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Abstract

Universal quantification in logic correspond, in categorical models, to
right adjoints to weakening. However, in certain weak models of dependent
type theory, known as comprehension categories, this is not always the case.

In dependent type theory, universal quantification is given by the de-
pendent product type. In some comprehension categories, those called full,
dependent products do correspond to right adjoints to weakening, but this
does not hold in general.

In this thesis we present a new description of dependent products in
comprehension categories as relative adjoints, and show that this holds in
arbitrary comprehension categories.
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1 Introduction
It was first recognised by Lawvere in the 1960s [Law70] that quantifiers in
first-order logic (or generally, in intuitionistic higher-order logic) correspond to
adjoints in toposes. We illustrate the syntactic presentation of these adjunctions
with the following example. Let x̄ denote a list of variables x̄ = G1 , G2 , . . . , G= .
Let ∗ be the operation taking a formula !(x̄), with at most the variables in x̄ free,
to the same formula considered as a formula with at most (x̄, H) free (where H is
a fresh variable). The rules for ∀ give the following two-way rule

∗!(x̄) ` #(x̄, H)
!(x̄) ` ∀H.#(x̄, H)
=====================

where the direction top-to-bottom is the ∀-introduction rule, and the converse is
∀-elimination. Essentially this example demonstrates, without going into all the
details, that ∀ is a right adjoint to the weakening operation ∗:

∗ a ∀.
Likewise one can show that the existential quantifier, ∃, is a left adjoint to
weakening: ∃ a ∗. Full details of this example can be found in [Awo10].

In the 1970s and 1980s Per Martin-Löf developed his intuitionistic dependent
type theory (MLTT), with dependent products Π and dependent sums Σ which
under the Curry-Howard correspondence are analogous to the quantifiers ∀ and
∃ respectively (see [Mar84] for an introduction). Hofmann [Hof95], improving
on work by Seely in [See84], constructed a model of dependent type theory
(a Category with Attributes [Car86]) from locally cartesian closed categories,
allowing one to interpret the syntax of type theory in a LCCC.

A categorical structure more general than LCCCs, Categories with Attributes
and Toposes, that has proven to be useful when constructing models of depen-
dent type theory, is Comprehension Categories, introduced by Jacobs in [Jac93].
Comprehension categories utilizes the language of fibred category theory to
interpret contexts, types and type dependencies of dependent type theory as
structure on a fibration of categories.

Comprehension categories are in general not strict models of dependent type
theory. However, it is often possible to obtain a CwA from a comprehension
category, that is a model of the intended type theory.

Jacobs showed, as Lawvere did for quantifiers in topoi, that quantifiers of de-
pendent type theory in full comprehension categories are given by fibred adjoint
functors to the weakening functor 〈6〉. For example universal quantification,
denoted by Π, is a fibred right adjoint:

〈6〉 a Π.
This holds for comprehension categories with the extra assumption that they
are full, meaning that morphisms between types correspond bĳectively to
morphisms between projections of extended contexts [Jac93].

In this thesis we generalise Jacobs’ description of quantifiers as adjoints, to
comprehension categorieswithout this extra assumption, and show that universal
quantification in arbitrary comprehension categories correspond to a fibred
relative right adjoint

W a6 6 ◦Π.
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2 Preliminaries
2.1 Relative adjunctions
In this section we look at a generalisation of adjoint functors between categories
in what is called relative adjoint functors, introduced by Ulmer in [Ulm68].

Definition 2.1.0.1 ([Ulm68, Definition 2.2]). Let AAA, BBB and CCC be categories, and
F: AAA→ BBB, J : AAA→ CCC and U: BBB→ CCC be functors. F is called a left adjoint to U
relative to J if for each pair of objects 0 ∈ AAA, 1 ∈ BBB there is a bĳection

Φ0,1 : BBB(F0, 1) � CCC(J0,U1) (1)

natural in 0 and 1. We say that F is J-left adjoint to U and use the notation F Ja U.
Dually, F is said to be J-right adjoint to U if for each pair 0 ∈ AAA, 1 ∈ BBB there is

a bĳection
Θ0,1 : BBB(1, F0) � CCC(U1, J0) (2)

natural in 0 and 1, and we write U aJ F in this case.

Note that the definitions above are asymmetrical. F being a J-left adjoint of
U does not imply that U is a J-right adjoint of F. It is however the case when one
take J to be the identity functor, where one obtain the usual hom-set definition
of adjoint functors.

While adjoint functors induce two natural transformations - the unit and the
counit - relative adjunctions induce only one:

F Ja U determines a relative unit � : J⇒ UF
U aJ F determines a relative counit & : UF⇒ J,

obtained by evaluating (1) and (2) at IdF0 .
The following lemma will be useful later, and is proved in the same way as

the corresponding lemma for adjoint functors. A similar statement exists for
J-right relative adjoint functors.

Lemma 2.1.0.2 ([Ulm68, Lemma 2.7]). Let AAA, BBB and CCC be categories and F: AAA→ BBB,
J : AAA→ CCC and U: BBB→ CCC functors. Then F is J-left relative adjoint of U iff there exists
a natural transformation # : J⇒ UF such that for each pair 0 ∈ AAA, 1 ∈ BBB the composed
map

BBB(F0, 1) U→ CCC(UF0,U1) #→ CCC(J0,U1)
is a bĳection.

A noteworthy difference between adjunctions and relative adjunctions is that
the latter does not generalise to 2-categories. The definition 2.1.0.1 refers to a
natural isomorphism of hom-sets, just as a natural isomorphism is given as a
definition of adjoint functors. This makes sense in the 2-category Cat where
every object is a category, and we can refer to their internal collections of objects
and arrows when defining adjunctions and relative adjunctions. In a general
2-category the objects are not categories, however. To define adjunctions in a
2-category one can observe that equivalent to the hom-set definition of adjoint
functors is to require two natural transformations � : Id⇒ LR, & : RL⇒ Id that
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pastes together appropriately (the “triangle identities”). This can be translated
to the language of 2-categories in such a way that it captures both the essence
of adjunctions, and recovers adjoint functors when specialised to Cat. We will
give yet another, equivalent, definition of adjunctions in 2-categories in terms of
absolute liftings which we will define next.

Definition 2.1.0.3 ([SW78]). For 1-cells 5 : 0 → 2, ? : 1 → 2 in a 2-category, a
left lifting of 5 through ? is a pair Lift? 5 = ( 5̂ , �) consisting of a 1-cell 5̂ : 0 → 1
and a 2-cell � : 5 ⇒ ? ◦ 5̂ such that for any other pair (6 : 0 → 1, � : 5 ⇒ ? ◦ 6)
there is a unique 2-cell 6 : 5̂ ⇒ 6 such that � = (? C 6) • �, where C stands for
horizontal composition of a 2-cell with a 1-cell (whiskering) to the right. A left
lifting is absolute if for any ℎ : G → 0 the lift of the composite 5 ◦ ℎ is the lift of 5
composed with ℎ, that is Lift?( 5 ◦ ℎ) = ( 5̂ ◦ ℎ, � B ℎ).

One can observe that a functor R: X → Y is a right adjoint iff there is an
absolute left lifting (L, �) = LiftR IdY. Similarly one can verify that given functors
F, J,U as in 2.1.0.1 that F is a J-left relative adjoint of U if and only if there is
a natural transformation (the relative counit) � : J⇒ UF that exhibits F as an
absolute left lifting of J through U.

It is tempting to define relative adjunctions in 2-categories as absolute left
liftings, but there is a caveat, namely that while the objects of a 2-category
are not in general categories, there is a way to describe the structure that a
2-category must have to possess at least some of the properties that we associate
with a 2-category of categories. Such a structure, called a Yoneda Structure,
was introduced in [SW78], and includes a notion of “local smallness”, presheaf
objects and Yoneda embeddings. For 1-cells 9 : A→ C, B : A→ B, C : B→ C in a
2-category with Yoneda structure one can define a relative adjunction as a 2-cell
isomorphism � : B(B, 1) ⇒ C(9 ,C). A consequence of the axioms of a Yoneda
structure is that a relative adjunction, as defined by [SW78], implies that B is
an absolute left lifting of 9 through C. However, the converse does not always
hold. There are examples (see discussion at [Cam14]) of 2-categories with a
Yoneda structure where an absolute left lifting B of 9 through C does not imply a
2-cell isomorphism B(B, 1) ⇒ C(9 ,C). Therefore the notions of absolute left lifting
and relative adjoint are not always compatible. In short, a lifting is definable in
any 2-category, a relative adjoint is definable only in a 2-category with a Yoneda
structure, a relative adjoint always implies an absolute lifting, an absolute lifting
does not imply a relative adjoint.

