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CHAPTER 1

Local spaces and localization

1.1. Spaces and function spaces

We will be working simultaneously in several different categories of spaces, and
a central question will be whether a map of spaces induces a weak equivalence of
mapping spaces. In order to make statements that are valid in each of our cate-
gories, we will refer uniformly to the simplicial mapping space (i.e., the simplicial set
of maps) between two spaces no matter what the category of spaces. Notation 1.1.2
describes our categories of spaces, and Definition 1.1.5 describes the simplicial map-
ping space. Corollary 1.1.9 implies that a map of spaces induces a weak equivalence
of these simplicial mapping spaces if and only if it induces a weak equivalence of
the usual internal mapping spaces.

1.1.1. Our categories of spaces. We will be working with both topological
spaces and simplicial sets, and for each of these we will consider both the category
of pointed spaces and the category of unpointed spaces. In order to keep the
terminology concise, the word space will be used to mean either a topological space
or a simplicial set, and we will use the following notation for our categories of
spaces.

NoTAaTION 1.1.2. We will use the following notation for our categories of spaces:

SS : The category of simplicial sets.

SS. : The category of pointed simplicial sets.

Top : The category of compactly generated Hausdorff topological spaces.

Top,: The category of pointed compactly generated Hausdorff topological spaces.

Since much of our discussion will apply to more than one of these categories, we
will use the following notation:

SS(*) : Either SS or SS..

Top(*): Either Top or Top,.

Spc @ A category of unpointed spaces, i.e., either Top or SS.
Spe, @ A category of pointed spaces, i.e., either Top, or SS..
Spc(*): Any of the categories SS, SS., Top, or Top,.

DEeFINITION 1.1.3. We will use the notions of fibration, cofibration, and weak
equivalence appropriate to the standard model category structures on §S(.) and
Top(,) (see Theorem 10.1.4). Thus,

o A fibration of simplicial sets is a Kan fibration (see, e.g., [43, page 25]), a
cofibration of simplicial sets is an inclusion map, and a weak equivalence of
simplicial sets is a map whose geometric realization is a homotopy equiva-
lence.

e A fibration of topological spaces is a Serre fibration, a cofibration of topo-
logical spaces is a retract of a relative cell complex (see Definition 2.2.1 or
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10 1. LOCAL SPACES AND LOCALIZATION

[46, Part IT Section 3]), and a weak equivalence of topological spaces is a
map whose total singular complex is a homotopy equivalence.

1.1.4. Function spaces. Given spaces X and Y in Spc(sy, we will need two
spaces of maps from X to Y. The first is the simplicial set of maps from X to Y,
which is the simplicial mapping space used as part of the usual simplicial model cat-
egory structure on Spc(*) (see Definition 10.1.2). The second is an internal mapping
space, 1.e.,; an object of Spc(*). These two mapping spaces are closely related (see
Proposition 1.1.7). In particular, if Spc(*) =SS, then these two mapping spaces
are the same.

DeFINITION 1.1.5 (Simplicial mapping spaces). Let X and Y be spaces in Spc(*).

e If Spe(,y =SS, then Map(X,Y) is the simplicial set with n-simplices the
simplicial maps X x A[n] — Y and face and degeneracy maps induced by
the standard maps between the A[n].

e If Spc(,) = SS,, then Map(X,Y) is the simplicial set with n-simplices the
basepoint preserving simplicial maps X A A[r]T — Y and face and degen-
eracy maps induced by the standard maps between the A[n].

e If Spc(,) = Top, then Map(X,Y) is the simplicial set with n-simplices the
continuous functions X x |A[n]| — Y and face and degeneracy maps induced
by the standard maps between the A[n].

e If Spc(,y = Top,, then Map(X,Y) is the simplicial set with n-simplices
the continuous functions X A |A[n]|+ — Y and face and degeneracy maps
induced by the standard maps between the A[n].

Note that, in all cases, Map(X,Y’) is an unpointed simplicial set.

DEFINITION 1.1.6 (Internal mapping spaces). Let X and Y be spaces in SPCay-

o If Spc(*) =SS, then the internal mapping space YX equals the simplicial
mapping space Map(X,Y") (see Definition 1.1.5).

o If Spc(*) = SS,, then YX is the pointed simplicial set with n-simplices
the basepoint preserving simplicial maps X A A[n]t — YV, and face and
degeneracy maps induced by the standard maps between the A[n]. When
we need to emphasize the category in which we work, we will use the notation
Map, (X,Y) for the pointed simplicial set of basepoint preserving maps.

e If Spc.y = Top, then YX is the topological space of continuous functions
from X to Y with the compactly generated compact open topology. When
we need to emphasize the category in which we work, we will use the notation
map(X,Y) for the unpointed topological space of continuous functions.

o If Spc(*) = Top,, then YX is the pointed topological space of basepoint
preserving continuous functions from X to Y with the compactly generated
compact open topology. When we need to emphasize the category in which
we work, we will use the notation map, (X,Y) for the pointed topological
space of basepoint preserving continuous functions.

PROPOSITION 1.1.7. The internal mapping spaces Y* of Definition 1.1.6 are
related to the simplicial mapping spaces Map(X,Y') of Definition 1.1.5 as follows:

e If' Spc(,) =SS, then Map(X,Y) equals Y*.
e If Spci,y = SS., then Map(X,Y) is obtained from Y* by forgetting the
basepoint.
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1.1. SPACES AND FUNCTION SPACES 11

e If Spc(,y = Top, then the simplicial set Map(X,Y) is the total singular
complex of YX.

e If' Spey,y = Top,, the simplicial set Map(X,Y) is the total singular complex
of the unpointed space obtained from YX by forgetting the basepoint.

Proor. This follows from the natural isomorphisms of sets
Top(|A[R][, Y*) = Top(X x |A[n]],Y)
Top, (|A[R]|T, YX) ~ Top. (X A [AlR][F,Y).
O

CoroLLARY 1.1.8. If Spc(,) = Top,), then Map(X,Y) is always a fibrant sim-
plicial set.

PrOOF. Since the total singular complex of a topological space is always fi-
brant, this follows from Proposition 1.1.7. O

COROLLARY 1.1.9. Let g: W — X and h: Y — Z be maps in Spc(*).

1. The map h,: Y* — ZX is a weak equivalence in Spc(*) if and only if the
map h,: Map(X,Y) = Map(X, 7) is a weak equivalence of simplicial sets.

2. The map ¢*: YX — YW is a weak equivalence in Spc(*) if and only if the
map g*: Map(X,Y) — Map(W,Y) is a weak equivalence of simplicial sets.
PrOOF. Since a map of pointed spaces is a weak equivalence if and only if 1t is

a weak equivalence of unpointed spaces after forgetting the basepoint, and a map

of topological spaces is a weak equivalence if and only if its total singular complex
is a weak equivalence of simplicial sets, this follows from Proposition 1.1.7. O

1.1.10. Topological spaces and simplicial sets.

DerFINITION 1.1.11. If X and Y are objects of Spc(*) and K 1s a simplicial set,

then X ® K and Y® will denote the objects of Spc(*) characterized by the natural
1isomorphisms of simplicial sets

Spe() (X ® K,Y) & SS(K, Map(X,Y)) ~ Spep. (X, YF)
(see Definition 10.1.2). Thus,

(x) =SS, X®K=XxK and X% = Map(K, X).

If Spe,y =SS., X®K=XAK' and XX = Map, (KT, X).

If Spey =Top, X @K =X x|K| and XX =map(|K| X).
0 =Top,, X@K=XA|K|T and XX =map,(|K|,X)

(see Definition 1.1.6).

LEMMA 1.1.12. If X is a space in SS(.y and K is a simplicial set, then there is
~|X|oK.

a natural homeomorphism |X ® K

Proor. Since Top.) is the category of compactly generated Hausdortl spaces,
the natural map |X X K| — |X| X |K| is a homeomorphism. O

LEMMA 1.1.13. If K is a simplicial set and W is a topological space (either
both pointed or both unpointed), then the standard adjunction of the geometric
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12 1. LOCAL SPACES AND LOCALIZATION

realization and total singular complex functors extends to a natural isomorphism
of simplicial mapping spaces

Map(|K |, W) ~ Map(K, Sing W).
Proor. This follows from the natural homeomorphism |K ® A[n]| r (K| ®
|A[n]| (see Definition 1.1.11). O

ProposiTION 1.1.14. If A and X are objects of SS(.) and X is fibrant, then
there is a natural weak equivalence of simplicial sets

Map(4, X) = Map(|A|, |X|)
ProoF. Since all simplicial sets are cofibrant, the natural map X — Sing|X|

induces a weak equivalence Map(A, X) = Map(A, Sing|X|) (see Corollary 10.2.2).
The proposition now follows from Lemma 1.1.13. O

ProrosiTION 1.1.15. If A and X are objects OfTop(*) and A is cofibrant, then
there is a natural weak equivalence of simplicial sets

Map(A, X) = Map(Sing A, Sing X).

PrOOF. Since all topological spaces are fibrant, the natural map |SingA| - A
induces a weak equivalence Map(A4, X) = Map(|SingA|,X) (see Corollary 10.2.2).
The proposition now follows from Lemma 1.1.13. O

DEFINITION 1.1.16. Each of our categories of spaces has a functor to 8§, and
this functor has a left adjoint SS — Spc(*), i.e., for an unpointed simplicial set K
and an object X of Spc(*), we have natural isomorphisms

SS(K, X) ~ SS(K, X)
SS. (KT, X) ~ SS(K,X7)
Top(|K|, X) ~ SS(K, Sing X)
Top, (|K|*, X) ~ SS(K,Sing X ™)

where “X~” means “forget the basepoint of X”. If K is an (unpointed) simplicial
set, then Spc(*)([() will denote the image of K in Spc,) under this left adjoint.

—

Thus,
If SDC(*) = TOD*, then SDC(*)([{) = |K +.

ExamMpLE 1.1.17. In the standard model category structure on Spc,), a map 1s
defined to be a fibration if it has the right lifting property (see Definition 8.2.1) with
respect to the maps Spe,y(Aln, k]) — Spe,y (Aln]) for all n > 0 and 0 < k < n.

1.2. Local spaces and localization

1.2.1. Definitions.

DEFINITION 1.2.2. Let f: A — B be a map between cofibrant spaces in Spc(*)
(see Notation 1.1.2).
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1.2. LOCAL SPACES AND LOCALIZATION 13

1. A space W is f-local if W is fibrant and the induced map of simplicial sets
f*: Map(B, W) — Map(A4, W) is a weak equivalence. If f is a map x — A,
then an f-local space will also be called A-local or A-null. Bousfield ([12])
has used the term A-periodic for what we here call A-local.

2. A map ¢g: X = Y is an f-local equivalence if there is a cofibrant approx-
imation §: X =Y to g (see Definition 9.1.8) such that, for every f-local
space W, the induced map of simplicial sets §*: Map(?, W) — Map()?, W)
is a weak equivalence. (Proposition 10.5.2 implies that if this is true for
any one cofibrant approximation to ¢, then it is true for every cofibrant
approximation to g.)

If Spc(*) = §§(«), then every space is cofibrant, and so amap g: X — YV isan f-
local equivalence if and only if, for every f-local space W, the map g*: Map(Y, W) —
Map(X, W) is a weak equivalence. If Spc(*) = Top(*), then all CW-complexes are
cofibrant, and so a CW-replacement for a space serves as a cofibrant approximation
to that space.

A paraphrase of Definition 1.2.2 is that a fibrant space is f-local if it makes
f look like a weak equivalence (see Proposition 10.2.1), and a map is an f-local
equivalence if all f-local spaces make it look like a weak equivalence. In Theo-
rem 2.1.2, we show that there is a model category structure on Spc(*) in which the
local spaces are the fibrant objects (see Proposition 2.1.3) and the f-local equiva-
lences are the weak equivalences. For a discussion of the relation of our definition
of f-local equivalence to earlier definitions, see Remark 1.2.9.

ProrosiTION 1.2.3. Let both f and f be maps between cofibrant spaces. If
the class of f-local spaces equals the class of f-local spaces, then the class of f-local
equivalences equals the class of f-local equivalences.

Proor. This follows directly from the definitions. O

ExAMPLE 1.2.4. Let A be a simplicial set (if Spegyy = SS(4)) or a cell complex
(if Spegy = Top(*)), and let C A be the cone on A. If f: ¥ — A is the inclusion

of a vertex and f: A — C A is the standard inchision, then a space is f-local (i.e.,
A-local; see Definition 1.2.2) if and only if it is f-local, and so the class of f-local
equivalences equals the class of f-local equivalences.

ProrosITION 1.2.5. Let f: A — B be a map of cofibrant spaces. If X and Y
are fibrant spaces and g: X — Y is a weak equivalence, then X is f-local if and
only if Y is f-local.

ProoF. We have a commutative diagram
Map(B, X) —— Map(4, X)
Map(B,Y) —— Map(A4,Y)

in which the vertical maps are weak equivalences (see Corollary 10.2.2). Thus, the
top map is a weak equivalence if and only if the bottom map is a weak equivalence.

O
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14 1. LOCAL SPACES AND LOCALIZATION

ProrosiTION 1.2.6. Let both f: A — B and f A — B be _maps between
cofibrant spaces. If there are weak equivalences A — A and B — B such that the
square

commutes, then

1. the class of f-local spaces equals the class of f—loca{spaces, and
2. the class of f-local equivalences equals the class of f-local equivalences.

PrOOF. Proposition 1.2.3 implies that part 1 implies part 2, and so it is suffi-
cient to prove part 1.
If W is a fibrant space, then we have the commutative square

- * .
Map(B, W) —— Map(A, )

EJ F

Map(B, W) f—*> Map(A, W)

in which the vertical maps are weak equivalences (see Corollary 10.2.2). Thus, f*
1s a weak equivalence if and only if f~ is a weak equivalence, and so W is f-local if
and only if it 1s f-local. O

REMARK 1.2.7. Proposition 1.2.6 and Proposition 13.2.16 imply that we can
always replace our map f: A — B with an inclusion of simplicial sets (if Spc(*) =
SS(x)) or an inclusion of cell complexes (if Spc(,) = Top(,)) without changing the
class of f-local spaces or the class of f-local equivalences. We will often assume
that we have done this, and we will summarize this assumption by saying that f is
an inclusion of cell compleres. (This usage is consistent with the definition of cell
compler in a cofibrantly generated model category (see Definition 13.2.4).)

DEFINITION 1.2.8. Let f: A — B be a map between cofibrant spaces.

1. An f-localization of a space X is an f-local space X (see Definition 1.2.2)
together with an f-local equivalence jx: X — X . We will sometimes use the
phrase f-localization to refer to the space )A(, without explicitly mentioning
the f-local equivalence j. A cofibrant f-localization of X is an f-localization
in which the f-local equivalence is also a cofibration.

2. An f-localization of amap ¢g: X — Y 1s an f locahzatlon (X Jjx) of X, an
f-localization (Y Jy) of Y, and a map §: X — Y such that the square

X2y

le ljy
Y

)A(—A>
g
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1.2. LOCAL SPACES AND LOCALIZATION 15

commutes. We will sometimes use the term f-localization to refer to the
map ¢, without explicitly mentioning the f-localizations (X, jx) of X and
(Y,jy) of Y.

We will show in Corollary 1.4.13 that all spaces and maps have f-localizations.

The reader should note the similarity between the definitions of f-localization
and fibrant approximation (see Definition 9.1.1 and Definition 9.1.8). In Theo-
rem 2.1.2, we prove that there 1s an f-local model category structure on Spc(*) n
which the local spaces are the fibrant objects and the f-local equivalences are the
weak equivalences. In the f-local model category, an f-localization of a space or
map 1s exactly a fibrant approximation to that space or map.

REMARK 1.2.9. In most earlier work on localization [21, 19, 24, 23, 12, 17],
an f-local equivalence was defined to be a map ¢: X — Y such that, for every f-
local space W, the map of function spaces g*: Map(Y, W) — Map(X, W) is a weak
equivalence. In fact, this earlier work considered only the subcategory of cofibrant
spaces. Since a cofibrant space is a cofibrant approximation to itself, this earlier
definition coincides with ours.

1.2.10. f-local equivalences.

ProrosiTiON 1.2.11. If f: A — B is a map between cofibrant spaces, then
every weak equivalence is an f-local equivalence.

PrROOF. Since a cofibrant approximation to a weak equivalence must also be a
weak equivalence, this follows from Corollary 10.2.2. O

ProrosiTION 1.2.12. If f: A — B is a map between cofibrant spaces, then the
class of f-local equivalences satisfies the “two out of three” axiom, 1.e., if g and h
are composable maps, and if two of ¢, h, and hg are f-local equivalences, then so

is the third.

ProoOF. Given maps g: X — Y and h: Y — Z, we can apply a functorial
cofibrant approximation (see Proposition 9.1.2) to g and & to obtain the diagram
~ g
—

X y
X Y
in which g, /Nz and 71§ are cofibrant approximations to g, h, and hg, respectively.
If W is a fibrant space, then two of the maps §*: Map(V, W) — Map(X, W),

h* Map(Z W) — Map(Y W), and (hg) Map(A W) — Map(X,W) are weak

equlvalences, and so the third 1s as well. O

SN

—

N——N

g

ProrosiTION 1.2.13. If f: A — B is a map between cofibrant spaces, then a
retract (see Definition 8.1.1) of an f-local equivalence is an f-local equivalence.

Proor. If g: X — VY is an f-local equivalence and h: V' — W is a retract
of ¢, then we apply a functorial cofibrant approxnnatlon (see Prop081t10n 9.1. 2) to
obtain cofibrant approximations g: X =5 Y to g and h: V — W such that h is
a retract of §. If Z is an f-local space, then h*: Map(W,Z) — Map(V,Z) is a
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16 1. LOCAL SPACES AND LOCALIZATION

retract of the weak equivalence §*: Map(?, Z) = Map()?, 7Z), and so h* is a weak
equivalence. O

ProrosiTION 1.2.14. Let f: A — B be a map of cofibrant spaces. If g: X —Y
is a cofibration of cofibrant spaces, then ¢ is an f-local equivalence if and only
if it has the left lifting property (see Definition 8.2.1) with respect to the map
wall — woalrl for all n > 0 and all f-local spaces W.

Proo¥. This follows from Proposition 10.3.3 and Lemma 10.3.6. O
ProrosiTION 1.2.15. Let f: A — B be a map of cofibrant spaces, and let T be
a totally ordered set. f W : T — Spc(*) is a functor such that, if s,t € T and s <,

then W — W is a cofibration of cofibrant spaces that is an f-local equivalence,
then, for every s € T', the map Wy — colim;», W is an f-local equivalence.

Proo¥. This follows from Proposition 1.2.14, Lemma 12.2.20, and Proposi-
tion 12.2.21. O

ProrosiTION 1.2.16. Let f: A — B be a map of cofibrant spaces and let
g: C — D be a cofibration between cofibrant spaces that is also an f-local equiva-

lence. If the square
C X
9J Jh

D——Y

—

is a pushout, then h is an f-local equivalence.

ProoF. Factor the map € — X as € = P =5 X, where u is a cofibration
and v is a trivial fibration. If we let () be the pushout D Il P, then we have the
commutative diagram

in which u and s are cofibrations, and so P and ) are cofibrant. Since k is a
cofibration, we are in a proper model category (see Theorem 11.1.16), and Proposi-
tion 8.2.12 implies that Y is the pushout @ IIp X, the map ¢ is a weak equivalence.
Thus, k is a cofibrant approximation to h (see Definition 9.1.8), and so it is suffi-
cient to show that & induces a weak equivalence of mapping spaces to every f-local
space. Since g is a cofibration and an f-local equivalence and k is a cofibration,
this follows from Proposition 10.3.3 and Lemma 10.3.7. O

1.2.17. f-local Whitehead theorems.

LEMMA 1.2.18. If f: A — B is a map between cofibrant spaces, W is an f-local
space, and g: X — Y is an f-local equivalence of cofibrant spaces, then g induces an
isomorphism of the sets of simplicial homotopy classes of maps g* : [Y, W] = [X, W].

Proo¥. This follows from Corollary 10.4.9. O
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1.2. LOCAL SPACES AND LOCALIZATION 17

THEOREM 1.2.19 (Strong f-local Whitehead theorem). Let f: A — B be a
map between cofibrant spaces. If X and Y are cofibrant f-local spaces and g: X —
Y is an f-local equivalence, then g is a simplicial homotopy equivalence.

Proo¥. This follows from Lemma 1.2.18 and Proposition 10.4.24. O

THEOREM 1.2.20 (Weak f-local Whitehead theorem). Let f: A — B be a map
of cofibrant spaces. If X and Y are f-local spaces and g: X — Y is an f-local
equivalence, then g is a weak equivalence.

ProoOF. Choose a cofibrant approximation g: X Y to g such that jx: X =
X and jy: Y — Y are trivial fibrations (see Proposition 9.1.9). Proposition 1.2.5
implies that X and Y are f-local spaces, and Proposition 1.2.11 and Proposi-
tion 1.2.12 imply that g is an f-local equivalence. Theorem 1.2.19 now implies that
g 1s a weak equivalence, which implies that ¢ is a weak equivalence. O

1.2.21. Characterizing f-local spaces and f-local equivalences.

THEOREM 1.2.22. Let f: A — B be a map between cofibrant spaces. If X is a
fibrant space and j: X — X Is an f-localization of X (see Definition 1.2.8), then j
is a weak equivalence if and only if X is f-local.

Proor. If X is f-local, then Theorem 1.2.20 implies that j is a weak equiva-
lence. Conversely, if j is a weak equivalence, then Proposition 1.2.5 implies that X

is f-local. O

THEOREM 1.2.23. Let f: A — B be a map between cofibrant spaces. If g: X -
Y is an f-localization of g: X — Y (see Definition 1.2.8), then g¢ is an f-local
equivalence if and only if g is a weak equivalence.

ProOF. Proposition 1.2.11 and Proposition 1.2.12 imply that ¢ is an f-local
equivalence if and only if ¢ 1s an f-local equivalence. Since X and ¥ are f-local
spaces, Theorem 1.2.20 and Proposition 1.2.11 imply that g is an f-local equivalence
if and only if it is a weak equivalence, and so the proof is complete. O

In Definition 1.4.11, we define a functorial f-localization (L, j). Theorem 1.2.22
then implies that a fibrant space X is f-local if and only if the localization map
J(X): X = Ly X is a weak equivalence (see Theorem 1.4.14), and Theorem 1.2.23
implies that a map g: X — Y is an f-local equivalence if and only if L;(¢): Ly X —
LY is a weak equivalence (see Theorem 1.4.15).

1.2.24. Topological spaces and simplicial sets.

ProrosITION 1.2.25. Let f: A — B be a map between cofibrant spaces in
1. A space is f-local if and only if it is |Sing f|—loca1.

2. Amapg: X — Y is an f-local equivalence if and only if it is a |Sing f|—loca1
equivalence.

Proo¥. This follows from Proposition 1.2.6 and Proposition 1.2.3. O
ProPOSITION 1.2.26. Let f: A — B be a map in §S).
1. A space is f-local if and only if it is (Sing|f|)—local.
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18 1. LOCAL SPACES AND LOCALIZATION

2. Amapg: X — Y is an f-local equivalence if and only if it is a (Sing|f|)—
local equivalence.

PrOOF. Since every simplicial set is cofibrant, this follows from Proposition 1.2.6
and Proposition 1.2.3. O

ProposITION 1.2.27. If f: A — B is a map in SS(y, then a topological space
W in Top(*) is |f|—loca1 if and only if Sing W is f-local.

ProoF. Lemma 1.1.13 gives us the commutative square

Map(|B|, W) _— Map(|A|, W)

Map(B, Sing W) —— Map(A, Sing W)

in which the vertical maps are isomorphisms, from which the proposition follows.

O

ProposiTION 1.2.28. If f: A — B is a map in §S(+) and K Is a fibrant simpli-
cial set in §S(4y, then K is f-local if and only if |K| is |f|—]oca].

ProoOF. Since K is fibrant the natural map K — Sing|K| is a weak equivalence
of fibrant spaces, and so we have the commutative square

Map(B, k) —— Map(4, K)

Map (B, Sing| K |) —— Map(A, Sing|K|)

in which the vertical maps are weak equivalences (see Corollary 10.2.2). Thus,
K is f-local if and only if Sing|K| is f-local, and so the proposition follows from
Proposition 1.2.27. O

PropPosITION 1.2.29. If f: A — B is a map in SS(y, then the map g: C' — D
in §8(4) is an f-local equivalence if and only if the map |g|: |C'| — |D| in Top(*) is

a |f|—loca1 equivalence.

PrOOF. Since every simplicial set is cofibrant, ¢ is an f-local equivalence if and
only if, for every f-local simplicial set K, the map of simplicial sets g* : Map(D, K) —
Map(C, K) is a weak equivalence. If K is an f-local simplicial set, then K is fibrant,
and so Corollary 10.2.2 implies that g is an f-local equivalence if and only if, for
every f-local simplicial set K, the map of simplicial sets g*: Map(D, Sing|K|) —
Map(C’, Sing|K|) is a weak equivalence. Lemma 1.1.13 implies that this is true
if and only if Map(|D|, |K|) — Map(|C’|, |K|) is a weak equivalence. Proposi-
tion 1.2.27 and Proposition 1.2.28 imply that this is true if and only if, for every |f|—
local topological space W, the map Map(|D|, W) — Map(|C’|, W) is a weak equiv-
alence. Since |C'| and |D| are cofibrant, this is true if and only if |g| : |C'| — |D| is
a |f|—local equivalence, and the proof is complete. O

ProposiTION 1.2.30. If f: A — B is a map in S§S(.), then the map g: X — Y
in Top(*) is a |f|—loca1 equivalence if and only if the map (Sing ¢): Sing X — SingV
in §S(4) is an f-local equivalence.
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1.3. CONSTRUCTING AN f-LOCALIZATION FUNCTOR 19

ProoF. The map |Singg|: |SingX| — |SingY| is a cofibrant approximation
to g (see Definition 9.1.8), and so ¢ is a |f|—local equivalence if and only if, for ev-
ery |f|—local topological space W, the map of simplicial sets Map(|SingY|, W) —
Map(|SingX|, W) is a weak equivalence. Lemma 1.1.13 implies that this is true if
and only if, for every |f|—local topological space W, the map Map(Sing Y, Sing W) —
Map(Sing X, Sing W) is a weak equivalence. If K is an f-local simplicial set, then
K 1s fibrant, and so the natural map K — Sing|K| is a weak equivalence of fi-
brant objects. Thus, Corollary 10.2.2 and Proposition 1.2.28 imply that g is a
|f|—local equivalence if and only if, for every f-local simplicial set K, the map
Map (Sing Y, Sing|K|) — Map (Sing X, Sing|K|) is a weak equivalence. Since every
simplicial set is cofibrant, this completes the proof. O

1.3. Constructing an f-localization functor

If f: A— B is a map of cofibrant spaces in Spc(*), we describe in this section
how to construct a functorial f-localization on Spc(*). The construction that we
present is essentially the one used by Bousfield in [10].

1.3.1. Horns on f. Given a map f: A — B of cofibrant spaces in Spc(*), we
want to construct a functorial f-localization (see Definition 1.2.8) on Spc(*). That
18, for every space X we want to construct a natural f-local space X together with a
natural f-local equivalence X — X. Remark 1.2.7 implies that we can assume that
f 1s an inclusion of cell complexes, and we will assume that f is such an inclusion.

If X is to be an f-local space, then it must first of all be fibrant. Thus, the
map X — * must have the right lifting property with respect to the inclusions
Spe(.y (Aln, k]) — Speq,y (A[n]) (see Definition 1.1.16) for all n > 0 and n > k > 0.

If X is a fibrant space, then f*: Map(B, )A() — Map(A4, )A() is already a fibration
of simplicial sets (see Proposition 10.1.6). Thus, if X is fibrant, then the assertion
that X is f-local i1s equivalent to the assertion that f* is a trivial fibration of
simplicial sets. Since a map of simplicial sets is a trivial fibration if and only if
it has the right lifting property with respect to the inclusions 0A[n] — A[n] for
n > 0, this implies that a fibrant space X is f-local if and only if the dotted arrow
exists in every solid arrow diagram of the form

dA[n] —— Map(B, X)

Aln] —— Map(4, X)

and the isomorphisms of Definition 1.1.11 imply that this is true if and only if the
dotted arrow exists in every solid arrow diagram of the form

A® Al Magoap B @ 0AN] — X

T

B® A ——mMm88
Thus, a space X is f-local if and only if the map X — * has the right lifting
property with respect to the maps Spc,(A[n, k]) = Spc(,(Aln]) for all n > 0 and
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20 1. LOCAL SPACES AND LOCALIZATION

n >k >0 and the maps A @ A[n] Uagoap) B © 0A[n] = B ® Aln] for all n > 0.
This is the motivation for the definition of the set A{f} of augmented f-horns.

DEFINITION 1.3.2. Let f: A — B be an inclusion of cell complexes (see Re-
mark 1.2.7).

e The set A{f} of horns on f is the set of maps
AMJY = 1A@ Aln] Tasoap B A — Bo Afn] | n > 0},
If Spe(,y = Spe, and [ is the map f: * — A, then A{f} is the set of maps
A{A}Y={A® IAn] - A® Aln] | n > 0},

and 1t will also be called the set of horns on A.
o The set A{f} of augmented f-horns is the set of maps

Ty = MY U (Speqey (Aln, K)) = Spey (Aln]) | n> 0,0 > & > 0)
(see Definition 1.1.16).

ProposITION 1.3.3. If f: A — B is an inclusion of cell complexes (see Re-
mark 1.2.7), then a space X is f-local if and only if the map X — % has the right
lifting property (see Definition 8.2.1) with respect to all augmented f-horns (see
Definition 1.3.2).

Proor. This follows from the discussion preceding Definition 1.3.2. (]

We will construct the map X — X as a transfinite composition (see Defini-
tion 12.2.2) of inclusions of cell complexes X = E°C 5 E' S5 E 5 ... 5B o
(B < A), X = colimg E’. To ensure that X is f-local, we will construct the

E? so that if the map C' — D is an element of A{f}, then

1. for every map h: C' — X there is an ordinal a < A such that h factors

through the map E¢ — )A(, and
2. for every ordinal a < A, the dotted arrow exists in every solid arrow diagram
of the form

C——EB* —— pot!

D"

Thus, if the map €' — D is an element of A{f}, then the dotted arrow will exists
in every solid arrow diagram of the form

C——X
|7
D

and so the map X — * will have the right lifting property with respect to every
element of A{f} (see Proposition 1.3.3).
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1.3. CONSTRUCTING AN f-LOCALIZATION FUNCTOR 21

1.3.4. Choice of the ordinal . If A and B are finite complexes, then we
let X be the first infinite ordinal. Otherwise, we let A be the first cardinal greater
than that of the set of simplices (or cells) of ATl B (in which case A is a successor
cardinal). In either case, A is a regular cardinal (see Proposition 12.1.15).

Suppose we now construct a A-sequence (see Definition 12.2.1) of inclusions of
cell complexes

X=E"5EBE' 25E 5... 5 5... (<))

and let X = colimgy EY. If A ® Aln] Hagoam B @ 0A[n] — X is any map, then
for each simplex (or cell) of A® A[n]ll4gaa[n) B @ 0A[n] there is an ordinal § < A
such that that simplex (or cell) lands in E?. (If Spe(.y = Topy,y, then this follows
from Corollary 2.2.5.) If we let a be the union of the ordinals 5 obtained in this
way for each simplex (or cell) in A® A[n]agoaf] B @ 0A[n], then the regularity
of X ensures that o < A. Thus, our map factors through E*. The same argument
applies to maps Spc(*)(A[n, k]) — X.

1.3.5. Construction of the sequence. It remains only to show how to con-
struct the E°. We begin the sequence by letting E” = X. If 3 < A, and we have
constructed the sequence through E?, we let

Cp = H C and Dg = H D
(C—=D)eA{s} (C—=D)eA{s}
Spe(,y (CE?) Spe(,y (CE?)

We then have a natural map Cs — E?, and we define E°*! by letting the square

Cy —— B

Dﬁ ........... >Eﬁ+1

be a pushout. If v is a limit ordinal, we let E7 = colimgc, E’. We let X =
colimg«x EP.

It remains only to show that the map X — X that we have constructed is an
f-local equivalence. This will follow from Theorem 1.3.11.

1.3.6. Horns on [ and f-local equivalences.

ProposITION 1.3.7. If f: A — B is an inclusion of cell complexes (see Re-
mark 1.2.7), then every horn on f is an f-local equivalence.

PrOOF. Since every horn on f is a cofibration between cofibrant spaces, this
follows from Proposition 10.3.3 and Proposition 10.3.10. O

DerFINITION 1.3.8. If f: A — B is an inclusion of cell complexes (see Re-
mark 1.2.7), then a relative m-cell compler is defined to be a map that can
be constructed as a transfinite composition (see Definition 12.2.2) of pushouts (see
Definition 8.2.10) of elements of A{f} (see Definition 1.3.2). If the map from the
initial object to a space X is a relative m—cell complex, then X will be called an
A{f} complez.
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22 1. LOCAL SPACES AND LOCALIZATION

THEOREM 1.3.9. If f: A — B is an inclusion of cell complexes (see Remark 1.2.7),

then every relative A{f}-cell complex is both a cofibration and an f-local equiva-
lence.

PROOF. Since every element of A{f} (see Definition 1.3.2) is a cofibration,
and cofibrations are closed under both pushouts and transfinite compositions (see
Proposition 12.2.19), every relative m—cell complex 1s a cofibration. Thus, 1t
remains only to show that a relative m—cell complex is an f-local equivalence.

If Spc(*) = §S(,) (in which every object is cofibrant), then Proposition 10.3.3,
Proposition 10.3.10, and Proposition 12.2.18 imply that every relative m—cell
complex is an f-local equivalence.

If Spc(*) = Top(*), then Proposition 1.3.7 implies that every element of m
is an f-local equivalence. Since every f-cell has cofibrant domain and codomain,
Proposition 1.2.16 now implies that every pushout of an element of m s an
f-local equivalence.

If A 1s an ordinal and

Xo=Xi2Xo—> -5 Xg— - (B <)

is a A-sequence of pushouts of elements of A{f}, then Proposition 11.1.22 implies
that we can find a A-sequence of cofibrations together with a map of A-sequences

5(:0 )?1 5(:2 5(:@
X X, X, X

such that each vertical map )?@ — X is a cofibrant approximation to Xz and
colimg«x )~(@ — colimg«x Xp is a cofibrant approximation to colimgey Xg. If W is
an f-local space, then Map(colimg« )?@, W) is isomorphic to limg« » Map()?@, w).
Since each X3 = Xg41 is an f-local equivalence and each )?@ — )?@_H is a cofibra-
tion, each Map()?@_H, W) — Map()?@, W) is a trivial fibration. Thus,

Map()?o, W) « Map()?l, W) « Map()?z, W) .« Map()?@, W)

is a tower of trivial fibrations, and so the composition Map(colimg« )?@, W) —

Map()?o, W) is a weak equivalence, and so the composition Xy — colimgey Xg is
an f-local equivalence. O

ProposITION 1.3.10. If f: A — B is an inclusion of cell complexes (see Re-
mark 1.2.7), then for every space X, the map X — X constructed in Section 1.3.5

is a relative A{f}-cell complex.

ProoF. The map X — X is constructed as a transfinite composition of pushouts

of coproducts of elements of A{f}, and to the result follows from Proposition 12.2.12.
O

THEOREM 1.3.11.If f: A — B is an inclusion of cell complexes (see Re-
mark 1.2.7), then for every space X the map X — X constructed in Section 1.3.5
is a natural f-localization of X.
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Proo¥. This follows from Proposition 1.3.10, Theorem 1.3.9, Proposition 1.3.3,
and the discussion following Proposition 1.3.3. O

1.4. Concise description of the f-localization

1.4.1. f-cofibrations and f-injectives.

DEFINITION 1.4.2. Let f: A — B be an inclusion of cell complexes (see Re-
mark 1.2.7).

1. A m-mjective is defined to be a map that has the right lifting property
(see Definition 8.2.1) with respect to every element of A{f} (see Defini-
tion 1.3.2). A space X will be called a m-mjective if the map X — * 1s
a m—injective. If f is a cofibration f: x — A, then a m—injective will
also be called a A{A}-injective.

2. A m-coﬁbmtion is defined to be a map that has the left lifting property
with respect to all m—injectives. If the map from the initial object to a
space X is a A{f}-cofibration, then X will be called A{f}-cofibrant. If f is
a cofibration f: * — A, then a A{f}-cofibration will also be called a A{A}-
cofibration, and a A{f}-cofibrant space will also be called a A{A}-cofibrant

space.

REMARK 1.4.3. The term m-mjective comes from the theory of injective
classes ([32]). A space X is a A{f}-injective if and only if it is injective in the sense
of [32] relative to the elements of A{f}, and we will show in Proposition 1.4.5 that
amap p: X — Y is a A{f}-injective if and only if, in the category (Spc.y|Y) of
spaces over Y (see Definition 14.4.1), the object p is injective relative to the class
of maps whose image under the forgetful functor (Spc(*) 1Y)— SPCy,y 1s a relative

A{f}-cell complex (see Definition 1.3.8).

ProposITION 1.4.4. If f: A — B is an inclusion of cell complexes (see Re-
mark 1.2.7), then amapp: X =Y is a A{f}-injective if and only if it is a fibration
with the homotopy right lifting property with respect to f.

Proor. This follows from Lemma 10.3.6. O

ProposITION 1.4.5. If f: A — B is an inclusion of cell complexes (see Re-
mark 1.2.7), then every relative A{f}-cell complex (see Definition 1.3.8) is a A{f}-
cofibration.

Proor. This follows from Proposition 1.4.4. O

ProposITION 1.4.6. If f: A — B is an inclusion of cell complexes (see Re-
mark 1.2.7), then every trivial cofibration is a A{f}-cofibration.

Proo¥. This follows from Proposition 8.2.3. O

ProposITION 1.4.7. If f: A — B is an inclusion of cell complexes (see Re-

mark 1.2.7), then a space X is a A{f}-injective if and only if it is f-local (see
Definition 1.2.2).

Proo¥. This follows from Proposition 10.3.3 and Proposition 1.4.4. O
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1.4.8. The functorial localization.

PropPosITION 1.4.9. Let f: A — B be an inclusion of cell complexes (see Re-
mark 1.2.7). If j: X — X is a relative A{f}-cell complex and X is a A{f}-injective,
then the pair (X, j) is a cofibrant f-localization of X.

Proo¥. This follows from Proposition 1.4.7 and Theorem 1.3.9. O

THEOREM 1.4.10. If f: A — B is an inclusion of cell complexes (see Re-
mark 1.2.7), then there is a natural factorization of every map X — Y as

XLE By
in which j is a relative A{f}-cell complex (see Definition 1.3.8) and p is a A{f}-
injective (see Definition 1.4.2).
Proor. This follows from Proposition 12.4.12. O

DeFINITION 1.4.11. Let f: A — B be an inclusion of cell complexes (see Re-
mark 1.2.7). The f-localization of a space X is the space L; X obtained by applying
the factorization of Theorem 1.4.10 to the map X — * from X to the terminal ob-
ject of Spc(*). This factorization defines a natural transformation j: 1 — L such

that jx: X — L¢X is a relative A{f}-cell complex.
THEOREM 1.4.12. If f: A — B is an inclusion of cell complexes (see Re-

mark 1.2.7), then for every space X, the f-localization jx : X — Ly X is a cofibrant
f-localization of X.

Proo¥. This follows from Proposition 1.4.9. O

CoROLLARY 1.4.13.If f: A — B is an inclusion of cell complexes (see Re-
mark 1.2.7), then every space has an f-localization.

Proor. This follows from Theorem 1.4.12. O

THEOREM 1.4.14. Let f: A — B be an inclusion of cell complexes (see Re-
mark 1.2.7). If X is a fibrant space, then X is f-local if and only if the f-localization
map jx: X = L; X is a weak equivalence.

Proor. This follows from Theorem 1.2.22. O

THEOREM 1.4.15. Let f: A — B be an inclusion of cell complexes (see Re-
mark 1.2.7). The map g: X — Y is an f-local equivalence if and only if its
f-localization L¢(g): Ly X — L;Y is a weak equivalence.

Proor. This follows from Theorem 1.2.23. O

ProposITION 1.4.16. If f: A — B is an inclusion of cell complexes (see Re-
mark 1.2.7), then every A{f}-cofibration (see Definition 1.4.2) is a retract of a
relative A{f}-cell complex.

ProoF. This follows form Theorem 1.4.10 and the retract argument (see Prop-
osition 8.2.2). O

COROLLARY 1.4.17.If f: A — B is an inclusion of cell complexes (see Re-
mark 1.2.7), then every A{f}-cofibration is an f-local equivalence.
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Proo¥. This follows from Proposition 1.4.16, Theorem 1.3.9, and Proposi-
tion 1.2.13. O

1.4.18. Properties of the localization functor.

ProposITION 1.4.19. Let f: A — B be an inclusion of cell complexes (see
Remark 1.2.7), let X —» X' and Y — Y’ be cofibrations, and let the square

X —Y

L]

X/ 5 Y/
be commutative. If we apply the factorization of Theorem 1.4.10 to each of the

horizontal maps to obtain the commutative diagram

X—>Ef —Y

| ]

X —E; — Y,
then the map E; — E} is a cofibration.

Proor. Using Lemma 8.2.13, one can check inductively that at each stage in
the construction of the factorization, we have a cofibration ¥ — (Eﬁ)’. O

COROLLARY 1.4.20. Let f: A — B be an inclusion of cell complexes (see Re-
mark 1.2.7). If g: X — Y Is a cofibration, then so is L¢(g): Ly X — L;Y (see
Definition 1.4.11).

Proo¥. This follows from Proposition 1.4.19. O

1.5. Topological spaces and simplicial sets

Warning: This section is a collection of leftovers in need of reorga-
nization!

The main results of this section (Corollary 1.5.5 and Corollary 1.5.7) imply,
roughly speaking, that when using the localization functor of Definition 1.4.11,
one can pass freely through the geometric realization and total singular complex
functors, at the cost of only a natural weak equivalence.

LEMMA 1.5.1. Let K and C' be simplicial sets and let X be is a topological
space.
1. A map of topological spaces |K| — X defines a simplicial map Map(C, K) —
Map(|C’|,X) that is natural in C' and in the map |K| — X.
2. A map of simplicial sets K — Sing X defines a simplicial map Map(C, K) —
Map(|C’|,X) that is natural in C' and in the map K — Sing X .
ProoF. The map of part 1 is defined as the composition
Map(C, K) — Map(|C|, |K|) — Map(|C|, X)
and the map of part 2 is defined as the composition
Map(C, K) — Map(C, Sing X) — Map(|C’|,X).
O
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26 1. LOCAL SPACES AND LOCALIZATION

ProrosiTION 1.5.2. If K — L is a map of simplicial sets, X — Y a map of
topological spaces, and

K

|

L] — Y

— X

a commutative square, then there is a natural map from the geometric realization
of the pushout

O x (Map(C, [{) ><Map(C,L) Map(D, L)) — K R - P

D x (Map(C, K) Xmap(c,r) Map(D, L)) —— L

to the pushout

|C1x Map(|C], X) satapeny) Map (D], Y) | —— X -

l

|D] % [Map(|C], X) satapqery) Map(|D], V)| —— v

that makes the diagram

K| —— |P|—|L]

| ] ]

X Q Y

commute.

PrOOF. Since the geometric realization functor commutes with pushouts, this
follows from Lemma 1.5.1. O

ProrosiTION 1.5.3. If K — L is a map of simplicial sets, X — Y a map of
topological spaces, and

K ——Sing X

|

L——SingY
a commutative square, then there is a natural map from the pushout
C % (Map(c, [() XMap(C,L) Map(D’ L)) — K "_'_'_'_'_'_'_'_'.:%_P
D x (Map(C’, K) XMap(c, 1) Map(D, L)) — L
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to the total singular complex of the pushout

|C] x [Map(|C|, X) Xmap(jc],y) Map(|D|,Y)| —>ng

|D] % [Map(|C], X) satapqery) Map(|D], V)| —— v

that makes the diagram

K P L

O

Sing X —— Sing ) —— Sing Y’
commute.

Proo¥. This follows from Lemma 1.5.1, using the natural map from the pushout
of the total singular complexes to the total singular complex of the pushout. O

THEOREM 1.5.4. Let f: A — B be a cofibration of simplicial sets and let
g: X — Y be a map of topological spaces. If E¢(Sing g) Is the simplicial set ob-
tained by applying the factorization of Theorem 1.4.10 to the map Singg: Sing X —
SingY and Ejyg is the topological space obtained by applying the factorization of
Theorem 1.4.10 (with respect to the map |f| : |A| — |B|) to the map g, then there
is a natural map |Ef(Sing g)| — E|f| g that makes the diagram

|Sing X| —— |E;(Sing g)| — |Sing Y|

L

X— E|f| g————Y
commute.

Proo¥. Using Proposition 1.5.2; one can construct the map inductively at each
stage in the construction of the factorization. O

COROLLARY 1.5.5.If f: A — B is a cofibration of simplicial sets, then, for
every topological space X, there is a natural map |Lf SingX| — Lj7| X that makes
the square

|Sing X| ——— X

| ]

|L; Sing X| —— L5 X
commute, and this natural map is a weak equivalence.

ProOOF. The existence of the natural map follows from Theorem 1.5.4. Propo-
sition 1.2.28 implies that |Lf SingX| is |f|—loca1, and so Proposition 1.2.29 implies
that our natural map is a |f|—localization of the weak equivalence |SingX| — X
(see Definition 1.2.8). Proposition 1.2.11 and Theorem 1.2.23 now imply that our
natural map is a weak equivalence. O
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THEOREM 1.5.6. Let f: A — B be a cofibration of simplicial sets and let
g: K — L be a map of simplicial sets. If E¢ g is the simplicial set obtained by
applying the factorization of Theorem 1.4.10 to the map g and E|;| |g| is the topo-
logical space obtained by applying the factorization of Theorem 1.4.10 (with respect
to the map |f| : |A| — |B|) to the map |g| : |K| — |L , then there is a natural map
Efg — Ejp |g| that makes the diagram

K Eryg L

I

Sing| K| — Sing Ej4||¢| — Sing|Y’|

commute.

Proo¥. Using Proposition 1.5.3, one can construct the map inductively at each
stage in the construction of the factorization. O

COROLLARY 1.5.7. If f: A — B is a cofibration of simplicial sets then for every
simplicial set K there is a natural map Ly K — Sing Lj¢| K that makes the square

K —— Sing|K|

|

Ly K —— Sing Ly | K|

commute, and this natural map is a simplicial homotopy equivalence.

PrOOF oF COROLLARY 1.5.7. The existence of the natural map follows from
Theorem 1.5.6. Proposition 1.2.27 implies that Sing Ly |K| is f-local, and Prop-
osition 1.2.12, Proposition 1.2.11, and Proposition 1.2.30 imply that our natural
map is an f-local equivalence of cofibrant f-local spaces. The result now follows
from Theorem 1.2.19. O

ProposITION 1.5.8. If f: A — B is a cofibration in §S.y, (My,j: 1 — My) is
a functorial cofibrant f-localization on §S.y, and (Njz|, k: 1 — Ny) is a functorial
cofibrant |f|—loca11'zat1'on on Top(*), then, for every topological space X, there is
a map |Mf SingX| — N7 X, unique up to simplicial homotopy, that makes the
square

(1.5.9) Sing X| o x
|MfSingX| ........... >N|f|X

commute, and any such map is a weak equivalence. (Since |Mf SingX| is cofibrant
and N7 X is fibrant, all notions of homotopy of maps |Mf SingX| — N7 X coin-
cide and are equivalence relations (see Proposition 10.4.4).) This map is natural
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up to homotopy, i.e., if g: X — Y is a map of topological spaces, then the square

|M; Sing X| —— N X

l

|M; Sing Y| —— NV’

commutes up to homotopy.

PrOOF. Since Proposition 1.2.29 implies that the map |SingX| — |Mf SingX|
s a |f|—local equivalence, the existence and uniqueness of the map follow from
Lemma 1.2.18. Since Proposition 1.2.28 implies that |Mf SingX| is |f|—loca1, The-
orem 1.2.20 implies that the map is a weak equivalence.

For the naturality statement, we note that we have the cube

|Sing X | X
J |Sing V| %\Y
|M; Sing X | —J—>me J
~

|M; Sing Y| ———— NV’

in which the top and side squares commute and the front and back squares commute
up to simplicial homotopy. This implies that the composition

|Sing X| — |M; Sing X| — |M; SingY | — N5V’
1s simplicially homotopic to the composition
|Sing X| — [M Sing X| = Nj;| X — N}V,

and so the result follows from Lemma 1.2.18. O

ProposiTiON 1.5.10. If f: A — B is a cofibration in SS.), (My,j: 1 — My) is
a functorial cofibrant f-localization on §S.y, and (Njz|, k: 1 — Ny) is a functorial
cofibrant |f|—loca11'zat1'on on Top(*), then, for every simplicial set K, there is a map
M;K — Sing Nj 7| K

, unique up to homotopy, that makes the square

(1.5.11) K ——— Sing| K |

|

MK oy Sing Niy | K|

commute, and any such map is a homotopy equivalence. (Since every simplicial set
is cofibrant and Sing Ny |K| is fibrant, all notions of homotopy of maps M; K —
Sing Ny |K| coincide and are equivalence relations (see Proposition 10.4.4).) This
map Is natural up to homotopy, i.e., if g: K — L is a map of simplicial sets, then
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the square

MK —— Sing Ny | K|

|

ML —— Sing Nz | L]
commutes up to homotopy.

ProoOF. Proposition 1.2.30 implies that the map Sing|K| — Sing Nj| |K| is
an f-local equivalence and Proposition 1.2.27 implies that Sing Ny, |A| is f-local.
Since every simplicial set is cofibrant, the existence and uniqueness of the map
now follows from Lemma 1.2.18, and Theorem 1.2.19 implies that it 1s a homotopy
equivalence. The naturality statement follows as in the proof of Proposition 1.5.8.

O

1.6. A continuous localization functor

In this section, we will define a variant L;iont

of the f-localization functor L;
that is “continuous”. If we were using topological spaces of functions (instead
of simplicial sets of functions; see Section 1.1.4) then we would want to define a
function

(1.6.1) Map(X,Y) — Map(L; X, L;Y)

that is a continuous function of topological spaces. Since we are considering Spc,)
as a simplicial model category (see Definition 10.1.2), we want to define L;iont to be
a simplicial functor, i.e., we want a functor L™ that defines a map of simplicial
sets (1.6.1) (see [46, Chapter II, Section 1]). Note that not every functor can be
extended to a simplicial functor; for a counterexample, see Example 1.6.11.

1.6.2. Constructing relative A{f}-cell complexes.

LEMMA 1.6.3. If f: A — B is an inclusion of cell complexes (see Remark 1.2.7),
then a pushout of a relative A{f}-cell complexes is a relative A{f}-cell complex.

Proor. This follows from Lemma 8.2.11. O

LEMMA 1.6.4. If f: A — B is an inclusion of cell complexes (see Remark 1.2.7),
then a coproduct of relative A{f} cell complexes is a relative A{f}-cell complex.

Proo¥. This follows from Proposition 12.2.5, Lemma 1.6.3, and Lemma 12.2.11.
O

ProPOSITION 1.6.5. Let f: A — B be an inclusion of cell complexes (see Re-
mark 1.2.7). If (K, L) is a pair of simplicial sets, then the map

A KHagr B&L B K
is a relative A{f}-cell complexes.

ProoF. The inclusion . — K can be written as a transfinite composition
(see Definition 12.2.2) of inclusions each of which is a pushout of an inclusion
JA[n] — A[n] (for various values of n). Thus, A® K Tyer B® L - B® K is a
transfinite composition of pushouts of A®Aln ]HA®3A 1B®0A[n] - BoA[n]. O
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COROLLARY 1.6.6. If f: A — B is an inclusion of cell complexes (see Re-
mark 1.2.7) and K is a simplicial set, then the maps

(A® Aln]Hagsapm) B @ 0AR]) © K = (B A[n])@ K forn >0
Aln, k] K =5 Aln]® K forn>0and 0<k<n

are relative A{f}-cell complexes.

ProOF. Lemma 10.2.3 and axiom M6 (see Definition 10.1.2) imply that the
map

is 1somorphic to the map

A® (Aln] x K) Wagoamixx) B @ (9A[R] x K) = B® (Aln] x K),

and so Proposition 1.6.5 implies that it is a relative m—cell complex. The map
Aln, k] ® K = A[n] ® K can be written as a transfinite composition (see Defini-
tion 12.2.2) of inclusions each of which is a pushout of an inclusion A[n, k] = A[n]
(for various values of n and k), and so the proof is complete.

1.6.7. Comnstructing the continuous f-localization. We follow the proce-
dure described in Section 1.3, using the same ordinal A, except that we use a new
construction to define the space E°T! in terms of the space E° (see Section 1.3.5).

1.6.8. Comnstruction of the sequence. As in Section 1.3.5, we begin the
sequence by letting E® = X. If 2 < X, and we have constructed the sequence
through E?, we let

cemt= I CeMap(C B
(C—D)eA{f}

pet= J[ D@ Map(C,E)
(C—D)eA{f}

We then have a natural map C'Eont — E?, and we define E°T! by letting the square

Cgont Eﬁ

Dgont ........... 5 Eﬁ-l— 1

be a pushout. If 4 is a limit ordinal, we let E” = colimg<~ E°. We let L;iontX =
colimg«x E°.
THEOREM 1.6.9. Let f: A — B be an inclusion of cell complexes (see Re-

mark 1.2.7). If X is a space, then the map X — L;iontX constructed in Section 1.6.8
is a cofibrant f-localization of X.

Proor. Corollary 1.6.6, Lemma 1.6.4, and Lemma 1.6.3 imply that each E# —
EPT! is a relative A{f}-cell complex, and so Lemma 12.2.11 implies that X —
L;iontX is a relative A{f}-cell complex. Theorem 1.3.9 now implies that the map

X = L;iontX is both a cofibration and an f-local equivalence, and so it remains
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only to show that L;iontX is f-local. The 0-skeleton of Map(C, Eﬁ) is Spc(*)(C’, Eﬁ),
and so C' @ Map(C, Eﬁ) contains
Cospe(C )~ [ ©
Spe,y(C.EP)
as a subcomplex. The discussion in Section 1.3.4 now explains why the space

L;iontX is a A{f}-injective, and so the map X — L;iontX is a functorial cofibrant
f-localization of X. O

THEOREM 1.6.10. The functor L;iont can be extended to a simplicial functor.

Proor. If C' and X are spaces and K is a simplicial set, then there is a
natural map Map(C, X) x K — Map(C, X ® K) that takes the n-simplex (a: C' ®
Aln] = X, 1) of Map(C, X) x K to the n-simplex o(a,7): C ® Aln] = X @ K of
Map(C, X @ K) where the projection of o(«,7) on X is o and the projection on
K is the composition of the projection C' @ A[n] — A[n] with the map that takes
the non-degenerate n-simplex of A[n] to 7. This natural map o has the properties
required by Theorem 10.6.4, and so we can use it to inductively define ¢ for all the
spaces used in the construction of the localization (see Section 1.6.8). The theorem
now follows from Proposition 10.6.6 and Theorem 10.6.4. O

ExAMPLE 1.6.11 (Counterexample to continuity). If A is any nonempty space
in Top, we define a functor Wy = W: Top = Top by WaX = WX =[], x 4,
that 1s, we take the disjoint union of one copy of A for each continuous function
g: A — X. This defines a functor in which the copy of A corresponding to g as above
maps under W(f): WX — WY by the identity map to the copy corresponding to
fog, but W cannot be extended to a simplicial functor. To see this, take X = A
and Y = A x I. The simplicial set Map(X,Y) = Map(A4, A x I) has vertices (i.e.,
maps A — A x I) the inclusions ¢y and ¢; (where ig(a) = (a,0) and 41 (a) = (a, 1)),
and these vertices of Map(A4, A x I) are connected by a I-simplex A x A[l] > Ax [
of Map(A, A x I). The functions W(ig) and W (i1), however, take each point of
W A into different components of W (A x I), and so there can be no 1-simplex of
Map(WA, W(A x I)) connecting these vertices.

ExAMPLE 1.6.12. If we change Example 1.6.11 slightly, we can construct a
functor that is continuous. Define W§ = W¢ by W¢X = X4 x X (where X4 is the
compactly generated topological space of continuous functions A — X). We have
a natural transformation W — W€ such that WX — WX is always a continuous
bijection, but it is not, in general, a homeomorphism.

1.7. Pointed and unpointed localization

There 1s a functor from the category of pointed spaces to the category of un-
pointed spaces that forgets the basepoint. If f: A — B 1s a cofibration of cofibrant
pointed spaces, we can consider the notions of pointed f-local spaces and pointed
f-local equivalences in Spc,, or we can still consider spaces with basepoint (i.e.,
spaces in Spc, ) but consider the notions of unpointed f-local spaces and unpointed
f-local equivalences in Spc by forgetting the basepoints.

NoTaTioN 1.7.1. In this section, if X and Y are objects of Spc,, then Map(X,Y")
will continue to denote the unpointed simplicial set of maps between the pointed
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spaces X and Y, and UMap(X,Y") will denote the unpointed simplicial set of maps
between the unpointed spaces obtained from X and Y by forgetting the basepoint.

PrOPOSITION 1.7.2. Let A be a cofibrant object of Spc, and let X be a fibrant
object of Spc,.

1. If Spc, = SS., then there is a natural fibration of unpointed simplicial sets
Map(A, X) — UMap(4, X) = X.
2. If Spc, = Top,, then there is a natural fibration of unpointed simplicial sets
Map(A, X) — UMap(A4, X) — Sing X.

PrOOF. Since * — A 1s a cofibration of pointed spaces and X is a fibrant
pointed space, * — A is also a cofibration of unpointed spaces (after forgetting the
basepoints) and X is also a fibrant pointed space (after forgetting the basepoint).
Thus, Proposition 10.1.6 implies that we have a natural fibration of simplicial sets
UMap(A, X) — UMap(*, X). The fiber of this fibration is Map(A4, X). If Spc, =
SS., then UMap(*, X) is naturally isomorphic to the unpointed simplicial set X. If
Spc, = Top,, then UMap(*, X) is naturally isomorphic to the unpointed simplicial
set Sing X. O

DerFINITION 1.7.3. If f: A — B is a cofibration of cofibrant pointed spaces and
X 1s a pointed space, then we will say that X 1s pointed f-local if 1t is an f-local
space in Spc,, and we will say that X is unpointed f-local if X is an f-local space
in Spc when we forget the basepoints of all the spaces involved. Similarly, a map
f: X =Y will be called a pointed f-local equivalence if it is an f-local equivalence
in Spc,, and an unpointed f-local equivalence if it is an f-local equivalence in Spc
after forgetting all basepoints.

ProOPOSITION 1.7.4. Let A — B be a map of cofibrant pointed spaces and let
W be a fibrant pointed space.
1. If UMap(B, W) — UMap(A, W) (see Notation 1.7.1) is a weak equivalence,
then Map(B, W) — Map(A, W) is a weak equivalence.
2. If W is path connected and Map(B, W) — Map(A, W) is a weak equivalence,
then UMap(B, W) — UMap(A, W) is a weak equivalence.

Proo¥. This follows from Proposition 1.7.2. O

ProrosiTION 1.7.5. Let f: A — B be a cofibration of cofibrant pointed spaces
and let X be a pointed space.

1. If X is an unpointed f-local space, then it is also a pointed f-local space.
2. If X is a path connected pointed f-local space, then it is also an unpointed
f-local space.

Proo¥. This follows from Proposition 1.7.4. O
COROLLARY 1.7.6. Let f: A — B be a cofibration of cofibrant pointed spaces.

If X is a path connected pointed space, then X is pointed f-local if and only if it
is unpointed f-local.

Proo¥. This follows from Proposition 1.7.5. O
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LEMMA 1.7.7. If A is a path connected pointed space, X is a pointed space,
and Xy is the path component of X containing the basepoint, then the natural map
Map(A, Xs) = Map(A, X) is an isomorphism.

PRrROOF. Since the image of a path connected space is path connected, the image
of a pointed map from A to X is contained in Xp. O

THEOREM 1.7.8. If f: A — B is a map of path connected cofibrant pointed
spaces and X is a pointed space, then the following are equivalent:

1. X is pointed f-local.

2. Every path component of X is fibrant and the path component of X con-
taining the basepoint is pointed f-local.

3. Every path component of X is fibrant and the path component of X con-
taining the basepoint is unpointed f-local.

Proo¥. This follows from Lemma 1.7.7 and Corollary 1.7.6. O

COROLLARY 1.7.9. If f: A — B is a map of path connected cofibrant pointed
spaces and X 1s a fibrant pointed space, then X is unpointed f-local if and only
if every path component of X is pointed f-local when you choose a basepoint for
each path component.

Proor. If the path components of X are {X;};cs, then there is an iso-
morphism Map(4, X) ~ [[,cs Map(4, X;) that is natural in A, and (after you
choose a basepoint for each path component) an isomorphism UMap(A4, X) =~
[,es UMap(A, X;) that is natural in A. The result now follows from Corol-
lary 1.7.6. O

CoROLLARY 1.7.10. If f: A — B is a map of path connected cofibrant pointed
spaces, X is a pointed space, and X, is the path component of X containing the
basepoint, then the natural map

(X — Xb) il Lbe — LfX
is a weak equivalence (where Ly denotes pointed f-localization).

Proo¥. This follows from Theorem 1.7.8, Lemma 1.7.7, and Theorem 1.2.20.
O

LEMMA 1.7.11. If W is an f-local space, then any space consisting of a nonempty
union of path components of W is an f-local space.

PrOOF. A nonempty union of path components of a cofibrant space is a retract
of that space. O

ProrosiTION 1.7.12. Let f: A — B be a map of cofibrant pointed spaces. If
X — Y is an unpointed f-local equivalence of path connected pointed spaces, then
1t 1s also a pointed f-local equivalence.

Proor. If X YV isa pointed cofibrant approximation (see Definition 9.1.8)
to X — Y, then 1t is also an unpointed cofibrant approximation. If W is a
pointed f-local space, let W, be the path component of W containing the base-
point. Lemma 1.7.11 and Proposition 1.7.5 imply that W} is an unpointed f-
local space, and so the map UMap(Y/, W) — UMap()?, W) is a weak equivalence.
Proposition 1.7.4 now implies that the map Map(?, W) — Map()?, Wy) is a weak
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equivalence. Since both X and Y are path connected, the horizontal maps in the
commutative square

Map(?, Wy) —— Map(?, W)

| J

Map()?, Wy) — Map(f(, W)

are isomorphisms, and so the map Map(?, W) — Map()?, W) is a weak equivalence.
O

THEOREM 1.7.13. If f: A — B is a cofibration of cofibrant pointed spaces and
X is a cofibrant path connected pointed space, then the pointed f-localization of
X is weakly equivalent to the unpointed f-localization of X.

ProOF. Let X — Y be the unpointed f-localization of X. Proposition 1.7.5
implies that Y is pointed f-local and Proposition 1.7.12 implies that the map X —
Y is a pointed f-local equivalence, and so the result follows from Proposition 6.1.10.

O

THEOREM 1.7.14. If f: A — B is a cofibration of path connected cofibrant
pointed spaces and X is a pointed space, then the unpointed f-localization of X
is weakly equivalent to the space obtained by choosing a basepoint for each path
component of X and taking the pointed f-localization of each path component.

1.8. Comparing localizations

ProposITION 1.8.1. Let f: A — B and f: A — B be maps between cofibrant
objects. If f is an f-local equivalence, then every f-local equivalence is an f-local
equivalence.

PrOOF. Since f is an f—local equivalence, every f—local space 1s f-local. O

COROLLARY 1.8.2. Let f: A — B and f: A — B be maps between cofibrant
spaces. If f is an f-local equivalence, then for every object X, the f-localization
map X — L; X is an f-local equivalence.

Proo¥. This follows from Proposition 1.8.1. O

ProOPOSITION 1.8.3. If n > 0 and f is the inclusion S® C D"*! in Top, then a
space X is f-local if and only if m; X = 0 for ¢ > n and every choice of basepoint in

X.

Proor. If k > 0, then the inclusion S™ ® A[k] Igngoap) DT @ OA[K] —
D+l @ Alk] is a relative CW-complex that attaches a single cell of dimension
n—+k+1. Thus, any map S" @ Alk] Hsngoap D" @ A[k] = X can be extended
over D"t @ A[k]. O

PRrOPOSITION 1.8.4. If n > 0 and f is the inclusion S* C D"*! in Top, then
amap g: X — Y is an f-local equivalence if and only if it induces isomorphisms
g« mX & mY for ¢ < n and every choice of basepoint in X.
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PrOOF. We can choose a cofibrant approximation g: X =Y to g such that y
is a CW-complex and g is the inclusion of a subcomplex that contains the n-skeleton
of Y. Thus, if k > 0, then the map X © A[K]Tlg,,1p Y © 0A[K] — ¥ © A[k] is the
inclusion of a subcomplex that contains the (n+k)-skeleton. If 7 is an f-local space,
then Proposition 1.8.3 implies that every map X @ A[k] 1IN Y © 0A[k] - Z
can be extended over Y @ A[k]. O

ProOPOSITION 1.8.5. If n > 0 and f is the inclusion S™ C D"t! in Top, then the
functor that projects a space onto its (n — 1)st Postnikov piece is an f-localization
map.

Proo¥. This follows from Proposition 1.8.3 and Proposition 1.8.4. O
THEOREM 1.8.6. If n > 0 and f: A — B is a map in Spc that induces isomor-
phisms f.: m; X ~ m;Y for i < n and every choice of basepoint in A, then, for every

space X, the f-localization map X — L;X induces isomorphisms m; X =~ mL; X
for k < n and every choice of basepoint in X.

COROLLARY 1.8.7.If f: A — B is a map between n-connected spaces, then,
for every space X, the f-localization map X — L; X induces isomorphisms m;, X =~
mpL; X for k < n and every choice of basepoint in X.
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CHAPTER 2

The localization model category for spaces

2.1. The Bousfield localization model category structure

In this section, we show that for every map f: A — B in Spc, there is
a model category structure on Spc(*) in which the weak equivalences are the f-
local equivalences and the fibrant objects are the f-local spaces (see Theorem 2.1.2
and Proposition 2.1.3). This is a generalization of the h.-local model category
structure for a generalized homology theory h, on the category of simplicial sets
defined by A.K. Bousfield in [9]. Tt is also an example of a left Bousfield localization
(see Definition 3.2.1). This model category structure has also been obtained by
Bousfield in [13] for the category of simplicial sets, where he deals as well with
localizing certain proper classes of maps of simplicial sets.

DEeFINITION 2.1.1. Let f: A — B be a map between cofibrant spaces in Spc(*).

1. An f-local weak equivalence is defined to be an f-local equivalence (see
Definition 1.2.2).

2. An f-local cofibration is defined to be a cofibration.

3. An f-local fibration is defined to be a map with the right lifting property (see
Definition 8.2.1) with respect to all maps that are both f-local cofibrations
and f-local weak equivalences. If the map from a space to a point is an
f-local fibration, then we will say that the space is f-local fibrant.

THEOREM 2.1.2. If f: A — B is a map between cofibrant spaces in Spc(*),
then there is a simplicial model category structure on Spc(*) in which the weak
equivalences are the f-local weak equivalences, the cofibrations are the f-local cofi-
brations, the fibrations are the f-local fibrations, and the simplicial structure is the
usual simplicial structure on Spc(*).

ProposITION 2.1.3. If f: A — B is an inclusion of cell complexes (see Re-
mark 1.2.7), then a space is f-local if and only if it is fibrant in the f-local model
category structure of Theorem 2.1.2.

The proof of Theorem 2.1.2 will use the following proposition.

ProrosiTION 2.1.4. If f: A — B is a map of cofibrant spaces in Spc(*), then
there is a set J of inclusions of cell complexes (see Remark 1.2.7) such that

1. every map in J is an f-local equivalence, and
2. the class of J-cofibrations (see Definition 12.4.1) equals the class of cofibra-
tions that are also f-local equivalences.

We will present the proof of Proposition 2.1.4 in Section 2.4, after some neces-
sary preparatory work in Section 2.3.
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ProoF oF THEOREM 2.1.2. We begin by using Theorem 13.3.1 to show that
there 1s a cofibrantly generated model category structure on Spc(*) with weak equiv-
alences, cofibrations, and fibrations as described in the statement of Theorem 2.1.2.

Proposition 1.2.12 implies that the class of f-local equivalences satisfies the
“two out of three” axiom, and Proposition 1.2.13 implies that it 1s closed under
retracts.

Let I be the set of maps

I = {Spe.) (9A[R]) = Spe(y(An]) | n > 0}

(see Definition 1.1.16) and let J be the set of maps provided by Proposition 2.1.4.
Since every map in either 7 or J is an inclusion of simplicial sets (if Spc(*) =
SS(+)) or an inclusion of cell complexes (if Spegy = Top(*)), Example 12.3.4 and
Example 12.3.5 imply that condition 1 of Theorem 13.3.1 1s satisfied.

The subcategory of I-cofibrations is the subcategory of cofibrations in the usual
model category structure in Spc(*), and the I-injectives are the usual trivial fi-
brations. Thus, Proposition 2.1.4 implies that condition 2 of Theorem 13.3.1 is
satisfied.

Since the J-cofibrations are a subcategory of the I-cofibrations, every I-injective
must be a J-injective. Proposition 1.2.11 implies that every J-injective is an f-local
equivalence, and so condition 3 is satisfied.

Proposition 2.1.4 implies that condition 4a of Theorem 13.3.1 is satisfied, and
so Theorem 13.3.1 now implies that we have a model category.

To show that our model category is a simplicial model category, we note that,
since the simplicial structure is the usual one, axiom M6 of Definition 10.1.2 holds
because it does so in the usual simplicial model category structure on Spc +)- For
axiom M7 of Definition 10.1.2, we note that the class of f-local cofibrations equals
the usual class of cofibrations and the class of f-local fibrations is contained in the
usual class of fibrations. Thus, the first requirement of axiom M7 is clear. In the
case that the map p is an f-local equivalence, the rest of axiom M7 follows from the
fact that, since the class of f-local cofibrations equals the usual class of cofibrations,
the class of f-local trivial fibrations equals the usual class of trivial fibrations (see
Proposition 8.2.3).

In the case that the map ¢ is an f-local equivalence, we choose a cofibrant
approximation 2: A — B to i such that 7 is a cofibration (see Proposition 9.1.9).
Proposition 10.3.3 and Proposition 10.3.10 imply that, for every n > 0, the map
A® Aln] U i00apm] B ® dA[n] » B @ An] is also an f-local equivalence, and so it
has the left lifting property with respect to the map p. Lemma 10.3.6 now implies
that the map i has the left lifting property with respect to the map X2l —
Y AP xyoamm X221 for every n > 0. Since Spc(*) is a left proper model category
(see Theorem 11.1.16), Proposition 11.1.18 implies that the map ¢ has the left lifting
property with respect to the map X2 — VAP xy oapg X221 for every n > 0,
and so the result follows from Lemma 10.3.6. O

ProoF oF ProprosiTION 2.1.3. If W is fibrant in the f-local model category
structure, then the map W — * has the right lifting property with respect to every
cofibration that is an f-local equivalence. Proposition 1.3.7 implies that every horn
on f is both a cofibration and an f-local equivalence, and so Proposition 1.3.3
implies that W is f-local.
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Conversely, assume that W is f-local. If : A — B is both a cofibration and
an f-local equivalence, then Proposition 9.1.9 implies that there is a cofibrant ap-
proximation 7: A — Btoisuch that 7is a cofibration, and Proposition 11.1.18 and
Proposition 8.2.3 imply that 1t is sufficient to show that 7 has the left lifting property
with respect to the map W — . Proposition 1.2.11 and Proposition 1.2.12 imply
that 7 1s an f-local equivalence, and so Proposition 10.3.3 and Proposition 10.3.4
imply that 7 has the left lifting property with respect to the map W — *. O

Corollary 1.4.17 implies that every A{f}-cofibration is an f-local equivalence.
The following example (due to A. K. Bousfield) shows that, among the cofibrations
that are f-local equivalences, there are maps that are not A{f}-cofibrations.

ExamPLE 2.1.5. Let Spc(*) = Top,, and let f: A — B be the inclusion
S™ — D"*1. The path space fibration p: PK(Z,n) — K(Z,n) is a A{f}-injective
(see Definition 1.4.2), and so every A{f}-cofibration has the homotopy left lifting
property with respect to p (see Definition 10.3.2). The cofibration * — S” does
not have the homotopy left lifting property with respect to p, and so it is not a
A{f}-cofibration (see Fix this reference!). However, since both the composition
¥ — S" — D! and f itself are f-local equivalences (see Proposition 1.2.11),
the “two out of three” property of weak equivalences implies that the inclusion
x* — S™ is an f-local equivalence. Thus, * — S™ 1s both a cofibration and an
J-local equivalence, but it is not a A{f}-cofibration.

2.2. Cell complexes of topological spaces

A cell complex in Top,) is a topological space built by a sequential process of
attaching cells. The class of cell complexes includes the class of CW-complexes, but
the attaching map of a cell in a cell complex need not be contained in a union of cells
of lower dimension. Thus, while a CW-complex can be built by a countable process
of attaching unions of cells, a general cell complex may require an arbitrarily long
transfinite construction. Cell complexes and their retracts are the cofibrant objects
in the standard model category of topological spaces.

