give the proof of
Sard’s theorem, we note that it uses smoothness only insofar as it allows us to take
many derivatives. To be precise, if n and m are as above, then it suffices for there
to be more than n/m − 1 derivatives. With this in mind, sometimes it is possible
to replace smoothness conditions with this condition if smoothness is too much to
ask for.

We also note the following:

Lemma 2.15. Suppose X is an oriented manifold with boundary of dimension
k + 1. Suppose the boundary of X is a manifold M oriented as the boundary of
X. If N is of dimension k and f : M → N extends to a smooth map F : X → N
and if y is a regular value of both f and F , then F−1(y) is a smooth 1-manifold,
and f−1(y) is equal to the endpoints of the line segments of F−1(y) (which, by the
classification of 1-manifolds, is indeed the union of line segments and circles).

Theorem 2.16. If f : Rn → Rn is an orientation preserving diffeomorphism, then
f is smoothly isotopic to the identity.

Proof. Assuming without loss of generality that f(0) = 0, the isotopy F : Rn ×
[0, 1]→ Rn is given by

F (x, t) =
f(xt)
t

, 0 < t ≤ 1

F (x, 0) = df0(x).

Indeed, this is a smooth isotopy between f and df0. Also note df0 is isotopic to the
identity, being an orientation preserving linear transformation. Hence f is smoothly
isotopic to the identity. �
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Lemma 2.17 (Homogeneity). If y and z are arbitrary interior points of a smooth
connected manifold N , then there exists a diffeomorphism h : N → N such that h
is smoothly isotopic to the identity and h(y) = z.

Proof. First we show that there exists a smooth isotopy from Rn to itself fixing
all points outside of an open ball of fixed radius while sliding the origin to any
predetermined point inside some ball. This part is constructive. Note that a ro-
tation is a diffeomorphism, so that it suffices to show that we can slide the origin
to a point (a, 0) where a ∈ R. Let f : R → R and g : Rn−1 → R be functions
that are 1 at the origin and 0 outside a ball of radius 1. Define ht : Rn → Rn by
ht(x, y) = (x + tf(x)g(y)a, y) (where we take y to be in Rn−1 and x to be in R).
The Jacobian at (x, y) is equal to

1 + tg(y)f ′(x)a 1 + af(x)t ∂g∂y1 |(x,y) · · · 1 + af(x)t ∂g
∂yn−1

|(x,y)
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 .

The determinant of this is clearly 1 + tg(y)f ′(x)a. Hence, let M be greater than
g(y) inside of the unit ball and N be greater than f ′(x) inside of the unit ball.
If a is such that |MNa| < 1/2, then for all t ∈ [0, 1] the determinant is nonzero,
meaning by the inverse function theorem that it is a diffeomorphism. Note further
that h0 is the identity and that h1(0, 0) = (a, 0), so that this map does indeed slide
the origin to (a, 0) as desired. Analyzing the proof more closely, we see that our
range for z is predetermined (ie fixing f and g, we can pick any z inside of some
radius, so that the fact that we are starting at the origin does not influence which
values we can pick for z). The other requirements for ht to be a smooth isotopy
being easily verified, so that h1 = h is our desired function that carries the origin
to (y, 0).
Now, say x ∼ y if there is an isotopy carrying x to y. This defines an equivalence
relation. Since x is an interior point, there is a ball that is a subset of N that
contains it. Shrinking the maps appropriately, we see that x ∼ y for any y in this
ball that is a subset of N . Let A = {y | x ∼ y}. By the above, this is the union
of balls, and is hence open. In fact, any equivalence class is open, but since our
manifold is connected, it follows that there can only be one equivalence class, thus
proving the lemma. �

We see from the linearity of the derivative that the tangent space, being the im-
age of a linear space under a linear transformation, is clearly a linear space. Hence
one might require that we have some basis for TMu, and one might wonder what
implications this has on the manifold in general. This leads us to the notion of
orientation.

Stepping back a little bit, let V be any vector space of dimension k, and suppose
(v1, v2, . . . , vk) is some basis for V , and let (w1, w2, . . . , wk) be some other basis.
Then consider the unique linear transformation defined by the k equations

wi =
∑
j

aijvj .
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Let A = (aij)1≤i,j≤k. Note that this linear transformation is unique, because any
vector in V can be written as a linear combination of (v1, v2, . . . , vk), since this
collection of vectors is a basis. Also note that this matrix is nonsingular.

Definition 2.18. Consider a vector space V . An orientation is an ordering of
basis vectors of V . We say that two bases determine the same orientation if the
unique linear transformation that takes one to the other has positive determinant,
and opposite orientation if it has negative determinant.

