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1 Review: Quillen’s Theorem A and B

Recall that we have established the definitions for a nerve and a geometric realization of a category, as well as the notions

Definition (Generalized Slice Category). Let F : C Ñ D be a functor and fix D P D. A generalized slice-over category
F {D is a category of pairs pC, vq where C P C and v : FC Ñ D is a morphism in D. A morphism of this category of the
form pC, vq Ñ pC 1, v1q is a map w : C Ñ C 1 such that v “ v1F pwq.

Dually, a generalized slice-under category DzF is a category of pairs pC, vq where C P C and v : D Ñ FC is a
morphism in D. A morphism of this category of the form pC, vq Ñ pC 1, v1q is a map w : C Ñ C 1 such that F pwqv “ v1.

Remark. In particular, if F “ id is the identity functor, then we recover slice categories.

Definition (Fibered Functor). We say F : E Ñ B is pre-fibered if for all B P B the inclusion F´1pBq ãÑ BzF has a
right adjoint. In particular, the classifying spaces BF´1pBq » BpBzF q are equivalent. Recall that a base-change functor
is f˚ : F´1pB1q Ñ F´1pBq associated to a morphism f : B Ñ B1 in B, defined by the composition F´1pB1q ãÑ

pBzF q Ñ F´1pBq.
We say F is fibered if it is pre-fibered and g˚f˚ “ pfgq˚, so F´1 gives a contravariant functor from B to Cat.

Remark. Given X P A, the domain functor

A{X Ñ A
pf : Y Ñ Xq ÞÑ Y

is a fibered functor.

Dually, there is the notion of a (pre-)cofibered functor. Finally, we proved

Theorem (Quillen’s Theorem A). Let F : C Ñ D be a functor such that the classifying space BpD Ó F q of the comma
category D Ó F is contractible for any object D P D, then F induces a homotopy equivalence BC Ñ BD. In particular,
the theorem holds if we substitute the comma category D Ó F to the slice categories DzF and F {D.

Corollary. Suppose F : C Ñ D to be either pre-fibered or pre-cofibered, and suppose F´1pDq is contractible for all
D P D, then BF : BC Ñ BD is a homotopy equivalence.

Using a similar proof, we have

Theorem (Quillen’s Theorem B). Let F : C Ñ D be a functor such that for every morphism D Ñ D1 in D, the induced
functor BpD1 Ó F q Ñ BpD Ó F q is a homotopy equivalence. Then for each D P D, the geometric realization of

D Ó F C Dj F

is a homotopy fibration sequence. That is, the Cartesian square of categories

D Ó F C

D Ó D D

F
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gives rise to a homotopy-Cartesian of geometric realizations. Therefore, there is a long exact sequence

¨ ¨ ¨ πi`1pBDq πiBpD Ó F q πiBC πiBD ¨ ¨ ¨
B j F B

In particular, one can replace D Ó F by DzF or F {D.

Corollary. Suppose F : C Ñ D is pre-fibered (respectively, pre-cofibered), and that for every arrow u : Y Ñ Y 1, the
base-change functor u˚ : F´1pY 1q Ñ F´1pY q (respectively, co cobase-change functor u˚ : F´1pY q Ñ F´1pY 1q) is a
homotopy equivalence. Then for any Y in D, the category F´1pY q is homotopy equivalent to the homotopy fiber of F
over Y . That is, given the inclusion functor i : F´1pY q Ñ C, the diagram

F´1pY q C

˚ D

i

F

Y

is homotopy Cartesian. In particular, for any X P F´1pY q, we have an exact homotopy sequence

¨ ¨ ¨ πn`1pD, Y q πnpF´1pY q, Xq πnpC, Xq πnpD, Y q ¨ ¨ ¨
i˚ F˚

To understand two other Quillen’s theorems, we need to study Quillen exact categories.

