
STUDENT ARTICLE

2
The Poincaré Lemma and
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Abstract

The Poincaré Lemma is a staple of rigorous multivariate calculus—however, proofs provided in
early undergraduate education are often overly computational and are rarely illuminating. We pro-
vide a conceptual proof of the Lemma, making use of some tools from higher mathematics.

The concepts here should be understandable to those familiar with multivariable calculus, linear
algebra, and a minimal amount of group theory. Many of the ideas used in the proof are ubiquitous
in mathematics, and the Lemma itself has applications in areas ranging from electrodynamics to
calculus on manifolds.

2.1 Introduction
Much of calculus and analysis—the path-independence of line- or surface-integrals on certain do-
mains, Cauchy’s Theorem (assuming the relevant functions are C1) on connected complex regions
and the more general residue theorem, and various ideas from physics—depends to a large extent
on a powerful result known as the Poincaré Lemma. On the way to the statement and proof of this
Lemma, we will introduce the concepts of the exterior power and differential forms, as well as de
Rham cohomology.

2.2 Linear Algebra and Calculus Preliminaries

2.2.1 The Exterior Power
We begin by defining some useful objects; on the way, we will digress slightly and remark on their
interesting properties. We will begin by defining a vector space called the exterior power, in order
to extend the notion of a determinant.

Definition 1 (Alternating Multilinear Form, Exterior Power). Let V be a finite-dimensional vector
space over a field F . A n-linear form is a map B : V × · · · × V| {z }

n

→ W , where W is an arbitrary

vector space over F , that is linear in each term, i.e. such that

B(a1, a2, . . . , an) + B(a′1, a2, . . . , an) = B(a1 + a′1, a2, . . . , an)
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and similarly in the other variables, and such that

s · B(a1, a2, . . . , an) = B(s · a1, a2, . . . , an) = B(a1, s · a2, . . . , an) = · · ·

We say that such forms are multilinear.
A multilinear form B is alternating if it satisfies

B(a1, . . . , ai, ai+1, . . . , an) = −B(a1, . . . , ai+1, ai, . . . , an)

for all 1 ≤ i < n.
Then the n-th exterior power of V , denoted

Vn(V ), is a vector space equipped with an
alternating multilinear map ∧ : V × · · · × V| {z }

n

→
Vn(V ) such that any alternating multilinear map

f : V × · · · × V| {z }
n

→ W

factors uniquely through ∧, that is, there exists a unique f ′ :
Vn(V ) → W such that the diagram

V n
f !!

∧
""

W

Vn(V )

f ′

##!
!

!
!

commutes, i.e. f ′ ◦ ∧ = f .

It is not immediately clear that such a vector space exists or is unique. For existence, see [DF, p.
446]; the construction is not important for our purposes so we relegate it to a footnote.1 Uniqueness
follows immediately from the fact that the above definition is a universal property. However, we
provide the following proof to elucidate this notion:

Proposition 2. The n-th exterior power of a vector space V is unique up to canonical isomorphism.

Proof. Consider vector spaces
Vn

1 (V ) and
Vn

2 (V ) with associated maps ∧1 and ∧2 satisfying
the definition above. As ∧1,∧2 are both alternating and multilinear, they must factor through one
another; that is, we must have that there exist unique ∧′1,∧′2 such that the diagram

V n
∧2 !!

∧1

""

Vn
2 (V )

∧′2
$$

"
#

$
%

&
'Vn

1 (V )

∧′1

%%

"
#

$
%

&
'

1We have that
V0(V ) = F and

V1(V ) = V . There are three equivalent ways to construct the exterior
power for n ≥ 2. First, the exterior power

Vn(V ) can be viewed as the span of formal strings v1 ∧ · · · ∧ vn,
where ∧ is a formal symbol satisfying the properties of the wedge product.

Second, for readers familiar with the tensor power, we may, for n ≥ 2, let I2(V ) ⊂
N2(V ) be the subspace

spanned by vectors of the form v⊗v in
N2(V ) and for n > 2 let In(V ) = (V ⊗In−1(V ))

L
(In−1(V )⊗

V ); then
Vn(V ) %

Nn(V )/In(V ).
Finally, let J2(V ) ⊂ V ⊗ V be the subspace spanned by vectors of the form (v ⊗ w − w ⊗ v). Then for

n ≥ 2,
Vn(V ) %

Tn−2
i=0

“Ni(V )⊗ J2(V )⊗
Nn−i−2(V )

”
⊂

Nn(V ).
We leave checking that these constructions satisfy the definition of the exterior power (and are thus isomor-

phic) as an exercise; the reader may look at the given reference [DF] for the solution.
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commutes. Note however that ∧1,∧2 must be surjective, so ∧′1,∧′2 must be mutually inverse by
the commutativity of the diagram above. But then

Vn
1 (V ) '

Vn
2 (V ) as desired, and we have

uniqueness.