For example, we let the standard orientation for Rn be the orientation determined
by the standard basis; that is, the basis {(1, 0, . . . , 0), (0, 1 . . . , 0), . . . , (0, 0, . . . , 1)},
also often referred to as e1, e2, . . . , en, respectively.
At this point, the reader should pause to understand why the notions of same and
opposite orientations on a tangent space are the “right” ones. With this in mind,
we can now take our vector space V to be the vector space TMk

u , where u ∈ M ,
and begin to define the notion of orientation of a manifold. To define the notion of
orientation on a manifold, note that the derivative of a chart of a manifold at some
point x on the manifold defines an isomorphism between Rk and the tangent space
of Mk at x. Precisely,

Definition 2.19. Let Mk ⊂ Rn be a k-dimensional differentiable manifold. By
the above, if φi : Ui∩M → Rk is a chart, then it determines a tangent space at any
x ∈ Ui ∩Mk. An orientation of a tangent space is an ordering of basis vectors in
a tangent space, with two orientations being the same or different according to the
above definition. Since dφi,u : TMu → Rk is non-singular (since a chart must be
invertible), dφi is an isomorphism of tangent spaces at every u ∈ Ui ∩Mk and Rk.
A chart therefore gives a local orientation, that is, an ordering of the basis vectors
for any x ∈ Ui.
Now take an open cover U = {Ui}i∈I of Mk together with charts φi : Ui ∩Mk →
Rk. The collection of charts (Ui, φi) is compatible if det d(φi ◦ φ−1

j ) > 0 whenever
Ui ∩ Uj ∩Mk 6= ∅. A manifold is orientable if such a collection of charts exists.

In general, local orientations will always exist, but compatibility is not ensured.

One might also ask about how one should orient the boundary of a manifold. Sup-
pose that, using the above guidelines, we have found an orientation for our manifold
M but not its boundary. Recall that if Mk is k dimensional, then ∂Mk is k − 1
dimensional. Hence, it makes sense to talk about the tangent space of ∂Mk, as an
k − 1 dimensional space. If x ∈ ∂Mk and f : U ∩Mk → Hk is a chart, then f
is also clearly a map to Rk since Hk ⊂ Rk, and dfx determines an k dimensional
linear space. Since T (∂M)x is an k− 1 dimensional subspace. So consider a vector
in TMx that is not in T (∂M)x. We say that this vector is outward if it corresponds
under dfx to a vector in Rn−1 × {x ∈ R | x > 0}. Otherwise, we say the vector
is inward. Now, for x ∈ ∂M , pick a consistent k-dimensional basis for TMx, with
the restriction that the vector linearly independent of T (∂M)x is outward. This
determines an orientation for T (∂M)x.

Examples 2.20. (i) The circle is orientable; indeed, with the atlas in the above
examples, one can show that the orientations determined by these charts are con-
sistent.
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(ii) The cylinder is orientable. In particular, we can orient the boundary of the
cylinder as follows. Consider a chart for the cylinder, and suppose everything except
the boundaries are oriented. Then the orientation for one boundary component, ie
a circle as a 1 manifold, is the orientation induced by the single vector tangent to
the circle such that, when combined with an outward vector, provides an orienta-
tion consistent with the tangent spaces not on the boundary. If we keep moving
up with this same orientation, we run into a slight problem at the other end; the
previously outward pointing vector now points inward. So to orient this boundary
component, reverse both vectors; the inward pointing vector points outward, the
tangent vector points in the opposite direction, and orientation is preserved. But,
the boundary components of the cylinder have opposite orientations.
(iii) The Mobius band is not orientable. To see this, consider any chart of the
Mobius band. The fact that this is an open cover means that the orientation on
one chart determines the orientation on some other intersecting chart. Actually,
since all charts are connected in this way, the orientation on one chart determines
the orientation on all charts. But this is a problem with the Mobius band; if we
circle it once, we have that a single chart would need to determine two orientations,
which is impossible.
(iv) Using a similar argument, we have that the Klein bottle is not orientable.

We conclude this section by introducing the notion of a vector field on a Manifold.

Definition 2.21. Let v : U → Rn be a function such that v(z) ∈ TMk
z ⊆ Rn,

where we note that TMk
z
∼= Rk ⊆ Rm. The image of this function under Mk

defines a vector field on Mk. Hence we can view v as a map from M to Rk and
say that a vector field is smooth if v is smooth. A zero of a vector field is a point
z ∈ M such that v(z) = 0, and it is non-degenerate if the derivative as described
above is non-singular.

Let us be slightly more precise concerning what it means for v to be smooth.
A vector field assigns, to every point x ∈ Mk, a vector in TMk

x , a vector space
isomorphic to Rk. In particular, suppose we have a vector field defined on a k
dimensional manifold Mk. Suppose we have a chart φ : U →Mk where U ⊂ Rk is
open. Then by the above dφφ−1(z) : Rk → TMk

z is an isomorphism of vector spaces.
So suppose there is some vector field v defined on an open subset of Mk for which
we have a chart φ. Then this vector field v can be written using our chart φ and an
appropriate vector field on Rk, say v′ : U → Rk, by setting v = dφφ−1(z) ◦ v′ ◦ φ−1.
Hence not only can we talk about v as smooth, but we can also talk about the
derivative as a linear map by considering d(dφφ−1(z) ◦ v′ ◦ φ−1).