DEFINITION 2.2.1. e A relative cell complex in Top is a map that is a
transfinite composition (see Definition 12.2.2) of pushouts (see Definition 8.2.10)
of maps of the form |3A[n]| — |A[n]| for n > 0. The topological space X
in Top is a cell compler if the map # — X is a relative cell complex, and it
is a finite cell compler if the map () — X is a finite composition of pushouts
of maps of the form |3A[n]| — |A[n]| for n > 0.

o A relative cell compler in Top, is a map that is a transfinite composition of
pushouts of maps of the form |3A[n] |+ — |A[n] |+ for n > 0. The topological
space X in Top, is a cell complex if the map x — X is a relative cell complex,
and 1t is a finite cell complexr if the map * — X is a finite composition of
pushouts of maps of the form |8A[n]|+ — |A[n]|+ for n > 0.

ExampLE 2.2.2. A CW-complex in Topy,) 1s a cell complex.

REMARK 2.2.3. Definition 2.2.1 implies that a relative cell complex in Top(*) is
a map that can be constructed as a transfinite composition of pushouts of inclusions
of the boundary of a cell into that cell, but there will generally be many different
possible such constructions. When dealing with a topological space that is a cell
complex or a map that is a relative cell complex, we will often assume that we have
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chosen some specific such construction. Furthermore, we may choose a construction
of the map as a transfinite composition of pushouts of coproducts of cells, i.e., we
will consider constructions as transfinite compositions in which more than one cell
is attached at a time (see Proposition 12.2.5).

ProrosiTION 2.2.4. If X — Y is a relative cell complex, then a compact subset
of Y can intersect the interiors of only finitely many cells of Y — X.

ProOOF. Let (' be asubset of Y'; we will show that if C intersects the interiors of
infinitely many cells of Y — X | then ' has an infinite subset that has no accumulation
point (which implies that C' is not compact).

Suppose now that C intersects the interiors of infinitely many cells of ¥ — X.
We construct a subset P of C' by choosing one point of C' from the interior of each
cell whose interior intersects C'. We will now show that this infinite subset P of '
has no accumulation point in C. We will do this by showing that, for every point
¢ € U, there is an open subset U of Y such that ¢ € U and U N P has at most one
point.

Let e, be the unique cell of ¥ — X that contains ¢ in its interior. Since there is
at most one point of P in the interior of any cell of Y — X, we can choose an open
subset U, of the interior of e, that contains no points of P (except for ¢, if ¢ € P).
We will use Zorn’s lemma to show that we can enlarge U, to an open subset of ¥V
that contains no points of P (except for ¢, if ¢ € P).

Let o be the presentation ordinal (see Definition 12.5.4) of the cell e.. If the
presentation ordinal of the relative cell complex X — Y is v, consider the set T of
ordered pairs (3,U) where a < # < 4 and U is an open subset of Y? such that
UNY® = U, and U contains no points of P except possibly ¢. We define a preorder
on T by defining (81, U1) < (B2,Uz) if 1 < B2 and U3 N YPr = Uy,

If {(8s,Us) }ses is a chain in T, then (UseSﬁs’UsES Us) (see Section 12.1.1)
is an upper bound in T for the chain, and so Zorn’s lemma implies that T has a
maximal element (5, Uy). We will complete the proof by showing that 8, = ~.

If 8, < 7, then consider the cells of presentation ordinal 3, + 1. Since Y
has the weak topology determined by X and the cells of ¥ — X | we need only
enlarge U,, so that its intersection with each cell of presentation ordinal g, + 1
is open in that cell, and so that it still contains no points of P except possibly c.
If h: S~ — VP is the attaching map for a cell of presentation ordinal 3, + 1,
then h='U,, is open in S"~!, and so we can “thicken” h='U,, to an open subset of
D" avoiding the (at most one) point of P that is in the interior of the cell. Tf we
let U’ equal the union of U, with these thickenings in the interiors of the cells of
presentation ordinal G, + 1, then the pair (8, + 1,U’) is an element of T greater
than the maximal element (3,,, Up,) of T. This contradiction implies that G, = v,
and so the proof 1s complete. O

COROLLARY 2.2.5. A compact subset of a cell complex can intersect the inte-
riors of only finitely many cells.

Proor. This follows from Proposition 2.2.4. O

PROPOSITION 2.2.6. Every cell of a cell complex is contained in a finite sub-
complex of the cell complex.

ProoOF. If we choose a presentation of the cell complex X (see Definition 12.5.2),
then the proposition follows from Corollary 2.2.5, using a transfinite induction on
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the presentation ordinal of the cell. The attaching map of any cell intersects the
interiors of only finitely many cells, each of which (by the induction hypothesis) is
contained in a finite subcomplex of X. O

COROLLARY 2.2.7. A compact subset of a cell complex is contained in a finite
subcomplex of the cell complex.

Proo¥F. This follows from Corollary 2.2.5 and Proposition 2.2.6. O

2.3. Subcomplexes of relative A{f}-cell complexes

The proof of Proposition 2.1.4 (in Section 2.4) will require a careful analysis
of the localization of a space. Since the localization map is a relative A{f}-cell

complex, we need to study subcomplexes of relative A{f}-cell complexes.

DEFINITION 2.3.1. Let f: A — B be an inclusion of cell complexes (see Re-
mark 1.2.7).

o If C' = D is an element of A{f} (see Definition 1.3.2), then D will also be
called a A{f}-cell, C will be called the boundary of the A{f}-cell, and D—C
will be called the interior of the A{f}-cell. (The interior of a A{f}-cell is
not, in general, a subcomplex.)

e If C' = Disamapin A{f} and

C—X

| ]

D——Y
is a pushout, then we will refer to the image of D in Y as a A{f}-cell.

2.3.2. Presentations of relative A{f}-cell complexes. A relative A{f}-
cell complex i1s a map that can be constructed as a transfinite composition of
pushouts of elements of A{f} (see Definition 1.3.8). To consider subcomplexes
of a relative m—cell complex, we need to choose a particular such construction.

DeFINITION 2.3.3. If g: X — Y is a relative A{f}-cell complex (see Defini-
tion 1.3.8), then a presentation of g is a pair consisting of a A-sequence

X=X X1-oXo—>- =5 Xg—> - (B<A)

(for some ordinal A) and a set of ordered triples

{17,700},

such that
1. the composition of the A-sequence is the map g: X = Y,
2. each T” is a set,
3. each e’ is a function e : T? — A{f} (see Definition 1.3.2),
4. for every 3 < A, if i € 77 and e;@ is the A{f}-cell C; — Dj;, then hf is a

map hf C; = Xg, and
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5. every Xgy1 is the pushout

N
T8 T8

o]

Xg — Xgyq1.

DEFINITION 2.3.4. Let g: X — Y be arelative A{f}-cell complex with presen-
tation (X:XO -+ X1 = X5 —>"'—>X@ — (ﬁ< /\),{Tﬁ,eﬁ,hﬁ}@<>\).

1. Ifeisa m—cell of ¢ (see Definition 1.3.2), the presentation ordinal of e is
defined to be the first ordinal 5 such that e is in Xg.

2. If B < A, then the g-skeleton of g is defined to be X5. We will sometimes
abuse language and refer to the image of X3 in Y as the f-skeleton of g¢.

2.3.5. Constructing a subcomplex of a relative A{f}-cell complex.

DEeFINITION 2.3.6. If g: X — Y is a relative m—cell complex with presenta-
tion (X =Xo->X120Xo—> -5 Xg—> - (< /\),{Tﬁ,eﬁ,hﬁ}@<>\), then a
subcomplex of g relative to that presentation consists of a family of sets {Tﬁ}@<>\
such that

1. for every 3 < A, the set T7 is a subset of T7°,
2. there is a A-sequence

X=)~(o—>)~(1—>)?2—>m—>)?@—>m (B<A)
(called the A-sequence associated with the subcomplex) and a map of A-
sequences
X == )?0 )?1 )?2
X _— XO Xl X2

such that, for every 5 < A and every 7 € Tﬁ, the map hf C; = X factors

through the map )?@ — Xp, and
3. for every B < A, the square

IR
T8 T8

|

5(:@ _— 5(:@4_1 .
is a pushout.
REMARK 2.3.7. Although a subcomplex of a relative A{f}-cell complex can
only be defined relative to some particular presentation of that relative A{f}-cell
complex, we will often discuss subcomplexes of a relative A{f}-cell complex with-

out explicitly mentioning the presentation relative to which the subcomplexes are

defined.
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REMARK 2.3.8. Although a subcomplex of a relative m—cell complex with
some particular presentation is defined to be a family of sets {Tﬁ}@<>\ (see Defi-
nition 2.3.6), we will often abuse language and refer to the A-sequence associated
with the subcomplex, or the composition of that A-sequence, as a “subcomplex”.

_ REMARK 2.3.9. Note that the definition of a subcomplex implies that the maps
Xp — Xp are all relative A{f}-cell complexes. Since a relative A{f}-cell complex is

a monomorphism, the factorization of each hf through )?@ — X is unique. Thus,

a subcomplex of a relative A{f}-cell complex is itself a relative A{f}-cell complex
with a natural presentation.

PropPoOSITION 2.3.10. Given a relative A{f}-cell complex X — Y with presen-
tation (X =Xo—>X12oXo—5 -5 Xg— - (B< /\),{Tﬁ,eﬁ,hﬁ}@<>\), an
arbitrary subcomplex can be constructed by the following inductive procedure.

1. Choose an arbitrary subset TO of TO.

2. Ifﬁ < X and we have defined {T7}7<@, then we have determined the space

X@ and the map X@ — Xp (where X@ is the space that appears in the
A-sequence associated to the subcomplex). Consider the set

{ieT? | hf Cy — X factors through )?@ — Xs}

Choose an arbitrary subset TP of this set. For every i € Tﬁ, there is a
unigue map hf : C; = Xp that makes the diagram

C
~ﬂl n?
A
5(:@ — X@

commute. We let )?@_H be the pushout

[le 11>
T8 T8

I ﬁﬂl J

X@ — X@+1
Proor. This follows directly from the definitions. O
PrROPOSITION 2.3.11. Let g: X — Y be a relative A{f}-cell complex with pre-
sentation (X =X —=>X1 2 Xo— -2 Xg o (B< /\),{Tﬁ,eﬁ,hﬁ}@<>\).
If {{T“ﬁ}@<>\}ueU is a set ofsubfomplexes o~fg, then the intersection {Tﬁ}@<>\ of
the set of subcomplexes (where TP = Nuecv T%P for every § < \) is a subcomplex
of g.

Proor. It 1s sufficient to show that, if 5 < A and we have constructed the
F-skeleton of the associated A-sequence X = X0 = X1 — Xz - = X@, then,
for every i € Tﬁ, the map hi : €y — Xg factors through X@ — X@. If: e Tﬁ,
then i € T%F for every v € U, and so hf factors uniquely through )?g — Xj for
every u € U. Since )?@ is the limit of the diagram that contains the map )?g — X3
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for every u € U, the map hf factors uniquely through )~(@ — Xg, and the proof is
complete. O

COROLLARY 2.3.12. Let g: X — Y be a relative m—ceﬂ complex with pre-
sentation (X =X X1i—-Xo—> - 25Xz (< /\),{Tﬁ,eﬁ,hﬁ}@<>\). Ir
e is an f-cell of g, then there is a smallest subcomplex of ¢ that contains e, i.e., a
subcomplex of g containing e that is a subcomplex of every subcomplex of g that
contains e.

ProOOF. Proposition 2.3.11 implies that we can take the intersection of all
subcomplexes of ¢ that contain e. O

DEFINITION 2.3.13. If ¢ is a A{f}-cell of the relative A{f}-cell complex g: X —
Y with some particular presentation, then the smallest subcomplex of ¢ that con-
tains e (whose existence is guaranteed by Corollary 2.3.12) will be called the sub-
complex generated by e.

2.3.14. Subcomplexes of the localization. If f: A — B is an inclusion of
cell complexes (see Remark 1.2.7), then for every space X, the localization jx : X —
L; X has a natural presentation as a relative A{f}-cell complex. When we discuss
subcomplexes of jx, it will be with respect to that natural presentation.

LEMMA 2.3.15. Let f: A — B be an inclusion of cell complexes (see Re-
mark 1.2.7), and let X be a simplicial set (or a cell complex). If W is a subcomplex
of X, then LW is naturally isomorphic (or homeomorphic) to a subcomplex of
Ly X (where by “naturally” we mean that this isomorphism is a functor on the
category of subcomplexes of X ).

Proor. The construction of Ly X from X defines an obvious presentation of
the relative A{f}-cell complex jx: X — L;X. Since an inclusion of a subcomplex
is a monomorphism, the construction of L;W from W defines an obvious natural

isomorphism of the relative A{f}-cell complex W — LW with a subcomplex of
J(X). O

ProOPOSITION 2.3.16. Let f: A — B be an inclusion of cell complexes (see
Remark 1.2.7). If X is a simplicial set (or a cell complex) and W is a subcomplex of
X, then Ly W is naturally isomorphic (or homeomorphic) to the subcomplex of Ly X

consisting of those A{f}-cells of Ly X for which the zero skeleton of the subcomplex
of L X generated by that A{f}-cell (see Definition 2.3.13) is a subcomplex of W.

Proor. We identify L;W with a subcomplex of L;X as in Lemma 2.3.15,
and we will show by transfinite induction on the presentation ordinal (see Defini-
tion 2.3.4) of the A{f}-cell that a A{f}-cell of L; X is in L;W if and only if the
zero skeleton of the subcomplex of L X generated by that A{f}-cell (see Defini-
tion 2.3.13) is a subcomplex of W.

If e is a A{f}-cell of presentation ordinal 1, then the subcomplex of L;X
generated by e consists of the union of e and the subcomplexes of X generated by
those simplices (or cells) of X whose interiors intersect the image of the attaching
map of e. Thus, the zero skeleton of the subcomplex of L;X generated by € is a
subcomplex of W if and only if the attaching map of e factors through the inclusion
W — X, which is true if and only if e is contained in L W.
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Since there are no m—cells whose presentation ordinal is a limit ordinal,
we assume that 74+ 1 < X and that the assertion is true for all m—cells of
presentation ordinal less than or equal to 3. Let e be a m—cell of presentation
ordinal # + 1. The subcomplex of L; X generated by e consists of the union of
e and the subcomplexes of L; X generated by those m—cells and simplices (or
cells) of X whose interiors intersect the image of the attaching map of e. Each of

those A{f}-cells is of presentation ordinal at most 3, and so it is in LW if and
only if the zero skeleton of the subcomplex of Ly X it generates is contained in W,
and the inductive hypothesis implies that this is true if and only if that m—cell
is in Ly W. Thus, the subcomplex of L;X generated by e is contained in L;W if
and only if the attaching map for e factors through W5 — Xz, i.e., if and only if e
isin Ly W. O

ProOPOSITION 2.3.17. Let f: A — B be an inclusion of cell complexes (see
Remark 1.2.7). If X is a simplicial set (or a cell complex) and {W; }ses Is a family
of subcomplexes of X, then Ls([\,cs Ws) = (N,es L Ws.

Proo¥. This follows from Proposition 2.3.16. O

ProPoOsSITION 2.3.18. Let f: A — B be an inclusion of cell complexes (see
Remark 1.2.7). If X is a simplicial set (or a cell complex) and Wy C Wy C
We C---CWsC--- (8 < A) is a A-sequence of subcomplexes of X (where
A is the ordinal chosen in Section 1.3.4), then the natural map colimge LW —
L¢ colimgey Wy is an isomorphism (or a homeomorphism).

PrOOF. Proposition 2.3.16 implies that the map is an isomorphism onto a
subcomplex; it remains only to show that every A{f}-cell of Ly colimgey W is
contained in some L;Wj. We will do this by a transfinite induction on the presen-
tation ordinal of the A{f}-cell (see Definition 2.3.4).

Ifeis a A{f}-cell of L colimp<y Wj of presentation ordinal 1, then its attaching
map is a map to colimg<x Wps, and the discussion in Section 1.3.4 explains why there
is an ordinal § < A such that the image of the attaching map is contained in Wj.
Thus, the A{f}-cell isin L;Wj3.

Since there are no m—cells of presentation ordinal equal to a limit ordinal,
we now let 4 be an ordinal such that v +1 < A, and we assume that the assertion
is true for all A{f}-cells of presentation ordinal less than or equal to 4. If ¢ is a

A{f}-cell of presentation ordinal v+ 1, then e has fewer than A simplices (or cells).
Thus, the image of the attaching map of e is contained in the interiors of fewer
than A many A{f}-cells, each of presentation ordinal less than or equal to . (If
Spc(*) = Top(*), then this follows from Corollary 2.2.5.) The induction hypothesis
implies that each of these is contained in some L;Wj3. Since A is a regular cardinal,
there must exist # < X such that the union of these A{f}-cells is contained in
L; W3, and so e is also contained in L W3. O

2.4. The Bousfield-Smith cardinality argument

The proof of Proposition 2.1.4 is at the end of this section. The cardinality
argument that we use here was first used by A. K. Bousfield [9] to define a model
category structure on the category of simplicial sets in which a weak equivalence was
a map that induced a homology isomorphism (for some chosen homology theory).
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This was extended to more general localizations of cofibrantly generated model
categories (see Definition 13.2.1) by J. H. Smith. We are indebted to D. M. Kan
for explaining this argument to us.

We will prove Proposition 2.1.4 by showing that there i1s a set J of cofibra-
tions that are f-local equivalences such that every cofibration that is an f-local
equivalence has the left lifting property (see Definition 8.2.1) with respect to every
J-injective. Proposition 2.1.4 will then follow from Corollary 12.4.17.

We will find the set J by showing (in Proposition 2.4.8) that there is a cardinal
~ such that, if a map has the right lifting property with respect to all inclusions of
simplicial sets (or of cell complexes) that are f-local equivalences between complexes
of size no larger than =, then it has the right lifting property with respect to all
cofibrations that are f-local equivalences. By the “size” of a simplicial set (or a
cell complex) X, we will mean the cardinal of the set of simplices (or cells) of X.
We will then let J be a set of representatives of the isomorphism classes of of these
“small enough” inclusions of complexes that are f-local equivalences.

We must first deal with an inconvenient aspect of the categories Top and Top,:
Not all spaces are cell complexes. This requires Lemma 2.4.1, which shows that,
for a fibration to have the right lifting property (see Definition 8.2.1) with respect
to all cofibrations that are f-local equivalences, it is sufficient for it to have the
right lifting property with respect to all such cofibrations that are inclusions of cell
complexes.

LEMMA 2.4.1. Let f: A — B be a map of cofibrant spaces in Top(*). Ifp: F —
B is a fibration with the right lifting property with respect to all inclusions of cell
complexes that are f-local equivalences, then it has the right lifting property with
respect to all cofibrations that are f-local equivalences.

ProOOF. Let g: X — Y be a cofibration that is an f-local equivalence. Propo-
sition 13.2.16 implies that there is a cofibrant approximation (see Definition 9.1.8)
ge to g such that g. is an inclusion of cell complexes. Proposition 1.2.11 and Prop-
osition 1.2.12 imply that g. is an f-local equivalence, and so the lemma now follows
from Proposition 11.1.18. O

We can now restrict our attention to inclusions of simplicial sets (if Spc(*) =
SS(4)) or inclusions of cell complexes (if Speg.y = Top(*)). We need to find a cardinal
~ with two properties:

1. The cardinal v is “large enough” in that, for every complex X, every sub-
complex of L; X of size no greater than + is contained in the localization of
a subcomplex of X of size no greater than ~.

2. The cardinal v is “stable” in that, if X is a complex of size no greater than
v, then L; X will also have size no greater than .

Once we have such a cardinal v, Proposition 2.4.7 (which uses Lemma 2.4.5) will
show that any inclusion of complexes that is an f-local equivalence can be built out
of ones of size no greater than 4. This will be used in Proposition 2.4.8 to show
that if a map has the right lifting property with respect to all “small” inclusions of
complexes that are f-local equivalences, then it has the right lifting property with
respect to all inclusions of complexes that are f-local equivalences. We define our
cardinal v in Definition 2.4.4.
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DEFINITION 2.4.2. If the set of simplices (or cells) of the complex X has car-
dinal x, then we will say that X is of size k.

LEMMA 2.4.3. Let f: A — B be an inclusion of cell complexes (see Remark 1.2.7),
and let A be the first infinite cardinal greater than that of the simplices (or cells)
of ALl B. For any complex X, we have L; X ~ colimL;X,, where X, varies over
the subcomplexes of X of size less than .

ProoF. Proposition 2.3.16 implies that each L X, is a subcomplex of L X,
and so we need only show that every A{f}-cell of L; X is contained in L; X, for
some small subcomplex X of X. We will do this by a transfinite induction on the
presentation ordinal of the A{f}-cell (see Definition 2.3.4). To ease the strain of
terminology, for the remainder of this proof, the word “small” will mean “of size
less than \”.

The induction is begun by noting that the zero skeleton of X — L;X equals

X. Since there are no m—cells of sequential dimension equal to a limit ordinal,
we need only consider the case of successor ordinals.

Now let 5+ 1 < A, and assume that each A{f}-cell of presentation ordinal less
than or equal to @ is contained in L; X, for some small subcomplex X, of X. Any

m—cell of presentation ordinal 8+ 1 must be attached by a map of its boundary
to the B-skeleton of Ly X (see Definition 2.3.4). Since the boundary of an A{f}-cell
has size less than A, the image of the attaching map can intersect the interiors of
fewer than A other simplices (or cells), each of which is either in X or in an A{f}-
cell of sequential dimension less than or equal to 3. (If Spc(*) = Top(*), then this
uses Corollary 2.2.5.) Thus, our A{f}-cell is attached to the union of X with some
A{f}-cells, each of which is contained in the localization of a small subcomplex of

X. If we let Z be the union of those small subcomplexes of X and the subcomplexes
of X generated by the (fewer than A) simplices (or cells) of X in the image of the

attaching map of our A{f}-cell, then Z is the union a collection of size less than
A of subcomplexes of X, each of which is of size less than A. Since A is a regular

cardinal, this implies that Z is of size less than A, and our A{f}-cell is contained
n Lf Z. O

DEFINITION 2.4.4. We let ¢ denote the cardinal of the continuum, i.e., ¢ is the
cardinal of the set of real numbers. We let A denote the ordinal (which is also a
cardinal) selected in Section 1.3.4, i.e., if f: A — B, then A is the first infinite
cardinal greater than that of the set of simplices (or cells) of ATl B. We now define
~ as

AN if Spegyy =SS
v = (*) (*)
(AC)AC if SDC(*) = TOD(*)
Thus, if Spc(,y = Top(,, then v = (Ao)*e = max(A},¢) = (AM)(c) (since the
maximum of two infinite cardinals equals their product (see, e.g., [25, Chapter 2])).
LEMMA 2.4.5. Let f: A — B be an inclusion of cell complexes (see Remark 1.2.7),
and let X be a simplicial set (or a cell complex). If Z is a subcomplex of Ly X of

size less than or equal to ~, then there exists a subcomplex W of X, of size less
than or equal to v, such that 7 C L; W.
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ProOF. Lemma 2.4.3 implies that each simplex (or cell) of 7 is contained in the
localization of some subcomplex of X of size less than A, and so Proposition 2.3.16
implies that Z 1s contained in the localization of the union of those subcomplexes.
Since A < v (see Definition 2.4.4), A X ¥ = =, and so that union of subcomplexes is
of size less than or equal to ~. O

LEMMA 2.4.6. Let f: A — B be an inclusion of cell complexes (see Remark 1.2.7).
If X is a simplicial set (or a cell complex) of size less than or equal to vy (see Defi-
nition 2.4.4), then L; X has size less than or equal to 7.

PrOOF. Let X = Xy - X1 —- Xo — -+ =5 X3 — -+ (8 < A) be the
A-sequence that is part of the natural presentation of the relative m—cell com-
plex X — L;X (see Definition 2.3.3). We will prove by transfinite induction
that, for every 8 < A, the complex Xz has size less than or equal to 7. Since
Ly X = colimges Xp and Succ(y) (see Definition 12.1.11) is a regular cardinal (see
Definition 12.1.15), this will imply the lemma.

We begin the induction by noting that Xy = X. If we now assume that Xz
has size less than or equal to 7, then (since the boundary of a m—cell is of
size less than \) there are fewer than v* = v (if Spe(yy = SS(x)) or A = 5 (if
Spc(y = Top,)) (see Proposition 12.1.16) many maps from the boundary of a

A{f}-cell to Xg. Since there are only countably many A{f}-cells, there are fewer
than 4 many A{f}-cells attached to Xg to form Xsi1. Since each A{f}-cell has
fewer than A many simplices (or cells), X1 has size less than or equal to 7.

If 7 is a limit ordinal, then Xj3 is a colimit of complexes, each of which is of
size less than or equal to 7. Since # < A < ~, this implies that Xz has size less
than or equal to v, and the proof is complete. O

The following proposition will be used in Proposition 2.4.8 to extend a map over
an arbitrary inclusion of a subcomplex that is an f-local equivalence by extending
it over a subcomplex of size no greater than ~.

ProOPOSITION 2.4.7. Let f: A — B be an inclusion of cell complexes (see Re-
mark 1.2.7), and let D be a simplicial set (or a cell complex). If i: C — D is
the inclusion of a proper subcomplex and an f-local equivalence, then there is a
subcomplex K of D such that

1. the subcomplex K is not contained in the subcomplex C,
2. the size of K is less than or equal to vy (see Definition 2.4.4), and
3. the inclusions K NC' — K and C'— C'U K are both f-local equivalences.

ProoOF. Since i: C' = D is the inclusion of a subcomplex and an f-local equiv-
alence, Lemma 2.3.15, and Theorem 1.4.15 imply that L;(¢): LyC' — L;D is a
trivial cofibration of fibrant spaces, and so it i1s the inclusion of a strong defor-
mation retract (see Corollary 10.4.20). We choose a strong deformation retraction
R:L;D® I — LD (where I = A[l]), which will remain fixed throughout this
proof.

We will show that there exists a subcomplex K of D of size less than or equal
to v such that

1. K 1s not contained in C',
2. R|rL,k@r is a deformation retraction of Ly K to Ly (K NC), and
3. R|L,(cuk)er s a deformation retraction of Ly (C'U K) to L;C.
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We will do this by constructing a A-sequence
KyCKiCKyC---CKgC--- (B <)
(where A is as in Definition 2.4.4) of subcomplexes of D such that, for every 8 < A,

1. K has size less than or equal to v,

2. R(Lf[(@ ® I) C Lfl(ﬁ-l-la
and such that no Kz is contained in C'. If we then let K = U@<>\ Kg, then Propo-
sition 2.3.18 will imply that K has the properties that we require.

We begin by choosing a simplex (or cell) of D that isn’t contained in C', and
letting Ky equal the subcomplex generated by that simplex (or cell).

For successor ordinals, suppose that § 4+ 1 < =, and that we’ve constructed
Kg. Lemma 2.4.6 implies that L; K has size less than or equal to v, and so
R(L;Ks @ I) is contained in a subcomplex of L;D of size less than or equal to
y. (If Spe(,y = Topy,y, then this uses Corollary 2.2.7.) Lemma 2.4.5 now implies
that we can find a subcomplex Zg of D, of size less than or equal to v, such that
R(L;Kg®I) C Ly Zg. We let Kgi1 = KgU Zg. It is clear that Kpyq has the
properties required of it, and so the proof is complete. O

ProPOSITION 2.4.8. Let f: A — B be an inclusion of cell complexes (see Re-
mark 1.2.7). If p: X — Y has the right lifting property with respect to those
inclusions of subcomplexes i: C' — D that are f-local equivalences and such that
the size of D Is less than or equal to vy (see Definition 2.4.4), then p has the right
lifting property with respect to all inclusions of subcomplexes that are f-local equiv-
alences.

ProoF. Let ¢: C' — D be an inclusion of a subcomplex that is an f-local
equivalence, and let the solid arrow diagram

c—sx

DT>Y

be commutative; we must show that there exists a dotted arrow making both tri-
angles commute. To do this, we will consider the subcomplexes of D over which
our map can be defined, and use Zorn’s lemma to show that we can define it over
all of D.

Let S be the set of pairs (D, g5) such that

1. Dy is a subcomplex of D containing €', and the inclusion i;: C' = Dj is an
f-local equivalence
2. g, is a function Dy — X such that gs;i; = h and pgs = k|p,.

We define a preorder on S by defining (Dy, g5) < (D¢, g¢) if Dy C Dy and g¢|p, = ¢s.

If $" C Sisachain (i.e., a totally ordered subset of S), let D,, = colim(p, 4.)es' Ds,
and define g, : Dy — X by gy, = colim(p, 4.)es' gs- The universal mapping prop-
erty of the colimit implies that g,%, = h and pg, = k|p,, and Proposition 1.2.15
implies that the map C' — D, is an f-local equivalence. Thus, (Dy,gy) is an el-
ement of S, and so it is an upper bound for S’. Zorn’s lemma now implies that
S has a maximal element (D, gm). We will complete the proof by showing that
D,, = D.
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If Dy, # D, then Proposition 2.4.7 implies that there is a subcomplex K of D
such that K is not contained in D,,, the size of K is less than or equal to v, and the
inclusions K N D,, — K and D,, — D,, UK are both f-local equivalences. Thus,
there is amap gx : K — X such that pgx = k|x and 9x|knp, = 9m|Knb,,, and so
gm and gx combine to define a map g, i : KUD,, — X such that pg,x = k|lxup,,
and gmgri = h. Thus, (K U Dy, gmk) is an element of S strictly greater than
(D, gm). This contradicts (D, gm) being a maximal element of S, and so our
assumption that D,, # D must have been false, and the proof is complete. O

PrOOF OF PrROPOSITION 2.1.4. Let J be a set of representatives of the iso-
morphism classes of inclusions of subcomplexes that are f-local equivalences of
complexes of size less than or equal to v. Proposition 2.4.8, Corollary 12.4.17 and
Lemma 2.4.1 (if Spey = Top(*)) imply that the J-cofibrations are exactly the
cofibrations that are f-local equivalences, and so the proof 1s complete. O
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CHAPTER 3

Localization of model categories

3.1. Introduction

The purpose of a model category is to serve as a presentation of its homotopy
theory (where we loosely define the “homotopy theory” of a model category as
its homotopy category together with the function complexes between its objects).
Thus, a “localization” of a model category should not be a construction that adds
inverses for maps in the underlying category, but rather one that adds inverses
for maps in the homotopy category. If M is a model category and € is a class of
maps in M, a localization of M with respect to € will be a map of model categories
F: M — N such that the images in HoM of the elements of € go to isomorphisms
in HoN and such that F is initial among such maps of model categories. Since
there are two different varieties of maps of model categories, left Quillen functors
and right Quillen functors (see Definition 9.8.1), we will define (in Definition 3.2.1)
two different varieties of localizations of model categories, the left localizations and
the right localizations.

IfF: M — Nis aleft Quillen functor, g: X — Y isamapin M, and [¢]: X =Y
is the image of ¢ in Ho M, then the total left derived functor LF: HoM — HoN
of F (see Definition 9.7.9) takes [g] to the image of F(§) in HoN for some cofibrant
approximation § to g. Thus, if LF[g¢] is to be an isomorphism for every element g¢
of €, then Proposition 9.6.8 and Proposition 9.3.2 imply that F must take every
cofibrant approximation to an element of € into a weak equivalence. Thus, if C
is a class of maps in M, then a left localization of M with respect to C will be a
left Quillen functor that takes cofibrant approximations to elements of € into weak
equivalences, and is initial among such left Quillen functors. Similarly, a right
localization of M with respect to C will be a right Quillen functor that takes fibrant
approximations to elements of C into weak equivalences; and is initial among such
right Quillen functors.

3.2. Localizations of model categories

DEFINITION 3.2.1. Let M be a model category and let C be a class of maps in
M.

1. A left localization of M with respect to C is a model category LeM together
with a left Quillen functor (see Definition 9.8.1) j: M — LeM such that
(a) the total left derived functor Lj: HoM — HoN (see Definition 9.7.9)
of j takes the images in Ho M of the elements of C into isomorphisms
in Ho LeM, and
(b) j is initial among left Quillen functors satisfying condition 1la.
2. A right localization of M with respect to € is a model category ReM together
with a right Quillen functor j: M — ReM such that
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(a) the total right derived functor Rj: HoM — HoN of j takes the
images in HoM of the elements of € into isomorphisms in Ho ReM,
and

(b) j is initial among right Quillen functors satisfying condition 2a.

PrOPOSITION 3.2.2. Let M be a model category and let C be a class of maps
in M. If a (left or right) localization of M with respect to C exists, it is unique up
to a unique isomorphism.

ProOF. The standard argument applies. O

PRrROPOSITION 3.2.3. Let M be a model category, and let C be a class of maps
in M.

1. If F: M — N is a left Quillen functor, then the total left derived functor
LF: HoM — HoXN (see Definition 9.7.9) of F takes the images in HoM
of the elements of C into isomorphisms in HoN if and only if F takes every
cofibrant approximation to an element of € (see Definition 9.1.8) into a weak
equivalence in N.

2. If F: M — N is a right Quillen functor, then the total right derived functor
RF: HoM — HoN of F takes the images in HoM of the elements of € into
isomorphisms in HoN if and only if F takes every fibrant approximation to
an element of C into a weak equivalence in N.

ProoF. We will prove part 1; the proof of part 2 is dual.

If g: X = Y is a map in M, then the total left derived functor of F takes the
image of g in HoM to the image in HoN of F(§) for some cofibrant approximation
g to g (see the proof of Proposition 9.7.6). Since a map in N is a weak equivalence
if and only if its image in Ho XN is an isomorphism (see Proposition 9.6.8), the result
now follows from Proposition 9.3.2. O

COROLLARY 3.2.4. Let M be a model category and let C be a class of maps in
M.

1. A left Quillen functor j: M — LeM is a left localization of M with respect
to C if and only if it takes all cofibrant approximations to elements of C into
weak equivalences, and is initial among such left Quillen functors.

2. A right Quillen functor j: M — ReM is a right localization of M with
respect to C if and only if takes all fibrant approximations to elements of C
into weak equivalences, and is initial mong such right Quillen functors.

Proo¥. This follows from Proposition 3.2.3. O
3.2.5. Bousfield localization.

DEFINITION 3.2.6. Let M be a model category, and let C be a class of maps in
M.

o A left localization j: M — LeM of M with respect to € (see Definition 3.2.1)
will be called a left Bousfield localization if
1. the underlying category of LeM equals that of M and j is the identity
functor,
2. every weak equivalence of M is a weak equivalence of LM,
. every element of C 1s a weak equivalence of LeM, and
4. the class of cofibrations of M equals the class of cofibrations of LeM.

wo
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We will often call a left Bousfield localization of M a localization of M.
e A right localization j: M — ReM of M with respect to C will be called a
right Bousfield localization if
1. the underlying category of ReM equals that of M and j is the identity
functor,
2. every weak equivalence of M is a weak equivalence of LM,
3. every element of C i1s a weak equivalence of ReM, and
4. the class of fibrations of M equals the class of fibrations of ReM.
We will often call a right Bousfield localization of M a colocalization of M.

PrOPOSITION 3.2.7. Let M be a model category, and let C be a class of maps
in M.
1. If j: M — LeM is a left Bousfield localization of M with respect to C, then
(a) the cofibrations and trivial fibrations of LeM equal those of M,
(b) the trivial cofibrations of LeM contain those of M, and
(c) the fibrations of LeM are contained in those of M.
2. If j: M — ReM is a right Bousfield localization of M with respect to C,
then
(a) the fibrations and trivial cofibrations of ReM equal those of M,
(b) the trivial fibrations of ReM contain those of M, and
(c) the cofibrations of ReM are contained in those of M.

Proo¥. This follows from Proposition 8.2.3. O

In Section 3.3, we show that if M is a left proper cellular model category (see
Definition 15.1.1 and Definition 11.1.1) and S is a set of maps in M, then the left
Bousfield localization of M with respect to S exists (see Theorem 3.3.11) and is
itself a left proper cellular model category (see Theorem 3.3.13). In Section 3.4, we
show that if M is a right proper cellular model category, then certain right Bousfield
localizations of M (the S-colocalizations; see Theorem 3.4.9) exist.

3.3. Left Bousfield localization

In this section, we show that if M is a left proper cellular model category and
S 1s a set of maps in M, then a left Bousfield localization of M with respect to S
exists (see Theorem 3.3.11). We begin by showing that if M is a model category, C
is a class of maps in M, and a left Quillen functor takes cofibrant approximations to
elements of € (see Corollary 3.2.4) into weak equivalences, then it takes all C-local
equivalences (see Definition 3.3.2) into weak equivalences (see Proposition 3.3.5).

3.3.1. Structure of a left localization.

DEFINITION 3.3.2. Let M be a model category, and let C be a class of maps in
M.

1. An object W of M is C-local if W is fibrant and, for every element f: A — B
of €, the induced map of homotopy function complexes (see Definition 17.2.4)
f*: map(B, W) — map(A4, W) is a weak equivalence. (Theorem 17.6.6 im-
plies that if this is true for any one homotopy function complex, then it is
true for every homotopy function complex.) If € consists of the single map
f: A — B, then a C-local object will also be called f-local, and if C consists
of the single map from the initial object of M to an object A, then an C-local
object will also be called A-local or A-null.
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2. Amap g: X — Y in M is a C-local equivalence if, for every C-local object
W, the induced map of homotopy function complexes (see Definition 17.2.4)
g*: map(Y, W) — map(X, W) is a weak equivalence. (Theorem 17.6.6 im-

plies that if this is true for any one homotopy function complex, then it

is true for every homotopy function complex.) If € consists of the single
map f: A — B, then a C-local equivalence will also be called an f-local
equivalence, and if C consists of the single map from the initial object of

M to an object A, then a C-local equivalence will also be called an A-local

equivalence.

ProrosITION 3.3.3. If M is a model category and C is a class of maps in M,
then every weak equivalence is a C-local equivalence.

Proor. This follows from Theorem 17.5.2. O

LEMMA 3.3.4. Let M and N be model categories, let C be a class of maps in M,
and let F: M = N :U be a Quillen pair. If F takes every cofibrant approximation
to an element of C into a weak equivalence in N, then U takes every fibrant object
in N into a C-local object in M.

Proor. If f: A — B is an element of € and f: A Bisa cosimplicial
resolution of f in M, then F(f) : F(A) — F(E) is a cosimplicial resolution in N of
F(fo): F(Ao) — F(Eo) (see Proposition 18.6.2). Since fo: 20 — Eo 1s a cofibrant
approximation to f, if W is a fibrant object in N, Theorem 17.5.2 implies that the
map of simplicial sets J\J(F(E), W) — N(F(A), W) is a weak equivalence. Thus,
the map of simplicial sets M(ﬁ, U(W)) — M(z, U(W)) is a weak equivalence, and
so U(W) is C-local. O

ProprosITION 3.3.5. Let M and N be model categories, let C be a class of
maps in M, and let F: M = N :U be a Quillen pair. If F takes every cofibrant
approximation to an element of C into a weak equivalence in N, then F takes every
C-local equivalence between cofibrant objects into a weak equivalence in N.

ProOF. Let g: A — B be a C-local equivalence between cofibrant objects in M.
If W is a fibrant object in N and Wisa simplicial resolution of W in N, then U(‘//‘\/')
is a simplicial resolution of U(W) in M (see Proposition 18.6.2), and so Lemma 3.3.4
implies that the map of simplicial sets ¢g*: M(B, U(‘//‘\f)) — M(A, U(‘//‘\f)) is a weak
equivalence. Thus, the map of simplicial sets F(g)*: N(F(B), ﬁ\/') — M(F(A), ‘//‘\7)
is a weak equivalence, and so Theorem 18.1.6 implies that F(g) is a weak equiva-
lence. O

3.3.6. Existence of left Bousfield localizations.

DEFINITION 3.3.7. Let M be a left proper cellular model category (see Defini-
tion 15.1.1), and let S be a set of maps in M.

1. An S-local weak equivalence is defined to be an S-local equivalence (see
Definition 3.3.2).

2. An S-local cofibration is defined to be a cofibration.

3. An S-local fibration is defined to be a map with the right lifting property (see
Definition 8.2.1) with respect to all maps that are both S-local cofibrations
and S-local weak equivalences. If the map X — * from an object X to
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the terminal object of M is an S-local fibration, then we will say that X is
S-local fibrant.

THEOREM 3.3.8. If M is a left proper cellular model category (see Defini-
tion 11.1.1 and Definition 15.1.1) and S is a set of maps in M, then there is a
model category structure on M (which we call the S-local model category struc-
ture) in which

1. the weak equivalences are the S-local weak equivalences (see Definition 3.3.7),
2. the cofibrations are the S-local cofibrations, and
3. the fibrations are the S-local fibrations.

If M is a simplicial model category, then that simplicial structure gives the S-local
model category the structure of a simplicial model category.

The proof of Theorem 3.3.8 is in Section 4.6.

ProPOSITION 3.3.9. If M is a left proper cellular model category and S' is a set
of maps in M, then an object W of M is S-local if and only if it is a fibrant object
in the S-local model category structure on M (see Theorem 3.3.8).

The proof of Proposition 3.3.9 is in Section 4.6.

ProrosiTION 3.3.10. If M is a left proper cellular model category and S is a
set of maps in M, then the model category structure of Theorem 3.3.8 is a left
Bousfield localization of M with respect to S (see Definition 3.2.1).

The proof of Proposition 3.3.10 is in Section 4.6.

THEOREM 3.3.11. If M is a left proper cellular model category (see Defini-
tion 11.1.1 and Definition 15.1.1) and S is a set of maps in M, then a left Bousfield
localization of M with respect to S exists.

Proo¥. This follows from Proposition 3.3.10. O

DEeFINITION 3.3.12. If M is a left proper cellular model category and S is a set
of maps in M, then the model category structure of Theorem 3.3.8 will be called
the left Bousfield localization of M with respect to S (see Proposition 3.3.10).

THEOREM 3.3.13. If M is a left proper cellular model category and S is a set
of maps in M, then the left Bousfield localization of M with respect to S (see
Definition 3.3.12) is a left proper cellular model category.

The proof of Theorem 3.3.13 is in Section 4.6.

3.3.14. Examples of left proper cellular model categories.

ProPosITION 3.3.15. The categories SS, Top, SS., and Top, are left proper
cellular model categories.

ProrosITION 3.3.16. If M is a left proper cellular model category and C is
a small category, then the diagram category M® is a left proper cellular model
category.

ProrosiTION 3.3.17. If M is a left proper cellular model category and Z is an
object of M, then the overcategory (M| 7) is a left proper cellular model category.
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ProrosiTION 3.3.18. If M is a left proper cellular simplicial model category
and @ is a small simplicial category, then the category M of simplicial diagrams
is a left proper cellular model category.

ProrosiTION 3.3.19. If M is a pointed left proper cellular model category with
an action by pointed simplicial sets, then the category of spectra over M (as in [14])
is a left proper cellular model category.

ProrosiTION 3.3.20. If M is a pointed left proper cellular model category with
an action by pointed simplicial sets, then J. H. Smith’s category of symmetric
spectra over M [52, 36] is a left proper cellular model category.

3.4. Right Bousfield localization
3.4.1. Structure of a right localization.

DEFINITION 3.4.2. Let M be a model category, and let C be a class of objects
in M.

1. Amap g: X = Y is a C-colocal equivalence if for every element A of € the
induced map of homotopy function complexes g, : map(A, X) — map(A4,Y)
is a weak equivalence. (Theorem 17.6.6 implies that if this is true for any
one homotopy function complex, then it is true for every homotopy function
complex.) If € consists of the single object A, then a C-colocal equivalence
will be called an A-colocal equivalence.

2. An object W is C-colocal if W is cofibrant and, for every C-colocal equiva-
lence g: X — Y, the induced map of homotopy function complexes g, : map(W, X) —
map(W,Y) is a weak equivalence. (Theorem 17.6.6 implies that if this is true
for any one homotopy function complex, then it is true for every homotopy
function complex.) If C consists of the single object A, then a C-colocal
object will be called A-colocal.

For a discussion of the relation between our definitions (in the case M = Spc,)
of C-colocal spaces and C-colocal equivalences and earlier definitions (which used
the terms “A-cellular space” and “A-cellular equivalences”), see Remark 5.1.2.

PrOPOSITION 3.4.3. Let M be a model category. If C is a class of objects in
M, then every weak equivalence is a C-colocal equivalence.

Proor. This follows from Theorem 17.5.2. O

LEMMA 3.4.4. Let M be a model category, and let C be a class of objects in M.
If ReM exists, then every cofibrant object in ReM is C-colocal.

ProOOF. Let g: X — Y be a C-colocal equivalence, and let g: X =Y bea
simplicial resolution of g in the original model category structure on M. Since
j: M — ReM is a right Quillen functor, g is also a simplicial resolution of g in
ReM. Thus, if W is a cofibrant obje/cf in ReM, then Theorem 17.5.2 implies that
the map of simplicial sets g, : M(W, X) = M(W, f’) is a weak equivalence, and so
W is C-colocal. O

ProOPOSITION 3.4.5. Let M be a model category, and let C be a class of objects
in M. If ReM exists, then every C-colocal equivalence is a weak equivalence in

ReM.
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Proor. This follows from Lemma 3.4.4 and Theorem 18.1.6. O

REMARK 3.4.6. If M = Spc, a category of unpointed spaces (see Notation 1.1.2),
and A is a non-empty space, then every space X is a retract of X4 (see Defini-
tion 1.1.6), and so an C-colocal equivalence of unpointed spaces must be a weak
equivalence (see Corollary 1.1.9). Thus, to consider the notion of C-colocal equiva-

lence of unpointed spaces would be pointless. (According to E. Dror Farjoun, this
joke is due to W. G. Dwyer.)

3.4.7. Existence of right Bousfield localizations.

DEFINITION 3.4.8. Let M be a right proper cellular model category, and let .S
be a set of objects in M.

1. An S-colocal weak equivalence is defined to be an S-colocal equivalence (see
Definition 3.4.2).

2. An S-colocal fibration is defined to be a fibration.

3. An S-colocal cofibration is defined to be a map with the left lifting property
with respect to all maps that are both S-colocal weak equivalences and S-
colocal fibrations.

THEOREM 3.4.9. Let M be a right proper cellular model category. If S is a set
of objects in M, then there is a model category structure on M (called the S-colocal
model category) in which

1. the weak equivalences are the S-colocal weak equivalences,
2. the fibrations are the S-colocal fibrations, and
3. the cofibrations are the S-colocal cofibrations.

If M is a simplicial model category, then the given simplicial structure on M gives
the S-colocal model category the structure of a simplicial model category.

The proof of Theorem 3.4.9 is in Chapter 5. Theorem 3.4.9 for the category of
pointed topological spaces was first obtained by Nofech [44].

ProrosITION 3.4.10. Let M be a right proper cellular model category. If S is
a set of objects in M, then an object is S-colocal (see Definition 3.4.2) if and only
if it is a cofibrant object in the S-colocal model category structure on M.

Proor. If W is a cofibrant object in the S-colocal model category structure,
then the map # — W has the left lifting property with respect to all maps that are
both fibrations and S-colocal equivalences (where § is the initial object of M). If
g: X = Y is an S-colocal equivalence, let g: X 5Y bea simplicial resolution of
g 1n the original model category structure on M such that g is a Reedy fibration.
E\roposition 18.3.5, Propo/sition 18.3.13, and Proposition 17.3.7 imply that the map
XAl yAR] X oAln] X 9407 is both a fibration and an S-colocal equivalence.
Proposition 18.3.8 now implies that W is S-colocal.

Conversely, assume that W is S-colocal. Proposition 8.2.3 implies that it is suf-
ficient to show that if p: X — Y is both a fibration and an S-colocal equivalence,
then the map ¢ — W has the left lifting property with respect _to p. Proposi-
tion 17.1.12 implies that we can choose a simplicial resolution p: X — Y of p such
that p is a Reedy fibration. Proposition 18.3.5 and Proposition 18.3.9 imply that
the map # — W has the left lifting property with respect to py: 3(\0 — f’o. Since
M is right proper, Proposition 11.1.18 and Proposition 17.1.6 imply that the map
() — W has the left lifting property with respect to p. O
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ProrosiTION 3.4.11. If M is a right proper cellular model category and S is a
set of objects in M, then the model category structure of Theorem 3.4.9 is a right
Bousfield localization of M with respect to the class of S-colocal equivalences.

Proo¥. This follows from Proposition 3.4.3 and Proposition 3.4.5. O

THEOREM 3.4.12. If M is a right proper cellular model category and S' is a set
of objects in M, then the right Bousfield localization of M with respect to the class
of S-colocal equivalences exists.

Proo¥. This follows from Proposition 3.4.11. O

ProPoOsITION 3.4.13. Let M be a right proper cellular model category, and let
S be a set of objects in M. If g: X — Y is a S-colocal equivalence, h: 7 — Y is a
map, at least one of ¢ and h is a fibration, and the square

W—X
kl Jg
Z T> Y
is a pullback, then k is an S-colocal equivalence.
Proo¥. This follows from Proposition 18.3.5 and Proposition 18.5.6. O

ProrosITION 3.4.14. If M is a right proper cellular model category and S is a
set of objects in M, then the right Bousfield localization of M with respect to the
class of S-colocal equivalences is right proper.

Proo¥. This follows from Proposition 3.4.13. O
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CHAPTER 4

Left Bousfield localization

The main purpose of this chapter is to prove Theorem 3.3.8. This is done in
Section 4.6.

Section 4.1 discuses S-localizations of objects in M. Section 4.2 has some tech-
nical results (motivated by the discussion of Section 1.3) needed for the construction
of a functorial cofibrant S-localization in Section 4.3 (see Definition 4.3.2 and The-
orem 4.3.3). Section 4.4 contains some technical results needed for the cardinality
argument in Section 4.5, and the proof of Theorem 3.3.8 is in Section 4.6.

Theorem 4.2.12 might lead one to hope that the factorization of Theorem 4.3.1
would serve as the required factorization into an S-local trivial cofibration followed
by an S-local fibration (see Definition 8.1.2). Unfortunately, Example 4.2.14 shows
that not all S-local trivial cofibrations need be X:S’—coﬁbrations, and so there may
be Kg—injectives that are not S-local fibrations. Thus, we must establish Proposi-
tion 4.5.1, which shows that there is a set Jg of generating trivial cofibrations (see
Definition 13.2.1) for the S-local model category structure on M.

4.1. Localizing objects and maps

DEFINITION 4.1.1. Let M be a model category, and let S be a set of maps in
M.

1. An S-localization of an object X is an S-local object X (see Definition 3.3.2)
together with an S-local equivalence j: X — X. We will sometimes use the
phrase S-localization to refer to the object )A(, without explicitly mentioning
the S-local equivalence j. A cofibrant S-localization of X is an S-localization
in which the S-local equivalence j is also a cofibration.

2. An S-localization of a map g: X — Y 1s an S locahzatlon (X Jx)of X, an
S-localization (Y Jy) of Y, and a map §: X — Y such that the square

X2y

Nt

)?THA/

commutes. We will sometimes use the term S-localizationAto refer to the
map ¢, without explicitly mentioning the S-localizations (X, jx) of X and

(Y, jy) of Y.

LEMMA 4.1.2. Let M be a model category, and let S be a set of maps in M.
If X and Y are fibrant objects and g: X — Y is a weak equivalence, then X is
S-local if and only if Y is S-local.
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60 4. LEFT BOUSFIELD LOCALIZATION

ProoF. If f: A — B is an element of S, then we have a commutative diagram

Map(B, X) —— Map(4, X)

Map(B,Y) —— Map(A4,Y)

in which the vertical maps are weak equivalences (see Theorem 17.5.2). Thus, the
top map is a weak equivalence if and only if the bottom map is a weak equivalence.

O

PrOPOSITION 4.1.3. Let M be a model category, and let S be a set of maps in
M. If X andY are fibrant objects that are weakly equivalent (see Definition 9.5.2),
then X is S-local if and only if Y is S-local.

Proor. This follows from Lemma 4.1.2. O

4.1.4. S-local equivalences.

ProPOSITION 4.1.5. If M is a model category and S is a set of maps in M, then
the class of S-local equivalences satisfies the “two out of three” axiom, i.e., if ¢ and
h are composable maps, and if two of g, h, and hg are S-local equivalences, then
so is the third.

ProoOF. Given maps g: X — Y and h: Y — Z, we can apply a functorial
cofibrant approximation (see Proposition 9.1.2) to g and & to obtain the diagram
~ g
—

L]

in which g, /Nz, and 71§ are cofibrant approximations to ¢, h, and hg, respectively.

SN

N——N

Y

If W is an S local object W is a simplicial resolution of W and two of the maps
g* M(Y W) — M(X W) h* M(Z,W) - MY, W), and (h§)*: M(Z, W) —
M(X W) are weak equivalences, then the third is as well. O

PRrROPOSITION 4.1.6. If M is a model category and S is a set of maps in M, then
a retract (see Definition 8.1.1) of an S-local equivalence is an S-local equivalence.

ProoF. If g: X — Y is an S-local equivalence and h: V' — W is a retract of
g, then we apply the functorial factorization of the maps from the initial object to
each of X, Y, V', and W to obtain cofibrant approximations g: X 5 Y to g and
h: V — W to h such that h is a retract of g. If Z is an S-local object and Zisa
simplicial resolution of Z, then h*: M(W, 2) — M(‘~/, 2) is a retract of the weak
equivalence §*: M(?, 2) — M(f(, 2), and so h* is a weak equivalence. O

ProrosITION 4.1.7. Let M be a simplicial model category, and let S be a set
of mapsin M. If g: X — Y is a cofibration of cofibrant objects, then g is an S-local
equivalence if and only if it has the left lifting property (see Definition 8 2.1) with
respect to the map WAkl _, Wwoall for every simplicial resolution W of every
S-local object W and every n > 0.
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Proo¥. This follows from Proposition 18.3.5 and Proposition 18.3.8. O

PrOPOSITION 4.1.8. Let M be a model category, let S be a set of maps in M,
and let T be a totally ordered set. If W :T'— M is a functor such that, if s,t € T
and s <t, then W, — W, is a cofibration of cofibrant objects that is an S-local
equivalence, then, for every s € 1, the map W, — colim;>, W, is an S-local
equivalence.

Proo¥. This follows from Proposition 4.1.7, Lemma 12.2.20 and Proposi-
tion 12.2.21. O

4.1.9. S-local Whitehead theorems.

THEOREM 4.1.10 (Weak S-local Whitehead theorem). Let M is a model cate-
gory, and let S be a set of mapsin M. If X andY are S-local objects andg: X =Y
is an S-local equivalence, then g is a weak equivalence.

Proo¥. This follows from Proposition 18.1.5. O

THEOREM 4.1.11 (Strong S-local Whitehead theorem). Let M be a model cat-
egory, and let S be a set of maps in M. If X and Y are cofibrant S-local objects
and g: X = Y is an S-local equivalence, then g is a homotopy equivalence.

Proo¥. This follows from Theorem 4.1.10 and Proposition 8.3.26. O
4.1.12. Characterizing S-local objects and S-local equivalences.

THEOREM 4.1.13. Let M be a model category, and let S be a set of maps in M.
If X is afibrant object and j: X — X is an S-localization of X (see Definition4.1.1),
then j is a weak equivalence if and only if X is S-local.

Proor. If X is S-local, then Theorem 4.1.10 implies that j is a weak equiva-
lence. Conversely, if j is a weak equivalence, then Proposition 4.1.3 implies that X

1s S-local. O

THEOREM 4.1.14. Let M be a model category, and let S be a set of maps in
M. Ifg: X =Y is an S-localization of g: X — Y (see Definition 4.1.1), then g is
an S-local equivalence if and only if § is a weak equivalence.

ProoOF. Proposition 3.3.3 and Proposition 4.1.5 imply that ¢ 1s an S-local
equivalence if and only if ¢ is an S-local equivalence. Since X and Y are S-local,
Theorem 4.1.10 and Proposition 3.3.3 imply that ¢ is an S-local equivalence if and
only if it is a weak equivalence. O

If M is a left proper cellular model category (see Definition 15.1.1) and S is
a set of maps in M, then, in Definition 4.3.2, we define a functorial S-localization
(Ls, 7). Theorem 4.1.13 then implies that a fibrant object X is S-local if and only if
the S-localization map j(X): X — LgX is a weak equivalence (see Theorem 4.3.5),
and Theorem 4.1.14 implies that a map g: X — Y is an S-local equivalence if and
only if Lg(g): LgX — LgY is a weak equivalence (see Theorem 4.3.6).

4.2. Horns on S and S-local equivalences

This section contains some technical constructions and results that are needed
for our construction of a natural cofibrant S-localization in Section 4.3. For the
motivation for the definition of a horn on S, see Section 1.3.
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62 4. LEFT BOUSFIELD LOCALIZATION

DEeFINITION 4.2.1. If M is a model category and S is a set of maps in M, then
a horn on S is a map constructed by
1. choosing an element f: A — B of 5,
2. choosing a cosimplicial resolution f: A= B (see Definition 17.1.10) of f
such that f is a Reedy cofibration,
3. choosing an integer n > 0, and then

4. constructing the map A @ A[n]1I ] B ® dA[n] — B ® Aln].

ARAn

PrOPOSITION 4.2.2. If M is a model category and S is a set of maps in M, then
every horn on S is a cofibration.

Proo¥. This follows from Proposition 17.3.13. O

ProPoOSITION 4.2.3. If M is a model category and S is a set of weak equivalences
in M, then every horn on S is a trivial cofibration.

Proo¥. This follows from Proposition 17.1.14 and Proposition 17.3.12. O

DEeFINITION 4.2.4. Let M be a left proper cellular model category with gener-
ating cofibrations I and generating trivial cofibrations J, and let .S be a set of maps
in M.

o A full set of horns on S is aset A(S) of maps obtained by choosing, for every

element f: A — B of S, a cosimplicial resolution f: A= B of f (see Defi-
nition 17.1.10) such that f is a Reedy cofibration (see Proposition 17.1.12)
and letting A(S) be the set

A(S) ={A® AT 3,0, B ©0AIR] = B @ Aln] | (A— B) € S,n > 0}.

We will use the symbol A(S) to denote some full set of horns on S, even
though it depends on the choices of cosimplicial resolutions of the elements

. Zf]i:ll set of augmented S-horns is a set W of maps
A(S) = A(S)UJ
for some full set of horns A(S) on S.
ProPoOsITION 4.2.5. Let M be a left proper cellular model category, and let S
be a set of maps in M. An object X of M is S-local if and only if the map X —

(where * is the terminal object of M) has the right lifting property with respect to
every element of a full set of augmented S-horns (see Definition 4.2.4).

Proo¥. This follows from Proposition 13.2.9, Proposition 18.3.5 and Proposi-
tion 18.3.8. [

PROPOSITION 4.2.6. If M is a left proper cellular model category and S' is a set
of maps in M, then every element of a full set of horns on S (see Definition 4.2.4)
is an S-local equivalence.

Proo¥. This follows from Proposition 18.3.5 and Proposition 18.3.13. O

ProrosITION 4.2.7. If M is a left proper cellular model category with gener-
ating cofibrations I and S is a set of maps in M, then there is a set AS of relative
I-cell complexes with cofibrant domains such that

1. every element of AS is an S-local equivalence, and
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2. an object X of M is S-local if and only if the map X —  (where * is the
terminal object of M) is a AS-injective.

ProoF. Choose a full set of horns on S (see Definition 4.2.4.) Factor each

element ¢: C' = D of A(S) as C' 2 D & D where g 18 a relative I-cell complexes
and p is a trivial fibration (see Corollary 13.2.12). The retract argument (see Prop-
osition 8.2.2) implies that g is a retract of §. Since p and g are S-local equivalences
(see Proposition 3.3.3 and Proposition 4.2.6), Proposition 4.1.5 implies that § is an
S-local equivalence.

Proposition 13.2.14 implies that there is a set J of generating trivial cofibrations
for M such that every element of J is a relative I-cell complexe with cofibrant
domain. We let

KE* = jU {ﬁ}geA(S)~

It remains only to show that condition 2 is satisfied. If the map X — % is a
X:S’—injective, then Proposition 4.2.5 and Lemma 8.2.7 imply that X is S-local.
Conversely, if X is S-local, then X is fibrant and every element of AS is a cofi-
bration between cofibrant objects, and so Proposition 18.3.5, Theorem 17.1.28,
Proposition 17.1.27, and Proposition 18.3.8 imply that the map X — * is a AS-
injective. O

DEeFINITION 4.2.8. If M is a left proper cellular model category and .S is a set
of maps in M, then a relative AS-cell compler is a map that can be constructed as
a transfinite composition (see Definition 12.2.2) of pushouts (see Definition 8.2.10)
of elements of AS (see Proposition 4.2.7).

ProPoOSITION 4.2.9. Let M be a left proper cellular model category, and let S
be a set of maps in M. An object X of M is S-local if and only if the map X —
(where * is the terminal object of M) has the right lifting property with respect to

all relative AS-cell complexes.

Proo¥. This follows from Proposition 4.2.7, Lemma 8.2.5, and Lemma 12.2.16.
O

4.2.10. Regular AS-cofibrations and S-local equivalences. The main
result of this section is Theorem 4.2.12, which asserts that if M is a left proper
cellular model category and S is a set of maps in M, then every relative AS-cell
complexe is an S-local equivalence.

PrOPOSITION 4.2.11. Let M be a left proper cellular model category, and let
S be a set of maps in M. If g: C' — D is a cofibration that is also an S-local
equivalence, then any pushout of g is also an S-local equivalence.

Proo¥. This follows from Proposition 4.6.4. O

THEOREM 4.2.12. If M is a left proper cellular model category and S is a set
of maps in M, then every relative AS-cell complex (see Definition 4.2.8) is both a
cofibration and an S-local equivalence.
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PrOOF. Since every element of AS (see Proposition 4.2.7) is a cofibration and
cofibrations are closed under both pushouts and transfinite compositions (see Prop-
osition 12.2.19), every relative AS-cell complex is a cofibration. Thus, it remains
only to show that a relative AS-cell complex i1s an S-local equivalence.

Proposition 4.2.7 implies that every element of AS is an S-local equivalence,
and so Proposition 4.2.11 implies that every pushout of an element of AS is an
S-local equivalence. Thus, it remains only to show that a transfinite composition
of pushouts of elements of AS is an S-local equivalence.

If A 1s an ordinal and

Xo=Xi2Xo—> -5 Xg— - (B <)

is a A-sequence of pushouts of elements of /ﬁ, then Proposition 18.5.3 implies that
we can find a A-sequence of cofibrations together with a map of A-sequences

5(:0 )?1 5(:2 5(:@
X X, X, X

such that each vertical map )~(@ — X is a cofibrant approximation to Xz and
colimg«x )?@ — colimgex X 1s a cofibrant approximation to colimgey Xg. If
W is an S-local object and W is a simplicial resolution of W, then, since each
Xg — Xpyq1 1s an S-local equivalence and each )?@ — )~(@+1 is a cofibration,
each M()?@_H , ‘//‘\7) — M()?@, ‘//‘\7) is a trivial fibration of simplicial sets (see Theo-
rem 18.3.7). Thus,

M(Xo, W) e M(X1, W) = M(X2, W) 4= - = M(X5, W) = -

is a tower of trivial fibrations of simplicial sets, and so the projection limg<x M(f(@, ‘//‘\7) —
M(Xo, W) is a_ weak equivalence. Since M(colimgey Xg, W) is isomorphic to

limg < M(X@, ) this implies that the composition Xy — colimgey Xp is an
S-local equivalence. O

PrROPOSITION 4.2.13. Let M be a Ieft proper cellular model category, and let
S be a set of maps in M. If_] X — X is a relative AS-cell complex and X isa
AS- -injective, then the pair (X J) is a cofibrant S-localization of X.

Proo¥. This follows from Theorem 4.2.12 and Proposition 4.2.7. O

Theorem 4.2.12 and Proposition 4.1.6 imply that every AS-cofibration is an
S-local equivalence. The following example (due to A. K. Bousfield) shows that,
among the cofibrations that are S-local equivalences, there are maps that are not

AS-cofibrations.

ExAMPLE 4.2.14. Let M = Top,, and let f: A — B be the inclusion S —
D"*1. The path space fibration p: PK(Z,n) — K(Z,n) is an f-injective (see Defi-
nition 1.4.2), and so every f-cofibration has the homotopy left lifting property with
respect to p (see Definition 10.3.2). The cofibration * — S™ does not have the
homotopy left lifting property with respect to p, and so it is not an f-cofibration.
However, since both the composition * — S? — D"*! and f itself are f-local
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equivalences (see Proposition 3.3.3), the “two out of three” property of weak equiv-
alences implies that the inclusion ¥ — S™ is an f-local equivalence. Thus, * — S”
is both a cofibration and an f-local equivalence, but it is not an f-cofibration.

4.3. A functorial localization

THEOREM 4.3.1. If M is a left proper cellular model category and S is a set of
maps in M, then there is a natural factorization of every map X — Y in M as

XHEs By
in which j is a relative AS-cell complex (see Definition 4.2.8) and p is a Kg—injective.

Proor. Proposition 4.2.7 and Theorem 15.4.3 imply that the domains of the
elements of AS are small relative to the subcategory of relative AS-cell complexes,
and so Lemma 12.3.6 implies that there is a cardinal « such that the domain of every

element of AS is x-small relative to the subcategory of relative AS-cell complexes.
We let A = Succ(k) (see Definition 12.1.11), so that A is a regular cardinal (see
Proposition 12.1.15). The result now follows from Corollary 12.4.16. O

DEFINITION 4.3.2. Let M be a left proper cellular model category, and let .S
be a set of maps in M. The S-localization of an object X is the object LgX
obtained by applying the factorization of Theorem 4.3.1 to the map X — # (where
* is the terminal object of M). This factorization defines a natural transformation

j: 1 = Lg such that j(X): X — LsX is arelative AS-cell complex for every object
X of M.

THEOREM 4.3.3. If M is a left proper cellular model category and S is a set
of maps in M, then, for every object X, the S-localization j(X): X — LgX (see
Definition 4.3.2) is a cofibrant S-localization of X.

Proo¥. This follows from Proposition 4.2.13. O

COROLLARY 4.3.4. If M is a left proper cellular model category and S is a set
of maps in M, then every object has an S-localization.

Proor. This follows from Theorem 4.3.3. O

THEOREM 4.3.5. Let M be a left proper cellular model category, and let S be
a set of maps in M. If X is a fibrant object, then X is S-local if and only if the
S-localization map j(X): X — LgX (see Definition 4.3.2) is a weak equivalence.

Proor. This follows from Theorem 4.1.13. O

THEOREM 4.3.6. Let M be a left proper cellular model category, and let S be
a set of maps in M. The map g: X — Y is an S-local equivalence if and only if its
S-localization Lg(g): LsX — LgY (see Definition 4.3.2) is a weak equivalence.

Proor. This follows from Theorem 4.1.14. O

4.4. Localization of subcomplexes

This section contains some technical results on the S-localization (see Defini-
tion 4.3.2) needed for the cardinality argument of Section 4.5.
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ProrosiTION 4.4.1. Let M be a left proper cellular model category, and let S
be a set of maps in M. If g: X — Y is the inclusion of a subcomplex, then so is
Ls(g9): L¢X — LgY (see Definition 4.3.2).

Proo¥. This follows from Proposition 15.4.6. O

ProPosITION 4.4.2. Let M be a left proper cellular model category, and let S
be a set of maps in M. If g: X — Y 1is the inclusion of a subcomplex, then it is an
S-local equivalence if and only if Lg(g): LgX — LgY is the inclusion of a strong
deformation retract.

ProorF. If Ls(g) is the inclusion of a strong deformation retract, then it is a
weak equivalence, and so Theorem 4.3.6 implies that g 1s an S-local equivalence.

Conversely, if g is an S-local equivalence, then Theorem 4.3.6 and Proposi-
tion 4.4.1 imply that Lg(g) is a trivial cofibration of fibrant objects, and so Corol-
lary 10.4.20 implies that it is the inclusion of a strong deformation retract. O

REMARK 4.4.3. If we take S to be the empty set, then LsX is a functorial
fibrant approximation to X (see Definition 9.1.1). In this case, Proposition 4.4.1
asserts that if W is a subcomplex of X, then this fibrant approximation to W is a
subcomplex of this fibrant approximation to X.

PrOPOSITION 4.4.4. Let M be a left proper cellular model category, and let
S be a set of maps in M. If X is a cell complex and Wy C Wy C Wo C -+ C
Wsg C -+ (8 < A) is a A-sequence of subcomplexes (see Remark 12.5.7) of X
(where A is the ordinal chosen in the proof of Theorem 4.3.1), then the natural
map colimgey LsWg — Lg colimg<x Wg is an isomorphism.

ProOOF. Proposition 4.4.1 implies that the map is an isomorphism onto a sub-
complex; it remains only to show that every AS-cell of Lg colimg« W is contained
in some LsWj. We will do this by a transfinite induction on the presentation ordinal
of the AS-cell. .

Since there are no AS-cells of presentation ordinal equal to a limit ordinal,
we let v be an ordinal such that v + 1 < A, and we assume that the assertion is
true for all AS-cells of presentation ordinal at most . This assumption implies
that the vy-skeleton of Ls colimg<x W is isomorphic to colimg« ((LS W@)V). Thus,
the y-skeleta of the LgWjp form a A-sequence whose colimit is the vy-skeleton of
Lgcolimgey Wg. If e is a AS-cell of Lg colimg<x Wy of presentation ordinal y + 1,
then the attaching map of e must factor through (LsW;g)” for some 8 < A, and so
e is contained in LgW3. O

4.5. The Bousfield-Smith cardinality argument

The purpose of this section is to prove the following proposition, which will be
used in Section 4.6 to prove Theorem 3.3.8.

ProrosITION 4.5.1. If M is a left proper cellular model category and S' is a set
of maps in M, then there is a set Jg of inclusions of cell complexes such that

1. every element of Jg is an S-local equivalence, and
2. the class of Jg-cofibrations (see Definition 12.4.1) equals the class of cofi-
brations that are also S-local equivalences.
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The set Jg will serve as our set of generating trivial cofibrations (see Defini-
tion 13.2.1) for the S-local model category structure on M (see Theorem 3.3.8 and
Section 4.6).

The proof of Proposition 4.5.1 is at the end of this section (on page 69). We
will prove Proposition 4.5.1 by showing that there is a set Jg of cofibrations that
are S-local equivalences such that every cofibration that is an S-local equivalence
has the left lifting property (see Definition 8.2.1) with respect to every Jg-injective.
Proposition 4.5.1 will then follow from Corollary 12.4.17.

We will find the set Jg by showing (in Proposition 4.5.6) that there is a cardinal
7 (see Definition 4.5.3) such that, if a map has the right lifting property with respect
to all inclusions of cell complexes that are S-local equivalences between complexes
of size at most 7, then it has the right lifting property with respect to all cofibrations
that are S-local equivalences. We will then let Jg be a set of representatives of the
isomorphism classes of of these “small enough” inclusions of cell complexes that are
S-local equivalences.

We begin with the following lemma, which implies that it is sufficient to find
a set Jg such that the Jg-injectives have the right lifting property with respect to
all inclusions of cell complexes that are S-local equivalences.

LEMMA 4.5.2. Let M be a left proper cellular model category, and let S be a set
of mapsin M. If p: E — B is a fibration with the right lifting property with respect
to all inclusions of cell complexes that are S-local equivalences, then it has the right
lifting property with respect to all cofibrations that are S-local equivalences.

ProOOF. Let g: X — Y be a cofibration that is an S-local equivalence. Propo-
sition 13.2.16 implies that there is a cofibrant approximation (see Definition 9.1.8)
g to g such that g is an inclusion of cell complexes. Proposition 3.3.3 and Propo-
sition 4.1.5 imply that § is an S-local equivalence, and so the lemma now follows
from Proposition 11.1.18. O

DEFINITION 4.5.3. Let M be a left proper cellular model category, and let .S
be a set of maps in M. If ¢ denotes the cardinal of Definition 15.1.1, 1 denotes
a cardinal such that the domain of every element of I is n-compact (see Proposi-
tion 13.4.6), A denotes the cardinal selected in the proof of Theorem 4.3.1, p denotes
the cardinal described in Definition 15.5.4, and « denotes the cardinal described in

Proposition 15.5.3 for the set Kg, then we let 4 denote the cardinal v = onApk.

LEMMA 4.5.4. Let M be a left proper cellular model category, and let S be a
set of maps in M. If X is a cell complex of size at most v (see Definition 4.5.3),
then LgX has size at most .

Proo¥. This follows from Proposition 15.5.3. O

The following proposition will be used in Proposition 4.5.6 to extend a map over
an arbitrary inclusion of a subcomplex that is an S-local equivalence by extending
it over a subcomplex of size at most 7.

PrOPOSITION 4.5.5. Let M be a left proper cellular model category, let S be a
set of maps in M, and let D be a cell complex. If i: C — D is the inclusion of a
proper subcomplex and an S-local equivalence, then there is a subcomplex K of D
such that

1. the subcomplex K is not contained in the subcomplex C,
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2. the size of K is at most vy (see Definition 4.5.3), and
3. the inclusions K N C'— K (see Theorem 15.2.6) and C' — C'U K are both
S-local equivalences.

ProoOF. Since i: C'— D is an inclusion of a subcomplex and an S-local equiv-
alence, Proposition 4.4.2 implies that Lg(i): LgC — LgD is the inclusion of a
deformation retract. Thus, there i1s a retraction r: LgD — LgC', and Proposi-
tion 8.3.16 implies that we can choose a homotopy R: CylM(LSD) — LgD (see
Definition 15.5.4) from the identity map of LgD to Lg(é) o r.