2.2 Fibred category theory
This is a short introduction to fibrations and fibred category theory, following
[Jac93] and [Jac99]. We include these definitions and constructions in order to be
able to define comprehension categories in the next section. For the remainder
of this section let EEE and BBB be categories and ? : EEE→ BBB a functor.

Definition 2.2.0.1 (Cartesian morphism). Amorphism D : 0 → 1 in EEE is cartesian
over 5 : G → H in BBB if ?(D) = 5 and for each E : 2 → 1 in EEE such that ?(E) = 5 ◦ 6
for some 6 : ?2 → G there exists a uniquemorphismF : 2 → 0 such that ?(F) = 6
and E = D ◦ F, as illustrated in figure 1.
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EEE

0 1

?2

BBB

G H

E

∃!F

?
D

5 ◦6=?E

6

5

Figure 1: For D cartesian above 5 and arbitrary E we can lift any factorization of
?(E) through 5 in BBB to a factorization of E through D in EEE.

The diagram in figure 1 is suggestive of the following terminology, which
will be used throughout this thesis. We say that an object G in EEE is above an object
1 in BBB if ?G = 1. Similarly, a morphism D is above 5 if ?(D) = 5 . If ?(D) = IdH for
some object H in BBB we say that the morphism D is vertical over H, or that D is
above H.

Definition 2.2.0.2 (Fibration). A functor ? : EEE→ BBB is a fibration if for every object
0 in EEE and morphism 5 : G → ?0 in BBB there is a cartesian morphism above 5 .

Note that the definition of fibration only gives mere existence of cartesian
lifts, which necessitates the following definition.

Definition 2.2.0.3 (Cleavage). A cleavage for a fibration ? : EEE→ BBB is a collection
of chosen cartesian liftings { 5A}; that is, for each object A ∈ EEE and morphism
5 : G → ?(A) in BBB a chosen cartesian morphism 5A above 5 . A fibration is cloven
if it is equipped with a cleavage.

A[ 5 ] A EEE

G ?(A) BBB

5A

?

5

Figure 2: 5A is the chosen cartesian lifting of 5 into A.

Fibrations will henceforth be assumed to be cloven. Figure 2 illustrates some
of the notation that will be used frequently from now on. When the name of a
morphism occurs with the name of an object above its codomain as a subscript
then what is referred to is the chosen cartesian lifting of that morphism. For
example: 5A refers to the chosen cartesian lifting of 5 into the object A above the
codomain of 5 . Similarly, A[ 5 ] is notation for the domain of the chosen cartesian
lifting of 5 into A above the domain of 5 .

Definition 2.2.0.4 (Split fibration). A fibration ? : EEE→ BBB is called split if it comes
equipped with a cleavage such that
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• the chosen cartesian liftings of identitymorphisms are identitymorphisms;

• for morphisms 0
5→ 1

6→ 2 in BBB and an object A above 2 in EEE,

(6 ◦ 5 )A = 6A[ 5 ] ◦ 5A.

A cleavage satisfying the above is called a splitting of ?. It is possible to
modify any cleavage to satisfy the first of the properties above, but the second
property is in general not as easily obtainable.

Definition 2.2.0.5 (Fiber). For a fibration ? : EEE→ BBB we call BBB the base category
and EEE the total category. For an object 1 in BBB, the fiber EEE1 is the category with
objects above 1 and vertical morphisms between them.

Definition 2.2.0.6 (Reindexing functor). Let ? : EEE → BBB be a (cloven) fibration.
Then everymorphism 5 : Δ→ Γ in BBB determines a functor 5 ∗ : EEEΓ → EEEΔ between
fiber categories, defined on objects A in EEEΓ as 5 ∗(A) = A[ 5 ] and on morphisms
) : A → C as the unique mediating morphism A[ 5 ] → C[ 5 ] given by the
universal property of the cartesian morphism 5C. It follows from the uniqueness
property that 5 ∗ preserves identities and composition.

A[ 5 ] A

C[ 5 ] C

Δ Γ

5A

5 ∗()) )

5C

5

Figure 3: Action of the reindexing functor 5 ∗ on morphisms.

Definition 2.2.0.7 (Fibred functor). Let ? : EEE→ BBB and @ : DDD→ BBB be fibrations
over the same base category BBB. A functor F : EEE→ DDD is called a fibred functor (also
called a cartesian functor) if it preserves cartesian arrows and @ ◦ F = ? strictly.

Definition 2.2.0.8 (Fibrations over a base). For a category BBB let Fib(BBB) be the
2-category with fibrations into BBB as objects, fibred functors as morphisms and
vertical natural transformations. Similarly, let SplFib(BBB) be the 2-category of
split fibrations over BBB.

In general a cloven fibration is not isomorphic to a split fibration, but a result
due to Bénabou (detailed in [Str20]) is that any fibration ? : EEE→ BBB is equivalent
to a split fibration ?★ : EEE★→ BBB via a right adjoint (−)★ : Fib(BBB) → SplFib(BBB) to
the inclusion SplFib(BBB) ↩→ Fib(BBB). For a more details the reader is referred to
the source material by Bénabou, or one of the more recent expositions in for
example [Str20] and [Jac99].

Definition 2.2.0.9 (Right-adjoint splitting). Given a cloven fibration ? : EEE→ BBB
define EEE★ to be the category where
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• objects are pairs (A,A[−]) where A is an object in EEE over some Γ in BBB and
A[−] is the operation assigning to each morphism 5 into Γ the cartesian
lifting of 5 into A given by the cleaving of ?;

• morphisms (A,A[−]) → (D,D[−]) are morphisms A→ D in EEE.

Let ?★ be the fibration EEE★→ BBB given by applying ? to the first component of the
pairs in EEE★. This fibration is split with splitting defined as follows.

• For 5 : Δ→ Γ and (A,A[−]) over Γ, let the cartesian lift of 5 into (A,A[−])
be given by 5A : A[ 5 ] → A, i.e. we take

5(A,A[−]) = 5A : (A[ 5 ],A[ 5 ][−]) → (A,A[−]);

• for 6 : Λ→ Δ, 5 : Δ→ Γ and (A,A[−]) above Γ define the cartesian lift of 6
into (A[ 5 ],A[ 5 ][−]) as the unique cartesian morphism above 6 completing
the triangle in the diagram below.

A[ 5 ◦ 6]

Λ A[ 5 ] A

Δ Γ

5A

( 5 ◦6)A

6

5

5 ◦6

Definition 2.2.0.10 (Fibred adjunction). An adjunction in Fib(BBB) is given by
fibred functors F,U as in

CCC DDD

BBB
?

F

U
@

Figure 4

such that F a U as functors, and the natural transformations � : IdCCC ⇒ UF
and & : FU⇒ IdDDD given by the adjunction are vertical.

For ? : EEE→ BBB a fibration, D : A→ B in BBB, X ∈ EEEA and Y ∈ EEEB, let

EEED(X,Y) = { 5 : X→ Y | ? 5 = D}
denote the collection of morphisms above D with specified domain X and
codomain Y.

We make the observation that an adjunction of fibred functors is a fibred
adjunction precisely when the hom-set isomorphism of the adjunction can be
restricted to hom-sets above morphisms in the base category.
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Lemma 2.2.0.11. Let F a U be a fibred adjunction where F and U are fibred functors
as in figure 4. Then the induced natural isomorphism of hom-sets ) : DDD(F(−),−) �
CCC(−,U(−)) is fibred in the sense that it restricts to isomorphisms of hom-sets over
morphisms in the base, i.e. for each morphism D : Δ→ Γ in BBB and objects 2 in CCCΔ and
3 in DDDΓ

)D : DDDD(F2, 3) � CCCD(2,U3).
Proof. Let 5 : F2 → 3 in DDD. Since the unit component �2 given by the fibred
adjunction is vertical and U is a fibred functor it follows that

?()( 5 )) = ?(U( 5 ) ◦ �2) = ?(U( 5 )) = @( 5 ).
Applying the same argument to the counit gives the result. �

Lemma 2.2.0.12. An adjunction of fibred functors F and U is a fibred adjunction if the
natural isomorphism of hom-sets Φ : DDD(F2, 3) � CCC(2,U3) given by the adjunction is
an isomorphism of hom-sets over morphisms D : ?2 → @3 in the base category.

Φ2,3 : DDDD(F2, 3) � CCCD(2,U3)
Proof. The components of the unit is constructed by evaluating �2 = Φ2,F2(IdF2),
but IdF2 is above Id@F2 = Id?2 since @ is a functor and F fibred. Using that Φ
preserves morphisms above morphisms in the base it follows that �2 : 2 → UF2
is above Id?2 . The proof for the counit is analogous. �

Thenext proposition introduces an importantmethod toobtainnewfibrations
from old, by changing the base of a fibration.