3. Degrees and their Invariance

Definition 3.1. Suppose that f : M → N is a smooth map between manifolds
M and N of the same dimension. Consider some y in N such that, for every x
such that f(x) = y, the linear map dfx : TMx → TNy is non-singular, i.e., an
isomorphism. If det(dfx) > 0 then let sign dfx = 1 and if det(dfx) < 0 then let sign
dfx = −1. We define the degree of f at y to be

deg(f, y) =
∑

x∈f−1(y)

sign dfx.
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There are two fundamental properties of the degree which we will demonstrate.
The first is that the degree of a function does not depend on the choice of regular
value; that is, deg(f, y) = deg(f, z) if y and z are both regular values. The second
is two functions which are homotopic have the same degree. We prove this second
property first, but after some introductory lemmas.

Lemma 3.2. The degree of f at a regular value is locally constant.

Proof. Let {x1, . . . , xn} = f−1(y). Take disjoint small open neighborhoods Ui
each containing exactly one xi, which we assume without loss of generality are
all diffeomorphic to the same neighborhood V of N , and in particular, where the
diffeomorphism is non-singular. Let U = U1∪ . . .∪Un and let W = f(M\U). Then
the degree is locally constant in the neighborhood V \W . Consider any point y′ in
this neighborhood. Since our diffeomorphisms are non-singular, each Ui contains
exactly one point mapped to y′. By selection, there are no other such open sets that
do. Hence the number of points in the inverse image of a point is locally constant.
That the orientations at all of these points are all the same is clear. This proves
the lemma. �

Theorem 3.3. As in lemma 2.16, let X be an oriented manifold with boundary of
dimension k, with the boundary of X being a manifold M that is oriented as the
boundary of X. If N is of dimension k − 1 and f : M → N extends to a smooth
map F : X → N , then deg(f ; y) = 0 for every regular value y.

Proof. Take y ∈ N . As indicated above, for such functions F and f , we have that
f−1(y) is equal to the endpoints of the line segment of F−1(y). Given this, we can
refer to these endpoints as a and b. We wish to show that, for every

sign dfa + sign dfb = 0.

Given this, we would have that, summing over all points in the inverse image of y,
that deg(f, y) = 0.
Let x ∈ F−1(y). Since F−1(y) is 1-dimensional, it makes sense to talk about a
vector tangent to F−1(y) at x. Let v1 be this vector, and let (v1, v2, . . . , vn) form a
positively oriented basis of TMx such that dFx takes (v2, . . . , vn) into a positively
oriented basis for TNy. That this can be done for all x ∈ F−1(y) follows from the
regularity of y.
Now, v1, being tangent to F−1(y), is a smooth function of x ∈ F−1(y), say v1(x),
which is defined above for all points outside of the boundary. On the boundary,
however, we can extend v1(x) to be defined by continuity; that is, we define v1(a)
and v1(b) via a limit. At one boundary point, v1 points outward, and at the
other it points inward. But since the orientation is preserved for all values of
x, we have that opposite orientations are determined on the boundaries. Hence,
sign dfa = 1, sign dfb = −1, so that the sum of the two is equal to 0.
On the other hand, suppose that y is not a regular value for F . By Sard’s theorem,
we can ensure the existence of some neighborhood U ⊂ N for which the degree is
locally constant within U and such that there is a y′ ∈ U that is regular for both f
and F . Applying the above results gives us that deg(y′; f) = 0 so that deg(y; f) = 0
as well. �

Theorem 3.4. The value deg(f ; y) is equal to the value of deg(g; y) if f is homo-
topic to g.
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Proof. Consider M× [0, 1] as a manifold and the homotopy F : M× [0, 1]→ N as a
smooth map. Then the degrees of F restricted to the boundary component is equal
to 0 by the above, and as the proof demonstrates, one end of the boundary gets the
reversed orientation; but we can say that F |M×{0}= f and F |M×{1}= g, which
gives us that deg(F |∂(M×[0,1]); y) = deg(g; y) − deg(f ; y) = 0. Hence deg(f ; y) =
deg(g; y). �

Corollary 3.5. The value of deg(f ; y) does not depend on choice of regular value.

Proof. Consider two regular values of f , y and z. Let h : N → N be a diffeomor-
phism which is isotopic to the identity and for which h(y) = z, the existence of which
is given by the homogeneity lemma. The homotopy between h and the identity is
also a homotopy between h◦f and f . Hence deg(h◦f, z) = deg(f, z). But h is bijec-
tive and orientation preserving, which means that deg(h◦ f, h(y)) = deg(h◦ f, y) =
deg(f, y), the last step following again from homotopy. Since h(y) = z, we have
deg(f, z) = deg(f, y). �

Henceforth we will refer to this common value as deg f . The theorem above
therefore indicates that f being homotopic to g implies that deg f = deg g.

Definition 3.6. Let v be a smooth vector field on an open set U ⊂ Rn. Let z ∈ U
be an isolated zero of the vector field v. Let Nε be a small disk containing a zero,
where we take small to mean that there are no other zeros inside of Nε. Define
v̂ : ∂Nε → Sn−1, and let the boundary of each Nε be oriented as the boundary of
the disk containing the zero. The index of v at z is the degree of v̂.