We will show that there exists a subcomplex K of D, of size at most v, such
that

1. K 1s not contained in C',

2. Rlgy (1, k) is a deformation retraction of Ls K onto Lg(K N ('), and

3. R|Cy1M(LS(CuK)) is a deformation retraction of Lg(C'U K) onto LgC'.
We will do this by constructing a A-sequence Ko C Ky C Ko C --- C Kg C ---
(8 < A) of subcomplexes of D (where A is the ordinal selected in the proof of
Theorem 4.3.1) such that, for every 8 < A,

1. K3 has size at most v,
2. Rlcy 1,5k, factors through the subcomplex LsKgi1 of LsD (see Propo-
sition 4.4.1),

and such that no Kz is contained in C'. If we then let K = U@<>\ Kg, then Prop-
osition 4.4.4 will imply that LsK ~ colimg<y LsKz. Thus, R|Cy1M(LSK) factors
through LsK, r|Lsx factors through (LgK) N (LsC) (see Theorem 15.2.6 and
Proposition 15.2.3), and R|Cy1M(LSK) is a deformation retraction of LgK onto
(LSI() N (LSC)

We begin by choosing a cell of D that isn’t contained in C'. Since the domains
of the elements of I are v-compact, we can choose a subcomplex Ky of D, of size
at most v, through which the inclusion of that cell factors.

For successor ordinals, suppose that 3+1 < =, and that we’ve constructed K.
Lemma 4.5.4 and Proposition 15.5.5 imply that CylM(LgKg) has size at most =,
and so Definition 15.1.1 implies that R|Cy1M(LSKﬂ) factors through a subcomplex of
LgD of size at most oy = 7. The zero skeleton of this subcomplex is a subcomplex
Zg of D, of size at most v, such that R|Cy1M(LSKﬂ) factors through LsZ5. We let
Kgy1 = Kg U Zg. It is clear that Kgy, has the properties required of it, and so
the proof is complete. O

PrOPOSITION 4.5.6. Let M be a left proper cellular model category, and let S
be a set of maps in M. If p: X — Y has the right lifting property with respect to
those inclusions of subcomplexes i: C' — D that are S-local equivalences and such
that the size of D is at most v (see Definition 4.5.3), then p has the right lifting
property with respect to all inclusions of subcomplexes that are S-local equivalences.

ProoOF. Let ¢: C' — D be an inclusion of a subcomplex that is an S-local
equivalence, and let the solid arrow diagram

c—lsx

DT>Y
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be commutative; we must show that there exists a dotted arrow making both tri-
angles commute. To do this, we will consider the subcomplexes of D over which
our map can be defined, and use Zorn’s lemma to show that it can be defined over
all of D.

Let T be the set of pairs (D, g¢) such that

1. Dy is a subcomplex of D containing C' such that the inclusion ¢ : C' — D,
is an S-local equivalence, and
2. g; is a function Dy — X such that g;i; = h and pg; = k|p,.

We define a preorder on T by defining (Dy, ¢:) < (Dy, gu) if Dy C Dy, and gy|p, =
gt If T" C T'is achain (i.e., a totally ordered subset of T'), let Dy, = colim(p, 4,)e7+ Dt,
and define g, : Dy, — X by gy = colimp, 4,)e7 g:- The universal mapping property
of the colimit implies that gyi, = h and pg, = k|p,, and Proposition 4.1.8 implies
that the map C' — Dy, is an S-local equivalence. Thus, (Dy,gy) is an element of
T, and so it is an upper bound for 7. Zorn’s lemma now implies that 7" has a
maximal element (D, gm). We will complete the proof by showing that D, = D.
If Dy, # D, then Proposition 4.5.5 implies that there is a subcomplex K of D
such that K is not contained in D,,, the size of K is at most 7, and the inclusions
KnD,, - K and D,, — D,, UK are both S-local equivalences. Thus, there is a
map gx : K — X such that pgx = k|x and gx|xnp,, = 9m|KnD,,, and so g, and
gk combine to define a map gmg : K U D, — X such that pg,x = k|kup,, and
gmi i = h. Thus, (KU Dy, gmk) is an element of T strictly greater than (Dy,, ¢m).
This contradicts (Dy,, gm) being a maximal element of 7', and so our assumption
that Dy, # D must have been false, and the proof is complete. O

PrOOF OF PrROPOSITION 4.5.1. Let Jg be a set of representatives of the iso-
morphism classes of inclusions of subcomplexes that are S-local equivalences of
complexes of size at most v (see Definition 4.5.3). Proposition 4.5.6, Lemma 4.5.2,
and Corollary 12.4.17 imply that the Jg-cofibrations are exactly the cofibrations
that are S-local equivalences, and so the proof is complete. O

4.6. Completion of the proofs

ProoF oF THEOREM 3.3.8. We begin by using Theorem 13.3.1 to show that
there is a cofibrantly generated model category structure on M with weak equiva-
lences, cofibrations, and fibrations as described in the statement of Theorem 3.3.8.

Proposition 4.1.5 implies that the class of S-local equivalences satisfies the “two
out of three” axiom, and Proposition 4.1.6 implies that it is closed under retracts.

Let Js be the set of maps provided by Proposition 4.5.1, and let [ be the
set of generating cofibrations of the original cofibrantly generated model category
structure on M. Condition 1 of Theorem 13.3.1 is thus satisfied for I and, since
every element of Jg has a cofibrant domain, Theorem 15.4.3 implies that condition 1
of Theorem 13.3.1 is satisfied for J.

The subcategory of I-cofibrations is the subcategory of cofibrations in the given
model category structure in M, and the I-injectives are the trivial fibrations in that
model category. Thus, Proposition 4.5.1 implies that condition 2 of Theorem 13.3.1
1s satisfied.

Since the Jg-cofibrations are a subcategory of the [I-cofibrations, every I-
injective must be a Jg-injective. Proposition 3.3.3 implies that every Jg-injective
i1s an S-local equivalence, and so condition 3 is satisfied.
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Proposition 4.5.1 implies that condition 4a of Theorem 13.3.1 is satisfied, and
so Theorem 13.3.1 now implies that we have a model category.

If M is a simplicial model category, we note that, since the simplicial structure
is the given one, axiom M6 of Definition 10.1.2 holds because it does so in the given
simplicial model category structure on M. For axiom M7 of Definition 10.1.2, we
note that the class of S-local cofibrations equals the given class of cofibrations and
the class of S-local fibrations is contained in the given class of fibrations. Thus,
the first requirement of axiom M7 is clear. In the case that the map p is an S-local
equivalence, the rest of axiom M7 follows from the fact that, since the class of S-
local cofibrations equals the given class of cofibrations, the class of S-local trivial
fibrations equals the given class of trivial fibrations (see Proposition 8.2.3).

In the case that the map ¢ 1s an S-local equivalence, we can choose a cofibrant
approximation?: A — Btoisuch thatiisa cofibration, and Proposition 18.3.4 and
Proposition 18.3.6 imply that (z, p) is a homotopy orthogonal pair. Example 17.1.30,
Proposition 18.3.13, and Proposition 18.3.9 imply that the map A ® Aln] HZ@@A[n]

B® OA[n] — B® A[n] has the left lifting property with respect to p for every
n > 0. Thus, 7: A — B has the left lifting property with respect to the fibration
XAl 5 yARD sy oy X2 for every n > 0 (see Lemma 10.3.6). Since M is
left proper, ¢:: A — B also has the left lifting property with respect to the map
XAl 5 yall] Xy oALn] X080 for every n > 0, and so our result follows from
Lemma 10.3.6. O

LEMMA 4.6.1. Let M and N be model categories and let F: M = N :U be a
Quillen pair. If g: A — B is a map of cofibrant objects in M and h: C' = D is a
horn on g (see Definition 4.2.1), then F(h) is a horn on F(g).

ProOOF. Since the left adjoint F commutes with colimits, this follows from

Corollary 18.6.3. O

PrOPOSITION 4.6.2. Let M be a left proper cellular model category and let .S
be a set of maps in M. If N is a model category and F: M — N is a left Quillen
functor that takes every cofibrant approximation to an element of S into a weak
equivalence in N, then F is a left Quillen functor when considered as a functor

LsM — N.

ProOOF. Since the underlying category of LsM equals that of M, F has a right
adjoint whether we consider it to be a functor F: M — N or a functor F: Lg¢M — N.
Thus, it remains only to show that F: LM — N preserves both cofibrations and
trivial cofibrations. Since the class of cofibrations of LsM equals that of M, we
need only consider the trivial cofibrations of LgM.

If g: A — B s a trivial cofibration of LsM, then ¢ is a cofibration in M such
that Ls(g): LsA — LsB is a weak equivalence in M (see Theorem 4.3.6). Since
g is a cofibration, so is F(g), and so it remains only to show that F(g) is a weak
equivalence. Since the natural S-localization Lg: M — M preserves cofibrations,
Ls(g) is actually a trivial cofibration in M, and so FLg(g) is a trivial cofibration
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in N. Thus, we have the diagram in N

Fj(A)
FA——FLsA

F(g)l JFLs(g)

FB W FLsB
in which FLg(g) is a weak equivalence. Since j(A): A — LgA is a transfinite com-
position of pushouts of horns on S, and the left adjoint F commutes with transfinite
compositions and pushouts, Fj(A) is a transfinite composition of pushouts of horns
on 5. Since F takes every cofibrant approximation to an element of S into a weak
equivalence in N, Fj(A) is a transfinite composition of pushouts of horns on weak
equivalences in N (see Lemma 4.6.1 and Proposition 4.2.3), and so Fj(A4) is a weak
equivalence in N. Similarly, Fj(B) is a weak equivalence in N, and so F(g) is a
weak equivalence in N. O

THEOREM 4.6.3. Let M and N be left proper cellular model categories and let
F: M = N:U be a Quillen pair.
1. If S is a set of maps in M, then (F,U) is also a Quillen pair when considered
as functors F: LsM = LggN :U between the localizations of M and N.
2. If (F,U) is a pair of Quillen equivalences, then (F,U) is also a pair of Quillen
equivalences when considered as functors F: LM = LpgN :U between the
localizations of M and N.

PrOOF. Proposition 4.6.2 implies that the composition M LN SN LrsN is
a left Quillen functor when considered as a functor LgM — LpgN, which proves
part 1.

For part 2, we must show that if X 1s cofibrant in LgM and Y is fibrant in
LrsN, then a map g: X — UY in LgM is an S-local equivalence if and only if
the corresponding map g': FX — Y in LpgN is an FS-local equivalence. Given

such a map g, we factor it in M as X 2 ¥ £ UY where h is a cofibration in
M and k is a trivial fibration in M. Both X and Y are cofibrant, and since % is
a weak equivalence in M, ¢ is an S-local equivalence if and only if A is an S-local

equivalence. The corresponding factorization of ¢! in N is FX I vy k—ﬁ> Y, and
since (F,U) is a pair of Quillen equivalences between M and N, the map k' is a
weak equivalence in N. Thus, both FX and FY are cofibrant, and ¢* is an FS-local
equivalence if and only if Fh 1s an FS-local equivalence. It remains only to show
that A is an S-local equivalence if and only if FA is an FS-local equivalence.

The map Fh i1s an FS-local equivalence if and only if for every FS-local ob-
ject W in N and every simplicial resolution W of W, the map of simplicial sets
N(FY/, ‘//‘\7) - N(FX, ‘//‘\7) is a weak equivalence. This map is isomorphic to the map
M(Y/,U‘//‘\/') — M(X,U‘//‘\/'), and so it is now sufficient to show that every S-local
object Z of M is weakly equivalent to an object of the form UW for some FS-local
object W of N. Since a fibrant object W in N i1s FS-local if and only if UW is
S-local, 1t is sufficient to show that every S-local object Z of M is weakly equivalent
to an object of the form UW for some fibrant object W in N. Given such an object
7, we can choose a trivial fibration 7/ — Z in M with Z’ cofibrant, and then choose
a trivial cofibration in N FZ' — W with W fibrant. Since 7’ is cofibrant and W
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is fibrant, the corresponding map 7/ — UW is a weak equivalence, and so we have
the diagram of weak equivalences Z < 7' — UW. O

ProoOF oF PrROPOSITION 3.3.9. If W is S-local fibrant (see Definition 3.3.7),
then the map W — « (where # is the terminal object of M) has the right lifting
property with respect to all maps that are both cofibrations and S-local equiva-
lences. If f: A — B is an element of S and f: A—>Bisa cosimplicial resolution
of f (in the original model category structure on M) such that f is a Reedy cofi-
bration, then for every n > 0 the map A @ A[n] Uz60a0 B © dA[n] — B © Aln]
is an S-local trivial cofibration (see Proposition 18.3.5, Proposition 18.3.13, and
Proposition 17.3.7), and so Proposition 18.3.8 implies that W is S-local.

Conversely, assume that W is S-local. Proposition 8.2.3 implies that it 1s suffi-
cient to show that if i: A — B is both a cofibration and an S-local equivalence, then
the map W — # has the right lifting property with respect to ¢. Proposition 17.1.12
implies that we can choose a cosimplicial resolution 7: A — B of i such that 7 is a
Reedy cofibration. Proposition 18.3.5 and Proposition 18.3.9 imply that the map
W — # has the right lifting property with respect to °: A" — B°. Since M is left
proper, Proposition 11.1.18 and Proposition 17.1.6 now imply that the map W —
has the right lifting property with respect to i. O

Proor or ProrosiTioN 3.3.10. Fill this in!! O

ProPOSITION 4.6.4. Let M be a left proper cellular model category, and let S
be a set of mapsin M. If g: A — B is an S-local equivalence, h: A — X is a map,
at least one of ¢ and h is a cofibration, and the square

A x
9J lk
B——Y
is a pushout, then k is an S-local equivalence.
Proo¥. This follows from Proposition 18.3.5 and Proposition 18.5.5. O

COROLLARY 4.6.5. If M is a left proper cellular model category and S is a
set of maps in M, then the left Bousfield localization of M with respect to S (see
Definition 3.3.12) is left proper.

Proo¥. This follows from Proposition 4.6.4. O

ProoOF oF THEOREM 3.3.13. The proof of Theorem 3.3.8 constructed the local-
ization as a cofibrantly generated model category with the same set of generating
cofibrations as in M and a set of inclusions of cell complexes as generating trivial
cofibrations, and so most of the conditions are clear. Finally, Corollary 4.6.5 implies
that the localization 1s left proper. O
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CHAPTER 5

Right Bousfield localization

Warning: This chapter is in the midst of serious revision.
The main purpose of this chapter is to prove Theorem 3.4.9. This is done in
Section 5.5. We begin by discussing S-colocalizations of objects and maps in M.

5.1. Colocalizing objects and maps

DEFINITION 5.1.1. Let M be a right proper cellular model category, and let .S
be a set of objects in M.

1. A S-colocalization of an object X is an S-colocal object X together with
an S-colocal equivalence j: X — X. We will sometimes use the phrase
S-colocalization to refer to the object )A(, without explicitly mentioning the
S-colocal equivalence j. A fibrant S-colocalization of X is an S-colocalization
in which the S-colocal equivalence is also a fibration.

2. A S-colocalization of a map g: X — Y is a S-colocalization ()?,jx) of X,
an S-colocalization (17, Jy) of Y, and a map g: X — Y such that the square

g ~

X—Y
le ljy
XT>Y

commutes. We will sometimes use the term S-colocalization to refer to the
map ¢, without explicitly mentioning the S-colocalizations (X, jx) of X and
(YV,jy) of Y.

We construct S-colocalizations in Definition 5.5.3.

REMARK 5.1.2. Earlier work on colocalization was exclusively in a category of
pointed spaces ([19, 20, 23]), and was called cellularization. Given a pointed space
A, an A-cellular equivalence of pointed spaces was defined to be amap g: X — Y
for which the induced map g.: Map(A4, X) — Map(A,Y) is a weak equivalence,
and the class of A-cellular spaces was defined to be the smallest class of cofibrant
spaces containing A and closed under homotopy colimits and weak equivalences.
Since this earlier work considered only the subcategory of fibrant objects (or worked
entirely in the category of topological spaces, in which every object is fibrant), this
earlier definition of an A-cellular equivalence coincides with our definition of an
A-colocal equivalence (see Example 17.2.3). We will show in Theorem 6.6.4 that
this earlier definition of an A-cellular space also coincides with our definition of an
A-colocal space.
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5.2. S-colocal equivalences

ProPOSITION 5.2.1. Let M be a right proper cellular model category. If S is a
set of objects in M, then the class of S-colocal equivalences is closed under retracts,
1.e., if the map g is a retract of an S-colocal equivalence h, then g is an S-colocal
equivalence.

Proo¥F. If g is a retract of h, then we have a commutative diagram

(5.2.2) X w2 x

in which pxix = 1x and pyiy = ly. If we apply a functorial fibrant approximation
to this diagram (see Proposition 9.1.2), we obtain the diagram

Px
—

<)
;
=)

R e

=
J =

@
%
Ny ——

3,
<

iy

in which pxix = 1 and pytly = lg, and the objects and maps are fibrant
approximations to those in Diagram 5.2.2. If A is a cosimplicial resolution of
an element of S, then the map M(A, X) - M(A,Y) is a retract of the map

M(A, /W) — M(A, 2), and so the proposition follows. O

PrOPOSITION 5.2.3. Let M be a right proper cellular model category. If S is a
set of objects in M, then the class of S-colocal equivalences satisfies the “two out
of three” axiom, i.e., if ¢ and h are composable maps, and if two of g, h, and hg
are S-colocal equivalences, then so is the third.

ProoOF. Given maps g: X — Y and h: Y — Z, we can apply a functorial
fibrant approximation (see Proposition 9.1.2) to obtain the diagram

XL>
)?T

in which g, h, and hg are fibrant approximations to g, h, and hg, respectively. If

< ——
Ny +——IN

h
—
—

h

A is a cosimplicial resolution of an element of S, then two of the maps

G M(A, X) > M(A,Y)
he: M(A,Y) — M(A, 2)
(hg)s: M(A, X) = M(A, 2)
are weak equivalences, and so the third 1s as well. O
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5.2.4. S-colocal Whitehead theorems.

THEOREM 5.2.5 (S-colocal weak Whitehead theorem). Let M be a right proper
cellular model category. If S is a set of objects in M and g: X — Y is an S-colocal
equivalence between S-colocal objects, then g is a weak equivalence.

Proo¥. This follows from Proposition 18.1.5. O

THEOREM 5.2.6 (S-colocal strong Whitehead theorem). Let M be a right proper
cellular model category. If S is a set of objects in M and g: X — Y is an S-colocal
equivalence between fibrant S-colocal objects, then g is a simplicial homotopy equiv-
alence.

Proo¥. This follows from Theorem 5.2.5 and Proposition 8.3.26. O

5.2.7. Characterizing S-colocal objects and S-colocal equivalences.

PrOPOSITION 5.2.8. Let M be a right proper cellular model category, and let
S be a set of objects in M. If (' and D are cofibrant objects and h: C — D is a
weak equivalence, then C' is S-colocal if and only if D is S-colocal.

ProoF. If g: X — Y is an S-colocal equivalence, then we have the commuta-
tive diagram

map(D, X) —— map(D,Y)

map(C, X) —— map(C,Y)

in which the vertical maps are weak equivalences (see Theorem 17.5.2). Thus, the
top map is a weak equivalence if and only if the bottom map is a weak equivalence.

O

THEOREM 5.2.9. Let M be a right proper cellular model category, and let S be
a set of objects in M. If X is cofibrant and j: X — X is an S-colocalization of X
(see Definition 5.1.1), then j is a weak equivalence if and only if X is S-colocal.

ProoF. If X is S-colocal, then Theorem 5.2.5 implies that j is a weak equiv-
alence. Conversely, if j is a weak equivalence, then Proposition 5.2.8 implies that

X 1s S-colocal. O

THEOREM 5.2.10. Let M be a right proper cellular model category, and let
S be a set of objects in M. If g: X — Y is an S-colocalization of g: X =- Y
(see Definition 5.1.1), then g¢ is an S-colocal equivalence if and only if § is a weak
equivalence.

PrOOF. Proposition 5.2.3 implies that ¢ 1s an S-colocal equivalence if and only
if g 1s an S-colocal equivalence. Proposition 3.4.3 and Theorem 5.2.5 imply that g
i1s an S-colocal equivalence if and only if it is a weak equivalence. O

5.3. Regular A(S)-cofibrations and A(S)-injectives

DEFINITION 5.3.1. Let M be a right proper cellular model category with gen-
erating cofibrations I and generating trivial cofibrations J, and let S be a set of
objects in M.
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o A full set of horns on S is a set A(S) of maps obtained by choosing a
cosimplicial resolution A of every element A of S and letting
A(S) = {A®09A[] - A® An] | A € S,n > 0}.
(This is exactly a full set of horns on the maps from the initial object of M
to the elements of S; see Definition 4.2.4.) If S consists of the single object
A, then A(S) is the set of maps
AMAY = {A®0A[n] » A® Aln] | n > 0},
and 1t will also be called a full set of horns on A.
o A full set of augmented S-horns is a set A(S) of maps
A(S) = A(S YU J
for some full set of horns A(S) on S. If S consists of the single object A, then

A(S) will also be denoted A{A}, and will be called a full set of augmented
A-horns.

DEFINITION 5.3.2. Let M be a right proper cellular model category, and let .S
be a set of objects in M.

o A A(S)-injective is a map with the right lifting property with respect to

every element of A(S).

o A A(S)-cofibration is a map with the left lifting property with respect to

every A(S)-injective.

o A relative A(S)-cell compler is a transfinite composition of pushouts of ele-

ments of A(S).
e An object of M is a A(S)-cell complex if the map to it from the initial object

of M is a relative A(S)-cell complex.

ProPoOSITION 5.3.3. Let M be a right proper cellular model category. If S is a
set of objects in M, then there is a functorial factorization of every map X — Y as
X LW LY where p is a relative (S)-cell complex and q is a A(S)-injective.

Proo¥. This follows from Proposition 15.4.5. O

ProPOSITION 5.3.4. Let M be a right proper cellular model category. If S is a
set of cofibrant objects in M, then a map g: X — 'Y is a A(S)-injective if and only
if ¢ is a fibration that induces a weak equivalence of homotopy function complexes
g« map(A, X) = map(A,Y) for every element A of S.

COROLLARY 5.3.5. Let M be a right proper cellular model category. If S is a
set of objects in M and X and Y are fibrant objects, then a map g: X — Y is an
A(S)-injective if and only if it is both a fibration and an S-colocal equivalence.

PrOOF. Since a fibrant object is a fibrant approximation to itself, this follows
from Proposition 5.3.4. O

ProPOSITION 5.3.6. Let M be a right proper cellular model category. If S is
a set of cofibrant objects in M, then a relative A(S)-cell complex is an S-colocal
cofibration.

ProoF. If g: X — Y is both an S-colocal weak equivalence and a S-colocal
fibration, then Proposition 9.1.9 implies that we can choose a fibrant approximation
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g to g such that g is a fibration. Proposition 5.3.4 implies that § is a A(S)-injective,
and so Proposition 12.4.8 implies that § has the right lifting property with respect
to all relative A(S)-cell complexes. Since M is a right proper model category,
Proposition 11.1.18 implies that g has the right lifting property with respect to all

relative A(S)-cell complexes. O

EXAMPLE 5.3.7. We present here an example of an A(S)-injective that is not
a S-colocal equivalence. Let M = SS, (the category of pointed simplicial sets), and
let S = {A}, where A is the quotient of A[1] obtained by identifying the two vertices
of A[1] (so that the geometric realization of A is homeomorphic to a circle). Let V
be JA[2], i.e., let Y consist of three 1-simplices with vertices identified so that its
geometric realization is homeomorphic to a circle. Let X be the simplicial set built
from six 1-simplices by identifying vertices so that the geometric realization of X is
homeomorphic to a circle and there is a map g: X — Y whose geometric realization
is the double cover of the circle. The map ¢ 1s a fibration, since 1t is a fiber bundle
with fiber two discrete points (see [6, Section IV.2] or [43, Lemma 11.9]).

Since no nondegenerate 1-simplex of X has its vertices equal, the only pointed
map from A to X is the constant map to the basepoint. One can now show by
induction on n that the only pointed map from A A A[n]t to X is the constant
map to the basepoint. Thus, Map(A, X) has only one simplex in each dimension.
Similarly, Map(A4,Y) has only one simplex in each dimension, and so the map
g«: Map(A, X) = Map(A4,Y) is an isomorphism. Thus, ¢ is an A-injective (see
Corollary 5.3.5).

To see that g 1s not an A-colocal equivalence, we note that Sing|g| : Sing|X| —
Sing|Y| is a fibrant approximation to g, and the map Map (A, Sing|X|) — Map (A, Sing|Y|)
is isomorphic to the map Map(|A|, |X|) — Map(|A|, |Y|) (see Lemma 1.1.13).
Since the map |g| : |X| — |Y| is homeomorphic to the double covering map of the
circle; the induced map Map(|A|, |X|) — Map(|A|, |Y|) i1s not surjective on the
set of components, and so ¢ is not an A-colocal equivalence.

REMARK 5.3.8. Example 5.3.7 shows that, if M = SS,, then not every A(S)-
injective need be an S-colocal weak equivalence. Since the A(S)-cofibrations are

exactly the maps with the left lifting property with respect to all A(S)-injectives,

this implies that the S-colocal cofibrations must consist of more than just the A(S)-
cofibrations (see Proposition 5.3.6).

5.4. S-colocal cofibrations

The main results of this section are Proposition 5.4.2 and Proposition 5.4.4,
which together provide the factorizations needed for the proof of Theorem 3.4.9.

LEMMA 5.4.1. Let M be a right proper cellular model category. If S is a set of
objects in M, then every S-colocal cofibration is a cofibration.

Proo¥. This follows from Proposition 8.2.3 and Proposition 3.4.3. O

PrOPOSITION 5.4.2. Let M be a right proper cellular model category. If S is a
set of objects in M, then a map g: X — Y is both a S-colocal cofibration and an
S-colocal weak equivalence if and only if it is a trivial cofibration.
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ProoF. If g is a trivial cofibration, then Proposition 3.4.3 implies that it is
an S-colocal weak equivalence and Proposition 8.2.3 implies that it is an S-colocal
cofibration.

Conversely, let g: X — Y be both an S-colocal cofibration and an S-colocal
weak equivalence. Lemma 5.4.1 implies that we need only show that g is a weak
equivalence. Proposition 9.1.9 implies that there is a solid arrow diagram

“<<—><
<—><

in which X and Y are fibrant, ¢x and 7y are trivial cofibrations, and § is a fibration.
We will show that g is a simplicial homotopy equivalence. Since ¢x and 2y are
trivial cofibrations, this will imply that ¢ is a weak equivalence, and the proof will
be complete.

Since g is an S-colocal weak equivalence and g is a fibrant approximation to g,
the map g is also a S-colocal weak equivalence. Thus, ¢ has the left lifting property
with respect to g, and so there exists a map h: Y — X such that hg = tx and
gh = iy. Since iy is a trivial cofibration and X is fibrant, there exists a map
g: Y — X such that giy = h. We will show that g is a simplicial homotopy inverse
to g.

We have ggiy = gh = ty. Since ty 1is a trivial cofibration and Y is fibrant,
Corollary 10.4.10 implies that gg 2 1g. We also have ggix = givg = hg = ix.
Since ix 1s a trivial cofibration and X is fibrant, Corollary 10.4.10 implies that
q4 = 15. Thus, g is a simplicial homotopy inverse to g. O

LEMMA 5.4.3. Let M be a right proper cellular model category, and let S be a
set of objects in M. If g: A — B is a cofibration, h: B — C' is a weak equivalence,
and the composition hg: A — C' is an S-colocal cofibration, then ¢ is an S-colocal
cofibration.

Proor. If f: X — Y 1s both an S-colocal weak equivalence and a S-colocal
fibration, then Prop081t10n 9.1.9 implies that we can choose a fibrant approximation
f X =Y to f such that f is a fibration. Since M is a right proper model category,
Proposition 11.1.18 implies that it is sufficient to show that g has the left lifting
property with respect to f Proposition 3.4.3 and Proposition 5.2.3 imply that f is
an S-colocal weak equivalence.

Suppose that we have the commutative solid arrow diagram

%X
=

—> Y

=

Q_.{___—tu(—D>
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In the category (A ] M) of object of M under A, h is a weak equivalence of cofibrant
objects (see Lemma 5.4.1) and Y is fibrant. Thus, Corollary 8.5.4 implies that there
isamapj: C — Y in (AL M) such that jh ~tin (A} M). Since hg is an S-colocal
cofibration and f is both an S-colocal weak equivalence and an S-colocal fibration,
there exists a map k: C' — X such that khg = s and fk =7.

Since fkh = jh ~tin (A} M), if we let u = kh, then u: B — X, and fu ~ ¢ in
(AL M). Since B is cofibrant in (A M) and f is a fibration, the homotopy lifting
property of fibrations (see Proposition 8.3.8) implies that there is amap v: B — X
in (A}l M) such that v ~ u and fv =t. The map v satisfies vg = s and fv =1, and
so g has the left lifting property with respect to f O

PrOPOSITION 5.4.4. Let M be a right proper cellular model category. If S is a
set of objects in M, then there is a functorial factorization of every mapg: X —Y
inMas X & W 4 Y in which p is an S-colocal cofibration and q is both an
S-colocal weak equivalence and an S-colocal fibration.

ProoOF. Choose a functorial cofibrant fibrant approximation j: Y — Y toY.
Proposition 5.3.3 implies that there is a functorial factorization of the composition
jg: X — Yas X 5 WS 17, in which 7 is a relative W—cell complex and s is a
m—injective. If we let Z be the pullback Y xg W, then we can factor the natural
map X — Z in M as X &5 W 2% Z where p is a cofibration and u is a trivial
fibration. If we let ¢ = vu, then we have the diagram

Y — %

Since j 1s a weak equivalence, s is a fibration, and M is a right proper model
category, t is a weak equivalence. Thus, the composition tu is a weak equivalence,
and so s 1s a fibrant approximation to ¢. Since Corollary 5.3.5 implies that s is
an S-colocal equivalence, ¢ (which is the composition of two fibrations) is both
an S-colocal weak equivalence and a S-colocal fibration. Since r is an S-colocal
cofibration (see Proposition 5.3.6), Lemma 5.4.3 implies that p is an S-colocal
cofibration. O

ProOPOSITION 5.4.5. Let M be a right proper cellular model category. If S is a
set of objects in M, then every S-colocal cofibration has the homotopy left lifting
property with respect to every map that is both an S-colocal weak equivalence and
an S-colocal fibration.

ProoF. If g: X — Y is both an S-colocal weak equivalence and a S-colocal
fibration, Proposition 9.1.9 implies that we can choose a fibrant approximation
g: X Y to g such that g is a fibration. Since M is a right proper model category,
Corollary 11.1.19 implies that it is sufficient to show that every S-colocal cofibration
has the homotopy left lifting property with respect to g. Thus, Lemma 10.3.6
implies that 1t 1s sufficient to show that every S-colocal cofibration has the left
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lifting property with respect to the map XAl o yan X5 0Aln] X294l for every
n > 0.

Proposition 5.3.4 implies that g is a W—injective, and so Proposition 10.3.10
implies that X2l — y Al X5 0an] X948 ig also a A(S)-injective for every n > 0.
Corollary 5.3.5 implies that each of these maps is both an S-colocal weak equiva-

lence and an S-colocal fibration, and so the proof is complete. O

5.5. The colocalization model category

This section contains the proof of Theorem 3.4.9.

ProoF oF THEOREM 3.4.9. We must show that axioms M1 through M5 of
Definition 8.1.2 and axioms M6 and M7 of Definition 10.1.2 are satisfied.

Axiom M1 is clear, axiom M2 follows from Proposition 5.2.3, and axiom M3
follows from Proposition 5.2.1. Axiom M4 part (1) follows from the definition
of S-colocal cofibration, and axiom M4 part (2) follows from Proposition 5.4.2.
Axiom M5 part (1) follows from Proposition 5.4.4, and axiom M5 part (2) follows
from Proposition 5.4.2.

Axiom M6 follows because the simplicial structure is the given one on M.
Axiom M7 follows from Lemma 5.4.1, Proposition 5.4.2, and Proposition 5.4.5. O

ProrosITION 5.5.1. Let M be a right proper cellular model category. If S is
a set of objects in M, then a map is an S-colocal cofibration if and only if it is a
retract of a cofibration X — Y for which there is a weak equivalence Y — 7 such
that the composition X — 7 is a relative A(S)-cell complex.

Proor. This follows from the factorization constructed in the proof of Propo-
sition 5.4.4 and the retract argument (see Proposition 8.2.2). (]

COROLLARY 5.5.2. Let M be a right proper cellular model category. If S is a
set of objects in M, then an object is S-colocal if and only if it is a retract of an

object that is both cofibrant and weakly equivalent to a A(S)-complex.
Proo¥. This follows from Proposition 3.4.10 and Proposition 5.5.1. O

DEFINITION 5.5.3. Let M be a right proper cellular model category. If S is a
set of objects in M, then we can choose a functorial fibrant cofibrant approximation
(CWg, p) for the S-colocal model category structure on M (see Proposition 9.1.2).
We define the S-colocalization of an object X to be the object CWs X together
with the S-colocal trivial fibration p(X): CWg X — X.

ProOPOSITION 5.5.4. Let M be a right proper cellular model category. If S is a

set of objects in M, then CWg X is weakly equivalent to a A(S)-complex for every
object X.

ProoF. This follows from the definition of CWg X (see Definition 5.5.3) and
the factorization constructed in Proposition 5.4.4. O

ProPoOSITION 5.5.5. Let M be a right proper cellular model category. If S is
a set of objects in M, then the S-colocal model category structure on M 1is right
proper.

Proo¥. This follows from Proposition 3.4.13. O
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ProOPOSITION 5.5.6. Let M be a right proper cellular model category in which
every object is fibrant. If S is a set of objects in M, then

1. every S-colocal cofibration is a A(S)-cofibration, and

2. every S-colocal cofibrant object is a retract of a A(S)-complex.

5.6. Topological spaces and simplicial sets

Warning: This section is a collection of leftovers.

5.6.1. Topological spaces and simplicial sets.

ProPOSITION 5.6.2. Let A be a cofibrant pointed topological space.
1. A map in Top, is an A-colocal equivalence if and only if it is a |SingA|—
colocal equivalence.

2. A cofibrant pointed topological space is A-colocal if and only if it is |Sing A|—
colocal.

Proo¥. This follows from Proposition 6.4.3 and Proposition 6.4.1. O

PrOPOSITION 5.6.3. Let A be a pointed simplicial set.

1. A map in §S. is an A-colocal equivalence if and only if it is a Sing|A|—co]ocal
equivalence.

2. A pointed simplicial set is A-colocal if and only if it is Sing|A|—co]ocal.

PrOOF. Since every simplicial set is cofibrant, this follows from Proposition 6.4.3
and Proposition 6.4.1. O

ProrosITION 5.6.4. If A is a pointed simplicial set, then a map of pointed
topological spaces g: X — Y 1is a |A|—co]oca] equivalence if and only if
(Sing g): Sing X — SingY is an A-colocal equivalence.

ProoF. Lemma 1.1.13 gives us the commutative square

Map(|A|,X) _— Map(|A|,Y)

Map(A, Sing X) —— Map(A4, SingY)

in which the vertical maps are 1somorphisms. Since all topological spaces are fibrant
and the total singular complex of a topological space is fibrant, the proposition

follows. O

ProrosITION 5.6.5. If A is a pointed simplicial set, then a map ¢g: X — Y
of simplicial sets is an A-colocal equivalence if and only if |g|: |X| — |Y| s a
|A|—co]oca] equivalence.

ProoOF. The map (Sing|g|) : Sing|X| — Sing|Y| is a fibrant approximation to
g, and so g is an A-colocal equivalence if and only if (Sing|g|)* : Map (A, Sing|X|) —
Map(A, Sing|Y|) is a weak equivalence. Lemma 1.1.13 implies that this is true if
and only if |g|*: Map(|A|, |X|) — Map(|A|, |Y|) is a weak equivalence. Since
all topological spaces are fibrant, this i1s true if and only if |g|: |X| — |Y| is a
|A|—colocal equivalence.

Draft: August 12, 1997



82 5. RIGHT BOUSFIELD LOCALIZATION

PrROPOSITION 5.6.6. If A is a cofibrant pointed topological space, then a pointed
simplicial set W is A-colocal if and only if |W| is |A|—colocal.

Proor. If W is A-colocal, let g: X — Y be a |A|—colocal equivalence of
topological spaces. Proposition 5.6.4 implies that (Singg).: Map(W,Sing X) —
Map(W,SingY) is a weak equivalence, and so Lemma 1.1.13 implies that
G Map(|W|,X) — Map(|W|,Y) is a weak equivalence. Since all topological
spaces are fibrant, this implies that |W| is |A|—colocal.

Conversely, assume that |W| is |A|—colocal, and let g: X — Y be an A-colocal
equivalence of simplicial sets. Proposition 5.6.5 implies that |g|: |X| — |Y| is a
|A|—colocal equivalence, and so |g|*: Map(|W|, |X|) — Map(|W|, |Y|) is a weak
equivalence. Lemma 1.1.13 now implies that (Sing|g|)*: Map(W, Sing|X|) —
Map(W, Sing|Y|) is a weak equivalence. Since Sing|g| is a fibrant approximation
to g, this implies that W is A-colocal. O

ProrosITION 5.6.7. If A is a cofibrant pointed topological space, then a cofi-
brant pointed topological space W is A-colocal if and only if Sing W is (Sing A)-
colocal.

ProorF. If W is A-colocal, let g: X — Y be a (Sing A)-colocal equivalence of
simplicial sets. Since Sing|g| is a fibrant approximation to g, we must show that
(Sing|g|)* : Map (Sing W, Sing|X|) — Map (Sing W, Sing|Y|) is a weak equivalence.
This is true if and only if |g|* : Map(W, |X|) — Map(W, |Y|) is a weak equivalence.
Proposition 5.6.5 and Proposition 5.6.2 imply that |g| : |X| — |Y| is an A-colocal
equivalence, and so Sing W is (Sing A)-colocal.

Conversely, assume that Sing W is (Sing A)-colocal, and let g: X — Y be an
A-colocal equivalence of topological spaces; we must show that g.: Map(W, X) —
Map(W,Y) is a weak equivalence. This is true if and only if (Sing ¢).: Map(Sing W, Sing X') —
Map(Sing W, Sing V') is a weak equivalence (see Proposition 1.1.15). Proposition 5.6.4
and Proposition 5.6.2 imply that Singg is a (Sing A)-colocal equivalence, and so
the proof is complete. O

5.6.8. Topological spaces and simplicial sets.
COROLLARY 5.6.9. If A is a pointed simplicial set then, for every topological

space X, there is a natural map |CWA SingX| — CW |4 X that makes the square

|CWj Sing X| —— CW) 4 X

| |

|Sing X| ———— X

commute, and this natural map is a simplicial homotopy equivalence.

ProOOF. The existence of the natural map follows from Theorem 1.5.4. Propo-
sition 5.6.6 implies that |CWA SingX| is |A|—colocal, and Proposition 5.2.3, Propo-
sition 3.4.3, and Proposition 5.6.5 imply that our natural mapis a |A|—colocal equiv-
alence of fibrant |A|—colocal spaces. The result now follows from Theorem 5.2.6. O
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COROLLARY 5.6.10. If A is a pointed simplicial set then for every simplicial set
K there is a natural map CWy K — Sing CW 4, |K| that makes the square

CW3 X — Sing CW/ 4| K|

J |

K ———— Sing|K|
commute, and this natural map is a weak equivalence.

ProOOF. The existence of the natural map follows from Theorem 1.5.6. Prop-
osition 5.6.7 and Proposition 5.6.2 imply that Sing CW|A||K| is A-colocal, and
Proposition 5.2.3, Proposition 3.4.3, and Proposition 5.6.4 imply that our natural
map is an A-colocal equivalence of A-colocal spaces. The result now follows from

Theorem 5.2.5. O

5.6.11. Topological spaces and simplicial sets.

ProPoOsITION 5.6.12. If A is a pointed simplicial set, then the map g: X —Y
of pointed topological spaces is a |A|—co]oca] equivalence if and only if the map
Sing g: Sing X — Sing Y of pointed simplicial sets is an A-colocal equivalence.

PRrROOF. Since every topological space is fibrant, ¢ is a |A|—colocal equivalence
if and only if g, : Map(|A|,X) — Map(|A|,Y) is a weak equivalence of simplicial
sets. Lemma 1.1.13 implies that this i1s true if and only if the map of simplicial
sets (Singg).: Map(A4,Sing X) — Map(A, SingY) is a weak equivalence. Since
Sing X and SingY are fibrant, this is true if and only if (Singyg) is an A-colocal
equivalence. O

ProrosiTION 5.6.13. If A is a pointed simplicial set, then the map g: C —
D of pointed simplicial sets is an A-colocal equivalence if and only if the map
|g| : |C'| — |D| of pointed topological spaces is a |A|—co]oca] equivalence.

ProoF. The map Sing|g|: Sing|C| — Sing|D| is a fibrant approximation
to g (see Definition 9.1.8), and so g is an A-colocal equivalence if and only if
the map of simplicial sets (Sing|g|)*: Map(A, Sing|C’|) — Map(A, Sing|D|) is a
weak equivalence. Lemma 1.1.13 implies that this is true if and only if the map
|g|*: Map(|A|, |C’|) — Map(|A|, |D|) is a weak equivalence. Since |C'| and |D| are
fibrant, the result follows. O

ProrosITION 5.6.14. If A is a pointed simplicial set, then the simplicial set K
1s A-colocal if and only if |K| is |A|—colocal.

Proor. If |K| is |A|—colocal and ¢: C' — D 1s a fibration of fibrant simpli-
cial sets that is an A-colocal equivalence, then |g|: |C'| — |D| is a fibration and
Proposition 5.6.13 implies that it 1s a |A|—colocal equivalence. Proposition 6.6.1
implies that the map Map(|K|, |C’|) — Map(|K|, |D|) is a weak equivalence.
Lemma 1.1.13 now implies that Map(K, Sing|C’|) — Map(K, Sing|D|) s a weak
equivalence. Since C' — Sing|C| and D — Sing|D| are weak equivalences of fibrant
simplicial sets and every simplicial set 1s cofibrant, Corollary 10.2.2 implies that
Map(K,C) — Map(K, D) is a weak equivalence, and so Proposition 6.6.1 implies
that K is A-colocal.
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Conversely, if K is A-colocal and g: X — Y is a fibration of topological spaces
that is a |A|—colocal equivalence, then Sing ¢g: Sing X — SingY is a fibration and
Proposition 5.6.12 implies that it is an A-colocal equivalence. Lemma 1.1.13 and
Proposition 6.6.1 imply that we have a commutative square

Map(| K|, X) ——— Map(|K|,Y)

Map(K, Sing X) —— Map(K, Sing V)

in which all the maps except the top one are weak equivalences, and so this last
one must also be a weak equivalence. Proposition 6.6.1 now implies that |K| is
|A|—colocal, and the proof is complete. O

ProrosITION 5.6.15. If A is a pointed simplicial set, then a cofibrant topolog-
ical space X is |A|—co]oca] if and only if Sing X is A-colocal.

Proor. If X is |A|—colocal and g: C' = D is a fibration of fibrant simplicial
sets that 1s an A-colocal equivalence, then we have the commutative diagram

Map(Sing X, ') ——— Map(Sing X, D)
Map(Sing X, Sing|C|) —_— Map(Sing X, Sing|D|)
Map(|SingX|, |C’|) —_— Map(|SingX|, |D|)

o o

Map (X, |C|) ———— Map(X, |D|)

in which all the vertical maps are weak equivalences (see Corollary 10.2.2 and
Lemma 1.1.13). Since |C'| — |D| is a fibration and a |A|—colocal equivalence (see
Proposition 5.6.13), the bottom map is a weak equivalence, and so the top map is
also a weak equivalence, and so Proposition 6.6.1 implies that Sing X is A-colocal.
Conversely, if Sing X is A-colocal and ¢: Y — Z is a fibration of topological
spaces that is a |A|—coloca1 equivalence, then we have the commutative diagram

Map(X,V) —— > Map(X, 7)

Map(|SingX|,Y) _ Map(|SingX|, Z)

Map(Sing X, Sing V') —— Map(Sing X, Sing 7)

in which all the vertical maps are weak equivalences. Since SingY — Sing 7 is
a fibration of fibrant simplicial sets and an A-colocal equivalence (see Proposi-
tion 5.6.12), the bottom map is a weak equivalence, and so the top map is a weak
equivalence, and so the result follows from Proposition 6.6.1. O
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ProOPOSITION 5.6.16. If A is a pointed simplicial set, (M, p) is a functorial fi-
brant A-colocalization on SS., and (N, q) is a functorial fibrant |A|—co]ocal1’zat1’on
on Top,, then, for every topological space X, there is a map |M SingX| — NX,
unique up to simplicial homotopy, that makes the square

(5.6.17) |M Sing X | -y NX

|

|Sing X| —— X

commute, and any such map is a homotopy equivalence. This map is natural up
to simplicial homotopy, i.e., if g: X — Y is a map of topological spaces then the
square

|M Sing X| —— NX

|

|M Sing V| —— NY
commutes up to simplicial homotopy.

Proo¥. This is similar to the proof of Proposition 1.5.8. O

THEOREM 5.6.18. If A is a pointed simplicial set, then, for every topological
space X, there is a natural homotopy equivalence (i.e., a natural map that is a ho-
motopy equivalence, not just a homotopy class of maps) |CWA Sing X| — CW4 X
(see Definition 5.5.3).

Proo¥. Corollary 5.6.9 implies that there 1s a natural map |CWA SingX| —
CW) 4 X that makes the square (5.6.17) commute, and so the theorem follows from
Proposition 5.6.16. O

ProPoOSITION 5.6.19. If A is a pointed simplicial set, (M, p) is a functorial fi-
brant A-colocalization on SS., and (N, q) is a functorial fibrant |A|—co]ocal1’zat1’on

on Top,, then, for every simplicial set K, there is a map MK — SingN|K , unique

up to homotopy, that makes the square
(5.6.20) MK o » Sing N| K |
K —— Sing|K |

commute, and any such map is a weak equivalence. This map is natural up to
simplicial homotopy, i.e., if g: K — L is a map of simplicial sets then the square

MK — Sing N|K|
ML —— Sing N|L|
commutes up to simplicial homotopy.
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Proo¥. This is similar to the proof of Proposition 5.6.16. O

THEOREM 5.6.21. If A is a pointed simplicial set then for every simplicial set K
there is a natural weak equivalence (i.e., a natural map that is a weak equivalence,

not just a homotopy class of maps) CWy K — Sing CW 4 |K| (see Definition 5.5.3).

Proo¥. Corollary 5.6.10 implies that there is a natural map CW4 K —
Sing CW 4 |K| that makes the square (5.6.20) commute, and so the theorem follows
O

from Proposition 5.6.19.
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CHAPTER 6

Localization functors and colocalization functors

Warning: This chapter is in need of revision.

6.1. Characterizing localization functors

6.1.1. Functorial localizations. If M is a left proper cellular model cate-
gory and S is a set of maps in M, then the definition of the S-local model category
structure (see Definition 3.3.7) implies that an S-localization of an object is ex-
actly an S-local fibrant approximation to that object (see Definition 9.1.1), and
that a cofibrant S-localization of an object is exactly an S-local cofibrant fibrant
approximation to that object.

DEeFINITION 6.1.2. If M is a model category, a coaugmented functor on M is
a pair (F,j) where F is a functor F: M — M and j is a natural transformation
j:1=F.

DEFINITION 6.1.3. If M is a model category, then a coaugmented functor F
on M will be called homotopy idempotent if, for every object X in M, the natural
maps j(FX), F(](X)) :FX — FFX are homotopic under X (see Definition 8.4.3)
and are homotopy equivalences under X.

REMARK 6.1.4. Definition 6.1.3 is the lifting to M of J. F. Adams’ notion of
an idempotent functor on the homotopy category of M (see [1]).

DEeFINITION 6.1.5. If M is a model category and S is a set of maps in M, then
a functorial S-localization is a coaugmented functor (F,j) on M such that, for
every object X, the coaugmentation j(X): X — FX is an S-localization of X (see
Definition 4.1.1). A functorial cofibrant S-localization is a functorial S-localization
for which the coaugmentation j(X) is a cofibrant S-localization for every object X.

ProPoOSITION 6.1.6. If M is a model category and S is a set of maps in M,
then a functorial cofibrant S-localization (Mg, j) is homotopy idempotent, i.e., for
every object X, the maps j(MgX) and Mg (_](X)) are homotopic under X (see
Definition 8.4.3), and are homotopy equivalences Mg X = MgMgX under X.

PrOOF. Since j is a natural transformation, for every object X we have a
commutative square

(X
X$>MSX

J'(X)l lj(MsX)

Mg X ——MsMgX
Ms (7 (X))
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Since j(X) is an S-local trivial cofibration (see Definition 3.3.7) and Mg X is S-local
fibrant, Proposition 8.3.21 implies that j(MgX) < Mg (_](X)) in (X | M). Since
MgX and MgMgX are both cofibrant and fibrant in (X | M), Proposition 8.3.18
implies that j(MgX) ~ Mg (_](X)) in (X {M). Since Mg X and MgMgX are both
cofibrant and fibrant in (X | M) and Theorem 4.1.13 implies that j(MgX) is a weak
equivalence, Proposition 8.3.26 implies that j(MgX) (and so Mg (_](X)) as well) is
a homotopy equivalence. O

ProrosITION 6.1.7. If M is a left proper cellular model category and S' is a set
of maps in M, then the pair (Lg, j) of Definition 4.3.2 is a functorial S-localization
(see Definition 6.1.5).

Proor. This follows from Theorem 4.3.3. O

ProrosITION 6.1.8. If M is a left proper cellular model category and S is a
set of maps in M, (Mg, j) is a functorial cofibrant S-localization on M, and X is a
fibrant object in M, then the following are equivalent:
1. The object X is S-local.
2. The S-localization map j(X): X — MgX is a weak equivalence.
3. The S-localization map j(X): X = MgX is a homotopy equivalence under
X (see Definition 8.4.3).
4. The S-localization map j(X): X — MgX is the inclusion of a strong defor-
mation retract (see Definition 8.4.6).

PrOOF. A cofibrant S-localization of an object is an S-local trivial cofibration
to an S-local fibrant object (see Definition 3.3.7). Thus, Proposition 8.4.7 implies
that condition 1 implies condition 4. It is obvious that condition 4 implies condi-
tion 3 and that condition 3 implies condition 2, and Proposition 4.1.3 implies that
condition 2 implies condition 1. O

6.1.9. Uniqueness of localizations.

ProPosITION 6.1.10. Let M be a left proper cellular model category and let
S be a set of maps in M. If g: X — Y is an S-localization of X, then there is a
map ¢: LsX — Y (see Definition 1.4.11), unique up to homotopy under X (see
Definition 8.4.3), such that ¢j(X) = g, and any such map ¢ is a weak equivalence.

Proo¥. This follows from Theorem 3.3.8 and Proposition 9.1.6. O

ProrosiTION 6.1.11. Let M be a left proper cellular model category and let .S
be a set of maps in M. If (Mg,j: 1 —= Mg) and (Ng, k: 1 — Ng) are functorial cofi-
brant S-localizations, then, for every object X, there is a map ¢x: Mg X — NgX,
unique up to homotopy under X (see Definition 8.4.3), that makes the triangle

0N

MfX —)NfX

commute, and any such map is a homotopy equivalence under X.

Proo¥. This follows from Theorem 3.3.8 and Corollary 9.1.7. O
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ProPoOsITION 6.1.12. Let M be a left proper cellular model category and let .S
be a set of maps in M. If (Mg, j: 1 — Mg) is a functorial cofibrant S-localization,
then, for every object X, the homotopy class of the S-localization j(X): X — MgX
in (X | M) is initial in the category of homotopy classes of maps from X to S-
local objects, i.e., if W is S-local and k: X — W is a map, then there is a map
¢: MgX — W, unique up to homotopy in (X | M), such that ¢j(X) ~ k.

ProoF. Theorem 3.3.8 implies that j(X) is a trivial cofibration of cofibrant
objects in (X | M), and X — W is a fibrant object in (X |M). Thus, the result
follows from Proposition 8.3.21 and Proposition 8.3.18. O

ProrosITION 6.1.13. Let M be a left proper cellular model category and let S
be a set of maps in M. If (Mg, j: 1 — Mg) is a functorial cofibrant S-localization,
then for every object X, the homotopy class of the S-localization j(X): X — MgX
in (X | M) is terminal in the category of homotopy classes of cofibrations that are
S-local equivalences, i.e., if k: X — W is a cofibration and an S-local equivalence,
then there is a map ¢: W — M X, unique up to homotopy in (X | M), such that

ok ~ j(X).

PRrROOF. Since k is an S-local trivial cofibration (see Theorem 3.3.8) and Mg X
is an S-local fibrant object, this follows from Proposition 8.3.21 and Proposi-
tion 8.3.18. O

ProrosITION 6.1.14. Let M be a left proper cellular model category and let .S
be a set of maps in M. If (Mg, j: 1 — Mg) is a functorial cofibrant S-localization,
g: X — Y is an S-local equivalence, and Y is an S-local object, there is a map
¢: M;X — Y, unique up to homotopy under X (see Definition 8.4.3), such that

the triangle

MSX—>Y

commutes, and any such map ¢ is a weak equivalence.

Proo¥. This follows from Proposition 6.1.12 and Theorem 4.1.10. O

6.2. Comparing localizations

ProPOSITION 6.2.1. Let M be a model category, and let f and [’ be maps in
M. If the class of f-local objects equals the class of f'-local objects, then a map
g: X =Y is an f-local equivalence if and only if it is an f’-local equivalence.

Proor. This follows directly from the definitions. O

PrOPOSITION 6.2.2. Let M be a model category, and let both f: A — B and
/' A — B’ be maps in M. If there are weak equivalences A — A’ and B — B’
such that the square

a—Lp

L, |

A/ 5 B/
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commutes, then the class of f-local objects equals the class of f’-local objects.

Proo¥. This follows from Proposition 18.3.5 and Proposition 18.3.6. O

PROPOSITION 6.2.3. Let M be a model category, and let S and S” be classes of
maps in M.

1. If for every element f of S there is an element f' of S’ such that every f’-
local object is f-local, then every S’-local object is S-local and every S-local
equivalence is an S’-local equivalence.

2. If condition 1 holds and, in addition, for every element f’' of S’ there is an
element f of S such that every f-local object is f’'-local, then the class of
S-local objects equals the class of S’'-local objects and the class of S-local
equivalences equals the class of S’-local equivalences.

Proor. This follows directly from the definitions. O

6.3. Simplicial localization functors

In this section, we show that if M 1s a left proper cellular model category that
1s a simplicial model category and if S is a set of maps in M, then we can define a
cofibrant S-localization on M that is a simplicial functor (see Section 10.6).

THEOREM 6.3.1. If M is a left proper simplicial cellular model category and S
is a set of maps in M, then there is a cofibrant S-localization functor on M that is
a simplicial functor.

Proor. Fill this in! O

6.4. Comparing colocalizations

ProrosITION 6.4.1. Let M be a right proper cellular model category. If S and
S’ are sets of objects in M such that the class of S-colocal equivalences equals the
class of S'-colocal equivalences, then the class of S-colocal cofibrations equals the
class of S’-colocal cofibrations.

Proor. This follows directly from the definitions. O

PrOPOSITION 6.4.2. Let M be a right proper cellular model category. If S is a
set of objects in M, then a map is an S-colocal equivalence if and only if it is an
A-colocal equivalence for every element A of S.

Proor. This follows directly from the definitions. O

PrOPOSITION 6.4.3. Let M be a right proper cellular model category, and let
A and B be objects in M. If there is a weak equivalence A — B, then

1. the class of A-colocal equivalences equals the class of B-colocal equivalences,
and
2. the class of A-colocal objects equals the class of B-colocal objects.

Proo¥. Part 1 follows from Theorem 17.5.2. Part 2 now follows from Propo-
sition 6.4.1. O

PrOPOSITION 6.4.4. Let M be a right proper cellular model category. If S is a
set of objects in M, then there is a set S’ of cofibrant objects such that
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1. the class of S-colocal equivalences equals the class of S’-colocal equivalences,
and
2. the class of S-colocal cofibrations equals the class of S’-colocal cofibrations.

PrOOF. Let S’ be a set of cofibrant approximations to the elements of S. The
result now follows from Proposition 6.4.2, Proposition 6.4.3 and Proposition 6.4.1.

O

6.5. Functorial colocalizations

DeFINITION 6.5.1. If M is a model category, an augmented functor on M is
a pair (F,j) where F is a functor F: M — M and j is a natural transformation
j:F—1

DEFINITION 6.5.2. If M is a model category, then an augmented functor (F, j)
on M will be called homotopy idempotent if, for every object X in M, the natural
maps j(FX),Fj(X): FFX = FX are homotopic over X (see Definition 8.4.3) and
are homotopy equivalences over X.

ProPOSITION 6.5.3. If M is a model category and S is a set of objects in M,
then a functorial fibrant S-colocal approximation (F,p) (see Definition 5.1.1) is
homotopy idempotent.

PrOOF. Since p is a natural transformation, for each object X we have a
commutative square

-
FX p(X) X

Since FFX is S-colocal cofibrant and p(X) is an S-colocal trivial fibration (see
Theorem 3.4.9), Proposition 10.2.1 implies that p(X) induces a weak equivalence
of homotopy function complexes (p(X))* : map(FFX,FX) = map(FFX, X). Fix

this!! Corollary 10.4.9 now implies that F(p(X)) 2 p(FX). Theorem 5.2.10 implies
that F(p(X)) is a weak equivalence, and so p(FX) must be a weak equivalence as
well. O

ProposITION 6.5.4. If (F, p) is a functorial fibrant A-colocalization and X is a
cofibrant object, then the following are equivalent:

1. The object X is A-colocal.

2. The A-colocalization map p(X): FX — X is a weak equivalence.

3. The A-colocalization map p(X): FX — X is a simplicial homotopy equiva-
lence.

4. The A-colocalization map p(X): FX — X is a simplicial homotopy equiva-
lence that has a right inverse that is a simplicial homotopy inverse,

ProoF. Proposition 10.4.19 implies that condition 1 implies condition 4. It is
obvious that condition 4 implies condition 3 and that condition 3 implies condi-
tion 2, and Proposition 5.2.8 implies that condition 2 implies condition 1. O
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6.6. Closed classes of objects

In this section, we show that if M is a right proper cellular model category
and S is a set of cofibrant objects in M, then the class of S-colocal objects is the
smallest class of cofibrant objects that contains S and is closed under homotopy
colimits and weak equivalences (see Theorem 6.6.4).

PrOPOSITION 6.6.1. Let M be a right proper cellular model category. If S is a
set of objects in M, then a cofibrant object W is S-colocal if and only if, for every
S-colocal equivalence that is a fibration of fibrant objects g: X — Y, the induced
map of simplicial sets g.: Map(W, X) = Map(W,Y) is a weak equivalence.

PrROOF. Since a fibrant object is a fibrant approximation to itself, the condition
is clearly necessary.

Conversely, if g: X — Y 1s an S-colocal equivalence, then Proposition 9.1.9
implies that we can choose a fibrant approximation g: X > Y to g such that g is
a fibration. Since g is itself an S-colocal equivalence, § induces a weak equivalence

g« Map(W, )?) ~ Map(W, 17), and so W is S-colocal. O

LEMMA 6.6.2. Let M be a right proper cellular model category. If S is a set
of objects in M, then the homotopy colimit of a diagram of S-colocal objects is an
S-colocal object.

ProoF. Let C be a small category, and let X: € — M be a diagram of S-
colocal objects. Corollary 20.6.8 implies that hocolim X is cofibrant, and so Propo-
sition 6.6.1 implies that 1t is sufficient to show that hocolim X has the homotopy left
lifting property with respect to all A(S)-injectives between fibrant objects. Thus, it
is sufficient to show that if Y and 7 are fibrant and g: Y — 7 is a A(S)-injective,
then the map

g« Map(hocolim X,Y) — Map(hocolim X, 7)
is a trivial fibration. This map is isomorphic to the map
holimMap(X,Y) — holim Map(X, 7)

(see Corollary 20.3.19). Since Map(X ,,Y) = Map(X,, 7) is a trivial fibration for
every object a in € and the homotopy limit of such a diagram of maps is a trivial
fibration (see Theorem 20.6.9), the proof is complete. O

LEMMA 6.6.3. Let M be a right proper cellular model category, and let S be a
set of objects in M. If W is an S-colocal object and K is a simplicial set, then the
object W @ K is S-colocal.

Proo¥. This follows from Proposition 3.4.10 and Lemma 17.3.11. O

THEOREM 6.6.4. Let M be a right proper cellular model category. If S is a
set of objects in M, then the class of S-colocal objects is the smallest class of
cofibrant objects that contains S and is closed under homotopy colimits and weak
equivalences.

ProOF. Let € be a class of cofibrant objects that contains S and is closed under
homotopy colimits and weak equivalences. Lemma 6.6.3 implies that € contains
A @ OAIn] for every element A of S and every n > 1, and so Proposition 20.3.8
implies that, if X is an object in €, then C contains the pushout of the diagram
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X « A® 0A[n] - A ® Aln]. Together with Proposition 20.9.9, this implies
that € contains all m—complexes (see Definition 5.3.2), and so Corollary 5.5.2
and Proposition 19.5.14 imply that C contains CWg X for every object X. Since
every S-colocal object X is weakly equivalent to CWg X (see Proposition 6.5.4), C
must contain all S-colocal objects. Lemma 6.6.2 shows that the class of S-colocal
objects 18 closed under homotopy colimits, and Proposition 6.4.1 shows that it is
closed under weak equivalences, and so the proof 1s complete. O
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CHAPTER 7

Fiberwise localization

7.1. Fiberwise localization

If 5 1s a set of maps in Spc(,y and p: ¥ — Z is a fibration in Spc(,), then a
fiberwise S-localization of p should be a map from p to another fibration ¢ over 7

Y—>Y

oA

that “localizes the fibers of p”, i.e., for every point z in Z the map p~1(z) — ¢ (%)
should be an S-localization of p=1(z). The actual definition is a generalization of
this that deals with maps p that may not be fibrations.

DEFINITION 7.1.1. Let S be a set of maps in Spc,) (see Notation 1.1.2). If
p:Y = Zis amap in Spc(*), then a fiberwise S-localization of p is a factorization

Y@?&Zofpsuchthat

1. ¢ 1is a fibration, and

2. for every point z of 7, the induced map of homotopy fibers (see Defini-
tion 11.2.19) HFib,(p) — HFib,(¢) is an S-localization of HFib,(p) (see
Definition 4.1.1).

ProPoOsITION 7.1.2. If S is a set of maps in Spc(*), p:Y — Z is a fibration in

Spc(*), andY -5V % 7 is a factorization of p, then this factorization is a fiberwise
S-localization of p if and only if

1. ¢ is a fibration, and
2. for every point z of Z, the induced map of fibers p~1(z) — ¢~ (%) is an
S-localization of p~'(z).

Proor. This follows from Proposition 11.2.22. O

In this chapter, we show that for every set S of maps in Spc (a category of
unpointed spaces; see Notation 1.1.2), every map p: Y — 7 has a natural fiberwise
S-localization Y — ¥ — Z. We also show that if p:Y — Z i1s a map in Spc
and Y — Y’ — Z is some other fiberwise S-localization of p, then there 1s a map
Y — Y’ under Y and over 7, unique up to simplicial homotopy in (Y | Spcl 7),
and any such map is a weak equlvalence.

We construct our fiberwise localization for the categories of unpointed spaces
Top and SS. Since the pointed localization of a connected space is weakly equivalent
to its unpointed localization (see Theorem 1.7.13), our construction will also serve
as a fiberwise pointed localization for fibrations with connected fibers. This is the
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strongest possible result; in Proposition 7.1.3, we show that it is not possible to
construct a fiberwise pointed localization for fibrations with fibers that are not
connected.

PROPOSITION 7.1.3. Let f: A — B be the inclusion S> — D3 in Top,. If
X =82xR,Z =S', and p: X — Z is the composition of the projection S? xR — R
with the universal covering map R — S', then there is no fiberwise f-localization
of p in the category Top, of pointed spaces.

ProoF. The fiber F of pis a countable disjoint union of copies of S?, and so
if there were a fiberwise pointed localization of p, its fiber would have countably
many path components: one contractible, and the others weakly equivalent to S?
(see Corollary 1.7.10).

To see that this is not possible, note that 7 Z acts transitively on wgF', and
so 7 Z would act transitively on the path components of the fiber of any fiberwise
localization of p. Since m 7 acts on the fiber through (unpointed) weak equiva-
lences, this is impossible, and so there does not exist a fiberwise pointed localization

of p. O

The following theorem summarizes the main results of this chapter.

THEOREM 7.1.4. If S is a set of maps in Spc (see Notation 1.1.2), then there is
a natural factorization of every mapp: X — 7 as X = LsX % Z such that

1. q is a fibration with S-local fibers,

2. for every point z in 7 the induced map of homotopy fibers HFib,(p) —
HFib, (q) (see Definition 11.2.19) is an S-localization of HFib, (p),

3. 7 is both a cofibration and an S-local equivalence,

4. if we have a solid arrow diagram

in which r is a fibration with S-local fibers, then there is a map k: LsX —
W, unique up to simplicial homotopy in (X | Spcl 7), such that ki = j,
and

5. if we have a diagram as in the previous part such that for every point z in
7 the map HFib,(p) — HFib,(r) of homotopy fibers over z induced by j
is an S-local equivalence (i.e., if j is another fiberwise S-localization of p),
then the map k 1s a weak equivalence.

7.2. The fiberwise local model category structure

DEFINITION 7.2.1. Let S be a set of maps in Spc. If Z is a space in Spc, then
we define Fibz(S) (which we call the set of elements of S fiberwise over Z) to be
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the set of maps in (Spcl 7)

where f: A — B is an element of S and the images of the maps A — Z and B —» 7
are a single point of 7.

PROPOSITION 7.2.2. If 7 is a space in Spc, then the category (Spcl Z) of ob-
Jects of Spc over Z is a left proper cellular model category.

Proo¥. This follows from Proposition 3.3.17. O
THEOREM 7.2.3. Let Z be a space in Spc, and let S be a set of maps in Spc.
If we define

1. afiberwise over Z S-local equivalence to be a Fibgz(S)-local equivalence in
(Spcl Z) (see Definition 3.3.2),

2. afiberwise over Z S-local cofibration to be a Fibz(S)-local cofibration, and

3. afiberwise over Z S-local fibration to be a Fibz(S)-local fibration,

then there is a simplicial model category structure on (Spcl Z) in which the weak
equivalences are the fiberwise over 7 S-local equivalences, the cofibrations are the
fiberwise over 7 S-local cofibrations, and the fibrations are the fiberwise over 7
S-local fibrations.

Proo¥. This follows from Theorem 3.3.8 and Proposition 7.2.2. O

PRrROPOSITION 7.2.4. If S is a set of maps in Spc and Z is a space in Spc, then
an object of (Spcl 7) is fibrant in the fiberwise over 7 S-local model category
structure if and only if it is a fibration and the fiber over every point of Z is an
S-local space.

Proo¥. This follows from Proposition 3.3.9. O

7.3. Localizing the fiber
The purpose of this section is to prove the following theorem.
THEOREM 7.3.1. If S is a set of maps in Spc, Z is a space in Spc, and

X —Y
A

is a A(Fin(S))—COﬁbration (see Definition 4.2.4), then for every point z of Z the
induced map of homotopy fibers HFib, (p) — HFib,(q) is an S-local equivalence.

The proof of Theorem 7.3.1 is at the end of this section.

LEMMA 7.3.2. Let S be a set of mapsin Spc, let C be a small category, and let X
andY be diagrams in Spc indexed by C. If g: X — Y is a map of diagrams such
that the map g,: X, — Y, is an S-local equivalence between cofibrant spaces

Draft: August 12, 1997
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for each o € Ob(C), then the induced map of homotopy colimits hocolim X —
hocolimY is an S-local equivalence.

ProOF. Let W be an S-local space. Since Map(hocolim X o, W) is naturally
isomorphic to holimMap(X ,, W) (see Corollary 20.3.19), our map is isomorphic
to holimMap(Y o, W) — holimMap(X ., W). Since for each a we have a weak
equivalence of fibrant simplicial sets Map(Y o, W) — Map(X,, W), and a homo-
topy limit of such maps is also a weak equivalence (see Theorem 20.6.10), the
proposition follows. O

ProrosiTION 7.3.3. If ¢: X — Z is a map of simplicial sets and z € Z, then

there is a contractible simplicial set C' (which depends naturally on the pair (7, z))
and a natural (AC)-diagram (see Definition 16.1.11) of simplicial sets F: (AC) —
SS such that
1. for every simplex o of C' there is a simplex T of 7 such that F(o) = §(7)
(see Example 20.10.1), and
2. there is a natural weak equivalence hocolim F = HFib, (q) (where HFib,(q)
is the homotopy fiber of ¢ over z).
By “natural” we mean that the simplicial set C' is a functor of the pair (7, z) and,

for a fixed pair (7,z), the diagram F is a functor of the object ¢: X — Z of
(SS1 7).

PrOOF. If ¥ — Z is the map to the point z in Z, let + — C' 25 Z be a natural
factorization of 1t into a trivial cofibration followed by a fibration. The homotopy
fiber of ¢ over z is then naturally weakly equivalent to the pullback of the diagram
ctHhzEX (see Proposition 11.2.7). If we let F' be that pullback and »: F = C'
its projection onto C', then the construction of Example 20.10.1 applied to r yields
a diagram F: (AC) — SS that satisfies condition 1. Proposition 20.11.11 implies
that F' is Reedy cofibrant, and so condition 2 follows from Theorem 20.11.10 and
the natural isomorphism colim F' =~ F'. O

ProPosITION 7.3.4 (E. Dror Farjoun, [22]). Let S be a set of maps in SS, let
7 be a simplicial set, let p: X — 7 and q: Y — Z be objects of (SS] 7), and let

X\_/m

be a map in (SS | Z). If for every simplex o of 7 the induced map p(c) — §(o) (see
Example 20.10.1) is an S-local equivalence, then for every point z in Z the induced
map of homotopy fibers HFib, (p) — HFib,(q) is an S-local equivalence.

Proo¥. This follows from Proposition 7.3.3 and Lemma 7.3.2. O

LEMMA 7.3.5. If f: A — B is a cofibration in SS, 7 is a space in Top,

X\_/m
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is a map in (ToplZ), and z is a point in 7, then the induced map of homo-
topy fibers HFib,(p) — HFib.(q) is a |f|—loca1 equivalence if and only if the in-
duced map of the corresponding homotopy fibers of (Sing p): Sing X — Sing Z and
(Sing q): SingY — Sing 7 is an f-local equivalence.

PrOOF. Proposition 11.2.26 implies that the “homotopy fiber” and “total sin-
gular complex” functors commute up to a natural weak equivalence, and so the
result follows from Proposition 1.2.30. O

ProOPOSITION 7.3.6. Let f: A — B be an inclusion of cell complexes in Spc,
and let Z be a space in Spc. If the map

X%Y
A

in (Spcl Z) is a pushout of an element ofA(Fin{f}) (see Definition 4.2.4), then
g is both a cofibration and an f-local equivalence in Spc, and for every point z in 7
the induced map of homotopy fibers HFib, (p) — HFib,(q) is an f-local equivalence.

ProoF. There are two types of maps in the set A(Fibz{f}). The first type is
an element of A(Fibz{f}) (see Definition 4.2.4); a map of this type is an S-local
equivalence in Spc, and its domain and codomain lie over a single point z of Z.
The second type is a generating trivial cofibration of Spe. If Y is obtained from X
by pushing out a map of the second type, then the map g is a weak equivalence,
and so the induced map of homotopy fibers is a weak equivalence. Thus, we need
only consider the case in which Y is obtained from X by pushing out an element
of A(Fibz{f}).

If Spc = SS, then for each simplex ¢ of 7, the map p(c) — §(o) (see Exam-
ple 20.10.1) is obtained by pushing out one copy of our element of A(Fibz{f}) for
each vertex of ¢ that equals z. Thus, p(c) = ¢(o) is an S-local equivalence, and
so the lemma follows from Proposition 7.3.4. Thus, we need only consider the case
Spe = Top.

If Spc = Top, then Proposition 1.2.30 and Proposition 1.2.6 imply that it
is sufficient to show that Sing(HFib,(p)) — Sing(HFib.(¢)) is a (Sing f)-local
equivalence, and Proposition 11.2.26 implies that this is equivalent to showing that
HFib, (Sing p) — HFib,(Singq¢) is a (Sing f)-local equivalence (where we also use
the symbol z to denote the vertex of Sing 7 corresponding to the point z of 7).