2 Quillen Q-construction and K-groups of Quillen Exact Category

Definition 2.1 (Quillen Exact Category). Let A be an abelian category and let B Ď A be a full additive subcategory of A
that is closed under extensions in A, i.e., given a short exact sequence 0 Ñ A Ñ B Ñ C Ñ 0, B P B if A,C P B.

Alternatively, one can define a Quillen exact category B independent from the ambient category A, but this requires
additional structure on the category. To see how, let pB, Sq be a pair where B is an additive category, and S is a collection
of diagrams based on morphisms in B of shape

A B C
f g

called admissible exact sequences. Here f is called an admissible monomorphism and g is called an admissible epimor-
phism, such that

1. replete axiom: A ↠ A Ñ 0 and 0 Ñ B ↣ B are admissible;

2. they are short exact sequences, i.e., g ˝ f “ 0, g “ cokerpfq and f “ kerpgq;

3. composition of admissible monomorphisms (respectively, epimorphisms) are admissible monomorphisms (respec-
tively, epimorphisms);

4. pushouts of admissible monomorphisms exist and remain admissible monomorphisms, i.e., for any diagram of shape

A B

A1

f

u

can be completed as a pushout square

A B

A1 B1

f

u u1

f 1

such that f 1 is an admissible monomorphism;
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5. dually, pullbacks of admissible epimorphisms exist and remain admissible epimorphisms.

Remark 2.2. Current literature usually calls this “exact category” for short. A related concept is “Frobenius exact category.”

Example 2.3. • An abelian category is precisely an exact additive category, with admissible short exact sequences given
by the short exact sequences.

• Let A be an additive category and B “ ChpAq be the category of chain complexes in A. It is obvious that B is
an additive category. Moreover, B has an obvious Quillen exact structure B has a Quillen exact structure where
admissible short exact sequences are the short sequences that are split-exact in every degree (without requiring the
splitting to be compatible with the differentials, hence not the split-exact structure on the additive category B).

• Let A be a ring, and let PpAq be the additive category of finitely-generated projective A-modules, then PpAq is
exact with exact sequences as the ones that are exact in the category of all A-modules.

Definition 2.4 (Exact Functor). For an exact category, an exact functor is a functor that preserves the admissible short
exact sequences.

We have seen how to build K-theory on category of finitely-generated projective modules. A natural task would be to
build K-groups on arbitrary exact categories. This requires understanding Quillen Q-construction.

Definition 2.5 (Quillen Q-construction). Let B be an exact category, we construct QB as follows. QB has the same objects
as B, and morphisms in HomQBpX,Y q are the isomorphism classes of zigzag diagrams of the form

X Z Y
j i

The isomorphism classes of HomQBpX,Y q are defined such that two diagrams

X Z Y

X Z 1 Y

j i

j i

give an isomorphism Z – Z 1. A composition of morphisms is defined by the pullback, that is, given two morphsims

X Z Y

Y Z 1 Y 1

j i

j1
i1

the composition is the morphism

X Z ˆY Z 1 Y 1j˝πZ i1
˝πZ1

defined from the pullback diagram

Z ˆY Z 1 Z 1 Y 1

Z Y

X

πZ1

πZ

i1

j1

i

j

This defines a category QB.

Remark 2.6. Alternatively, we can define the morphism using the notion of admissible layer. An admissible layer of object
X P B is a pair of subobjects X1, X2 of X , i.e., an isomorphism class (of objects over X) of admissible monomorphisms
Xi ↣ X , such that X1, X2{X1, and X{X2 are objects in B. In this sense, a morphism from Y to X is an isomorphism
Y – X2{X1 where pX1, X2q is an admissible layer of X .
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Remark 2.7. Every morphism in QB is a monomorphism. Moreover, the slice category QB{X is equivalent to the ordered
set of admissible layers in X with ordering pX0, X1q ď pX2, X3q iff X2 ď X0 ď X1 ď X3, where A ď B is the
ordering on admissible subobjects of X : the unique map A Ñ B over X is an admissible monomorphism, i.e., A ď B iff
pA,Bq is an admissible layer of X .