One might wonder whether the above definition is well defined for any ε > 0
sufficiently small. Consider let v̂1 : ∂Nε1 → Sn−1 and v̂2 : ∂Nε2 → Sn−1 be
two maps defined using the above construction. Then since the vectors in v vary
smoothly, v being a smooth vector field, we have that v̂1 is homotopic to v̂2. Thus
by the above, the index is well-defined. We will generally refer to the index at a
zero z by iz.
Now, suppose that a non-degenerate vector field v is defined on an open set U ⊂ Rn.
Consider a zero of the vector field. We note

Theorem 3.7. If v is a vector field with a zero z and f : U → V is a diffeo-
moprhism, then the index of v at an isolated zero z is the same as the index of
v′ = df ◦ v ◦ f−1 at f(z).

With this in mind, let Mk ⊂ Rn be a manifold, v a vector field on that manifold
with a zero z and a chart f : U → Rn for U containing z. Each vector field v on M
corresponds to a vector field w on U via the chart. Defined as such, the following
seems appropriate.

Definition 3.8. We define the index of v at z to be the index of w = df−1 ◦ v ◦ f
at f−1(z), noting that w is defined on an open set in Rk.

So, suppose our vector field v : U → Rn is defined on an open subset of Rn.
Consider the index at a zero. Recall from above that any orientation preserving
diffeomorphism is smoothly isotopic to the identity. So think of v as a function
from Rn to Rn. If, in a neighborhood around the zero, v preserves orientation,
that is, the determinant of the linear map is positive for all points inside the neigh-
borhood, then v is smoothly isotopic to the identity inside the neighborhood. If v
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reverses orientation, then v is smoothly isotopic to a reflection inside of the neigh-
borhood. But the key point is that if v is non-degenerate, then in a small enough
neighborhood, by the smoothness of the vector field, exactly one of the two must
hold. Therefore, in some small ball of radius ε around the zero, we have that v
can either be deformed isotopically into the identity or a reflection. But since the
degree is invariant under isotopy, we have that in the former case, the index must
be +1, and the latter case the index must be -1. This suggests that perhaps, for
any vector field at an isolated non-degenerate zero, the index is ±1. This is indeed
true, though we state it without proof.

Lemma 3.9. At a non-degenerate zero of a vector field v, the index is +1 if the
determinant dvz is positive and −1 if the determinant is negative.

Definition 3.10. For a manifold with boundary Mn ⊂ Rn, we define the Gauss
Mapping g : ∂Mn → Sn−1 as that which maps a point x in the boundary to the
normal unit vector; that is, the outward vector that is perpendicular to T (∂Mx).
We emphasize that M is an n dimensional manifold embedded in n dimensional
space, that is, the dimension of the manifold is the same as the dimension of the
space, so that the definition of the Gauss mapping makes sense and is well defined.

Theorem 3.11. Let v be a smooth vector field on a manifold with boundary M
with only nondegenerate zeros such that v points outward along the boundary. Then
the index sum is equal to the degree of the Gauss mapping g, and hence is the same
for any smooth vector field v.

Proof. Around every zero of our vector field, pick some ε > 0 such that the ball
of radius ε around the zero contains no other zeros. Removing all of these ε balls,
we end up having a new manifold with boundary. Let N be the manifold M with
all of the ε balls removed. We have v̂ : N → Sn−1 defined by v(x)

||v(x)|| is a smooth
function that maps our smooth vector field to Sm−1. But this is true on both the
boundary components and on the whole manifold; hence by theorem 3.3, since the
vector field is a smooth function that extends off of the boundary to another smooth
function, when restricted to the various boundary components, the degree of v(x)

||v(x)||
must be 0. Consider the boundary component of M . Since the vector field points
outward, it is homotopic to the Gauss mapping and hence has the same degree as
the Gauss mapping. Note that the index sum is equal to the degree of v(x)

||v(x)|| on all
of the other boundary components. However, when computing the index sum, the
spheres are oriented as the boundary, which means the standard orientation has a
vector pointing outward, that is, away from the zero. On the other hand, doing the
same for the degree of v(x)

||v(x)|| when restricted to the boundary components of the
new manifold, orienting the new boundary components gives us a vector pointing
inward. So, when computing the degree, since each boundary components have
opposite orientations as they did for computing the index, we see that the index
sum is equal to the opposite of the degree of v(x)

||v(x)|| . Hence since the degree of
v(x)
||v(x)|| restricted to the boundary of the new manifold is zero, and since it is also
equal to the degree along all of the various boundary components we have

deg g −
∑
z

iz = 0

which gives the desired result. �
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We now use this approach to yield an important theorem

Theorem 3.12. Let v be a smooth vector field on a manifold without boundary
Mk of dimension k with only nondegenerate zeros. Let Nε = {x ∈ Rn | ||x− y|| ≤
ε, y ∈ Mk}; in other words, Nε thickens Mk to be in Rn (We note, without proof,
that for ε sufficiently small, Nε is a closed manifold with boundary). Then the index
sum

∑
z iz is equal to the degree of the Gauss mapping g : ∂Nε → Sn.