Proposition 2.2.0.13 (Change-of-base). The pullback in Cat of a fibration ? : TTT→ CCC
and an arbitrary functor F: AAA→ CCC yields a fibration F★(?) : AAA ×

F,?
TTT→ AAA.

AAA ×
F,?
TTT TTT

AAA CCC

?

F

F∗(?) y

Figure 5: Change of base of fibration.

This is the just the ordinary pullback of categories. For a proof that the
pullback of a fibration is a fibration see for example [Jac99, Lemma 1.5.1].

2.3 Type theory
The following is not a systematic or full presentation of the syntax of dependent
type theory, nor is it an exposition of how type theory can be used informally
to do mathematics. Instead, this section aims to introduce the formal syntax
of type theory, but only to such a level that the reader becomes familiar with
the terminology used when we later introduce comprehension categories.
In particular we hope that the reader, after finishing this section, has some
informal intuition of types, terms, contexts, weakening, context extension and
substitution.
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Example 2.3.0.1. Webeginwith an informal (and hopefullymotivating) example.
Let Mat(3, 4) be the type of 3×4-matrices. We canuse this type to prove interesting
theorems about 3 × 4-matrices, define an addition operation on it, and relate it
to other types, such as the types of 4 × 3-, 3 × 3- and 4 × 4-matrices. The obvious
issue is that we would have to repeat all of this work when we want to prove
similar theorems, or define similar operations, on matrices of other dimensions.

Naturally we would much rather work with matrices of dimension = × <,
where = and < are variables of the natural numbers type. And we can, if we
take the dependent type Mat(=, <), the family of types indexed by N ×N. When
we prove theorems for Mat(=, <) we do so in the context of two variables of the
natural numbers type. When we then substitute = and < for natural numbers in
these theorems, say 3 and 4, we obtain theorems specific to 3 × 4-matrices.

In the section on dependent products we will expand on this example.

For a good introduction on how to use dependent type theory to do mathe-
matics we refer the reader to [Uni13]. A shorter, more digestible, exposition of
Martin-Löfs dependent type theory can be found in [Mar84], which includes
explanations on how Π- and Σ-types can be understood as quantifiers. Another
good introduction to MLTT can be found in [NPS90], in which they follow the
style used in [Mar84] but provide many more examples and give an arguably
more pedagogical exposition. For a more detailed account of the formal syntax
of type theory, including the treatment of contexts, the appendix of [Uni13]
gives a more thorough treatment of the subject than we give here.

The reader is assumed to be familiar with the meaning of the turnstile `, i.e.
that an expression such as P ` Q is understood as “Q is a consequence of P”.
Similarly an inference rule

P1 · · · P=
Q

should be understood as “if all of P1 · · · P= then also Q”.
For the purpose of this thesis we consider a type theory to be a formal system

in which the primitive objects are types and terms of types. We write

A type G : A

to assert that “A is a type” and “G is a term of type A” respectively.
A context is a (possibly empty) finite list of assumptions in the form of typing

declarations, [G1:A1 , . . . , G= :A=]. Each variable G: should be distinct, and may
depend on any variable declared to the left of it. Similarly every type A:
occurring in a context may depend on variables declared to the left of it, but the
types themselves need not be distinct. We write

Γ ctx

to assert that Γ is a well-formed context, and we typically use capital Greek
letters to refer to arbitrary (well-formed) contexts.

If J is a valid expression that holds assuming a variable G : A we write

G:A ` J .
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However, often we will include an arbitrary context to the left of the turnstile,
e.g.

Γ, G:A ` J ,
to assert that J follows from any context with at least a variable G : A. The
intended interpretation is that the expression J (possibly) depends on variables
declared explicitly anywhere to the left of the turnstile (in this case only x:A),
and not on variables present in opaque contexts occurring before the turnstile
symbol.

If A is a type in context Γ, we can form a new context by extending Γwith a
fresh variable of type A, and if J is any expression derivable from Γ then it is
also derivable from this extended context. That is, we weaken the assertion that
J follows from the assumptions made in context Γ by adding an assumption of
type A.

Γ ` A type
Γ, G:A ctx

ctx-ext
Γ ` A type Γ ` J

Γ, G:A ` J weak

Figure 6: Context extension and weakening.

In dependent type theory types may depend on other types. Following the
syntax established above this will be written as

Γ, G:A ` B type

which declare B to be a type that may depend on the variable G of type A, or
equivalently that B is a family of types indexed by A. In other literature it is not
uncommon to annotate dependent types with the variables that they depend on.
For example one could write

Γ, G:A ` B(G) type

to emphasise that B is indexed by A. In this thesis we mostly use the variable
free notation, but may sometimes choose to annotate types with their dependen-
cies when doing so increases readability or when giving specific examples of
dependent types.

Given a type B dependent on a variable G of type A, and a term C : A, we
can substitute all occurrences of G in B with C to get the type associated with C,
which we denote as the type B[C/G]. For terms of dependent types we need to
perform substitution in both the dependent type and in the term. For example
if we have a term 1 : B depending on the variable G : A, and a term C : A, then
we need to replace G with C in both 1 and B.

Γ, G:A ` B type Γ ` C : A
Γ ` B[C/G] type

subst-ty
Γ, G:A ` 1 : B Γ ` C : A

Γ ` 1[C/G] : B[C/G] subst-tm

Figure 7: Substitution in types and terms.
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Finally we mention judgemental equality, which is an essential component in
type theory. In any proper introduction to type theory judgemental equality
would be introduced at the same time as types and terms in order to justify the
computational properties of the type theory, and in particular it is important
when defining substitution.

In this thesis judgemental equality, denoted by the symbol ≡, is used
(explicitly) only in the computation- and uniqueness rules of types. In the
categorical interpretation, which we introduce in the section on comprehension
categories, this will correspond to equality in the meta-theory of category theory.

For types A and B we write A ≡ B : type to assert that A and B are equal
types, and for terms 0, 0′ : A we write 0 ≡ 0′ : A for the judgement that 0 and 0′
are equal as terms of type A.

As an example of where judgemental equality is used, suppose we want
to define a term of type B→ N of functions from the booleans to the natural
numbers. Since B has two canonical elements, false and true, the elimination
rule for B states that we need to provide two terms of N, say 0 : N and 1 : N. In
return we obtain a function 5 : B → N. The computation rule for B then tells
us that if we apply this 5 to the canonical elements of B we get the specified
elements of N back:

5 (false) ≡ 0
5 (true) ≡ 1.

It might seem obvious that if we define a function from one type to another by
specifying a mapping of the canonical elements of the source type, that when
we apply that function to canonical elements that we the specified elements of
the target type back, and that is precisely the point. The computation rules uses
judgemental equality to assert the expected behaviour of mappings out of types.

2.4 Comprehension Categories
Seely gave in [See84] the first interpretation of dependent type theory, in locally
cartesian closed categories. In this interpretation, contexts of the type theory
are interpreted as objects of a LCCC CCC. Types in context, i.e. assertions of the
form Γ ` A type, are interpreted as morphisms with codomain Γ, terms Γ ` G : A
are interpreted as sections of types, and substitution is interpreted as pullback.

This construction contained a coherence issue in that pullbacks are only
unique up to unique isomorphism, giving a non-strict interpretation of substitu-
tion, whereas substitution in type theory is strict up to judgemental equality.

This issue was addressed by Hofmann in [Hof95], by applying Bénabou’s
right-adjoint splitting construction to the codomain fibration associated with a
locally cartesian closed category, to obtain an equivalent split fibration. From
this he construct a Category with Attributes [Car86] and showed that the CwA
was equipped with strictly stable Π-, Σ- and extensional identity types, hence
was a model of dependent type theory. Strict stability means, e.g. for Π-types,
that if (ΠAB, appA,B ,�A,B) is the chosen dependent product for (Γ,A,B), and
� : Γ′→ Γ, then (ΠAB[�], appA,B[�],�A,B[�]) is the chosen dependent product
for (Γ′,A[�], B[�.A]), where [−] denotes the substitution operation.

Comprehension Categories were introduced by [Jac93] as a categorical
structure to describe type dependency. Essentially, a comprehension category is
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a fibration with extra structure, allowing one not only to interpret contexts and
types over contexts, but also context extension. That is, a comprehension category
provides a way to pass from a judgement Γ ` A type to the extended context
Γ, G:A. They can be understood as the minimal structure needed on a category
to describe type dependencies. For this reason, many categorical structures used
to interpret dependent type theory are instances of comprehension categories.
Generic examples include Categories with Attributes, Toposes and LCCCs.