Remark 2.8. Given admissible monomorphism i : B1 ↣ B, there exists an induced morphism i! : B
1 Ñ B in QB,

which we call it to be injective. Dually, we denote j! : B1 Ñ B to be surjective induced from admissible epimorphism
j : B Ñ B1. One should note that they are not actually injective/surjective, i.e., monomorphism/epimorphism in the
categorical sense: as noted above, every morphism in QB is a monomorphism.

Using these notions, any morphism u in QB is given by the unique factorization u “ i!j
! up to unique isomorphism.

We restrict our attention to small exact categories B, so that we get to defined the classifying space BQB.

Remark 2.9. The classifying space BQB is exactly the geometric realization of the semisimplicial set whose n-simplices
are chains M0 Ñ M1 Ñ ¨ ¨ ¨ Ñ Mn of arrows in a small category equivalent to QB. This is equivalent to the geometric
realization of the nerve of QB, denoted |N pQBqr´s|, which is independent of the basepoint, which we assume to be the
zero object 0 of the category.

Definition 2.10. The K-theory space is KpBq “ ΩBQB is an infinite loopspace. The K-groups are defined by KiB “

πipKBq “ πi`1pBQB, 0q.

Theorem 2.11 (Quillen, Quillen (1975)). π1pBQB, 0q – K0pBq canonically.

Theorem 2.12 (Quillen, Quillen (1975)). If A is a regular ring, i.e., A is a Noetherian ring such that every module has finite
projective dimension, then KnpAq is isomorphic to the nth K-group of the category of finitely-generated A-modules.

3 Quillen’s Dévissage Theorem

Setup. For the rest of the talk, let A be an abelian category, and let B be a non-empty full subcategory A that is closed
under taking subobjects, quotients, and finite products in A. Under this setting, B is abelian as well, and the inclusion
functor ι : B Ñ A is exact, where we regard both categories to be exact in the obvious way, i.e., monomorphisms and
epimorphisms are admissible. With this in mind, the Q-construction gives a full subcategory QB of QA.

Theorem 3.1 (Dévissage Theorem). Suppose that every object M of A has a finite filtration, i.e.,

0 “ M0 Ď M1 Ď ¨ ¨ ¨ Ď Mn “ M

such that Mj{Mj´1 P B for all j. Then the inclusion functor Qι : QB Ñ QA is a homotopy equivalence.

Proof. By Quillen’s Theorem A, it suffices to prove thatQι{M is contractible for any objectM ofA. HereQι{M is thought
of as a generalized slice category over QB with objects as pairs pN, uq where N P QB is an object and u : N Ñ M is a
morphism in QA.

If we associate u with the target M , we get an admissible layer pM0,M1q of M such that u defines an isomorphism
N – M1{M0. Therefore, Qι{M is categorically equivalent to the the poset category JpMq of admissible layers pM0,M1q

in M such that M1{M0 P B, with ordering pM0,M1q ď pM 1
0,M

1
1q if and only if M 1

0 Ď M0 Ď M1 Ď M 1
1.

Since M has a finite filtration with quotients in B, then it suffices to show that i : JpM 1q Ñ JpMq is a homotopy
equivalence whenever M 1 Ď M is such that M{M 1 P B. Define

r : JpMq Ñ JpM 1q

pM0,M1q ÞÑ pM0 X M 1,M1 X M 1q

and

s : JpMq Ñ JpMq

pM0,M1q ÞÑ pM0 X M 1,M1q.
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We claim that r is the homotopy inverse of i. Note that they are well-defined because B is closed under subobjects and
products, and because pM1 X M 1q{pM0 X M 1q Ď M1{pM0 X M 1q Ď pM1{M0q ˆ pM{M 1q. Now ri “ idJpM 1q and
there exists natural transformations ir Ñ s Ð idJpMq represented by ordering

pM0 X M 1,M1 X M 1q ď pM0 X M 1,M1q ě pM0,M1q.