Proof. To show this, we thicken our manifold M appropriately so that it becomes
a manifold with boundary of the same dimension as our ambient space. We can
define r : Nε → M by letting r(x) be the closest point to x in M . Note that, due
to our smoothness conditions of the manifold, this map is well defined for a small
enough ε. Since it is also 0 for all x ∈ M , we can therefore use it to create a new
vector field on Nε, the thickened manifold, that is outward on the boundary and
which has the same zeros and indices as v.
Explicitly, consider f(x) = ||x− r(x)||2. By a computation of the gradient, we see
∇f(x) = 2(x− r(x)). Note that f−1(ε2) puts us on ∂Nε, since these are precisely
the points for which ||x− r(x)|| = ε. Since the gradient gives us the normal vector,
we have that the Gauss map on f−1(ε2) described above is given by

g(x) =
∇f(x)
||∇f(x)||

=
2(x− r(x))
||2(x− r(x))||

=
x− r(x)
||x− r(x)||

=
x− r(x)

ε
.

Note that on M , r(x) = x. Hence we can extend v to a vector field on Nε using
a vector field w(x) = (x− r(x)) + v(r(x)). Note that this is actually an extension
of the vector field; vectors were n dimensional when first defined on Mk via v, and
they are n dimensional when defined on N via w. Note

w(x) · g(x) = [(x− r(x)) + v(r(x))] · [x− r(x)
ε

] =
||x− r(x)||2

ε
+ v(r(x)) · (x− r(x)).

Clearly v(r(x)) and x − r(x) are orthogonal; the closest point in Euclidean space
is always orthogonal to any tangent vectors, and every vector in a vector field is
a tangent vector. So on the boundary of Nε, we see that ||x− r(x)|| = ε and
v(r(x)) · (x− r(x)) = 0. Hence the above equation simplifies to w(x) · g(x) = ε > 0,
so w(x) points outward at the boundary.
Now, our vector field w can only have a zero if v has a zero, because the two
vectors (x − r(x)) as v(r(x)) are orthogonal, and hence their sum cannot be zero.
So, consider the derivative of w. Note that TNz = Rn. If h ∈ TMz, then dwz(h) =
dvz(h), and if h ∈ TM⊥z , dwz = h. Hence the derivatives at a zero have the same
determinant, which means their index sums are the same since the vector field is
non-degenerate. Applying the previous theorem to Nε, a n manifold living in n
dimensional space with boundary, we get the desired result. �

Putting this together, we have proved:

Theorem 3.13. The sum of the indices is invariant; that is, we have that the sum
of the indices of a smooth vector field v is the same for any v on a manifold M¿

4. Fun with the Euler Characteristic

In this section we analyze the Euler characteristic more closely. Recall that
the definition from the introduction. Consider some triangulated space X, and let
Cn(X) be a real vector space with n-simplices [x0, . . . , xn] (where an n− simplex
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is just a collection of n vertices). The xis refer to the vertices chosen, and each
different combination forms a different basis vector of our vector space, which, em-
phasizing further, we are taking to be over R. Hence we can think of the dimension
of the vector space as being the different number of such combinations. To keep
ordering straight, we adopt the following convention: let σ be a permutation of
0, 1, . . . , n, representable by a matrix consisting of exactly one 1 in each column
and each row, and zeros elsewhere, and note that σ is representable by a matrix.
Then given a k simplex,

[n0, . . . , nk] = det(σ)[nσ(0), . . . , nσ(k)].

Definition 4.1. Suppose we have a sequence of vector spaces (Cn)n∈Z and linear
maps ∂n : Cn → Cn−1 such that ∂n ◦ ∂n+1 = 0 for all n. Such a sequence is called
a chain complex. The homomorphisms are called boundary operators.

Remark 4.2. One can substitute groups for vector spaces and homomorphisms for
linear transformations, but for this paper the above definition is convenient.

In theory, one could take these sequences to have no starting or stopping ele-
ments. However, if we only have k groups, then we can take Cn = 0 for n > k and
obtain a chain complex.

Now consider the following linear homomorphisms:

∂n([m0, . . . ,mn]) =
n∑
k=0

(−1)k([m0, . . . , m̂k, . . . ,mn])

where m̂k means that we take the n− 1 simplex formed by deleting the kth vertex.
That this defines a homomorphism is straightforward, but one can also show that
∂n ◦ ∂n+1 = 0. Indeed, note that

∂n ◦ ∂n+1([m0, . . . ,mn+1]) = ∂n

( n∑
k=0

(−1)k([m0, . . . , m̂k, . . . ,mn])
)

=
n∑
k=0

(−1)k(∂n([m0, . . . , m̂k, . . . ,mn])).

Pick an arbitrary k, and consider ∂n([m0, . . . , m̂k, . . . ,mn]). For each of our k − 2
simplices [m0, . . . , m̂j , m̂k, . . . ,mn], note that there is exactly on other term in the
larger sum with the same elements removed, that is, [m0, . . . , m̂k, m̂j , . . . ,mn], and
since each of these obtain opposite signs, we have ∂n ◦ ∂n+1 = 0 as desired.