In accordance with convention, for v1, . . . , vn ∈ V , we define

v1 ∧ · · · ∧ vn := ∧(v1, . . . , vn).

This is referred to as the wedge product of v1, . . . , vn. By the fact that ∧ is multilinear and
alternating, note that

1. v ∧ w = −w ∧ v (this immediately implies that v ∧ v = 0),

2. a · (v ∧ w) = (a · v) ∧ w = v ∧ (a · w),

3. v ∧ w + v ∧ w′ = v ∧ (w + w′),

with the appropriate generalizations to higher-order exterior powers. We now calculate, for an
n-dimensional vector space V , the dimension of

Vs(V ).

Proposition 3. We have that

dim
ŝ

(V ) =

 
n
s

!
.

In particular, given a basis {e1, . . . , en} of V , the vectors

ei1 ∧ · · · ∧ eis for 1 ≤ i1 < i2 < · · · < is ≤ n

form a basis of
Vs(V ).

Proof. We begin with the second claim. We first show that

ŝ

(V ) = span(ei1 ∧ · · · ∧ eis | 1 ≤ i1 < i2 < · · · < is ≤ n).

As {e1, . . . , en} is a basis of V , we may write any v1 ∧ · · · ∧ vs ∈
Vs(V ) as

 
nX

i=1

a1
i · ei

!
∧ · · · ∧

 
nX

i=1

as
i · ei

!

for some (aj
i ) ∈ F . We may distribute the wedge product over this summation by multilinearity—

(3) above—and rearrange the terms appropriately by (1) above, so that we have a linear combination
of vectors in the desired form.

To see that these vectors are linearly independent, we produce linear maps Bi1,...,ik :
Vs(V ) →

F such that Bi1,...,is(ei1 ∧ · · · ∧ eis) = 1 and for {i′1, . . . , i′s} )= {i1, . . . , is}, Bi1,...,is(ei′1
∧

· · · ∧ ei′s) = 0. This is sufficient because if ei1 ∧ · · · ∧ eis were to equal

X

{j1,...,js}$={i1,...is}

aj1,...,js · ej1 ∧ · · · ∧ ejs

with some aj1,...,js ∈ F nonzero, we would have Bj1,...,js(ei1 ∧ · · · ∧ eis) = aj1,...,js , a contra-
diction.
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Given an ordered n-tuple of basis elements (ei1 , . . . , eis) ∈ V n, with no two indices equal,
let σi1,...,is be the unique permutation that orders the indices of the basis elements. Consider the
map Σi1,...,is : V × · · · × V| {z }

s

→ F, 1 ≤ i1 < · · · < is ≤ n defined by

Σi1,...,is(ej1 , . . . , ejs) =


0, if {i1, . . . , is} )= {j1, . . . , js}

sign(σj1,...,js) if {i1, . . . , is} = {j1, . . . , js}

and extended by imposing multilinearity. It is easy to check that this map is multilinear and alter-
nating, so it must factor uniquely through ∧; that the resulting map

Vs(V ) → F is Bi1,...,is is
also easy to check.

But the number of sets of strictly ordered indices {i1, . . . , is} is
`

n
s

´
, as claimed, which com-

pletes the proof.

Corollary 4. Let V be an n-dimensional vector space. Then dim
Vn(V ) = 1.

Proof. By Proposition 2, we have dim
Vn(V ) =

`
n
n

´
= 1.

We now extend the standard notion of the determinant. Given an endomorphism T : V → V ,
we define

Vs(T ) :
Vs(V ) →

Vs(V ) to be the map

v1 ∧ · · · ∧ vs *→ T (v1) ∧ · · · ∧ T (vs).

This map is linear as T is linear and as ∧ is multilinear.

Definition 5 (Determinant). The determinant det(T ) of an endomorphism T of an n-dimensional
vector space V is the map

det(T ) :=
n̂

(T ).

In particular, note that
Vn(T ) is a map on a one-dimensional vector space (by Corollary 1),

and is thus simply multiplication by a scalar. We claim that, having chosen a basis for
Vn(V ),

this scalar is exactly the standard notion of the determinant; proving this is an exercise in algebra,
which we recommend the reader pursue. Furthermore, this definition allows one to prove easily
that the determinant of T is nonzero if and only if T is invertible; the proof follows below.