Let Ax|Aln])|Taxjoap) Bx|0A[R]| = Bx|Aln]| be the element of A (Fibz{f})

in the pushout that transforms X into Y. We have a pushout square
A x |A[n]| HA><|6A[n]| B x |3A[n]| —))\[
Y

B x |A[n]|
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100 7. FIBERWISE LOCALIZATION

and Proposition 11.3.3 implies that SingY is weakly equivalent to the pushout

Sing(A X |A[n]| HA><|6A[n]| B x |3A[n]|) — SingX

l

Sing (B x |A[n]|) Y’

If we let ¢': Y/ — 7 be the structure map of Y’ in (SSi(Sing Z)), then for ev-

ery simplex ¢ € SingZ the map (Singp)(c) — §'(o) (see Example 20.10.1) is
obtained by pushing out one copy of Sing(A X |A[n]| Haxjoam) B x |3A[n]|) —
Sing (B x |A[n]|) for each vertex of ¢ that equals the image of Sing(B x |A[n]|)
in Sing Z. Proposition 1.2.30 implies that this is a (Sing f)-local equivalence, and
so Proposition 7.3.4 implies that HFib,(Singp) — HFib,(¢') is a (Sing f)-local
equivalence. This implies that HFib, (Sing p) — HFib,(Sing¢) is a (Sing f)-local
equivalence, and the proof is complete. O

PrOOF oF THEOREM 7.3.1. Every Fibz(S)-cofibration is a retract of a trans-

finite composition of pushouts of elements of A(Fin(S)) (see Corollary 12.4.18).
Since S-local equivalences are closed under retracts, Proposition 11.2.25 implies
that a retract of a map in (Spcl Z) inducing an S-local equivalence of homotopy
fibers over z must also induce an S-local equivalence of homotopy fibers over z.
Thus, it is sufficient to show that if

Xo X1 Xs Xp (B<A)
P l
P2
Po Ps
A4

is a transfinite composition of pushouts of elements ofA(Fin (S)) , then the induced
map of homotopy fibers HFib, (po) — HFib, (colimg« pg) is an S-local equivalence.

If Spc = Top, then we choose a factorization * = C L Z of the map
* — 2 whose image is z such that s is a trivial cofibration and ¢ is a fibra-
tion, and Proposition 11.2.25 implies that each HFib,(Xg) is naturally weakly
equivalent to C' xz X. Each map C xz X3 — C xz Xp41 is an inclusion (and,
thus, a cofibration), and Proposition 7.3.6 implies that it is an S-local equiva-
lence. Thus, it is a trivial cofibration in the S-local model category structure
on SS (see Theorem 3.3.8). Proposition 12.2.19 now implies that the transfinite
composition C' xz Xy — colimger(C xz Xg) & C xz (colimgey Xp) is an S-local
equivalence, and Proposition 11.2.25 implies that this is weakly equivalent to the
map HFib, (py) — HFib, (colimp« pg).

If Spc = Top, then Proposition 11.2.26 and Proposition 1.2.30 imply that it
is sufficient to show that the induced map of homotopy fibers of total singular
complexes HFib, (py) — HFib, (colimg« Sing ps) = HFib, (Sing colimgc» pg) is a
(Sing S)-local equivalence (where (SingS) = {Sing f | J € S} and we use the
symbol z to also denote the vertex of Sing Z corresponding to z). We choose a
factorization * = C' 5 Sing Z in SS of the map * — Sing Z whose image is z such
that s is a trivial cofibration and ¢ is a fibration, and the argument proceeds as in

the case Spc = SS. O
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7.4. Uniqueness of the fiberwise localization

THEOREM 7.4.1. Let S be a set of maps in Spc(*). If

is the factorization in (Spc(*) 1 7Z) of g into a A(S)-cofibration followed by a A(S)-
injective, then for every z € 7 the induced map of homotopy fibers HFib,(¢q) —
HFib,(r) is an S-local equivalence.

PrOPOSITION 7.4.2. If S is a set of maps in Spc(*), p: X — Z is an object
of (SpclZ), q: Y — Z is a fibration with S-local fibers, g: X — Y is a map

in (SpclZ) and X — LsX is the fiberwise S-localization of X over Z, then the
dotted arrow exists in the diagram

and it is unique up to simplicial homotopy in (Spcl 7).

PRrROOF. Since ¢: Y — 7 is a (FibzS)-injective, this follows from Proposi-
tion 10.4.16. O

THEOREM 7.4.3 (Uniqueness of fiberwise localization). Let S be a set of maps
in Spc(*). If ¢: Y — Z is a fibration in Spc and

X————Y
A

is amap in (Spcl Z) such that for every point z of 7 the induced map of homotopy
fibers HFib, (p) — HFib,(¢) is an S-local equivalence, then the map LgX — Y of
Proposition 7.4.2 is a weak equivalence.

PrOOF. Since for every point z € Z the induced map from the homotopy fiber
of LsX — Z over z to the homotopy fiber of ¢ over z is an S-local equivalence
between S-local spaces, Theorem 4.1.10 implies that it 1s a weak equivalence. The
theorem now follows from the exact homotopy sequence of a fibration applied over
each path component of 7. O

7.5. Other constructions of the fiberwise localization

7.5.1. Decompose the total space. Decompose the total space as a diagram
indexed by the category of simplices of the base, and localize each space in the
diagram.
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102 7. FIBERWISE LOCALIZATION

7.5.2. Using the classification of fibrations. Use the classification of fi-
brations of simplicial sets. The continuity of the localization functor gives us a
simplicial map aut ' — aut L; F. Either take classifying spaces, or use to alter the
twisted cartesian product directly (as in [11] or [2]).

PROPOSITION 7.5.3. If W is f-local and X is cofibrant, then WX is f-local.
Proo¥. This follows from Corollary 1.1.9 and the natural 1somorphisms
(WX)B ~ WHOX (WB)X.
O

ProPosITION 7.5.4. If W is a cofibrant f-local space, then aut W (the monoid
of self-homotopy equivalences of W) is f-local.

PROOF. Since aut W is a nonempty union of a set of path components of W" |
this follows from Proposition 7.5.3 and Lemma 1.7.11. O
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CHAPTER &8

Model categories

8.1. Model categories

We adopt the definition of a model category used in [26]. This is a strengthening
of Quillen’s axioms for a closed model category (see [48, page 233]) in that it requires
the category to contain all small limits and colimits (rather than just the finite ones),
and 1t requires the factorizations described in the fifth axiom to be functorial.

DEeFINITION 8.1.1. If we have a commutative diagram

T

then we will say that the map f 1s a retract of the map g.

DEFINITION 8.1.2. A model category is a category M together with three classes
of maps (cofibrations, fibrations, and weak equivalences) satisfying the following five
axioms:

M1: (Limit axiom) The category M is closed under small limits and colimits.

M2: (Two out of three axiom) If ¢ and h are maps in M such that hg is defined
and two of g, h, and hg are weak equivalences, then so is the third.

M3: (Retract axiom) If ¢ and h are maps in M such that g is a retract of & (in
the category of maps of M) and h is a weak equivalence, a fibration, or a
cofibration, then so is g.

M4: (Lifting axiom) Given the commutative solid arrow diagram in M

A— X

B——Y

the dotted arrow exists in each of the following two cases:
1. ¢ is a cofibration and p is a trivial fibration (i.e., a fibration that is
also a weak equivalence).
2. pis a fibration and ¢ is a trivial cofibration (i.e., a cofibration that is
also a weak equivalence).
M5: (Factorization axiom) Every map g € M has two functorial factorizations:
1. g = hi, where ¢ is a cofibration and A is a trivial fibration.
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106 8. MODEL CATEGORIES

2. ¢ = pJj, where p is a fibration and j is a trivial cofibration.

TeRMINOLOGY. We will follow Quillen [46, 48] in using the term trivial fibra-
tion for a fibration that 1s also a weak equivalence, and the term trivial cofibration
for a cofibration that is also a weak equivalence.

REMARK 8.1.3. The lifting axiom implies both the homotopy extension prop-
erty of cofibrations (see Proposition 8.3.7) and the homotopy lifting property of
fibrations (see Proposition 8.3.8).

REMARK 8.1.4. The retract axiom implies that any two of the three classes of
maps cofibrations, fibrations, and weak equivalences determine the third (see Prop-
osition 8.2.3), and was the reason for the use of the name “closed model category”
for what we call simply a “model category”.

8.1.5. Duality in model categories. The axioms for a model category are

self dual.

ProrosiTION 8.1.6. If M is a model category, then its opposite category M°P
is a model category such that

e the cofibrations in M°P are the opposites of the fibrations in M,
e the fibrations in M°P are the opposites of the cofibrations in M, and
e the weak equivalences in M°P are the opposites of the weak equivalences in

M.
Proo¥F. This follows directly from the definitions. O
REMARK 8.1.7. Thus, any statement that is proved true for all model categories
implies a dual statement in which cofibrations are replaced by fibrations, fibrations

are replaced by cofibrations, colimits are replace by limits, and limits are replace
by colimits.

8.2. Lifting and the retract argument

DEeFINITION 8.2.1. If :: A — B and p: X = Y are maps for which the dotted
arrow exists in every solid arrow diagram

A— X

\(
i Jp
B——Y
then (¢, p) is called a lifting-extension pair, ¢ is said to have the left lifting property
with respect to p, and p is said to have the right lifting property with respect to 1.
PROPOSITION 8.2.2 (The retract argument). Let M be a model category, and
let g: X - Y be a map in M.

1. If g can be factored as ¢ = pi where p has the right lifting property with
respect to g, then g is a retract of 1.

2. If g can be factored as g = pi where ¢ has the left lifting property with
respect to g, then g is a retract of p.

ProoF. We will prove part 1; the proof of part 2 is similar.
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We have the solid arrow diagram

X ——z
B
gl - P
v [ v

Since p has the right lifting property with respect to g, the dotted arrow ¢ exists.
This yields the commutative diagram
= X ——
—— 7 ——

\1—J

“<<—><
"<<T><

and so g is a retract of . O

ProprosITION 8.2.3. Let M be a model category.

1. The map i: A — B is a cofibration if and only if it has the left lifting
property with respect to all trivial fibrations.

2. The mapi: A — B is a trivial cofibration if and only if it has the left lifting
property with respect to all fibrations.

3. The map p: X — Y is a fibration if and only if it has the right lifting
property with respect to all trivial cofibrations.

4. The map p: X — Y is a trivial fibration if and only if it has the right lifting
property with respect to all cofibrations.

ProoF. This follows from the retract argument (Proposition 8.2.2), using ax-
ioms M3, M4, and M5 (see Definition 8.1.2). O

ProOPOSITION 8.2.4. If M is a model category, then the classes of cofibrations
and of fibrations are closed under compositions.

Proo¥. This follows from Proposition 8.2.3. O

LEMMA 8.2.5. Let M be a model category, and let p: X — Y be a map in M.

1. The class of maps with the left lifting property with respect to p is closed
under pushouts.

2. The class of maps with the right lifting property with respect to p is closed
under pullbacks.

Proor. This follows directly from the definitions. O

ProprosITION 8.2.6. Let M be a model category.

1. The class of cofibrations is closed under pushouts.

2. The class of trivial cofibrations is closed under pushouts.
3. The class of fibrations is closed under pullbacks.

4. The class of trivial fibrations is closed under pullbacks.

Proo¥. This follows from Proposition 8.2.3 and Lemma 8.2.5. O
LEMMA 8.2.7. Let M be a model category, and let p: X — Y is a map in M.
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1. The class of maps with the left lifting property with respect to p is closed
under retracts.

2. The class of maps with the right lifting property with respect to p is closed
under retracts.

Proor. This follows directly from the definitions. O

ProprosIiTION 8.2.8. Let M and N be categories, and let F: M = N :U be
adjoint functors. If i: A — B is a morphism in M and p: X — Y is a morphism in
N, then (Fi,p) is a lifting-extension pair (see Definition 8.2.1) if and only if (¢, Up)
is a lifting-extension pair.

Proor. The adjointness implies that there is a one to one correspondence
between solid arrow diagrams of the form

FA —\>‘ X and A —>WUX
e
FB——Y B—UY.

The adjointness also implies that, under this correspondence, the dotted arrow h
exists if and only if the dotted arrow h exists. O

8.2.9. Pushouts and pullbacks.

DEeFINITION 8.2.10. If the square
A"l
IR
B——D
is a pushout, then the map g will be called the pushout of f along h. If the square
is a pullback, then the map f will be called the pullback of g along k.

LEMMA 8.2.11. If h: E — F is a pushout (see Definition 8.2.10) of g: C'— D
and k: G — H is a pushout of h, then k is a pushout of g.

ProoOF. In the commutative diagram
C——F——G
gl lh lk
D——F——H
if the two squares are pushouts, then the rectangle is a pushout. O

ProprosiTiON 8.2.12. Consider the commutative diagram
C——E—=¢
IR
D——F——H
1. If H is the pushout D lls G and F' is the pushout D ll¢ E, then H is the
pushout F llg G.
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2. If C is the pullback D xg G and E is the pullback F xg (G, then C' is the
pullback D xp FE.

ProoF. We will prove part 1; the proof of part 2 is similar.

If W is an object and j: FF — W and k: G — W are maps such that jg = ki,
then kis = jgs = juf. Since H 1s the pushout D I G, there exists a unique map
l: H — W such that lvu = ju and lh = k. Since F' is the pushout D Il E and
the maps j and {v satisfy both ({v)u = (j)u and (j)g = kt = lht = (lv)g, we have
j = lv. Thus, the map [ satisfies [h = k and v = j. To see that [ is the unique such
map, note that if [ were another map satisfying Ih =k and lv = j, then lvu = ju,
and so the universal property of D Il GG implies that I=1. O

LEMMA 8.2.13 (C. L. Reedy, [50]). Let M be a model category. If we have a
commutative diagram in M

A8 /B
NN
A/ >B/

C—|—7D
pY pY
C/ >D/

in which the front and back squares are pushouts and both fp and C'114 A’ — ('
are cofibrations, then fp is a cofibration.

Proo¥r. It is sufficient to show that fp has the left lifting property with respect
to all trivial fibrations (see Proposition 8.2.3). If we have a commutative diagram

D—X
fDl lp
D ——Y

in which p is a trivial fibration, then we also have a similar diagram with fg in place
of fp. Since fg is a cofibration, there is a map hp: B’ — X making both triangles
commute. Composing hg with A’ — B’ yields a map h4: A’ — X that also makes
both triangles commute. This induces a map C' 114 A’ — X. Since C' 114 A" — ('
is a cofibration, there is a map €/ — X making everything commute, and so there
is an induced map D’/ = ¢’ 114+ B — X making both triangles commute, and the
proof is complete. O

8.3. Homotopy

8.3.1. Left homotopy, right homotopy, and homotopy.

DEFINITION 8.3.2. Let M be a model category, and let f,¢g: X — Y be maps
in M.
1. A cylinder object for X is a factorization
XTTX 22 oyl(X) —2 X
of the fold map 1x I 1x: X [T X — X such that ¢y I 7, is a cofibration and

p 1s a weak equivalence.
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2. A left homotopy from f to g consists of a cylinder object X II X BULEUN
Cyl(X) 2y X for X and a map H: Cyl(X) — Y such that Hiy = f and
Hi; = g. If there exists a left homotopy from f to ¢, then we say that f is
left homotopic to g (written f A q).
3. A path object for Y is a factorization

Y —— Path(Y) 2225 vy x v

of the diagonal map 1y x 1y : Y — Y x Y such that s is a weak equivalence
and pg X pp 1s a fibration.

4. A right homotopy from f to g consists of a path object ¥ Path(Y")
Y xY for Y and a map H: X — Path(Y) such that poH = f and py H = g.
If there exists a right homotopy from f to g, then we say that f is right

PoXp1
_—

homotopic to g (written f ~ q).
5. If f is both left homotopic and right homotopic to g, then we say that f is
homotopic to g (written f ~ g).

LEMMA 8.3.3. Let M be a model category.

1. Every object X of M has a cylinder object X 11 X BULEUN Cyl(X) BN
which p is a trivial fibration.

2. Every object X of M has a path object X % Path(X) PoXPL ¥ % X in
which s is a trivial cofibration.

ProoF. Factor the map 1x I 1x: X1 X — X into a cofibration followed by a
trivial fibration, and factor the map 1x x 1x: X — X x X into a trivial cofibration
followed by a fibration. O

ProrosITION 8.3.4. Let M be a model category, and let f, g: X — Y be maps
in M.
1. The maps f and g are left homotopic if and only if there is a factorization
XX 225 05 X of the fold map 1x I 1x : X II X — X such that p is
a weak equivalence and a map H: C' — Y such that Hig = f and Hi; = g.
2. The maps f and g are right homotopic if and only if there is a factorization
Yi)PpD—Xpl>Y><YOfthediagonalmaplyxly:Y—>Y><Ysuch
that s is a weak equivalence and a map H: X — P such that pgH = f and

mH=g.

ProoF. We will prove part 1; the proof of part 2 is dual.
The necessity of the condition follows directly from the definition. Conversely,
assume the condition is satisfied. If we factor ip 14, as X I X Loy o 4y ¢ where

Y
ZDHZI

i 114 is a cofibration and ¢ is a trivial fibration, then X I1 X =% " 24 X is a
cylinder object for X and Hg : C' — Y is a left homotopy from f to g. O

LEMMA 8.3.5. Let M be a model category, and let X be an object of M.

1. If X is cofibrant, then the injections ip,i1: X — X 11 X are cofibrations.
2. If X is fibrant, then the projections py,p1: X x X — X are fibrations.

ProoF. We will prove part 1; the proof of part 2 is similar.
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Since the diagram

— X

i

—>XHX

(where ) is the initial object of M) is a pushout, the lemma follows from Proposi-

tion 8.2.6. O
LEMMA 8.3.6. Let M be a model category.

follt

1. F XTI X —= Cyl(X) 2y X is a cylinder object for X, then the injections
ip, t1: X — Cyl(X) are weak equivalences. If X is cofibrant, then they are
trivial cofibrations.

2. If Y 5 Path(Y) 22224 PoXPl Y « Y is a path object for Y, then the projections
po, p1: Path(Y) = Y are weak equivalences. If Y is ﬁbrant, then they are
trivial fibrations.

Proor. This follows from the “two out of three” axiom for weak equivalences
(see Definition 8.1.2) and Lemma 8.3.5. O

ProPosITION 8.3.7 (Homotopy extension property of cofibrations). Let M be
a model category, let X be fibrant, and let k: A — B be a cofibration. If f: A - X
is a map, f: B — X is an extension of f, X = Path(X) LoXPL XX is a path
object for X, and H: A — Path(X) is a right homotopy of f (i.e., a map H such
that poH = f), then there is a map H:B - Path(X) such that poff = f and

Hk=H

ProoF. We have the solid arrow diagram

A—2 s Path(X)

B #) X
and Lemma 8.3.6 implies that py is a trivial fibration. O

ProposITION 8.3.8 (Homotopy lifting property of fibrations). Let M be a model
category, let A be cofibrant, and let k: X — Y be a fibration. If f: A - Y isa
map, f: A— X isaliftof f, AIl A BN Cyl(A) 2y A is a cylinder object for A,
and H: Cyl(A) = Y is a left homotopy of f (i.e., a map H such that Hiy = f),

then there is a map H : Cyl(A) = X such that Hzo = fand kH = H.
ProoF. We have the solid arrow diagram

A%X

and Lemma 8.3.6 implies that ¢y 1s a trivial cofibration. O
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8.3.9. Homotopy as an equivalence relation.

DEFINITION 8.3.10. Let M be a model category and let X and Y be objects in

follt

1. FXTTX — Cyl(X) 2y X is a cylinder object for X and H : Cyl(X) =Y
is a left homotopy from f: X — Y to g: X — Y, then the inverse of H is

the left homotopy H~1: Cyl(X)~! = Y from g to f where X I1 X

Cyl(X)~! P X s the cylinder object for X defined by Cyl(X)~! =
Cyl(X), iyt =iy, i7" =io, and p~' = p, and the map H~! equals the map
H.

2. If Y % Path(y) 22225 LoXP1 Y < Y is a path object for Y and H: X — Path(Y)
is a right homotopy from f: X — Y to g: X — Y, then the inverse of

H is the right homotopy H=': X — Path(Y)~! from g to f where Y S

1 —
ZD L[Zl

Path(Y)~! pD—) Y xY is the path object for Y defined by Path(Y)~! =
Path(Y), p;' = p1, p7* = po, and s~! = s, and the map H~! equals the
map H.

LEMMA 8.3.11. Let M be a model category and let X and Y be objects in M.

o
1gllig toll?y

1. If X is coﬁbrant and X 11 X ——= Cyl(X) L X and X II X
Cyl(X )’ —> X are cylinder objects for X, then there is a cylinder object
XX 2 cyl(X) 25 X for X in which

(a) Cyl(X)" is the pushout of the diagram Cyl(X) dx Z—g> Cyl(X),
(b) i X — Cyl(X)" is the composition X =% Cyl(X) — Cyl(X)", and
(c) i X — Cyl(X)" is the composition X Z—Il> Cyl(X )’ — Cyl(X)".

2. IfY is fibrant and Y % Path(Y) 22225 PPy Y and Y s Path( ) M)
Y xY are path objects for Y, then there is a path object Y —> Path(Y)"” M)

Y xY forY in which

(a) Path(Y)" is the pullback of the diagram Path(Y) =Y H Path(Y)’,
(b) pg: Path(Y)” = Y is the composition Path(Y)” — Path(Y ) —Y
and

2

i

(c) p{:Path(Y)” =Y is the composition Path(Y)” — Path(Y)’ DLy,
ProoF. We will prove part 1; the proof of part 2 is dual.
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We have the commutative diagram

Lemma 8.3.6 and Proposition 8.2.6 imply that ¢ and ¢{ are trivial cofibrations.
Together with the “two out of three” property of weak equivalences (see Defini-
tion 8.1.2), this implies that p” is a weak equivalence.

It remains only to show that the map X I X BUEE N Cyl(X)" is a cofibration.
This map equals the composition

XX 2o cypl(x) X 2 cypl(x)”,

The first of these is the pushout of ig: X — Cyl(X) along the first inclusion
X — X1 X, and so Lemma 8.3.6 and Proposition 8.2.6 imply that it is a trivial cofi-
bration. The second is the pushout of ¢, 114} alongéi; IT1x: X TX — Cyl(X) T X,
and so Proposition 8.2.6 implies that it is a cofibration. Proposition 8.2.4 now
implies that ¢ 1T ¢} is a cofibration. O

DEFINITION 8.3.12. Let M be a model category and let X and Y be objects in

M.
1. If X is cofibrant, X 11X -2 Cyl(X) & X and X 1T X 2% Cyl(X) 2
X are cylinder objects for X, H: Cyl(X) — Y is a left homotopy from
i X =>Ytog: X =Y, and H: Cyl(X) — Y is a left homotopy from g¢
to h: X — Y, then the composition of the left homotopies H and H’ is the
left homotopy H - H': Cyl(X)” = Y from f to h (where Cyl(X)" is as in
Lemma 8.3.11) defined by H and H'.

2. If Y is fibrant, ¥ - Path(Y) £2%% ¥ « Y and ¥ - Path(Y)
Y x Y are path objects for Y, H: X — Path(Y) is a right homotopy from
i X =Y tog: X =Y, and H': X — Path(Y)’ is a right homotopy from
g to h: X =Y then the composition of the right homotopies H and H' is
the right homotopy H - H': X — Path(Y)” from f to h (where Path(Y)" is
as in Lemma 8.3.11) defined by H and H’.

1 ’
PoXPy
e

ProOPOSITION 8.3.13. Let M be a model category, and let X and Y be objects
in M.
1. If X is cofibrant, then left homotopy is an equivalence relation on the set of
maps from X to Y.
2. IfY is fibrant, then right homotopy is an equivalence relation on the set of
maps from X to Y.
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ProoF. We will prove part 1; the proof of part 2 is dual.

Since there is a cylinder object for X in which Cyl(X) = X, left homotopy is
reflexive. The inverse of a left homotopy (see Definition 8.3.10) implies that left
homotopy is symmetric. Finally, the composition of left homotopies (see Defini-
tion 8.3.12) implies that left homotopy is transitive. O

8.3.14. Homotopy classes of maps.

NoTaTION 8.3.15. Let M be a model category, and let X and Y be objects of
M.

1. If X is cofibrant, we let 7/(X,Y) denote the set of left homotopy classes of
maps from X to Y.

2. If Y is fibrant, we let #"(X,Y") denote the set of right homotopy classes of
maps from X to Y.

3. If X is cofibrant and Y is fibrant, we let 7(X,Y") denote the set of homotopy
classes of maps from X to Y.

ProPOSITION 8.3.16. Let M be a model category, and let f,g: X — Y be maps
in M.
PoXp1

1. If X is cofibrant, f is left homotopic to g, and Y = Path(Y) 22225 vV x vV
is a path object for Y, then there is a right homotopy H: X — Path(Y)
from f to g.

Tt

2. If'Y is fibrant, f is right homotopic to g, and X 1 X ——= Cyl(X) 2 X is
a cylinder object for X, then there is a left homotopy H: Cyl(X) = Y from

ftog.
ProoF. We will prove part 1; the proof of part 2 is dual.

Since f is left homotopicto g, there is a cylinder object X I1.X BN Cyl(X )
X for X and a left homotopy G': Cyl(X) = Y from f to g. Thus, we have the solid
arrow diagram

=, Path( )
T

X
l .. l(i’u,iﬁ)

Cyl(X) —— o Y Y

in which (po,p1) is a fibration. Since X is cofibrant, Lemma 8.3.6 implies that iy
is a trivial cofibration, and so the dotted arrow h exists. If we let H = hiy, then H
is the right homotopy we require. O

ProPOSITION 8.3.17. Let M be a model category, and let f,g: X — Y be maps
in M.

1. If X is cofibrant and f é g, then f < g.
2. IfY is fibrant and f < g, then f é g.

Proo¥. This follows from Lemma 8.3.3 and Proposition 8.3.16. O

ProprosSITION 8.3.18. Let M be a model category. If X is cofibrant and Y is
fibrant, then the left homotopy, right homotopy, and homotopy relations coincide
and are equivalence relations on the set of maps from X to Y.
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Proo¥. This follows from Proposition 8.3.17 and Proposition 8.3.13. O

LEMMA 8.3.19. Let M be a model category, and let f g: X — Y be maps in
M.

1. Iffég and h: Y — Z is a map, themhféhg.
2. If f= g and k: W — X, then fk =~ gk.
Proor. If XTI X — Cyl(X) — X is a cylinder object for X and F: Cyl(X) —

Y 1s a left homotopy from f to g, then AF is a left homotopy from Af to hg. The
proof of part 2 is dual. O

ProprosITION 8.3.20. Let M be a model category.

1. If f,g: X = Y are left homotopic and Y is fibrant, then there is a cylinder
object X T X — Cyl(X) Ly X in which p is a trivial fibration and a left
homotopy H: Cyl(X) = Y from f tog.

2. If f,g: X — Y are right homotopic and X is cofibrant, then there is a path
object Y 2 Path(Y) = Y x Y in which s is a trivial cofibration and aright
homotopy H: X — Path(Y) from f to g.

ProoF. We will prove part 1; the proof of part 2 is dual.
If X1 X — Cyl(X) L5 X is a cylinder object for X such that there is a left

homotopy H': Cyl(X)' = Y from f to g, then we factor p as Cyl(X)’ 2 Cyl(X) 2
X where j is a cofibration and p is a trivial fibration. The “two out of three” axiom
for weak equivalences (see Definition 8.1.2) implies that j is a trivial cofibration,
and so the dotted arrow exists in the diagram

Cyl(x) +y

Cyl(X) — *
which constructs our left homotopy H. O

ProprosITION 8.3.21. Let M be a model category.

1. If A is cofibrant and p: X — Y is a trivial fibration, then p induces an
isomorphism of the sets of left homotopy classes of maps p.: 7'(A, X) —
l
(A, Y).
2. If X is fibrant and i: A — B is a trivial cofibration, then ¢ induces an
isomorphism of the sets of right homotopy classes of maps i.: 7" (B, X) —
(A, X).

ProoF. We will prove part 1; the proof of part 2 is dual.

Lemma 8.3.19 implies that p, is well defined. If g: A — Y is a map and @ is the
initial object of M, then axiom M4 (see Definition 8.1.2) implies that the dotted
arrow exists in the diagram

h— X

|27
P

A T> Y,
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and so p. is surjective. To see that p, is injective, let f g: A — X be maps such

that pf é pg. There is then a cylinder object ATTA — Cyl(A) — A for A and a left
homotopy F: Cyl(4) = Y from pf to pg, and so we have the solid arrow diagram

Al A

Axiom M4 implies that the dotted arrow (' exists, and G 1s a left homotopy from
f tog. O

PRrROPOSITION 8.3.22. Let M be a model category, let X, Y, and Z be cofibrant-
fibrant objects of M, and let f,g: X — Y and h, k:Y — Z be maps. If f ~ g and
h ~ k, them hf ~ kg, and so composition is well defined on homotopy classes of
maps between cofibrant-fibrant objects.

Proo¥. This follows from Lemma 8.3.19. O
8.3.23. The classical homotopy category.

ProPosITION 8.3.24. If M is a model category, then there is a category whose
objects are the cofibrant-fibrant objects in M, whose maps are homotopy classes of
maps in M, and whose composition of maps is induced by composition of maps in

M.
Proo¥. This follows from Proposition 8.3.22. O

DEeFINITION 8.3.25. If M is a model category, then we follow D. M. Kan and
define the classical homotopy category M of M to be the category with objects
the cofibrant-fibrant objects of M, and with morphisms from X to Y the homotopy
classes of maps from X to Y (see Proposition 8.3.24).

ProOPOSITION 8.3.26. Let M be a model category. If f: X — Y is a weak
equivalence between cofibrant-fibrant objects, then it is a homotopy equivalence.

Proor. If we factor f into a cofibration followed by a trivial fibration to obtain
xX&wd Y, then W is also cofibrant-fibrant, and the “two out of three” axiom
(see Definition 8.1.2) implies that p is also a weak equivalence. Since a composition
of homotopy equivalences between cofibrant-fibrant objects is a homotopy equiva-
lence (see Proposition 8.3.22), it is sufficient to show that a trivial cofibration or
trivial fibration between cofibrant-fibrant objects is a homotopy equivalence. We
will show this for the trivial cofibration p; the proof for the trivial fibration ¢ is
dual.

We have the solid arrow diagram

X X
\(
ﬁﬁsl

(in which x denotes the terminal object), and so there exists a dotted arrow r
such that rp = 1x. Proposition 8.3.21 implies that p induces an isomorphism

P 7" (W, W) & 7 (X, W), and, since p*[pr] = [prp] = [lirp) = [[1x] = [p] =
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p*[lw], this implies that pr =~ ly. Thus, r is a homotopy inverse for p (see
Proposition 8.3.18), and so p is a homotopy equivalence. O

PrOPOSITION 8.3.27. Let M be a model category, let W, X, Y, and Z be
cofibrant-fibrant objects, and let f g: X — Y be a pair of maps.

1. If there is a weak equivalence h: Y — Z such that hf ~ hg, then f ~ g.

2. If there is a weak equivalence k: W — X such that fk ~ gk, then f ~ g.

ProoF. We will prove part 1; the proof of part 2 is similar. R
Proposition 8.3.26 implies that there is a map h: Z — Y such that hh ~ 1y.
Thus, f ~1yf~hhf~hhg~1lyg~yg. O

PrOPOSITION 8.3.28. Let M be a model category. If X and Y are cofibrant-
fibrant objects in M, then a map g: X — Y is a homotopy equivalence if either of
the following two conditions is satisfied:

1. The map ¢ induces isomorphisms of the sets of homotopy classes of maps
g (X, X) mn(X,Y) and g.: 7(V, X) = (Y, Y).

2. The map g induces isomorphisms of the sets of homotopy classes of maps
g rm(V, X)) = n(X,X) and g*: 7(V,Y) = w(X,Y).

Proo¥F. We will prove this using condition 1; the proof using condition 2 is
similar.

The isomorphism g, : 7(Y, X) &~ m(Y,Y) implies that there isamap h: ¥ — X
such that gh ~ 1y . Proposition 8.3.22 and the isomorphism g, : n(X, X) =~ n(X,Y)
now imply that & induces an isomorphism h,: 7(X,Y) = (X, X), and so there is
amap k: X — Y such that ik ~ 1x. Thus, h is a homotopy equivalence and g is
its inverse, and so ¢ is a homotopy equivalence as well. O

8.4. Relative homotopy and fiberwise homotopy

THEOREM 8.4.1. Let M be a model category.

1. If W is an object in M, then the category (W | M) of objects of M under
W is a model category in which a map is a weak equivalence, fibration, or
cofibration if it is one in M.

2. If W is an object in M, then the category (M| W) of objects of M over
W is a model category in which a map is a weak equivalence, fibration, or
cofibration if it is one in M.

Proor. This follows directly from the definitions. O

LEMMA 8.4.2. If C is a category and g: X — Y is a map in C, then the functor
g« (X 1C) = (Y 1C) that takes the element X — 7 of (X ] C€) to its pushout
along g Is left adjoint to the functor g*: (Y L €) — (X | M) that takes the element
Y = W of (Y | C) to its composition with g.

Proo¥. This follows directly from the universal mapping property of the pushout.
O

DEFINITION 8.4.3. Let M be a model category, and let A be an object in M.

1. If A —> X and A = Y are objects of the category (A} M) of objects of M
under A, then maps f,¢: X = YV in (AL M) will be called left homotopic
under A, right homotopic under A, or homotopic under A if they are, respec-
tively, left homotopic, right homotopic, or homotopic as maps in (A ] M).
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A map will be called a homotopy equivalence under A if 1t is a homotopy
equivalence in the category (A} M).

2.1f X - A and Y — A are objects of the category (M| A) of objects of
M over A, then maps f,g: X — Y will be called left homotopic over A,
right homotopic over A, or homotopic over A if they are, respectively, left
homotopic, right homotopic, or homotopic as maps in (M A). A map will
be called a homotopy equivalence over A if it 1s a homotopy equivalence in

the category (M ] A).

PrOPOSITION 8.4.4. Let M be a model category, and let A be an object in M.

1. If maps are left homotopic, right homotopic, or homotopic under A, then
they are, respectively, left homotopic, right homotopic, or homotopic.

2. If maps are left homotopic, right homotopic, or homotopic over A, then they
are, respectively, left homotopic, right homotopic, or homotopic.

Proo¥. This follows from Proposition 8.3.4. O

COROLLARY 8.4.5. Let M be a model category, and let A be an object in M. If
a map is a homotopy equivalence under A or a homotopy equivalence over A, then
it is a homotopy equivalence in M.

Proo¥. This follows from Proposition 8.4.4. O

DEeFINITION 8.4.6. If M is a model category, then a map :: A — B will be
called the inclusion of a deformation retract (and A will be called a deformation
retract of B) if there is a map r: B — A such that ri = 14 and ir ~ 1. A
deformation retract will be called a strong deformation retract if ir ~ 1g under A.

ProprosITION 8.4.7. Let M be a model category.

1. If ©: A — B is a trivial cofibration of fibrant objects, then A is a strong
deformation retract of B (see Definition 8.4.6), i.e., there isamapr: B — A
such that ri = 14 and ir ~ 1 under A.

2. If p: X — Y s a trivial fibration of cofibrant objects, then there is a map
s: Y — X such that ps = 1y and sp~ 1x over Y.

ProoF. We will prove part 1; the proof of part 2 is dual.
We have the solid arrow diagram

A A
l r ‘( l
B —> *

in (AlM) (see Theorem 8.4.1) in which ¢ is a trivial cofibration and the map
on the right is a fibration. Thus, there exists a map r: B — A in (AL M) such
that 7¢ = 14. Since *(1p) = ¢ = iri = i*(ri), Proposition 8.3.21 implies that
lp = riin (ALM). Since both A and B are both cofibrant-fibrant in (A} M),
Proposition 8.3.18 implies that 1p ~ ré in (A} M). O

8.4.8. Homotopy uniqueness of lifts.
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ProPOSITION 8.4.9. Let M be a model category, and let the solid arrow dia-
gram

be such that either
1. ¢ 1s a cofibration and p is a trivial fibration, or
2. 1 Is a trivial cofibration and p is a fibration.

If hy and hy are maps each of which makes both triangles commute, then hy >~ hs
as maps in (A} M]Y), the category of objects of M under A and over Y.

ProoF. We will assume that condition 1 holds; the proof in the case that
condition 2 holds is similar.

Factor the map BIl4 B — B as Bll4 B i) C 5 B where j is a cofibration
and r is a trivial fibration. We now have the solid arrow diagram

hilths

Bll4 B ﬁ X
i P
C———B Y

in which j is a cofibration and p is a trivial fibration, and so there exists a dotted
arrow H making both triangles commute. In the category (AL M]Y) of objects
of M under A and over YV (see Theorem 8.4.1), B1l4 B — C' — B is a cylinder
object for B (see Definition 8.3.2) and I is a left homotopy from hy to ha. Since
B is cofibrant and X is fibrant in (A} M]Y), Proposition 8.3.17 implies that hy is
also right homotopic to ks, and so hy is homotopic to he in (AL ML Y). O

ProprosIiTION 8.4.10. Let M be a model category. If the solid arrow diagram
A 1 X
l B J
¢ P
B——Y
is such that either

1. ¢ and j are cofibrations and p and ¢ are trivial fibrations, or
2. i1 and j are trivial cofibrations and p and q are fibrations,

then there exists amaph: B — X making both triangles commute, unique up to ho-
motopy in (AL M]Y), and any such map is a homotopy equivalence in (A} M]Y).

Proo¥. This follows from Proposition 8.4.9. O

8.5. Weak equivalences

LEMMA 8.5.1 (K. S. Brown, [16]). Let M be a model category.

1. If g: X = Y is a weak equivalence between cofibrant objects in M, then g
can be factored as ¢ = ji where 1 Is a trivial cofibration and j is a trivial
fibration that has a right inverse that is a trivial cofibration.
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2. Ifg: X — Y is a weak equivalence between fibrant objects in M, then ¢ can
be factored as g = ji where i is a trivial cofibration that has a left inverse
that is a trivial fibration and j is a trivial fibration.

ProoF. We will prove part 1; the proof of part 2 is similar.
Since X and Y are cofibrant, both of the injections X — XY and Y — X1IY
are cofibrations. If we factor the map g l1 1y : X IIY = Y as

xny & z4hy
where k is a cofibration and j is a trivial fibration, then both compositions X —
XIIY -5 Zand Y —- XII'Y — Z are cofibrations. Since ¢ and j are weak
equivalences, axiom M2 (see Definition 8.1.2) implies that the cofibration X — 7

is a weak equivalence, and the composition of cofibrations ¥ - X IIY — Z is a
right inverse to the trivial fibration j. O

COROLLARY 8.5.2. Let M and N be model categories, and let F: M — N be a
functor.

1. If'F takes trivial cofibrations between cofibrant objects in M to weak equiv-
alences in N, then F takes all weak equivalences between cofibrant objects
to weak equivalences in N.

2. IfF takes trivial fibrations between fibrant objects in M to weak equivalences
in N, then F takes all weak equivalences between fibrant objects to weak
equivalences in N.

Proor. This follows from Lemma 8.5.1. O

COROLLARY 8.5.3. Let M be a model category, let C be a category, and let
F: M — € be a functor.

1. If F takes trivial cofibrations between cofibrant objects in M to isomor-
phisms in C, then F takes all weak equivalences between cofibrant objects
to isomorphisms.

2. If F takes trivial fibrations between fibrant objects in M to isomorphisms
in C, then F takes all weak equivalences between fibrant objects to isomor-
phisms.

Proor. This follows from Lemma 8.5.1. O

COROLLARY 8.5.4. Let M be a model category.

1. If g: C' = D is a weak equivalence between cofibrant objects in M and X is a
fibrant object of M, then g induces an isomorphism of the sets of homotopy
classes of maps g*: n(D, X) = 7(C, X).

2. If g: X — Y is a weak equivalence between fibrant objects in M and C'
is a cofibrant object of M, then g induces an isomorphism of the sets of
homotopy classes of maps g,: m(C, X) = n(C,Y).

Proo¥. This follows from Lemma 8.5.1, Proposition 8.3.21, and Proposition 8.3.

O

COROLLARY 8.5.5. Let M be a model category.

1. If g: C' = D is a weak equivalence between cofibrant objects in M and X is
a fibrant object of M, then there is a map C' — X in M if and only if there
isamap D — X in M.
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2. Ifg: X =Y is a weak equivalence between fibrant objects in M and C'is a
cofibrant object of M, then there is a map C' — X in M if and only if there
isamapC —Y in M.

Proo¥. This follows from Corollary 8.5.4. O

ProPOSITION 8.5.6. Let M be a model category, and let f,g: X — Y be maps.

I , , . o .
Iff~gorf = g, then f is a weak equivalence if and only if ¢ is a weak equivalence.

Proo¥F. We will consider the case f é g; the case f = g 1s dual.

Since f L g, there is a cylinder object X II X —2% Cyl(X) 2y X for X and a
map H: Cyl(X) = Y such that hipg = f and hi; = ¢g. Lemma 8.3.6 and axiom M2
(see Definition 8.1.2) imply that f is a weak equivalence if and only if H is a weak

equivalence, and that this i1s true if and only if ¢ 1s a weak equivalence. O

8.6. Homotopy equivalences

LEMMA 8.6.1. Let M be a model category and let X and Y be cofibrant-fibrant
objects in M.

1. Let XIIX 2% Cyl(X) 2y X be a cylinder object for X and let H : Cyl(X) —
Y be a left homotopy from the map f: X — Y to themapg: X - Y. If
H" is the composition (see Definition 8.3.12) of H and H~! (see Defini-
tion 8.3.10), then H" is homotopic in ((X T X) iM) to the constant left

homotopy (i.e., the composition Cyl(X)" x4 Y).

2. Let Y 5 Path(Y) Lol Y % Y be a path object for Y and let H: X —
Path(Y) be a right homotopy from the map f: X =Y to the mapg: X —
Y. If H"” is the composition (see Definition 8.3.12) of H and H~! (see

Definition 8.3.10), then H' is homotopic in (Mi (Y11 Y)) to the constant
right homotopy (i.e., the composition X Joy s—”> Cyl(Y)”).

ProoF. We will prove part 1; the proof of part 2 is dual.
Let Y 2 Path(Y) LoXPl v « Y be a path object for ¥ (see Lemma 8.3.3).
We have the solid arrow diagram

X — L Path(y)

iul l(pu,pl)

Cyl(X) ———— ¥ x Y

) T ¥~

in which 4g is a trivial cofibration (see Lemma 8.3.6) and (po, p1) is a fibration, and
so the dotted arrow K exists. If we let the map K’: Cyl(X)' — Path(()Y) equal
the map K, then K and K’ combine to define a map K”: Cyl(X)" — Path(Y)
that makes the diagram

X1 x —0 s path(v)

NI K"
ZB’HZ’JJ l(pu,pl)

Cyl(X)” — Y xY
(fp"" H")
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commutes. Thus, K is a right homotopy (see Definition 8.3.2) from the map
fr'": Cyl(X)" = Y to the map H”: Cyl(X)” = Y in the category ((X T X) iM)
of objects of M under XT1X. Since Cyl(X)" is cofibrant in (M L(X1n X)) and Y is
fibrant in (M L(Xno X)), Proposition 8.3.18 implies that fp” is also left homotopic
to H” in (Mi(X I X)), and so fp” is homotopic to H” in (Mi(X I X)) O

LEMMA 8.6.2. Let M be a model category and let f: X — Y be a map between
cofibrant-fibrant objects.

1. If f is both a cofibration and a homotopy equivalence, then f is the inclusion
of a strong deformation retract, i.e., there is a map g: Y — X such that
gf = 1x and fg ~ 1y in (X | M).

2. If f is both a fibration and a homotopy equivalence, then f is the dual of a
strong deformation retract, i.e., there isamapg: Y — X such that fg = 1y
and gf ~ 1x in (M L1Y).

ProoF. We will prove part 1; the proof of part 2 is dual.

Since f is a homotopy equivalence, there is amap h: Y — X such that fh ~ 1y
and hf ~ 1x. The homotopy extension property of cofibrations (see Proposi-
tion 8.3.7) implies that A is homotopic to a map g: ¥ — X such that gf = 1x and

fg ~ 1y (see Lemma 8.3.19). Let Y - Path(Y) PPy % Y be a path object
for Y and let H:Y — Path(Y) be a right homotopy from fg to 1y. The com-
position Hf: X — Path(Y) is then a right homotopy from fgf = f to Iy f = f.
The composite homotopy (H fg)- H=1: Y — Path(Y)” (see Definition 8.3.12) com-
posed with f is the composite homotopy (Hf) - (Hf)™': X — Path(Y)”, and
Lemma 8.6.1 implies that (Hf) - (Hf)~! is homotopic in (Mi(Y X Y)) to the
constant homotopy s”f: X — Path(Y)”. The homotopy extension property of
cofibrations now implies that (H fk)- H~! is homotopic in (M (Y x Y)) to a right
homotopy K:Y — Path(Y)” such that K f: X — Path(Y)"” equals s f, i.e., K is
a homotopy from ¢f to 1y in (X { M). O

ProprosITION 8.6.3. Let M be a model category and let X and Y be cofibrant-
fibrant objects in M.

1. If g: X — Y 1is both a cofibration and a homotopy equivalence, then g is a
weak equivalence.

2. If g: X = Y is both a fibration and a homotopy equivalence, then g is a
weak equivalence.

ProoF. We will prove part 1; the proof of part 2 is dual.

If we factor g as X = W 2y ¥ where i is a trivial cofibration and pis a
fibration, then the retract axiom (see Definition 8.1.2) implies that it is sufficient
to show that ¢ is a retract of 7. If we can show that the dotted arrow ¢ exists in
the diagram

K3

l

(8.6.4) W

=
q -
-

g

N

Draft: August 12, 1997



8.6. HOMOTOPY EQUIVALENCES 123

then we would have the diagram

“<<—><

1

which would show that ¢ is a retract of . thus, it is sufficient to find the dotted
arrow ¢ in Diagram 8.6.4. Lemma 8.6.2 implies that there is a map h: Y — X such
that hg = 1x and gf ~ 1y in (X | M). If we let k: Y — W be defined by k = ih,
then kg = 4, and pk = pih = gh ~ 1y in (X [ M). The homotopy lifting property
(see Proposition 8.3.8) of the fibration p in the category (X | M) now implies that
k is homotopic in (X | M) to a map ¢: Y — W such that pg = 1y. O

R ><

£

THEOREM 8.6.5. Let M be a model category. If X and Y are cofibrant-fibrant
objects in M and g: X — Y is a homotopy equivalence, then g is a weak equivalence.

ProoF. If we factor ¢ as X 2w £ Y where h is a cofibration and k is a
trivial fibration, then the “two out of three” property of weak equivalences implies
that it 1s sufficient to show that A is a weak equivalence. Since W is also cofibrant-
fibrant, Proposition 8.6.3 implies that it is sufficient to show that & is a homotopy
equivalence.

If g7': Y — X is a homotopy inverse for g, then let 7: W — X be defined by
r =g 'k. Since rh = g 'kh = g7'g ~ 1x, it is sufficient to show that hr ~ 1y .
Proposition 8.3.21 implies that k induced an isomorphism of sets k.: 7(X, W) ~
m(X,Y). Since khr = gr = gg~ 'k ~ k, this implies that hr ~ 1y . O
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CHAPTER 9

Fibrant and cofibrant approximations

Fibrant and cofibrant approximations are among the most fundamental tools
when doing homotopy theory in a model category. When working with topological
spaces, a CW-approximation to a space X (i.e., a CW-complex weakly equivalent
to X) is the most common cofibrant approximation to X. When working with sim-
plicial sets, a Kan complex weakly equivalent to X (e.g., the total singular complex
of the geometric realization of X, or Kan’s functor Ex™ (see [39])) is a fibrant ap-
proximation to X. Cofibrant and fibrant approximations are used to construct the
homotopy category of a model category (see Theorem 9.6.4). When doing homo-
logical algebra, a resolution of an object is a cofibrant or fibrant approximation in
a model category of cosimplicial or simplicial objects (see, e.g., [45] or [46, Chap-
ter IT, Section 4]). When constructing function complexes in a model category (see
Chapter 17), a resolution of an object is a cofibrant or fibrant approximation in yet a
different model category of cosimplicial or simplicial objects (see Definition 17.1.2).

9.1. Fibrant and cofibrant approximations

DEFINITION 9.1.1. Let M be a model category.

1. A cofibrant approrimation to an object X is a pair ()?,z) where X is a
cofibrant object and i: X — X is a weak equivalence. A fibrant cofibrant
approrimation to X is a cofibrant approximation ()?, i) such that the weak
equivalence ¢ is a trivial fibration. We will sometimes use the term cofibrant
approrimation to refer to the object X without explicitly mentioning the
weak equivalence 1.

2. A fibrant approximation to an object X is a pair ()?,_]) where X is a fibrant
object and j: X — X is a weak equivalence. A cofibrant fibrant approzima-
tion to X is a fibrant approximation ()?,_]) such that the weak equivalence
j i1s a trivial cofibration. We will sometimes use the term fibrant approz-
wmation to refer to the object X without explicitly mentioning the weak
equivalence j.

ProrosiTION 9.1.2. If M is a model category, then every object has both a

functorial fibrant cofibrant approximation and a functorial cofibrant fibrant ap-
proximation.

ProoF. This follows from applying part 1 of the factorization axiom (see Defi-
nition 8.1.2) to the map from the initial object and part 2 of the factorization axiom
to the map to the terminal object. O

DEFINITION 9.1.3. Let M be a model category.

1. If ()?, i) and ()?’, i') are cofibrant approximations to X, a map of cofibrant

approzimations from (X ,7) to (X', ¢') isamap g: X — X' such that i'g = ¢.
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2. 1If ()A( J) and ()A(’,j) are fibrant approx1mat10ns to X, a map of ﬁbmnt
approximations from (X J) to (X’ Jj)isamapg: X — X' such that gi=173.

LEMMA 9.1.4. Let M be a model category.

1. If ()?, i) and ()?’, i') are cofibrant approximations to X and g: X X'isa
map of cofibrant approximations, then g is a weak equivalence.

2. If (X,7) and (X', j') are fibrant approximations to X and g: X — X' is a
map of fibrant approximations, then g is a weak equivalence.

Proor. This follows from the “two out of three” axiom for weak equivalences
(see Definition 8.1.2). O

ProprosITION 9.1.5. Let M be a model category.

1. If ()?,z) is a fibrant cofibrant approximation to X (see Definition 9.1.1)
and g: W — X Is a map from a cofibrant object W, then there is a map
¢: W — X, unique up to homotopy over X (see Definition 8.4.3), such that
wp=gq.

2. If (X, j) is a cofibrant fibrant approximationto X and g: X =Y is a map to

a fibrant object Y, then there is a map ¢: X - Y, unique up to homotopy
under X, such that ¢j = g.

Proo¥. This follows from Proposition 8.4.9. O

ProOPOSITION 9.1.6. Let M be a model category.

1. If (~ i) is a cofibrant approximation to X and ()?’ i') is a fibrant cofi-
brant approximation to X, then there is a map of cofibrant approximations
¢: X = X', unique up to homotopy over X (see Definition 8.4.3), and any
such map g 1s a weak equivalence.

2. If()A( J) is a cofibrant fibrant approximation to X and ()A(’,j Yisa ﬁbrant ap-
proximation to X, then there is a map of fibrant approximations g : X — X’
unique up to homotopy under X, and any such map g is a weak equ1valence.

Proo¥. This follows from Proposition 9.1.5 and Lemma 9.1.4. O

COROLLARY 9.1.7. Let M be a model category.

1. If ()? i) and (~ i') are fibrant cofibrant approx1mat1ons to X, then there
is a map of cofibrant approximations g: X > X’ unique up to homotopy
over X (see Definition 8.4.3), and any such map g is a homotopy equivalence
over X. R

2. If (X,j) and (X', j') are cofibrant fibrant approximations to X, then there is

a map of fibrant approximations ¢: X — X', unique up to homotopy under
X, and any such map ¢ is a homotopy equivalence under X.

Proo¥. This follows from Proposition 9.1.6. O

DEFINITION 9.1.8. Let M be a model category.

1. A cofibrant approzimation to a map g: X — Y consists of a cofibrant ap-
proximation ()?, ix) to X (see Definition 9.1.1), a cofibrant approximation
(17, iy) toY, and a map §: X — Y such that iy § = gix. We will sometimes
use the term cofibrant approzimation to refer to the map g without explicitly
mentioning the cofibrant approximations ()~(, ix) and (17, iy) to X and YV
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9.1. FIBRANT AND COFIBRANT APPROXIMATIONS 127

(see Definition 9.1.1). The cofibrant approximation § will be called a fibrant
cofibrant approrimation if the cofibrant approximations ()?, ix) and (17, iy)
are fibrant cofibrant approximations.

2. A fibrant approzimation to a map g: X — Y consists of a fibrant approxi-
mation ()A(, Jx) to X (see Definition 9.1.1), a fibrant approximation (f/, Jv)
to Y, and a map ¢: X — Y such that gix = jvg. We will sometimes
use the term fibrant approzimation to refer to the map § without explicitly
mentioning the fibrant approximations ()A(,jx) and (?,jy) to X and Y.
The fibrant approximation ¢ will be called a cofibrant fibrant approzima-
tion if the fibrant approximations ()A(,jx) and (?,jy) are cofibrant fibrant
approximations.

ProprosITION 9.1.9. Let M be a model category.

1. Every mapg: X — Y has a natural fibrant cofibrant approximation §: X =
Y such that g is a cofibration.

2. Every map g: X — Y has a natural cofibrant fibrant approximation g : X —
Y such that g is a fibration.

ProoF. We will prove part 1; the proof of part 2 is similar.
Choose a natural fibrant cofibrant approximation (X, ix ) to X, and then choose

a natural factorization of the composition gix : X ovYaX 572y where g
1s a cofibration and 7y 1s a trivial fibration. O

ProprosiTION 9.1.10. Let M be a model category.

1. If g: X — Y is amapin M, X — X is a cofibrant approximation to X,
and Y — Y is a fibrant cofibrant approximation to Y, then there exists a
cofibrant approximation §: X Y to g, and g is unique up to homotopy
over Y.

2. Ifg: X Y isamapin M, X — X is a cofibrant fibrant approximation to
X,andY — Y is a fibrant approximation to Y, then there exists a fibrant
approximation § : X oY to g, and ¢ is unique up to homotopy under X.

Proo¥. This follows from Proposition 8.4.9. O

ProprosiTION 9.1.11. Let M be a model category.

1. If i1(X): 61()() — X and i3(X): GQ(X) — X are natural cofibrant ap-
proximations defined on some subcategory of M, then 61(—) and 62(—)
are naturally weakly equivalent (see Definition 9.5.2) on their domain of
definition. R R

2. If j1(X): X = Fi(X) and j2(X): X — F2(X) are natural fibrant approx-
imations defined on some subcategory of M, then 131(—) and 132(—) are
naturally weakly equivalent on their domain of definition.

ProoF. We will prove part 1; the proof of part 2 is dual.

If we choose a natural fibrant cofibrant approximation ¢(X): G(X) — X for ev-
ery object X in the domain of definition of Ch (=) and 62(—) (see Proposition 9.1.2),
then it is sufficient to show that each of C; (=) and 62(—) is naturally weakly equiv-
alent to 6(—) We will do this for 61(—) (the proof for 62(—) 1s then identical to
that).
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For every object X in the domain of 61(—), we construct the pullback square
X

P (X) Mél(x)

jl(X)l Jil(X)

— X
CX) i(X)
and then we choose a functorial cofibrant approximation k(X): ﬁl(X) — P1(X) to
P1(X). Since i(X) is a trivial fibration, so is j(X), and so the “two out of three”
axiom (see Definition 8.1.2) implies that j;(X) is also a weak equivalence. Thus,

61()() FICILICIN f’l(X) ELISILISIN G(X) is a natural zig-zag of weak equivalences
of cofibrant approximations to X. O

9.2. Approximations and homotopic maps
LEMMA 9.2.1. Let M be a model category, let X T X — Cyl(X) — X be a
cylinder object for X, and let X — Path(X) — X x X be a path object for X.

1. Ifi: X — X is a fibrant cofibrant approximation to X, then
(a) there is a cylinder object X1 X — Cyl(X) = X for X and a diagram

XU —Oy(X) — X

mzl lel(i) lz

XIIX —Cyl(X)—— X

such that Cyl(7): Cyl()?) — Cyl(X) is a fibrant cofibrant approxima-
tion to Cyl(X), and
(b) there is a path object X — Path(X) — X x X for X and a diagram

(9.2.2) X —Path(X) —— X x X

zl JPath(i) lz’xi

X —— Path(X) —— X x X

such that Path(q): Path(f() — Path(X) is a fibrant cofibrant approx-
imation to Path(X) and the right hand square of Diagram 9.2.2 is a
pullback.
2. Ifj: X — X is a cofibrant fibrant approximation to X, then
(a) there is a cylinder object XX — Cyl()A() — X for X and a diagram

(9.2.3) XX —Cyl(X) — X
jujl lcw(j) lj
SIX —— (X)) —— X%

such that Cyl(j): Cyl(X) — Cyl()A() is a cofibrant fibrant approxima-
tion to Cyl(X) and the left hand square of Diagram 9.2.3 is a pushout,
and
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(b) there is a path object X — Path()A() — X x X for X and a diagram

X —— Path(X) —— X x X

jJ lpath(j) lj xJj

X —Path(X) — X x X

such that Path(j): Path(X) — Path()A() is a cofibrant fibrant approx-
imation to Path(X).

ProoF. We will prove part 1; the proof of part 2 is dual.
Factor the composition XX - XIIX — Cyl(X) as Xux % Cyl()?) M}
Cyl(X) where k is a cofibration and Cyl(¢) is a trivial fibration. Since ¢ is a trivial

fibration, the dotted arrow ¢ exists in the solid arrow diagram

lgulsy

=X

X —>Cy1( ) — X

and the “two out of three” axiom for weak equivalences (see Definition 8.1.2) implies
that ¢ is a weak equivalence.

If we let Path()?) be the pullback Path(X) x(x xx) ()? X )?), then we have the
solid arrow diagram

)f;v ............ > Path(X) _ 5(1 % )f;'

zl JPath(i) lz’xi

X —— Path(X) —— X x X

and the universal mapping property of the pullback implies that the dotted arrow
7 exists. Since 7 is a trivial fibration, so is ¢ x ¢, and so Path(¢) (which is a pullback
of i x i) is a trivial fibration. The “two out of three” axiom for weak equivalences
(see Definition 8.1.2) now implies that r is a weak equivalence. O

ProrosiTION 9.2.4. Let M be a model category, and let f,g: X — Y be maps.

1. If f,ﬁ: X — Y are fibrant cofibrant approximations to, respectively, f and
g, and if f and g are left homotopic, right homotopic, or homotopic, then f
and g are, respectwely, left homotopic, right homotopic, or homotopic.

2. Iff g: X — Y are cofibrant fibrant approximations to, respectively, f and
g, and if f and g are left homotopic, right homotopic, or homotopic, then f
and g are, respectively, left homotopic, right homotopic, or homotopic.

ProoF. We will prove part 1; the proof of part 2 is dual.

If f and g are left homotopic, let X T X — Cyl(X) — X be a cylinder
object for X such that there is a left homotopy H: Cyl(X) — Y from f to g. If
XX - Cyl()?) — X is the cylinder object of Lemma 9.2.1, then we have the
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solid arrow diagram

b
=
@

8

o

Since Y — Y is a trivial fibration, the dotted arrow H exists, and 1s a left homotopy
from f to g.

If f and ¢ are right homotopic, let Y — Path(Y) — Y x Y be a path object
for Y such that there is a right homotopy K: X — Path(Y) from f to g. If
Y — Path(?) —Y x Y is the path object of Lemma 9.2.1, then we have the solid
arrow diagram

1(X) —>cy1( ) —— Y

=g

T

)’Z ..... f(> Path(Y) — Y

X —— Path(Y) —— Y

%

X 44— X

Y

Since the right hand square is a pullback, the dotted arrow K exists and is a right
homotopy from f to g. O

9.3. Approximations and weak equivalences

LEMMA 9.3.1. Let M and N be model categories, let gg,g1: X — Y be maps
in M, and let F: M — N be a functor.

1. IfF takes trivial cofibrations between cofibrant objects in M into weak equiv-
alences in N, the object X is cofibrant, and gy is left homotopic to g1, then
F(go) is a weak equivalence if and only if F(g1) is a weak equivalence.

2. If F takes trivial fibrations between fibrant objects in M into weak equiv-
alences in N, the object Y is fibrant, and gy is right homotopic to gy (see
Definition 8.3.2), then F(go) is a weak equivalence if and only if F(g1) is a
weak equivalence.

Proo¥. This follows from Lemma 9.7.4 and Proposition 8.5.6. O

ProrosiTION 9.3.2. Let M and N be model categories, let g: X — Y be a map
in M, and let F: M — N be a functor.

1. IfF takes trivial cofibrations between cofibrant objects in M into weak equiv-
alences in N and there is a cofibrant approximation §: X 5 Y to g (see
Definition 9.1.8) such that F(§) is a weak equivalence, then F takes every
cofibrant approximation to g into a weak equivalence.

2. If F takes trivial fibrations between fibrant objects in M into weak equiv-
alences in N and there is a fibrant approximation g: X 5 VY to g (see
Definition 9.1.8) such that F(g) is a weak equivalence, then F takes every
fibrant approximation to ¢ into a weak equivalence.
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ProoF. We will prove part 1; the proof of part 2 is similar.

Proposition 9.1.9 implies that we can choose a cofibrant approx1mat10ng X' =
Y’ to g such that the weak equivalences ¢y . X' — X and iy Y’ = Y are trivial
fibrations. Tt is sufficient to show that F(g ) is a weak equlvalence if and only if F
takes every other cofibrant approximation to ¢ into a weak equivalence.

Ifg: X — Y is some other cofibrant approximation to ¢, then we have the solid
arrow diagram

/ 17/

\ N

—Y

/ i

in which ¢y and #, are trivial fibrations and ix and iy are weak equivalences. Prop-

osition 9.1.6 implies that there are weak equivalences hx : X — X’ and hy : Y 5y
such that ¢, hx = ix and ¢ hy = iy. Thus, & §'hx = gilyhx = gix = ivg =

/\

Y

i hy§. Since 74 is a trivial fibration and X is cofibrant, Proposition 8.3.21 implies
that §'hx is left homotopic to hy g, and so Lemma 9.3.1 implies that F(§'hx) is a
weak equivalence if and only if F(hy §) is a weak equivalence. Since Corollary 8.5.2
implies that F(hx) and F(hy) are weak equivalences, the “two out of three” axiom
for weak equivalences (see Definition 8.1.2) implies that F(§') is a weak equivalence
if and only if F(g) is a weak equivalence. O

9.4. The classifying space of a small category

DeFINITION 9.4.1. If € is a small category, then the classifying space of € (also
called the nerve of €) is the simplicial set BC in which an n-simplex o is a diagram
in € of the form

oo o1 Tn—1
Qg —r @1 —> - ——> Ol

and the face and degeneracy maps are defined by

(9.4.2)
o1 [ On—1 p e
] —ay — - — Qy, ifj=0
o Tj—2 0;05-1 Ti+1 Op— . .
djO'I Ozo—u)"' ! a1 7 Q41 ! = a, If0<j<n
oo g1 Tpn—2 . .
g > Q] —> o ——> Qg lf_]:n

o0 oj-1 Lo o; ot On-1
S0 =) — Ay — o) D ajp ——— o ——

IfF: C — Disafunctor between small categories, then F induces a map of simplicial

sets BF: BC — BD defined by

Foq Foq Fo,_1

Cpe
BF(aogali>~~~;>an):Fao

Foq Fao,

EXAMPLE 9.4.3. Let GG be a discrete group. If we consider G to be a category
with one object and with morphisms equal to the group G, then B is the standard
classifying space of the group G, i.e., 1 BG &~ G and m;BG = 0 for ¢ # 1.
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ProprosITION 9.4.4. If the small category € has either a terminal or an initial
object, then the geometric realization of BC is contractible.

ProrosiTION 9.4.5. If C is a small category, then there is a natural homeomor-
phism of topological spaces |B(‘3| ~ |B@Op|.

DEFINITION 9.4.6. Let M be a model category.

1. If X is an object of M, we let CofAp(X) denote the category whose ob-
jects are cofibrant approximations to X (see Definition 9.1.1) and whose
morphisms are maps of cofibrant approximations (see Definition 9.1.3).

2. If X is an object of M, we let FibAp(X) denote the category whose objects
are fibrant approximations to X and whose morphisms are maps of fibrant
approximations.

PropPoOSITION 9.4.7. Let M be a model category.

1. If X is an object in M, then B CofAp(X) (see Definition 9.4.1) (which may
exist only in a higher universe, since CofAp(X) is not, in general, small) (see,
e.g., [61, page 17]) is contractible. If € is a small subcategory of CofAp(X),
then there exists a small subcategory D of CofAp(X) such that € C D and
BD is contractible.

2. If X is an object in M, then BFibAp(X) (which may exist only in a higher
universe, since FibAp(X) is not, in general, small) is contractible. If C is a
small subcategory of FibAp(X), then there exists a small subcategory D of
FibAp(X) such that € C D and BD is contractible.

Proor. This follows from Fix This Reference!, Proposition 9.1.2 and Prop-
osition 9.1.6. O

9.5. Equivalence classes of weak equivalences

DEFINITION 9.5.1. Let M be a model category, and let C be a class of maps in
M.

1. If X and Y are objects in M and n > 0, then a zig-zag of elements of C of
length n from X to Y is a diagram of the form

X L Ly L, Iy

a) each f; is an element of C,
b) each f; can point either to the left or to the right, and
) consecutive f;s can point in either the same direction or in opposite
directions.
2. If X, Y, and Z are objects in M and
f

frn—1
%

X Dy L Wi 257 and V251 8 B2y s g

are, respectively, a zig-zag in C from X to Y and a zig-zag in C from Y to
Z, then the composition of those zig-zags is the zig-zag in C of length n+ &
from X to 7
XDy de ey, Iy Sy ey By
DEFINITION 9.5.2. Let M be a model category.

Draft: August 12, 1997



9.5. EQUIVALENCE CLASSES OF WEAK EQUIVALENCES 133

1. If X and Y are objects in M, then X and Y are weakly equivalent if there
is a zig-zag of weak equivalences from X to Y (see Definition 9.5.1).

2. If € is a category and F and G are functors from € to M, then F and G
are naturally weakly equivalent if for every object A in € there is a natural
zig-zag of weak equivalences

o

F(A) S5 Wi (A) S Wa(A) S Wa(d) & o 2 W, (4) & G(4A)
from F(A) to G(4).

DEFINITION 9.5.3. Let M be a model category. If X and Y are objects in M,
then we define an equivalence relation on the zip-zags of weak equivalences from X
to Y (which is a set only in a higher universe) by taking the equivalence relation
generated by the relation:

1. If two consecutive maps in a zig-zag point in the same direction, compose
them; i.e.,

Xwie o swn Bwe S W e Y

equals

Fr+1fr
Rhai o

X w e s, Wigt & =Y

2. If a map in a zig-zag is immediately followed by the same map pointing in
the opposite direction, remove the pair of maps;i.e.,

Xwe o sw W Wl e oY

equals

X w e s We e oY

If two zig-zags of weak equivalences are equivalent under the equivalence relation
generated by that relation, then they will be called equivalent zig-zags of weak
equivalences.

ProrosITION 9.5.4. Let M be a model category. If XY, and Z are objects in
M, then composition of zig-zags of weak equivalences (see Definition 9.5.1) passes to
equivalence classes of zig-zags of weak equivalences (see Definition 9.5.3) to define
the composition of an equivalence class of zig-zags of weak equivalences from X to
Y with an equivalence class of zig-zags of weak equivalences from Y to 7.

Proor. This follows directory from the definitions. O

THEOREM 9.5.5. Let M be a category, let C be a subcategory of M, and let
X and Y be objects in M. If every small subcategory of C is contained in a small
subcategory of C whose classifying space is simply connected, then any two zig-zags
in € from X toY are equivalent.

Proo¥. This follows because the equivalence classes of zig-zags in € from X to
Y are the morphisms in the edge-path groupoid of the classifying space of C from
XtoY. O
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9.6. The homotopy category of a model category

DEeFINITION 9.6.1. If M is a category and S 1s a class of maps in M, then a
localization of M with respect to S is a category LgM and a functor v: M — LgM
such that

1. if s € S, then v(s) is an isomorphism, and

2. if N is a category and F: M — N is a functor such that F(s) is an isomor-
phism for every s in S, then there is a unique functor §: Ls¢M — N such
that v = F

The usual argument shows that if the localization of M with respect to S exists,
then it is unique up to a unique isomorphism. Thus, we will speak of the localization
of M with respect to S.

DEFINITION 9.6.2. If M is a model category, then the Quillen homotopy cate-
gory of M is the localization of M with respect to the class of weak equivalences,
which we denote by v: M — Ho M.

We will show that the Quillen homotopy category of a model category M exists
(see Theorem 9.6.4), and that it is equivalent to the classical homotopy category of
M (see Definition 8.3.25 and Theorem 9.6.7).

LEMMA 9.6.3. Let M be a model category, let N be a category, and let F: M —
N be a functor that takes weak equivalences in M to isomorphisms in N. If

f,9: X =Y are maps in M such that either f é gorf < g (see Definition 8.3.2),
then F(f) = F(g).

Proo¥F. We will consider the case f é g; the case f < g 1s similar.

If f A g, then there is a cylinder object (see Definition 8.3.2) X T X ——
Cyl(X) 2 X for X and a map H: Cyl(X) = Y such that Hip = f and Hé; = g.
Since p is a weak equivalence, F(p) is an isomorphism. Since piy = piy, this implies

that F(ig) = F(i1). Thus, F(f) = F(H)F(io) = F(H)F(i1) = F(g). O

follty

Lemma 9.6.3 implies that a functor F: M — N that takes weak equivalences
to isomorphisms must identify homotopic maps. Thus, when searching for the
Quillen homotopy category of M (see Definition 9.6.2), a natural object to consider
is the classical homotopy category of M (see Definition 8.3.25). Proposition 8.3.26
implies that if we restrict ourselves to the full subcategory of M spanned by the
cofibrant-fibrant objects, then identifying homotopic maps turns weak equivalences
into isomorphisms, and so the classical homotopy category serves as the Quillen
homotopy category of this subcategory.

To deal with objects that are not cofibrant-fibrant, we note that, if X is weakly
equivalent to X and Y is weakly equivalent to Y| then, in any category in which
weak equivalences have become isomorphisms, the set of maps from X to Y will be
1isomorphic to the set of maps from X to Y. This suggests that we should choose
X and Y to be cofibrant-fibrant objects weakly equivalent to, respectively, X and
Y, and define HoM(X,Y) to be the set of homotopy classes of maps from XtoY
in M. This is what we shall do to define Ho M.

THEOREM 9.6.4. If M is a model category, then the Quillen homotopy category
of M (see Definition 9.6.2) exists.
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ProOOF. For every cofibrant object X, let CX = X and let ix: CX - X
be the identity map. For every non-cofibrant object X, factor the map from the
initial object to X into a cofibration followed by a trivial fibration to obtain a
cofibrant object CX and a trivial fibration ix: CX — X. (In the terminology of
Definition 9.1.1, we have chosen a fibrant cofibrant approximation to X.)

For every fibrant object X, let FX = X and let ix: X — FX be the identity
map. For every non-fibrant object X, factor the map from X to the terminal object
into a trivial cofibration followed by a fibration to obtain a fibrant object FX and
a trivial cofibration jx: X — FX. (In the terminology of Definition 9.1.1, we have
chosen a cofibrant fibrant approximation to X.)

We define the category HoM as follows:

1. The objects of Ho M are the objects of M.

2. If X and Y are objects of M, then HoM(X,Y) = 71'(136)(, IEGY) (see Nota-
tion 8.3.15).

3. If X, Y, and Z are objects of M, then the composition

HoM(Y, Z) x HoM(X,Y) — HoM(X, Z)

is the composition of homotopy classes of maps between cofibrant-fibrant
objects in M

m(FCY,FCZ) x n(FCX,FCY) — 7(FCX, FCZ).
We now define the functor v: M — HoM. We let v be the identity on the class
of objects. For every map f: X — Y in M, we have the solid arrow diagram

- A
0 5 CY

l &) J

Cx 7 X ——Y

(where @) denotes the initial object of M), and we can choose a dotted arrow G(f)
that makes the diagram commute. (In the terminology of Definition 9.1.8, G(f) is a
cofibrant approximation to f.) Proposition 8.3.21 implies that G(f) is well defined
up to left homotopy, and so Proposition 8.3.17 implies that it is well defined up to
right homotopy. We now have the solid arrow diagram

~ 6(f) ~ Jey o~
CX 6% 2 FCY
J FC(f) J
]CX
FCX *

(where % denotes the terminal object of M), and we can choose a dotted arrow
ﬁa(f) that makes the diagram commute. Proposition 8.3.21 implies that ﬁa(f) is
well defined up to homotopy, and we define v(f) to the the element of 71'(136)(, IEGY)
represented by ﬁé(f) (see Proposition 8.3.18).

To see that v is a functor, we note that, for every object X of M, Proposi-

tion 8.3.21 implies that 6(1)() L lzx, and so 6(1)() < Iz, and so 136(1)() ~
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Iscx. Similarly, if f: X — YV and g: Y — Z are maps in M, then Proposi-
tion 8.3.21 implies that é(g)a(f) A G(gf), and so ﬁé(g)ﬁa(g) ~ ﬁé(gf) Thus,
we have defined the category HoM and the functor v: M — Ho M.

We will now show that ~ takes weak equivalences in M to isomorphisms in
HoM. If f: X — Y is a weak equivalence, then the “two out of three” property
of weak equivalences (see Definition 8.1.2) implies that G(f) and ﬁé(f) are weak
equivalences, and so Proposition 8.3.26 1mphes that FC(f) is a homotopy equiv-
alence. Thus, the homotopy class of FC(f) is an isomorphism, i.e., y(f) is an
isomorphism in Ho M.