Definition 4.3. Suppose we have some chain complex consisting of groups Cn and
homomorphisms ∂n. We define the ith homology group to be

Hn(X; R) = ker ∂n/im (∂n+1)

Definition 4.4. A n-cell is an (assumed to be closed) n-dimensional object home-
omorphic to a closed n-ball; if n = 0 then the n-cell is taken to be a single point.
A 0-skeleton therefore consists of a collection of points. Now, supposing we have
a k − 1-skeleton, we inductively define a k-skeleton to be a collection of k cells
whose boundary components are attached at elements of the k − 1-skeleton. Note
immediately that this makes sense, since the boundary of segments are points, the
boundary of disks are segments, and so on. A space formed in this way is called a
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CW-complex. If n is finite then the topology is on a CW-complex X is usual, but
if n is infinite, then we require a set A ⊂ X is open if and only if A ∩Xn is open
for all n.

Remark 4.5. The notion of “attach” was not formulated entirely precisely in the
previous definition, so some further clarification is necessary. Suppose we have
Xn−1 and n − 1-skeleton, and if Sn−1 is the boundary of an n−cell, we have
g : Sn−1 → Xn−1 a continuous map. In this case, attaching an n−cell is the
consideration of Sn−1∪Xn−1 with the identification of x ∈ Sn−1 with g(x) ∈ Xn−1.

Proposition 4.6. Let Cn be a chain complex of finite dimensional real vector
spaces, and take Cn = 0 if |n| > N . Then

N∑
i=−N

(−1)i dimCi =
N∑

i=−N
(−1)i dimHi.

Proof. Since Hi = ker ∂i/im ∂i+1, we have
N∑
−N

(−1)i dimHi =
N∑

i=−N
(−1)i[dim ker ∂i − dim im ∂i+1]

=
N∑

i=−N
(−1)i dim ker ∂i +

N∑
i=−N

(−1)i+1 dim im ∂i+1

=
( N∑
i=−N+1

(−1)i[dim ker ∂i + dim im ∂i]
)

+ (−1)−N ker ∂−N + (−1)N+1im ∂N+1.

By rank nullity, we have dim ker ∂i + dim im ∂i = dimCi. Also, by assumption,
we have CN+1 and C−N−1 are both 0. Hence im ∂−N = 0, since this boundary
operator maps to −N − 1 which is a 0-dimensional space, and im ∂N+1 = 0, since
this boundary operator maps from N + 1 which is a 0 dimensional space. Thus, as
desired,
N∑

i=−N
(−1)i dimHi =

( N∑
i=−N+1

(−1)i dimCi

)
+ (−1)−N dim ker ∂−N + (−1)−N dim im ∂−N + 0

=
N∑

i=−N
(−1)i dimCi

�

Definition 4.7. Let Hi(M) be the ith homology group of M . The Euler charac-
teristic is

∑m
i=0(−1)i dimHi(M).

Corollary 4.8. The two definitions of the Euler characteristic are equivalent.

Proof. The dimensions of Ci correspond to the number of vertices, edges, faces, etc.
used in a triangulation. Hence the result follows directly from proposition 3.5. �

Observe that the construction of the CW-complex is directly related to the tri-
angulation of a manifold. Indeed, take some triangulation of an arbitrary manifold.
The vertices correspond to the 0-cells, the edges correspond to the 1-cells, the faces
correspond to the two cells, and so on.
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Now, we associate a vector space to each CW-complex, that is, we consider some
CW space X, and let CCWn (X) be a real vector space over a basis consisting of
n-cells, analogously to simplicial complexes. Not only is this the case, but there are
boundary operators for this chain complex that allow us to define homology over
R in the same way. This is encapsulated in the following theorem.

Theorem 4.9. For any X that is both a triangulated space and a CW-space, CW-
homology is isomorphic to simplicial homology.

See [3] for more details. Thus the above proposition carries over unchanged. In
the next section we explain how CW-homology can be used find the Euler charac-
teristic based on a special class of functions.

5. Morse Theory

In this section we explain the relevance of Morse theory to the discussion of the
Euler Characteristic. Let f : M → R be a twice differentiable function. Recall
from multivariable calculus the definition of the Hessian as the matrix of cross
partials. We say p is critical if dfp : TMp → R is zero, and non-degenerate if the
Hessian is non-singular. Since the Hessian is symmetric, by the spectral theorem, it
is diagonalizable, and at non-degenerate critical point, all eigenvalues are nonzero.

Definition 5.1. For a function f : M → R as above with only non-degenerate crit-
ical points, the index of f at a critical point p is the number of negative eigenvalues
of the Hessian. Such a function is called a Morse function.

Note that Morse functions always exist; see [2]. Note that the definition of the
index of a critical point is not to be confused with the index of a zero of a vector
field, though we will often refer to the index of a critical point of f at j using
notation if,j . Roughly speaking, Morse theory studies the indices of these critical
points. This might seem somewhat complicated, but actually given appropriate
charts, life isn’t so bad after all.

Lemma 5.2 (Morse). Given a k-dimensional manifold M , a function f : M → R
and a non-degenerate critical point p for f , there is some chart φ in a neighborhood
of p such that φ(p) = 0 and f(x1, . . . , xk) = f(p)− x2

1 − · · · − x2
i + x2

i+1 + · · ·+ x2
k,

where i is the index of f at p.