Proposition 6. A linear map T : V → V is invertible if and only if det(T ) )= 0.

Proof. Note that
Vn(idV ) = idVn(V ) and that, given two endomorphisms T, S : V → V ,

Vn(T ◦
S) =

Vn(T ) ◦
Vn(S); that is,

V
respects identity and composition.2

To see necessity, note that we have

idVn(V ) =
n̂

(idV ) =
n̂

(T ◦ T−1) =
n̂

(T ) ◦
n̂

(T−1).

But then
Vn(T ) is non-zero, as it is invertible (

Vn(T−1) is its inverse).
To see sufficiency, we show the contrapositive; that is, for non-invertible T , det(T ) = 0.

Assume that dim T (V ) < n. Let m = dim T (V ), and let {e1, . . . , em} be a basis for T (V ).
But then given any v1 ∧ · · · ∧ vn ∈

Vn(V ), we have, distributing, that
Vn(T )(v1 ∧ · · · ∧ vn) =P

ai1,...,in ·ei1∧· · ·∧ein ; as m < n, we have by the pigeonhole principle that each term contains
a repeated index. But then by (1) above, the determinant is zero as claimed.

2In fact,
Vn(−) is a functor.
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2.2.2 Homotopies
The motivation here is to classify maps and domains by the existence of continuous transforma-
tions between them; we give some definitions that will be useful later. In particular, we wish to
characterize the types of domains on which the the Poincaré Lemma will hold.

Definition 7 (Homotopy). Two continuous maps g0, g1 : U → V with U ⊂ Rm, V ⊂ Rn are
said to be homotopic if there exists a continuous map G : [0, 1] × U → V such that for all
x ∈ U, g0(x) = G(0, x) and g1(x) = G(1, x).

Intuitively, the notion behind this definition is that G(t,−) interpolates continuously between
g0, g1. We may use this idea to characterize certain types of domains, which may, speaking impre-
cisely, be continuously squished to a point.

Definition 8 (Contractibility). We say a domain U ∈ Rm is contractible if, for some point c ∈ U ,
the constant map x *→ c is homotopic to the identity on U .

Note that all convex and star-shaped domains are contractible.

2.2.3 The Change of Variables Formula
We now begin the calculus preliminaries to the Poincaré Lemma. A well-known theorem from
single-variable calculus states that for integrable f defined and continuously differentiable g on
[a, b] with integrable derivative, and with f defined on g([a, b]), we have

Z g(b)

g(a)

f(x) dx =

Z b

a

f ◦ g(x) · g′(x) dx. (2.1)

This is proved easily using the chain rule and the fundamental theorem of calculus.
The theorem (2.1) may be generalized to multivariate functions as follows:

Proposition 9 (The Change of Variables Theorem). Consider open U, V ⊂ Rn with g : U → V an
injective differentiable function with continuous partials and an invertible Jacobian for all x ∈ U .
Then given continuous f with compact, connected support in g(U), we have

Z

g(U)

f(x) =

Z

U

f ◦ g(x) ·
˛̨
det(dg|x)

˛̨

Proof. See [Sp, p. 66-72].

While this fact initially seems quite counterintuitive, careful thought gives good reason for
the above formula. Consider a small rectangular prism in U with volume v; as long as it is non-
degenerate, the vectors parallel to its sides form a basis for Rn. For some x in this prism, we
may approximate g at x as g ≈ T + dg|x, for some translation T . Then the action of g on this
prism is (approximately) to transform the basis vectors parallel to its sides by dg|x, inducing a new
parallelepiped, which is non-degenerate if and only if dg|x is invertible. It is well-known, from
computational geometry, that the volume of this new parallelepiped is

˛̨
det dg|x

˛̨
· v. Consider-

ing the definition of the integral from Riemann sums, we have a geometrical motivation for this
formula—the volume of each box in the summation is dilated by a factor of

˛̨
det dg|x

˛̨
.

2.3 Differential Forms

2.3.1 Motivation
The Change of Variables Theorem has an odd implication—that is, that integration is not coordinate-
independent. In particular, diffeomorphic distortions of the coordinate system (that is, continuously
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differentiable and invertible maps, whose inverse is also continuously differentiable) change the in-
tegrals of maps, even though no information is added or lost. This is undesirable because there is
no obvious reason why any particular coordinate system is “better” than any other.

Much of mathematics seeks to escape from this type of arbitrary choice—an analogous mo-
tivation gives the dot product. The dot product gives a coordinate-free definition of length and
angle; similarly, we would like to define a concept of the integral that is invariant under as many
diffeomorphisms as possible.