The logical structure on a comprehension category is typically not strictly
stable under reindexing. Therefore, to obtain a model of dependent type theory,
one needs some coherence theorem.

In [LW15] they provide one such coherence theorem, by generalising Hof-
manns result for LCCCs to comprehension categories. They give the stability
conditions required of logical structure on a comprehension category in order
to obtain strictly stable structure on the resulting CwA.

Definition 2.4.0.1 (Comprehension category, [Jac93, Def. 4.1]). Acomprehension
category is a functor 6 : TTT→ CCC→ for which

• the composite ? = cod ◦ 6 : TTT→ CCC is a fibration;

• 6 preserves cartesian morphisms.

TTT CCC→

CCC

6

? cod

Figure 8

The second condition above means that 6 sends cartesian morphisms to
pullback squares in CCC. Note that, even though 6 preserves cartesian morphisms
and the diagram in figure 8 commutes strictly, 6 is not a fibred functor (2.2.0.7)
in the technical sense, since cod is a fibration only when CCC has all pullbacks.

Definition 2.4.0.2 (Full and split comprehension categories). A comprehension
category 6 : TTT→ CCC→ is called

• full if 6 is a full and faithful functor, and

• split if cod ◦ 6 is a split fibration.

Notation2.4.0.3. For a comprehension category 6 : TTT→ CCC→wewrite ? = cod◦6
for the fibration. We use the notation {−} for the functor dom ◦ 6 : TTT → CCC.
For an object A ∈ TTT above Γ we adopt the convention of writing Γ.A for the
object {A}, and we call the morphism 6(A) : Γ.A → Γ a dependent projection
or display map. We call reindexing functors induced by dependent projections
6(A) : Γ.A→ Γ weakening functors 6(A)∗ : TTTΓ → TTTΓ.A.

12



As an illustration of the notation consider a morphism 5 : Δ→ Γ in CCC and A
an object over Γ, we use the notation 5A : A[ 5 ] → A for the (chosen) cartesian
lifting of 5 into A in TTT. Applying 6 to 5A gives us a pullback square in CCC:

Δ.A[ 5 ] Γ.A

Δ Γ

6(A[ 5 ])

{ 5A}

y
6(A)

5

Example 2.4.0.4 (CategorieswithAttributes, [Jac93]). ACategorywithAttributes
is a discrete fibration ? : TTT → CCC and a functor {−} : TTT → CCC with a natural
transformation � : {−} ⇒ ? such that for every morphism 5 : Δ→ Γ in CCC and
every object A in TTT above Γ the naturality square (9) is a pullback

{A[ 5 ]} {A}

Δ Γ

{ 5A}

�A

5

�A[ 5 ]

y

Figure 9

where 5A is the (unique) cartesian morphism above 5 into A.

A Category with Attributes can be seen as a comprehension category where
the fibration is discrete.

The original definition of Categories with Attributes is given by [Car86].
However, the definition by Cartmell is not quite equivalent to how CwAs have
been defined in the literature since then. The commonly used definition is equiv-
alent to the onewe gave above, but use presheaves instead of fibrations. We chose
the definition given by Jacobs because it presents a CwA as a comprehension
category with discrete fibres.

Blanco showed in [Bla91] that CwAs are equivalent to full, split comprehen-
sion categories.

Example 2.4.0.5 (Term model). Given a dependent type theory T we form a
category of contexts CT with objects equivalence classes ~Γ� of contexts Γ.
Morphisms ~Δ�→ ~Γ� are substitutions. Form the category TT of types over
CT with objects equivalence classes of types in context ~Γ ` A type� and arrows
~Δ ` D type� → ~Γ ` A type� are pairs (~��, ~3�) where ~�� : ~Δ� → ~Γ�
and Δ,G:D ` 3 : A[�]. The canonical functor ? : TT → CT sending a type over
a context Γ to the interpretation of Γ is a fibration. Define 6 : TT → C→T as the
functor that sends a type in context Γ to the canonical projection ~Γ,G:A�→ ~Γ�.

Morphisms in TT is defined using substitution in the type theory T, which is
strictly functorial, which makes ? a split fibration. It follows that the comprehen-
sion category 6 : TT → C→T is a full split comprehension category.

Objects in the base category will be referred to as contexts, and given a context
Γ ∈ CCC objects of the fibre TTTΓ will be called types over Γ. For a type A over Γ the
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object {A} = Γ.A can be seen as the context Γ extended with a variable of type
A, and we refer to sections of the dependent projection 6(A) as terms of type A.
Definition 2.4.0.6 (Terms). For A above Γwrite

Tm (A) = {B : Γ→ Γ.A | "(A) ◦ B = IdΓ}
for the collection of terms of type A. For every 5 : Δ→ Γ and A above Γ there is
a canonical morphism

Tm (A) → Tm
(
A[ 5 ])

defined on B ∈ Tm (A) by the universal property of the pullback 6( 5A) for the
span (IdΓ , B ◦ 5A) in figure 10. We use the notation B[ 5A] to refer to the term
B reindexed by the cartesian morphism 5A, similarly to how substitution is
denoted in syntax. When it is clear from the context and unambiguous we may
drop the subscript and write simply B[ 5 ].

Δ.A[ 5 ] Γ.A

Δ Γ

{ 5A}

5

y

BB[ 5A]

Figure 10: Reindexing of terms.

Definition 2.4.0.7. [Jac93, Definition 4.20] A comprehension category 6 : TTT→
CCC→ is called nonempty if in every context there is at least one inhabited type, i.e.
for every Γ in CCC there is at least some F in TTT above Γ, such that Tm (F) ≠ ∅.
Definition 2.4.0.8 (Pullback functor). Any type A over a context Γ determines
a pullback functor between slice categories (−).A: CCC/Γ→ CCC/Γ.A, defined on
objects 5 : Δ → Γ as ( 5 ).A ≔ { 5A}; that is, the comprehension of the chosen
cartesian lifting of 5 into A.

A[ 5 ] A Δ.A[ 5 ] Γ.A

Δ Γ Δ Γ

5A { 5A}

6(A[ 5 ])
y

6(A)

5 5

The action on morphisms 
 : 5 → 6 is induced by the universal property of the
pullback square given by 6(6A) in the right hand side of the following diagram.

Δ.A[ 5 ] �.A[6]

Δ Γ.A �

Γ

∃!(
).A

5




6
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It follows from the universal property of the pullback that this operation respects
identity morphisms and composition, hence (−).A is a functor.

Lemma 2.4.0.9 ([Jac93]). For Γ ∈ CCC, A ∈ TTTΓ and 5 : Δ→ Γ there is an isomorphism

CCC/Γ( 5 , 6(A)) � CCC/Δ(IdΔ , 6(A[ 5 ])).
Definition 2.4.0.10. A comprehension category determines a category

Cart(TTT) ↩→ TTT

with only cartesian morphisms. By restriction one obtains two functors

|? | : Cart(TTT) → CCC
|{−}| : Cart(TTT) → CCC.

By taking the pullback of the fibration |? | : Cart(TTT) → CCC along these functors
one obtains two fibrations

|? |? : Cart(TTT) ×
?

Cart(TTT) → Cart(TTT)
|{−}|? : Cart(TTT) ×

{−}
Cart(TTT) → Cart(TTT).

The above fibrations let us define the structure of weakening next. The
category Cart(TTT) ×

{−}
Cart(TTT) has as objects pairs (A,B) where A is above some

object Γ ∈ CCC and B is above {A} = Γ.A, and similarly for morphisms. An object
(A, B) represents a type family B indexed by A. Objects in Cart(TTT) ×

?
Cart(TTT) are

pairs (A,A′) both over some object Γ in the base category.
Recall that weakening in type theory is the rule that states that if we have

some valid expression J that follows from a context Γ, and A is a type over Γ,
then J also follows from Γ extended by a fresh variable of type A. If we take J
to be the judgement A′ type then the weakening rule take the following form.

Γ ` A type Γ ` A′ type
Γ, G:A ` A′ type

It is precisely this that the next definition captures.

Definition 2.4.0.11 (Weakening, [Jac93]). The functor 6 : TTT→ CCC→ can be lifted
to a fibred functor 〈6〉

Cart(TTT) ×
?

Cart(TTT) Cart(TTT) ×
{−}

Cart(TTT)

Cart(TTT)

〈6〉

defined

• on objects (A,A′) by 〈6〉(A,A′) ≔ (A,A′[6(A)])
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• on morphisms ( 5 , 6) : (A,A′) → (D,D′) as ( 5 , ℎ) where ℎ is the unique
mediatingmorphism above { 5 } induced by the cartesianmorphism 6(D)D′
in the following diagram.