It remains only to show that if N 1s a category and F: M — N is a functor that
takes weak equivalences in M to isomorphisms in N, then there is a unique functor
d: HoM — N such that §v = F. Let F: M — N be such a functor. For every
object X of HoM, we let (5( ) = F( ) If g: X =Y is a map in HoM, then g is
a homotopy class of maps FCX — FCY in M. Lemma 9.6.3 implies that F takes
all elements of that homotopy class to the same map of N, and so we can let

3(9) = F(iv)(F(izy)) F(9)F(zx) (Flix))

(where by F(g) we mean F applied to some map in the homotopy class g). To see
that ¢ is a functor, we note that an identity map in HoM is a homotopy class of
maps in M containing an identity map, and composition of maps between cofibrant-
fibrant objects of M is well defined on homotopy classes (see Proposition 8.3.22).
Thus, § is a functor.

To see that dv = F, we note that v is the identity on objects, and § was
defined to agree with F on objects. If f: X — Y 1s a map in M, then we have the
commutative diagram

-1 -1

o FC() .
FCX —— FCY

jéXT Tjéy
C()

CX ———CY

ul fv

Since F takes weak equivalences to isomorphisms in N, we have

F(f) = Fiv) (F(iay)) ™ F(EC(N))Fliax) (Flix))

Since y(f) is the homotopy class of ﬁa(f), this implies that dy(f) = F(f).
Finally, to see that 4 is the unique functor satisfying dv = F, we note that

every map of HoM is a composition of maps in the image of v and inverses of the

image under v of a weak equivalence of M. O

REMARK 9.6.5. The proof of Theorem 9.6.4 did not use a functorial cofibrant
approximation C but instead let CX equal X when X is cofibrant (and a similar
remark applies to the fibrant approximation F) This was done so that if X and Y
are cofibrant-fibrant objects of M, then Ho M(X,Y") is the set of homotopy classes
of maps in M from X to Y.

Draft: August 12, 1997



9.7. DERIVED FUNCTORS 137

THEOREM 9.6.6. If M is a model category, then the classical homotopy category
of M (see Definition 8.3.25) is naturally isomorphic to the full subcategory of the
Quillen homotopy category of M spanned by the cofibrant-fibrant objects.

ProoF. IfA{( and Y are coﬁb{ant—ﬁbrant objects of M, then the proof of Theo-
rem 9.6.4 sets FCX equal to X, FCY equal to Y, and HoM(X,Y) equal to n(X,Y)
(see Remark 9.6.5). O

THEOREM 9.6.7. If M is a model category, then the embedding of the classical
homotopy category into the Quillen homotopy category (see Theorem 9.6.6) is an
equivalence of categories.

PrRooF. Let v denote the embeddmg M — Ho M described in Theorem 9.6.6.
To define : HoM — My, let C and F be as in the proof of Theorem 9.6.4. If
X is an object of HoM, let n(X) = FCX. If X and Y are objects of HoM, then
HoM(X,Y) = 71'(136)(, ﬁ@Y), and we let 7 be the “identity map” from HoM(X,Y)
to mMce (X, Y).

Since nv is the identity functor of 7M., it remains only to define a natu-
ral equivalence # from the identity functor of HoM to vy. If X is an object
of HoM, then vp(X) = ﬁ@X, and so HOM(X VU(X)) = HoM(X, ﬁ@X) =

(136)( 136136)() = 71'(136)( ﬁéX) (see Remark 9.6.5); we let 6(X): X — vpnX
be the homotopy class of the identity map of FCX in M. O

PrOPOSITION 9.6.8. Let M be a model category. If g: X — Y is a map in M,
then g is a weak equivalence if and only if ¥(g) is an isomorphism in Ho M.

Proo¥F. If g is a weak equivalence, then Theorem 9.6.4 1mphes that v(g) is an
isomorphism. Conversely, if y(g) is an isomorphism, then FC( ) (see the proof of
Theorem 9.6.4) is a homotopy equivalence, and so Theorem 8.6.5 and the “two out
of three” property of weak equivalences implies that ¢ 1s a weak equivalence. O

9.7. Derived functors

DEeFINITION 9.7.1. Let M be a model category, let € be a category, and let
F: M — € be a functor.

1. A left deriwved functor of F is a functor LF: HoM — C together with a
natural transformation e€: Loy — F such that, if G: HoM — C is a functor
and (: Go~v — F is a natural transformation, then there is a unique natural
transformation #: G — LT such that { = ¢(f o v).

2. A right derived functor of F is a functor RF: HoM — C together with a
natural transformation e: F — RF o~y such that, if G: HoM — Cis a functor
and (: F = G o~ is a natural transformation, then there is a unique natural
transformation 6: RF — G such that { = (6 o y)e.

REMARK 9.7.2. The usual argument shows that if a left derived functor of F
exists, then it is unique up to a unique natural equivalence. Thus, we will speak of
the left derived functor of F. A similar remark applies to right derived functors.

REMARK 9.7.3. The left derived functor of F: M — € is also known as the
right Kan extension of F along v: M — HoM (see [41, page 232]). Similarly, the
right derived functor of F: M — C is also known as the left Kan extension of F
along v: M — Ho M.
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LEMMA 9.74. Let M and N be model categories, and let F: M — N be a
functor.

1. IfF takes trivial cofibrations between cofibrant objects in M to weak equiva-
lencesin N, f,g: X — Y are left homotopic maps in M, and X is cofibrant,
then F(f) is left homotopic to F(g).

2. IfF takes trivial fibrations between fibrant objects in M to weak equivalences
N, f,g: X — Y are right homotopic maps in M, and Y is fibrant, then
F(f) is right homotopic to F(g).

ProoF. We will prove part 1; the proof of part 2 is dual.

Since f and g are left homotopic, there is a cylinder object X II X 2=
Cyl(X) Ly X for X and a map H: Cyl(X) = Y such that Hip = f and Hé; = g.
Since pip = 1x, we have F(p)F(io) = 1r(x), and, since 7o is a trivial cofibration
(see Lemma 8.3.6), the “two out of three” property of weak equivalences (see Defi-
nition 8.1.2) implies that F(p) is a weak equivalence. The result now follows from

Proposition 8.3.4. O

LEMMA 9.7.5. Let M be a model category, let C be a category, and let F: M —
C be a functor.

1. IfF takes trivial cofibrations between cofibrant objects in M to isomorphisms
inC, f,g: X =Y are left homotopic maps in M, and X is cofibrant, then
F(f)=F(g).

2. If F takes trivial fibrations between fibrant objects in M to isomorphisms
inC fg: X =Y are right homotopic maps in M, and Y is fibrant, then

F(f) = F(g).
ProoF. We will prove part 1; the proof of part 2 is dual.

Since f and g are left homotopic, there is a cylinder object X IT X BULEUN
Cyl(X) Ly X for X and a map H: Cyl(X) = Y such that Hip = f and Hé; = g.
Since pip = 1x, we have F(p)F(io) = 1r(x), and, since i is a trivial cofibration (see
Lemma 8.3.6), F(ig) is an isomorphism, and so F(p) is an isomorphism. Since pig =

. . -1 . . .
1x = piy, F(ip) = (F(p)) = F(i1). Thus, F(f) = F(H)F(ix) = F(H)F(i1) =
F(g). O

PrOPOSITION 9.7.6. Let M be a model category, let C be a category, and let
F: M — € be a functor.

1. If F takes trivial cofibrations between cofibrant objects to isomorphisms in
C, then the left derived functor of F exists.

2. If F takes trivial fibrations between fibrant objects to isomorphisms in C,
then the right derived functor of F exists.

Proo¥F. We will prove part 1; the proof of part 2 is dual.

Let C be as in the proof of Theorem 9.6.4. We define a functor D: M — C as
follows: If X is an object of M, we let D(X) = F(GX) If f: X - Y is amap in
M, then G(f) : CX — CY is well defined up to left homotopy, and so Lemma 9.7.5
implies that F(@(f)) is well defined; we let D(f) = F(@(f)) To see that D is a
functor, we note that 6(1)() é lzy and so D(1x) = lpx, and if f: X — Y and

g:Y — Z are maps in M, then é(g)a(f) A G(gf), and so D(¢)D(f) = D(gf).

Draft: August 12, 1997



9.7. DERIVED FUNCTORS 139

If f: X — Y is a weak equivalence in M, then G(f) is a weak equivalence
between cofibrant objects, and so Corollary 8.5.3 implies that D(f) is an iso-
morphism. Thus, the universal property of HoM (see Definition 9.6.2 and Def-
inition 9.6.1) implies that there is a unique functor LF: HoM — € such that
LF oy = D. We define a natural transformation e¢: LF oy — F by letting
€e(X) = Flix): LF o y(X) = D(X) = F(GX) — F(X). We will show that the
pair (LT, €) is the left derived functor of F.

If G: HoM — € is a functor and (: G o~y — F is a natural transformation,
then we have the solid arrow diagram

~ ¢(CX) ~
(9.7.7) Govy(CX) — = F(CX) = (LF 0 y)(X)
B(X) T
(Gov)(ix)l JF(Z'X):E(X)

Go’y(X).

and so we define a natural transformation #: G — LF by letting (X) = (C(GX)) o
((G o 'y)(iX))_l. If X is cofibrant, then F(ix) is an isomorphism, and so 6(X)

is the only possible map that makes Diagram 9.7.7 commute. Since CX ~ X for
every object X in HoM, this implies the uniqueness of  in general. O

9.7.8. Total derived functors.

DEFINITION 9.7.9. Let M and N be model categories and let F: M — N be a
functor.

1. A total left derived functor of F is a left derived functor (see Definition 9.7.1)

of the composition M LN 2% HoN. Thus, a total left derived functor of
F is a functor LF: HoM — HoN together with a natural transformation
¢: LF o vy — vy o F such that the pair (LF,¢€) is “closest to vn o F from
the left” (see Definition 9.7.1). We will often refer to LF: HoM — HoN as
the total left derwed functor of F, without explicitly mentioning the natural
transformation e.

2. A total right deriwved functor of F is a right derived functor of the composition
M SN 25 HoN. Thus, a total right derived functor of F is a functor
RF: HoM — HoN together with a natural transformation e¢: vy o F —
RFT o vy such that the pair (RF,¢) is “closest to vy o F from the right”
(see Definition 9.7.1). We will often refer to RF: HoM — HoN as the
total right derived functor of F, without explicitly mentioning the natural
transformation e.

ProprosiTION 9.7.10. Let M and N be model categories, and let F: M — N be
a functor.

1. IfF takes trivial cofibrations between cofibrant objects in M into weak equiv-
alences in N, then the total left derived functor LF: HoM — Ho N exists.

2. If F takes trivial fibrations between fibrant objects in M into weak equiva-
lences in N, then the total right derived functor RF: HoM — Ho N exists.

Proo¥. This follows from Proposition 9.7.6. O
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9.8. Quillen functors

DEFINITION 9.8.1. Let M and N be model categories, and let F: M = N :U
be a pair of adjoint functors. We will say that

1. (F,U) is a Quillen pair,

2. F s a left Quillen functor, and

3. U is a right Quillen functor
if

1. the left adjoint F preserves both cofibrations and trivial cofibrations, and

2. the right adjoint U preserves both fibrations and trivial fibrations.

ProprosIiTION 9.8.2. If M and N are model categories and F: M = N :U is a
pair of adjoint functors, then the following are equivalent:
The pair (F,U) is a Quillen pair.
The left adjoint F preserves both cofibrations and trivial cofibrations.
The right adjoint U preserves both fibrations and trivial fibrations.
The left adjoint F preserves cofibrations and the right adjoint U preserves
fibrations.
5. The left adjoint F preserves trivial cofibrations and the right adjoint U pre-
serves trivial fibrations.

N N

Proo¥. This follows from Proposition 8.2.3 and Proposition 8.2.8. O

DEFINITION 9.8.3. Let M and N be model categories, and let F: M = N :U
be a Quillen pair (see Definition 9.8.1). We will say that

1. (F,U) is a pair of Quillen equivalences,

2. F s a left Quillen equivalence, and

3. U is a right Quillen equivalence

if for every cofibrant object B in M, every fibrant object X in N, and every map

f: B — UX in M, the map f is a weak equivalence in M if and only if the
corresponding map f!: FB — X is a weak equivalence in N.

LEMMA 9.8.4. Let M be a model category and let ix : CX — X and ix: X —
FX be the constructions used in the proof of Theorem 9.6.4.

1. If W is cofibrant and X is fibrant, then ¢x induces an isomorphism of the sets
of homotopy classes of maps (ix ) : m(W, GX) — 7(W, X) that is natural in
both W and X.

2. If X 1is cofibrant and 7 is fibrant, then jx induces an isomorphism of the
set of homotopy classes of maps (jx)*: F(ﬁX, 7Z) = n(X, Z) that is natural
in both X and 7.

Proo¥. This follows from Proposition 8.3.21. O

LEMMA 9.8.5. Let M and N be model categories, and let F: M = N :U be a
Quillen pair (see Definition 9.8.1).

1. If B is a cofibrant object in M and BV B — Cyl(B) — B is a cylinder
object for B, then FBV FB — FCyl(B) — FB is a cylinder object for FB.

2. If X is a fibrant object in N and X — Path(X) — X x X is a path object
for X, then UX — UPath(X) — UX x UX is a path object for UX.
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ProoF. We will prove part 1; the proof of part 2 is dual.

Since B 1s cofibrant, Lemma 8.3.6 and the “two out of three” property of
weak equivalences (see Definition 8.1.2) imply that the map FCyl(B) — FB is
a weak equivalence. Since F is a left adjoint, F(B V B) ~ FB V FB, and so
FBVFB — FCyl(B) — FB is a cylinder object for FB. O

LEMMA 9.8.6. Let M and N be model categories and let F: M = N :U be a
Quillen pair (see Definition 9.8.1).

1. If f,g: A — B are left homotopic maps in M and A is cofibrant, then F(f)
is left homotopic to F(g).

2. If f,9: X =Y are right homotopic maps in N and Y is fibrant, then U(f)
is right homotopic to U(g).

Proor. This follows from Lemma 9.8.5. O

ProprosIiTION 9.8.7. Let M and N be model categories, and let F: M = N :U
be a Quillen pair (see Definition 9.8.1). If X is a cofibrant object in M and Y is a
fibrant object in N, then the adjointness isomorphism between F and U induces a
natural isomorphism of the sets of homotopy classes of maps 7(FX,Y) = n(X,UY).

ProoF. The adjointness of F and U gives us a natural isomorphism of sets
of maps N(FX,Y) =~ M(X,UY); we must show that this passes to homotopy
classes. Lemma 9.8.5 implies that if two maps X — UY in M are left homotopic,
then the corresponding maps FX — Y are left homotopic, and that if two maps
FX — Y in N are right homotopic, then the corresponding maps X — UY are
right homotopic. O

LEMMA 9.8.8. Let M be a model category, let A be cofibrant, and let W, X,
Y, and Z be fibrant. If f: V — W is a weak equivalence and the diagram

commutes, then the diagram

(9.8.9) T(A, W) ——n(A,Y)

Ll

m(A,X) ——7(A,7)

also commutes.
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ProoF. If we choose a functorial fibrant approximation on M (see Proposi-

tion 9.1.2), then we have the diagram
\\<:

V ! w Y

|

‘7
f
W X
Jix Jz
Jw
w X
in which f, Jw, jx, Jv, and jz are weak equivalences between fibrant objects.

Since the front rectangle commutes and f, : (A, ‘A/) — (A, /W) is an isomorphism
(see Corollary 8.5.4), the square

o~

w

!

ye——~0

Z

m(A, W) —— (A, Y)
m(A, X)) ——n(A, 7)

commutes, and Corollary 8.5.4 implies that this square is isomorphic to the square

of Diagram 9.8.9. O

LEMMA 9.8.10. Let M be a model category and let iy : CY =Y and jy: Y —
FY be the constructions used in the proof of Theorem 9.6.4. If W is cofibrant,
then the map 13(231) : FCY — FY induces an isomorphism of the sets of homotopy
classes of maps 13(231) s (W, IEGY) — (W, ﬁY) that is natural in Y.

ProoF. The “two out of three” property of weak equivalences (see Defini-
tion 8.1.2) implies that 13(231) is a weak equivalence of fibrant objects, and so
Corollary 8.5.4 implies that 13(231)* (W, ﬁ@Y) — (W, ﬁY) is an isomorphism.
It remains only to show that this is natural in Y.

If f: Y — Zis amapin M, then we have the diagram

~ Cf ~
CYy CczZ
Jay R Jeg
iz
) L _ Fc L
iy FCY ———— " FCZ
Fliv) J{
S o
Y 7 F(iz)
Jz
Jjv
FY = Fz
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in which all the squares except possibly the front one commute. A diagram chase
shows that F(iz) o FC(f) o jzy = F(f) o F(iy) o jzy, and so Lemma 9.8.8 now
implies that the square

W, FCY — 7Q,FCZ

| J

(W, FY) —— n(W,FZ)
commutes. O
THEOREM 9.8.11. Let M and N be model categories. If F: M = N :U is a

Quillen pair (see Definition 9.8.1), then

1. the total left derived functor LF: HoM — Ho N of F exists,
2. the total right derived functor RU: HoN — HoM of U exists, and
3. the functors LF and RU are an adjoint pair.

ProoF. The existence of the functors LF and RU follows from Proposition 9.7.10.
To see that LF and RU are adjoint, let X be an object in M, let Y be an object in
N, let C and T be the constructions in M as in the proof of Theorem 9.6.4, and let
C’ and T be the analogous constructions in N; then we have natural isomorphisms

HoN(LFX,Y) = HoN(F(CX),Y)
= 7(F'C'F(CX), F'C'Y)
=x(F' F(CX) ﬁ’@’Y) because F(GX) 1s cofibrant

(F
~ W(F(GX), ﬁ/C/Y) see Lemma 9.8.4
~ W(F(GX), ﬁ/Y) see Lemma 9.8.10 and Lemma 9.8.6
71'(6)(, U(ﬁ/Y)) see Proposition 9.8.7
~ F(ﬁCX U(I3 Y)) see Lemma 9.8.4
(F

because GU(ﬁ/Y) 1s fibrant

X

=(FCX, FCU(

[l
an
o
E
>
C‘
< =)
==

= HOM(X, RUY).
O

THEOREM 9.8.12. Let M and N be model categories and let F: M = N :U
be a Quillen pair. If (F,U) is a pair of Quillen equivalences (see Definition 9.8.3),
then the total derived functors LF: HoM = HoN :RU (see Theorem 9.8.11) are
equivalences of the homotopy categories HoM and HoN.

Proor. Fill this in!! O
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CHAPTER 10

Simplicial model categories

10.1. Simplicial model categories
We adopt the definition of a simplicial model category used in [26].
NotaTioN 10.1.1. If f: A — B and p: X — Y are maps in Spc(*), then
Map(A4, X) XMap(A,Y) Map(B,Y)
will denote the pullback of the diagram of simplicial sets
Map(A, X) = Map(A,Y) « Map(B,Y).

DEFINITION 10.1.2. A simplicial model category is a model category M (see
Definition 8.1.2) together with functors

Map(X,Y) €SS for X,V eM
XoKeM for X € Mand K €8S

XEeM for X eMand K €SS

such that the following two axioms hold:

M6: The above functors are a closed cartesian action of SS on M| i.e., for X|Y €
M and K, L € SS there are natural isomorphisms

X@KxL)m(XoK)®L
XA~ X
Map(X,Y)o = M(X,Y)
Map(X @ K,Y) =~ Map(K, Map(X, Y)) ~ Map(X,Y¥)
such that the following three diagrams commute:

X (Kx(LxM)——(X®K)o(LxM)

l

X® ((KxL)x M)

l

(XoExL)oM— (XoK)oL)oM

X @ (K x Al0]) (X @ K) @ A[0]

X®K
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146 10. SIMPLICIAL MODEL CATEGORIES

X @ (A]0] x K) (X @ Al0)) @ K

\/

X®K

M7: If :: A — B is a cofibration and p: X — Y is a fibration, then the map of
simplicial sets

Map(B, X) = Map(4, X) XMap(4,Y) Map(B,Y)

is a fibration that is a trivial fibration if either 7 or p 1s a weak equivalence.

REMARK 10.1.3. Axiom M7 is the homotopy lifting extension theorem, which
was originally a theorem of D. M. Kan for categories of simplicial objects (see [38]).

THEOREM 10.1.4. The definitions of Definition 1.1.3 and Definition 1.1.5 give
each of our categories SS, SS., Top, and Top, the structure of a simplicial model
category.

PROOF. See [34] or [46, Chapter II, Section 3]. O

LEMMA 10.1.5. Let M be a simplicial model category. If X and Y are objects
of M, then, for every n > 0, the set of n-simplices of Map(X,Y) is naturally
isomorphic to the set of map M(X ® A[n],Y).

PrOOF. Since the set of n-simplices of a simplicial set K is naturally isomor-
phic to the set of maps SS(A[n], K), axiom M6 of Definition 10.1.2 yields natural
isomorphisms

Map(X,Y), ~ SS(A[r], Map(X,Y))
~ Map(A[n], Map(X, Y))O
~ Map(X @ Aln],Y)o
~M(X @ Aln],Y).
O

ProrosiTION 10.1.6. Let M be a simplicial model category.

1. Ifi: A — B is a cofibration and X is fibrant, then the map of simplicial sets
i*: Map(B, X) = Map(A4, X) is a fibration.

2. If A is cofibrant and p: X — Y is a fibration, then the map of simplicial
sets p.: Map(A, X) — Map(A,Y) is a fibration.

ProoF. This follows from axiom M7 (see Definition 10.1.2). O

LEMMA 10.1.7. Let M be a category with a closed cartesian action of SS (see
Definition 10.1.2). If A - B and X — Y are maps in M and (K, L) is a pair of
simplicial sets, then the following are equivalent:

1. The dotted arrow exists in every solid arrow diagram of the form

L Map(B, X)
¢

K = Map(A, X) Xnmap(a,v) Map(B,Y)
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The dotted arrow exists in every solid arrow diagram of the form
A——— xK
B—— XL xyr YE

The dotted arrow exists in every solid arrow diagram of the form

A®K gL BOL—3 X

B®K.4>Y

ProoF. This follows from the adjointness properties in axiom M6 (see Defini-
tion 10.1.2). O

ProposiTiON 10.1.8. If M is a model category with a closed cartesian action
of §S (see Definition 10.1.2), then axiom M7 (see Definition 10.1.2) is equivalent to
each of the following:

1.

Ifi: A — B is a cofibration in M and j: L. — K is a cofibration in SS, then
the induced map

A KHagr B&L B K

is a cofibration in M which is also a weak equivalence if either i or j is a
weak equivalence.

. Ifj: L — K is a cofibration in SS and p: X — Y is a fibration in M, then

the induced map

XE 5 XE oy vE
is a fibration in M which is also a weak equivalence if either j or p is a weak
equivalence.

Proo¥. This follows from Lemma 10.1.7 and Proposition 8.2.3. O

10.2. Weak equivalences of mapping spaces

ProrosiTION 10.2.1. Let M be a simplicial model category.

1.

If X is cofibrant and g: Y — Z is a trivial fibration, then g induces a trivial
fibration of simplicial sets g,.: Map(X,Y) = Map(X, 7).

. If 7 is fibrant and h: X — Y is a trivial cofibration, then h induces a trivial

fibration of simplicial sets h*: Map(Y, Z7) = Map(X, 7).

ProoF. This follows directly from axiom M7 (see Definition 10.1.2). O

COROLLARY 10.2.2. Let M be a simplicial model category.

1.

If X is cofibrant and ¢g: Y — Z is a weak equivalence of fibrant objects,
then g induces a weak equivalence of simplicial sets g.: Map(X,Y) —
Map(X, 7).

If 7 is fibrant and h: X — Y is a weak equivalence of cofibrant objects, then
h induces a weak equivalence of simplicial sets h: Map(Y,7) = Map(X, 7).

Proo¥. This follows from Proposition 10.2.1 and Corollary 8.5.2. O
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148 10. SIMPLICIAL MODEL CATEGORIES

LEMMA 10.2.3. Let C be a small category and let M be a simplicial model
category.

1. If X: C — M is a diagram in M and K a simplicial set, then there is a
natural isomorphism

(colim X) ® K = colim(X ® K).

2. If X is an object of M and K : € — SS is a diagram of simplicial sets, then
there is a natural isomorphism

X @ (colim K) = colim(X @ K).

ProoF. We will prove part 1; the proof of part 2 is similar.
If Y is an object of M, then we have natural isomorphisms

M((colimX) ® K, Y) ~ M(colim X | YK)
~ limM(X, Y E)
~lIimM(X @ K,Y)
~ M(colim(X ® K),Y)
(see axiom M6 of Definition 10.1.2), and the composition of these must be induced

by a natural isomorphism (colim X) @ K =~ colim(X @ K). O

ProrosiTION 10.2.4. If M is a simplicial model category, C is a small category,
X:C — M is a diagram in M, and Y is an object of M, then there are natural
isomorphisms of simplicial sets

Map(colim X, V) & limMap(X,Y)
Map(Y, lim X) & limMap(Y, X).
ProoF. We will prove that the first isomorphism exists; the proof of the second
is similar.
For every n > 0, Lemma 10.1.5, Lemma 10.2.3, and axiom M6 of Defini-
tion 10.1.2 yield natural isomorphisms

Map(colim X, Y, ~ SS (A[n], Map(colim X, Y))
~ M((colim X') @ A[n],Y)
~ M(colim(X @ An]),Y)
~ lImM(X © A[n],Y)
~ lim SS(A[n], Map(X, Y))
~ limMap(X,Y),.
O
CoOROLLARY 10.2.5. Let M be a simplicial model category, and let Y be an

object of M. If S is a set and X is an object of M for every s € S, then there is a
natural isomorphism of simplicial sets

Map(H XS,Y) ~ [[ Map(X.,Y).

SES SES
Proo¥. This follows from Lemma 10.1.5 and Proposition 10.2.4. O

Draft: August 12, 1997



10.3. HOMOTOPY LIFTING 149

10.3. Homotopy lifting

If ¢ and p are maps in a model category M, axiom M4 (see Definition 8.1.2)
implies that (¢, p) is a lifting-extension pair (see Definition 8.2.1) if ¢ is a cofibration,
p is a fibration, and at least one of ¢ and p is a weak equivalence. In a simplicial
model category, a stronger statement is possible. Axiom M7 (see Definition 10.1.2)
says that if i: A — B is a cofibration and p: X — Y is a fibration, then the map
of simplicial sets

(10.3.1) Map(B, X) — Map(4, X) Xpap(a,v)y Map(B,Y)

is a fibration, and it is a trivial fibration if at least one of ¢ and p 1s a weak
equivalence.

DeFINITION 10.3.2. Let M be a simplicial model category. If i: A — B and
p: X — Y are maps for which the map of simplicial sets (10.3.1) is a trivial fibration,
then (i,p) is called a homotopy lifting extension pair, and ¢ is said to have the
homotopy left lifting property with respect to p and p is said to have the homotopy
right lifting property with respect to i.

ProrosiTION 10.3.3. Let M be a simplicial model category.

1. If B is cofibrant and p: X — Y is a fibration, then p has the homotopy right
lifting property with respect to the map from the initial object to B if and
only if p induces a weak equivalence p.: Map(B, X) = Map(B,Y).

2. If X is fibrant and i: A — B is a cofibration, then ¢ has the homotopy left
lifting property with respect to the map from X to the terminal object if
and only if i induces a weak equivalence i*: Map(B, X) = Map(4, X).

Proo¥. This follows from Proposition 10.1.6. O

ProrosiTION 10.3.4. Let M be a simplicial model category. If i: A — B and
p: X — Y are maps such that (¢,p) is a homotopy lifting-extension pair (see Defi-
nition 10.3.2), then (i, p) is a lifting-extension pair (see Definition 8.2.1).

Proor. This follows because a trivial fibration of simplicial sets 1s surjective
on the set of vertices. O

ProrosiTION 10.3.5. Let M be a simplicial model category.

1. A map is a cofibration if and only if it has the homotopy left lifting property
with respect to all trivial fibrations.

2. A map is a trivial cofibration if and only if it has the homotopy left lifting
property with respect to all fibrations.

3. A map is a fibration if and only if it has the homotopy right lifting property
with respect to all trivial cofibrations.

4. A map is a trivial fibration if and only if it has the homotopy right lifting
property with respect to all cofibrations.

Proor. This follows from axiom M7 (see Definition 10.1.2), Proposition 10.3.4,
and Proposition 8.2.3. O

The following lemma describes the homotopy lifting property in terms of the
lifting property.

LEMMA 10.3.6. If i: A — B and p: X — Y are maps in a simplicial model
category, then the following are equivalent:
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. The pair (i,p) is a homotopy lifting-extension pair (see Definition 10.3.2).
. For every pair of simplicial sets (K, L), the map p has the right lifting

property with respect to the map
AR Kllagr B® L - B® K.

. For every n > 0, the map p has the right lifting property with respect to the

map

. For every pair of simplicial sets (K, L), the map ¢ has the left lifting property

with respect to the map

XE S vE w0 X

. For every n > 0, the map ¢ has the left lifting property with respect to the

map

XAPT vy AR] o o ag XA

PrOOF. Since a map of simplicial sets is a cofibration if and only if it is an

inclusion and a trivial fibration if and only if it has the right lifting property with
respect to the maps 9A[n] — A[n] for n > 0, this follows from Lemma 10.1.7 and
Proposition 8.2.3. O

LEMMA 10.3.7. Let M be a simplicial model category, and let p be a map in
M.

. The class of maps with the homotopy left lifting property with respect to p

is closed under pushouts.

. The class of maps with the homotopy right lifting property with respect to

p is closed under pullbacks.

Proor. This follows from Lemma 10.3.6 and Lemma 8.2.5. O

LEMMA 10.3.8. Let M be a simplicial model category, and let p be a map in

. The class of maps with the homotopy left lifting property with respect to p

1s closed under retracts.

. The class of maps with the homotopy right lifting property with respect to

p is closed under retracts.

Proor. This follows from Lemma 10.3.6 and Lemma 8.2.7. O

ProrosiTION 10.3.9. Let M be a simplicial model category, and let C be a class

of maps in M.

1. If every map g: X — Y in M can be factored as X i) W &Y where pis

in C and j has the homotopy left lifting property with respect to every map
in C, then a map has the left lifting property with respect to every map in C
if and only if it has the homotopy left lifting property with respect to every
map in C,

. Ifevery mapg: X — Y in M can be factored as X LW B Y where jisin

C and p has the homotopy right lifting property with respect to every map
in C, then a map has the right lifting property with respect to every map in
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C if and only if it has the homotopy right lifting property with respect to
every map in C,

ProoF. We will prove part 1; the proof of part 2 is similar.

Proposition 10.3.4 implies that if a map has the homotopy left lifting property
with respect to every map in €, then it has the left lifting property with respect to
every map in C.

Conversely, if the map g: X — Y has the left lifting property with respect to
every map in @, factor g as X - W 2 Y where pis in € and j has the homotopy
left lifting property with respect to every map in €. The retract argument (see
Proposition 8.2.2) implies that g is a retract of j, and so the result follows from

Lemma 10.3.8. O

ProrosiTION 10.3.10. Let M be a simplicial model category.

1. Ifi: A — B has the homotopy left lifting property with respect top: X — Y
and (K, L) is a pair of simplicial sets, then A @ K llagr B® L - B® K
has the homotopy left lifting property with respect to p.

2. If p: X — Y has the homotopy right lifting property with respect toiv: A —
B and (K, L) is a pair of simplicial sets, then X% — Y x,. X% has the
homotopy right lifting property with respect to 1.

ProoF. We will prove part 2; the proof of part 1 is similar.
Lemma 10.3.6 implies that it 1s sufficient to show that the map

XE S vE w0 xt
has the right lifting property with respect to the map
Lemma 10.1.7 implies that this is equivalent to showing that the map X — Y has
the right lifting property with respect to the map
(A@ Aln]Hagoap) B @ 0A[n]) © K UagaplusgoapBooaner (B @ Aln]) @ L
— (B@ Aln])) @ K.
Lemma 10.2.3 and the isomorphisms of axiom M6 (see Definition 10.1.2) imply that
this map is isomorphic to the map
B® (8A[n] x K HaA[n]xL A[n] X L) HA@(@A[”]XKU@A[.,L]XLA[n]XL) A® (A[n] X [\7)
— B® (An] x K).
Lemma 10.3.6 implies that this map has the left lifting property with respect to
X — Y, and so the proof is complete. O

COROLLARY 10.3.11. Let M be a simplicial model category, and let (K, L) be
a pair of simplicial sets.

1. If A — B is a trivial cofibration in M, then A®@ K g B® L - B K
is also a trivial cofibration.

2. If X =Y is a trivial fibration in M, then X® — Y& xy . X is also a trivial
fibration.

Proo¥. This follows from Proposition 10.3.5 and Proposition 10.3.10. O
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10.4. Simplicial homotopy

10.4.1. Definitions. If X is cofibrant and Y is fibrant, then all notions of
homotopy for maps from X to Y coincide and are equivalence relations (see Prop-
osition 10.4.4). Since not all of our spaces are cofibrant and fibrant, we need to
consider the version of homotopy most naturally associated with weak equivalences
of function spaces: simplicial homotopy.

DEeFINITION 10.4.2. Let X and Y be objects of a simplicial model category, and
let g and h be maps X — Y (i.e., vertices of Map(X,Y’) (see Definition 10.1.2)). We
will follow Quillen [46, Chapter II, Section 1, Definition 4] and say that g is strictly
simplicially homotopic to h (g 2 h) if there is a one simplex of Map(X,Y’) whose
initial vertex is ¢ and whose final vertex is h, and that ¢ and h are stmplicially

homotopic (g = h) if they are equivalent under the equivalence relation generated
by the relation of strict simplicial homotopy.

DEeFINITION 10.4.3. The map g: X — Y is a semplicial homotopy equivalence
if there 1s a map h: Y — X such that gh 2 1y and hg 2y,

In general, strict simplicial homotopy need not be an equivalence relation, since
Map(X,Y) need not be a fibrant simplicial set. In Top,, however, Map(X,Y) is
isomorphic to the total singular complex of the space (in the category of compactly
generated Hausdorff spaces) of continuous maps X — Y, and so it is always a
fibrant simplicial set (see Corollary 1.1.8). (Strict simplicial homotopy in Top,) is
exactly the classical definition of homotopy which is, of course, always an equiva-
lence relation.) In SS,y every space is cofibrant, and so Map(X,Y") will be a fibrant
simplicial set if Y is a fibrant space (see Theorem 10.1.4).

ProposITION 10.4.4 (Quillen). If g and h are simplicially homotopic, then they
are both left homotopic and right homotopic. If X is cofibrant and Y is fibrant,
then the strict simplicial, simplicial, left, and right homotopy relations on the set
of maps X — Y coincide and are equivalence relations.

Proor. This is [46, Chapter II, Section 2, Proposition 5]. O

This immediately implies the following corollaries.

CoROLLARY 10.4.5. If ¢ and h are simplicially homotopic, then they represent
the same morphism in the homotopy category Ho M.

COROLLARY 10.4.6. A simplicial homotopy equivalence is a weak equivalence.
10.4.7. Simplicially homotopic maps.

ProrosiTION 10.4.8. If X and Y are objects of a simplicial model category
and g and h are maps from X to Y, then g 2 b if and only if ¢ and h are in the
same component of the simplicial set Map(X,Y).

Proor. This follows directly from the definitions. O

CoOROLLARY 10.4.9. Let X, Y, and W be objects of a simplicial model category.

1. Ifthemapg: X — Y induces a weak equivalence g, : Map(W, X) = Map(W,Y),
then g induces an isomorphism of the sets of simplicial homotopy classes of

maps g.: [W, X| ~ [W,Y].
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2. Ifthemapg: X — Y induces a weak equivalence g* : Map(Y, W) = Map(X, W),
then g induces an isomorphism of the sets of simplicial homotopy classes of

maps ¢*: [Y, W]~ [X,W].
Proo¥. This follows from Proposition 10.4.8. O

CoROLLARY 10.4.10. Let X, Y, and W be objects of a simplicial model cate-

gory.

1. If W is cofibrant and g: X — Y is a trivial fibration, then g induces an
isomorphism of the sets of simplicial homotopy classes of maps ¢, : [W, X] &
[W,Y].

2. If W is fibrant and g: X — Y is a trivial cofibration, then g induces an
isomorphism of the sets of simplicial homotopy classes of maps ¢*: [Y, W] &

[X, W]
Proo¥. This follows from Proposition 10.2.1 and Corollary 10.4.9. O

COROLLARY 10.4.11. Let X, Y, and W be objects of a simplicial model cate-
gory.
1. If W is cofibrant and g: X — Y is a weak equivalence of fibrant objects,
then g induces an isomorphism of the sets of simplicial homotopy classes of
maps g.: [W, X| ~ [W,Y].
2. If W is fibrant and g: X — Y is a weak equivalence of cofibrant objects,
then g induces an isomorphism of the sets of simplicial homotopy classes of

maps ¢*: [Y, W]~ [X,W].
Proo¥. This follows from Corollary 10.2.2 and Corollary 10.4.9. O

COROLLARY 10.4.12. If g, h: X — Y are simplicially homotopic, j: W — X
and k:Y — Z, then kg 2 kh and 97 = hj.

Proo¥. This follows from Proposition 10.4.8. O

DEeFINITION 10.4.13. A generalized interval is a simplicial set that is a union of
finitely many one simplices with vertices identified so that its geometric realization
1s homeomorphic to a unit interval.

ProrosiTION 10.4.14. If g, h: X — Y, then g and h are simplicially homotopic
if and only if there is a generalized interval J and a map of simplicial sets J —
Map(X,Y) taking the ends of J to g and h.

Proo¥. This follows from Proposition 10.4.8. O

REMARK 10.4.15. A map J — Map(X,Y) as in Proposition 10.4.14 will be
called a simplicial homotopy from g to h. The maps X @ J — Y and X — Y/ that
correspond under the isomorphisms of Definition 10.1.2 will also be called simplicial
homotopies from g to h.

ProrosiTION 10.4.16. If i: A — B has the homotopy left lifting property with
respect top: X — Y (see Definition 10.3.2), then for every commutative solid arrow
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diagram

—

A X
s

) o

1 p

B——Y

there exists a map h: B — X making both triangles commute, and the map h is
unique up to simplicial homotopy.

Proo¥. This follows from Definition 10.3.2 and Proposition 10.4.8. O

COROLLARY 10.4.17. If we have the solid arrow diagram

40

B—2%D
in a simplicial model category such that both i and j have the homotopy left lifting
property with respect to each of p and g, then there exists a map h: B — C, unique
up to simplicial homotopy, such that hi = j and ph = ¢, and any such map is a
simplicial homotopy equivalence.

Proo¥. This follows from Proposition 10.4.16. O

LEMMA 10.4.18. An isomorphism in a simplicial model category has both the
homotopy left lifting property and the homotopy right lifting property with respect
to every map in the category.

Proor. This follows from the fact that an isomorphism induces an isomor-
phism of the simplicial set of maps from (or to) any fixed object. O

ProrosITION 10.4.19. Let g: X — Y be a map in a simplicial model category.

1. If g has the homotopy left lifting property with respect to the maps from
each of X andY to the terminal object of the category, then g is the inclusion
of a strong deformation retract, i.e., there is a map r: Y — X such that
rg = lx and gr 2 1y, where the simplicial homotopy (see Remark 10.4.15)
is constant on X.

2. If g has the homotopy right lifting property with respect to the maps from
the initial object of the category to each of X and Y, then there is a map
s: Y — X such that gs = 1y and sg 2 1x, where the simplicial homotopy
(see Remark 10.4.15) lies over the identity map of Y.

ProoF. We will prove part 1; the proof of part 2 is similar.
We have the solid arrow diagram

X X
.-?7(

QJ T l

Y%*

(in which “x” represents the terminal object of the category), and so Corollary 10.4.17
and Lemma 10.4.18 imply that there exists a map r: Y — X such that rg = 1x.
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Thus, we can construct the solid arrow diagram

YoAl] —

*

in which the top map is g opry on X ® A[l] and gr IT 1y on Y @ 9A[1]. Proposi-
tion 10.3.10 implies that the vertical map on the left has the homotopy left lifting
property with respect to the vertical map on the right, and so Proposition 10.3.4
implies that the dotted arrow exists, and the proof is complete. O

COROLLARY 10.4.20. Let g: X — Y be a map in a simplicial model category.

1. If both X and Y are fibrant and ¢ is a trivial cofibration, then ¢ is a sim-
plicial homotopy equivalence. In particular, g is the inclusion of a strong
deformation retract.

2. If both X andY are cofibrant and ¢ is a trivial fibration, then g is a simplicial
homotopy equivalence. In particular, g has a right inverse that is a simplicial
homotopy inverse.

Proo¥. This follows from Proposition 10.4.19. O

10.4.21. Weak equivalences of function spaces.

ProrosiTION 10.4.22. If g,h: X — Y are simplicially homotopic and W is
any object, then g. 2 by Map(W, X) — Map(W,Y) and g* 2 he Map(Y, W) —
Map(X, W).

ProoF. Let X — Y7 be a simplicial homotopy from g to h (where J is a
generalized interval). We then have the map of simplicial sets Map(W, X) —
Map(W,Y”), which corresponds to a map Map(W, X) — Map(W @ J,Y), which
corresponds to a map Map(W, X) — Map(J, Map(W, Y)), which corresponds to a
map Map(W, X) ® J — Map(W,Y), which is a simplicial homotopy from g. to h..

The second assertion is proved similarly, starting with a simplicial homotopy

XoJ=Y. O

COROLLARY 10.4.23. If g: X — Y is a simplicial homotopy equivalence, then,
for any object W, the maps ¢.: Map(W, X) — Map(W,Y) and ¢*: Map(Y, W) —
Map(X, W) are simplicial homotopy equivalences of simplicial sets.

Proo¥. This follows from Proposition 10.4.22. O

Note that these corollaries made no assumptions about whether any of the
objects were fibrant or cofibrant.

ProrosITION 10.4.24. If g: X — Y is a map in a simplicial model category,
then g is a simplicial homotopy equivalence if either of the following two conditions
is satisfied:

1. The map ¢ induces isomorphisms of the sets of simplicial homotopy classes
of maps g.: [X, X =~ [X,Y] and ¢.: [V, X] = [V, Y].

2. The map g induces isomorphisms of the sets of simplicial homotopy classes
of maps g*: [V, X] & [X, X] and g*: [V, Y] = [X,Y].
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Proo¥F. We will prove this using condition 1; the proof using condition 2 is
similar.

The isomorphism g.: [Y, X] & [V,Y] implies that there is a map h: YV — X
such that gh 21y Corollary 10.4.12 and the isomorphism g.: [X, X] =~ [X,Y]
now imply that A induces an isomorphism h,: [X,Y] = [X, X], and so there is a

map k: X — Y such that hk 2 1x. Thus, A is a simplicial homotopy equivalence,
and so g is its inverse and is thus a simplicial homotopy equivalence as well. O

ProrosiTION 10.4.25. If g: X — Y is a map in a simplicial model category,
then g is a simplicial homotopy equivalence if either of the following two conditions
is satisfied:

1. The map g induces weak equivalences of simplicial sets g,.: Map(X, X) =

Map(X,Y) and g.: Map(Y, X) = Map(Y,Y).
2. The map g induces weak equivalences of simplicial sets g*: Map(Y, X) =
Map(X, X) and g*: Map(Y,Y) = Map(X,Y).

Proo¥. This follows from Proposition 10.4.24 and Corollary 10.4.9. O

R

10.5. Detecting weak equivalences

ProrosiTION 10.5.1. Let M be a simplicial model category. If g: X - Y is a
map in M, then g is a weak equivalence if either of the following two conditions is
satisfied:

1. For every fibrant object 7, the map of function spaces g*: Map(Y,7) —

Map(X, 7) is a weak equivalence of simplicial sets.
2. For every cofibrant object W, the map of function spaces g, : Map(W, X) —
Map(W,Y) is a weak equivalence of simplicial sets.

ProoF. We will prove part 1; the proof of part 2 is dual.

Choose cofibrant fibrant approximations (see Definition 9.1.1) ix : X — X and
iy:Y = Y and a fibrant approximation g: X 5 Y to g (see Definition 9.1.8). If
Z 1s a fibrant object, then we have the commutative square

Map(X, Z) «—— Map(Y, Z)

<ix>*T T(M*

Map(X, Z) +— Map(¥, 2)

in which all the maps except §* are weak equivalences of simplicial sets (see Prop-
osition 10.2.1). This implies that §* is also a weak equivalence, and so Proposi-
tion 10.4.25 implies implies that g is a simplicial homotopy equivalence. Thus, g is
a weak equivalence, and so g 1s a weak equivalence and the proof is complete. [

ProrosiTION 10.5.2. Let M be a simplicial model category, let g: X — Y be
a map in M, and let W be an object in M.

1. If W is cofibrant and if g: X — Y is a fibrant approximation to g (see Defi-
nition 9.1.8) such that the induced map of simplicial sets §.: Map(W, )~() —
Map(W,Y/) is a weak equivalence, then for any other fibrant approxima-
tion §: X 5 7Y to g, the induced map of simplicial sets §,.: Map(W, )A() —
Map(W, 17) is a weak equivalence.
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2. If W is fibrant and if g: X — Y is a cofibrant approximation to g (see Defi-
nition 9.1.8) such that the induced map of simplicial sets §*: Map(?, W) —
Map()?, W) is a weak equivalence, then for any other cofibrant approxima-
tion §: X 5Y to g, the induced map of simplicial sets §* : Map(f/, W) —
Map(f/, W) is a weak equivalence.

Proo¥. This follows from Proposition 9.3.2 and Proposition 10.2.1. O

ProrosiTION 10.5.3. Let M be a simplicial model category, let f: X — Y be
a map in M, and let W be an object in M.

1. If X and Y are fibrant and W — W is a cofibrant approximation to W such
that the induced map of simplicial sets f : Map(W, X) — Map(W, Y)isa
weak equivalence, then for any other cofibrant approximation W — W to
W, the induced map of simplicial sets f, : Map(W,X) — Map(/W,Y) is a
weak equivalence.

2. If X and Y are cofibrant and W — W is a fibrant approximation to W such
that the induced map of simplicial sets f*: Map(Y, W) — Map(X, W) is a
weak equivalence, then for any other fibrant approximation W — W to W,
the induced map of simplicial sets f*: Map(Y, /W) — Map(X, /W) is a weak
equivalence.

ProoF. We will prove part 1; the proof of part 2 is dual.
Choose a fibrant cofibrant approximation W — W to W (see Proposition 9.1.2).

There are maps of cofibrant approximations (see Definition 9.1.3) W — W and
W — W, both of which are weak equivalences (see Proposition 9.1.6). Thus, we
have the diagram

Map(W, X) — Map(W, X) = Map(W, X)
Map(/W, Y) = Map(W,Y) — Map(W, Y)

and Corollary 10.2.2 implies that all the horizontal maps are weak equivalences. O

THEOREM 10.5.4. If g: X — Y is a map in a simplicial model category, then
the following are equivalent:

1. The map g is a weak equivalence.

2. For some fibrant approximation g: X 5 Y to g (see Definition 9.1.8) and
every cofibrant object W, the map of simplicial sets g, : Map(W,f() —
Map(W, 17) is a weak equivalence.

3. For every fibrant approximation g: X =Y to g and every cofibrant object
W, the map of simplicial sets §.: Map(W,)?) — Map(W,Y/) is a weak
equivalence.

4. For some cofibrant approximation §: X 5 Y to g (see Definition 9.1.8)
and every fibrant object Z, the map of simplicial sets g*: Map(?, Z) —
Map()?, 7) is a weak equivalence.
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5. For every cofibrant approximation g: X 5 Y to g and every fibrant ob-
Ject Z, the map of simplicial sets §*: Map(Y,7) = Map(X, 7) is a weak
equivalence.

ProoOF. Proposition 10.5.2 implies that 2 is equivalent to 3 and that 4 is equiv-
alent to 5.

Proposition 10.5.1 implies that any of 2, 3, 4 or 5 implies 1.

Corollary 10.2.2 implies that 1 implies both 2 and 4, and so the proof is com-
plete. O

COROLLARY 10.5.5. Let M be a simplicial model category, and let g: X — Y
be a map in M.

1. If X and Y are fibrant, then g is a weak equivalence if and only if, for every
cofibrant object W in M, the map g.: Map(W, X) — Map(W,Y) is a weak
equivalence of simplicial sets.

2. If X and Y are cofibrant, then g is a weak equivalence if and only if, for
every fibrant object Z in M, the map g*: Map(Y,7) — Map(X,7) is a
weak equivalence of simplicial sets.

Proor. This follows from Theorem 10.5.4. O

ProrosiTiON 10.5.6. If M is a simplicial model category, A is an ordinal, and

Xy X4 X5
gul gll gzl
Yy Y Y

is a map of A-sequences in M such that

1. each of the maps go: Xo — Yy (for o < A) is a weak equivalence of cofibrant
objects and
2. each of the maps Xo = Xg41 and Yy — Yoy (for o < A) is a cofibration,

then the induced map of colimits (colimgy): colim X, — colimV,, is a weak equiv-
alence.

ProoOF. Let Z be a fibrant object of M. Theorem 10.5.4 implies that it is
sufficient to show that the map Map(colimY,, Z7) — Map(colim X4, 7) is a weak
equivalence of simplicial sets.

Corollary 10.2.2 implies that the map g*: Map(Yy, Z) = Map(Xq, 7) is a weak
equivalence of fibrant simplicial sets for every a < A, and so the diagram

- —— Map(Ys, 7) —— Map(¥1, Z7) —— Map(Yy, 7)

| J |

<o —— Map(Xsy, Z7) —— Map(X1, Z) —— Map(X,, 7)

is a weak equivalence of towers of fibrations of fibrant simplicial sets. Thus, the
induced map limMap(Yy, Z7) — limMap(X,, 7) is a weak equivalence, and so the
result follows from Proposition 10.2.4. O
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10.6. Simplicial functors

If M and N are simplicial model categories and F: M — N is a functor, then
we often want to consider whether F can be extended to a simplicial functor, i.e.,
whether the definition of F can be extended to define a natural map of simplicial
sets

(10.6.1) Map(X,Y) — Map(FX, FY)

that is compatible with composition and with the isomorphisms Map(X,Y )y ~
M(X,Y) and Map(FX, FY)o ~ N(FX, FY).

If F is to be a simplicial functor, then given an n-simplex in Map(X,Y), i.e.,
amap o: X @ Aln] = Y (see Lemma 10.1.5), we must assign to it an n-simplex of
Map(FX,FY), i.e., amap FX ® A[n] = FY. We can attempt to use F(a): F(X ®
A[n]) = FY, but then we need a map

o:FX ® Aln] = F(X ® An])

to compose with F(a). If we ensure that o yields a natural isomorphism ¢: FX ®
A[0] = F(X ® A[0]) that commutes with the natural isomorphisms X ® A[0] = X,
then the map (10.6.1) would be an extension of F on Map(X,Y)g = M(X,Y). This
would allow us to define the map (10.6.1) for each pair of objects X and Y, but
even if we require that o be natural in both X and A[n], we still could not be sure
that the function (10.6.1) commutes with composition of functions, i.e., that the
diagram

Map(X,Y) x Map(Y, Z7) —— Map(X, 7)

| |

Map(FX,FY) x Map(FY,FZ) —— Map(FX,F7)

commutes. For this, ¢ must have an additional property.

Given n-simplices o € Map(X,Y),, and 8 € Map(Y, Z),, i.e., functions a: X ®
Aln] > Y and §: Y ® A[n] — Z, their composition in Map(X, Z), is the compo-
sition

X ©AR] 222 X @ (Aln] x Aln]) ~ (X @ Aln]) @ Aln] 225 v @ Aln] 2 7

(where D: A[n] — Aln] x A[n] is the diagonal map). If we apply F and compose
with the natural transformation ¢, then we get the n-simplex

FX © Aln] 2 F(X @ Aln))

FEEL B (X @ (Aln] % Ala]) & F((X @ Afnl) © Aln)

F(a®l) F(8)

F(Y @ Aln]) — F(Z)

of Map(FX,FZ). Since ¢ is natural, this can also be written as the composition

(10.6.2) FX @ A[n] 222 FX @ (A[n] x A[n])
= F(X @ (An] x Aln])) = F((X @ Aln]) © A[n])

Fla®l) F(8)

F(Y @ Aln]) F(Z)
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If we start with the same n-simplices o and (3, apply F to each, and compose
each with the natural transformation o, then we get the pair of simplices

FX © Aln] % F(X © Aln]) 2% Fy

FY © Aln] % F(Y @ Aln]) 224 Fz

in Map(FX,FY), x Map(FY,FZ7),. If we compose these, then we get the element

FX @ Aln] 222 FX @ (A[n] x Aln))

~ (FX @ Aln]) @ Aln] 225 F(X @ Aln]) © Aln]

PO By o Aln] S F(Y © Aln]) 224 Fz

of Map(FX,FZ),. Since ¢ is natural, this can also be written as the composition

(10.6.3) FX @ Aln] —22 FX @ (A[n] x Aln])

~ (FX @ Aln]) @ Aln] 225 F(X @ Aln]) © Aln]

(e®1)

% P((X © Aln]) © An]) 2228, o

F(Y @ Aln]) -2 7z

Since we want the composition (10.6.2) to equal the composition (10.6.3), we must
require that the diagram

FX @ (A[n] x Aln]) —— (FX @ A[n]) @ A[n]

la@l

v F(X @ An]) @ Aln]

F(X @ (Aln] x Afn])) == F((X © Aln]) © Aln))
commute.

This leads us to the following theorem.

THEOREM 10.6.4. Let M and N be simplicial model categories. A functor
F: M — N can be extended to a simplicial functor if and only if, for every fi-
nite simplicial set K and object X of M, there isamapo:FX ® K —» F(X ® K),
natural in both X and K, such that

1. for every object X of M, o defines an isomorphismo: (FX)®@A[0] = F(X ®
A[0]) such that the triangle

(FX) ® AJ)] ———— F(X @ A[0])

S

FX

commutes, and
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2. for every object X of M and finite simplicial sets K and L, the diagram
FX@(KxL)—2— (FX@K)oL

la@l

o FIX@K)®L

F(X® (K xL)) 2=F(X®©K)oL)

commutes.

ProOOF. We have isomorphisms
Map(X,Y), ~ SS(A[n], Map(X,Y)) ~M(X ® Aln],Y)

that are natural in X, ¥, and A[n], and so we can define F: Map(X,Y), —
Map(FX,FY), as the composition
M(X @ Aln],Y) “25 N(F(X @ Aln]), FY) 25 N(FX © Aln], FY).
The discussion preceding the statement of the theorem explains why this yields a
simplicial functor.
Conversely, if F: M — N is simplicial, then we can define ¢ as the map corre-
sponding to the composition

K — Map(X, X © K) 7% Map(FX, F(X @ K))
(where the first map above is adjoint to the identity map of X ® K) under the
isomorphism

SS(K,Map(FX,F(X @ K))) ¥ N(FX @ K,F(X ® K)).
O

ExAMPLE 10.6.5. Let M be a simplicial model category. If W is an object in
M, then the functor Map(W, —): M — SS is simplicial. In this case, for (f, k) €
(Map(W,X) ® K)n we have o(f, k) = f x k, where k is the composition of the
projection W @ A[n] = A[n] with the map A[n] — K that takes the nondegenerate
n-simplex of A[n] to k.

ProrosiTION 10.6.6. Let M and N be simplicial model categories, let C be a
small category, and let X be a C-diagram of functors M — N and natural transfor-
mations between them. If for each o € C there is a map o, as in Theorem 10.6.4
that is natural in « and that extends X, to a simplicial functor, then there is a
map o that extends colim,ece X, to a simplicial functor.

PrOOF. Let 0 = colimyee oy O
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CHAPTER 11

Proper model categories

11.1. Properness
DeFINITION 11.1.1. Let M be a model category (see Definition 8.1.2), and let

A B
zl JJ
C D

1. The model category M will be called left proper if, whenever f is a weak
equivalence, ¢ is a cofibration, and the square (11.1.2) is a pushout, the map
g 1s also a weak equivalence.

2. The model category M will be called right proper if, whenever g is a weak
equivalence, j is a fibration, and the square (11.1.2) is a pullback, the map
f 1s also a weak equivalence.

3. The model category M will be called proper if it is both left proper and right
proper.

!

(11.1.2) —

—
g

be a commutative square in M.

ProposITION 11.1.3 (C. L. Reedy, [50]). Let M be a model category and let

(11.1.4) c—lox
k

D——>
1. If p is a fibration, k is a weak equivalence, D and Y are fibrant objects, and
the square (11.1.4) a pullback, then h is a weak equivalence.
2. If g is a cofibration, h is a weak equivalence, C' and X are cofibrant objects,
and the square (11.1.4) a pushout, then k is a weak equivalence.

Proor. Fill this in! O

be a commutative square in M.

COROLLARY 11.1.5. Let M be a model category.

1. If every object of M is cofibrant, then M is left proper.
2. If every object of M is fibrant, then M is right proper.
3. If every object of M is both cofibrant and fibrant, then M is proper.

Proo¥. This follows from Proposition 11.1.3. O
COROLLARY 11.1.6. The categories SS and SS, are both left proper.
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Proo¥. This follows from Corollary 11.1.5. O

COROLLARY 11.1.7. The categories Top and Top, are both right proper.
Proo¥. This follows from Corollary 11.1.5. O

11.1.8. Topological spaces.

LEMMA 11.1.9. Let f: X — Y be a map of path connected topological spaces.
If f induces an isomorphism of fundamental groups f.: m (X, xg) = ™ (Y, f(a:o)) for
some point g € X and an isomorphism of homology f.: H.(X; f*A) = H.(Y; A)
for every local coefficient system A on Y, then [ is a weak equivalence.

Proo¥F. It issufficient to show that the induced map of total singular complexes
is a weak equivalence. Since this is a map of connected simplicial sets inducing
an isomorphism of fundamental groups, it is sufficient to show that it induces
isomorphisms of all higher homotopy groups/,_fm_n/d for this it is sufficient to show

o ——

that the induced map of universal covers Sing f: STI_I\g_S( — SingY induces an
isomorphism of all homology groups. Since the homology groups H, (Sing X) are
naturally isomorphic to the local coefficient homology groups H, (Sing X Z[ﬂ'lX]),
the proof is complete. O

THEOREM 11.1.10. A map of topological spaces f: X — Y is a weak equiv-
alence if and only if it induces an isomorphism of the sets of path components
fe: moX = mgY and, for each path component of X and the corresponding com-
ponent of Y, isomorphisms of fundamental groups and of homology with all local
coefficient systems.

ProoF. The conditions are clearly necessary, and the converse follows from
Lemma 11.1.9. O

ProrosiTION 11.1.11. Let f: X — Y be a weak equivalence of topological
spaces. If n > 0 and a: S™ — X is a map, then the induced map f: X U, D! —
Y Uso D" F s a weak equivalence.

Proo¥. We will use Theorem 11.1.10. It follows immediately that f induces
an isomorphism on the set of path components.

If n =0 or n =1, then the van Kampen theorem implies that f induces an
isomorphism on the fundamental group of each path component. If n > 1, then the
fundamental groups of the components of X and Y were unchanged when the cells
were attached.

To see that f induces an isomorphism of homology with arbitrary local coeffi-
cients, we let

T"H ={z eR"" |0< |2| <1}
X = X u; T+t
X =X u; D
and let ¥ and ¥ be the corresponding constructions for Y. Since X is a deformation

retract of X and Y is a deformation retract of 17, the induced map f: X Yisa
weak equivalence. If B**! is the interior of D?*!, then the subsets X and B®*! of

Draft: August 12, 1997



11.1. PROPERNESS 165

X are an excisive pair, and so a Mayer-Vietoris argument shows that f induces an
isomorphism of homology with arbitrary local coefficients. O

THEOREM 11.1.12. If f: X — Y is a weak equivalence of topological spaces,
s: X — W is a cofibration, and the square

X ——W

)

Y ——7
is a pushout, then g is a weak equivalence.

ProoOF. The cofibration s must be a retract of a relative cell complex ¢: X —

U. If
U
lh
v

is a pushout, then ¢ i1s a retract of A, and so it is sufficient to show that h is a
weak equivalence. If we write ¢ as a transfinite composition of maps, each of which
attaches a single cell, then a transfinite induction using Proposition 11.1.11 and
Proposition 2.2.4 implies that & is a weak equivalence. O

t
—

>

~—

—

THEOREM 11.1.13. The categories Top and Top, are proper model categories.

Proo¥. This follows from Theorem 11.1.12 and Corollary 11.1.7. O

PrOPOSITION 11.1.14. The geometric realization functor commutes with finite
limits.

PROOF. See [33, page 49]. O

THEOREM 11.1.15. The categories SS and SS. are proper model categories.

ProOF. The geometric realization functor commutes with pullbacks (see Prop-
osition 11.1.14). Since the geometric realization of a fibration of simplicial sets is a
fibration (see [47]), right properness follows from the right properness of Top and
Top, (see Theorem 11.1.13), and left properness follows from Corollary 11.1.6. O

THEOREM 11.1.16. The categories Top, Top,, SS, and SS,. are proper model
categories.

Proor. This follows from Theorem 11.1.13 and Theorem 11.1.15. O

11.1.17. Properness and lifting. We are indebted to D. M. Kan for the
following proposition.

ProprosITION 11.1.18. Let M be a model category.

1. Let M be left proper, let g: A — B be a cofibration, let p: X — Y be a fibra-
tion, and let §: A — B be a cofibrant approximation (see Definition 9.1.8)
to g such that g is a cofibration. If p has the right lifting property with
respect to g, then p has the right lifting property with respect to g.
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2. Let M be right proper, let g: A — B be a cofibration, let p: X — Y be a
fibration, and let p: X — Y is a fibrant approximation (see Definition 9.1.8)
to p such that p is a fibration. If g has the left lifting property with respect
to p, then g has the left lifting property with respect to p.

Proo¥F. We will prove part 2; the proof of part 1 is dual.
We have the diagram

ix
— X —

<)

R
M
%

"3,

— Yy —

ty

=0

in which both ix and iy are weak equivalences. If we let PP be the pullback Y x¢ )A(,
then we have the diagram

A X x e
g P P p
B y% v

iy
and, since g has the left lifting property with respect to p, it also has the left lifting
property with respect to j (see Lemma 8.2.5).

If we now consider the category (AL M]Y) of objects of M under A and over
Y, then B, X, and P are objects in this category. Since g has the left lifting
property with respect to j, we know that there is a map in this category from B to
P, and we must show that there is a map in this category from B to X.

The category of objects under A and over Y is a model category in which a
map is a cofibration, fibration, or weak equivalence if and only if it is one in M (see
Theorem 8.4.1). Since j is a pullback of the fibration p, it is also a fibration, and so
X and P are fibrant objects in our category, and B is a cofibrant object. If we knew
that k& was a weak equivalence, then the result would follow from Corollary 8.5.5.

Since iy is a weak equivalence, p is a fibration, and M is a right proper model
category, the map h 1s also a weak equivalence. Since ¢x = hk and both ¢x and A
are weak equivalences, k 1s also a weak equivalence, and the proof is complete.

O

COROLLARY 11.1.19. Let M be a simplicial model category.

1. Let M be left proper, let g: A — B be a cofibration, let p: X — Y be a fibra-
tion, and let §: A — B be a cofibrant approximation (see Definition 9.1.8)
to g such that g is a cofibration. If p has the homotopy right lifting prop-
erty with respect to § (see Definition 10.3.2), then p has the homotopy right
lifting property with respect to g.

2. Let M be right proper, let g: A — B be a cofibration, let p: X — Y be a
fibration, and let p: X — Y be afibrant approximation (see Definition 9.1.8)
to p such that p is a fibration. If g has the homotopy left lifting property
with respect to p (see Definition 10.3.2), then g has the homotopy left lifting
property with respect to p.
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Proo¥. This follows from Proposition 11.1.18 and Lemma 10.3.6. O

11.1.20. Properness and sequential colimits. We are indebted to D. M. Kan
for the following proposition.

PropPosITION 11.1.21. Let M be a left proper simplicial model category (see
Definition 11.1.1). If X is an ordinal and

Xo X1 Xa
gul gll gzl
Yo Y Y,

is a map of A-sequences in M such that
1. each of the maps Xo — Xqq1 and Yo = Yoq1 (for o < A) is a cofibration;
2. each of the maps go: Xo — Yo (for o < A) is a weak equivalence;

then the induced map (colimgy): colim X, — colimY,, is a weak equivalence.

Proor. We construct a A-sequence Zy — 7y — Z5 — --- intermediate be-
tween the given ones by letting Z, be the pushout Yy x, X, for every a < 5.
Proposition 8.2.12 implies that 7, — Z,41 is a cofibration for every a < A, and
we have maps of A-sequences

Xy X Xy
Zy Z Z
Yo Y1 Y

such that

1. each of the maps Zy — Z, (for o < A) is a cofibration,

2. the map kg: Zy — Yy is an isomorphism, and

3. (since M is left proper) each of the maps ko : 7, = Yy (for a < A) is a weak

equivalence.

Since left adjoints commute with colimits, colim 7, 1s isomorphic to the pushout
Yo Ix, (colim X,) (see Lemma 8.4.2); thus, the map colim X, — colimZ, is a
weak equivalence. Thus, it 1s sufficient to show that colim Z, — colimY,, is a weak
equivalence. Since kg: Zg — Yy 1s an isomorphism, each of the maps k. : Z, — Y,
(for o < A) is a weak equivalence of cofibrant objects in the category (Zy M) of
objects under Zy (see Theorem 8.4.1). Thus, Proposition 10.5.6 implies that the
map colim 7, — colimY,, is a weak equivalence, and the proof is complete. O

ProrosITION 11.1.22. Let M be a left proper simplicial model category. If A
is an ordinal and

Xo=Xi2Xo—> -5 Xg— - (B <)

is a A-sequence in M such that Xg — X1 is a cofibration for every § < A, then
there is a A-sequence

)~(0—>)~(1%)~(2—>~~—>)~(@%m (B <)
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and a map of A-sequences

)?0 )?1 5(2 Xz (B <\

gol gll gzl gﬂJ

Xo X1 Xo Xp (B <A)
such that

every )?@ is cofibrant,
every gg: Xg — Xp Is a weak equivalence,
every X3 — Xgy1 Is a cofibration, and

= W N =

the map colimg<y Xg — colimg Xg Is a weak equivalence.

Proor. We will define the )?@ inductively. We begin by choosing a cofibrant
approximation gg: )?0 — X to Xy (see Proposition 9.1.2). If 3+ 1 < A and we
have defined gz : )?@ — X, then we factor the composition )?@ — X5 — X341 into
a cofibration followed by a trivial fibration, to obtain )?@ — )~(@+1 AN Xgpr. If
B < Aand §is alimit ordinal, then Proposition 11.1.21 implies that colimg g X, —
colimg«p X, 18 a weak equivalence, and so we can construct the )?@ as required.

Proposition 11.1.21 implies that the map colimg<y )?@ — colimgex Xp 1s a weak
equivalence, and so the proof 1s complete. O

11.2. Homotopy pullbacks and homotopy fibers

If all objects in a model category M were fibrant, then we would define homo-
topy pullbacks and homotopy fibers in terms of the homotopy limit functor (see
Definition 19.1.10). Unfortunately, homotopy limits are homotopy invariants only
for diagrams of fibrant objects (see Theorem 20.6.10). However, in a right proper
model category (see Definition 11.1.1), we can define a homotopy pullback functor
(see Definition 11.2.2) that is always homotopy invariant (see Proposition 11.2.4)
and that is naturally weakly equivalent to the homotopy limit when all the ob-
jects in the diagram are fibrant (see Proposition 19.4.3). The homotopy fiber of
the map X — Y over a point (see Definition 11.2.17) of ¥ will be defined so that
it is a fibrant object weakly equivalent to the homotopy pullback of the diagram
X =Y « « (where “4” denotes the terminal object of M) (see Definition 11.2.19
and Remark 11.2.21).

11.2.1. Homotopy pullbacks. If M is a right proper model category (see

Definition 11.1.1), then the homotopy pullback of the diagram X g vis
constructed by replacing g and h by fibrations and then taking a pullback (see
Definition 11.2.2). In order to have a well defined functor, we need to choose a
fixed functor to convert our maps into fibrations. We will show, however, that any
other factorization into a weak equivalence followed by a fibration yields an object
naturally weakly equivalent to the homotopy pullback and that, in fact, only one of
the maps must be converted to a fibration (see Proposition 11.2.7). Thus, if either
of the maps is already a fibration, then the pullback i1s naturally weakly equivalent
to the homotopy pullback (see Corollary 11.2.8).

DEFINITION 11.2.2. Let M be aright proper model category (see Definition 11.1.

and let E be an arbitrary but fixed functorial factorization of every mapg: X — Y

Draft: August 12, 1997



11.2. HOMOTOPY PULLBACKS AND HOMOTOPY FIBERS 169

into X —% E(9) Ls, Y, where %4 is a trivial cofibration and p, is a fibration. The

homotopy pullback of the diagram X 9 7 <& ¥ is defined to be the pullback of
the diagram E(g) Loy 7 2 E(h).

LEMMA 11.2.3. Let M be a right proper model category. If g: X — Y is a
weak equivalence and h: W — Z is a fibration, then, for any map k: Y — Z, the

natural map from the pullback of the diagram X *o7 W oto the pullback of
the diagramY 5 7 & W is a weak equivalence.

ProoF. We have the commutative diagram

XxgW—"7">>Y xz W —W

Y A -

X 7 Y p A

in which the vertical maps are all fibrations. Since g is a weak equivalence, the
result follows from Proposition 8.2.12. O

ProposITION 11.2.4 (Homotopy invariance of the homotopy pullback). Let M
be a right proper model category. If we have the diagram

x—Lozel vy

L, 1]

= 7 <, h X
X——=Z«—Y

in which the vertical maps are weak equivalences, then the induced map of homo-
topy pullbacks

E(g) xz E(h) = E(§) x5 E(h)

is a weak equivalence.

Proor. It is sufficient to show that if ¢, h, ¢, and h are fibrations, then the
map of pullbacks X xz Y — X x5V is a weak equivalence. This map equals the
composition

XXZY—>()?><ZZ) xZYzf(xZY%)?xZ?.

Since M is a right proper model category, the map X — X Xz Z is a weak equiv-
alence, and Lemma 11.2.3 implies that the last map in the composition is a weak
equivalence. O

COROLLARY 11.2.5. Let M be a right proper model category. If k: W — X is
a weak equivalence, then the homotopy pullback of the diagram X Gz oy
naturally weakly equivalent to the homotopy pullback of the diagram W g—k> 7
Y.
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ProoF. We have the commutative diagram

gk h
W——/7+—Y

1]

in which the vertical maps are weak equivalences, and so the result follows from
Proposition 11.2.4. O

COROLLARY 11.2.6. Let M be a right proper model category. If the maps
r,s: X — 7 are left homotopic (see Definition 8.3.2), right homotopic, or (if M
is a simplicial model category) simplicially homotopic (see Definition 10.4.2), then

the homotopy pullback of the diagram X — 7 Loyois weakly equivalent to the
homotopy pullback of the diagram X = 7 Ly

ProoF. We will prove this in the case that » and s are left homotopic; the proof
in the case that they are right homotopic is similar, and either of these cases implies
the corollary in the case that they are simplicially homotopic, since maps that are
simplicially homotopic are both left and right homotopic (see Proposition 10.4.4).

If r and s are left homotopic, there is a diagram

x=ctz
such that Hiy = r, Hi; = s, and both ¢y and #; are weak equivalences. The
corollary now follows from Corollary 11.2.5. O

ProrosITION 11.2.7. Let M be a right proper model category. If X ]—g> Wy LN

ZandY 25 Wi 5 Z are factorizations of, respectively, g: X — Z and h: Y — Z,
Jg and jn are weak equivalences, and q, and qj are fibrations, then the homotopy

pullback of the diagram X Szl yvis naturally weakly equivalent to each of
Wg Xz Wh, Wg Xz Y, and X Xz Wh.

ProoF. IfE is the natural factorization used in Definition 11.2.2, then Lemma 11.2.3
implies that the homotopy pullback E(g) xz E(h) is naturally weakly equivalent to
both E(g) xz Y and X xz E(h). Lemma 11.2.3 implies that these are naturally
weakly equivalent to E(g) xz W), and W, xz E(h) respectively, and that these are
naturally weakly equivalent to X xz W;, and W, xz Y, respectively. Lemma 11.2.3
implies that both of these are naturally weakly equivalent to W, xz Wj, and so the
proof is complete. O

COROLLARY 11.2.8. Let M be a right proper model category. If at least one
of the maps g: X — Z and h: Y — Z is a fibration, then the pullback X xz Y is

naturally weakly equivalent to the homotopy pullback of the diagram X SHzdoy.
Proo¥. This follows from Proposition 11.2.7. O

In Proposition 19.4.3, we show that if M is a right proper simplicial model
category and X, Y, and Z are fibrant, then the homotopy pullback of the diagram
X — 7 + Y is naturally weakly equivalent to the homotopy limit of that diagram
(see Definition 19.1.10).
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ProrosiTION 11.2.9. Let M be a right proper model category. If the vertical
maps in the diagram

X—— 7Y

L[]

X——Z—Y
are weak equivalences and at least one map in each row is a fibration, then the map
of pullbacks X xz Y — X Xz Y is a weak equivalence.
Proo¥. This follows from Corollary 11.2.8 and Proposition 11.2.4. O

ProrosiTION 11. 2 10. Let M be a right proper model category. If we have

a d1agram X % 7 &~ v in which at least one of ¢ and h is a fibration and if
h:Y — Z is a fibrant approximation to h, then the pullback of h along g has a
fibrant approximation that is a pullback of h.