Intuitively, the idea is to construct a class of objects that contain information about how they
behave in any given coordinate system. In particular, we wish them to have some notion of “in-
finitesimal” area at any given point, which can be transformed by diffeomorphisms—we wish to
formalize Leibniz’s notion of infinitesimals. (The notation we will use will reflect this intention.)
The goal is to have such objects encode the change of variables theorem as closely as possible.

It is interesting to note that, as a byproduct of this discussion, we will provide a formal, mathe-
matical motivation for the div, grad, and curl operators, which are usually motivated only physically.
We will also provide a generalization of these operators, and justify the physical intuition that they
are connected to one another through more than just notation.

2.3.2 Definitions
Let U be a domain in Rn.

Definition 10 (Differential Forms). A differential k-form on U is a continuous, infinitely differ-
entiable map ω : U →

Vk(Rn∗), where Rn∗ is the dual of Rn as a vector space. The set of all
differential k-forms on U is denoted Ωk(U). A k-form ω is also said to be of degree k, denoted
deg ω = k.

In particular, we may let x1, . . . , xn be a basis for Rn, and let dxi ∈ Rn∗ be the unique linear
map Rn → R that satisfies

dxi(xj) =


1 if i = j
0 if i )= j.

Then in this basis, we may write any differential k-form ω as

ω(x) =
X

1≤i1<...<ik≤n

fi1,...,ik (x) · dxi1 ∧ · · · ∧ dxik ,

for some fi1,...,ik . Intuitively, we may consider dxi1 ∧ · · · ∧dxik to be an oriented, k-dimensional
volume element; this is the notation of “infinitesimal volume” we were looking for above. Note that
this notion conforms geometrically with the properties of the exterior power: if one extends one
dimension of a parallelepiped or formally sums two parallelepipeds, the volume changes linearly,
and the orientation alters when one transposes two neighboring edges.

Differential forms admit a natural multiplication map ∧ : Ωk(U) × Ωl(U) → Ωk+l(U),
which is induced by the wedge product. However, this multiplication is neither antisymmetric nor
symmetric; in particular, for ω ∈ Ωk(U), α ∈ Ωl(U), we have

ω ∧ α = (−1)kl · α ∧ ω,

by reordering the dxi.
Let V be a domain in Rk; let g be a continuous, differentiable map V → U .

Definition 11. The pullback of a k-form ω ∈ Ωk(U) through g, denoted g∗(ω) ∈ Ωk(V ), is,
with ω written as above, the map

g∗(ω)(x) =
X

1≤i1<...<ik≤n

fi1,...,ik ◦ g(x) ·
k̂

(dg|∗x)(dxi1 ∧ · · · ∧ dxik )

where dg|∗x is the adjoint of the linear map dg|x.
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We claim that the pullback is the desired, (almost) coordinate-free transform we were looking
for earlier. To see this, we must first define the integral of a differential form. In fact, for U ⊂ Rn,
we need only worry about n-forms, i.e. ω ∈ Ωn(U). Writing ω(x) = f(x) · dx1 ∧ · · · ∧ dxn, we
define Z

U

ω :=

Z

U

f(x)

where the integral on the right is the standard integral on real-valued functions. (Note the illustrative
abuse of notation; if we write the term on the left out, we have

Z

U

f · dx1 ∧ · · · ∧ dxn.

Omitting the wedges gives the standard notation from multivariate calculus.)
It is important to note that the sign of the integral is non-canonical; we have chosen an orienta-

tion of Rn by choosing an ordering of its basis vectors.

2.3.3 The Change of Variables Formula Revisited
We claim that the value of the integral is invariant under diffeomorphism, up to a sign. Let U, V be
domains in Rn, with ω ∈ Ωn(U). Consider a diffeomorphism g : V → U . Then we claim

Z

U

ω = ±
Z

V

g∗(ω).

But writing out the term on the right according to our definitions, and writing ω(x) as f(x) · dx1 ∧
. . . ∧ dxn gives us exactly

Z

V

g∗(ω) =

Z

V

f ◦ g ·
k̂

(dg|∗x)(dxi1 ∧ · · · ∧ dxik )

=

Z

V

f ◦ g · det(dg|∗x) · dxi1 ∧ · · · ∧ dxik

=

Z

V

f ◦ g · det(dg|∗x)

=

Z

V

f ◦ g · det(dg|x),

where we use the fact that det(dg|x) = det(dg|∗x). But this is exactly the change of variables
formula without the absolute value sign. As g is a diffeomorphism, dg|x is always invertible
and thus has nonzero derivative; continuity implies then that det(dg|x) is everywhere-positive or
everywhere-negative. So

Z

U

ω =

Z

V

f ◦ g ·
˛̨
det(dg|x)

˛̨
= ±

Z

V

f ◦ g · det(dg|x) = ±
Z

V

g∗(ω),

as claimed. We say that a diffeomorphism g is orientation-preserving if det(dg|x) is everywhere-
positive; in this case, we have strict equality above.