A′[6(A)] D′[6(D)]

A′ D′

Γ.A Δ.D

Γ Δ
6(A) ?( 5 )

6(A)A′

6(D)

{ 5 }

∃!ℎ

6(D)D′
6

Functoriality follows from the uniqueness property of cartesian morphisms.
The analogue of the two-pullback-lemma for cartesian morphisms imply that if
6 in the diagram above is cartesian, then so is ℎ, hence 〈6〉 is a fibred functor.

In a full comprehension category dependent products and dependent sums,
which we will look at in the section on categorical semantics, are described as
fibred right- and left adjoints to 〈6〉. In the section on categorical semantics
we will investigate dependent products and sums in non-full comprehension
categories, and to do that we need to introduce a few more categories and
fibrations.

We obtain the following two functors by taking the pullback of cod along |? |
and |{−}|:

|? |cod : Cart(TTT) ×
?
CCC→ → Cart(TTT)

|{−}|cod : Cart(TTT) ×
{−}
CCC→ → Cart(TTT).

We can construct an analogue of 〈6〉 for these functors.
Definition 2.4.0.12. Let W : Cart(TTT) ×

?
CCC→ → Cart(TTT) ×

{−}
CCC→ be the functor

defined on objects as

W
(
A, Γ′

5→ Γ

)
=

(
A, Γ′.A[ 5 ] { 5A}→ Γ.A

)

and on arrowsW(�D , (�, 6) : 5 ′→ 5 ) = (�D , ({�D}, ℎ)) as illustrated below

Δ′ Γ′ Δ′.D[ 5 ′] Γ′.A[ 5 ]

Δ Γ Δ.D Γ.A

5 ′

�

5

6

{ 5 ′D}

{�D}

{ 5A}

ℎ

W

where ℎ is induced by the pullbacks involved. By the two-pullback lemma the
right hand square is a pullback if the square to the left is. Note that this functor
makes use of the specific cleavage of the fibration.
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In summary we can describe the categories and fibrations presented above
obtained by change-of-base, as pullbacks illustrated in the diagram below.

Cart(TTT) ×
?

Cart(TTT) Cart(TTT)

Cart(TTT) ×
?
CCC→ CCC→

Cart(TTT) CCC

Cart(TTT) ×
{−}
CCC→ CCC→

Cart(TTT) ×
{−}

Cart(TTT) Cart(TTT)

cod
|? |

6

|{−}|

y

cod

y

6

〈6〉 |6 |

3 Types in non-full comprehension categories
3.1 Unit types
A unit type in our dependent type theory is a type with a single unique term.
Formally this is given by the following inference rules.

Γ ctx
Γ ` 1 type

1-form
Γ ctx
Γ ` ★ : 1

1-intro
Γ ` I : 1

Γ ` I ≡ ★ : 1
1-uniq

Remark 3.1.0.1. We could have presented the unit type with an elimination rule
and a computation rule instead of the uniqueness rule, and from those derived
the rule 1-uniq using the extensional identity type. Assuming 1-uniq we can
instead derive an elimination rule, and the computation rule becomes trivial.

Had we instead assumed a type theory with intensional identity types
à la Martin-Löf and postulated a unit type together with an elimination and
computation rules, then the judgemental uniqueness rule would not be derivable
within the type theory, but it could optionally be added. One would still be able
to derive a propositional uniqueness rule in this setting.

Compare the above syntactic definition of the unit type with the following
categorical description.

Definition 3.1.0.2. A unit type for an object Γ ∈ CCC in a comprehension category
6 : TTT→ CCC→ consists of:

• an object 1Γ in the fibre above Γ;

• a unique section BΓ : Γ→ Γ.1 of the dependent projection 6(1Γ).
The definition above defines a unit type for a specific context Γ ∈ CCC. To say

what it means for a comprehension category to have unit types for every Γ ∈ CCC
we need to also give some stability condition, defining how they behave with
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respect to reindexing. We define pseudo-stable unit types in a comprehension
category next, since this condition is strong enough to be able to obtain strictly
stable unit types via the right adjoint splitting functor.

Definition 3.1.0.3. A comprehension category has pseudo-stable unit types if
there is a fibred functor 1 : CCC→ TTT as in figure 11, and for each Γ in CCC there is a
unique section B(Γ) : Γ→ Γ.1 of the dependent projection 6(1(Γ)).

CCC TTT

CCC

1

IdCCC ?

Figure 11

Next we show that pseudo-stable unit types can be described as a fibred
adjunction.

Proposition 3.1.0.4. A comprehension category 6 : TTT→ CCC→ has pseudo-stable units
if there is a fibred functor 1 : CCC→ TTT (as in figure 11) and an adjunction

cod a 6 ◦ 1

that is fibred in the sense that the bĳection restricts to hom-sets over morphisms in the
base. That is, for each morphism D : Δ→ Γ in CCC and morphism 5 with cod( 5 ) = Δ an
isomorphism

CCCD(cod( 5 ), Γ) � CCC→D ( 5 , 6(1(Γ))). (3)

Remark 3.1.0.5. The adjunction is not a fibred adjunction in the proper sense, i.e.
an adjunction in Fib(CCC), since cod is not a fibration unless CCC has all pullbacks.
However, all functors involved preserve cartesian morphisms, and the relevant
diagrams commute strictly.

Remark 3.1.0.6. It is worth spelling out what the isomorphism (3) implies. Fix a
morphism D : Δ→ Γ in CCC. Since the left homset is fibred over CCC by the identity
fibration there is only one morphism above D, namely D itself. The isomorphism
then implies that for each 5 : Λ → Δ there is a unique morphism Λ → Γ.1
making the square in figure 12 commute.

Λ Γ.1

Δ Γ

5 6(1Γ)
D

Figure 12

Proof of 3.1.0.4. Assuming 1 : CCC→ TTT fibred and a fibred adjunction cod a 6 ◦ 1,
we need to show that for each Γ in CCC there is a unique section of the unit
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projection 6(1(Γ)). Take D = 5 = IdΓ in (3) and apply the isomorphism from left
to right to obtain a unique map

Γ Γ.1

Γ Γ

6(1Γ)

which is a section of the unit projection. �

Corollary 3.1.0.7. For 5 : Δ→ Γ a morphism between contexts in a comprehension
category with pseudo-stable unit types, B(Γ) ◦ 5 = {1( 5 )} ◦ B(Δ), where B(−) is the
unique section of the unit type in the given context.
Proof.

Δ.1 Γ.1

Δ Γ

{1( 5 )}

6(1Δ)
y

5
6(1Γ) (4)

The pullback above determines a unique morphism ) : Δ→ Δ.1 for the span
(IdΔ , B(Γ)◦ 5 ) such that {1( 5 )} ◦) = B(Γ)◦ 5 and 6(1Δ)◦) = IdΔ, which makes )
a term of Δ.1. By uniqueness of terms in the unit type this implies that ) = B(Δ)
and B(Γ) ◦ 5 = {1( 5 )} ◦ B(Δ). �

Proposition 3.1.0.8. Pseudo-stable unit types in a comprehension category determines
an adjunction cod a 6 ◦ 1 fibred over CCC, i.e. a bĳection

Φ : CCCD(cod( 5 ), Γ) � CCC→D ( 5 , 6(1(Γ)) (5)
natural in 5 and Γ.
Proof. We construct Φ explicitly and prove that it is a natural. Notice that
CCCD(cod( 5 ), Γ) is a singleton set, for D : Δ→ Γ. We need Φ(D) to be an arrow in
CCC making the diagram below commute.

Δ′ Γ.1

Δ Γ

Φ(D)

5

D

6(1(Γ)) (6)

Take Φ(D) := B(Γ) ◦ D ◦ 5 . This map is unique by the following argument. Let
6 : Δ′ → Γ.1 be an arrow that makes the above square commute. Then there
is a unique 
 : Δ′→ Δ′.1 given by the pullbacks: This 
 is clearly a section of
Δ′.1, and by uniqueness this implies 
 = B(Δ′). By functoriality of 1 and {−}
and corollary 3.1.0.7 it follows that 6 = B(Γ) ◦ D ◦ 5 = Φ(D). From uniqueness it
also follows that Φ is an isomorphism, since for given D in CCC the collection of
morphisms in (5) are singletons.