ProoF. We have the diagram

W—Y ——

—y
| hJ l
X—>Z—>A

in which W is the pullback X xz Y and ¢y and ¢z are weak equivalences, and we
must show that there is a pullback of h that is a ﬁbrant approximation to k. If
we factor the composition tzg: X — 7 as X —> X —> Z Where tx 1s a trivial
cofibration and ¢ is a fibration, then we can let W=X Xz Y and we have the

diagram
w
X

in which the front and back squares are pullbacks. Proposition 11.2.9 now implies
that i 1s a weak equivalence, and so the pullback k of h is a fibrant approximation

to k. O

—>

k
—>

%

><—F> “<>

X—>Z

11.2.11. Homotopy fiber squares.

DEeFINITION 11.2.12. If M 18 a right proper model category, then a square
A—C

!

B——D

will be called a homotopy fiber square if the natural map from A to the homotopy
pullback (see Definition 11.2.2) of the diagram B — D « C'is a weak equivalence.
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ProrosiTION 11.2.13. If M is a right proper model category and we have the
diagram

A—B
l\‘fA |\fB

A —>\L B
¢ _Jﬁ b J
fo o N
C/ >D/
in which fa, fs, fc, and fp are weak equivalences, then the front square is a

homotopy fiber square if and only if the back square is a homotopy fiber square.

ProoF. If P is the homotopy pullback of the diagram C' — D < B and P’ is
the homotopy pullback of the diagram C" — D’ + B’, then we have the diagram

A—— P
wl |
A/ )P/

and Proposition 11.2.4 implies that the map on the right is a weak equivalence.
Since fa is a weak equivalence, this implies that the top map is a weak equivalence
if and only if the bottom map is a weak equivalence. O

ProrosITION 11.2.14. Let M be a right proper model category. If the front
and back squares of the diagram

A f B f
\‘ A | \ B
Al —>\L B’
; J o J
fe £ N
C/ 5 D/

are homotopy fiber squares and if fg, fc, and fp are weak equivalences, then fu
is a weak equivalence.

Proor. This follows from Proposition 11.2.4. O

ProprosiTION 11.2.15. Let M be a right proper model category. If the right
hand square in the diagram

is a homotopy fiber square, then the left hand square is a homotopy fibers square
if and only if the combined square is a homotopy fiber square.
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PrROOF. Factor C — F as C' - G 25 F where i is a trivial cofibration and p
is a fibration, and let P = F xp G and P’ = D xp G. We now have the diagram

A—B——(C

kl EJJ» 5}

pPr—P—0

| )

D——EF——F
and Proposition 11.2.7 implies that j is a weak equivalence. Proposition 8.2.12
implies that P’ is the pullback D xg P, and so Proposition 11.2.7 implies that k&
is a weak equivalence if and only if the (original) left hand square is a homotopy
fiber square. Since Proposition 11.2.7 implies that & is a weak equivalence if and

only if the (original) combined square is a homotopy fiber square, the proof is
complete. O

11.2.16. Homotopy fibers.
DEFINITION 11.2.17. If M is a model category and Z is an object in M, then

by a point of Z we will mean a map * — Z (where “x” is the terminal object of

DEeFINITION 11.2.18. If M is a model category, ¢: Y — Z 1s a map, and z: * —

7 is a point of Z (see Definition 11.2.17), then the fiber of g over z is the pullback
of the diagram * = Z < Y.

DEFINITION 11.2.19. Let M be a right proper model category. If g: Y — Z is
amap and z: *x = 7 is a point of 7, then the homotopy fiber HFib,(g) of g over z

is the pullback of the diagram % = Z £ E(Y) (see Definition 11.2.2).

ProrosiTION 11.2.20. If M is a right proper model category, g: Y — 7 is a
map in M, and z: x — 7 is a point of Z, then the homotopy fiber of g over 7 is a
fibrant object in M that is naturally weakly equivalent to the homotopy pullback
of the diagram « = Z ¢~ Y.

Proo¥. This follows from Proposition 8.2.6 and Proposition 11.2.7. O

REMARK 11.2.21. The homotopy fiber of the map ¢: Y — Z over a point
z: % — Z was not defined to be the homotopy pullback of the diagram % = 7 Ly
because that homotopy pullback need not be a fibrant object in M.

ProrosITION 11.2.22. Let M be a right proper model category. If g: Y — Z
is a fibration and z: * — Z is a point of Z, then the fiber of g over z is naturally
weakly equivalent to the homotopy fiber of g over z.

Proo¥. This follows from Proposition 11.2.20 and Corollary 11.2.8. O

ProrosITION 11.2.23. Let M be a right proper model category. If g: Y — Z
is a map and z: x — 7 and z': x — Z are points of Z that are (either left or
right) homotopic, then the homotopy fiber of g over z is weakly equivalent to the
homotopy fiber of g over 2'.

Proo¥. This follows from Proposition 11.2.20 and Corollary 11.2.6. O

Draft: August 12, 1997



174 11. PROPER MODEL CATEGORIES

COROLLARY 11.2.24. If h: Y — Z is a map in Spc and z and z’' are points
in the same path component of 7, then the homotopy fiber of h over z is weakly
equivalent to the homotopy fiber of h over 2'.

Proo¥. This follows from Proposition 11.2.23. O

ProrosiTION 11.2.25. Let M be a right proper model category. If 7 is an
object of M, z: ¥ — Z is a point of 7, and x — P — 7 is a factorization of z into
a weak equivalence followed by a fibration, then the homotopy fiber of any map
h:Y — Z over z is naturally weakly equivalent to P xz Y.

Proo¥. This follows from Proposition 11.2.7. O

ProPoOsITION 11.2.26. If h: Y — Z is a map in Top and z is a point of Z, then
the total singular complex of the homotopy fiber of h over z is naturally homotopy
equivalent to the corresponding homotopy fiber of (Sing h): SingY — Sing 7.

Proor. If E is the factorization in Top of Definition 11.2.2 and ¢,: * — Z
is the constant map to z, then Sing(x) — SingE(i,) — Sing Z is a factorization
of Sing(*) — Sing Z into a weak equivalence followed by a fibration. Since the
total singular complex functor commutes with pullbacks and all the simplicial sets
involved are fibrant, the result now follows from Proposition 11.2.25. O

ProrosiTION 11.2.27. If h: Y — Z is a map in SS and z is a vertex of Z,
then the geometric realization of the homotopy fiber of h over z is naturally weakly
equivalent to the corresponding homotopy fiber of |h| |Y| — |Z|

PROOF. Since the geometric realization functor commutes with pullbacks (see
[33, page 49]), this is similar to the proof of Proposition 11.2.26. O

11.3. Homotopy pushouts and homotopy cofibers
ProrosiTION 11.3.1. Let M be a left proper model category. If the vertical

maps in the diagram

Z— X —Y

Ll

7——X—Y

are weak equivalences and at least one map in each row is a cofibration, then the
induced map of pushouts 7 llx Y — Z 5 Y is a weak equivalence.

Proor. This follows from Proposition 11.2.9 and Proposition 8.1.6 (see Re-
mark 8.1.7). O

ProrosiTION 11 3.2. Let M be a left proper model category. If we have a

diagram Y & X U W in which at least one of ¢ and h is a cofibration and if
g: X — Y is a cofibrant approximation to g, then the pushout of g along h has a
cofibrant approximation that is a pushout of §.
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ProoF. We have the diagram

L N

w
§J lg Jk

in which 7 is the pushout Y IIx W and ix and iy are weak equivalences, and we
must show that there is a pushout of g that is a cofibrant approximation to k. If we

factor the composition hiy : X 5 Was X & W 2% W where h is a cofibration

and ¢y 1s a trivial fibration, then we can let Z=Y 5 W and we have the diagram

X7

J N R N

g X—F—W

o L

? — | Z iz J{k

N\

Y ——7

in which the front and back squares are pushouts. Proposition 11.3.1 now implies
that iz 1s a weak equivalence, and so the pushout & of § is a cofibrant approximation

to O
ProposiTION 11.3.3. If the diagram in Top,)

I

C——D

is a pushout and 1 is a cofibration, then the natural map of simplicial sets 5ing C'lUsing 4
Sing B — Sing D is a weak equivalence.

PrOOF. Since left adjoints commute with pushouts, there is a natural homeo-
morphism |Sing C'Using 4 Sing B| ~ |Sing C'| | sing 4| |Sing B|, and so it is sufficient
to show that the map |Sing C'| | sing 4] |Sing B| — |Sing D| 1s a weak equivalence.
We have the diagram

|Sing C'| «—— [Sing A| —— |Sing B|

N

C A B
and Proposition 11.3.1 implies that the map |Sing C'| | sing 4] |SingB| — Disa

weak equivalence. Since this map factors through the weak equivalence |Sing D| —
D, the result follows from the “two out of three” axiom for weak equivalences. [
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CHAPTER 12

Ordinals, cardinals, and transfinite composition

12.1. Ordinals and cardinals

For a thorough discussion of the definitions and basic properties of ordinals and
cardinals, see [25, Chapter II].

12.1.1. Ordinals.

DEFINITION 12.1.2. 1. A preordered set 1s a set with a relation that is
reflexive and transitive.

2. A partially ordered set is a preordered set in which the relation 1s also anti-
symmetric.

3. A totally ordered set is a partially ordered set in which every pair of elements
1s comparable.

4. A well ordered set 1s a totally ordered set in which every nonempty subset
has a first element.

We adopt the definition of ordinals that arranges it so that an ordinal is the
well ordered set of all lesser ordinals, and every well ordered set is isomorphic to a
unique ordinal (see, e.g., [25, Chapter II]). Thus, the union of a set of ordinals is
an ordinal, and it is the least upper bound of the set.

REMARK 12.1.3. We will often consider a preordered set to be a small category
with objects equal to the elements of the set and a single morphism from the object
s to the object ¢ if s < t.

DEeFINITION 12.1.4. If S 1s a totally ordered set and T 1s a subset of S, then
T will be called 0-right cofinal (or 0-terminal) in S if for every s € S there exists
t € T such that s <t.

REMARK 12.1.5. What we here call 0-right cofinal has classically been called
cofinal (see Definition 14.4.5, Definition 14.4.6, and Remark 14.4.12).

THEOREM 12.1.6. If C is a cocomplete category, S is a totally ordered set, T
is a 0-right cofinal subset of S, and X : S — C is a functor, then the natural map
colimp X — colimg X is an isomorphism.

Proor. The classical proof works. O

ProPosITION 12.1.7. If S is a totally ordered set, then there is a 0-right cofinal
subset T of S that is well ordered.

ProoF. We will prove the proposition by considering the set of well ordered
subsets of S. We will show that this set has a maximal element, and that a maximal
element must be 0-right cofinal in S.
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Let U be the set of pairs (A, f: A = S) where A is an ordinal and f is a one to
one order preserving function. We define a preorder on U by defining (X, f) < (%, 9)
if A < kand f = g|n. U CUis a chain (i.e., a totally ordered subset of
U), let A = U(Au,fu)eU’ Ay, and define f: A — S to be the colimit of the f, for
(Au, fu) € U’. The pair (A, f) is an element of U, and it is an upper bound for the
chain. Thus, Zorn’s lemma implies that U has a maximal element, and it remains
only to show that a maximal element of U must be 0-right cofinal.

If (Am, fmn) is a maximal element of U and the image of fn,: Ay = S is not
0-right cofinal, then there is an element s of S such that f,,,(8) < s for all 3 € A,,.
Thus, we can define g: (A, + 1) = S by extending f,, to include s in its image.
This would imply that (A, fin) was not a maximal element of U, and so the image
of fin: Am — S must actually be a 0-right cofinal well ordered subset of S. O

12.1.8. Cardinals.

DEFINITION 12.1.9. A cardinal is an ordinal that is of greater cardinality than
any lesser ordinal.

DEeFINITION 12.1.10. If X is a set, then the cardinal of X 1s the unique cardinal
whose underlying set has a bijection with X.

DeFINITION 12.1.11. If 7 is a cardinal, then by Succ(y) we will mean the suc-
cessor of 7, 1.e., the first cardinal greater then ~.

DEeFINITION 12.1.12. A cardinal v 1s regular if, whenever A is a set whose
cardinal is less than v and for every @ € A there is a set S, whose cardinal is less
than 7, the cardinal of the set | J,. 4 54 is less than .

ExaMPLE 12.1.13. The countable cardinal R is a regular cardinal. This is just
the statement that a finite union of finite sets is finite.

PropPoOSITION 12.1.14. The product of two cardinals, at least one of which is
infinite, equals the greater of the two cardinals.

PROOF. See [25, page 53]. O

ProprosiTiON 12.1.15. If v is infinite and a successor cardinal, then + is regular.

ProOF. Let 4 be the cardinal such that v = Succ(f). If a set has cardinal
less than v, then its cardinal i1s less than or equal to 5. Let B be a set whose
cardinal is [ and, for every b € B, let S, be a set whose cardinal is 3. Then, if the
cardinals of A and every S, for a € A are all less than y, we have card(|J,¢ 4 Sa) <

O

card(Uyep Sp) < B x B =0 <.
ProprosITION 12.1.16. If i is an infinite cardinal and v = p*, then v* = ~.

ProoF.
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LEMMA 12.1.17. Let S be a set whose cardinal isv. If p < v, then the collection
T of subsets of S whose cardinal is p has cardinal v.

ProoF. The product Hu S has cardinal vy = v, and 1t has a subset that maps
onto 7. Thus, the cardinal of 7" is at most v. Since the collection of one element
subsets of S has cardinal v, the cardinal of T must be exactly v. O

LEMMA 12.1.18. If M is a category, X, Y, and Z are objects of M, and X 1is
a retract of Y, then the cardinal of M(X, Z) is less than or equal to the cardinal
of M(Y,7), and the cardinal of M(Z, X) is less than or equal to the cardinal of
M(Z,Y).

Proor. If i: X — Y and r: Y — X are maps such that r¢ = 1x, then
(ri)*: M(X, Z) = M(X, Z) is the identity map. Thus, ¢*: M(Y, Z) - M(X, 7) is
a surjection. Similarly, r.: M(Z,Y) — M(Z, X) is a surjection. O

12.2. Transfinite composition

DEeFINITION 12.2.1. Let C be a category that is closed under colimits.
1. If X is an ordinal, then a A-sequence in € is a functor X: A — € (see
Remark 12.1.3) (i.e., a diagram
Xo=Xi2Xo—> -5 Xg— - (B <)

in @) such that, for every limit ordinal ¥ < A, the induced map colimg< Xg —
X is an isomorphism.
2. The composition of the A-sequence is the map Xy — colimgey Xp.

DEeFINITION 12.2.2. If C is a category and D is a subcategory of C, then a
transfinite composition of maps in D is the composition of some A-sequence Xy —
X1 > Xo 5 - = Xg — -+ (8 < A) (for some ordinal A, possibly finite) in
C such that, for every § < A, the map Xg — Xg4q is in D. (The significance of
the A-sequence being a A-sequence in C is that, for every limit ordinal v < A, the
colimit colimgc~ Xj is formed in €.)

LEMMA 12.2.3. Let C be a category, let A be a limit ordinal, and let X : A — C
be a functor. If the functor Y : A — C is defined by

Yo = Xo
Y@_HIX@ 1fﬁ+1</\
Y5 = colianW if < X and 3 is a limit ordinal
<
then Y is a A-sequence in C, and colimg<y Xg = colimgey Y3.
Proor. This follows directly from the definitions. O
DeFINITION 12.2.4. If C is a category, A i1s a limit ordinal, and X: A — Cis a

functor, then the A-sequence Y obtained from the functor X as in Lemma 12.2.3
will be called the reindexing of X.

ProrosITION 12.2.5. If C is a category, S is a set, and g, : Cs — Dy is a map in
C for every s € S, then the coproduct llg,: 1C; — 11Dy is a transfinite composition
of pushouts of the g,, one for each element of S.

Draft: August 12, 1997



180 12. ORDINALS, CARDINALS, AND TRANSFINITE COMPOSITION

ProoF. Choose a well ordering of the set S. There is a unique ordinal A that
is isomorphic to the ordered set S (see, e.g., [25, Chapter IT]), and we will identify
S with A\. We define a A-sequence (see Definition 12.2.1) by letting

o= (L) (1T )

for all § < A, with the maps in the sequence being the obvious ones. For each
8 < A, we have a pushout diagram

C@ L}D@

| ]

Xg—— X5
and so we have a A-sequence of pushouts of the g; whose composition is Ilg;. [

ProOPOSITION 12.2.6. Let C be a category. If the map X — Y is the composi-
tion of the A-sequence

(1227) X=X X1-oXo—>- =5 Xg—> - (ﬁ</\)

(for some ordinal X) in which each map Xs — Xgi1 Is the composition of the
Yp-sequence

(12.2.8) Xpg=WI Wl Wl ... oWl 5.0 (a<)

(for some ordinal vz ), then the set P = {(3, «) | B < A a < g} is well ordered by
the dictionary order, 1.e.,

(Br,a1) < (fo,a0) if (1 <fo or P = and a; < as.

We define a quotient P of P as follows: For each vp that is a successor ordinal (i.e.,
for each g for which there is an ordinal 43 such that y3 = ¥ + 1), we identify
(8,7vs) with (8 + 1,0). The well ordering on P induces a well ordering on P, and
so there is a unique ordinal k for which there is an isomorphism of ordered sets

fire ]5, and this isomorphism is also unique. If we define a functor Y : k — C by
Yy) = W(f('y)), then Y is a k-sequence in C.

ProOF. We need only show that if ¥ < k and 7 is a limit ordinal, then Y (y) =
colimy <~ Y (o). This follows directly from our hypotheses. O

DEeFINITION 12.2.9. The &-sequence of Proposition 12.2.6 will be said to have
been obtained by interpolating the sequences of (12.2.8) into the sequence (12.2.7).

PRrROPOSITION 12.2.10. The A-sequence of (12.2.7) is O-right cofinal (see Defi-
nition 12.1.4) in the x-sequence of Proposition 12.2.6.

Proor. This follows directly from the definition. O

LEMMA 12.2.11. Let € be a category, let D be a subcategory of €, and let A be
an ordinal. If the map X — Y is the composition of a A-sequence X = Xy — X; —
Xy = -+ = Xg — -+ (f < A) in which each map X3 — Xgy1 Is a transfinite
composition of maps in D, then interpolating (see Definition 12.2.9) the sequences
for each X5 — Xpy1 into the original A-sequence gives a k-sequence (for some
ordinal k) of maps in D whose composition is the map X =Y.
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Proor. This follows directly from the definitions. O

PrOPOSITION 12.2.12. Let C be a category, and let D be a subcategory of C.
If the map g: X — Y is a transfinite composition of pushouts of coproducts of
elements of D, then g is a transfinite composition of pushouts of elements of D.

Proo¥. This follows from Proposition 12.2.5 and Lemma 12.2.11. O

ProrosiTION 12.2.13. Let C be a category, let I be a set of mapsin €, and let A
be a regular cardinal (see Definition 12.1.12). If the map X — Y is the composition
of a A-sequence

in which each map X5 — X411 is a transfinite composition, indexed by an ordinal
whose cardinal is less than X, of pushouts of coproducts of elements of I, then
interpolating the sequences for the Xz — Xpg41 Into the sequence (12.2.14) (see
Definition 12.2.9) yields a A-sequence (indexed by the same ordinal A) of pushouts
of coproducts of elements of I.

ProoOF. Lemma 12.2.11 implies that there is an ordinal k£ such that the map
X =Y is the composition of a xk-sequence of pushouts of coproducts of elements
of I, and so it remains only to show that the ordinal x constructed in the proof of
Lemma 12.2.11 equals A. Since the cardinal of x equals that of a union, indexed by
A, of sets of cardinal less than A, the cardinal of x equals A. Since any ordinal less
than « is contained within a subunion, indexed by an ordinal less than A, of sets of
cardinal less than A, and A is a regular cardinal, that subunion would have cardinal
less than A, i.e., x is the first ordinal having its cardinal, and so & is a cardinal, and

S0 K = A. (]
12.2.15. Transfinite composition and lifting in model categories.

LEMMA 12.2.16. If M is a category and p: X — Y is a map in M, then the class
of maps with the left lifting property with respect to p is closed under transfinite
composition (see Definition 12.2.1).

ProoOF. Given a A-sequence of maps with the left lifting property with respect
to p and a lifting problem for the composition of the A-sequence, a lift can be
constructed by a transfinite induction. O

ProrosITION 12.2.17. If M is a category and p: X — Y is a map in M, then
the class of maps with the left lifting property with respect to p is closed under
pushouts, transfinite composition, and retracts.

Proo¥. This follows from Lemma 8.2.5, Lemma 12.2.16, and Lemma 8.2.7. O

ProrosiTION 12.2.18. If M is a simplicial model category and C is a class
of maps in M, then the class of maps in M that have the homotopy left lifting
property with respect to every element of C is closed under pushouts, transfinite
compositions, and retracts.

Proo¥. This follows from Lemma 10.3.6 and Proposition 12.2.17. O

ProrosITION 12.2.19. If M is a model category, then the classes of cofibrations
and of trivial cofibrations are closed under pushouts, transfinite compositions, and
retracts.
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Proo¥. This follows from Proposition 8.2.3 and Proposition 12.2.17. O

LEMMA 12.2.20. Let M be a model category and let p: X — Y be a map in
M. If S is a totally ordered set and W : S — M is a functor such that if s,t € S
and s <t, then W, — W has the left lifting property with respect to p, then for
every s € S the map W — colim;», W has the left lifting property with respect
to p.

ProOF. Proposition 12.1.7 implies that we can choose a 0-right cofinal subset
Tof{tesS | t > s} such that T is well ordered. There is a unique ordinal A that
is isomorphic to T' (see, e.g., [25, Chapter II]), and so we have a 0-right cofinal
functor A — M. If we reindex this functor (see Definition 12.2.4), then we have
a A-sequence of maps with the left lifting property with respect to p. The lemma
now follows from Lemma 12.2.16 and Theorem 12.1.6. O

ProOPOSITION 12.2.21. Let M be a model category, and let S be a totally or-
dered set. If W: S — M is a functor such that, if s,t € S and s < t, then
W — W, is a cofibration, then, for every s € S, the map W — colim;»; W is
a cofibration. -

Proo¥. This follows from Proposition 8.2.3 and Proposition 12.2.17. O

12.3. Small objects

DEeFINITION 12.3.1. Let C be a cocomplete category and let D be a subcategory
of C.

1. If x is a cardinal, then an object W in C is k-small relative to D if, for every
regular cardinal (see Definition 12.1.12) A > & and every A-sequence (see
Definition 12.2.1)

Xo=Xi2Xo—> -5 Xg— - (B <)

in € such that the map Xz — X411 is in D for every ordinal 7 such that
841 < A, the map of sets colimge s C(W, Xg) — C(W, colimper Xp) is an
isomorphism.

2. An object is small relative to D if it is k-small relative to D for some cardinal
K, and it is small if it 1s small relative to C.

EXAMPLE 12.3.2. In the category SS.), every simplicial set with finitely many
nondegenerate simplices is Ng-small relative to the subcategory of inclusions of
simplicial sets (where Xg is the first infinite cardinal).

EXAMPLE 12.3.3. Let X be afinite cell complex in Topy,, (see Definition 2.2.1).
Corollary 2.2.7 implies X is Ng-small relative to the subcategory of inclusions of
cell complexes (where Rg is the first infinite cardinal).

EXAMPLE 12.3.4. Let X be an object of SS,y. If & is the first infinite cardinal
greater than the cardinal of the set of nondegenerate simplices of X, then X is
k-small relative to the subcategory of inclusions (see Proposition 12.1.15). Thus,
every simplicial set 1s small relative to the subcategory of inclusions.

EXAMPLE 12.3.5. Let X be a cell complex in Topy,, (see Definition 2.2.1). If
K is the first infinite cardinal greater than the cardinal of the set of cells of X (see
Proposition 12.1.15), then Proposition 2.2.4 implies that X is k-small relative to
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the subcategory of relative cell complexes. Thus, every cell complex is small relative
to the subcategory of relative cell complexes.

LEMMA 12.3.6. If C is a cocomplete category, D is a subcategory of C, and [
is a set of objects in C that are small relative to D, then there is a cardinal x such
that every element of I is k-small relative to D.

ProoF. For every object A of I let k4 be a cardinal such that A is k4-small
relative to D. If we let « be the union |J,.; x4, then every object of I is x-small
relative to D. O

ProrosiTION 12.3.7. Let C be a cocomplete category and let D be a subcate-
gory of C. If k is a cardinal and X is an object in C that is k-small relative to D,
then any retract of X is k-small relative to D.

ProoF. Let ¢: W — X and r: X — W be maps such that ri = ly. If Ais a
regular cardinal such that A\>kand Zp - 21 5 Zo —» -+ > Zg = -+ (B < A) is
a A-sequence in D, then we have the commutative diagram

Leolime(w,zg)

Cgl<1§\n G(W’ Zﬁ) colim r* Cg];g\n G(X’ Zﬁ) colim ¢* Cgl<1§\n G(W’ Zﬁ)

l | l

(W, colim Z r L @(X,colimZ, i C(W,colimZ,
(WeolimZg) =, C(X, colim Zg) __t_, C(W, colim Zp)

v/

le(w,colimzg)

Thus, the map colimge ) C(W, Zg) — C(W, colimpx Zg) is a retract of the isomor-
phism colimge s €(X, Z5) — C(X, colimge s Z3), and is thus an isomorphism. O

ProrosiTION 12.3.8. Let C be a cocomplete category and let D be a subcate-
gory of C. If'J is a small category and W : J — C is a diagram in C such that W is
small relative to D for every object i in J, then colim;cg W is small relative to D.

ProOOF. Let v be a cardinal such that W, is y-small relative to D for every
object ¢ in J (see Lemma 12.3.6), let § be the cardinal of the set of morphisms
in J, and let « be the first cardinal greater than both v and J; we will show that
colim;eg W; is k-small relative to D.

Let A be a regular cardinal such that A > &, and let

Xo=Xi2Xo—> -5 Xg— - (B <)

be a A-sequence in € such that the map Xg — Xgy1 is in D for all 3 < A
If we have a map f: colimjes W; — colimgcy Xg, then for every object j in J
the composition of f with the natural map W,; — colim;cg W; defines a map
fj: W; — colimgy Xg. Since W; is small relative to D and A is a large enough
regular cardinal, there exists an ordinal 8; < A such that f; factors through Xg,.

If we let 5 = UjeObJ 35, then (since A is a regular cardinal) 5 < A, and the dotted
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arrow g; exists in the diagram

Xy —— cgim Xy

for every object j in J.

If s: j = kis amorphismin J, then the composition W ; W, w2 X5 need
not equal the map g;: W; — Xé, but their compositions with the natural map
Xﬁ — colimg<x X are equal. Since the natural map of sets colimg« s C(W;, X3) —

C(W ;, colimpcx Xp) is an isomorphism, there must exist an ordinal Bs < A such
that their compositions with the map Xﬁ — Xﬁ are equal. If we let § =

U(s: j—m)ejﬁfs’ then (since A is a regular cardinal) we have B < A If, for every
object j of J, we let g; equal the composition W ; EEN Xﬁ — Xﬁa then for every
morphism s: 7 = k in J the triangle

W,

W, — W,
) n
9; l

commutes, and so the g§; define a map g: colimses W; — X ; whose composition
with the natural map Xﬁ — colimg«x Xg equals f. Thus, the map

colim C(colim W, X5) — C(colim W, colim X )
<A ied ied <A
1s surjective.
To show that that map is also injective, let ¢': colim;cg W; — X5 be a map

whose composition with the natural map Xz — colimgcs Xg equals f. For every
object 7 in J the compositions

W; — colimW,; EN Xﬁ — colim X
i€J B<A
and
W; — colimW; AN X@ — colim Xg
i€d B<A
are equal, and so there exists an ordinal o; < A such that the compositions
W, — colimW,; % X; — X,,
J icd P i
and
W, — colimW; & X5 — X,
J i€d s !
are equal. If welet a = UjeOb(J) aj, then o < A, and the compositions colim;¢g W; —
Xﬁ — X, and colimjes W; — X@ — X are equal, and so the map
colim C(colim W, X5) — C(colim W, colim X )
<A ied ied <A
1s an isomorphism. O
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COROLLARY 12.3.9. Let C be a cocomplete category, let D be a subcategory of
C, and let I be a set of maps in C whose domains and codomains are small relative
to D. If X is small relative to D and the map X — Y is a transfinite composition
of pushouts of elements of I, then Y is small relative to D.

Proo¥. This follows from Proposition 12.3.8. O

12.4. The small object argument

DEeFINITION 12.4.1. Let C be a category, and let [ be a set of maps in C.

1. The subcategory of I-injectives is the subcategory of maps that have the
right lifting property (see Definition 8.2.1) with respect to every element of
1.

2. The subcategory of I-cofibrations is the subcategory of maps that have the
left lifting property (see Definition 8.2.1) with respect to every I-injective.
An object is I-cofibrant if the map to it from the initial object of € is an
I-cofibration.

REMARK 12.4.2. The term [-injective comes from the theory of injective classes
([32]). The map p: X — Y is an I-injective if and only if, in the category (ClY)
of objects over Y| the object p is injective relative to the class of maps whose image
under the forgetful functor (ClY) — € is an element of I.

ExAMPLE 12.4.3. If T is the set of inclusions dA[n] — A[n] in SS, then the
I-injectives are the trivial fibrations, and the I-cofibrations are the inclusions of
simplicial sets (see Proposition 8.2.3).

EXAMPLE 12.4.4. If J is the set of inclusions A[n, k] — A[n] in SS, then the J-
injectives are the Kan fibrations, and the J-cofibrations are the trivial cofibrations
(see Proposition 8.2.3).

PrOPOSITION 12.4.5. Let C be a category, and let J and K be sets of maps in
C. If the subcategory of J-injectives equals the subcategory of K-injectives, then
the subcategory of J-cofibrations equals the subcategory of K-cofibrations.

Proor. This follows directly from the definitions. O

DEFINITION 12.4.6. If € is a category that is closed under small colimits and
I is a set of maps in €, then

1. the subcategory of relative I-cell complexes (also known as the subcategory
of regular I-cofibrations) is the subcategory of maps that can be constructed
as a transfinite composition (see Definition 12.2.2) of pushouts (see Defini-
tion 8.2.10) of elements of I,

2. an object is an I-cell complex if the map to it from the initial object of € 1s
a relative I-cell complex, and

3. a map is an nclusion of I-cell complexes if 1t 1s a relative I-cell complex
whose domain is an I-cell complex.

REMARK 12.4.7. Note that Definition 12.4.6 defines a relative I-cell complex
to be a map that can be constructed as as transfinite composition of pushouts of
elements of I, but it does not assume that there is any preferred such construction.
In Definition 12.5.3 we define a presented relative I-cell complexr to be a relative
I-cell complex together with a choice of such a construction.
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ProrosITION 12.4.8. If C is a category and [ is a set of maps in C, then every
relative I-cell complex is an I-cofibration (see Definition 12.4.1).

Proor. This follows from Lemma 8.2.5 and Lemma 12.2.16. O

ProrosITION 12.4.9. If M is a category and [ is a set of maps in M, then a
retract of a relative I-cell complex is an I-cofibration.

Proo¥. This follows from Proposition 12.4.8 and Lemma 8.2.7. O

DEeFINITION 12.4.10. Let M be a cocomplete category and let [ be a set of
maps in M.

1. If £ is a cardinal, then an object is k-small relative to I if it is k-small
relative to the subcategory of relative I-cell complexes (see Definition 12.3.1
and Definition 12.4.6).

2. An object 1s small relative to I if it is k-small relative to I for some cardinal
K.

DEFINITION 12.4.11. If M is a category and [ is a set of maps in M, then
we will follow D. M. Kan and say that I permits the small object argument if the
domains of the elements of I are small relative to I (see Definition 12.4.10 and
Definition 12.4.6).

ProPOSITION 12.4.12 (The small object argument). If C is a cocomplete cat-
egory and I is a set of maps in C that permits the small object argument (see
Definition 12.4.11), then there is a functorial factorization of every map in C into
a relative I-cell complex (see Definition 12.4.6) followed by an I-injective (see Def-
inition 12.4.1).

ProoF. Lemma 12.3.6 implies that we can choose a regular cardinal A such
that every domain of an element of I is A-small relative to the subcategory of
relative I-cell complexes. If g: X — Y is a map in C, then we will factor ¢ as

XLE S Y, where j is the transfinite composition of a A-sequence

X = EY E! E? EP (B<A)
=2
P2
Pp
Y

in which each E° — EP*! is a pushout of a coproduct of elements of I, each
EP comes with a map s EP — Y such that all the triangles commute, and

p = colimg< pg.
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We begin by letting E’ = X and letting pg: E’ = Y equal g. Given Eﬁ, we
have the solid arrow diagram

I

(A Bl —>Eﬁ ............ \){ Eﬁ-l—l
M(A,,Eﬂ)XM(AVy)M(B,,Y)

l Ps R

H B; L

(A;>By)el —Y
M(AuEﬂ)XM(Al,Y)M(BMY)

and we let EPt! be the pushout (LI B:) Uy ay EP. If 5 is a limit ordinal, we
let ET = colimgey EP, and we let E; = colimg«x EP. The construction of the
factorization X — E; — Y makes it clear that it is functorial. Proposition 12.2.5,
Lemma 8.2.11, and Lemma 12.2.11 imply that X — Ej is a relative I-cell complex,
and so it remains only to show that E; — Y is an [-injective.

Given an element A — B of I and a solid arrow diagram

(12.4.13) A——E;
||
B——Y
we must show that the dotted arrow exists. Since Er = colimgcx E? and A is

A-small relative to I, the natural map of sets colimgx M(A4, Eﬁ) — M(A, Ef) is an
isomorphism. Thus, the map A — Ej factors through Ef — E; for some 3 < A,
and we have the solid arrow diagram

A—— B — EL ——=

IE v

The construction of E°*! implies that the dotted arrow exists, and this dotted
arrow defines the dotted arrow in Diagram 12.4.13. O

DEFINITION 12.4.14. Let € be a cocomplete category, let I be a set of maps in
G, and let A be an ordinal. If we apply the construction in the proof of Proposi-
tion 12.4.12 to a map ¢g: X — Y using the set [ and the ordinal A to obtain the
factorization X — E; — Y| then we will call E the object obtained by applying
the small object factorization with the set I and the ordinal X to the map g.

ProOPOSITION 12.4.15. Let C be a cocomplete category, let I be a set of maps in
C, and let A be an ordinal. If the map g: X — Y is a retract of the map §: XY
and we apply the small object factorization to both ¢ and g using the set I and the
ordinal A (see Definition 12.4.14), then the factorization X — Er — Y obtained

from g is a retract of the factorization X — E; — Y obtained from § g.

Proor. At each step in the construction of E'y and EI, the factorization X —
EP =Y is a retract of the factorization X — E# — Y. O
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COROLLARY 12.4.16. Let C be a cocomplete category and let I be a set of maps
in C. If k is a regular cardinal such that the domains of the elements of I are k-
small relative to I, then there is a functorial factorization of every map in € into
the composition of a k-sequence of pushouts of coproducts of elements of I followed
by an I-injective.

Proor. This follows from the proof of Proposition 12.4.12. O

COROLLARY 12.4.17. Let C be a cocomplete category and let I be a set of maps
in C that permits the small object argument (see Definition 12.4.11). If g: X =Y
is a map with the left lifting property (see Definition 8.2.1) with respect to every
I-injective (see Definition 12.4.1), then g¢ is a retract of a relative I-cell complex.

Proor. If we apply the factorization of Proposition 12.4.12 to ¢, we obtain

X 24 E; 5 Y in which j is a relative I-cell complex and p is an I-injective. The
result now follows from the retract argument (see Proposition 8.2.2). O

COROLLARY 12.4.18. If C is a cocomplete category, I is a set of maps in C
that permits the small object argument, and ¢: X — Y is an [-cofibration (see
Definition 12.4.1), then g is a retract of a relative I-cell complex.

Proo¥. This follows from Corollary 12.4.17. O

LEMMA 12.4.19. Let C be a cocomplete category, let I be a set of maps in M
that permit the small object argument, and let k be a regular cardinal such that
the domain of every element of I is k-small relative to I (see Lemma 12.3.6). If
A is an ordinal and Xg - X1 - Xo — -+ = X3 — -+ (# < A) Is a A-sequence
of I-cofibrations, then there is a A-sequence )?0 — )?1 — )?2 — > )?@ —
(8 < A) of relative I-cell complexes and maps of A-sequences

(12.4.20) Xo 22 Xy — 2y X, 22 Xy 22
Zul ill igl Zﬂl
~ To ~ T1 ~ T ~ T8
Xo X1 Xs Xg
Tul Tll 7‘2\[ Tﬂl
Xo 2 X 2 Xy 2 Xs >

such that, for every 8 < A,

1. the composition rgig is the identity map of X3, and
2. the map 15: X3 — Xpg41 is the composition of a k-sequence of pushouts of
coproducts of elements of I.

Proor. We let )?0 = Xy, and we let both ¢y and 7o be the identity map of
Xy. If 3 1is an ordinal such that 8+ 1 < A and we’ve defined the sequence through
Xg, then we apply the factorization of Corollary 12.4.16 to the map ogrg: Xz —
Xpg4+1 to obtain )~(@ LN )?@_H SLALN Xg+1, in which 75 is the composition of a
k-sequence of pushouts of coproducts of elements of I and 7541 is an I-injective.
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Since rg117gis = 0prgis = 03, we now have the solid arrow diagram

Talg o~
Xp —— Xpq1

; Rt
A+l
9p TA+1

Xpp1 == Xp1

in which o3 is an [-cofibration and rz1; is an [-injective, and so there exists a
dotted arrow igy1 such that igy105 = 751 and rgp1ip1 = 1x,,, -

For every limit ordinal v such that v < A, we let )?W = colimg<~ )?@, by =
colimg<~ tg, and r, = colimgcy 3. O

THEOREM 12.4.21. Let C be a cocomplete category and let I be a set of maps
in C that permits the small object argument. If W is an object that is small relative
to I, then it is small relative to the subcategory of all I-cofibrations.

ProOOF. Let p be a cardinal such that W is p-small relative to 1. Lemma 12.3.6
implies that there is a cardinal « such that the domain of every element of I is k-
small relative to I. If v is the first cardinal greater than both p and &, then we will
show that W is v-small relative to the subcategory of I-cofibrations.

Let A be a regular cardinal such that A > v and let Xo -+ X7 > X9 — -+ —
Xp = -+ (B < A) be a A-sequence of I-cofibrations. Lemma 12.4.19 implies that
there is a A-sequence )?0 — )?1 — )?2 — > )?@ — - (B < A) of relative T-cell
complexes and maps of A-sequences as in Diagram 12.4.20 satisfying the conclusion
of Lemma 12.4.19. Proposition 12.2.13 implies that, after interpolations, the A-
sequence Xo—> X1 5 Xy =5 )?@ — -+ (B < A) is a A-sequence of relative
I-cell complexes, and so Proposition 12.2.10 and Corollary 14.4.11 imply that the
map of sets colimg M(W, )?@) — M(W, colimg« » )?@) is an isomorphism. Since
the map of sets colimger M(W,X3) — M(W,colimgcx Xg) is a retract of this
isomorphism, it is also an isomorphism. O

12.5. Subcomplexes of relative I-cell complexes

If M is a cocomplete category and [ is a set of maps in M, then a relative 7-cell
complex is a map that can be constructed as a transfinite composition of pushouts
of coproducts of elements of I (see Definition 12.4.6 and Proposition 12.2.12). To
consider “subcomplexes” of a relative I-cell complex, we need to choose a “presen-
tation” of it (see Definition 12.5.2), i.e., a particular such construction. In Defi-
nition 12.5.3, we define a presented relative I-cell complex to be a relative [-cell
complex together with a chosen presentation.

12.5.1. Presentations of relative I-cell complexes.

DEFINITION 12.5.2. Let M be a cocomplete category and let I be a set of
maps in M. If f: X — VY is a relative I-cell complex (see Definition 12.4.6), then
a presentation of f is a pair consisting of a A-sequence

X=X X1-oXo—>- =5 Xg—> - (B<A)
(for some ordinal A) and a sequence of ordered triples
{(Tﬁaeﬁahﬁ)}@<>\

such that
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the composition of the A-sequence is isomorphic to f,

every T% is a set,

every e’ is a function e/ : 7% — I,

for every 3 < A, if i € TP and e;@ is the element C; — D; of I, then hf is a
map hf C; = Xg, and

5. every Xgy1 is the pushout

HCZ' —>HDZ'
T8 T8

o]

Xg —— Xgyq1.

I R

If the map f: @ — Y (where @ is the initial object of M) is a relative I-cell complex,
then a presentation of f will also be called a presentation of Y.

DEeFINITION 12.5.3. If M is a cocomplete category and [ is a set of maps in

M, then a presented relative I-cell complex is a relative I-cell complex f: X = Y

together with a particular presentation (X =Xg=> X1 X9 = =3 Xg —

(B < XN),{TP,e? hP}5<5) of it (see Definition 12.5.2). A presented relative

I-cell complex in which X = {§ (the initial object of M) will be called a presented
I-cell complex.

DEFINITION 12.5.4. Let M be a cocomplete category, let I be a set of maps
in M,and let (f: X - Y, X=X >X1 >Xo > =X > - (<
M), {T?,e? hP}5<)) be a presented relative I-cell complex (see Definition 12.5.3).

The presentation ordinal of f is A.

The set of cells of f is Hﬁ<>\ 7.

The size of f is the cardinal of the set of cells of f.

If e is a cell of f, the presentation ordinal of e is the ordinal § such that
e € TP,

5. If B < A, then the @-skeleton of fis Xj.

= QO N =

12.5.5. Subcomplexes of relative I-cell complexes.

DEeFINITION 12.5.6. If M is a cocomplete category, [ is a set of maps in M, and
(f: X—)Y,XIXQ—)Xl —)Xz —>"'—>X@ — (ﬁ</\),{Tﬁ,6ﬁ,hﬁ}@<>\) 1s
a presented relative I-cell complex, then a subcomplex of f consists of a sequence
of ordered triples {(Tﬁ, e, /Nlﬁ)}@<>\ such that

1. every TP is a subset of T?, and &7 is the restriction of ¢? to Tﬁ,
2. there is a A-sequence

bl

X=)~(o—>)~(1—>)?2—>m—>)?@—>m (B<A)
(called the A-sequence associated with the subcomplex) and a map of A-
sequences
5(:0 )?1 5(:2
XO Xl X2
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such that, for every 7 < A and every i € Tﬁ, the map /sz C; — )?@ is a
factorization of the map hf C; — Xp through the map Xg — Xz, and
3. every Xy is the pushout

e II»
T8 T8

4

5(:@ —>5(:ﬁ+1.

REMARK 12.5.7. Although a subcomplex of a cell complex is defined to be
a sequence of triples {(Tﬁ, ér, /Nlﬁ)}@<>\ (see Definition 12.5.6), we will often abuse
language and refer to the A-sequence associated with the subcomplex, or the colimit
of that A-sequence, as the subcomplex.

12.5.8. The case of monomorphisms.

ProPoOSITION 12.5.9. If M is a cocomplete category and I is a set of maps in
M such that relative I-cell complexes are monomorphisms, then a subcomplex of a

presented relative I-cell complex is entirely determined by its set of cells {Tﬁ}@<>\
(see Definition 12.5.6).

ProoOF. The definition of a subcomplex implies that the maps )?@ — Xp are all
inclusions of subcomplexes. Since inclusions of subcomplexes are monomorphisms,
there 1s at most one possible factorization hf of each hf through X3 — X;3. O

ProrosIiTION 12.5.10. Let M be a cocomplete category and let I be a set of
maps in M such that relative I-cell complexes are monomorphisms. If (f: X —
VX=Xg—= X1 = Xs— = Xg = (8<XN),{T%, e, h}sc)) is a pre-
sented relative [-cell complex, then an arbitrary subcomplex of f can be constructed
by the following inductive procedure:

1. Choose an arbitrary subset 7o of T°.
2. If # < X and we have defined {T"}, <, then we have determined the object

Xp and the map Xg — Xp (where Xz is the object that appears in the
A-sequence associated to the subcomplex). Consider the set

{ieT? | hf Cy — X factors through )?@ — Xs}

Choose an arbitrary subset T# of this set. For every i € Tﬁ, there is a
unigue map hf : C; = Xp that makes the diagram
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commute. We let )?@_H be the pushout

e 11>
T8 T8

wl ]

)?@ — 5(:@4_1
Proor. This follows directly from the definitions. O

REMARK 12.5.11. If M is a cocomplete category, I is a set of maps in M such
that relative I-cell complexes are monomorphisms, and (f: X - YV, X = Xy —
Xi = Xo—= = Xg = (B< A, {TP, e hP}s<)) is a presented relative
I-cell complex, then not every sequence {Tﬁ}@<>\ of subsets of {77} 5\ determines
a subcomplex of f. Given such a sequence {Tﬁ}@<>\, it determines a subcomplex of
f if and only if it satisfies the inductive conditions described in Proposition 12.5.10.

12.6. Compactness

DEeFINITION 12.6.1. Let M be a cocomplete model category and let I be a set
of maps in M.

1. If k is a cardinal, then an object W in M is x-compact relative to I if, for
every presented relative [-cell complex f: X — Y (see Definition 13.2.4),
every map from W to Y factors through a subcomplex of f of size (see
Definition 12.5.4) at most «.

2. An object W in M is compact relative to I if 1t is k-compact relative to
for some cardinal .

EXAMPLE 12.6.2. If M = SS, and I is the set of inclusions {A[n] — A[n] |
n > 0}, then every finite simplicial set is w-compact relative to I (where w is the
countable cardinal). If £ is an infinite cardinal and X is a simplicial set of size &,
then X is k-compact relative to I.

ExaMPLE 12.6.3. If M = Top,, and [ is the set of inclusions {|3A[n]| —
|A[n]| | n > 0}, then Corollary 2.2.7 implies that every finite cell complex is w-
compact relative to I (where w is the countable cardinal). If & is an infinite cardinal
and X 1s a cell complex of size k, then Corollary 2.2.7 implies that X is x-compact
relative to 1.

PrOPOSITION 12.6.4. Let M be a cocomplete category and let I be a set of
maps in M. If k is a cardinal and an object W is k-compact relative to I, then any
retract of W is k-compact relative to I.

Proo¥. Let ¢: V — W and r: W — V be maps such that r¢ = 1y. If
f: X — Y is a relative I-cell complex and f: V — Y is a map, then the map
fr: W — Y must factor through some subcomplex Z of Y of size at most x. Thus,
fri: V. = Y factors through 7, and fri= f. O

PrOPOSITION 12.6.5. Let M be a cocomplete category and let I be a set of
maps in M. If k and X\ are cardinals such that « < A, then any object that is
k-compact relative to I is also A-compact relative to I.

Proor. This follows directly from the definitions. O
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ProPoOsITION 12.6.6. If M is a cocomplete category, I is a set of maps in M,
and S is a set of objects that are compact relative to I, then there is a cardinal &
such that every element of S is k-compact relative to I.

ProoF. For each element X of S, let kx be a cardinal such that X is kx-
compact relative to /. If x is the cardinal of (Jxs #x, then Proposition 12.6.5
implies that every element of S is k-compact relative to I. O

PrOPOSITION 12.6.7. Let M be a cocomplete category and let I be a set of maps
in M such that relative I-cell complexes are monomorphisms. If  is a cardinal and
W is an object that is k-compact relative to I (see Definition 12.6.1), then W is
(k + 1)-small relative to I.

ProOOF. Let A be a regular cardinal such that A > &, and let Xy — X; —
Xy = -+ = Xg — -+ (8 < A) be a A-sequence of inclusions of relative [-cell
complexes. Since inclusions of relative /-cell complexes are monomorphisms, the
map colimg«x M(W, Xg) — M(W, colimp<x X3) is injective, and it remains only to
show that 1t is surjective.

If W — colimg«x Xg is a map, then (since W is k-compact) there is a subcom-
plex K of colim X, of size at most x, such that the map factors through K. For
each cell of K there is an ordinal # < A such that that cell contained in Xj3. Since
A 1s a regular cardinal, the union p of these [ is less than A, and K is contained in

X, O

12.7. Effective monomorphisms

DEeFINITION 12.7.1. Let M be a category that is closed under pushouts. The
map f: A — B is an effective monomorphism if f 1s the equalizer of the pair of
natural inclusions B = B 1l 4 B.

EXAMPLE 12.7.2. If M is the category of sets, then the class of effective monomor-
phisms is the class of injective maps.

ProPosITION 12.7.3. If M is a category that is closed under pushouts, then a
map is an effective monomorphism if and only if it is the equalizer of some pair of
parallel maps.

Proor. If f: A — B is an effective monomorphism, then it is defined to be
the equalizer of a particular pair of maps. Conversely, if f: A — B is the equalizer
g
of the maps B = W, then the maps ¢ and h factor as
h
B =BT, BL% W,
and we must show that f is the equalizer of iy and ¢;. Since (¢ IT h)ig = ¢ and
(¢ IT h)iy = h, this follows directly from the definitions. O

REMARK 12.7.4. An effective monomorphism is the dual to what Quillen has
called an effective epimorphism (see [46, Part II, page 4.1]). Effective epimorphisms
have also been called regular epimorphisms (see [7, Definition 4.3.1]).

ProPoOsITION 12.7.5. An effective monomorphism is a monomorphism.
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Proo¥. Let f: A — B be an effective monomorphism, and let g: W — A
and h: W — A be maps such that fg = fh. If iy and #; are the natural maps
B — B1Il4 B, then iy fg = tofh and igfg = i1 fh, Since f is the equalizer of iy and
11, this implies that ¢ = h. O
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CHAPTER 13

Cofibrantly generated model categories

13.1. Introduction

A model category structure on a category consists of three classes of maps
(weak equivalences, fibrations, and cofibrations) satisfying five axioms (see Defini-
tion 8.1.2). Any two of these classes determine the third, but there are other ways
to determine the three classes of maps as well. For example, the fibrations are
exactly the maps with the right lifting property (see Definition 8.2.1) with respect
to all trivial cofibrations, and so the class of trivial cofibrations determines the class
of fibrations. Similarly, the trivial fibrations are exactly the maps with the right
lifting property with respect to all cofibrations, and so the class of cofibrations de-
termines the class of trivial fibrations. Since the weak equivalences are exactly the
maps that can be written as the composition of a trivial cofibration followed by a
trivial fibration, this shows that the classes of cofibrations and of trivial cofibra-
tions entirely determine the model category structure. In some model categories,
this leads to a convenient description of the model category structure.

For example, the standard model category structure on the category of simpli-
cial sets can be described as follows:

e A map is a cofibration if it is a retract of a transfinite composition (see
Definition 12.2.2) of pushouts of the maps dA[n] = A[n] for all n > 0.

e A map is a trivial fibration if it has the right lifting property with respect
to the maps 9A[n] — A[n] for all n > 0.

e A map is a trivial cofibration if it is a retract of a transfinite composition
(see Definition 12.2.2) of pushouts of the maps An, k] = A[n] for all n > 0
and 0 <k <n.

e A map is a fibration if 1t has the right lifting property with respect to the
maps A[n, k] — Aln] for all n > 0 and 0 < k < n.

e A map is a weak equivalence if it is the composition of a trivial cofibration
followed by a trivial fibration.

These ideas lead to the notion (due to D. M. Kan) of a cofibrantly generated
model category (see Definition 13.2.1).

13.2. Cofibrantly generated model categories

DEeFINITION 13.2.1. A cofibrantly generated model category 1s a model category
M such that

1. there exists a set I of cofibrations (called a set of generating cofibrations)
that permits the small object argument (see Definition 12.4.11) and such
that a map is a trivial fibration if and only if it has the right lifting property
with respect to every element of I, and
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2. there exists a set J of trivial cofibrations (called a set of generating trivial
cofibrations) that permits the small object argument and such that a map
is a fibration if and only if it has the right lifting property with respect to
every element of J.

REMARK 13.2.2. Although the set I of generating cofibrations is not part of
the structure of a cofibrantly generated model category, we will often assume that
some particular set I of generating cofibrations has been chosen.

ProprosiTION 13.2.3. If M is a cofibrantly generated model category and I is
a set of generating cofibrations for M, then there is a regular cardinal k such that
the domain of every element of I is k-small relative to I.

Proor. This follows from Lemma 12.3.6. O

DEFINITION 13.2.4. If M is a cofibrantly generated model category with gen-
erating cofibrations I, then a relative I-cell complex (see Definition 12.4.6) will be
called a relative cell complez, and an I-cell complex (see Definition 12.4.6) will be
called a cell complex. If § — X (where §§ is the initial object of M) is a finite com-
position of pushouts of elements of I, then X will be called a finite cell complex. If
X is a cell complex and g: X — Y is a relative I-cell complex, then g will be called
an inclusion of a subcompler.

We will show in Proposition 13.2.9 that in a cofibrantly generated model cate-
gory the class of cofibrations equals the class of retracts of relative cell complexes,
and the class of trivial cofibrations equals the class of retracts of relative J-cell
complexes.

ExXAMPLE 13.2.5. The model category SS is cofibrantly generated. The gener-
ating cofibrations are the inclusions dA[n] — A[n] for n > 0, and the generating
trivial cofibrations are the inclusions A[n, k] — A[n] for n > 0 and 0 < k < n.

EXAMPLE 13.2.6. The model category SS. is cofibrantly generated. The gener-
ating cofibrations are the inclusions dA[n]* — A[n]™ for n > 0, and the generating
trivial cofibrations are the inclusions A[n, k]t — A[n]* for n > 0 and 0 < k < n.

EXAMPLE 13.2.7. The model category Top is cofibrantly generated. The gener-
ating cofibrations are the inclusions |3A[n]| — |A[n]| for n > 0, and the generating
trivial cofibrations are the inclusions |A[n, k]| — |A[n]| forn>0and 0 <k <n.

ExaMPLE 13.2.8. The model category Top, is cofibrantly generated. The gen-
erating cofibrations are the inclusions |8A[n]|+ — |A[n]|+ for n > 0, and the

generating trivial cofibrations are the inclusions |A[n,k]|+ — |A[n]|+ for n > 0
and 0 < k <n.

PROPOSITION 13.2.9. Let M be a cofibrantly generated model category (see
Definition 13.2.1) with generating cofibrations I and generating trivial cofibrations

J.

1. The class of cofibrations of M equals the class of retracts of relative I-cell
complexes (see Definition 12.4.6).

2. The class of trivial fibrations of M equals the class of I-injectives (see Defi-
nition 12.4.1).

3. The class of trivial cofibrations of M equals the class of retracts of relative
J-cell complexes.
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4. The class of fibrations of M equals the class of J-injectives.

Proo¥. This follows from Proposition 8.2.3, Proposition 12.4.9, and Corol-
lary 12.4.17. O

ProprosiTiON 13.2.10. Let M be a cofibrantly generated model category with
generating cofibrations I. If W is an object that is small relative to I, then it is
small relative to the subcategory of all cofibrations.

Proor. This follows from Theorem 12.4.21. O

COROLLARY 13.2.11. Let M be a cofibrantly generated model category with
generating cofibrations I. If the codomains of the elements of I are small relative
to the I, then every cofibrant object of M is small relative to the subcategory of all
cofibrations.

Proo¥. This follows from Corollary 12.3.9, Corollary 13.2.13, Proposition 12.3.7,
and Proposition 13.2.10. O

COROLLARY 13.2.12. Let M be a cofibrantly generated model category. If I is a
set of generating cofibrations for M and & is a regular cardinal such that the domain
of every element of I is k-small relative to I, then there is a functorial factorization
of every map in M into a cofibration that is the composition of a k-sequence of
pushouts of coproducts of elements of I followed by a trivial fibration.

Proo¥. This follows from Corollary 12.4.16 and Proposition 13.2.9. O

COROLLARY 13.2.13. If M is a cofibrantly generated model category with gen-
erating cofibrations I, then every cofibrant object in M is a retract of a cell complex
(see Definition 13.2.4).

Proo¥. This follows from Proposition 13.2.9. O

ProPOSITION 13.2.14. Let M be a cofibrantly generated model category, and
let I be a set of generating cofibrations for M. If J is a set of generating trivial
cofibrations for M, then there is a set J of generating trivial cofibrations for M such
that

1. there is a bijection between the sets J and J under which corresponding
elements have the same domain, and
2. the elements of J are relative I-cell complexes.

ProoF. Factor each element j: C' — D of J as C 24 D & D where jis
a relative I-cell complex and p is a trivial fibration (see Corollary 13.2.12). The
retract argument (see Proposition 8.2.2) implies that j is a retract of j. Since j and
p are weak equivalences, j 1s also a weak equivalence, and so j 1s a trivial cofibration.
Thus, if we let J= {j};jes, then J satisfies conditions 1 and 2, and 1t remains only
to show that J is a set of generating trivial cofibrations for M. Proposition 12.4.5
implies that it is sufficient to show that the subcategory of j—injectives equals the
subcategory of J-injectives (i.e., of fibrations).

Since every jis a trivial cofibration, every J-injective is a j—injective (see Prop-
osition 8.2.3). Since every j is a retract of j, Lemma 8.2.7 implies that every
j—injective i1s a J-injective. O
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ProprosITION 13.2.15. If M is a cofibrantly generated model category with gen-
eratmg cofibrations I, then every object X has a fibrant cofibrant approximation
i: X — X such that X is a cell complex.

Proo¥. This follows from Proposition 12.4.12, Proposition 12.4.8, and Prop-
osition 13.2.9. O

ProprosiTION 13.2.16. If M is a cofibrantly generated model category with
generating cofibrations I, then every map g: X — Y has a cofibrant approxi-
mation §: X — Y such that § g: X — Y is an inclusion of a subcomplex and both
ix: X = X and iy : Y — Y are trivial fibrations.

ProoF. Choose a cofibrant approximation x : X — X such that X is a cell
complex and ix 1s a trivial fibration (see Proposition 13.2.15). We can then factor

the composition ¥ 5% X LyasX 57 25y where g 1s a relative [-cell
complex and iy is a trivial fibration (see Proposition 12.4.12). The result now
follows from Proposition 12.4.8 and Proposition 13.2.9. O

13.3. Recognizing cofibrantly generated model categories

THEOREM 13.3.1 (D. M. Kan). Let M be a category that is closed under small
limits and colimits and let W be a class of maps in M that is closed under retracts
and satisfies the “two out of three” axiom (axiom M2 of Definition 8.1.2). If I and
J are sets of maps in M such that

1. both I and J permit the small object argument (see Definition 12.4.11),
2. every J-cofibration is both an I-cofibration and an element of W,
3. every I-injective is both a J-injective and an element of W and
4. one of the following two conditions holds:
(a) a map that is both an I-cofibration and an element of W is a J-
cofibration, or
(b) a map that is both a J-injective and an element of W is an I-injective,

then there is a cofibrantly generated model category structure (see Definition 13.2.1)
on M in which W is the class of weak equivalences, I is the set of generating
cofibrations, and J is the set of generating trivial cofibrations.

ProOOF. We define the weak equivalences to be the elements of W, the cofibra-
tions to be the [-cofibrations, and the fibrations to be the J-injectives. We must
show that axioms M1 through M5 are satisfied (see Definition 8.1.2).

Axioms M1 and M2 are part of our assumptions, and axiom M3 follows from
the assumptions on W, the definition of I-cofibration (see Definition 12.4.1), and
Lemma 8.2.7.

If we apply the small object argument (Proposition 12.4.12) to the set I, then
assumption 3 implies that this satisfies axiom Mb part 1, and if we apply the small
object argument to the set J, then assumption 2 implies that this satisfies axiom
M5 part 2.

It remains only to show that axiom M4 is satisfied. The proof of axiom M4
depends on which part of assumption 4 is satisfied. If assumption 4a is satisfied,
then axiom M4 part 2 is clear. For axiom M4 part 1, if f: X — VY is both a

fibration and a weak equivalence, we can factor it as X I 7 My where g 1s an
I-cofibration and h 1s an [-injective. Axiom M2 and assumption 3 imply that g
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is also a weak equivalence, and so assumption 4a implies that ¢ is a J-cofibration.
Since f is a J-injective, the retract argument (Proposition 8.2.2) implies that f is
a retract of A, and is thus an I-injective (see Lemma 8.2.7). This proves axiom M4
part 1, and so the proof in the case that assumption 4a is satisfied is complete. The
proof in the case in which assumption 4b is satisfied is similar. O

13.4. Compactness

DEFINITION 13.4.1. Let M be a cofibrantly generated model category with gen-
erating cofibrations 7.
1. If k is a cardinal, then an object W in M is k-compact if 1t is k-compact
relative to I (see Definition 12.6.1).
2. An object W in M is compact if there is a cardinal & for which it is &-
compact.

EXAMPLE 13.4.2. If M = SS(.), then every finite simplicial set is w-compact
(where w is the countable cardinal). If & is an infinite cardinal and X is a simplicial
set of size k, then X is k-compact.

ExaMPLE 13.4.3. f M = Top(*), then Corollary 2.2.7 implies that every finite
cell complex is w-compact (where w is the countable cardinal). If & is an infinite
cardinal and X is a cell complex of size &, then Corollary 2.2.7 implies that X is
K-compact.

ProprosIiTION 13.4.4. Let M be a cofibrantly generated model category with
generating cofibrations I. if k is a cardinal and an object W in M is k-compact,
then any retract of W is k-compact.

Proo¥. This follows from Proposition 12.6.4. O

ProprosiTION 13.4.5. Let M be a cofibrantly generated model category with
generating cofibrations I. If k and X\ are cardinals such that k < A, then any object
in M that is k-compact is also A-compact.

Proor. This follows directly from the definitions. O

ProproSITION 13.4.6. If M is a cofibrantly generated model category with gen-
erating cofibrations I and S is a set of objects that are compact, then there is a
cardinal k such that every element of S is k-compact.

Proo¥. This follows from Proposition 12.6.6. O
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CHAPTER 14

Diagrams in a cofibrantly generated model
category

14.1. Free cell complexes

In Section 14.2, we will show that there is a model category structure on the
category of diagrams in a cofibrantly generated model category in which the free
cell complexes and their retracts are the cofibrant objects. The fact that the C-
diagram of simplicial sets B(C| —) is a free cell complex (see Corollary 14.6.8) will
imply that a map of diagrams that is a weak equivalence of fibrant spaces at each
object of C induces a weak equivalence of the homotopy limits of the diagrams
(see Theorem 20.6.10). We will also show that if a diagram of spaces is a free
cell complex, then its homotopy colimit is weakly equivalent to its colimit (see
Proposition 20.9.1).

14.1.1. Free diagrams of sets. In this section, we define free diagrams of
sets. This will be used in the next section to define free diagrams in a category of
diagrams, which will be used in Section 14.1.23 to define free cell complexes in a
category of diagrams in a cofibrantly generated model category.

DEeFINITION 14.1.2. If C is a small category and « is an object in C, the free
C-diagram of sets generated at position « is the C-diagram of sets F'Z for which

F(8) = C(a,0)
for every object 5 in C. A free C-diagram of sets is a C-diagram of sets that is a

coproduct of C-diagrams of the form F.

ProrosiTION 14.1.3. If C is a small category and « is an object in C, then, for
every object S of Set®, there is a natural isomorphism

Set®(F2,8)~ S,,.
ProoF. This is the Yoneda lemma (see, e.g., [7, page 11] or [41, page 61]). O
ExAMPLE 14.1.4. If € is a small category and S 1s a set, the free C-diagram of

sets on the set S generated at position « is the C-diagram of sets F§ = [[¢ Fy.
Thus, for every object 8 in C,

F5(8) =] ¢, 0).

ExAMPLE 14.1.5. The diagram of sets A — B is free if and only if the map
A — B is an inclusion.

EXAMPLE 14.1.6. The diagram of sets A — C < B is free if and only if the
maps A — C' and B — C' are inclusions with disjoint images in C'.
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ExAMPLE 14.1.7. The diagram of sets A; — Ay — A3z — - - is free if and only
if all of the maps in the diagram are inclusions.

ExAMPLE 14.1.8. The diagram of sets A; « Ay + Az + - is free if and only
if all of the maps are inclusions and the inverse limit of the diagram is empty.

ExXAMPLE 14.1.9. If a discrete group G is considered to be a category with one
object and morphisms equal to the elements of G, then a free G-diagram of sets is
what classically is called a free G-set.

ExampLE 14.1.10. If € is a small category and P: € — Set is the constant
diagram at a point, then P is free if and only if each connected component of C
has an initial object.

ExaMPLE 14.1.11. If A is the simplicial category (see Definition 16.1.2) and
C = A° then a C-diagram of sets is a simplicial set. The free C-diagram of sets
generated at position [n] is the simplicial set A[n]. Thus, the set of k-simplices of

Aln] equals the set A([#], [n]).

EXAMPLE 14.1.12. If € is the category A so that FI' is A[n] (see Exam-
ple 14.1.11), then Proposition 14.1.3 is the statement that, for every simplicial set
X, the set SS(A[n], X) is naturally isomorphic to the set of n-simplices of X.

ProrosiTION 14.1.13. If C is a small category and « is an object in C, then
the functor F: Set — Set® (see Example 14.1.4) is left adjoint to the functor
Set® — Set that evaluates at a, 1.e., for every set S and every C-diagram of sets T
there is a natural isomorphism

Set®(F%,T) ~ Set(S,T.).
Proo¥. This follows from Proposition 14.1.3. O

14.1.14. Free diagrams. In this section, we define free diagrams in a cate-
gory of diagrams (see Definition 14.1.17). In section Section 14.1.23, we will apply
this to the generating cofibrations (see Definition 13.2.1) of a cofibrantly generated
model category M to obtain the free cells, which are the generating cofibrations in
the category of C-diagrams in M.

DEeFINITION 14.1.15. Let M be a model category. If X 1s an object in M and
S is a set, then by X ® S we will mean the object in M obtained by taking the
coproduct, indexed by S, of copies of X. Thus,

X®SzHX.
S

DEFINITION 14.1.16. If M is a model category, C is a small category, S: C —
Set is a diagram of sets, and X is an object in M, then by X ® §: € - M we will
mean the C-diagram in M such that

(X®8).=X®8,
for every object o in € (see Definition 14.1.15).

DEFINITION 14.1.17. If M i1s a model category, X is an object in M, C is a
small category, and « is an object in C, then the free diagram on X generated at «
is the C-diagram X ® F'g (see Definition 14.1.16 and Definition 14.1.2). At every
object @ of €, this is He(a,ﬁ) X.
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ProrosiTION 14.1.18. If M is a model category, C is a small category, and « is
an object of €, then the functor — @ F2: M — M® (see Definition 14.1.17) is left
adjoint to the functor M® — M that evaluates at o, i.e., for every object X in M
and every diagramY in MC, there is a natural isomorphism

MEYX @ F2Y)~M(X,Y,).
Proo¥. This follows from Proposition 14.1.13. O

DEFINITION 14.1.19. If € is a small category, let €45¢ be the discrete category
with objects equal to the objects of C. If M is a model category and X 1s an object

in M(edisc), we define an object F(X) in M® by
FxX)= [ X.oF:
ae0b(C)
(see Definition 14.1.17), so that, for every object 5 in C, we have
(Fx),= [T II x.
a€0b(C) C(a,p)

COROLLARY 14.1.20. If M is a model category and C is a small category, then
the functor F: M€ — M of Definition 14.1.19 is left adjoint to the forgetful
functor U: M® — M(ed‘sc), 1.e., if X is an object in ME™) and Y is an object in
M, then there is a natural isomorphism

ME(F(X),Y) ~» M) (X, UY).
Proo¥. This follows from Proposition 14.1.18. O

DEFINITION 14.1.21. If € is a small category, let C45¢ be the discrete category

with objects equal to the objects of C. If § € Set(edisc), we define a C-diagram of
sets F(S) by

F(s)= ][ Fs,
ae0b(C)
(see Example 14.1.4), so that, for every object 3 in €, we have

(F(S))@ = H H C(a, 3).

EOb(C) sES,

THEOREM 14.1.22. The functor F: Set(¢"™) — Set® of Definition 14.1.21 is
left adjoint to the forgetful functor U: Set® — Set(® ), re,if § e Set!®™™) and
T e Sete, there is a natural isomorphism

Set®(F(S),T) ~ Set®™ ) (5,UT).
Proo¥. This follows from Proposition 14.1.13. O

14.1.23. Free cell complexes. Relative free cell complexes are the analogues
for diagrams of topological spaces of relative cell complexes for topological spaces
(see Definition 2.2.1). Relative free cell complexes and their retracts will be the
cofibrations in the model category of C-diagrams in a cofibrantly generated model
category (see Theorem 14.2.1). We will first describe free cells, which will be the
generating cofibrations in this model category (see Definition 13.2.1).
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DEFINITION 14.1.24. Let C be a small category, and let « be an object in C. If
M is a cofibrantly generated model category with generating cofibrations 7, then a
free cell generated at o in M® is a map of the form

AQ F; - B® FY
(see Definition 14.1.17) where A — B is an element of I. At every object 3 in C,

this 1s the map
H A— H B.
€(a,8) €(ap)

ExXAMPLE 14.1.25. Let € be a small category and let « be an object in C.
o A free cell generated at « in Top® is a map of the form
|0A[n]|® F — |Aln]| @ FY

for some n > 0.
e A free cell generated at o in Topf is a map of the form

0A[R][T © F2 — |A][f @ F2

for some n > 0.
e A free cell generated at o in SsCisa map of the form

OA[n] © F* = Aln] @ F©

for some n > 0.
e A free cell generated at o in SSS is a map of the form

OANT ® F¢ — An]t @ F2
for some n > 0.

DEFINITION 14.1.26. If M 1s a model category, J 1s a set of maps of M, and C
is a small category, then J ® € will denote the set of maps of M® of the form

C; @ F — D; ® F¢
(see Definition 14.1.17) where j: C; — D, is amap in J and « is an object in C.

ProPosITION 14.1.27. If M is a category, C is a small category, and J is a set of
maps in M, then the mapg: X — Y in M is a J@C-injective (see Definition 12.4.1)
if and only if g, X, — Y is a J-injective for every object « in C.

Proo¥. This follows from Proposition 14.1.18. O

DEFINITION 14.1.28. If M is a model category and C is a small category, then a
relative free cell compler in M is a map that is a transfinite composition (see Defi-
nition 12.2.2) of pushouts (see Definition 8.2.10) of free cells (see Definition 14.1.24).
A free cell complex in M© is a diagram X such that the map from the initial object
of M to X is a relative free cell complex. An inclusion of free cell complexes is a
relative free cell complex whose domain is a free cell complex.

The relative free cell complexes and their retracts will be the cofibrations in
the model category of C-diagrams in a cofibrantly generated model category M (see
Theorem 14.2.1).
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14.2. The model category of C-diagrams

THEOREM 14.2.1. Let C be a small category, and let M be a cofibrantly gen-
erated model category (see Definition 13.2.1) with generating cofibrations I and
generating trivial cofibrations J.

1. The category M® of diagrams X : @ — M is a cofibrantly generated model
category in which a map X — Y is
e a weak equivalence if X, — Y, is a weak equivalence in M for every
object o in C,
e a fibration if X, — Y, is a fibration in M for every object « in C,
and
e a cofibration if it is a retract of a transfinite composition of pushouts
of elements of I ® C.
The generating cofibrations of M® are the elements of I © C, and the gener-
ating trivial cofibrations are the elements of J ® C.
2. If M is a proper model category (see Definition 11.1.1), then the model
category of part 1 is proper.

Proo¥. For part 1, let W be the class of maps X — Y such that X, —+ Y,
is a weak equivalence for all a € Ob(C). We will show that the class W and the
sets I ® € and J ® C satisfy the hypotheses of Theorem 13.3.1.

Condition 1 follows from Proposition 14.1.18. Condition 2 holds because it
holds for 7 and J in M and a transfinite composition of trivial cofibrations is a
trivial cofibration (see Proposition 12.2.19). Proposition 14.1.27 implies condition 3
and condition 4b, and so the proof of part 1 is complete.

For part 2, since pushouts and pullbacks in M® are constructed objectwise,
and both fibrations and weak equivalences are defined objectwise, part 2 of Defini-
tion 11.1.1 is clear. Since a map in I ® € 1s a cofibration at each object of C, part 1
of Definition 11.1.1 is also clear, and the proof of part 2 is complete. O

14.3. Diagrams in a simplicial model category

DEeFINITION 14.3.1. Let M be a simplicial model category. If € is a small
category, X: C — M 1s a C-diagram in M, and K is a simplicial set, then we
define C-diagrams X ® K and X in M by letting (X ® K)o = X, ® K and
(XK)Q = (X)X fora € Ob(€) and, if (7: o — ') € €, then (X®K), = X, @1k
and (X%, = X ),

DEFINITION 14.3.2. Let M be a simplicial model category. If € is a small
category and X,Y: € — M are C-diagrams in M, then Map(X,Y) is defined
to be the simplicial set whose set of n-simplices is the set of maps of diagrams
X ® Aln] = Y (see Definition 14.3.1), and whose face and degeneracy maps are
induced by the standard maps between the Aln].

THEOREM 14.3.3. If C is a small category and M is a simplicial cofibrantly
generated model category, then the model category structure of Theorem 14.2.1
with the simplicial structure of Definition 14.3.1 and Definition 14.3.2 makes M® a
simplicial model category.