In fact, we may use this notion to redefine the notions of the line integral, the surface integral,
and so on; in general, we may take the k-integral of a k-form ω on U ⊂ Rn. Consider a domain
V ∈ Rk. Then the k-integral over a curve g : V → U is just the integral of g∗(ω) as defined
above. Note that this is the integral of a k-form in Rk, and is thus well-defined. This definition
immediately gives invariance of the integral under appropriate re-parameterization, as before.

It is worth pausing here to examine what we have achieved. A careful reader might say that
we have achieved nothing, at least insofar as pursuit of truth is concerned. We have just redefined
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some terms: the integral, and coordinate transformations, to be precise. We have replaced them
with ideas that conform to normative notions we have about how the objects in question should
behave. In some sense, this evaluation would be true from a purely epistemological view, but it
would miss the pedagogical point. By restricting our attention to objects which are coordinate-free,
we can examine the coordinate-independent properties of the objects they correspond to with much
greater ease. The value of this labor will become clear as we develop this machinery in the next
few sections.

2.3.4 The Exterior Derivative
We wish to define an operator on differential forms that is similar to the derivative; in particular, it
should satisfy some analogue of the product rule, and in some sense be invariant under coordinate
transformations. Taking our cue from the antisymmetry of the wedge product, we want to find a
collection of operators (dk) that satisfies

• dk is a linear map Ωk(U) → Ωk+1(U).

• Given two differential forms ω ∈ Ωk(U), α ∈ Ωl(U), dk+l(ω∧α) = dk(ω)∧α+(−1)kω∧
dl(α). This is analogous to the product rule. This condition and the prior condition make d
a derivation of degree 1.

• For f a 0-form, i.e. a function U → R, U ⊂ Rn, d coincides with the derivative in the
following sense: d0(f) =

Pn
i=1

∂f
∂xi

·dxi. That is, in matrix form, d0(f)(x) is exactly df |x
(albeit in a different space, which, having chosen the bases {x1, . . . , xn}, {dx1, . . . , dxn},
is non-canonically isomorphic to the usual space).

• dk+1 ◦ dk = 0 for all k.

In general, we omit the superscript and the parentheses; i.e. dk(ω) is written dω, and we write dk

as simply d for all k; the last condition above would then be written d ◦ d = 0.

Proposition 12. The map d is uniquely defined by the above conditions.

Proof. Consider the function χi : Rn → R given by (x1, x2, . . . , xn) *→ xi; this function coin-
cides with dxi as defined above, but we use dxi from here on to denote the constant differential
form x *→ 1 · dxi, by (confusing) convention, just as we might use the constant c to denote the
map x *→ c. Note that, by the third condition above, dχi = dxi. So by the fourth condition above,
d(dxi) = 0. We may now proceed to define dk inductively, through the second condition above.
In particular, it is clear that Ωk(U) is spanned by the set of differential forms with a single term,
e.g. ω = f(x) · dxi1 ∧ . . . ∧ dxik . But then

dk(f(x) · dxi1 ∧ . . . ∧ dxik−1 ∧ dxik ) = dk−1(f(x) · dxi1 ∧ . . . ∧ dxik−1) ∧ dxik

+ (−1)k−1f(x) · dxi1 ∧ . . . ∧ dxik−1 ∧ d(dxik )

= dk−1(f(x) · dxi1 ∧ . . . ∧ dxik−1) ∧ dxik

and we may extend d linearly to linear combinations of single-term forms. While this proves
uniqueness, it is not immediately clear that d is well-defined, as we must check that property (2)
holds for all k, l, rather than just for l = 1.

To show that d is well-defined, we give an explicit construction that satisfies the inductive
construction given above. In particular, for single-term forms ω(x) = f(x) · dxi1 ∧ . . .∧ dxik , we
let

dω =
nX

j=1

∂f
∂xj

· dxj ∧ dxi1 ∧ . . . ∧ dxik .
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The interested reader can check that this construction satisfies the first three conditions above; we
check the fourth. The proof is inductive. We have that for 0-forms, e.g. f(x), that

d ◦ d(f) = d

 
nX

i=1

∂f
∂xi

· dxi

!