Definition 5.3. Let X and Y be two topological spaces. We say that X and Y
are of the same homotopy type if there exist functions f : X → Y and g : Y → X
such that f ◦ g ∼ identityX and g ◦ f ∼ identityY .

Example 5.4. Of course, two isomorphic topological spaces are of the same ho-
motopy type. Additionally, R2 and a point are of the same homotopy type. Let
f : p → R2 be the map that sends p point to the origin and g : R2 → p be the
map that send every point to p. Then fg is the identity and gf is homotopic to
the identity via the homotopy h : R2 × [0, 1]→ R2 defined by h((x, y), t) = t(x, y).

We see that there are plenty of other examples from the following theorems.

Theorem 5.5. If f is a smooth real valued function on a manifold M , and if a and
b are points such that a < b and f−1[a, b] has no critical points, then f−1(−∞, a] is
diffeomorphic to f−1(∞, b]; in particular, these two sets are of the same homotopy
type.
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Theorem 5.6. If f is a smooth real valued function on a manifold M , and p a
non-degenerate critical point with index i, if f−1([f(p)−ε, f(p)+ε]) is compact with
exactly one critical point, then for all ε sufficiently small, f−1(−∞, f(p) − ε] with
an i-cell attached appropriately is of the same homotopy type as f−1(−∞, f(p)+ε].

Indeed, attaching an n−cell is meant in the same rigorous formulation as in-
dicated in the remark describing the construction of CW-complexes. Now, one
can show that homology groups are invariant under homotopy, meaning that two
manifolds of the same homotopy type have the same Euler characteristic. Hence,
suppose we have some Morse function f : M → R. Then M has some associated
CW-structure, and it consists of an attached i cell for every critical point of index
i, by the above lemma.
So, suppose we have a Morse function f as above. By the above theorems, a Morse
function gives us CCW∗ (M), which in turn allows us to compute the Euler char-
acteristic. Thus let if,j be the number of critical points of f with index j. We
have:

Corollary 5.7. For any closed manifold M and a Morse function f ,
n∑
j=0

(−1)j ij = χ(M).

Proof. The number of critical points with index j is the number of cells of dimension
j which must be attached. By corollary 4.8, the alternating sum is equal to the
Euler characteristic. �

Examples 5.8. We could calculate the Euler characteristics of many shapes, but
in particular we use these theorems to calculate the Euler characteristics of a few
broad manifolds.
1) Any odd dimensional closed manifold has Euler characteristic 0. To see this,
consider some Morse function f : M → R. Then by the corollary,

∑n
j=0(−1)j if,j =

χ(M). But −f is also a Morse function, and hence
∑n
j=0(−1)j i−f,j = χ(M). Any

point x that is a critical point of f with index k is also a critical point of −f with
index n− k, and visa versa. Thus
n∑
j=0

(−1)j if,j+
n∑
j=0

(−1)j i−f,j =
n∑
j=0

(−1)j if,j+
n∑
j=0

(−1)j if,n−j =
n∑
j=0

(−1)j if,j+(−1)j if,n−j = 0,

where the last equality follows from n being odd. So 0 = 2χ(M) and hence χ(M) =
0, as claimed.
2) The Euler Characteristic of an even dimensional sphere is 2. To see this, consider
the height function. This is a Morse function with two critical point. The first
critical point has index 0 and the second critical point has index n. Since n is even,
we have the Euler characteristic is (−1)0 · 1 + (−1)n · 1 = 2.
3) The Euler characteristic of T2 is -2; if we embed this manifold into R3, then
we can define a projection function onto one of the axes, and this is a Morse
function (though one should be careful, because the wrong projection is not a Morse
function). At the bottom, we see that the function is increasing in two directions
so its index is 0. There are two other points in the center which are saddle points,
and at the top, looking in both directions on the Manifold we see the function is
decreasing. Hence the Euler characteristic is 10 + (−1)1 + (−1)1 + (−1)2 = −2.
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Similarly, for the two holed torus, everything is the same except there are now 4
saddle points, meaning that the Euler characteristic is now −4. In fact, the genus
of any g holed torus is 2− 2g, since adding a hole to a torus adds two saddle points
and thus decreases the genus by 2.

As a final example, we give the following proposition which is fundamental in
the proof of Poincare-Hopf.

Theorem 5.9. On any closed manifold M there is a vector field v such that the
sum of the indices of the critical points of v is equal to the Euler characteristic of
M .

Proof. By the Morse Lemma, we know that there is a function f : M → R such
that, for any critical point p on M , we have

f(x1, . . . , xk) = f(p)− x2
1 − · · · − x2

i + x2
i+1 + · · ·+ x2

k.

A point p is a critical point on f is if the gradient of f at p is zero, so it also happens
to be a zero of the vector field defined by the gradient of the above function. If the
index is k, there are k negative eigenvalues, so that the determinant is positive if
k is even and negative if k is odd, which means that the index of the zero of the
vector field is (−1)k by the above. Hence the sum of the indices of the vector field
is equal to the alternating sum of indices of the critical points described above.
Thus the sum of the indices of this vector field is equal to the Euler characteristic
as desired. �

6. The Poincare-Hopf Theorem

We now return to the Poincare-Hopf theorem.