Δ′

Δ′.1 Δ.1 Γ.1

Δ′ Δ Γ
5 D

666

{1( 5 )} {1(D)}

IdΔ′

6




y y
(7)
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For naturality, we need that for ℎ : Γ→ Λ in CCC and (6, 6̄) = G : < =⇒ 5 in
CCC→ the following square commutes

CCCD(cod( 5 ), Γ) CCC→D ( 5 , 6(1(Γ)))

CCCℎ◦D◦6(cod(<),Λ) CCC→ℎ◦D◦6(<, 6(1(Λ)))

Φ(D)

Hom(6,ℎ) Hom(G,6(1(ℎ)))

Φ(ℎ◦D◦6)

which it does by necessity: all the sets involved are singletons, by applying the
argument in (7). �

3.2 Dependent products
Dependent product types, also called dependent function types and Π-types, is
a generalisation of the non-dependent function type A→ B by allowing B to be
a family of types dependent on A. For a dependent function 5 : ΠG:AB(G) and a
term 0 : A we can apply 5 to 0 to get a term 5 (0) : B(0). The key observation to
make is that the codomain of 5 may vary depending on its input, so if 0 and
0′ are different elements of A then 5 (0) and 5 (0′)may not only be different as
elements of some type, they might even be elements of different types!

Consider the dependent type of = × =-matricies indexed by natural numbers,
=:N ` Mat(=, =). To introduce a term of the dependent product type∏

=:N
Mat(=, =)

we need to define a term of Mat(=, =) while assuming a variable = : N. For
example, assuming = : Nwe can construct I(=) : Mat(=, =) to be the = × =-matrix
with entries 0 everywhere except on the diagonal where it is 1. This allows us to
introduce the dependent function

I :
∏
=:N
Mat(=, =)

which for each natural number returns an = × =-matrix. To apply I to a natural
number, say 3 : N, we do so by substituting 3 for = in both our construction I(=)
and the dependent type Mat(=, =) to get a term

I(3) : Mat(3, 3).
Note that we apply I to 3 by substituting 3 for =, not in I itself, but in I(=)

which we used to construct I. This is an example of using the computation rule for
dependent products, which we may use when we have constructed a dependent
function explicitly. In this case we defined I by constructing an identity matrix
for each natural number =, so it makes sense that when applying I to a natural
number we get the corresponding identity matrix back.

Under the Curry-Howard and propositions-as-types interpretation, depen-
dent products play the role of universal quantification. The Π-symbol would
then be understood as a “for all” statement. In the examplewith squarematricies
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above we would read the type Π=:NMat(=, =) as the proposition “for all natural
numbers = there is a = × =-matrix”, and the term I : Π=:NMat(=, =) is a proof of
that proposition, which produces an = × =-matrix for each natural number =.

We begin by defining the formal syntax ofΠ-types, then we define and study
the corresponding logical structure on comprehension categories.

3.2.1 Syntax of dependent products

Formally the syntax is given by the following inference rules.

Γ ` A type Γ, G:A ` B type
Γ ` ΠG:AB type

∏
-form

Γ, G:A ` 1 : B
Γ ` �(G:A).1 : ΠG:AB

∏
-intro

Γ ` 5 : ΠG:AB Γ ` 0 : A
Γ ` app( 5 , 0) : B[0/G]

∏
-elim

Γ, G:A ` 1 : B Γ ` 0 : A
Γ ` app(�(G:A).1, 0) ≡ 1[0/G] : B[0/G]

∏
-comp

We will also assume the following uniqueness rule, also known as the �-rule.
Π-types satisfying the uniqueness rule will be called strong dependent products.

Γ ` 5 : ΠG:AB
Γ ` 5 ≡ �(G:A).app( 5 , G) : ΠG:AB

∏
-uniq

We prefer to not include the name of variables that type families depend
on in the notation. Instead of writing Γ, G:A ` B(G) type for a type family
that may depend on G : A we write simply Γ, G:A ` B type. This allows us to
consistently use the bracket-notation for substitution, for example in

∏
-elim

and
∏
-comp. We also prefer the notation app( 5 , 0) over writing 5 (0) or 5 0 to

denote application of dependent functions. This is also to be more compatible
with the notation we introduce when describing the logical structure ofΠ-types
in comprehension categories.

Note that if one takes B to be a non-dependent type in the inference rules
above, then one get precisely the non-dependent function type A→ B as one
would expect.

3.2.2 Logical structure of dependent products

The following is the definition of dependent products given in [LW15], but with
minor modifications.

Definition 3.2.2.1 ([LW15, Def. 3.4.2.1]). Let 6 : TTT→ CCC→ be a comprehension
category. For objects Γ ∈ CCC, A ∈ TTTΓ and B ∈ TTTΓ.A, a dependent product for (Γ,A, B)
consists of

• a type ΠAB ∈ TTTΓ;
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• a morphism appA,B : Γ.ΠAB.A[6(ΠAB)] → Γ.A.B in CCC such that

Γ.ΠAB.A[6(ΠAB)] Γ.A.B

Γ.A
{6(ΠAB)A}

appA,B

6(B)

commutes;

• an operation giving for each section C : Γ.A→ Γ.A.B, a section �(C) : Γ→
Γ.ΠAB, such that appA,B ◦ (IdΓ.A ,�(C) ◦ 6(A)) = C.

The definition given in [LW15] is identical except that appA,B is taken to be a
map ΠAB[6(A)] → B in TTTΓ.A. Dependent products according to the definition
in [LW15] imply dependent products as given here, and in a full comprehension
category the two are equivalent. We do not assume that comprehension
categories are full, therefore we use the more general definition of dependent
products given here.

Definition 3.2.2.1 immediately gives a categorical description of the formation-
and introduction rule of dependent products, and maybe less immediate the
computation rule, which we explain next.

Definition 3.2.2.2. A dependent product in a comprehension category induces
a map of terms

0?? : Tm (ΠAB) → Tm (B)
by taking a section 5 : Γ→ Γ.ΠAB to

0??( 5 ) := appA,B ◦ 5 .A : Γ.A→ Γ.A.B.

This operation is a retraction of the�-operation: for every section C : Γ.A→ Γ.A.B,

0??(�(C)) = C
by the third condition of definition 3.2.2.1.

The uniqueness rule (also called the �-rule) is not included in definition
3.2.2.1, but we may add it as an assumption.

Definition 3.2.2.3 (Strong dependent products). A comprehension category
with dependent products has strong dependent products if, for each Γ in CCC,
A above Γ and B above Γ.A, the dependent product satisfies the �-rule; i.e.
that the �-operation induced by the dependent product is an inverse of the
0??-operation, meaning that for every section B : Γ→ Γ.ΠAB,

�(0??(B)) = B.
This gives a bĳection of terms

Tm (ΠAB) � Tm (B) .
Lemma 3.2.2.4. A comprehension category which for each context Γ ∈ CCC with objects
A ∈ TTTΓ, B ∈ TTTΓ.A has an object ΠAB ∈ TTTΓ and an isomorphism natural in 5

� 5 : CCC/Γ( 5 , 6(ΠAB)) � CCC/Γ.A( 5 .A, 6(B)) (8)

has Π-types satisfying the �-rule.
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Proof. Take 5 = 6(ΠAB) in (8) and evaluate at the identity to get a morphism

�6(ΠAB)(Id6(ΠAB)) : Γ.ΠAB.A[6(ΠAB)] → Γ.A.B

such that

Γ.ΠAB.A[6(ΠAB)] Γ.A.B

Γ.A{6(ΠAB)A}

�6(ΠAB)(Id6(ΠAB))

6(B)

commutes. Define appA,B := �6(ΠAB)(Id6(ΠAB)). For a section C : Γ.A → Γ.A.B,
we define

�(C) := �−1
IdΓ(C) : Γ→ Γ.ΠAB.

Γ Γ.ΠAB Γ.A Γ.A.B

Γ Γ.A
IdΓ

�(C)

6(ΠAB) IdΓ.A

C

6(B)

Recall from 3.2.2.2 that the operation 0?? : Tm (ΠAB) → Tm (B) is defined as
0??( 5 ) = appA,B ◦ 5 .A. From this follows that for every section C : Γ.A→ Γ.A.B
of the projection 6(B)

0??(�(C)) = appA,B ◦ �(C).A
= �IdΓ(�(C)) (by naturality)
= �IdΓ(�−1

IdΓ(C))
= C.

This construction also satisfies the �-rule: let B : Γ→ Γ.ΠAB be any section of the
projection 6(ΠAB). By naturality and the definition appA,B := �6(ΠAB)(Id6(ΠAB))
it follows that

0??(B) = appA,B ◦ B.A = �IdΓ(B),

and because the �-operation is defined as �−1
IdΓ

the identity �(0??(B)) = B
holds. �

Remark 3.2.2.5. Naturality of (8) gives the identity

� 5 (ℎ) = appA,B ◦ ℎ.A
for every 5 : Γ′→ Γ and ℎ : Γ′→ Γ.ΠAB such that 6(ΠAB) ◦ ℎ = 5 .