PRrROOF. Definition 14.3.1 and Definition 14.3.2 satisfy axiom M6 (see Defini-
tion 10.1.2) because the constructions are all done objectwise and M is a simplicial
model category. For axiom M7, Proposition 10.1.8 implies that it is sufficient to
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show that if j: K — L is a cofibration of simplicial sets and p: X — Y is a fibration
in M€, then X% — X% Xy K YL is a fibration that is also a weak equivalence if
either j or p is a weak equivalence. Since both fibrations and weak equivalences in
MC are defined objectwise, this follows from the assumption that M is a simplicial
model category, and so the proof is complete. O

14.4. Overcategories and undercategories

The category of simplices of a simplicial set will be defined as an overcategory
(see Definition 16.1.11). Overcategories and undercategories will also be used to
define a model category structure on a category of diagrams in a model category
indexed by a Reedy category (see Definition 16.3.2).

DEeFINITION 14.4.1. If C and D are categories, F: € = D is a functor, and « is
an object of D, then the category (F | a) of objects of C over « is the category in
which an object is a pair (3, ¢) where /4 is an object of € and ¢ is a map F§ — a in
D, and a morphism from the object (3, o) to the object (#',¢') isamap 7: § — /'
in € such that the triangle

Fg— 7 s pp

commutes.

If € = D and F is the identity functor, then we use (€l «) to denote the
category (Fla). An object of (Cl«) is a map 8 — « in €, and a morphism from
B —atof — aisamap @ — ' in € such that the triangle

L —

N

DEeFINITION 14.4.2. If C and D are categories, F: € = D is a functor, and « is
an object of D, then the category (o) F) of objects of C under « is the category in
which an object is a pair (3, ¢) where /4 is an object of € and ¢ is a map & — Fj3 in
D, and a morphism from the object (3, o) to the object (#',¢') isamap 7: § — /'

in € such that the triangle

Fj ————— Ff

commutes.

commutes. The opposite (a | F)°" is the category in which an object is a pair (8, o)
where 5 i1s an object of € and ¢ is a map &« — Fg in D, and a morphism from the
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object (8, ¢) to the object (3',¢') is a map 7: 5 — 3 in € such that the triangle

7N

3¢ F

commutes.

If € = D and F is the identity functor, then we use (o) C) to denote the
category (alF). An object of (ol €) is a map & — 3 in €, and a morphism from
a— ftoa— 3 isamap 8 — F in € such that the triangle

/a
p—T/f

commutes. The opposite (] €)°" is the category in which an object is a map
a — 3 in €, and a morphism from o — 3 to o — ' is a map 8 — 3 in € such

that the triangle
et
pe—4¢

ProrosiTION 14.4.3. If C is a small category and « is an object of €, then
there is a natural isomorphism of categories

(01O ~ (€ La)

PrROOF. An object of (C°P|a) is a map o — # in €, and a morphism in
(C°P | o) from o« — f to a = 3" is a map ' — S of € such that the triangle

N\

pe—7

commutes.

commutes. An object of («|C) is a map & — 3 in €, and a morphism in (a | C)
from oo — B to a — # is amap 8 — § in € such that the triangle

commutes. Thus, an object of (a] €)°" is a map o — 3 in € and a morphism in
(e} €)°F from o — B to @ — 3 is a map 3’ — 3 such that the triangle
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commutes. O
14.4.4. Cofinal functors.

DEFINITION 14.4.5. Let C and D be small categories and let F: ¢ — D be a
functor.
e The functor F is left cofinal (or initial) if for every object o of D the space
B(F | «) (see Definition 9.4.1 and Definition 14.4.1) is contractible.
e The functor F is right cofinal (or terminal) if for every object a of D the
space B(a | F) (see Definition 14.4.2) is contractible.
If C is a subcategory of D and F is the inclusion, then if F is left cofinal or right
cofinal we will say that C is, respectively, a left cofinal subcategory or a right cofinal
subcategory of D.

We will show in Theorem 19.5.11 that these are the correct notions when con-
sidering homotopy limits and homotopy colimits.

DEFINITION 14.4.6. Let C and D be small categories and let F: ¢ — D be a
functor.
e The functor F is 0-left cofinal (or 0-initial) if for every object a of D the
space B(F | a) (see Definition 14.4.1) is non-empty and connected.
e The functor F is 0-right cofinal (or 0-terminal) if for every object o of D
the space B(a | F) (see Definition 14.4.2) is non-empty and connected.

It is classical that these are the proper notions when considering limits and
colimits.

ProprosITION 14.4.7. Let C and D be small categories, and let F: C — D be a
functor.

1. If'F is left cofinal, then it is 0-left cofinal.
2. If'F is right cofinal, then it is 0-right cofinal.

Proor. This follows directly from the definitions. O

THEOREM 14.4.8. Let M be a category that is closed under limits. If C and D
are small categories and F: C — D is a 0-initial functor, then, for every D-diagram
X in M, the natural map limp X — lime F* X is an isomorphism.

Proor. The standard proof works. O

COROLLARY 14.4.9. Let M be a category that is closed under limits. If C and
D are small categories and F: C — D is a left cofinal functor, then, for every
D-diagram X in M, the natural map limp X — lime F* X is an isomorphism.

Proo¥. This follows from Proposition 14.4.7 and Theorem 14.4.8. O

THEOREM 14.4.10. Let M be a category that is closed under limits. If C and
D are small categories and F: C — D is a 0-terminal functor, then, for every
D-diagram X in M, the natural map colime F* X — colimp X is an isomorphism.

ProoF. The standard proof works (see, e.g., [41, page 213]). O

COROLLARY 14.4.11. Let M be a category that is closed under limits. If C and
D are small categories and F: C — D is a right cofinal functor, then, for every
D-diagram X in M, the natural map colime F* X — colimp X is an isomorphism.
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Proo¥. This follows from Proposition 14.4.7 and Theorem 14.4.10. O

REMARK 14.4.12. The reader should be aware that there are conflicting uses
of the above terms in the literature. Our definitions are those of Bousfield and Kan
([15, page 316]) and [26]. Heller ([35, page 54]) uses the terms homotopically initial
and homotopically final for what we here call initial and final, while Mac Lane ([41,
pages 213-214]) uses the terms initial and final for what we here call 0-initial and
0-terminal.

14.5. Diagrams of undercategories and overcategories

In this section, for every small category C we define a natural C°P-diagram of
simplicial sets B(— ] €)°" that will be used to define the homotopy colimit of a
C-diagram of spaces (see Definition 19.1.2), and a natural C-diagram of simplicial
sets B(C| —) that will be used to define the homotopy limit of a C-diagram of
spaces (see Definition 19.1.10). We also derive a relation between them (see Corol-
lary 14.5.11) that we will use to obtain a relation between the homotopy colimit
and the homotopy limit functors (see Corollary 20.3.19).

14.5.1. Diagrams of undercategories.

DEeFINITION 14.5.2. If € and D are small categories and F: € — D is a functor,
then, for each object a of D, we have the category (« ] F)°", the opposite of the
category of objects of € under « (see Definition 14.4.2). If ¢: o = o' is a map in
D, then ¢ induces a functor ¢*: (' | F)¥ — (| F)°", defined on objects by

o (0 BFR) =a 5 Fp.
If we take the classifying space of each undercategory (see Definition 9.4.1), we
obtain the D°P-diagram of simplicial sets B(— | F)°" which, on the object a of D,
takes the value B(a ] F)°F. Thus, an n-simplex of B(— } F)*"(a) = B(a | F)?" is a
commutative diagram in D

[0

o M

Foo P F

F 3y FpBn

o1 Fo,_1

with face and degeneracy maps defined as in (9.4.2).

As in Definition 14.4.2, if € = D and F is the identity functor, then we use
B(— 1 €)°" to denote the diagram of the opposites of the undercategories, and an
n-simplex of B(— ] €)°"(a) = B(a | €)" is a commutative diagram in €

[0

T

(074 (074 o
0 To 1 a1 Tn—1 n

with face and degeneracy maps defined as in (9.4.2).

LEMMA 14.5.3. If C is a small category and « is an object of €, then B(a | €)°F
is contractible.

Proo¥F. This follows from Proposition 9.4.4, since (« ) €)°" has the terminal
object 1,: a — a. O
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The €°P-diagram B(— | €)°" will be used to define the homotopy colimit func-
tor (see Definition 19.1.2). Lemma 14.5.3 implies that, in the model category of
C°P-diagrams of simplicial sets (see Theorem 14.2.1), the €°P-diagram B(— ] €)°¥
1s weakly equivalent to the constant diagram at a point. We will show in Corol-
lary 14.6.8 that B(—J,C)°" is also a free C°P-diagram, i.e., that B(—]C)°" is a
cofibrant approximation to the constant diagram at a point (see Definition 9.1.1).
This will imply (in Theorem 20.8.4) that if we use a different cofibrant approxima-
tion to the constant diagram at a point in the definition of the homotopy colimit
of a diagram, then, for a diagram of cofibrant spaces, we will get a space weakly
equivalent to the homotopy colimit.

ProprosiTION 14.5.4. If € and D are small categories and F: € — D is a func-
tor, then the colimit of the D°P-diagram of classifying spaces of undercategories
colimper B(— | F) is naturally isomorphic to BC.

ProOF. We define a map colimper B(— | F) = BC by taking the simplex (5 —
B1— 2 Bn,0:a— FF) of B(— | F) to the simplex 5y = 81 — -+ — 3, of BC.
This map is onto because the simplex gy — #1 — -+ — B, of BC is in the image of
(Bo—= 51— -+ = Bn, lrg,: Fo — Ffo), and it is one to one because the simplex
(Bo = P — - = Bn,o:a = Ffy) of B(alF) is identified with the simplex
(Bo—= 61— = P, Llrs,: FBo — Fpy) of B(FGy L F) in colimB(— | F). O

REMARK 14.5.5. We will show in Proposition 14.6.9 that the D°P-diagram
B(—JF) is also a free cell complex (see Definition 14.1.28). Tt will then follow
from Proposition 20.9.1 that the natural map hocolimB(— | F) = colimB(— | F) is
a weak equivalence, and so hocolimB(— | F) is naturally weakly equivalent to BC.

14.5.6. Diagrams of overcategories.

DEeFINITION 14.5.7. If € and D are small categories and F: € — D is a functor,
then, for each object o of D, we have the category (F | «), the category of objects
of C over a (see Definition 14.4.1). If o: & — o’ is a map in D, then ¢ induces a
functor o.: (Fla) — (Fl o), defined on objects by

o.(FB 5 a)=Tp 5 o
If we take the classifying space of each overcategory (see Definition 9.4.1), we obtain
the D-diagram of simplicial sets B(F | —) which, on the object « of D, takes the
value B(F | ). Thus, an n-simplex of B(F | —)(«) = B(F | «) is a commutative

diagram in D

Foq Fo,_1

Ffn

with face and degeneracy maps defined as in (9.4.2).
As in Definition 14.5.2 if € = D and F is the identity functor, then we use
B(C | —) to denote the diagram of overcategories, and an n-simplex of B(C | —)(«) =
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B(Cl a) is a commutative diagram in €

oo oy g1 Tn—1
a/

with face and degeneracy maps defined as in (9.4.2).

ap

LEMMA 14.5.8. If C is a small category and o is an object of €, then B(C| «)
is contractible.

Proor. This follows from Proposition 9.4.4, since (€] ) has the terminal
object 1,: a — a. O

The C-diagram B(C ] —) will be used to define the homotopy limit functor (see
Definition 19.1.10). Lemma 14.5.8 implies that in the model category of C-diagrams
of simplicial sets (see Theorem 14.2.1), the C-diagram B(C | —) is weakly equivalent
to the constant diagram at a point. We will show in Corollary 14.6.8 that B(C | —) is
also a free C-diagram, i.e., that B(C | —) is a cofibrant approximation to the constant
diagram at a point (see Definition 9.1.1). This will imply (in Theorem 20.8.1) that
if we use a different cofibrant approximation to the constant diagram at a point in
the definition of the homotopy limit of a diagram, then, for a diagram of fibrant
objects, we will get an object weakly equivalent to the homotopy limit.

14.5.9. Relations.

PROPOSITION 14.5.10. If € is a small category, then the isomorphism (a | ) &
(C°P | ) of Proposition 14.4.3 is natural in the object « of C.

Proor. This follows directly from the definitions. O

COROLLARY 14.5.11. If € is a small category, then there is a natural isomor-
phism of C°P-diagrams of simplicial sets

B(—{€)" ~ B(CP | —).
Proo¥. This follows from Proposition 14.5.10. O

14.6. Recognizing free cell complexes

THEOREM 14.6.1. If € is a small category and X is a C-diagram of (pointed or
unpointed) simplicial sets, then X Is a free cell complex if and only if there is a
sequence § = {8°, §', §7 ...} of CY°_diagrams of sets (where CU¢ js the discrete
category with objects equal to the objects of C) such that

1. Forn > 0 and o € Ob(C), the set ST, is a set of n-simplices of X .

2. Forn >0, a € Ob(C) and 0 < i < n, we have 5;(S") C 8"t (ie., S is
closed under degeneracies).

3. For n > 0, the natural map F(S") — X, (see Theorem 14.1.22) is an
isomorphism of C-diagrams of sets (where X, is the C-diagram of n-simplices
of X, for each o € Ob(C) and, if we are working in the category of pointed
simplicial sets, X ,, omits the basepoint and its degeneracies).
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REMARK 14.6.2. The reader should note the similarity between the free cell
compleres among diagrams of simplicial sets and the free simplicial groups among
simplicial groups (see, e.g., [40, Section 5]). Since a C-diagram of simplicial sets
is equivalently a simplicial object in the category of C-diagrams of sets, we are
comparing the definitions of free simplicial groups and free simplicial C-diagrams
of sets. This similarity can be made more precise by noting that a group is an
algebra over the “underlying set of the free group” triple on the category of sets
(see, e.g., [4, page 339] or [42, pages 176-177]), while a C-diagram of sets is an
algebra over the “underlying €¥*¢-diagram of sets on the free C-diagram of sets”
triple on the category of C¥sc-diagrams of sets. The sequence S in Theorem 14.6.1
is the analogue for C-diagrams of simplicial sets of a basis of a free simplicial group
(see Definition 14.6.3). Free cell complexes are also free objects in the category of
simplicial C-diagrams of sets in the sense of [38, Definition 5.1].

PrOOF OF THEOREM 14.6.1. We will prove the theorem in the category of
unpointed simplicial sets; the proof for pointed simplicial sets is nearly identical.

We first assume that there is a sequence §°, 8! §7... of C¥sc_diagrams of
sets satisfying conditions (1) through (3), and we will show that the n-skeleton
X" of X can be obtained from the (n — 1)-skeleton X% of X as a pushout of a
coproduct of free cells. Proposition 12.2.5 and Lemma 12.2.11 will then imply that
X is a free cell complex.

We begin by noting that X° = A[0] @ F(8°) (see Definition 14.1.21 and Defi-
nition 14.1.16). We now assume that n is a positive integer. For each o € Ob(C),
let g’z C 8% be the subset of nondegenerate simplices. If ¢ € g’z, then all faces of
o are contained in X”7! and so o defines a map do: dA[n] = X"~ Proposi-
tion 14.1.18 implies that this defines a map of C-diagrams do @ F¢: 0A[n]@ FS —
X"~ ! and we can take the coproduct of these to obtain

[ deoFe: J] oA F2 =0AR @ F4n — X"
oes" oes" :

If we combine these for all & € Ob(€), we obtain the map

[I oalml® Fg. = 0A] @ F(S") — X"
a€0b(€) °

(see Definition 14.1.21), and condition (3) implies that the square

A @ F(§") — xn!

L]

~n

Aln]o F(8") —— X"

is a pushout, which completes the first direction of the proof.
We now assume that X is a free cell complex. If + is an ordinal and

D> X1 > Xo— > Xg— - (B <)
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i1s a presentation of X as a transfinite composition of pushouts of free cells, then
for each 0 < # < v, we have a pushout diagram

OA[n]® F* — X5

l l

A[n] & FS — XSucc(ﬁ)

(see Definition 12.1.11) for some integer n > 0 and some « € Ob(C). Let S, be the
union (for each 0 < § < 4 such that Xsuce(p) 18 obtained from X by attaching
a free cell based at a (see Definition 14.1.24)) of the images of §, ® 1, and its
degeneracies (where 4, is the nondegenerate n-simplex of A[n]) in X, and let S7,
be the set of n-simplices that occur in S,. Since for each 0 < 7 < v the diagram
X is enlarged by adding the free diagram of simplices generated by the images
of §, ® 1, and its degeneracies, it is clear that the sets 8" satisfy conditions (1)
through (3), and so the proof is complete. O

DEerFINITION 14.6.3. If € is a small category and X is a C-diagram of simplicial
sets that is a free cell complex, then a sequence §°, 8!, 8% ... asin Theorem 14.6.1
will be called a basis for X, and an element of an S, will be called a generator
of the free cell complex X. We will use S to denote the sequence §°, S' 8% .. ..
We will let g’z C 87, be the subset of nondegenerate simplices, and we will call an
element of an g’z a nondegenerate generator of X. An element of an ST, — g’z will
be called a degenerate generator.

THEOREM 14.6.4. Let C be a small category and let X : € — S5,y be a C-
diagram of simplicial sets. If S = {SO, st s% .. .} is a sequence of CV*°_diagrams
of sets, then X is a free cell complex with basis S if and only if:

1. Forn > 0 and o € Ob(CQ), the set ST, is a set of n-simplices of X .

2. Forn >0, a € Ob(C) and 0 < i < n, we have 5;(S") C 8"t (ie., S is

closed under degeneracies).

3. Ifn >0, 3 € Ob(C) and 7 is an n-simplex of X g (where, if SS(,) = SS.,

then 7 is neither the basepoint nor one of its degeneracies), there exist unique
a € 0Ob(C), ¢ € S, and v: o« — [ in € such that X(o) = 7.

Proo¥. This follows directly from Theorem 14.6.1 and Definition 14.1.21. O

ProprosITION 14.6.5. If C and D are small categories and F': € — D is a func-
tor, then the D°P-diagram of simplicial sets B(— | F)°F (see Definition 14.5.2) and
the D-diagram of simplicial sets B(F | —) (see Definition 14.5.7) are both free cell
complexes.

ProoF. If o € Ob(C), let S, be the set of simplices (of all dimensions) of
B(Fal F)° of the form

(14.6.6) Fo
/ l lra
FO[O Foqg Fal Foq o Fo,_1 Fa

and let S” be the set of n-simplicesin S,. The CY°_diagrams of sets S0 st s? ..
satisfy the conditions of Theorem 14.6.1, and so B(— | F)" is a free cell complex.
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The proof for B(F | —) is similar, using the simplices of B(F | —) of the form

oo g1 Fon,_1
(14.6.7) Fag —2% Fa; 224 ..

Sl

Foa

[0

O

COROLLARY 14.6.8. If C is a small category, the C°P-diagram of simplicial sets
B(—{ €)°" (see Definition 14.5.2) and the C-diagram of simplicial sets B(€ | —) (see
Definition 14.5.7) are both free cell complexes.

ProprosITION 14.6.9. If C and D are small categories and F': € — D is a func-
tor, then the D°P-diagram of simplicial sets B(— | F) is a free cell complex.

Proo¥. This is similar to the proof of Proposition 14.6.5. O

LEmMMA 14.6.10. If X: C — SS is a free cell complex then xt.e - ss,
(defined by X} = (X ,)* for all « € Ob(C)) is also a free cell complex.

Proor. This follows from Theorem 14.6.4. O

PropPosITION 14.6.11. If € is a small category and X: C — S§§(.) Is a free
cell complex, then |X| € — Top, (defined by |X|a = |Xa|) is also a free cell
complex.

Proor. This follows from the definition of free cell complex and the fact that
if
AR Fy —— X

L

A® FS E— XSucc(ﬁ)
is a pushout of C-diagrams of simplicial sets, then

0A] @ F* —— | X

Al FE—— | Xsue(p)]
is a pushout of C-diagrams of topological spaces. O

14.7. Maps from free cell complexes

PropPosITION 14.7.1. Let € be a small category and let X : € — §§(,) be a free
cell complex with basis § = {8 8" 8% ...}. If n > 0 and we let Y be the free
cell complex with basis T = {T°, T*, T, ...} where

. ifk<n
T = ~k
S§F— 8§ ifk>n
(see Definition 14.6.3), then for each o € Ob(C), Y, is the n-skeleton of X .

Proo¥. This follows from an examination of the proof of Theorem 14.6.1. [
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ProPosITION 14.7.2. Let € be a small category, X : C — §S(.) a free cell com-

plex with basis §°, 8, §* ... and X": C — SS(«) the C-diagram of n-skeletons
of X, ie., X7, is the n-skeleton of X, for all « € Ob(C). If Y : C — SS, is a
C-diagram of spaces and g: X" — Y is a map of C-diagrams, then extensions of g

. ~n+1
to the (n+1)-skeleton of X correspond to maps of C45¢_diagrams h: S * =Y,
such that d;hg = god; for « € Ob(€) and 0 < i< n+ 1.

Proor. This follows directly from the definitions. O
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CHAPTER 15

Cellular model categories

A cellular model category is a cofibrantly generated model category (see Defini-
tion 13.2.1) in which the cell complexes (see Definition 13.2.4) are well behaved (see
Definition 15.1.1). T am not aware of any cofibrantly generated model categories
that fail to be cellular model categories.

15.1. Cellular model categories

DEFINITION 15.1.1. A cellular model category is a cofibrantly generated (see
Definition 13.2.1) model category M for which there are a set I of generating cofi-
brations and a set J of generating trivial cofibrations such that

1. both the domains and the codomains of the elements of I are compact (see

Definition 13.4.1),

2. the domains of the elements of J are small relative to I (see Definition 12.4.10),

and

3. inclusions of relative cell complexes (see Definition 13.2.4) are effective monomor-

phisms (see Definition 12.7.1).

REMARK 15.1.2. Although the sets I and J in Definition 15.1.1 are not part
of the structure of a cellular model category, we will generally assume that some
specific sets I and J satisfying the conditions of Definition 15.1.1 have been chosen.

15.1.3. Examples of cellular model categories. We still need to write
out the proofs of the following propositions:

PrOPOSITION 15.1.4. The categories SS, Top, SS., and Top, are cellular model
categories.

ProrosITION 15.1.5. If M is a cellular model category and C is a small category,
then the diagram category M is a cellular model category.

ProPOSITION 15.1.6. If M is a cellular model category and Z is an object of
M, then the overcategory (M| 7) is a cellular model category.

ProposiTioN 15.1.7. If M is a cellular model category and C is a small sim-
plicial category, then the category M® of simplicial diagrams is a cellular model
category.

ProrosITION 15.1.8. If M is a pointed cellular model category with an action
by pointed simplicial sets, then the category of spectra over M (as in [14]) is a
cellular model category.

ProPosITION 15.1.9. If M is a pointed cellular model category with an action
by pointed simplicial sets, then J. H. Smith’s category of symmetric spectra over
M [52, 36] is a cellular model category.
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15.1.10. Recognizing cellular model categories.

THEOREM 15.1.11. If M is a model category, then M is a cellular model cate-
gory if there are sets I and J of maps in M such that

1. a map is a trivial fibration if and only if it has the right lifting property with
respect to every element of I,

2. amap is a fibration if and only if it has the right lifting property with respect
to every element of J,

3. the domains and codomains of the elements of I are compact relative to I,

4. the domains of the elements of J are small relative to I, and

5. relative I-cell complexes are effective monomorphisms.

ProoF. We need only show that I is a set of generating cofibrations for M
and that J i1s a set of generating trivial cofibrations for M. Proposition 12.6.7
and Proposition 12.7.5 imply that I permits the small object argument (see Defini-
tion 12.4.11), and so [ is a set of generating cofibrations for M. Proposition 13.2.10
now implies that .J is a set of generating trivial cofibrations for M. O

15.2. Subcomplexes in cellular model categories

ProrosiTION 15.2.1. If M is a cellular model category, then a subcomplex
of a presented relative cell complex is entirely determined by its set of cells (see
Definition 12.5.4).

Proo¥. This follows from Proposition 12.5.9 and Proposition 12.5.10. O

Thus, if f: X — Y is a presented relative cell complex, then the union of a set
of subcomplexes of f is well defined. The intersection of a family of subcomplexes
is also well defined, but there i1s no guarantee that an intersection of subcomplexes
exists (see, however, Proposition 15.2.3).

15.2.2. Intersections of subcomplexes. The main result of this section
is Theorem 15.2.6, which asserts that the intersection of two subcomplexes of a
presented cell complex always exists. We have not been able to determine whether
an arbitrary intersection of subcomplexes must exist.

ProOPOSITION 15.2.3. Let M be a cellular model category and let X be a pre-
sented cell complex. If K and L are subcomplexes of X such that their intersection
K N L exists (see Remark 12.5.11), then the pushout square

KNL——K

|

L ———KUL

is a pullback square.
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Proor. If f: W — L and g: W — K are maps such that vg = uf, then we
have the solid arrow diagram

A ﬂL—>A 4>[{HKQLL

21

SJ ’UJ J/T

i
L— KUL_—_Z(KUuL)Up (KUL)

i
in which the left hand square commutes, 7ig = igv, and ri; = ¢jv. We now have
ripg = thvg = iquf = tjuf = i{vg = riyg; since r is an inclusion of a subcomplex, it
is a monomorphism (see Proposition 12.7.5), and so igg = é1¢. Since t is an inclusion
of a subcomplex (and, thus, an effective monomorphism), this implies that there is
a unique map h: W — K N L such that th = ¢g. Since ush = vth = vg = uf and

w is an inclusion of a subcomplex (and, thus, a monomorphism), we have sh = f,
and the proof is complete. O

THEOREM 15.2.4. Let M be a cellular model category and let (X,@ = Xo —
X1 =Xy =5 -2 Xg o - (F <A, {T7 P hﬁ}@<>\) be a presented cell
complex. If{Uﬁ}@<>\ and {VP} 5.5 are subcomplexes of X (see Remark 12.5.11),

then the sequence {Tﬁ}@<>\ such that TP = UP N VP for all 3 < X determines a
subcomplex of X.

Proor. We must show that the sequence {Tﬁ}@<>\ can be constructed by the
inductive procedure of Proposition 12.5.10. Since Proposition 12.5.10 allows T° to
be any subset of 70, the induction is begun.

Suppose now that J is an ordinal such that g < A, and that the condition is
satisfied for T for all ~v < 3. We must show that, if i € Tﬁ, then hf : 5 = Xg fac-

tors through )?@ — Xp. Since T8 = U n V? this follows from Proposition 15.2.3,
and so the proof 1s complete. O

DEerINITION 15.2.5. The subcomplex {Tﬁ}@<>\ of Theorem 15.2.4 will be called
the intersection of the subcomplexes {UP}5< and {VP}5c,.

THEOREM 15.2.6. Let M be a cellular model category, and let X be a cell
complex. If K and L are subcomplexes (see Remark 12.5.7) of X (relative to some
presentation of X ), then the subcomplex K N L of X exists.

Proor. This follows from Theorem 15.2.4. O

15.3. Compactness in cellular model categories

ProprosiTION 15.3.1. If M is a cellular model category then there is a cardinal

o such that if T is a cardinal and X is a cell complex of size T, then X is oT-compact
(see Definition 13.4.1).

ProOOF. Since the domains and codomains of the elements of I are compact,
we can choose an infinite cardinal ¢ such that each of these domains and codomains
is o-compact (see Proposition 13.4.6).
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If 7 1s a cardinal and X is a cell complex of size 7, then we can choose a
presentation of X (see Definition 12.5.2), indexed by an ordinal A whose cardinal is
7, that has no two cells with the same presentation ordinal (see Definition 12.5.4).
Thus, we have a A-sequence § = Xg - X1 = Xo —» -+ = Xg — - (8 < A) whose
colimit is X and such that every Xs41 (for §+ 1 < A) is obtained as a pushout

(1532) A@+1 —)B@+1

L

Xg — X1

for some element Agy1 — Bgy1 of I. If Y is a presented cell complexand f: X =Y
is a map, then we must show that there is a subcomplex K of YV, of size at most
o1, through which f factors. We will show by induction on g that for every § < A
the composition Xg —+ X — Y factors through a subcomplex Kg of ¥ of size at
most o7. The map f will then factor through the union of the {K s}« (since the
inclusion of that union into Y is a monomorphism; see Proposition 12.7.5), which
is of size at most (o7)7 = o7.

The induction is begun by noting that Xo = @ (the initial object of M). If
841 < A and the composition X3 =+ X — Y factors through a subcomplex Kz of
Y of size at most o7, then the composition of the attaching map Bsi1 — Xp11 —
X =Y (see Diagram 15.3.2) also factors through a subcomplex of size at most o1,
and (since ¢ is infinite) the union of these subcomplexes will be of size at most or
(see Proposition 12.1.14). Finally, if § is a limit ordinal such that 5 < A and for
every a < 3 the composition X, — X — Y factors through a subcomplex K, of Y
of size at most o7, then the composition X3 — X — Y factors through the union
Ua<ﬁ K, which is of size at most o7. (]

DEeFINITION 15.3.3. If M is a cellular model category, then the smallest cardinal
o satisfying the conclusion of Proposition 15.3.1 will be called the size of the cells

of M.
15.4. Smallness in cellular model categories

The main result of this section 1s Theorem 15.4.3, which asserts that all cofi-
brant objects in a cellular model category are small relative to the subcategory of
all cofibrations.

LEMMA 15.4.1. If M is a cellular model category with generating cofibrations
I, then every cell complex (see Definition 13.2.4) is small relative to I.

Proo¥. This follows from Proposition 12.6.7 and Corollary 12.3.9. O

LEMMA 15.4.2. If M is a cellular model category with generating cofibrations
1, then every cofibrant object of M is small relative to I.

Proo¥. This follows from Corollary 13.2.13, Proposition 12.3.7 and Lemma 15.4.1.
O

THEOREM 15.4.3. If M is a cellular model category, then every cofibrant object
is small relative to the subcategory of cofibrations.

Proo¥. This follows from Lemma 15.4.2 and Proposition 13.2.10. O
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THEOREM 15.4.4. If M is a cellular model category and J is a set of generating
trivial cofibrations for M as in Definition 15.1.1, then the domains of the elements
of J are small relative to the subcategory of all cofibrations.

Proo¥. This follows from Definition 15.1.1 and Proposition 13.2.10. O

PropPoOSITION 15.4.5. Let M be a cellular model category. If S is a set of
cofibrations with cofibrant domains and J is a set of generating trivial cofibrations
for M as in Definition 15.1.1, then there is a functorial factorization of every map
X 5Ya XD W LY where p is a relative (S U J)-cell complex and ¢ is an
(S U J)-injective.

ProoF. Theorem 15.4.3 and Theorem 15.4.4 imply that the domains of the
elements of S U J are small relative to S'U J, and so the result follows from Prop-
osition 12.4.12. O

PrOPOSITION 15.4.6. Let M be a left proper cellular model category, and let S
be a set of inclusions of subcomplexes. If X — X' is the inclusion of a subcomplex
and we apply a small object factorization using the set S and some ordinal A (see
Definition 12.4.14) to both of the maps X — * and X' — x to obtain the diagram

X ——Esg —— %

| ]

X' —— By ——rx
then the map Eg — EY is the inclusion of a subcomplex.

Proo¥. Using Proposition 12.7.5, one can check inductively that, at each stage
in the construction of the factorization, the map E° — (Eﬁ)’ is the inclusion of a
subcomplex. O

15.5. Bounding the size of cell complexes

The main result of this section is Proposition 15.5.3, which asserts that if a
small object factorization (see Definition 12.4.14) is applied to a map between
“large enough” cell complexes, then the resulting cell complex is no larger than the
ones with which you started.

ProPOSITION 15.5.1. Let M be a cellular model category. If X is a cell complex
(see Definition 13.2.4), then there is a cardinal n such that, if v is a cardinal and
Y is a cell complex of size v, then the set M(X,Y) has cardinal at most nv.

PRrROOF. Let ¢ be the size of the cells of M (see Definition 15.3.3), and let 7
be the size of X. There is only a set of isomorphism classes of cell complexes of
size at most o7, and so we can choose a set {Y,}neca of representatives of those
isomorphism classes. We let 1 be the cardinal of the set HaeA M(X,Ys).

Let v be a cardinal, and let Y be a cell complex of size v. If v < o7, then Y 1s
isomorphic to one of the Y,, and so the cardinal of M(X,Y) is at most n < nv. If
v > o7, then any map from X to Y must factor through a subcomplex of Y that
is isomorphic to one of the Y, (see Proposition 15.3.1). Since v > o7, the set of
such subcomplexes of ¥ has cardinal at most v (see Lemma 12.1.17), and so the
set M(X,Y) has cardinal at most nv. O
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COROLLARY 15.5.2. Let M be a cellular model category. If X is a cofibrant
object, then there is a cardinal n such that, if v is a cardinal and Y is a cell
complex of size v, then the set M(X,Y’) has cardinal at most nv.

Proo¥. This follows from Proposition 15.5.1, Lemma 12.1.18, and Corollary 13.2.13.
O

ProproSITION 15.5.3. Let M be a cellular model category with generating cofi-
brations I. If K is a set of relative [-cell complexes with cofibrant domains, then
there is a cardinal k such that, for every cardinal y such that u >k, ifg: X — Y
is a map of cell complexes of size at most u and E is the object constructed by
applying the small object factorization with the set K and an ordinal v < y to the
map g (see Definition 12.4.14), then Ex is a cell complex of size at most .

PrOOF. Let k be an infinite cardinal at least as large as each of the following
cardinals:

for each domain of an element of K, the cardinal 5 as in Corollary 15.5.2,
for each codomain of an element of K, the cardinal 5 as in Corollary 15.5.2,
for each relative I-cell complex in K, the cardinal of the set of cells in that
relative [-cell complex, and

e the cardinal of the set K.

If 1118 a cardinal such that ¢ > & and v is an ordinal such that v < p,let g: X =Y
be a map of cell complexes of size at most p, and let X = Xg =+ X7 > Xo =5 -+ —
Xs — -+ (8 < v) be the v-sequence constructed by applying the small object
factorization with the set K and the ordinal v to g. We will show by transfinite
induction that, for § < v, the complex X3 has size at most p. Since Succ(pu) (see
Definition 12.1.11) is a regular cardinal (see Proposition 12.1.15), this will imply
the proposition.

We begin the induction by noting that Xg = X. If we now assume that § < v
and that Xz has size at most y, then the domain of each element of K has at most
kp = g maps to Xg, the codomain has at most K = g maps to Y, and there are
at most p elements of K. Thus, X1 is built from X5 by pushing out at most
fX g X = g maps, each of which attaches at most p cells to Xg, and so Xg41
has size at most pu.

If 3 is a limit ordinal, then Xz is a colimit of complexes of size at most y. Since
B < v < u, this implies that Xz is of size at most y, and the proof is complete. [

DEFINITION 15.5.4. Let M be a cellular model category with generating cofi-
brations 7, and let p be the smallest regular cardinal such that
1. the domains of the elements of I are p-small relative to I (see Defini-
tion 12.4.10), and
2. pis at least as great as the smallest infinite cardinal & satisfying the conclu-
sion of Proposition 15.5.3 for the set I.
We define a natural cylinder object (see Definition 8.3.2) X T X — CylM(X) - X

on M by applying the small object factorization with the set 7 and the ordinal p
to the fold map 1x T 1x: X T X — X (see Definition 12.4.14).

ProprosITION 15.5.5. Let M be a cellular model category. If p is as in Defi-
nition 15.5.4, p is a cardinal such that p > p, and X is a cell complex of size at
most u, then the natural cylinder object CylM(X) (see Definition 15.5.4) is of size
at most ft.
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Proo¥. This follows from Proposition 15.5.3. O
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CHAPTER 16

The Reedy model category structure

The Reedy model category structure will be defined for diagrams in a model
category indexed by a Reedy category (see Definition 16.3.2). The main examples
of Reedy categories are the cosimplicial and simplicial indexing categories, and,
more generally, categories of simplices of simplicial sets (see Definition 16.1.11) and
their opposites. The standard model category structures on categories of simplicial
(or cosimplicial) objects in a model category are examples of Reedy model category
structures.

The Reedy model category structure on the category of cosimplicial spaces
differs from the one defined by using the cofibrantly generated model category
structure on spaces (see Theorem 14.2.1) in that, although it has the same weak
equivalences, it has more cofibrations. A cosimplicial object in a model category
will be Reedy cofibrant if for every n > 0 the map from the colimit of objects
of lower degree to the object of degree n is a cofibration (see Definition 16.3.2).
Thus, the cosimplicial standard simplex (see Definition 16.1.9) is a Reedy cofibrant
diagram of simplicial sets (see Corollary 16.4.10).

The Reedy model category structure was defined first (in [15, Chapter X]) for
the category of cosimplicial spaces. It was then defined for the category of simplicial
objects in a model category in [50, Section 1] (see also [14, Theorem B.6]) and the
category of cosimplicial objects in a model category (see [30, Section 2.4]). The
common generalization of these indexing categories is due to D. M. Kan, and is
called a Reedy category (see Definition 16.2.2).

16.1. The category of simplices of a simplicial set

If X is a simplicial set, we will define a category AX whose objects are the
simplices of X and whose morphisms from the simplex ¢ to the simplex 7 are the
simplicial operators that take 7 to o (see Definition 16.1.11). Note the reversal
of direction: If J;7 = o, then §; corresponds to a morphism that takes o to 7.
This is because a simplicial set is a functor A°? — Set, while AX is defined
as an overcategory using a covariant functor A — S§S. A diagram indexed by
AX is a sort of generalized cosimplicial object, and a diagram indexed by A°PX
is a sort of generalized simplicial object (see Example 16.1.13, Definition 16.1.5,
Definition 16.1.7, and Proposition 20.10.2). Categories of the form AX or AP X
(for a simplicial set X) are the most important examples of Reedy categories (see
Definition 16.2.2).

16.1.1. The simplicial category.

DeFINITION 16.1.2 (The simplicial category). If n is a nonnegative integer, we
let [n] denote the ordered set (0,1,2,...,n). The category A is the category with
objects the [n] for n > 0 and with morphisms A([n], [k]) the weakly monotone
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functions [n] — [k], i.e., the functions o: [n] — [k] such that o(i) < o(j) for
0<i<j<n

REMARK 16.1.3. The simplicial category A (see Definition 16.1.2) is a skeletal
subcategory of the category whose objects are the finite ordered sets and whose
morphisms are the weakly monotone maps.

ExAMPLE 16.1.4. A simplicial set is a functor A°? — Set.
DEFINITION 16.1.5. A simplicial space is a functor A°? — Spe(y-

NoTaTIiON 16.1.6. If X is a simplicial object, we will usually denote the object
X[ by Xp.

DEFINITION 16.1.7. A cosimplicial space is a functor A — Spc(*).

NotaTiON 16.1.8. If X is a cosimplicial object, we will usually denote the
object X, by X™.

DEFINITION 16.1.9. The cosimplicial standard simplez 1s the cosimplicial sim-
plicial set A: A — SS (see Definition 16.1.2) that takes the object [n] of A to the
standard n-simplex A[n]. The simplicial set A[n] has as k-simplices the weakly
monotone functions [k] — [n], i.e., A[n]r = A([k], [n]).

16.1.10. Categories of simplices.

DEFINITION 16.1.11. Let A be the simplicial category (see Definition 16.1.2),
and let F: A — SS be the functor that takes [n] to A[n]. If K is a simplicial set,
then AR, the category of simplices of K, is defined to be the overcategory (F| K)
(see Definition 14.4.1). Thus, AK is the category with objects the simplicial maps
Aln] = K (for somen > 0) and with morphismsfrom o: A[n] = K tor: Alk] - K
the commutative triangles of simplicial maps

Aln] —— 5 A[K]
NS

ProrosiTION 16.1.12. If K is a simplicial set, then there is a natural isomor-
phism of sets Ob(AK) ~ [[,vo Kn. If T is an n-simplex (for some n > 0), k Is
an integer satisfying 0 < k < n, and Oy = o, then 8, corresponds under this
isomorphism to a morphism from x,: Aln— 1] = K to x;: Aln] — K (where the
characteristic map x, of an n-simplex 7 is the unique map A[n] — K that takes
the non-degenerate n-simplex of A[n] to 7).

Proor. This follows from the one to one correspondence between n-simplices
of K and maps of simplicial sets A[n] = K (see Example 14.1.12). O

ExAMPLE 16.1.13. If K is the one point simplicial set (i.e., K, = * for all
n > 0), then AK is the simplicial category A (see Definition 16.1.2).

ProrosiTION 16.1.14. If K is a simplicial set and G: AK — SS is the AK-
diagram of simplicial sets that takes the object o: Aln] — K of AK to Aln], then
there is a natural isomorphism colimag G &~ K.
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ProoF. The objects o: A[n] = K of AK come with natural maps G(¢) —
K that commute with the structure maps of G, and so there is a natural map
colimag G — K. Since every n-simplex o of K defines an object x,: A[n] - K
of AK for which the image of the natural map G(y,) = K contains o, the map
colimag G — K 1s surjective.

To show that the map colimag G — K is injective, assume that there are
objects o: Alm] — K and 7: A[n] = K of AK together with a k-simplex 5 of A[m)]
and a k-simplex p of Aln] such that the image in K of 5 under G(¢) — K equals
the image in K of p under G(r) — K. This implies that there is a commutative
square in SS

Afk] —2 Aln]

Alm] —— K

which we can regard as a diagram in AK. This diagram in AK implies that the
image of 7 in colimag G equals the image of y in colimag G, and so the natural
surjection colimag G — K is a natural isomorphism. O

16.2. Reedy categories and their diagram categories
16.2.1. Reedy categories.

DEFINITION 16.2.2. A Reedy Category is a small category € together with two
subcategories w (the direct subcategory) and T (the inverse subcategory), both
of which contain all the objects of C, in which every object can be assigned a
nonnegative integer (called its degree) such that

1. Every non-identity morphism of T raises degree.
2. Every non-identity morphism of C lowers degree.
3. Every morphism ¢ in C has a unique factorization ¢ = § ‘g where 7 is in

and 7 isin C.

REMARK 16.2.3. Definition 16.2.2 implies that a Reedy category consists of a
category and two subcategories, subject to certain conditions. The function that
assigns to each object its degree is not a part of the structure, but we will often
implicitly assume that a degree function has been chosen.

ExAMPLE 16.2.4. The simplicial category (see Definition 16.1.2) is a Reedy
category in which the object [n] has degree n, the direct subcategory consists of
the injective maps, and the inverse subcategory consists of the surjective maps.

ExAMPLE 16.2.5. If X is a simplicial set, then the category AX of simplices
of X (see Definition 16.1.11) is a Reedy category in which the degree of an object
1s the dimension of the simplex of X to which it corresponds, the direct subcate-
gory consists of the morphisms corresponding to iterated face maps in X, and the
inverse subcategory consists of the morphisms corresponding to iterated degener-
acy maps of X. Note that Example 16.2.4 is a special case of this example (see
Example 16.1.13).

ProrosiTION 16.2.6. If C is a Reedy category, then g)p is a Reedy category in
which the degrees of the objects are unchanged, C°° = ('€ )°P, and &op = (?)Op.
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Proor. This follows directly from the definitions. O

DeFINITION 16.2.7. If € is a Reedy category with a degree function (see Re-
mark 16.2.3) and n is a nonnegative integer, the n-filtration F" C is the full sub-
category of € whose objects are the objects of € of degree less than or equal to
n.

ExaMPLE 16.2.8. If C is a Reedy category, then the O-filtration of C is a cate-
gory with no non-identity maps.

ExAMPLE 16.2.9. If X is a simplicial set and ¢ = AX (see Example 16.2.5),
then the n-filtration of € is not the same as A(X™), the category of simplices of the
n-skeleton of the simplicial set X. This is because F" € has no objects of degree
greater than n, while A(X") has among its objects the high dimensional simplices
of X that are degeneracies of simplices of dimension less than or equal to n. The
relationship between F" € and A(X™) is that A(X™) is the left Kan extension (see
[41, page 232]) of F" € along the inclusion F" € — € (see also [3, page 6]).

ProPOSITION 16.2.10. If € is a Reedy category, then each of its filtrations (see
Definition 16.2.7) is a Reedy category with the obvious structure, and C equals the
union of the increasing sequence of subcategories F*@ C F1€ Cc F*€ C ---.

Proor. This follows directly from the definitions. O

16.2.11. Diagrams indexed by a Reedy category. Diagramsindexed by a
Reedy category and maps of such diagrams are most naturally analyzed inductively
on the degree of the object. In this section, we assume that we have a Reedy
category with a degree function (see Remark 16.2.3), and we describe how to define
a diagram indexed by the Reedy category inductively on the degree of the object
in the Reedy category. In Remark 16.2.19, we summarize this description in terms
of the latching objects and matching objects of the diagram, which are defined
in Definition 16.2.17. In Section 16.2.20, we will describe how to define a map
between two such diagrams. We will use this analysis in Section 16.3 to define a
model category structure on a category of diagrams in a model category indexed
by a Reedy category.

Since the O-filtration of a Reedy category contains no non-identity maps, we
can define a diagram X : F° € — M by choosing an object X, of M for each object
a of € of degree 0.

Suppose that we have a diagram X : F"7' € — M indexed by the (n—1)-
filtration of a Reedy category C, and we wish to extend it to a diagram X : F" C —
M. We begin by choosing an object X, in M for each object a of € of degree
n. For each object 8 of F*~1 € and map # — « in F” €, we must choose a map
X3 — X, in M. We must do this so that if § — 4’ is a map in F*~ 1€ and

L —

N

[0
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is a commutative triangle in F" €, then the triangle in M

Xﬁ —>Xﬁ’
Xo

commutes. If I”: F*~1 @ — F" € is the inclusion functor, then this is equivalent to
choosing a map colim(znyq) X — Xq. (The object colim(n 4y X 1s the value on o
of the left Kan extension of X: F*~'€ — M along the inclusion F*~' € — F" €
(see [41, page 233]).)

Similarly, for each object v of F*~! € and map o — v in F" €, we must choose
amap X, — X, such that if y — 4’ is a map in F*~1 @ and

et

Y
is a commutative triangle in F™ €, then the triangle in M

Xa
Xry _ X'YI

commutes. This is equivalent to choosing a map X, — lim(qyr») X. (The object
lim(, 7=y X is the value on a of the right Kan extension of X : F"~!' @ — M along
the inclusion F"~1 € — F" € (see [41, page 233]).)

The maps colimnya) X — Xo and X, — limg -y X cannot be totally
arbitrary. If 8 — v is a map in F*~! € and

et
f——7
is a commutative triangle in F™ €, then the triangle in M
Xa
Xg———mm— X,

must commute. This is equivalent to requiring that the composition

colmX —- X, — lim X
(Imla) (adI™)

be a factorization of the natural map

colm X — lim X.
(Imla) (allm)

We will now show that the definition of a Reedy category implies that this last
condition suffices to construct an extension of X from F*~1 € to F" C.
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THEOREM 16.2.12. Let C be a Reedy category, let M be a category closed
under limits and colimits, let n be a positive integer, and let X: F"71C — M
be a diagram. If for each object a of C of degree n we choose an object X,
of M and a factorization coliminyo) X — Xo — limgg ey X of the natural
map colim(n ) X — limgy -y X, then this uniquely determines an extension
X: F*C — M of the diagram X .

ProoF. The discussion above explains why our choices determine everything
except the maps X, — X, for a map a — o in F" € between objects of de-

gree n. Given such a map, if o i) 154 i) o’ is the factorization described
in Definition 16.2.2, then we must define X, — X, to be the composition
X, - X3 — X, It remains only to show that, if « - o' — o are com-
posable maps in F € between objects of degree n, then the triangle

SN

Oé’ —>XOCH

commutes.

Let « — f - o' and o/ — [ —> o’ be the factorization of Defini-
tion 16.2.2 applied to o« — o' and o/ — /', respectively. If the factorization of

. . — . 43 7
Definition 16.2.2 applied to h 7 : o = ' is « — 3" =5 3, then we have the

commutative diagram
e
g
v
i
PR -7

. ey ? y BE
Since h k I °h g7 and T s in the factorization o —> 154 FE,
o’ must be the factorlzatlon of @ — a” descrlbed in Definition 16.2.2. Thus,

—R
-

Y

%
=

—
[ "

/
@ .

[0

®

. -
it 1s sufficient to show that the composition X, ILEN X ILEN X equals the
o o
composition X 5 —— X5 7 X he Xg.
Since both of the maps X, — X g» and X, — X are defined as the compo-
sition of our map X — lim(,y7») X with a projection from the limit, the first of

these maps equals the composition

X, —>(hm)X—>X@u —>X@/
all™

while the second equals the composition

X, > lim X - X, 2%

(e ™)

The universal property of the limit implies that these are equal, and so the proof

Xa/ HX@/.

is complete. O
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16.2.13. Latching objects and matching objects. In this section, we show
that the colimits and limits used in Section 16.2.11 to construct diagrams indexed
by a Reedy category and those used in Section 16.2.20 to construct maps of such di-
agrams have a particularly convenient form. These colimits and limits are the latch-
ing objects and matching objects (see Definition 16.2.17). We continue to assume
that we have chosen a degree function for our Reedy category (see Remark 16.2.3).

DEeFINITION 16.2.14. Let C be a Reedy category and let a be an obJect of C.
If « is of degree n, then we let T Pt @ 5P @ and T Pl 5 ©
be the inclusion functors.

1. The latching category ((?i a)— LX) of C at « is the overcategory (7)” la).

This is the largest subcategory of (?i «) that does not contain the identity
map of a.

2. The matching category ((a 1 %)—la) of € at « is the undercategory (o | 7”)

This is the largest largest subcategory of (o] %) that does not contain the
identity map of .

ProPOSITION 16.2.15. Let C be a Reedy category and let a be an object of C.

1. The opposite of the latching category of C at « is naturally isomorphic to
the matching category of C°P at «.

2. The opposite of the matching category of C at « is naturally isomorphic to
the latching category of C°P at «.

Proo¥. This follows from Proposition 16.2.6 and Proposition 14.4.3. O

PROPOSITION 16.2.16. Let C be a Reedy category, let o be an object of C of
degree n, and let I": F"~1 € — F" € be the inclusion functor.

1. The category ( ?ia -1 ) s a right cofinal subcategory (see Defini-
tion 14.4.5) of both (I” ia) and ((F" €) | «).

2. The category ((ai (‘3) ) is a left cofinal subcategory of both (a ] I™)
and (a L(F" (‘3))

ProoF. We will prove part 1; the proof of part 2 is similar.

P
If 8 — « is an object of (I" | &), then we can factor it as 3 AN 154 z) a where
= T and 7€ . This gives us the object

6—>6

N

( (8= a) ( 4 la)—1 )) The uniqueness of the factorization in Definition 16.2.2
implies that this object is initial in ( 8= a) ( ?ia -1 )), and so Proposi-
tion 9.4.4 implies that ((ai%) — la) is right cofinal in (™ | «). The proof that
((ai %) - la) is right cofinal in ((F" €) | &) is identical to this, and so the proof
of the proposition is complete. O

DEFINITION 16.2.17. Let C be a Reedy category, let M be a model category,
let X € Ob(M®) be a diagram, and let o be an object of €. We use X to denote
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also the induced ((?ia) — 14)-diagram (defined on objects by X (o) = Xp)
and the induced ((ai %) - 1a)—diagram (defined on objects by X o5y = Xp).

1. The latching object of X at ais Lo X = colim((@w)_la) X and the latching
map of X at a is the natural map L, X — X,,.

2. The matching object of X at ais M X = lim((ay@)_la) X and the matching
map of X at « is the natural map X, — M, X.

The objects colim(znyqy X and limg rny X (where X is a diagram defined on
the (n — 1)-filtration of a Reedy category) were used in Section 16.2.11 to con-
struct diagrams indexed by a Reedy category. The objects colim s ¢y;) X and
limy(Fn e)) X will be used in Section 16.2.20 to analyze maps between such dia-
grams. Corollary 16.2.18 shows that all of these colimits are latching objects of X
and all of these limits are matching objects of X.

COROLLARY 16.2.18. Let C be a Reedy category, let M be a model category,
let o be an object of C of degree n, and let X € Ob(M®) be a diagram. If
I": F"~1 @ = F" € is the inclusion functor, then

colm X ~ L, X~ colim X and liim X~M, X~ Im X

(Imla) ((Fr €)la) (e ™) (ad (F™ €))
(see Definition 16.2.17).
Proo¥. This follows from Proposition 16.2.16 and Corollary 14.4.9. O

REMARK 16.2.19. In light of Definition 16.2.17 and Corollary 16.2.18, the dis-
cussion in Section 16.2.11 can be summarized as follows: If C is a Reedy category, M
is a model category, X : F*~! € — M is a diagram indexed by the (n — 1)-filtration
of €, and « i1s an object of C of degree n, then there is a natural map L, X — M, X
from the latching object of X at a to the matching object of X at a. Extending
X to a diagram F" € — M is equivalent to choosing, for every object o of degree
n, an object X, and a factorization L, X — X, — M,X of that natural map,
and this can be done independently for each of the objects of degree n.

16.2.20. Maps between diagrams. Maps between diagrams indexed by a
Reedy category are most naturally analyzed inductively on the degree of the objects.
We assume that we have chosen a degree function for our Reedy category (see
Remark 16.2.3).

Let C be a Reedy category, let M be a model category, and let XY : C — M be
C-diagrams in M. Since the O-filtration of a Reedy category contains no non-identity
maps, a map f: X|poe — Y|po e is determined by choosing a map X, — Y, for
every object « of degree 0.

Suppose that f: X|pr-1¢ — Y |pr-1 ¢ is a map of the restrictions of the dia-
grams to the (n — 1)-filtration of €. For every object a of € of degree n we have
the solid arrow diagram

colim X Im X
(Frejay T 7 Xa 7 (ayFre)
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and extensions of f to the n-filtration of C correspond to a choice, for every object o
of degree n, of a dotted arrow that makes both squares commute. Corollary 16.2.18
implies that this diagram is isomorphic to the diagram

Lo X — X, — M,X

Lo

L,Y —Y,——M,Y
Thus, if A, B, X, and Y are objects in M® and we have a diagram
(16.2.21) A——X

B——Y

in which the dotted arrow h is defined only on the restriction of B to the (n — 1)-
filtration of C, then for every object « of C of degree n we have an induced solid
arrow diagram

L.B HLQA A, —% X,

B, Y.y Mo X

and there 18 a map B, — X, for every object a of degree n that makes both
triangles commute if and only if & can be extended over the restriction of B to the
n-filtration of € so that both triangles in Diagram 16.2.21 commute. This is the
motivation for the definitions of the relative latching map and relative latching map,
and their appearance in the definitions of Reedy cofibration and Reedy fibration (see
Definition 16.3.2).

DEFINITION 16.2.22. Let C be a Reedy category, let M be a model category,
let X and Y be C-diagrams in M, and let f: X — Y be a map of C-diagrams.

1. If & 1s an object in €, then the relative latching map of f at « is the map
LY I, x Xo — Y, (see Definition 16.2.17).

2. If a 1s an object in C, then the relative matching map of f at « is the map
Xa — Ya M.Y MQX.

16.3. The Reedy model category structure

If C is a Reedy category and M is a model category, we will define a model
category structure on M®, the category of C-diagrams in M, called the Reedy model
category structure. If M is a simplicial model category, then we will show that
the simplicial structure of Definition 14.3.1 and Definition 14.3.2 makes the Reedy
model category structure on M® a simplicial model category.

If M is a cofibrantly generated model category, then the Reedy model category
structure will have the same weak equivalences as the model category structure
of Theorem 14.2.1, but it will have a larger class of cofibrations (see Proposi-
tion 16.4.1). Thus, free cell complexes and their retracts will be cofibrant in the
Reedy model category structure, as will some diagrams that are not retracts of free
cell complexes.
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16.3.1. Statement of the theorem.

DEFINITION 16.3.2. Let C be a Reedy category, let M be a model category, and
let X,Y:C— M be C-diagrams in M.

1. A map of diagrams f: X — Y is a Reedy weak equivalence if, for every
object v of €, the map f,: X, — Y, is a weak equivalence in M.

2. A map of diagrams f: X — Y is a Reedy cofibration if, for every object a
of €, the relative latching map (see Definition 16.2.22)

LQY HLQX Xa %YO(

is a cofibration in M.
3. A map of diagrams f: X — Y is a Reedy fibration if, for every object a of
C, the relative matching map (see Definition 16.2.22)

Xa — Ya MY MQX
1s a fibration in M.

THEOREM 16.3.3. Let C be a Reedy category and let M be a model category.

1. The category M® of C-diagrams in M with the Reedy weak equivalences,
Reedy cofibrations, and Reedy fibrations (see Definition 16.3.2) is a model
category.

2. If M is a left proper, right proper, or proper model category (see Defini-
tion 11.1.1), then the model category of part 1 is, respectively, left proper,
right proper, or proper.

3. If M is a simplicial model category (see Definition 10.1.2), then the model
category of part 1 with the simplicial structure defined in Definition 14.3.1
and Definition 14.3.2, is a simplicial model category.

The proof of Theorem 16.3.3 is in Section 16.3.11.

16.3.4. Trivial cofibrations and trivial fibrations. It is not obvious how
to identify those maps of diagrams that are both Reedy cofibrations and Reedy
weak equivalences, or those maps that are both Reedy fibrations and Reedy weak
equivalences. In this section, we will show that f is both a Reedy cofibration and
a Reedy weak equivalence if and only if each of the maps L, Y It _x Xo — Y.
is a trivial cofibration in M, and that f i1s both a Reedy fibration and a Reedy
weak equivalence if and only if each of the maps X4 — Y, Xm, v Mo X is a trivial
fibration in M (see Theorem 16.3.10). We will use this theorem in Section 16.3.11
to prove Theorem 16.3.3.

LEMMA 16.3.5. Let C be a Reedy category, let M be a model category, let
f: X =Y be a map of C-diagrams in M, let a be an object in C, and let S be a
class of maps in M.

1. If for every object [ in C whose degree is less than that of a the relative
latching map

L@Y HLﬂX X@ —)Y@

has the left lifting property (see Definition 8.2.1) with respect to every ele-
ment of S, then the induced map of latching objects L, X — L,Y has the
left lifting property with respect to every element of S.
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2. If for every object § in C whose degree is less than that of « the relative
matching map

X@ — Y@ XMﬂY M@X

has the right lifting property (see Definition 8.2.1) with respect to every
element of S, then the induced map of matching objects M, X — M,Y has
the right lifting property with respect to every element of S.

ProoF. We will prove part 1; the proof of part 2 is dual. We assume that we
have chosen a degree function for € (see Remark 16.2.3).

There is a filtration of the category ((?i o) — LX) in which F* ((?i a)— la)
is the full subcategory of ((?ia) — la) whose objects are the maps § — « in
such that the degree of 3 is less than or equal to k. Thus, F° ((?i o) — LX) has no
non-identity maps, and Fdeg(o‘)_l((?ia) — LX) = ((?ia) — la). If F — Bisan

element of S and we have the solid arrow diagram

L.X — [
[
LY B

then we will define the map A by defining it inductively over colika((@w)_la) Y

For objects f — a of (? 1) such that g is of degree zero, the latching objects
LsX and LgY are the initial object of M, and so the map X3 — Y g equals the
map LgY Il ,x X5 — Y, which we have assumed has the left lifting property
with respect to £ — B. Thus, there exists a dotted arrow h that makes both
triangles commute in the diagram

X@—)

Y@.—> B
Since F° ((? i} a)—la) has no non-identity maps, this defines h on F° ((? 1 a)—la).
For the inductive step, we assume that 0 < k& < deg(a) and that the map has
been defined on colika_l((@w)_la)Y. Let 8 — « be an object of ((?ia) —

la) such that g is of degree k. The map f — «a defines a functor ((?iﬁ) —

1@) — Fk_l((?ia) — LX) which, defines the map A on LgY . Thus, we have the
commutative diagram

LgY Up,x Xg —— F
Y;— B

and the vertical map on the left is assumed to have the left lifting property with
respect to £ — B. This implies that the map A can be defined on Y5, and the
discussion in Section 16.2.20 explains why this can be done independently for the
various objects of degree k. This completes the induction, and the proof. O
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LEMMA 16.3.6. Let C be a Reedy category, let M be a model category, let
f: X =Y be amap of C-diagrams in M, and let S be a class of maps in M.

1. If for every object a in € the relative latching map
LQY HLQX Xa — Ya

has the left lifting property with respect to every element of S, then for
every object o in C the map f,: X, — Y, has the left lifting property
with respect to every element of S.

2. If for every object o in C the relative matching map

Xa — Ya MY MQX

has the right lifting property with respect to every element of S, then for
every object a in C the map f,: X, — Y, has the right lifting property
with respect to every element of S.

ProoF. We will prove part 1; the proof of part 2 is dual.

The relative latching map X, — L,Y Hy_x X, is a pushout of the map
LoX — L,Y, and so Lemma 16.3.5 implies that it has the left lifting property
with respect to every element of S. Since the composition of this map with the
map Lo Y 1, x Xo — Y, is the map fo: Xo — Y4, the proof is complete. O

ProPOSITION 16.3.7. Let C be a Reedy category, let M be a model category,
and let f: X —Y be a map of C-diagrams in M.

1. If f is a Reedy cofibration, then for every object a in C both the map
fo: Xa = Y, and the induced map of latching objects L, X — L,Y are
cofibrations in M.

2. If f is a Reedy fibration, then for every object a in C both the map f,: X, —
Y . and the induced map of matching objects M, X — M,Y are fibrations
in M.

Proo¥. This follows from Lemma 16.3.5, Lemma 16.3.6, and Proposition 8.2.3.
O

ProPOSITION 16.3.8. Let C be a Reedy category, let M be a model category,
and let f: X —Y be a map of C-diagrams in M.

1. If for every object a of C the relative latching map L, Y lr,_x X, - Y, isa
trivial cofibration, then for every object a in C both the map f,: X, =Y,
and the induced map of latching objects L, X — L,Y are trivial cofibra-
tions.

2. If for every object a in C the relative matching map X, — Y o xpm, vy Mo X
is a trivial fibration, then for every object o in C both the map f,: X, —
Y . and the induced map of matching objects M, X — M,Y are trivial
fibrations.

Proo¥. This follows from Lemma 16.3.5, Lemma 16.3.6, and Proposition 8.2.3.
O

ProPoOsITION 16.3.9. Let C be a Reedy category, let M be a model category,

and let f: X —Y be a map of C-diagrams in M.
1. If f is both a Reedy cofibration and a Reedy weak equivalence, then for
every object o in C the map f,: X, — Y, the induced map of latching
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objects Lo X — L,Y, and the relative latching map L, Y 1, x X4 — Y,
are trivial cofibrations.

2. If f is both a Reedy fibration and a Reedy weak equivalence, then for every
object a in C the map f,: X, = Y, the induced map of matching objects
M.X — M,Y, and the relative matching map X, — Y o xm,y Mo X are
trivial fibrations.

ProoF. We will prove part 1; the proof of part 2 is dual. We assume that we
have chosen a degree function for € (see Remark 16.2.3).

Proposition 16.3.7 implies that f, is a cofibration for every object v in C. Since
f 18 a Reedy weak equivalence, this implies that f, is a trivial cofibration for every
object « in C.

We will prove that the maps Lo X — L,Y and L, Y II;,_x X, — Y, are
trivial cofibrations for every object o of € by induction on the degree of a. If
LoX — L,Y is a trivial cofibration in M for some particular object « of C, then,
since X4 — LY Il x X is a pushout of Lo, X — L,Y, this map is also a trivial
cofibration. Since the weak equivalence f,: X, — Y, equals the composition
X, — LY 1, x X, — Y,, this implies that the cofibration LY 11, x X, —
Y ., is actually a trivial cofibration.

If « is of degree 0, then L, X and L,Y are both the initial object of M, and
so Lo X — L,Y is the identity map, which is certainly a trivial cofibration.

We now assume that n is a positive integer, L X — LgY is a trivial cofibration
for all objects 3 of degree less than n, and « 1s an object of degree n. The discussion
above explains why our inductive hypothesis implies that LgY Hp,x X5 — Yy is
a trivial cofibration for all objects 3 of degree less than n, and so Lemma 16.3.5
and Proposition 8.2.3 imply that L,X — L,Y is a trivial cofibration. O

THEOREM 16.3.10. Let C be a Reedy category, let M be a model category, and
let f: X — Y be a map of C-diagrams in M.

1. The map f is both a Reedy cofibration and a Reedy weak equivalence if and
only if for every object o in C the relative latching map L, Y1l1,_x X, — Y,
is a trivial cofibration in M.

2. The map f is both a Reedy fibration and a Reedy weak equivalence if and
only if for every object « in C the relative matching map X, — Y o XM, v
M,X is a trivial fibration in M.

Proo¥. This follows from Proposition 16.3.8 and Proposition 16.3.9. O

16.3.11. Proof of Theorem 16.3.3. For part 1, we must show that axioms
M1 through M5 of Definition 8.1.2 are satisfied. Axioms M1 and M2 follow from
the fact that limits, colimits, and weak equivalences of diagrams are all defined
objectwise.

Axiom M3 follows from the observation that if the map g: X — Y is a retract
of the map h: W — Z, then, for each object a of C, the relative latching map
L. Y x Xo — Y is aretract of the relative latching map Lo Z1ly, wW, — Z,,
and the relative matching map X, = Y, XM,y Mo X is a retract of the relative
matching map Wy — Z, xm,z Mo W.

If we choose a degree function for € (see Remark 16.2.3), then the maps required
by axiom M4 are constructed inductively on the degree of the objects of C, using
Theorem 16.3.10 (see the discussion in Section 16.2.20).
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The factorizations required by axiom Mb are also constructed inductively on
the degree of the objects of C. For axiom M5 part 1, if g: X — Y is a map in M,
then, for every object a of degree zero of €, we have a functorial factorization of g,

inMas X, = Z, i) Y , with 7 a cofibration and A a trivial fibration. If we now
assume that g has been factored on all objects of degree less than n and that « is an
object of degree n, then we have the induced map Lo Z1l1,_ x X0 = YaoxXm, vy Mo Z.
We can now factor this map (functorially) in M as

LaZ 1 x Xo 2 Zo 25 Yo sy Mo Z

with ¢ a cofibration and h a trivial fibration to obtain Z,. This completes the
construction, and Theorem 16.3.10 implies that it has the required properties. The
proof for axiom M5 part 2 is similar, and so M® is a model category, and the proof
of part 1 is complete.

For part 2, Proposition 16.3.7 implies that a Reedy cofibration is an objectwise
cofibration and a Reedy fibration is an objectwise fibration. Since weak equivalences
are defined objectwise and both pushouts and pullbacks are constructed objectwise,
the conditions of Definition 11.1.1 follow if they hold in M.

For part 3, if M is a simplicial model category, then axiom M6 of Defini-
tion 10.1.2 follows because the constructions are all done objectwise and M is a
simplicial model category, and so i1t remains only to show that axiom M7 follows as
well. Proposition 10.1.8 implies that it is sufficient to show that if i: A — B
is a Reedy cofibration and j: K — L is a cofibration of simplicial sets, then
AR LNagr B® K — B® L is a Reedy cofibration that is also a weak equivalence
if either ¢ or j is a weak equivalence. Thus, we must show that, for every object «
of C, the map

Lo(B @ L) L, (AgLuapxBok) (A@ Lllagk B® K)o — (B® L)a

is a cofibration in M that is also a weak equivalence if either ¢ or j is a weak
equivalence. Since each latching object is a colimit, Lemma 10.2.3 implies that this
map 1s isomorphic to the map

(LaB T a Aa) © L) Ut Buy. aau)ok Ba @K = B, @ L.

Since i: A — B is a Reedy cofibration and M is a simplicial model category, this
map is a cofibration that is a weak equivalence if either i or j is a weak equivalence,
and so the proof 1s complete.

16.4. Reedy cofibrant diagrams

ProPosITION 16.4.1. Let C be a Reedy category, let M be a cofibrantly gener-
ated model category (see Definition 13.2.1), and let XY € M® be C-diagrams in
M.

1. If the map f: X — Y is a Reedy fibration (see Definition 16.3.2), then it
is also a fibration in the cofibrantly generated model category structure on
M (see Theorem 14.2.1).

2. If the map f: X — Y is a cofibration in the cofibrantly generated model
category structure on M, then it is a Reedy cofibration.

Proo¥. Part 1 follows from Proposition 16.3.7.
Part 2 follows from part 1 and Proposition 8.2.3, since the weak equivalences
are the same in both model category structures. O
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COROLLARY 16.4.2. If C is a Reedy category, M is a cofibrantly generated
model category, X, Y € M are C-diagrams in M, and f: X — Y is a relative free
cell complex (see Definition 14.1.28), then f is a Reedy cofibration.

Proo¥. This follows from Theorem 14.2.1 and Proposition 16.4.1. O

COROLLARY 16.4.3. If C is a Reedy category, M is a cofibrantly generated
model category, and X: C — M is a free cell complex (see Definition 14.1.28),
then X is Reedy cofibrant.

Proo¥. This follows from Corollary 16.4.2. O

COROLLARY 16.4.4. If € is a Reedy category, then the C°P-diagram B(— | €)°"
and the C-diagram B(C | —) (see Section 14.5) are both Reedy cofibrant.

Proo¥. This follows from Corollary 14.6.8 and Corollary 16.4.3. O

LEMMA 16.4.5. Let C be a Reedy category, X € Spc(e*) a C-diagram of spaces,
and Y an object of Spc(*). If X is Reedy cofibrant in Spc(e*) and Y is fibrant in
SPC(yy, then YX is Reedy fibrant in Spc(e:)p and Map(X,Y) is Reedy fibrant in
§s¢™” (see Proposition 16.2.6).

ProOF. If o is an object of € and Ly, X is the latching object of X at « (see

Definition 16.2.17), then Proposition 16.2.15 implies that
yleX —yelit@o-X = lim v¥= Jim y¥=M,(v¥),
(Tla)-1la)er (ol E)-10)

i.e., that Y =X is the matching object at a of the C°P-diagram Y X. Since the
latching map L, X — X, 1s a cofibration and Y is fibrant, this implies that the
matching map Y X« — M, (YX) is a fibration, and so YX is a Reedy fibrant
CoP-diagram. Since the total singular complex functor is a right adjoint, it com-
mutes with limits, and so Proposition 1.1.7 now implies that the matching map
Map(X,,Y) = M, (Map(X, Y)) is also a fibration, and so Map(X,Y) is a Reedy
fibrant C°P-diagram, and the proof is complete. O

ProPoOSITION 16.4.6. A simplicial space is Reedy cofibrant if, for every inte-
ger n > 0, the map from the colimit of the diagram of lower degree spaces and
degeneracy maps to the nth space is a cofibration.

Proor. This follows from Definition 16.3.2. O

COROLLARY 16.4.7. A simplicial object in SS(.) is always Reedy cofibrant.

ProoF. The latching map (see Definition 16.2.17) of a simplicial object is
always an inclusion, and an inclusion in §S(.) is a cofibration. Thus, the result
follows from Proposition 16.4.6. O

ProOPOSITION 16.4.8. Let C be a Reedy category, let X, Y : C — Spc(*) be C-
diagrams of spaces, and let f: X — Y be a map of C-diagrams. If the restriction of
f to the direct subcategory (see Definition 16.2.2) of C is a relative free cell complex
(see Definition 14.1.28), then f is a Reedy cofibration.

ProoF. The hypotheses imply that, for each object « of €, the map L, Y l1,_x
X, — Y, is a relative cell complex. O
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PrOPOSITION 16.4.9. A cosimplicial space is Reedy cofibrant if and only if for
every integer n > 0 the map from the colimit of the diagram of lower degree spaces
and coface maps to the nth space is a cofibration.

Proor. This follows from Definition 16.3.2. O

COROLLARY 16.4.10. The cosimplicial standard simplex (see Definition 16.1.9)
is Reedy cofibrant.

ProoF. Each of the latching maps (see Definition 16.2.17) is the inclusion of
the boundary of a simplex into that simplex. O
16.5. Bisimplicial sets

DEFINITION 16.5.1. Let € be a small category. If F: € — §§ and G: € — SS
are diagrams of simplicial sets, then the tensor product F @e¢ G of F and G is the
simplicial set that is the coequalizer of the diagram

[
II F@)xF@ = ][] Flo)xGla)
(0: a—a’)eC 4 a€0b(C)

where the map ¢ on the summand o: o — o' is F(14/) x G(0): F(o’) x G(o) —
F(a') x G(o) and the map ¢ on the summand ¢: o — o' is F(o) x G(14): F(a’) x
G(a) = F(a) x G(«).

REMARK 16.5.2. The tensor product of functors (see Definition 16.5.1) is a
special case of a coend of a functor H: C°? x € — SS, where H(K,L) = K x L
(see Remark 19.2.4). We use the name “tensor product” because of the similarity
to the case in which a ring R is viewed as an additive category (with one object,
and with morphisms equal to the elements of R). In this case, a left R-module
is just an additive functor G: R — A from R to the category of abelian groups,
and a right R-module is an additive functor F: R°? — A. If H: R°? x R — A is
defined by H(e, o) = F(a) ® G(«), then F @g G is the usual tensor product of a
right B-module with a left R-module.

DeFINITION 16.5.3. If X is a bisimplicial set, i.e., an object of SSAOP, then the
realization of X is the simplicial set |X| = X ®a A (see Definition 16.5.1 and
Definition 16.1.9).

THEOREM 16.5.4. If X is a bisimplicial set, then the realization of X is natu-
rally isomorphic to the diagonal simplicial set of X.