=
nX

j=1

nX

i=1

∂2f
∂xj∂xi

· dxj ∧ dxi

=
X

i<j

„
∂2f

∂xi∂xj
dxi ∧ dxj +

∂2f
∂xj∂xi

dxj ∧ dxi

«

=
X

i<j

„
∂2f

∂xi∂xj
dxi ∧ dxj −

∂2f
∂xj∂xi

dxi ∧ dxj

«

= 0,

where the last step uses the equality of mixed partials. We have already noted that d(dxi) = 0
above. Assume that for i < p, we have for ω ∈ Ωi(U), d ◦ d(ω) = 0. Then for α ∈ Ωp(U) with
one term, we may write α = β ∧ γ for β ∈ Ω1(U), γ ∈ Ωp−1(U). We have

d ◦ d(α) = d ◦ d(β ∧ γ)

= d(dβ ∧ γ − β ∧ dγ)

= d(dβ ∧ γ)− d(β ∧ dγ)

= d(dβ) ∧ γ + dβ ∧ dγ − dβ ∧ dγ + β ∧ d(dγ)

= 0

by the induction hypothesis; differential forms with more than one term satisfy the same claim by
linearity. This completes the proof.

Calculation gives that the exterior derivative commutes with the pullback, e.g. g∗(dω) =
d(g∗(ω)). That is, in some sense, the exterior derivative “flows” with changes of coordinates; for
0-forms, this is just the chain rule.

For the rest of this subsection, we will restrict our attention to R3. Note that, from Propo-
sition 2, we have that the dimensions of

V0(R3),
V1(R3),

V2(R3), and
V3(R3) are 1, 3, 3, and

1, respectively. In particular, we can identify
V0(R3) and

V3(R3) with R (actually the former
is identified as such canonically), and

V1(R3),
V2(R3) with R3. Then d gives maps R → R3,

etc., and, by precomposition, maps ∇ : C∞(R3) → (R3 → R3),∇× : (R3 → R3) → (R3 →
R3),∇· : (R3 → R3) → C∞(R3). Easy computation gives that these maps correspond, respec-
tively, to the gradient, curl, and divergence. In fact, the first of these three computations follows
immediately from the third bullet in the definition of the exterior derivative.

It is important to note that the identifications above are non-canonical; in the most general case,
we define a canonical isomorphism called the Hodge dual, denoted

∗ :
k̂

(V )
∼−→

n−k̂

(V ),

where n is the dimension of V . Using this isomorphism, we may extend the ideas of gradient, curl,
and divergence given above to vector spaces with arbitrary finite dimension.

2.3.5 The Interior Product and the Lie Derivative
Consider an element w ∈

Vk(V ), where V is a finite-dimensional vector space over some field
F . Then w can be viewed as an alternating, multilinear mapping w : V ∗k → F , where V ∗ is the
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vector space dual to V (here we take advantage of the canonical isomorphism V ' V ∗∗). Given
a1, . . . , an ∈ V ∗, we may define, for each α ∈ V ∗, a function ια such that ια(w)(a1, . . . , an) =
w(α, a1, . . . , an).

In particular, we may uniquely define ια as follows [Wa, p. 61]:

• ια :
Vk(V ) →

Vk−1(V ),

• For v ∈
V1(V ), ια(v) = α(v),

• ια is a derivation of degree −1, i.e. ια(a ∧ b) = ια(a) ∧ b + (−1)deg aa ∧ ια(b).

The proof that these properties uniquely define ια is analogous to the proof for d above and is left
to the reader.

We now restrict our attention to V = (Rn)∗. Consider a vector field ξ : U → Rn, where U
is a domain in Rn. Then for a differential form ω on U , we may let ιξ act on U point-wise, e.g.
ιξ(ω)(x) = ιξ(x)(ω(x)). We define the Lie Derivative of a form ω with respect to a vector field ξ
by

Lieξ(ω) := d ◦ ιξ(ω) + ιξ ◦ d(ω).

In some sense, this operator takes the derivative of a form with respect to a (possibly time-
dependent) vector field. This intuition is clear for constant vector field; computation, which we
omit, gives that for a constant vector field *x,

Lie$x(f · dx1 ∧ · · · ∧ dxn) =
∂f
∂x

· dx1 ∧ · · · ∧ dxn.

This fact will be useful later, and to remind ourselves of it, we will denote a constant vector field
with respect to some coordinate xi as ∂

∂xi
.

