Equivariantly Twisted Cohomology Theories

John Lind

The Johns Hopkins University

AMS/MAA Joint Meetings – Baltimore 2014 AMS Special Session on Homotopy Theory (1/17/2014)

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Twisted cohomology theories

A twisted cohomology theory is a functorial algebraic invariant of topological spaces that behaves similarly to a cohomology theory, but depends on additional local information. Examples:

- Ordinary cohomology H^{*}(X; A) with coefficients in a local coefficient system A
- Twisted K-theory K^{*}_E(X) with coefficients in a U(1)-gerbe E.

A U(1)-gerbe E is a higher categorical version of a line bundle and determines a class $[E] \in H^3(X; \mathbf{Z})$.

 $K_E^*(X) =$ Grothendieck[*E*-twisted vector bundles]

Another point of view: *E* is a principal $PU(\mathcal{H})$ -bundle over *X* for a fixed Hilbert space \mathcal{H} .

$$\mathcal{K}_{\mathcal{E}}^{*}(X) = \pi_{-*}\Gamma(\mathcal{E} \times_{\mathsf{PU}(\mathcal{H})} \mathsf{Fred}(\mathcal{H}))$$

Twisted cohomology theories are represented by parametrized spectra

- R: a ring spectrum
- X: a topological space

Twisted *R* theory is a cohomology theory $R_{\tau}^*(-)$ defined on the category (Spaces)/*X* that depends on a choice of local twisting τ on *X*.

The twisted theory $R_{\tau}^*(-)$ is represented by a parametrized spectrum R_{τ} over *X*:

$$\tau \colon X \longrightarrow B\mathrm{GL}_1 R \quad \rightsquigarrow \quad R_\tau = R \wedge_{\Sigma^\infty_+ \mathrm{GL}_1 R} \Sigma^\infty_X E(\tau)$$

 $E(\tau)$ is the "principal GL₁*R*-bundle" over *X* classified by τ .

In the case of twisted *K*-theory $K_E^*(-)$, the U(1)-gerbe $[E] = [E(\tau)] \in H^3(X; \mathbb{Z})$ is classified by a map

$$\tau\colon \textbf{X} \longrightarrow \textbf{K}(\textbf{Z},\textbf{3}) \simeq \textbf{B} \textbf{P} \textbf{U}(\mathcal{H}) \simeq \textbf{B} \textbf{C} \textbf{P}^{\infty}_{\otimes} \subset \textbf{B} \textbf{G} \textbf{L}_1 \textbf{K}.$$

(ロ) (同) (三) (三) (三) (○) (○)

Goal: a framework for equivariantly twisted cohomology theories

- G: compact Lie group
- X: a G-space
- R: G-ring spectrum

My goal is to set up a framework to define and work with *G*-equivariant twisted *R*-theory.

This parametrized cohomology theory should:

- be represented by a parametrized G-spectrum R_{τ} over X
- agree with *R* when *X* = *
- depend on an equivariant twist classified by a *G*-map:

$$\tau: X \longrightarrow B_G \mathrm{GL}_1 R$$

(ロ) (同) (三) (三) (三) (○) (○)

• recover previous definitions (for example, of twisted equivariant *K*-theory).

Monoidal presentations of A_{∞} *G*-spaces

- \mathcal{I}_G : the category with
 - objects: G inner product spaces V
 - morphisms: linear isometries $V \longrightarrow W$

An \mathcal{I}_G -space is a *G*-equivariant functor $X : \mathcal{I}_G \longrightarrow G$ -spaces. There is a symmetric monoidal product \boxtimes on \mathcal{I}_G -spaces such that the functor

 $X \mapsto \operatorname{hocolim}_V X(V)$

induces Quillen equivalences:

 $(\mathcal{I}_G\text{-spaces}) \simeq (G\text{-spaces})$ $(\boxtimes\text{-monoids}) \simeq (A_{\infty} G\text{-spaces})$

(ロ) (同) (三) (三) (三) (○) (○)

I apologize for being evil, but for this talk I will treat these equivalences as if they were *equalities*.

Monoidal presentations of A_{∞} *G*-spaces

- \mathcal{I}_G : the category with
 - objects: G inner product spaces V
 - morphisms: linear isometries $V \longrightarrow W$

An \mathcal{I}_G -space is a *G*-equivariant functor $X : \mathcal{I}_G \longrightarrow G$ -spaces. There is a symmetric monoidal product \boxtimes on \mathcal{I}_G -spaces such that the functor

 $X \mapsto \operatorname{hocolim}_V X(V)$

induces Quillen equivalences:

 $(\mathcal{I}_G\text{-spaces}) \simeq (G\text{-spaces})$ $(\boxtimes\text{-monoids}) \simeq (A_{\infty} G\text{-spaces})$

(ロ) (同) (三) (三) (三) (○) (○)

I apologize for being evil, but for this talk I will treat these equivalences as if they were *equalities*.

Isotropy subgroups of $\Pi \rtimes G$

Working towards a definition of $B_G GL_1 R$, our general setup is:

Π: a grouplike A_{∞} *G*-space (think Π = GL₁*R*) Π ⋊ *G*: the product A_{∞} *G*-space determined by *G* ∩ Π

 Π acts on X through G-maps $\iff \Pi \rtimes G$ acts on X

 Π acts freely on *X* when the isotropy subgroups of $\Pi \rtimes G$ are of the form:

$$H_{\alpha} = \{ (\alpha(h), h) \in \Pi \rtimes G \mid h \in H \}$$

for some subgroup H < G and 1-cocycle $\alpha \colon H \longrightarrow \Pi$.