Definition 3.2.2.6 (Pseudo-stable Π-types, [LW15, Def. 3.4.2.8]). A comprehen-
sion category has pseudo-stable dependent products if there is a fibred functor

Π : Cart(TTT) ×
{−}

Cart(TTT) → Cart(TTT) ×
?

Cart(TTT)

such that, for all cartesian morphisms �D : D → A above � : Δ → Γ and
�E : E→ B above {�D} : Δ.D→ Γ.A, and sections C : Γ.A→ Γ.A.B, the diagrams
below commute.
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Δ.ΠDE.D Γ.ΠAB.A Δ.ΠDE ΠAB

Δ.D.E Γ.A.B Δ Γ
{�E}

�D .Π(�D ,�E)

appD,E appA,B

�

{Π(�D ,�E)}

�D,E(C[�E]) �A,B(C)

Figure 13

3.2.3 Dependent products in full comprehension categories

In [Jac93], a comprehension category 6 : TTT→ CCC→ has products if there is a fibred
right adjoint to weakening

〈6〉 a Π.
One could hope this to be equivalent to a comprehension category having
type-theoretic dependent products, but this is unfortunately not the case.

In this sectionwe recountwhat logical structure one finds in a comprehension
categorywith products, and give some sufficient conditions for a comprehension
category with products, to have type-theoretic dependent products, following
Jacobs.

One sufficient condition will be that a (nonempty) comprehension category
with products is full; that is, there is a bĳection between morphisms of types
and morphisms of dependent projections.

We begin by describing what logical structure a right adjoint to weakening
give us in an arbitrary comprehension category.

First, observe that a fibred adjunction 〈6〉 a Π gives an adjunction between
fibres, i.e. for every type A above Γ there is an adjunction

TTTΓ TTTΓ.A.

6∗A

ΠA

a

For each type B above Γ.A the counit is a vertical morphism 6∗A(ΠAB) → B, or
to be consistent with notation, a morphism

&A,B : ΠAB[6(A)] → B

above Γ.A. If we apply 6 to the counit we get a commutative triangle

Γ.A.ΠAB[6(A)] Γ.A.B

Γ.A

{&A,B}

6(B)6(ΠAB[6(A)])
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which motivates us to take as a definition

appA,B := {&A,B}.
Note that there is a difference between how we define appA,B here and how it
is defined in 3.2.2.1, in that {&A,B} has dependent projections both as domain
and codomain, whereas the one in 3.2.2.1 has {6(ΠAB)A} as domain. They are
however canonically isomorphic as objects in slices over Γ.A. The difference will
be relevant when we later assume fullness, in that appA,B, as defined here, will
lift uniquely to a morphism between ΠAB[6(A)] and B.

There is a function 0?? : Tm (ΠAB) → Tm (B) that takes a section
5 : Γ→ Γ.ΠAB

to
{&A,B} ◦ 5 [6(A)] : Γ.A→ Γ.A.ΠAB[6(A)]

Γ.A.B

Γ.A.ΠAB[6(A)] Γ.ΠAB

Γ.A Γ
6(A)

{&A,B}

y

55 [6(A)]

This is how far we get by only assuming a fibred right adjoint to weakening;
that is, we get type formation and an app-operation, but not �-abstraction or
computation and uniqueness.

As Jacobs points out, for a comprehension category with products to have
type-theoretic dependent products, one expects the app-operation to be an
isomorphism, with inverse given by �-abstraction. This is the case precisely
when the comprehension category preserves products on its own projections in
the slices of the base category, which is the statement of the following lemma.

Lemma 3.2.3.1 ([Jac93, Lemma 5.2]). For a comprehension category 6 : TTT→ CCC→
with products, the following two statements are equivalent:

1. Tm (ΠAB) � Tm (B) for all appropriate A and B;

2. 6 preserves products, i.e. for all appropriateA above Γ, B above Γ.A and D : Δ→ Γ
one has

CCC/Γ(D, 6(ΠAB)) � CCC/Γ.A(D.A, 6(B))
where D.A is the pullback functor in 2.4.0.8 applied to D.

Proof. Note that the direction (2) ⇒ (1) is lemma 3.2.2.4. For a full proof see
[Jac93]. �

It turns out, as Jacobs shows, that if a comprehension category, with a
fibred right adjoint to weakening, is both nonempty and full, then it has strong
dependent products. We give part of the proof to illustrate how fullness is used.
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Lemma 3.2.3.2 ([Jac93, Lemma 5.4]). A nonempty, full, comprehension category with
a fibred adjunction

〈6〉 a Π
has strong dependent products.

Proof. Let Γ be a context in CCC and A a type above Γ, and B a type above Γ.A. The
counit of the adjunction provides the morphism appA,B := {&A,B}, hence also
the function

0??( 5 ) := appA,B ◦ 5 [6(A)] : Tm (ΠAB) → Tm (B) .
We need to construct the inverse of this, the �-operation.

Let C : Γ.A→ Γ.A.B be a term of type B. Because the comprehension category
is nonempty, there is some type F above Γ and a term 5 : Γ→ Γ.F. By weakening
we obtain a type F["(A)] above Γ.A.

By fullness we can lift the composite C ◦ 6(F[6(A)]) to a unique morphism
6 : F[6(A)] → B vertical above Γ.A such that {6} = C ◦ 6(F[6(A)]).

Γ.A.F["(A)] Γ.A.B

F["(A)] B

Γ.A Γ.A

{6}

"(B)
"(F["(A)]) C

6

Transposing 6 across the adjunction yields a morphism

6̂ = ΠA(6) ◦ �A,F : F→ ΠAB,

which, after applying comprehension and composing with the term 5 : Γ→ Γ.F,
gives a term

{ 6̂} ◦ 5 : Γ→ Γ.ΠAB.

Take this operation as definition of the �-operation.
We omit the proof that the �-operation is an inverse of 0??. The proof is

given in full in [Jac93, Lemma 5.4]. �

3.2.4 Dependent products as relative adjoints

In this section we show that dependent products in arbitrary comprehension
categories correspond to relative adjoint functors.

Lemma 3.2.4.1. Pseudo-stable strong dependent products induce an isomorphism

� 5 ,B : CCC/Γ( 5 , 6(ΠAB)) � CCC/Γ.A( 5 .A, 6(B))
for each Γ ∈ CCC, 5 : Δ→ Γ, A ∈ TTTΓ and B ∈ TTTΓ.A natural in 5 and B.
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Proof. We restrict the functor Π to the fibre category Cart(TTT)Γ.A and compose
with 6 to get a functor ΠA : Cart(TTT)Γ.A → CCC/Γ.A. For 5 : Δ→ Γ and B ∈ TTTΓ.A:

CCC/Γ( 5 , 6(ΠAB)) � CCC/Δ(IdΔ , 6(ΠAB[ 5 ])) by lemma 2.4.0.9
� CCC/Δ(IdΔ , 6(ΠA[ 5 ]B[ 5 .A])) Π is fibred
� CCC/Δ.A[ 5 ](IdΔ.A[ 5 ] , 6(B[ 5 .A])) �

� CCC/Γ.A( 5 .A, 6(B)) by lemma 2.4.0.9.

Pseudo-stability imply that the above isomorphism can be given explicitly as

� 5 ,B(6) = appA,B ◦ 6.A
instead of the more complicated

� 5 ,B(6) = {( 5 .A)B} ◦ appA[ 5 ],B[ 5 .A] ◦ (6.A)∗.
Suppose � : B→ C in TTTΓ.A is cartesian. For naturality in B we need to show

that for any 6 ∈ CCC/Γ( 5 , 6(ΠAB))we have

{�} ◦ � 5 ,B(6) = � 5 ,C({ΠA(�)} ◦ 6)
as morphisms Δ.A[ 5 ] → Γ.A.C over Γ.A. The left-hand side expands to
{�} ◦appA,B ◦ 6.Awhile the right-hand side expands to appA,C ◦ ({ΠA(�)} ◦ 6).A
which by functoriality of (−).A and pseudo-stability are equal (see 14).