2.4 Chain Complexes
Above, we noted that the exterior derivative satisfies d ◦ d = 0. This fact suggests a more general
structure, which we abstract as follows:

Definition 13 (Chain Complex). A chain complex is a sequence of Abelian groups (or algebraic
objects with Abelian structure, e.g. modules, vector spaces) A−1, A0, A1, A2, . . . with connecting
homomorphisms dk : Ak → Ak−1 such that for all k, dk ◦ dk+1 = 0. We denote all of this data as
(A•, d•).

In a cochain complex, the connecting homomorphisms proceed in the opposite direction; i.e.
dk : Ak → Ak+1 and dk ◦ dk−1 = 0. In this case, we denote the entire collection of Abelian
groups and connecting homomorphisms as (A•, d•).

Note that the chains and cochains are identical, but with different indexing; the terminology
stems from convention. The notion of the pullback suggests the following:

Definition 14 (Map of Complexes). A map of complexes ψ• : (A•, d•) → (B•, e•), in the case
of a cochain, is a collection of maps ψk : Ak → Bk such that ek ◦ ψk = ψk+1 ◦ dk, i.e. the
diagram in Figure 2.1 commutes. The case of chains is analogous.

It should be clear by now that differential forms on some domain U ⊂ Rn form a complex

. . . !! 0 !! Ω0(U)
d !! Ω1(U)

d !! . . . d !! Ωn(U) !! 0 !! . . . .

and, from the fact that pullbacks commute with the exterior derivative, that pullbacks are maps of
complexes. We call this complex the de Rham complex and denote the de Rham complex on U
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...

dk−1

""

...

ek−1

""
Ak

ψk

!!

dk

""

Bk

ek

""
Ak+1

ψk+1
!!

dk+1

""

Bk+1

ek+1

""
...

...

Figure 2.1: A Map of Complexes.

as (Ω•(U), d•). As in the de Rham derivative, we often ignore the superscripts on the connecting
homomorphisms, e.g. d ◦ d = 0, in arbitrary chains or cochains. Also, when we are discussing
more than one complex, it is common to use the same symbol for their respective connecting
homomorphisms, e.g. d ◦ ψk = ψk+1 ◦ d.

Definition 15 (Closed, Exact). Given an element ω ∈ Ak, we say that ω is closed if dω = 0. We
say that ω is exact if there exists α such that dα = ω.

Note that, as d ◦d = 0, we have that im dk ⊂ ker dk+1; that is, all exact elements of a chain or
cochain are closed. It is natural to ask when closed elements are exact—in the de Rham complex,
the Poincaré Lemma addresses this question to a large extent. Pursuing it in general, we define:

Definition 16 (Homology, Cohomology). The k-th homology group of a chain (A•, d•) is

Hk(A•) :=
ker dk

im dk+1
.

Analogously, in a co-chain (B•, d•), the k-th cohomology group of B• is

Hk(B•) :=
ker dk

im dk−1
.

Intuitively, this group characterizes those closed forms that are not exact; i.e. elements in any
given coset are identical up to an exact form.

Consider two co-chains A•, B• and a map of complexes φ• : A• → B•. We claim that
φ• induces well-defined maps Hk(φ•) : Hk(A•) → Hk(B•). (An analogous claim holds for
chains.)

Proof. Consider an element [a] ∈ Hk(A•). We claim that the map Hk(φ•) : [a] → [φ(a)] is
well-defined. By definition, any element a′ ∈ [a] differs from a by an exact element ω; as it is
exact, we may write ω = dα for some α. Then [φ(a′)] = [φ(a + dα)] = [φ(a) + φ(dα)] =
[φ(a) + d(φ(α))] = [φ(a)], where we use the fact that maps of complexes commute with the
complexes’ connecting maps. So the map of cohomologies (resp. homologies) is well-defined.

It is natural to ask when two maps of complexes induce the same map between cohomologies.
To this end, we consider the following definition:
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...

dk−2

""

...

dk−2

""
Ak−1

dk−1

""

ψk−1−φk−1
!!

hk−1
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Bk−1

dk−1

""
Ak

ψk−φk
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dk

""

hk

%%)))))))))))))))
Bk
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ψk+1−φk+1
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""
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%%)))))))))))))))
Bk+1

dk+1

""
...

...

Figure 2.2: A Homotopy of Cochain Complexes.

Definition 17 (Homotopy). In a (justifiable, as we shall see) homonym, we say that two maps
ψ•, φ• : A• → B• of complexes are homotopic through the homotopy (hk) if there exists a
sequence of maps hk : Ak → Bk−1 (in a co-chain, with analogous indexing for chains) such that

ψk − φk = d ◦ hk + hk+1 ◦ d.