It is an easy consequence from the property of geometric realizations we saw that

Lemma 3.2. A natural transformation θ : F Ñ G of functors C Ñ D induces a homotopy BC ˆ r0, 1s Ñ BD between
BF and BG.

Therefore r is a homotopy inverse for i.

Corollary 3.3. KnB – KnA for all n ě 0.

Corollary 3.4. If A is such that every object has finite length, then KnA –
š

jPJ

KnDj where tXj , j P Ju is a set of

representatives for the isomorphism classes of simple objects of A, and Dj is the field EndpXjqop, as an endomorphism
ring of a simple module.

Proof. By Corollary 3.3, KnB – KnA for alln ě 0, whereB is the subcategory of semisimple objects. Therefore, it suffices
to prove the statement assuming every object of A is semisimple. Note that K-groups commute with products and filtered
limits, then we may assume A has a unique object X up to isomorphism. In this case, the mapping M ÞÑ HompX,Mq

defines a categorical equivalence of A with PEndpXqop, the additive category of finitely-generated projective modules
over EndpXqop.

Corollary 3.5. If I is a nilpotent two-sided ideal in a Noetherian ring A, then K 1
npA{Iq – K 1

npAq. Here K 1
npRq is the

nth K-group of finitely-generated R-modules of a Noetherian ring R.

4 Quillen’s Localization Theorem

Definition 4.1 (Serre subcategory). A Serre subcategory B of A is a full subcategory that is closed under

• subobjects: suppose B ↣ A in A is a subobject and A P B, then B P B.

• quotients: suppose A ↠ B in A and A P B, then B P B.

• extensions: suppose A ↣ B ↠ A1 is exact in A where A,A1 P B, then B P B.

Remark 4.2. The kernel of an exact functor F : C Ñ D is a Serre subcategory of C.

Definition 4.3 (Gabriel Quotient). Given a Serre subcategory B of A, the quotient structure A{B, called the Gabriel
Quotient, is a well-defined abelian category as follows: the objects of A{B are exactly the objects of A, and the morphisms
are given by the direct limit of abelian groups

HomA{BpX,Y q :“ lim
ÝÑ

HomApX 1, Y {Y 1q

for subobjects X 1 Ď X and Y 1 Ď Y such that X{X 1 P B and Y 1 P B.

Remark 4.4. There is a canonical exact (quotient) functor Q : A Ñ A{B such that QpBq “ 0, and Q is initial among
exact functors F : A Ñ C such that F pBq “ 0, that is,

A C

A{B

F

Q
D!F̄

In particular, F̄ is exact.
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Theorem 4.5 (Localization Theorem). Let B be a Serre subcategory of A, then A{B is a well-defined quotient category.
Let e : B Ñ A be the inclusion functor and let s : A Ñ A{B be the quotient functor, then there exists a long exact
sequence

¨ ¨ ¨ K1pA{Bq K0B K0A K0pA{Bq 0
s˚ e˚ s˚

In particular, B Ñ A Ñ A{B is a fibration.

Remark 4.6. The argument of the proof connects back to Grothendieck-Riemann-Roch theorem.

The following corollary is more well-known, and fits in the setting of Suslin (1983).

Corollary 4.7. Let A be a Dedekind domain with field of fractions F “ FracpAq, then there exists a long exact sequence

¨ ¨ ¨ Kn`1F
š

maximal m
KnpA{mq KnpAq KnpF q ¨ ¨ ¨

Proof. Let A be the category of finitely-generated A-modules, and B be the subcategory of torsion A-modules in A. Now
the Gabriel quotient A{B is MpF q, the category of finitely-generated F -modules, also known as PpF q. By Theorem 2.12,
we have KnA “ KnA, and by Corollary 3.4 we know KnB “

š

KnpA{mq. Now note that the map KnA Ñ KnF is
induced by the transfer map associated to A Ñ A{m, and this induces a long exact sequence, c.f., Quillen (1975).