Γ.A.B Γ.A.C

Δ.A[ 5 ] Γ.ΠAB.A Γ.ΠAC.A

Γ.A

Δ Γ.ΠAB Γ.ΠAC

Γ

{ΠA(�)}

{ΠA(�)}.A

5

6

6.A

appA,CappA,B

{�}

Figure 14

For naturality in 5 let ℎ : 6 → 5 in the slice over Γ and I ∈ CCC/Γ( 5 , 6(ΠAB)),
then

�6,B(I ◦ ℎ) = appA,B ◦ (I ◦ ℎ).A
= appA,B ◦ I.A ◦ ℎ.A
= � 5 ,B(I) ◦ ℎ.A

by functoriality of (−).A. �
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Proposition 3.2.4.2. A comprehension category with pseudo-stable dependent products
satisfying the �-rule induce a relative adjunction

W a6 6 ◦Π (9)

that is fibred, i.e. all the functors preserve cartesian morphisms and the counit is vertial.

Notation 3.2.4.3. The relative adjunction (9) means that for objects [D, 5 ]where
D ∈ TTTΔ, 5 : Δ′→ Δ, and [A, B] where A ∈ TTTΓ, B ∈ TTTΓ.A there is an isomorphism

Cart(TTT) ×
?
CCC→

( [
D, 5

]
, [A, 6 (ΠAB)]

) Φ
� Cart(TTT) ×

{−}
CCC→

(W [
D, 5

]
, [A, 6(B)])

natural in
[
D, 5

]
and [A, B] fibred over Cart(TTT)(D,A). Since the isomorphism

preserves arrows over homsets in the base category this allows us to introduce
the following somewhat shorter notation. For cartesian �D : D→ A we write

CCC→?�D( 5 , 6(ΣAB))
for the collection of morphisms in Cart(TTT) ×

?
CCC→([D, 5 ], [A, 6(ΠAB)]) above �D.

This allows us to write the above isomorphism as

Φ : CCC→?�D( 5 , 6(ΣAB)) � CCC→{�D}(W( 5 ), 6(B))
where the objects A and D are inferred from the codomain and domain of �D.

Proof of 3.2.4.2. For cartesian �D : D→ A above � : Δ→ Γ define

Φ : CCC→?�D( 5 , 6(ΠAB)) → CCC→{�D}(W( 5 ), 6(B))
for 5 : Δ′→ Δ as follows. An object in the left homset is a commutative square

Δ′ Γ.ΠAB

Δ Γ

5

ℎ

�

which we can factor as

Δ′, Δ.ΠDB′ Γ.ΠAB

Δ Γ

5

ℎ

ℎ′

y

�

where the pullback square is given by the cartesian action of Π on (�D , �B),
and �B : B′→ B is the cartesian lift of {�D} into B. With lemma 3.2.4.1 we can
transport ℎ′ to an arrow in the slice over Δ.D

Δ′.D Δ.D.B′

Δ.D

�(ℎ′)
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and finally postcomposing with ({�D}, {�B}) gives Φ(ℎ) = {�B} ◦ �(ℎ′):

Δ′.D Δ.D.B′ Γ.A.B

Δ.D Γ.A.

5 .D

�(ℎ′)

Φ(ℎ)

{�B}
y

{�D}

One easily verifies that all the steps involved in constructing Φ are invertible.
For naturality, recall that �(ℎ′) factors as �(ℎ′) = appD,B′ ◦ (ℎ′).D so that we can
apply the assumption of pseudo-stability to get

Φ(ℎ) = {�B} ◦ appD,B ◦ (ℎ′.D)
= appA,B ◦ �D.Π[�D , �B] ◦ (ℎ′.D)
= appA,B ◦W(ℎ).

Showing that the isomorphism is natural in (A, B) in Cart(TTT) ×
{−}

Cart(TTT) amounts
to proving that for 
A : A→ A′ over 
 : Γ→ Δ and 
B : B→ B′ over {
A}

Φ({Π[
A , 
B]} ◦ ℎ) = ({
A}, {
B}) ◦Φ(ℎ).
Expanding both sides gives

appA′ ,B′ ◦W({Π[
A , 
B]}) ◦W(ℎ) = ({
A}, {
B}) ◦ appA,B ◦W(ℎ)
which holds by assumption of pseudo-stability. For naturality in (D, 5 ) consider

�′ Δ′

� Δ

5 ′

ℎ′

5




and a cartesian morphism 
D′ : D′ → D over 
. We then want Φ(ℎ ◦ ℎ′) =
appA,B ◦ W(ℎ) ◦ W(ℎ′). Unfolding Φ gives Φ(ℎ ◦ ℎ′) = appA,B ◦ W(ℎ ◦ ℎ′),
naturality follows from functoriality ofW. Finally, we observe that Φ is fibred
over Cart(TTT)(D,A) by construction since the action of Φ on cartesian morphisms
in the first component is the identity, and projecting down to Cart(TTT) is the
identity of the first component. �

Proposition 3.2.4.4. A comprehension category with a fibred functor

Π : Cart(TTT) ×
{−}

Cart(TTT) → Cart(TTT) ×
?

Cart(TTT)

with an isomorphism

Φ : Cart(TTT) ×
?
CCC→( 5 , 6(ΠAB)) → Cart(TTT) ×

{−}
CCC→(W( 5 ), 6(B))

natural in (D, 5 ) and (A,B) and fibred over TTT(A,D) has pseudo-stable dependent
products satisfying the �-rule.
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Proof. Following the notation introduced in 3.2.4.3 we take Φ to be an isomor-
phism

Φ�D , 5 : CCC→?�D( 5 , 6(ΣAB)) � CCC→{�D}(W( 5 ), 6(B)) (10)

for each suitable cartesian morphism �D. When �D is an identity morphism
we may identify objects of the above homsets with canonical morphisms in
corresponding slice categories. For example when �D = IdA above Γ in 10 we
write CCC/Γ( 5 , 6(ΠAB)) � CCC/Γ.A(W( 5 ), 6(B)).

For all objects Γ ∈ CCC, A ∈ TTTΓ and B ∈ TTTΓ.A,
• let �D = IdA and 5 = 6(ΠAB) in (10) to define

appA,B := ΦIdA ,6(ΠAB)(Id6(ΠAB)) :W(ΠAB) → 6(B)
in CCC/Γ.A;

• define �A,B := Φ−1
IdA , IdΓ.A

: CCC/Γ.A(IdΓ.A , 6(B)) → CCC/Γ(IdΓ , 6(ΠAB)).
Restricting the isomorphism (10) to �D = IdA for each A ∈ TTT it follows from
lemma 3.2.2.4 that the comprehension category has dependent products satisfy-
ing the �-rule.

Naturality of Φ implies

{�E} ◦ appD,E = appA,B ◦W({Π(�D , �E)})
as witnessed by the naturality squares in figure 15.

CCC→? IdA
(6(ΠAB), 6(ΠAB)) CCC→{IdA}(6(ΠAB).A, 6(B))

CCC→?�D(6(ΠDE), 6(ΠAB)) CCC→{�D}(6(ΠDE).D, 6(B))

CCC→? IdD
(6(ΠDE), 6(ΠDE)) CCC→{IdD}(6(ΠDE).D, 6(E))

appA,B

Φ

appD,E

−◦{Π(�D ,�E)} −◦W({Π(�D ,�E)})

{Π(�D ,�E)}◦− {�E}◦−

Figure 15: Pseudo-stability of app.

Similarly for the �-rule. Let � : Δ → Γ, �D : D → A cartesian over �,
�E : E → B cartesian over {�D}. The goal is to show that for every section
C : Γ.A→ Γ.A.B

�A,B(C) ◦ � = {Π(�D , �E)} ◦ �D,E(C[�E]).
Consider the two naturality squares in diagram 16.
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C CCC→{IdA}(IdΓ.A , "(B)) CCC→?(IdA)(IdΓ , "(ΠAB))

CCC→{�D}(IdΔ.D , "(B)) CCC→?(�D)(IdΔ , "(ΠAB))

C[�E] CCC→{IdD}(IdΔ.D , "(E)) CCC→?(IdD)(IdΔ , "(ΠDE))

Φ−1=�A,B

Φ−1

Φ−1=�D,E

{�E}◦− {Π(�D ,�E)}◦−

−◦�−◦{�D}

Figure 16: Pseudo-stability of �.

The leftmost curved arrow is the map taking a section C : Γ.A→ Γ.A.B to the
unique section C[�E] : Δ.D→ Δ.D.E such that

{�E} ◦ C[�E] = C ◦ {�D} (11)

obtained by the pullback square 6(�E), thus making the left triangle commute.
The result then follows:

�A,B(C) ◦ � = Φ−1(C ◦ {�D}) by naturality
= Φ−1({�E} ◦ C[�E]) by (11)
= {Π[�D , �E]} ◦ �D,E(C[�E]) by naturality.

�
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