The monoidal model for the A_{∞} space Π allows us to make sense of the cocycle condition

$$\alpha(\boldsymbol{g}) \cdot {}^{\boldsymbol{g}} \alpha(\boldsymbol{h}) = \alpha(\boldsymbol{g}\boldsymbol{h}).$$

< □ > < 同 > < 三 > < 三 > < 三 > < ○ < ○ </p>

The construction of $E_G \Pi \longrightarrow B_G \Pi$

 \mathcal{O} : the orbit category of $(\Pi \rtimes G)$ -spaces of the form $(\Pi \rtimes G)/H_{\alpha}$ Define

$$E_{G}\Pi = B(*, \mathcal{O}, R) = \underset{[(\Pi \rtimes G)/H_{\alpha}] \in \mathcal{O}}{\text{hocolim}} (\Pi \rtimes G)/H_{\alpha}$$

Then $E_G \Pi \longrightarrow B_G \Pi = E_G \Pi / \Pi$ is the universal "principal Π *G*-bundle". More generally, we can define

 $E_{\mathcal{F}}\Pi \longrightarrow B_{\mathcal{F}}\Pi$

for any family \mathcal{F} of isotropy "subgroups":

 $\mathcal{F} \subset \{H_{\alpha} < \Pi \rtimes G\}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Definition: Equivariant twists of a G ring spectrum R

An equivariant twist for *R*-theory is a *G*-map

 $\tau \colon X \longrightarrow B_G GL_1 R.$

By pulling back[†] the universal bundle $E_G GL_1 R$, there is an associated $GL_1 R$ -bundle $E(\tau) \longrightarrow X$.

Definition

The τ -twisted *R*-cohomology of *X* is given by the homotopy classes of sections of the parametrized *G*-spectrum R_{τ} classified by τ :

$$R^{\star}_{\tau}(X) = \pi_{-\star} \Gamma(R \wedge_{\Sigma^{\infty}_{+} \mathrm{GL}_{1} R} \Sigma^{\infty}_{X} E(\tau))$$

 $R_{\tau}^{\star}(-)$ is an RO(G)-graded cohomology theory defined on *G*-spaces/*X*.

The *G*-homotopy type of $B_G GL_1 R$

Let H < G. If $\alpha : H \longrightarrow \Pi$ is the 1-cocycle with associated $H_{\alpha} < \Pi \rtimes G$, then define

$$\Pi^{H_{\alpha}} = ``\{\pi \in \Pi \mid \pi \cdot \alpha(h) \simeq \alpha(h) \cdot {}^{h}\pi\}''$$

 $\Pi^{H_{\alpha}}$ is an A_{∞} space with (non-equivariant) delooping $B(\Pi^{H_{\alpha}})$. Letting α run over equivalence classes of 1-cocycles, we get:

$$(B_G\Pi)^H = \coprod_{[H_\alpha] \in H^1(H;\Pi)} B(\Pi^{H_\alpha})$$

Work in progress: understand the C2-homotopy type of

 $B_{C_2}GL_1K\mathbf{R}.$

(日) (日) (日) (日) (日) (日) (日)

Twisted equivariant K-theory

Returning to full generality, the (non-equivariant) principal Π-bundle

 $EG \times_G E_F \Pi \longrightarrow EG \times_G B_F \Pi$

is classified by a map $EG \times_G B_F \Pi \longrightarrow B\Pi$, which induces

$$[X, B_{\mathcal{F}} \Pi] \longrightarrow [EG \times_G X, B \Pi].$$

By naturality for the inclusion $PU(\mathcal{H}) \simeq CP^{\infty} \subset GL_1K$:

We will use this diagram to compare Borel twists with equivariant twists.

Use the family of isotropy subgroups

 $\mathcal{F} = \{ \mathcal{H}_{\alpha} < \mathsf{PU}(\mathcal{H}) \rtimes \mathcal{G} \mid \alpha \colon \mathcal{H} \longrightarrow \mathsf{PU}(\mathcal{H}) \text{ is stable} \}$

 \widetilde{H} : the S¹-central extension determined by α

 α is stable if the image of

$$\mathsf{index}\colon\mathsf{Fred}(\mathcal{H})^lpha\longrightarrow {\pmb{R}_lpha}({\pmb{H}})={\pmb{R}}(\widetilde{{\pmb{H}}})$$

is a subgroup containing all representations of \tilde{H} on which S^1 acts by multiplication.

The top map is an isomorphism [Lück-Uribe]:

Twisted equivariant K-theory vs. equivariantly twisted K_G -theory

Starting with

$$[\tau] \in H^{3}(EG \times_{G} X; \mathbf{Z}) \cong [EG \times_{G} X, BPU(\mathcal{H})],$$

we get an equivariant twist $f(\tau) \colon X \longrightarrow B_{\mathcal{F}}GL_1K$.

For *K* the complex *K*-theory spectrum with trivial *G*-action, our definition of $f(\tau)$ -twisted *K*-theory agrees with that of Atiyah-Segal, Hopkins-Freed-Teleman, Lupercio-Uribe:

$$\mathcal{K}^*_{\tau}(X)\cong\mathcal{K}^*_{f(\tau)}(X)$$

Q: what about twists of fully equivariant K-theory K_G ?

Welcome to the Land of Pleasant Living!