Corollary 4.8. Let A be a discrete valuation ring (DVR), i.e., A is a local Dedekind domain that is not a field. Let m be the
unique maximal ideal of A, E “ FracpAq be the field of fractions, and F “ A{m be the residue field, then there exists a
long exact sequence

¨ ¨ ¨ Kn`1E KnpF q KnpAq KnpEq ¨ ¨ ¨

Proof of Theorem 4.5. Let 0 P A be the zero object, then with an abuse of notation we denote 0 to be the image in A{B.
Therefore B is exactly the full subcategory of A of elements M such that sM – 0. Therefore, the composition Qe ˝ Qs
of Qe : QB Ñ QA and Qs : QA Ñ QpA{Bq is isomorphic to the constant functor of value 0. Therefore, Qe factors as

QB 0zQs QA

M pM, 0 – aMq

pN, uq N

By Quillen’s Theorem B, it suffices to show

(a) For every u : V 1 Ñ V inQpA{Bq, the induced map u˚ : V zQs Ñ V 1zQs is a homotopy equivalence.
In particular, by Theorem B, we conclude that pQsq´1pV q, which is homotopy equivalent to V zQs for prefiber Qs,
is homotopy equivalent to the homotopy fiber of Qs over V .

(b) The functorQB Ñ 0zQs is a homotopy equivalence.
In particular, QB is homotopy equivalent to the homotopy fiber pQsq´1p0q over 0, and since the composition is
just the constant functor at 0, then by definition QB Ñ QA Ñ QpA{Bq is a homotopy fibration, and hence gives
rise to a long exact sequence of homotopy groups as desired.

To prove (a), since u can be given an epi-mono factorization, then it suffices to prove it in the case where u is either
a monomorphism or an epimorphism. However, the K-groups of opposite categories are the same, therefore it suffices to
prove (a) assuming u is a monomorphism. Therefore, we write u “ i! for i : V 1 ↣ V . It then suffices to prove (a) for
injective maps iV ! for any V P A{B. We will postpone the proof (a) for now to tackle (b).

Let FV be the full subcategory of V zQs consisting of pairs pM,uq such that u : V Ñ sM is an isomorphism. In
particular, F0 – QB. Therefore, to prove (b), it suffices to show that

Lemma 4.9. The inclusion functor F : FV Ñ V zQs is a homotopy equivalence.
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Subproof. By Quillen’s Theorem A, it suffices to show that F {pM,uq is contractible for all pM,uq of V zQs. Let u : V Ñ

sM in QpA{Bq be represented by isomorphism V – V1{V0, where pV0, V1q is an admissible layer in sM . Recall that
F {pM,uq is categorically equivalent to the ordered set of layers pM0,M1q in M such that psM0, sM1q “ pV0, V1q with
usual ordering. Again, the ordering is directed and non-empty, so F {pM,uq is filtered, thus contractible. Indeed, since
I “ F {pM,uq is filtered, then I is the inductive limit of the functor i ÞÑ I{i where I{i is a slice category with a terminal
object, hence contractible. ■

For the rest of the proof, we will argue that FV is homotopy equivalent to QB for all V , then (a) follows.
To begin with, we fix N to be an object of A, and let EN be the category of object pairs pM,hq where M P A

and h : M Ñ N is a mod-B isomorphism, i.e., a morphism in A with kernel and cokernel in B, or equivalently is an
isomorphism in A{B through Q. A morphism in this category EN of form pM,hq Ñ pM 1, h1q is a map u : M Ñ M 1 in
QA such that the diagram

M2 M 1

M N

i

j h1

h

commutes if we write down the factorization u “ i!j
!. For each pM,hq in EN , there exists a unique object kerphq P B

up to canonical isomorphism. In particular, this extends to a functor

kN : EN Ñ QB
pM,hq ÞÑ kerphq

which is determined up to canonical isomorphism. The rest of the proof is divided into the following steps.