That is, in the diagram in Figure 2.2, the parallelograms commute with the horizontal arrows.

Proposition 18. If two maps of complexes ψ•, φ• are homotopic through some homotopy (hk),
then Hk(ψ•) = Hk(φ•).

Proof. Note that, by linearity Hk(ψ•)−Hk(φ•) = Hk(ψ• − φ•) = Hk(d ◦ hk + hk+1 ◦ d) =
Hk(d ◦ hk) + Hk(hk+1 ◦ d). We claim that Hk(d ◦ hk) = Hk(hk+1 ◦ d) = 0. To see that
Hk(hk+1 ◦d) = 0, note that for [a] ∈ Hk(A•), we have that a ∈ ker(d), so Hk(hk+1 ◦d)([a]) =
[hk+1 ◦ d(a)] = 0. Furthermore, Hk(d ◦ hk)([a]) = [d(hk(a))]. But d(hk(a)) ∈ im(d), so
[d(hk(a))] = [0]. But then Hk(ψ•)−Hk(φ•) = 0, so Hk(ψ•) = Hk(φ•) as claimed.

2.5 The Poincaré Lemma

We finally are able to state and prove the Poincaré Lemma. We wish to characterize situations in
which closed forms are also exact.

Theorem 19 (The Poincaré Lemma). Let U be a contractible domain in Rn, and let k be a positive
integer. Then for ω ∈ Ωk(U) such that dω = 0, there exists α ∈ Ωk−1(U) such that ω = dα. In
other words all closed differential k-forms on contractible domains are exact.

Proof. We first prove a general lemma—that is, that the pullbacks through homotopic maps are
homotopic as maps of complexes, as is suggested by the terminology.
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Lemma 20. Let V and W be domains, V ⊂ Rn, W ⊂ Rm. Consider maps g0, g1 : V → W
that are homotopic, i.e. there is a map G : I × V → W , where I = [0, 1] such that G(0, x) =
g0(x), G(1, x) = g1(x). Then the maps of complexes g∗0 , g∗1 : Ωk(W ) → Ωk(V ) are homotopic.

Proof of Lemma 20. Let Gt : V → W be the map x *→ G(t, x). For ω ∈ Ωk(W ), define

hk(ω)(x) =

Z t=1

t=0

ι ∂
∂t

(G∗
t (ω))(x).

We claim that this is the desired homotopy of complexes. In particular, we have that

(dk−1 ◦ hk + hk+1 ◦ dk)(ω) = d

„Z t=1

t=0

ι ∂
∂t

(G∗
t (ω))

«
+

Z t=1

t=0

ι ∂
∂t

(G∗
t (dω))

=

Z t=1

t=0

(d ◦ ι ∂
∂t

+ ι ∂
∂t
◦ d)(G∗

t (ω))

=

Z t=1

t=0

Lie ∂
∂t

(G∗
t (ω))

=

Z t=1

t=0

∂
∂t

G∗
t (ω)

= G∗
1(ω)−G∗

0(ω)

= g∗1(ω)− g∗0(ω),

as desired. In the above manipulations, we use the commutation of the differential with the integral
and the pullback as well as the fundamental theorem of calculus.

Corollary 21. The pullbacks through homotopic maps act identically on the cohomologies, that is,
Hk(g∗0) = Hk(g∗1). In particular, on a contractible domain, Hk(id∗) = Hk(c∗), where c is the
constant map.

But Hk(c∗) = 0. So we have from the corollary that, on contractible domains, Hk(id∗) = 0.
But then Hk(Ωk(U)) = 0, i.e. im d = ker d. And this is precisely what we wanted to prove.

2.6 Conclusion
It is valuable to consider what, if anything, we have accomplished beyond the Lemma itself. In
particular, the ideas here seem somewhat far-removed from those where we started—in the realm
of coordinate-invariant objects. What does the Poincaré Lemma tell us? What have we gained by
introducing such strange, if elegant, mathematical tools?

To begin with, many more standard proofs of the Lemma are heavily calculational [Sp]; the
referenced method proves the theorem only on star-shaped domains, and at the cost of massive
amounts of counterintuitive index-juggling. The methods here slightly weaken the hypothesis on
the domain and achieve a much cleaner solution.

But more importantly, the tools we have developed have varied applications. One of the better-
known such applications occurs in electrodynamics, where Maxwell’s equations tell us that, under
magneto-static conditions,

∇× *E = 0,

where *E denotes the electric field. The Poincaré Lemma implies immediately that there exists a
scalar function V such that

*E = −∇V,

that is, the electric potential.
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