Theorem 6.1 (Poincare-Hopf). Let v be a vector field on M , where M is without
boundary, which also only has isolated zeros. Then the sum of the indices of the
zeros of the vector field is equal to the Euler characteristic of the manifold.

Remark 6.2. The theorem is true from M with boundary, but requires some effort
because the differentiability conditions in the below steps are not as immediate.
The version of the theorem for manifolds with boundary requires that the vector
field be pointing outward at the boundary.

Proof. Above, we show that the sum of the indices of a vector field is invariant,
since it is equal to the degree of the Gauss map, which means it suffices to find
a single example of a vector field and compute its index. Using Morse theory, we
found that there is such a vector field, and that for this vector field, the sum of the
indices at the zero is equal to the Euler characteristic. Hence the statement holds
for manifolds with boundary with only non-degenerate zeros.
Now, suppose we have a vector field v defined on an open set U ⊂ Rk with a
degenerate zero z. Let ε > 0 be so small that z is the only zero inside a ball of
radius 2ε. Let f : U → [0, 1] be a smooth function such that f(x) = 1 in a ball
of radius ε around z, and 0 outside of ball of radius 2ε. Consider the vector field
v̂(x) = v(x)−f(x)y, where y is some regular value of the vector field v (which exists
by Sard’s theorem). In fact, note that ||v(x)|| is greater than some δ > 0 for all x
outside of the ball of radius ε and inside the ball of radius 2ε. Hence we can pick y
so small such that ||y|| < δ, so that all of the zeros of the new vector field are inside
of the ball of radius ε. Now, however, if we consider any zero of the new vector field,
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we see that since f(x) is constant inside the ball of radius ε, that dv̂(z′) = v(z′) 6= 0.
Hence this is a nondegenerate vector field. Doing this for every zero, we thereby
obtain a non-degenerate vector field. To finish this part of the theorem, we must
show that the index of the vector field is unchanged. Specifically, let iv,z be the
index of a zero of the original vector field. Note that, by the definition of the index,
the index is equal to the degree of the map v(x)

||v(x)|| around ∂B2ε(z). We show that,
if
∑
z′ iv̂,z′ is the sum of the indices of v̂ at the zeros z′ inside the ball of radius

2ε, then iv,z =
∑
z′ iv̂,z′ . This argument, however, is almost identical to the one in

theorem 3.12. Let ε′ > 0 be so small such that there are no zeros outside of a ball of
radius ε′ around each zero z′. Removing these balls, we consider the degrees of the
maps at each of the boundary components. This must be zero, since oriented as the
boundary, it extends to a smooth vector field. The degree on the outer component
is simply iz, since v = v̂ on this component. Using an identical argument as above,
we have on the other components the degree is −

∑
z′ iv̂,z′ . Hence

iv,z −
∑
z′

iv̂,z′ = 0

and the desired result follows.
After using an appropriate chart to transfer the above argument from an open
subset U ⊂ Rk to a k dimensional manifold Mk, we have that the theorem holds
even for degenerate zeros. �

7. Consequences and Applications of the Theorem

To reference the question which began the section, we now consider shapes we
are typically familiar with and see

Theorem 7.1 (Hairy Ball). A smooth vector field on an even dimensional sphere
must have at least 1 zero.

Proof. By Poincare Hopf, the index sum is the Euler characteristic, which is 2. If
there were no zeros, the index sum would be zero. Hence, there is a zero. �

Additionally, for g ≥ 2, we see that a smooth vector field on g-holed torus must
have a zero, for the exact same reason. However, this is not true for the 1- holed
torus, for which there is, indeed, smooth a vector field with no zero; letting the
torus lie flat in R3, we can let all vectors have length 1 and lie parallel to the x-
axis. This alludes to the possibility of rotating the 1 holed torus so that all points
are rotated approximately 1 unit. When we apply this to the sphere, we see that
this can not occur. Thus we have the following theorem as well.

Theorem 7.2. Any rotation of the 2 dimensional sphere has exactly 2 fixed points.

Proof. Assign a vector at each point x that represents the magnitude of the rotation
of x, that is, the distance between the starting and ending position of x after it is
rotated. This defines a smooth vector field on the sphere. If the Euler characteristic
is not equal to zero, then there must be a zero for this vector field, corresponding
to a point which does not move. Indeed, this is a nondegenerate vector field, so
each zero has index +1 or -1. By symmetry, it has the same index at every zero,
since the rotation looks the same at every zero. Since the Euler characteristic is 2,
then there must be 2 zeros with index +1. �
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One could think about how to extend the above theorem to other manifolds. For
example, as should be expected since the Euler characteristic of the circle is 0, one
can rotate a circle so that no points are fixed.
Finally, note that zeros with a different index look different. Thus we see that,
given the existence of a zero on our manifold M , being told the index gives us
information as to what the index is, thereby limiting what the vector field can look
like at that zero. If a zero of index 1 is added to a torus, for example, then a zero
of index -1 has to be added, or multiple other zeros with index sum equal to -1.
Hence we see that altering the vector field locally to include a zero must have global
ramifications as to what the vector field looks like elsewhere, in particular at the
other zero.
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