Step 1 Show that kN is a homotopy equivalence.

Step 1.1 Let E 1
N be the full subcategory of EN consisting of pairs pM,hq such that h : M Ñ N is an epimorphism,

then the restriction k1
N : E 1

N Ñ QB of kN is a homotopy equivalence.
It suffices to show that for any T P QB, k1

N{T is contractible. This uses the universal construction of the
kernel on fiber category over E 1

N .

Step 1.2 kN is a homotopy equivalence.
By Step 1.1, it suffices to show that the inclusion E 1

N ãÑ EN is a homotopy equivalence. Let I be the ordered
set of subjects I of N such that N{I P B, and let define

F : EN Ñ I
pM,hq ÞÑ imphq

Then F is a fibered functor with fiber of I being E 1
I , and the base change functor is a homotopy equivalence.

By Quillen’s Theorem B, E 1
I is homotopy equivalent to the homotopy fiber of F over I . But I has a terminal

object and is therefore contractible, so the inclusion E 1
I ãÑ EN is a homotopy equivalence for all I and we are

done.

Step 2 The isomorphism sN – V gives rise to a homotopy equivalence between FV and EN .
By Step 1.2, we know kN and kN 1 are homotopy equivalences, and it is easily check that kN and kN 1g˚ are ho-
motopic, therefore g˚ is a homotopy equivalence. One can then see that for any isomorphism φ : sN Ñ V , the
functor

ppN,φq : EN Ñ FV

pM,hq ÞÑ pM, sphq´1φ´1 : V – sN – sMq

gives rise to an equivalence of categories

lim
ÝÑ
IV

tpN,φq ÞÑ ENu » FV

where IV is a filtered category of object pairs pN,φq where N P A and φ : sN – V is an isomorphism in A{B.
Therefore, ppN,φq is a homotopy equivalence.
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Step 3 Finish the proof.
It now suffices to show that piV !q

˚ : V zQs Ñ 0zQs is a homotopy equivalence. Fix a choice of pN,φq in Step 2,
one can check that the diagram

EN FV Ď V zQs

QB F0 Ď 0zQs

kN

ppN,φq

piV !q
˚

»

is homotopy commutative. By Step 1 and Step 2, we know kN and ppN,φq are homotopy equivalences as well, then
piV !q

˚ isa homotopy equivalence.

Corollary 4.10. Let R be a Noetherian ring, the denote K 1
npRq :“ KnpMpRqq, where MpRq is the category of finitely-

generated R-modules. Then there are canonical isomorphisms

(a) K 1
npRrtsq – K 1

npRq;

(b) K 1
npRrt, t´1sq – K 1

npRq ‘ K 1
n´1pRq.

Partial Proof. A proof of (a) can be found in Quillen (1975). We will give a proof of (b). Let B be the category of finitely-
generated Rrts-modules consisting of modules on which t is nilpotent, then applying Quillen’s localization theorem gives

¨ ¨ ¨ KnB K 1
npRrtsq K 1

npRrt, t´1sq ¨ ¨ ¨

K 1
npRq K 1

npRq

– –

The first isomorphism is given by applying dévisssage theorem on the embedding of finitely-generated A-module, i.e.,
finitely-generated Arts{tArts-modules, into B. The second isomorphism is from (a). We study the induced composition
K 1

npRq Ñ K 1
npRrt, t´1sq from the homomorphism Rrt, t´1s Ñ R, which is given by mapping t ÞÑ 1 which makes R a

right module of Tor dimension 1 over Rrt, t´1s. Therefore, this induces a left inverse K 1
npRrt, t´1sq Ñ K 1

npRq, which
means the exact sequence breaks up into split short exact sequences.
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