PROOF. See, e.g., [49, page 94]. O
THEOREM 16.5.5 (A. K. Bousfield and E. M. Friedlander, [14]). If f: X =Y

is a map of bisimplicial sets such that

1. as a map of horizontal simplicial objects in the category of simplicial sets
(ie., (X)) = X, 1), [ is a Reedy fibration, and
2. as a map of vertical simplicial objects in the category of simplicial sets
(i.e., (Xn)k = Xk n), [ Is an objectwise fibration (i.e., every induced map
X.n =Y., is afibration of simplicial sets),
then the induced map of diagonals diag f: diag X — diagY is a fibration of sim-
plicial sets.

ProoF. This is [14, Lemma B.9]. O
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DEeFINITION 16.5.6. If X is a bisimplicial set, i.e., an object of SSAOP, and
Y is a simplicial set, then Map(X,Y) is the cosimplicial simplicial set given by
Map(X,Y)” = Map(X,,Y), with coface and codegeneracy maps induced by the
face and degeneracy maps of X.

THEOREM 16.5.7. If X : A°? — SS is a bisimplicial set, Y : A — SS is a cosim-
plicial simplicial set, and 7 is a simplicial set, then there is a natural isomorphism
of simplicial sets

Map(X @A Y, 7) ~ Map(Y, Map(X, Z))

PrOOF. We have the coequalizer diagram of simplicial sets

o
H X, xY" = HanY” - XoaAY.
(0: [n]=[mDeA Y a0

Since the functor — x A[k]: SS — SS is a left adjoint, the diagram
II X xY"xA] = J[XaxY" x All] > (X @4 Y) x A[#]
(o: [n]=[m])ea n>0
is also a coequalizer diagram, and so we have the equalizer diagram
SS((X @aY) x A[k], Z) — [ SS(Xn x Y™ x A[k], 2)
n>0
= II SS(Xm x Y™ x Alk], Z)
(o: [n]=[m])ea
which is isomorphic to the diagram
SS((X ©@aY) x A[k], Z) — [ SS(Y™ x Alk], Map(X ., 7))
n>0
= II SS(Y™ x A[k], Map(X 1, Z)).
(o: [n]=[m])ea

This implies that the diagram

Map(X @AY, Z) = [[ Map(Y", Map(X,, Z))

n>0
= II Map(Y", Map(X ,, Z))
(o: [n]—=[m])eA
is an equalizer diagram, from which the result follows. O

THEOREM 16.5.8. If f: X — Y is a map of bisimplicial sets, such that f,: X, —
Y, is a weak equivalence of simplicial sets for every n > 0, then the induced map
of realizations |f| : |X| — |Y| is a weak equivalence of simplicial sets.

Proor. It is sufficient to show that if 7 is a fibrant simplicial set, the the
induced map |f|* : Map(|Y|, Z) — Map(|X|, Z) is a weak equivalence (see Corol-
lary 10.5.5).

Corollary 16.4.7 implies that X and Y are Reedy cofibrant. Since 7 is fi-
brant, Lemma 16.4.5 implies that the map Map(Y,7) — Map(X, 7) is a map
of Reedy fibrant cosimplicial simplicial sets, and Corollary 10.2.2 implies that it
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is a Reedy weak equivalence of cosimplicial simplicial sets. Since A (see Defini-
tion 16.1.9) is a cofibrant cosimplicial simplicial set (see Corollary 16.4.10), the
map Map (A, Map(Y, Z)) — Map (A, Map(X, Z)) is a weak equivalence of simpli-
cial sets (see Corollary 10.2.2 and Theorem 16.3.3). This is isomorphic to the map
Map(Y ®a A, 7) = Map(X ®@a A, Z) (see Theorem 16.5.7), which is the definition
of the map Map(|Y|, Z) — Map(|X|, Z) (see Definition 16.5.3). O

COROLLARY 16.5.9. If X: A°® — SS is a bisimplicial set such that the nat-
ural map s(X o) = X from the constant simplicial simplicial set to X is a weak
equivalence, then the natural map Xy — |X| is a weak equivalence.

Proor. This follows from Theorem 16.5.8. O

16.6. Quillen functors

PrOPOSITION 16.6.1. Let C be a Reedy category and let M and N be model
categories.

1. IfF: M = N :U is a Quillen pair (see Definition 9.8.1), then the induced
functors F¢: M® = N© :U® form a Quillen pair.
2. If(F,U) is a pair of Quillen equivalences, then so is the induced pair (F€ U®).

ProoF. The induced functors F® and U® are adjoint (see, e.g., [7, page 107]),
and so for part 1 is is sufficient to show that F® preserves both cofibrations and
trivial cofibrations (see Proposition 9.8.2). If f: A — B is a cofibration or a
trivial cofibration in M, then for every object o in € the relative latching map
LoB 14 A, — B, is, respectively, a cofibration or a trivial cofibration in M
(see Theorem 16.3.10). Since the latching objects Lo A and L, B are defined as
colimits (see Definition 16.2.17) and left adjoints commute with colimits, the relative
latching map LoFB Iy, _ra FA, — FB, is isomorphic to the map F(L,B Ir,_a
A,) = FB,, and is thus, respectively, a cofibration or a trivial cofibration in
N. Thus, F® is a left Quillen functor. Part 2 follows immediately, since weak
equivalences in M® and N© are defined objectwise in C. O

COROLLARY 16.6.2. Let C be a Reedy category, let M and N be model cate-
gories, and let F: M = N :U be a Quillen pair.

1. If B: C — M is a cofibrant C-diagram in M, then FB: C — N is a cofibrant

C-diagram in N.
2. If X: C — N is a fibrant C-diagram in N, then UX: € — M is a fibrant
C-diagram in M.

Proo¥. This follows from Proposition 16.6.1. O
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CHAPTER 17

Homotopy function complexes

If Cis a category and W is a subcategory of € (the maps of which we call
“weak equivalences”), then W. G. Dwyer and D. M. Kan define the simplicial
localization sLwC of € with respect to W to be the derived functor of localization
of € with respect to W (see [29, 27, 28]). Thus, sLwC is a simplicial category,
i.e., a category enriched over simplicial sets, and they show that for every pair
of objects (X,Y) in € the set mosLwC(X,Y) of components of the simplicial set
sLwC(X,Y) is isomorphic to the set of maps from X to Y in the localization of C
with respect to W, i.e., the set of maps from X to Y in the homotopy category of
C (see Definition 9.6.2). They also show that if M is a simplicial model category
and W is its subcategory of weak equivalences, then when X is cofibrant and Y is
fibrant the simplicial set Map(X,Y) that is part of the simplicial structure of M is
naturally weakly equivalent to sLwM(X,Y). Since a weak equivalence Y — 7 in
M always induces a weak equivalence sLywM(X,Y) = sLwM(X, Z), while the map
Map(X,Y) — Map(X, 7) is guaranteed to be a weak equivalence only when X is
cofibrant and both Y and 7 are fibrant (and a similar statement is true for weak
equivalences of the first argument), this implies that the simplicial set sLywM(X,Y)
is the “correct” function complex of maps from X to Y.

Dwyer and Kan show that if M is a model category and if W is the subcategory
of weak equivalences in M, then these function complexes can be computed (up to
weak equivalence) using resolutions in the model category M (see [28]). In this
chapter, we define a homotopy function complexr to be a function complex obtained
from the Dwyer-Kan construction in the model category M (see Definition 17.2.2).
We present a self-contained development of the properties of these homotopy func-
tion complexes, with no explicit reference to the more general construction of the
simplicial localization of Dwyer and Kan.

17.1. Resolutions

In this section, we define cosimplicial and simplicial resolutions of objects in
a model category. These will be used in Section 17.2 to define homotopy function
complexes between objects in a model category (see Definition 17.2.2).

NoTaTION 17.1.1. Let M be a model category.

e The category of cosimplicial objects in M will be denoted M%, and the
category of simplicial objects in M will be denoted MA™ .

e If X is an object in M, then the constant cosimplicial object at X will be
denoted cX, and constant simplicial object at X will be denoted sX.

DEFINITION 17.1.2. Let M be a model category, and let X be an object in M.

o A cosimplicial resolution of X is a cofibrant approximation (see Defini-
tion 9.1.1) X — ¢X to cX (see Notation 17.1.1) in the Reedy model category
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structure (see Definition 16.3.2) on M2. A fibrant cosimplicial resolution is
a cosimplicial resolution in which the weak equivalence X s cXisa Reedy
trivial fibration. We will sometimes use the term cosimplicial resolution to
refer to the object X without explicitly mentioning the weak equivalence
X - cX.

o A simplicial resolution of X is a fibrant approximationsX — X tosX in the
Reedy model category structure on M2 . A cofibrant simplicial resolution
is a simplicial resolution in which the weak equivalence sX — Xisa Reedy
trivial cofibration. We will sometimes use the term simplicial resolution to

refer to the object X without explicitly mentioning the weak equivalence
sX - X.

ProrosITION 17.1.3. If M is a model category, then every object has a natural
fibrant cosimplicial resolution and a natural cofibrant simplicial resolution.

Proo¥. This follows from Proposition 9.1.2. O

ProrosiTION 17.1.4. Let M be a simplicial model category.

1. If X is an object in M and W — X is a cofibrant approximation to X,
then the cosimplicial object W in which W" = W © A[n] is a cosimplicial
resolution of X.

2. IfY is an object in M and Y — 7 is a fibrant approximation to Y, then the
simplicial object Z in which 2n = 74 is a simplicial resolution of Y.

ProoF. We will prove part 1; the proof of part 2 is similar.

Since all of the inclusions A[0] — A[n] are trivial cofibrations and W is cofi-
brant, all of the maps W ~ W @ A[0] = W ® A[n] are trivial cofibrations. Thus,

W is weakly equivalent to cX. Since each A[n] — A[n] is a cofibration and W is

cofibrant, each latching map W @ dA[n] — W @ A[n] is a cofibration, and so W is
cofibrant. O

COROLLARY 17.1.5. Let M be a simplicial model category.

L. If X is a cofibrant object in M, then the cosimplicial object X in which
X" = X @ Aln] is a cosimplicial resolution of X.

2. If'Y is a fibrant object in M, then the simplicial object Y in which Y, =
YA is a simplicial resolution of Y .

Proo¥. This follows from Proposition 17.1.4. O

PrOPOSITION 17.1.6. Let M be a model category, and let X be an object in

LIFX 5 cX isa cosimplicial resolution of X (see Definition 17.1.2), then
X° - X is a cofibrant approximation to X . If X — ¢X is a fibrant cosim-
plicial resolution of X, then X" — X is a fibrant cofibrant approximation
to X.

2. IfsX — X is a simplicial resolution of X, then X — 3(\0 is a fibrant
approximation to X. If sX — X is a cofibrant simplicial resolution of X,
then X — 3(\0 is a cofibrant fibrant approximation to X.

Proo¥. This follows from Proposition 16.3.7. O
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DEFINITION 17.1.7. Let M be a model category.

1. IfX 5 cX and X' 5 ¢X are cosimplicial resolutions of X, then a map
of coszmplzczal resolutions from (X i) to (X’ i'yisamap g: X — X' such
that /g = 1.

2. If sX % X and sX 25 X' are simplicial resolutions of X, then a map of
simplicial resolutions from (X, j) to (X’,j') is amap ¢: X — X’ such that
gi=1J"

LEMMA 17.1.8. Let M be a model category.

1. If (f, i) and (f’, i') are cosimplicial resolutions of X and g: X 5 X' isa
map of cosimplicial resolutions, then g is a weak equivalence.

2. If (X,j) and (X', j') are simplicial resolutions of X and g: X — X' is a
map of simplicial resolutions, then g is a weak equivalence.

Proor. This follows from Lemma 9.1.4. O

ProprosIiTION 17.1.9. Let M be a model category.

1. If X — cX is cosimplicial resolution of X _and X' — cX is afibrant cosimpli-
cial resolution of X, then there is a map X - X/ of cosimplicial resolutions,
unique up_to homotopy over cX, and any such map is 1s a weak equivalence.

2. IfsX — X isa simplicial resolution of X and sX — X' is a cofibrant simpli-
cial resolution of X, then there is a map X' X of simplicial resolutions,
unique up to homotopy under sX, and any such map is a weak equivalence.

Proo¥. This follows from Proposition 9.1.6. O

DEFINITION 17.1.10. Let M be a model category, and let g: X — Y be a map
in M.
1. A costmplicial resolution of g consists of a cosimplicial resolution X 5 cX

of X, a cosimplicial resolution Y — cY of Y, and a map g: X — Y that
makes the square

— g ~
X—Y

| |

cX —cY

commute.
2. A simplicial resolution of g conswts of a simplicial resolutlon sX — X of
X, a simplicial resolution sY — Y of Y, and a map §: X — Y that makes

the square
sX —sY
X5y
commute.

REMARK 17.1.11. The effect of Definition 17.1.2 and Definition 17.1.10 is that
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e a cosimplicial resolution of an object or map in a model category is exactly
a Reedy cofibrant approximation to a constant cosimplicial object or map,
and
e a simplicial resolution of an object or map in a model category is exactly a
Reedy fibrant approximation to a constant simplicial object or map.
This is the explanation of the terminology “fibrant cosimplicial resolution” and
“cofibrant simplicial resolution”.

PROPOSITION 17.1.12. Let M be a model category, and let g: X — Y be a map
in M.

1. There exists a natural cosimplicial resolution §: XY of g such that X
and Y are fibrant cosimplicial resolutions of, respectively, X and Y, and g
is a Reedy cofibration.

2. There exists a natural simplicial resolution §: XY of g such that X and
Y are cofibrant simplicial resolutions of, respectively, X and Y, and g is a
Reedy fibration.

Proo¥. This follows from Proposition 9.1.9. O

PROPOSITION 17.1.13. Let M be a model category, and let g: X — Y be a map
in M.

LLIFX — cX isa cosimplicial resolution of X and Y - cY is a fibrant
cosimplicial resolution of Y, then there exists a resolution §: X 5Y of g,
and g is un1que up to homotopy in (M2 [cY).

2. IfsY - Y isa simplicial resolution of Y and sX — X 1s a coﬁbrant
simplicial resolution of X, then there exists a resolution §: X 5 Y of g,
and ¢ is unique up to homotopy in (sX | MA™).

Proo¥. This follows from Proposition 9.1.10. O

ProPosITION 17.1.14. If M is a model category and g: X — Y is a weak equiv-
alence in M, then every cosimplicial resolution of ¢ and every simplicial resolution
of g are Reedy weak equivalences.

Proor. This follows from the “two out of three” axiom for weak equivalences.

O

17.1.15. Recognizing resolutions.

DEFINITION 17.1.16. Let M be a model category.

. If X isa cosimplicial object in M, then we will say that X isa cosimplicial
resolution if there is an object X in M and a map X — cX that is a
cosimplicial resolution of X (see Definition 17.1.2).

2.fY is a simplicial object in M, then we will say that Y is a stmplicial
resolution if there 1s an object Y in M and a map sY — Y that is a
simplicial resolution of Y.

ProproSITION 17.1.17. Let M be a model category.

1. If X is a cosimplicial object in M, then X is a cosimplicial resolution (see
Definition 17.1.16) if and only if X is Reedy cofibrant and all of the coface
and codegeneracy operators of X are weak equivalences.
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2. IfY is a simplicial object in M, then Y is a simplicial resolution if and only
if Y is Reedy fibrant and all of the face and degeneracy operators of Y are
weak equivalences.

ProoF. We will prove part 1; the proof of part 2 is dual.

If X is a cosimplicial resolution, then it follows directly from the definitions
that X is Reedy cofibrant and all of the coface and codegeneracy operators of X
are weak equivalences. For the converse, the map X — cX° defined on X" as any
n-fold iterated coface map is a cosimplicial resolution of X°. O

LEMMA 17.1.18. Let M be a model category.

1. If i: A = B is a weak equivalence of cosimplicial resolutions in M, then
there is a natural factorization of i as A - C < B such that C is a
cosimplicial resolution in M, q is a Reedy trivial cofibration, and r has a
right inverse that is a Reedy trivial cofibration.

2. Ifp: X — 'Y is a weak equivalence of simplicial resolutions in M, then there
is a natural factorization of p as X 5 Z 5 Y such that Z is a simplicial
resolution in M, r is a Reedy trivial fibration, and q has a left inverse that
is a Reedy trivial fibration.

Proo¥. This follows from Lemma 8.5.1 and Proposition 17.1.17. O

17.1.19. Frames. Proposition 17.1.6 shows how a cosimplicial resolution of
an object in a model category yields a cofibrant approximation to that object (and
a similar statement is true for simplicial resolutions and fibrant approximations).
Frames (see Definition 17.1.20) allow us to discuss the reverse operation (see Prop-
osition 17.1.27).

DEFINITION 17.1.20. Let M be a model category, and let X be an object in M.

e A cosimplicial frame on X is a cosimplicial object XinM together with
a weak equivalence X 5 X (see Notation 17.1.1) in the Reedy model
category structure (see Definition 16.3.2) on M2 such that

1. the induced map X% X is an isomorphism, and

2. 1f X is a cofibrant object in M, then X is a cofibrant object in M4,
We will sometimes refer to X as a cosimplicial frame on X, without explicitly
mentioning the map X — cX.

o A simplicial frame on X is a simplicial object X in M together with a weak
equivalence s X — X in the Reedy model category structure on M2 such
that

1. the induced map X — X0 is an isomorphism, and

2. 1f X is a fibrant object in M, then X is a fibrant object in MA™.
We will sometimes refer to X as a simplicial frame on X, without explicitly
mentioning the map sX — X.

REMARK 17.1.21. Note that Definition 17.1.20 does not require cosimplicial
frames on non-cofibrant objects to be cofibrant or simplicial frames on non-fibrant
objects to be fibrant. This was done in order to make Proposition 17.1.25 true.

PrROPOSITION 17.1.22. Let M be a model category, and let X be an object in
M.
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1. If X is cofibrant, then any cosimplicial frame on X is a cosimplicial resolution

of X.

2. If X is fibrant, then any simplicial frame on X is a simplicial resolution of
X.

Proor. This follows directly from the definitions. O

LEMMA 17.1.23. If n > 0, then the inclusion of A[0] into A[n] as the initial
vertex is the inclusion of a simplicial strong deformation retract.

ProPoOsITION 17.1.24. If M is a simplicial model category, X is an object of
M, and n > 0, then the maps X @ A[0] = X @ A[n] and XA — XA0T induced
by the inclusion of A[0] as the initial vertex of A[n] are weak equivalences.

ProoOF. Lemma 17.1.23 implies that these maps are simplicial homotopy equiv-
alences. O

ProPoOSITION 17.1.25. If M is a simplicial model category and X is an object
in M, then the cosimplicial object X 1n which X” X ® A[n] is a cosimplicial

frame on X, and the simplicial object Y in which Yn = XAl jg a simplicial frame
on X.

Proo¥. This follows from Proposition 17.1.24 and Proposition 17.1.4. O

DEeFINITION 17.1.26. If M is a simplicial model category and X is an object in
M, then the cosimplicial frame on X of Proposition 17.1.25 will be called the stan-
dard cosimplicial frame on X, and the simplicial frame on X of Proposition 17.1.25
will be called the standard simplicial frame on X.

ProPOSITION 17.1.27. Let M be a model category.

1. If X is an object in M, X — X is a cofibrant approximation to X, and
X' s cX isa cosimplicial frame on X then the induced map X' = cX is
a cosimplicial resolution of X, and every cosimplicial resolution of X can be
constructed in this way.

2. If X is/\an object in M, X — X is a fibrant approximation to X,/\and
sX » X' is a simplicial frame on )A(, then the induced map sX — X' is
a simplicial resolution of X, and every simplicial resolution of X can be
constructed in this way.

Proo¥. This follows from Proposition 17.1.6. O

THEOREM 17.1.28. If M is a model category, then there exists a functorial
cosimplicial frame on every object in M and a functorial simplicial frame on every
object in M.

Proo¥r. We will construct a functorial cosimplicial frame on M; the construc-
tion of a functorial simplicial frame is dual.

For every object X of M, we will construct a functorial factorization ¢ — X -
cX of the map in M? from the initial object to ¢X such that

1. the map X - cX is a Reedy trivial fibration,
2. the induced map X® — X is the identity, and such that
3. if X is cofibrant in M, then the map # — X is a Reedy cofibration.
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We will construct X and the map X —cX _inductively, and we begin by letting
X%=X.Ifn>0and we have constructed X — cX in degrees less than n, then
we have the induced map L, X — (¢X)” xm,cx MpX. We can factor this map
functorially in M as

Lo X 5 X" B (cX)" xpr,ex Mp X
with 7 a cofibration and p a trivial fibration. This complete the construction, and
Theorem 16.3.10 implies that the map X — cX is always a Reedy trivial fibration.

If X is cofibrant, then L, X — X" is a cofibration for all n > 0, and so X is Reedy
cofibrant. O

DEFINITION 17.1.29. Let M be a model category, and let g: X — Y be a map

in M.
L. A cosimplicial frame on g consists of a cosimplicial frame X — c¢X on X,
a cosimplicial frame Y — cY on Y, and a map g: X — Y that makes the

square
—_— Il ~
X—Y
cX —cY
commute.

2. A simplicial frame on g« consists of a simplicial frame sX — X on X, a
simplicial frame sY — Y on Y, and a map g: X — Y that makes the

square
sX —sY
XY
commute.

ExaAMPLE 17.1.30. Let M be a simplicial model category.

1. If:: A — B is a map in M, let A and B be the cosimplicial objects in
M such that A" = A® Aln] and B" = B® An], and let i: A — B be
the obvious map. Proposition 17.1.25 implies that 7 is a cosimplicial frame
on ¢, and Proposition 10.1.8 implies that 7 is a Reedy cofibration if i is a
cofibration in M.

2. Ifp: X - Y is a map in M let X and Y be the 81mphc1al objects in M
such that X = XA and Y = YA and let p: X — Y be the obvious
map. Proposition 17.1.25 implies that p is a simplicial frame on p, and
Proposition 10.1.8 implies that p is a Reedy fibration if p is a fibration in
M.

PrOPOSITION 17.1.31. Let M be a model category, and let g: X — Y be a map
in M.
1. There is a natural cosimplicial frame §: X — Y on g that is a Reedy
cofibration if ¢ is a cofibration.
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2. There is a natural simplicial frame g X Y on g that is a Reedy fibration
if ¢ is a fibration.

ProoF. We will prove part 1; the proof of part 2 is dual.

We begin by constructing a natural cosimplicial frame X — cX on X asin the
proof of Theorem 17.1.28.

We will define Y and g inductively. We let Yo =Y. If n > 0 and we
have constructed ¥ and g in degrees less than n, then we have the induced map
Ln1~’ U % X" (Y™ Xy, ey Mnf’ We factor this map functorially in M as

LY I 5 X" 5 Y" 5 ()" st er MY
with ¢ a cofibration and p a trivial fibration. This completes the construction,
and Theorem 16.3.10 implies that the map Y — Y is always a Reedy trivial
fibration. Since Ln}? — X" was constructed to be a cofibration for all n > 0,
and Ln1~’ — Ln1~’ Iy % X" is a pushout of that cofibration, the composition
LY - L,Y o, % X" — Y" is a cofibration for all n > 0. Thus, if Y is cofibrant,

then Y is Reedy cofibrant. Finally, if g is a cofibration, then L,Y I, % X" 5Yn
is a cofibration for all n > 0, and so g is a Reedy cofibration. O

17.1.32. Framed model categories.

DEFINITION 17.1.33. A framed model category is a model category M together
with
1. a functorial cosimplicial frame (see Definition 17.1.20) X on every object X
in M, and
2. a functorial simplicial frame X on every object X in M.

ProrosITION 17.1.34. If M is a model category, then there exists a framed
model category structure on M.

Proor. This follows from Theorem 17.1.28. O

ProrosITION 17.1.35. If M is a simplicial model category, then there is a nat-
ural framing on M (called the standard framing) defined on objects X in M by
X" =X ®A[n] and X,, = X2l

Proo¥. This follows from Proposition 17.1.25. O

REMARK 17.1.36. If M is a simplicial model category, and we make reference
to M in a context that calls for a framed model category, then we will consider M
as a framed model category using the standard framing of Proposition 17.1.35.

17.2. Homotopy function complexes

NoTaTION 17.2.1. Let M be a model category.

1. If B is a cosimplicial object in M and X is an object in M, then M(B, X) will
denote the simplicial set, natural in both B and X, defined by M(B, X),, =
M(B", X), with face and degeneracy maps induced by the coface and code-
generacy maps in B.

2. If B is an object in M and X is a simplicial object in M, then M(B, X) will
denote the simplicial set, natural in both B and X, defined by M(B, X),, =
M(B, X,,), with face and degeneracy maps induced by those in X.
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3. If B 1s a cosimplicial object in M and X is a simplicial object in M, then
M(B, X) will denote the bisimplicial set, natural in both B and X, defined
by M(B, X)) = M(Bk,Xn), with face and degeneracy maps induced by
the coface and codegeneracy maps in B and the face and degeneracy maps
in X.

4. If B is a cosimplicial object in M and X is a simplicial object in M, then
diag M (B, X) will denote the simplicial set, natural in both B and X, de-
fined by (diag M(B,X))n = M(B", X,,), with face and degeneracy maps
induced by the coface and codegeneracy maps in B and the face and degen-
eracy maps in X .

DEFINITION 17.2.2. Let M be a model category, and let B and X be objects
of M.

o Aleft homotopy function complex from B to X is a simplicial set of the form
M(B X) (see Notation 17.2.1) for some cosimplicial resolution B — cB of
B (see Definition 17.1.2) and some fibrant approximation X — X to X.

e A right homotopy function compler from B to X is a simplicial set of the
form M(B X) for some coﬁbrant approximation B — B to B and some
simplicial resolution sX — X of X.

e a two-sided homotopy function complez from B to X 1is a simplicial set of
the form diag M(B X) for some cosurnphaal resolution B — ¢B of B and
some simplicial resolution sX — X of X.

e A homotopy function complex from B to X is either a left homotopy function
complex from B to X, a right homotopy function complex from B to X, or
a two-sided homotopy function complex from B to X.

ExaMpPLE 17.2.3. If M is a simplicial model category, B is a cofibrant object
in M, and X is a fibrant object in M, then Corollary 17.1.5 implies that Map(B, X)
(i.e., the simplicial set that is part of the simplicial structure of M) is both a left
homotopy function complex from B to X and a right homotopy function complex
from B to X.

DEFINITION 17.2.4. Let M be a model category, let W, X, Y and Z be objects
in M, and let g: X — Y be a map.
1. A map of left homotopy functzoh comple:tes induced by g will mean either
(a) the map gu.: M(W X) — M(W Y) where W is a cosimplicial res-
olution of W and g¢: X — Y is a fibrant approximation to ¢ (see
Definition 9.1.8), or
(b) the map §*: M(f’, 2) — M(f, 2) where §: X 3Yisa cosimplicial
resolution of g (see Definition 17.1.10), and 7 is a fibrant approxima-
tion to Z.
2. A map of right homotopy functzoh comple:tes induced by g will mean either
(a) the map g.: M(W X) — M(W Y) where W is a cofibrant approxi-
mation to W and g: X 5Yisa simplicial resolution of g, or
(b) the map g*: M(?, 2) — M()?, 2) where § is a cofibrant approxi-
mation to g (see Definition 9.1.8) and Zisa simplicial resolution of
Z.
3. A map of two-sided homotopy function compleres induced by g will mean
either
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(a) the map diag g.: diagM(ﬁ;,fX\) — diagM(ﬁ;,f’) where W is a
cosimplicial resolution of W and g: X 5Yisa simplicial resolution

of ¢, or . .
(b) the map diagg*: diagM(f’, 2) — diagM(X, 2) where §j: X - Y
1s a cosimplicial resolution of ¢ and Zisa simplicial resolution of 7.
4. A map of homotopy function complexes induced by ¢ will mean either a map
of left homotopy function complexes induced by ¢, a map of right homotopy
function complexes induced by g, or a map of two-sided homotopy function

complexes induced by g¢.

EXAMPLE 17.2.5. Let M be a model category.

1. If M(é(—), ﬁ(—)) is a left homotopy function complex on M, then for ob-
jects W, X, Y and Z in M, amap ¢g: X — Y induces maps of left homotopy
function complexes M(é(Y), ﬁ(Z)) — M(é(X), ﬁ(Z)) and M(é(W), ﬁ(X)) —
M(C(W), F(Y)).

2. 1If M(C’(—), F(—)) is a right homotopy function complex on M, then for
objects W, X, Y, and Z in M, a map g: X — Y induces maps of right
homotopy function complexes M(C’(W), ﬁ’(X)) — M(G(W), ﬁ’(Y)) and
M(C(Y), F(2)) = M(C(X), F(2).

3.10f dlagM( (=), F(—)) is a two-sided homotopy function complex on M,
then for objects W, X, Y, and Z in M, a map g: X —Y induces maps of
two-sided homotopy function complexes dlagM( (W), F( )) — diag M( (W), ﬁ’(Y))

and diagM(C(Y), F(Z)) — diag M(C(X), F(Z)).
DEFINITION 17.2.6. Let M be a model category.

1. A left homotopy function complex on M is a functor from some subcategory
of M x M to SS that is a left homotopy function complex (see Defini-
tion 17.2.2) on every object in its domain and is a map of left homotopy
function complexes (see Definition 17.2.4) on every morphism in its domain.

2. A right homotopy function complez on M is a functor from some subcategory
of M°P x M to SS that is a right homotopy function complex (see Defini-
tion 17.2.2) on every object in its domain and is a map of right homotopy
function complexes on every morphism in its domain.

3. A two-sided homotopy function compler on M is a functor from some subcat-
egory of M°P x M to SS that is a two-sided homotopy function complex (see
Definition 17.2.2) on every object in its domain and is a map of two-sided
homotopy function complexes on every morphism in its domain.

4. A homotopy function compler on M is either a left homotopy function com-
plex on M, a right homotopy function complex on M, or a two-sided homo-
topy function complex on M.

ProPoOsITION 17.2.7. If M is a model category, then there exist left homotopy
function complexes defined on all of M°F x M, right homotopy function complexes
defined on all of M°P x M, and two-sided homotopy function complexes defined on
all of M°P x M.

Proo¥. This follows from Proposition 17.1.3 and Proposition 9.1.2. O

ExaMPLE 17.2.8. If M is a model category and (~7(X) 1s a natural cosimplicial
frame on X (see Definition 17.1.20), then M(C(X), Y) is a left homotopy function
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complex defined on the full subcategory of M°P? x M determined by the objects
(X,Y) such that X is a cofibrant object of M and Y is a fibrant object of M.

Similarly, if M is a model category and ﬁ’(X) is a natural simplicial frame
on X, then M(X, ﬁ’(Y)) is a right homotopy function complex defined on the full
subcategory of M°P x M determined by the objects (X,Y) such that X is a cofibrant
object of M and Y 1s a fibrant object of M.

ExaMPLE 17.2.9. If M is a model category, XX 1s a cosimplicial resolution
of X,and Y — Y is a fibrant approximation to Y, then M(X, f/) is a left homotopy
function complex defined on the subcategory of M°P x M consisting of the one object
(X,Y) and the identity map.

ExAMPLE 17.2.10. If M is a model category, W — W is a cofibrant approx-
imation to W, f: X — Y is a map and f: X 5Yisa simplicial resolution of
f, then the diagram f, : M(W,A/X'\) — M(W, f’) defines a right homotopy function
complex defined on the subcategory of M°P x M with the two objects (W, X) and
(W,Y) and the single non-identity map (13, f).

NoTaTiON 17.2.11. If M 18 a model category and X and Y are objects in M,

then we will use map(X,Y) to denote some unspecified homotopy function complex
(see Definition 17.2.2) from X to Y.

17.3. Realizations

This section contains a number of technical results needed for the homotopy
lifting extension theorems of Section 17.4.

DEFINITION 17.3.1. Let M be a model category.

1. If X is a cosimplicial object in M and K is a simplicial set, then the object
X ® K in M is defined to be the colimit of the (AK)-diagram in M (see
Definition 16.1.11) that takes each n-simplex of K to X".

2. If'Y is a simplicial object in M and K is a simplicial set, then the object
Y™ in M is defined to be the limit of the (A°PK)-diagram in M that takes
each n-simplex of K to Y.

ProPoOsSITION 17.3.2. If M is a model category, then the constructions of Defi-
nition 17.3.1 are natural in X, Y and K.

Proor. This follows directly from the definitions. O

ProrosITION 17.3.3. If M = SS, the cosimplicial object X is the cosimplicial
standard simplex (see Definition 16.1.9), and K is a simplicial set, then X @ K is
naturally isomorphic to K.

ProoF. This is a restatement of Proposition 16.1.14. O

ExamMpPLE 17.3.4. If M = Top, the cosimplicial object X is the geometric re-
alization of the cosimplicial standard simplex (i.e., X" = |A[n]|), and K Is a
simplicial set, then X ® K is the usual geometric realization of K.

LEMMA 17.3.5. Let M be a model category.

1. If B is a cosimplicial object in M and n > 0, then B ® A[n] is naturally

isomorphic to B".
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2. If X is a simplicial object in M and n > 0, then XA g naturally isomor-
phic to X,,.

ProoOF. The nondegenerate n-simplex of A[n] is a terminal object of A(A[n])
and an initial object of A°P(A[n]). O

LEMMA 17.3.6. Let M be a model category.
1. If B is a cosimplicial object in M and n > 0, then B @ 0A[n] is naturally
isomorphic to L, B, the latching object of B at [n] (see Definition 16.2.17).

2. If X is a simplicial object in M and n > 0, then x 08l g naturally isomor-
phic to M,, X, the matching object of X at [n].

ProoF. We will prove part 1; the proof of part 2 is dual.
If n > 0, then the latching object of B at n is

L,B = _}colim B = cl?lim B
n])— <n
((A&d[n])=11a)) AL

(see Definition 16.2.17). Since A([k],[n]) is naturally isomorphic to the set of k-
simplices of A[n], this is the colimit of the diagram with one copy of B* for every
k-simplex of A[n] for k < n. The result now follows from Definition 17.3.1. (|

ProprosSITION 17.3.7. Let M be a model category.

1. If B is a cosimplicial object in M and n > 0, then the latching map (see
Definition 16.2.17) of B at [n] is naturally isomorphic to the map B ®
JA[n] = B @ Aln].

2. If X is a simplicial object in M and n > 0, then the matching map of X at
[n] is naturally isomorphic to the map XAkl xoal],

Proor. This follows from Lemma 17.3.5 and Lemma 17.3.6. O

THEOREM 17.3.8. Let M be a model category.
1. If A is a cosimplicial object in M, X is an object in M, and K is a simplicial
set, then there is a natural isomorphism of sets

SS(K,M(A, X)) ~ M(A® K, X).

2. If B is an object in M, Y is a simplicial object in M, and K is a simplicial
set, then there is a natural isomorphism of sets

SS(K,M(B,Y)) ~ M(B,Y").

ProoF. We will prove part 1; the proof of part 2 is similar.

Since A ® K is the colimit of a (AK)-diagram, a map in M from A ® K to
X corresponds to a coherent set of maps from each object in the diagram to X.
Thus, each map A ® K — X is defined by a map A" — X for each n-simplex of
K that commute with the simplicial operators. This is also a description of a map
of simplicial sets from K to M(A, X). O

ProprosITION 17.3.9. Let M be a model category.

1. If A is a cosimplicial object in M, € is a small category, and K: C — §§
is a C-diagram of simplicial sets, then the natural map colime(A ® K) —
A @ (colime K) is an isomorphism.
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2. If X is a simplicial object in M, C is a small category, and K : € — §S is a C-
diagram of simplicial sets, then the natural map X (colime K) _y lim@op(XK)
1s an isomorphism.

Proo¥. This follows from the adjointness relations of Theorem 17.3.8. O

ProrosITION 17.3.10. Let M be a simplicial model category.

1. If X is an object in M, X s the standard cosimplicial frame on X (see
Proposition 17.1.35), and K is a simplicial set, then X oK is naturally
isomorphic to X ® K.

2. If X is an object in M, X is the standard simplicial frame on X, and K is
a simplicial set, then XK is naturally isomorphic to X¥.

Proo¥. This follows from Proposition 17.3.9 and Proposition 16.1.14. O

LEMMA 17.3.11. Let M be a model category, and let (K, L) be a pair of sim-
plicial sets.

1. If A is a Reedy cofibrant cosimplicial object in M, then the map A ® L —
A ® K is a cofibration in M.

2. If X is a Reedy fibrant simplicial object in M, then the map X5 5 xt s
a fibration in M.

PrOOF. Since an inclusion . — K of simplicial sets is a transfinite composition
of pushouts of the maps dA[n] — Aln] for n > 0, the map A®@ L - A® K is
a transfinite composition of pushouts of the maps A ® dA[n] - A ® A[n] for
n > 0, and so part 1 follows from Proposition 17.3.9, Proposition 17.3.7, and
Proposition 12.2.19. The proof of part 2 is similar. O

PrROPOSITION 17.3.12. Let M be a model category.

1. If A — B is a Reedy trivial cofibration of cosimplicial objects in M and
n > 0, then the induced map A @ Aln]llagoap) B © 0A[n] — B @ Aln] is
a trivial cofibration in M.

2. If X =Y is a Reedy trivial fibration of simplicial objects in M and n > 0,
then the induced map xAR s yall Xyroa[n] X220 s 4 trivial fibration
in M.

Proo¥. This follows from Proposition 17.3.7 and Theorem 16.3.10. O

ProPOSITION 17.3.13. Let M be a model category.

1. If A — B is a Reedy cofibration of cosimplicial objects in M and n > 0, then
the induced map A® A[n]lggoa) B © 0A[n] = B ® A[n] is a cofibration.

2. If X = Y is a Reedy fibration of simplicial objects in M and n > 0, then
the induced map xAR _ yall Xy 0a[n] X ?20°] g 4 fibration.

Proo¥. This follows from Proposition 17.3.7. O

ProPOSITION 17.3.14. Let M be a model category.

1. If i: A — B is a map of cosimplicial objects in M, p: X — Y is a map in
M, and (K, L) is a pair of simplicial sets, then the following are equivalent:
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(a) The dotted arrow exists in every solid arrow diagram of the form

[ ——— +M(B,X)

K “——M(A, X) xpa,y) M(B,Y).
(b) The dotted arrow exists in every solid arrow diagram of the form

AOKUaer BOL—3 X

B®K Y.

2. Ifi:A— Bisamapin M, p: X =Y is a map of simplicial objects in M,
and (K, L) is a palr of simplicial sets, then the following are equivalent:
(a) The dotted arrow exists in every solid arrow diagram of the form

K —) M(A, X) Xj\/[(Ayy) M(B, Y)
(b) The dotted arrow exists in every solid arrow diagram of the form

A———xK

B XL %y YK,
Proor. This follows from Theorem 17.3.8. O

PropPOSITION 17.3.15. Let M be a model category.

1. Ifi: A — B is a Reedy cofibration of cosimplicial objects in M, p: X =Y
is a fibration in M, and at least one of ¢ and p is also a weak equivalence,
then the map of simplicial sets

M(B, X) — M(A, X) Xj\/[(Ayy) M(B, Y)

is a trivial fibration.

2. Ifi: A — B is a cofibration in M, p: X — Y is a Reedy fibration of
simplicial objects in M, and at least one of © and p is also a weak equivalence,
then the map of simplicial sets

M(B, X) — M(A, X) Xj\/[(Ayy) M(B, Y)
is a trivial fibration.

ProoF. A map of simplicial sets 1s a trivial fibration if and only if it has the
right lifting property with respect to the maps dA[n] — A[n] for n > 0, and
so the result follows from Proposition 17.3.14, Proposition 17.3.12, and Proposi-
tion 17.3.13. O

Draft: August 12, 1997



17.3. REALIZATIONS 257

Proposition 17.3.15 may seem to be incomplete, in that it does not assert the
full homotopy lifting extension theorem. We will show in Theorem 17.4.1 that if
the cosimplicial and simplicial objects are assumed to be cosimplicial and simplicial
resolutions (see Definition 17.1.16), then the full homotopy lifting extension theo-
rem does hold. We now give an example that shows that it does not hold without
the assumption that the cosimplicial or simplicial objects are resolutions.

ExXAMPLE 17.3.16. Let M be the category SS. of pointed simplicial sets. Let
B be the cosimplicial object in M that is the free diagram on S! generated at [1]
(see Definition 14.1.17 and Definition 16.1.2), so that B" = \/A([l],[n]) St (where
A([1], [n]) is the set of 1-simplices of A[n]). Corollary 16.4.3 implies that B is a
Reedy cofibrant cosimplicial object.

Let p: X — Y be any fibration of fibrant pointed simplicial sets for which the
induced homomorphism of fundamental groups p,: m X — mY is not surjective.
We will show that the map of simplicial sets M(B, X) — M(B,Y) is not a fibration.

B! is the wedge of three copies of S! (indexed by [0,0], [1, 1], and [0,1]), B”
is a single copy of S', and the maps d°,d': B® — B! take the S' in B to the
summand indexed by, respectively, [0,0] and [1, 1]. Thus, we can define a I-simplex
of M(B,Y) by sending the summands of B! corresponding to [0,0] and [1,1] to
the basepoint of Y and sending the summand S! of B! corresponding to [0, 1] to
some 1-simplex of Y that represents an element of mY that is not in the image
of po: mX — mY. If we define a O-simplex of M(B, X) by sending B° to the
basepoint of X, then we have a solid arrow diagram

A0l — M(B, X)

A[l] —— M(B,Y)
for which there is no dotted arrow making the triangles commute.

LEMMA 17.3.17. Let M be a model category.

1. If A = B is a Reedy cofibration of cosimplicial objects in M, n > 1, and
n >k >0, then the induced map A A[n]lggafn 1) B@A[n, k] = B&A[n]
is a cofibration.

2. If X = Y is a Reedy fibration of simplicial objects in M, n > 1, and
n > k > 0, then the induced map X2 — YAkl Xy Aln, k] XA g a
fibration.

ProoF. We will prove part 1; the proof of part 2 is similar.
We have the diagram

A® A[n — 1] HA@(’)A[H—I] B® 8A[n — 1] — AR A[n] HA@A[n,k] B® A[n, k’]

| l

l

B ® Aln]
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in which the square is a pushout, and so Proposition 17.3.13 implies that all of the
vertical maps are cofibrations. Our map is thus the composition of two cofibrations.

O

LEMMA 17.3.18. If n > 1 and n > k > 0, then there is a finite sequence of
inclusions of simplicial sets

Al =Ko — K1 — Ky — - — K, = A[n, k]
where each map K; — K;41 for i < p is constructed as a pushout

|

NI b Kip1
with m; < n.

ProoF. We let A[0] = Ky be vertex k of A[n]. We can then add in all the
1-simplices of A[n, k] that contain that vertex, followed by the 2-simplices of A[n, k]
that contain that vertex, etc., until we’ve added in all of A[n, k]. O

LEMMA 17.3.19. Let M be a model category.

1. If A is a cosimplicial resolution in M, n > 1, and n > k > 0, then the
natural map A ® A[n, k] = A ® A[n] is a weak equivalence.

2. If X is a simplicial resolution in M, n > 1, and n > k > 0, then the natural
map XA 5 xXAR s a4 weak equivalence.

ProoF. We will prove part 1; the proof of part 2 is similar.

We will prove the lemma by induction on n. If n = 1, then the result follows
from Lemma 17.3.5 and Proposition 17.1.17.

We now assume that A @ A[m,l] = A ® A[m] is a weak equivalence for [ <
m < n. Lemma 17.3.18 implies that there is a finite sequence of maps in M

AQAN=AQK) > AQK, 5 AQK) — - > AQ K, = AQ An, k]
where each A @ K; — A ® K;41 for ¢ < pis constructed as a pushout

l

A ® A[ml] .............. > A ® I{Z-l_l

with m; < n. Lemma 17.3.11 and the induction hypothesis imply that each of these
maps is a trivial cofibration, and so A ® A[0] = A ® A[n, k] is a trivial cofibration.
Since A ® A[0] - A ® A[n] is a weak equivalence, the “two out of three” property
of weak equivalences implies the result. O

ProPoOsITION 17.3.20. Let M be a model category.

1. If A — B is a Reedy cofibration of cosimplicial resolutions in M, n > 1,
and n >k > 0, then the map A® A[n] Il gga[n 1) B @ Aln, k] = B @ Aln]
is a trivial cofibration.

2. If X — Y is a Reedy fibration of simplicial resolutions in M, n > 1, and
n >k >0, then the map X" — y Al xyA[n,k]XA["’k] is a trivial fibration.
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ProoF. We will prove part 1; the proof of part 2 is similar.

Lemma 17.3.17 implies that our map is a cofibration, and so it remains only to
show that it is a weak equivalence. Lemma 17.3.19 and Lemma 17.3.11 imply that
A ® Aln, k] > A ® Aln] is a trivial cofibration. Since the diagram

A Ak —— B o An, k]

| l

is a pushout, the map B® A[n, k] = A® A[n] U aga[n k) B @ Aln, k] is also a trivial
cofibration. Since Lemma 17.3.19 implies that the map B ® A[n, k] = B ® A[n] is
a weak equivalence, the result follows from the “two out of three” property of weak
equivalences. O

17.4. Homotopy lifting extension theorems

THEOREM 17.4.1 (The one-sided homotopy lifting extension theorem). Let M
be a model category.

1. If i: A — B is a Reedy cofibration of cosimplicial resolutions in M and
p: X =Y is a fibration in M, then the map of simplicial sets

M(B, X) — M(A, X) Xj\/[(Ayy) M(B, Y)

is a fibration that is a trivial fibration if at least one of ¢ and p is also a weak
equivalence.

2. Ifi: A — B is a cofibration in M and p: X — Y is a Reedy fibration of
simplicial resolutions in M, then the map of simplicial sets

M(B, X) — M(A, X) Xj\/[(Ayy) M(B, Y)

is a fibration that is a trivial fibration if at least one of ¢ and p is also a weak
equivalence.

ProoOF. A map of simplicial sets is a fibration if and only if it has the right
lifting property with respect to the maps A[n, k] = A[n] forn > 0 and n > k >
0, and so the result follows from Proposition 17.3.14, Proposition 17.3.20, and
Proposition 17.3.15. O

COROLLARY 17.4.2. Let M be a model category.

1. Ifi: A — B is a Reedy cofibration of cosimplicial resolutions in M and X is
a fibrant object in M, then the map i*: M(B, X) — M(A, X) is a fibration
of simplicial sets.

2. If A is a cosimplicial resolution in M and p: X — Y is a fibration in M,
then the map p.: M(A, X) > M(A,Y) is a fibration of simplicial sets.

3. Ifi: A = B is a cofibration in M and X is a simplicial resolution in M,
then the map *: M(B, X) = M(A, X) is a fibration of simplicial sets.

4. If A is a cofibrant object in M and p: X — Y is a Reedy fibration of
simplicial resolutions in M, then the map p.: M(A, X) - M(A,Y) is a
fibration of simplicial sets.

Proor. This follows from Theorem 17.4.1. O
COROLLARY 17.4.3. Let M be a model category.
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1. If i: A — B is a Reedy trivial cofibration of cosimplicial resolutions in M
and X is a fibrant object in M, then the map i*: M(B,X) = M(A, X) is a
trivial fibration of simplicial sets.

2. If A is a cosimplicial resolution in M and p: X — Y is a trivial fibration in
M, then the map p.: M(A, X) = M(A,Y) is a trivial fibration of simplicial
sets.

3. Ifi: A — B is a trivial cofibration in M and X is a simplicial resolution in
M, then the map i*: M(B, X) = M(A, X) is a trivial fibration of simplicial
sets.

4. If A is a cofibrant object in M and p: X — Y is a Reedy trivial fibration
of simplicial resolutions in M, then the map p.: M(A, X) - M(A,Y) is a
trivial fibration of simplicial sets.

Proor. This follows from Theorem 17.4.1. O

ProprosSITION 17.4.4. Let M be a model category.

1. If i: A — B is a Reedy cofibration of cosimplicial resolutions in M and
j: L — K is a cofibration of simplicial sets, then the map AQ K lagr B®
L — B ® K is a cofibration in M that is a trivial cofibration if either ¢ or j
is a weak equivalence.

2. If p: X =Y is a Reedy fibration of simplicial resolutions in M and j: L —
K is a cofibration of simplicial sets, then the map X* — X* Xy L YE isa
fibration in M that is a trivial fibration if either p or j is a weak equivalence.

Proo¥. This follows from Proposition 8.2.3, Proposition 17.3.14, and Theo-
rem 17.4.1. O

DEFINITION 17.4.5. Let M be a model category. If B is a cosimplicial object in
M and X is a simplicial object in M, then the bisimplicial set M(B, X) (for which
M(B, X)pr = M(Bk,Xn)) can be considered a simplicial object in the category
of simplicial objects in M in two ways. We define the horizontal simplicial object
to be the one whose object in degree n is M(B, X,,) (see Notation 17.2.1), and the
vertical simplicial object to be the one whose object in degree & is M(Bk,X).

LEMMA 17.4.6. Let M be a model category, let B be a cosimplicial object in
M, and let X be a simplicial object in M.

1. If we consider M(B, X)) as a horizontal simplicial object, then for every n >
0 there is a natural isomorphism of simplicial objects (see Definition 16.2.17)
M, M(B, X) ~ M(B,M, X).

2. If we consider M(B, X)) as a vertical simplicial object, then for every n > 0
there is a natural isomorphism of simplicial objects M, M(B, X) ~ M(L, B, X).

PrOOF. Since the matching object M,, is defined as a limit, part 1 follows from
the universal mapping property of the limit. Since the latching object L, is defined
as a colimit, part 2 follows from Proposition 16.2.15 and the universal mapping
property of the colimit. O

LEMMA 17.4.7. Let M be a model category, let A — B be a map of cosimplicial
objects in M, and let X — Y be a map of simplicial objects in M.

Draft: August 12, 1997



17.4. HOMOTOPY LIFTING EXTENSION THEOREMS 261

1. If all bisimplicial sets are considered horizontal simplicial objects, then for
every n > 0 there is a natural isomorphism of simplicial sets (see Defini-

tion 16.2.17)
M, (M(A, X) sogiay) M(B,Y)) & M(A, M, X) xacam,v) M(B, M, Y).

2. If all bisimplicial sets are considered vertical simplicial objects, then for
every n > (0 there is a natural isomorphism of simplicial sets

M, (M(A, X) xpiea,y) M(B,Y)) & M(L, A, X) X1, a,y) M(L,B,Y).
Proor. This follows from Lemma 17.4.6. O

THEOREM 17.4.8 (The bisimplicial homotopy lifting extension theorem). Let M
be a model category. If i: A — B is a Reedy cofibration of cosimplicial resolutions
in M and p: X — Y is a Reedy fibration of simplicial resolutions in M, then,
for both the horizontal simplicial object structure (see Definition 17.4.5) and the
vertical simplicial object structure, the induced map of bisimplicial sets

M(B,X) — M(A,X) X'J\/[(A,Y) M(B,Y)

is a Reedy fibration of simplicial objects that is a Reedy trivial fibration if at least
one of i and p is a weak equivalence.

ProoF. We will prove this for the horizontal structure; the proof for the ver-
tical structure is similar.

Theorem 16.3.10 implies that it is sufficient to show that for every n > 0 the
map

M(B, X),
— (M(A, X) xoc(a,y) M(B, YY), X0, (0(4,X) o4,y 20(B,Y)) MaM(B, X))

is a fibration of simplicial sets that is a trivial fibration if either of ¢ and p is a weak
equivalence. Lemma 17.4.6 and Lemma 17.4.7 imply that this map is isomorphic
to the map

M(B, X)
= (M(A, X)) x4,y ) M(B, Y 0)) XA M, X) xocant, vy M(BM, Y )M (B, M, X)

The codomain of this map is the limit of the diagram

M(A, X,) —— M(A,Y,) ——— M(B,Y,)

| | |

MAM, X)) —— M(AM,Y) +—— M(B,M,Y)
M(B,M,X)
and so our map is isomorphic to the map

M(B, X,,)
= M(A, X0) X(M(AY 1) xarant, vy M(A M, X)) (M(B, Y n) Xov (B, vy M(B, M, X))
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Since p is a Reedy fibration, the map X, = Y, xm,y M, X is a fibration of
simplicial sets, and so the result now follows from Theorem 17.4.1 and Theo-

rem 16.3.10. O

THEOREM 17.4.9 (The two-sided homotopy lifting extension theorem). Let M
be a model category. If i: A — B is a Reedy cofibration of cosimplicial resolutions
inM and p: X — Y is a Reedy fibration of simplicial resolutions in M, then the
induced map of simplicial sets

diag M(B, X) — diag M(A, X) Xdinga(a,v) diag M(B,Y)

is a fibration of fibrant simplicial sets that is a trivial fibration if at least one of i
and p is a weak equivalence.

Proo¥. This follows from Theorem 17.4.8, Proposition 16.3.7, Theorem 16.5.5,
Proposition 16.3.8, Theorem 16.5.8, and Theorem 16.5.4. O

COROLLARY 17.4.10. If M is a model category and X and Y are objects in M,
then all homotopy function complexes (see Definition 17.2.2) from X to Y in M
are fibrant simplicial sets.

Proor. This follows from Theorem 17.4.1 and Theorem 17.4.9. O

COROLLARY 17.4.11. Let M be a model category.

1. If i: A — B is a Reedy cofibration of cosimplicial resolutions in M and X
is a simplicial resolution in M, then the induced map of two-sided homotopy
function complexes diag ¢* : diag M(B, X) — diag M(A, X)) is a fibration of
fibrant simplicial sets.

2. If A is a cosimplicial resolution in M and p: X — Y is a Reedy fibration
of simplicial resolutions in M, then the induced map of two-sided homotopy
function complexes diag p, : diagM(A, X) — diagM(A,Y) is a fibration of
fibrant simplicial sets.

Proo¥. This follows from Theorem 17.4.9 and Corollary 17.4.10. O

COROLLARY 17.4.12. Let M be a model category.

1. If i: A — B is a Reedy trivial cofibration of cosimplicial resolutions in M
and X is a simplicial resolution in M, then the induced map of two-sided
homotopy function complexes diagi™: diagM(B, X) — diagM(A, X) is a
trivial fibration.

2. If A is a cosimplicial resolution in M and p: X — Y is a Reedy trivial
fibration of simplicial resolutions in M, then the induced map of two-sided
homotopy function complexes diagp.: diagM(A, X) — diagM(A,Y) is a
trivial fibration.

Proo¥. This follows from Theorem 16.5.5, Theorem 17.4.8, Proposition 16.3.8,
Theorem 16.5.8, and Theorem 16.5.4. O

17.5. Homotopy invariance

THEOREM 17.5.1. Let M be a model category.

1. If i: A — B is a weak equivalence of cosimplicial resolutions in M and X
is a fibrant object in M, then the map of left homotopy function complexes
i M(B, X) > M(A, X) is a weak equivalence of fibrant simplicial sets.

Draft: August 12, 1997



17.6. UNIQUENESS OF HOMOTOPY FUNCTION COMPLEXES 263

2. If A is a cosimplicial resolution in M and p: X — Y is a weak equivalence
of fibrant objects in M, then the map of left homotopy function complexes
s M(A, X) = M(A,Y) is a weak equivalence of fibrant simplicial sets.

3. Ifi: A — B is a weak equivalence of cofibrant objects in M and X is a sim-
plicial resolution in M, then the map of right homotopy function complexes
i M(B, X) = M(A, X) is a weak equivalence of fibrant simplicial sets.

4. If A is a cofibrant object in M and p: X — 'Y is a weak equivalence of sim-
plicial resolutions in M, then the map of right homotopy function complexes
ps: M(A, X) = M(A,Y) is a weak equivalence of fibrant simplicial sets.

5. Ifi: A — B is a weak equivalence of cosimplicial resolutions in M and X
is a simplicial resolution in M, then the induced map of two-sided homo-
topy function complexes diagi*: diagM(B, X) — diagM(A, X) is a weak
equivalence of fibrant simplicial sets.

6. If A is a cosimplicial resolution in M and p: X =Y is a weak equivalence
of simplicial resolutions in M, then the induced map of two-sided homo-
topy function complexes diagp.: diagM(A, X) — diagM(A,Y) is a weak
equivalence of fibrant simplicial sets.

Proo¥. This follows from Corollary 17.4.3, Corollary 17.4.12, Lemma 17.1.18,
Lemma 8.5.1, and Corollary 17.4.10. O

THEOREM 17.5.2. Let M be a model category and let W, X, Y, and Z be
objects in M. If g: X — Y is a weak equivalence, then

1. any map of homotopy function complexes g,: map(W, X) — map(W,Y)
induced by g (see Definition 17.2.4) is a weak equivalence of fibrant simplicial
sets, and

2. any map of homotopy function complexes g*: map(Y, 7) = map(X, 7) in-
duced by ¢ is a weak equivalence of fibrant simplicial sets.

Proo¥. This follows from Theorem 17.5.1 and Proposition 17.1.14. O

ProrosITION 17.5.3. Let M be a model category, let B be a cosimplicial res-
olution in M, and let X be a simplicial resolution in M.

1. If we consider the bisimplicial set M(B, X)) as a horizontal simplicial object
(see Definition 17.4.5) in the category of simplicial sets (so that in simplicial
degree n we have the simplicial set M(B, X)), then M(B, X) is a simplicial
resolution of the simplicial set M(B, X ).

2. If we consider the bisimplicial set M(B, X) as a vertical simplicial object
in the category of simplicial sets (so that in simplicial degree n we have the
simplicial set M(B", X)), then M(B,X) is a simplicial resolution of the
simplicial set M(B°, X).

ProoF. We will prove part 1; the proof of part 2 is similar.

Theorem 17.4.8 implies that M(B, X)) is a fibrant simplicial object, and Theo-
rem 17.5.1 implies that, for every n > 0, the natural map M(B, Xy) = M(B, X,,)
1s a weak equivalence. O

17.6. Uniqueness of homotopy function complexes

THEOREM 17.6.1. Let M be a model category. IfX isa cosimplicial resolution
in M and Y is a simplicial resolution in M, then there is a natural diagram of
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homotopy equivalences of fibrant simplicial sets M(f, f’o) = diag M(TXi f’) —
M(X"Y).

ProoF. Theorem 17.5.1 implies that the bisimplicial set M(f,f’) satisfies
the hypotheses of Corollary 16.5.9, and so Theorem 16.5.4 implies that there is a
natural weak equivalence M(fo, f’) — diag M(f, f’) If we reverse the indices of
the bisimplicial set M(f, f’), we obtain a natural weak equivalence M(f, f’o) —
diag M(f, f’) Corollary 17.4.10 implies that all these simplicial sets are fibrant,
and so these natural weak equivalences are natural homotopy equivalences. O

THEOREM 17.6.2. Let M be a model category. If map,; and map, are homotopy
function complexes on M (see Definition 17.2.6), then there is a natural zig-zag of
weak equivalences from map; to map,, unique up to an equivalence of such zig-zags
(see Definition 9.5.3), on the intersection of the domains of definition of map, and
maps.

ProoF. Rewrite this, and fill in the proof!! O

ProproSITION 17.6.3. Let M be a model category.

1. (a) If B is a cosimplicial resolution in M and f,§: X = Y are left
homotopic, right homotopic, or homotopic maps of fibrant objects
in M, then the induced maps of left homotopy function complexes
fe)dn M(ﬁ, )A() — M(ﬁ, 17) are homotopic.

(b) If f g: A — B are left homotopic, right homotopic or homotopic
maps of cosimplicial resolutions in M and X is a fibrant object in M,
then the induced maps of left homotopy function complexes f* g*: M(B X)
M(A, X) are homotopic.

2. (a) If B is a cofibrant object in M and f,§: X — Y are left homo-
topic, right homotopic, or homotopic maps of simplicial resolutions
in M, then the induced maps of right homotopy function complexes
fe)dn M(E,X\) — M(E, f’) are homotopic.

(b) If f,ﬁ: A = B are left homotopic, right homotopic, or homotopic
maps of cofibrant objects in M and X isa simplicial resolution in
M, then the 1nduced maps of right homotopy function complexes
f*,5 M(B X) — M(A X) are homotopic.

3. (a) IfBisa cosimplicial resolution in M and f, g: X — Y are left homo-
topic, right homotopic, or homotopic maps of simplicial resolutions in
M, then the induced maps of two-sided homotopy function complexes
diag f*,dlagg*. diag M(B X) — diag M(B Y) are homotopic.

(b) If f g: A — B are left homotopic, right homotopic, or homotopic
maps of cosimplicial resolutions in M and X isa simplicial resolu-
tion in M, then the induced maps of two- sided homotopy function

complexes diag f*, diag §*: dlagM(B X) — diag M(A X) are ho-

motopic.

ProoF. We will prove part 1(a); the proofs of the other parts are similar.

Iff and g are left homotopic, then Proposition 8.3.20 implies that there is a
cylinder object XX - Cyl( ) 2y X for X such that p is a trivial fibration and a
left homotopy H : Cyl(X ) — Y from f to g. Corollary 17.4.3 implies that the map
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M(E, Cyl()A()) — M(E, )A() is a weak equivalence, and so Proposition 8.3.4 implies
that f* and g, are left homotopic. Corollary 17.4.10 and Proposition 8.3.18 now
imply that f* and g, are homotopic.

If f and g are right homotopic and if Y - Path(f/) Y xYisa path object
for Y and H: X — Path(f/) is a right homotopy from f to g, then Theorem 17.5.1
implies that the map M(E,f/) — M(ﬁ, Path(f/)) is a weak equivalence. Thus,
Proposition 8.3.4 implies that f* and ¢, are right homotopic. Corollary 17.4.10
and Proposition 8.3.18 now imply that f* and ¢, are homotopic. O

PropPoOsITION 17.6.4. Let M be a model category, let (~7(X) — ¢X be a natural
fibrant cosimplicial resolution of every object X in M, and let sY — F(Y) be a
natural cofibrant simplicial resolution of every object Y in M.

1. If (~3”(X) — ¢X is a natural cosimplicial resolution of X defined on some

subcategory of M and Y — ﬁ’(Y) is a natural fibrant approximation to Y
defined on some subcategory of M, then there is a homotopy equivalence

diag M(C(X), F(Y)) = M(C'(X), F'(Y)),

defined up to homotopy and natural up to homotopy, wherever the homotopy
function complex on the right is defined.

2. If 6”()() — X is a natural cofibrant approximation to X defined on some
subcategory of M and sY — ﬁ”(Y) is a natural simplicial resolution of Y
defined on some subcategory of M, then there is a homotopy equivalence

diag M(C(X), F(Y)) = M(C'(X), F'(Y)),

defined up to homotopy and natural up to homotopy, wherever the homotopy
function complex on the right is defined.

3. If (~3”(X) — ¢X is a natural cosimplicial resolution of X defined on some
subcategory of M and sY — ﬁ”(Y) is a natural simplicial resolution of Y
defined on some subcategory of M, then there is a homotopy equivalence

diag M (C(X), F(V)) = diagM(C'(X), F'(V)),

defined up to homotopy and natural up to homotopy, wherever the homotopy
function complex on the right is defined.

Proor. For part 1, Proposition 17.1.6 implies that Y — ﬁ’(Y)o is a cofibrant
fibrant approximation to Y, and so Proposition 9.1.6 implies that there is a weak
equivalence of fibrant approximations f’(Y)o — ﬁ’(Y), unique up to homotopy
under Y. Proposition 9.1.10 implies that this weak equivalence is natural up to
homotopy. Proposition 17.1.9 implies that there is a weak equivalence of resolu-
tions (~3”(X) — (~Z’(X), unique up to homotopy over c¢X, and Proposition 17.1.13
implies that this weak equivalence is natural up to homotopy. Theorem 17.5.1 im-
plies that these weak equivalences induce a weak equivalence M(é(X), ﬁ’(Y)o) —
M(é’(X), ﬁ’(Y)), and Proposition 17.6.3 implies that this weak equivalence is well
defined up to homotopy and that it is natural up to homotopy. Since all of these sim-
plicial sets are fibrant (see Corollary 17.4.10), this weak equivalence is a homotopy
equivalence. If we compose this with a homotopy inverse to the natural homotopy
equivalence M(é(X),ﬁ’(Y)o) — diagM(é(X),f’(Y)) of Theorem 17.6.1, then
this completes the proof of part 1.
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The proof of part 2 is similar to that of part 1.

For part 3, Proposition 17.1.9 implies that there are weak equlvalences of res-
olutions C’(X) — C(X) (unique up to homotopy over cX) and F( ) — F’(Y)
(unique up to homotopy under sY'), and Proposition 17.1.13 implies that each
of these is natural up to homotopy Theorem 17.5.1 1mphes that these induce
a weak equivalence dlagM( (X)), F( )) — dlagM(C’( ), F’(Y)), and Proposi-
tion 17.6.3 implies that the homotopy class of this weak equivalence is independent
of the choices of the weak equivalences of resolutions, and that i1t is natural up
to homotopy. Since these homotopy function complexes are fibrant simplicial sets,
this weak equivalence is a homotopy equivalence. O

THEOREM 17.6.5. Let M be a model category. If map,(X,Y) and map,(X,Y)
are homotopy function complexes on M (see Definition 17.2.6), then there is a ho-
motopy equivalence hq 5: map, (X,Y) — map,(X,Y), defined up to homotopy and
natural up to homotopy, such that if maps(X,Y) is a third homotopy function com-
plex and hy 3: map,(X,Y) — map;(X,Y) and hs 3 map,(X,Y) — map;(X,Y)
are the corresponding homotopy equivalences, then ha 3hq 2 ~ hy 3.

ProoF. Choose a natural fibrant cosimplicial resolution (~7(X) — cX for every
object X in M and a natural cofibrant simplicial resolution sY — F( ) for every
object Y in M (see Proposition 17.1.3), and let map(X,Y) = dlagM( (X)), F(Y))
Let hy: map(X,Y) — map, (X,Y) be the homotopy equivalence (defined up to ho-
motopy and natural up to homotopy) of Proposition 17.6.4, and let ks : map(X,Y) —
map,(X,Y) and hz: map(X,Y) — maps(X,Y) be defined similarly. We can now
let hy o = hohT', hy3 = hgh7', and hy 3 = hshy'. O

THEOREM 17.6.6. Let M be a model category.

1. If B is an object in M and g: X — Y is a map for which there is some map
of homotopy function complexes g,: map(B,X) — map(B,Y) induced by
g that is a weak equivalence, then every such map of homotopy function
complexes induced by g is a weak equivalence.

2. If X is an object in M and f: A — B is a map for which there is some map
of homotopy function complexes (see Definition 17.2.4) f*: map(B,X) —
map(A, X) induced by f that is a weak equivalence, then every such map
of homotopy function complexes induced by f is a weak equivalence.

Proo¥. This follows from Theorem 17.6.5, Proposition 8.5.6, and the “two out
of three” axiom (see Definition 8.1.2). O

ProPoOSITION 17.6.7. If M is a model category, then the homotopy equivalences
of Theorem 17.6.5 are independent (up to homotopy) of the choices of resolutions
made in the proof.

Proor. If (~3’1( ) = ¢X and (~3’2( ) = ¢X are natural fibrant cosimplicial
resolutions of every object X in M, then Proposition 17.1.9 implies that there are
weak equivalences Cl(X) — Cz( ) and Cz( ) — Cl(X), unique up to homo-
topy over ¢X and natural up to homotopy, and that these are inverse homotopy
equivalences over ¢X. Similarly, if sY — Fl( ) and sY — Fz(Y) are natural
cofibrant simplicial resolutions of every object Y in M, then there are weak equiv-
alences ﬁ’l(Y) — ﬁ’z(Y) and ﬁ’z(Y) — ﬁ’l(Y), unique up to homotopy under sY
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and natural up to homotopy, and these are inverse homotopy equivalences under
sY.

The uniqueness clause of Proposition 17.1.9 implies that if (~3”(X) —cX isa
cosimplicial resolution of X, then the map (~3”(X) — (~71(X) (see the proof of Prop-
osition 17.6.4) is homotopic to the composition (~3”(X) — (~3’2(X) — (~3’1(X). Simi-
larly, if sY — ﬁ”(Y) is a simplicial resolution of Y, then the map ﬁ’l(Y) — ﬁ”(Y)
is homotopic to the composition ﬁ’l(Y) — ﬁ’z(Y) — ﬁ"(Y). Thus, if map, (X,Y)
and map,(X,Y) are two-sided homotopy function complexes on M and

ht: diag M (C1(X), F1(Y)) = map, (X, Y),
h}: diag M(C2(X), Fa(Y)) = map, (X, Y),
hi: dlagM(C1(X),1A71(Y)) — map,(X,Y), and
h2: dlagM(Cz(X),ﬁ'z( ) = map,(X,Y)

are the homotopy equivalences constructed in the proof of Proposition 17.6.4, then

hy(h1) ™" 2 h3(h7)”

complexes and right homotopy function complexes.

L. Similar remarks apply to the cases of left homotopy function

O

THEOREM 17.6.8. Let M be a model category, and let X and Y be objects
in M. If map,(X,Y) and map,(X,Y) are homotopy function complexes and
h: map,(X,Y) = map,(X,Y) is a homotopy equivalence that is a composition
of

1. homotopy equivalences of left homotopy function complexes induced by
maps of cosimplicial resolutions of X or by maps of fibrant approximations
toY (see Lemma 17.1.8, Lemma 9.1.4, and Theorem 17.5.1),

2. homotopy equivalences of right homotopy function complexes induced by
maps of cofibrant approximations to X or by maps of simplicial resolutions
of Y,

3. homotopy equivalences of two-sided homotopy function complexes induced
by maps of cosimplicial resolutions of X or by maps of simplicial resolutions
of Y,

4. the homotopy equivalences of Theorem 17.6.1,

or a homotopy inverse to one of these, then h is homotopic to the homotopy equiv-
alence hy 2 of Theorem 17.6.5.

Proor. It is sufficient to show that any of the homotopy equivalences of homo-
topy function complexes listed above is homotopic to the corresponding homotopy
equivalence of Theorem 17.6.5. We will consider the case in which there is a cosim-
plicial resolution X of X and a map g¢: Y — ¥’ of fibrant approximations to Y
such that h is the homotopy equivalence g, : M(f, 17) — M(f, f/’) The proofs in
the other cases are similar.

Let C(X) and F(Y) be the natural fibrant cosimplicial resolution of X and the
natural cofibrant simplicial resolution of Y chosen in the proof of Theorem 17.6.5.
Proposition 17.1.6 implies that ¥ — ﬁ’(Y)o is a cofibrant fibrant approximation to
Y, and so Prop081t10n 9.1.6 implies that the composition of the weak equivalence
F(Y)o —~Y used in the proof of Proposition 17.6.4 with the map of fibrant approx-
imations g: Y = V'is homotopic under Y to the weak equivalence F(Y)o —Y!
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used in the proof of Proposition 17.6.4. The result now follows from Proposi-

tion 17.6.3. O
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CHAPTER 18

Applications of homotopy function complexes

18.1. Homotopy classes of maps

LEMMA 18.1.1. Let M be a model category.

d°ud* s°

1.IfAisa cosimplicial resolution in M, then ACIIA® 2195 AL 25 A0 s g
cylinder object (see Definition 8.3.2) for A°.

2. If X is a simplicial resolution in M, then 3(\0 LN 3(\1 M) 3(\0 X 3(\0 is a
path object for X,.

Proor. This follows directory from the definitions. O

ProprosITION 18.1.2. Let M be a model category.

1.IfBisa cosimplicial resolution in M and X is a fibrant object in M, then
the set FQM(E, X)) is naturally isomorphic to the set of homotopy classes of
maps from B° to X.

2. If B is a cofibrant object in M and X isa simplicial resolution in M, then
the set moM(B, 3(\) is naturally isomorphic to the set of homotopy classes of
maps from B to 3(\0.

ProoF. We will prove part 1; the proof of part 2 is similar.

The set of vertices ofM(E, X) is the set of maps from B to X, and Lemma18.1.1
implies that if two vertices of M(E, X) represent the same element of FQM(_E, X)),
then those vertices (i.e., maps) from Eo to X are homotopic. Finally, if two maps
from B to X are homotopic, then Proposition 8.3.16 and Lemma 18.1.1 imply
that there is a 1-simplex of M(é, X) whose vertices are those maps. O

LEMMA 18.1.3. Let M be a model category.

1. IfBisa cosimplicial resolution in M and p: X — Y is a map of fibrant ob-
Jects in M that induces a weak equivalence of simplicial sets p, : M(ﬁ, X)=
M(ﬁ, Y'), then p induces an isomorphism of the sets of homotopy classes of
maps Py : F(_EO,X) ~ F(_EO,Y).

2. If X is a simplicial resolution in M and ¢: A — B is a map of cofibrant ob-
Jects in M that induces a weak equivalence of simplicial sets i* : M(B, 3(\) >
M(A, 3(\), then ¢ induces an isomorphism of the sets of homotopy classes of
maps 1* : F(B,/X\o) ~ W(A,A/X'\o).

Proo¥. This follows from Proposition 18.1.2. O

ProprosITION 18.1.4. Let M be a model category.

1. If B is cofibrant and p: X — Y is a map of fibrant objects that induces
a weak equivalence of homotopy function complexes p,: map(B,X) —
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map(B,Y), then p induces an isomorphism of the sets of homotopy classes
of maps p,: n(B, X) = 7(B,Y).

2. If X isfibrant andi: A — B is a map of cofibrant objects that induces a weak
equivalence of homotopy function complexes i* : map(B, X) — map(A4, X),
then i induces an isomorphism of the sets of homotopy classes of maps

i m(B,X) = 7(A, X).

ProoF. We will prove part 1; the proof of part 2 is dual.

If Bisa cosimplicial resolution of B, then p induces a weak equivalence
P M(E, X)— M(é, Y) (see Theorem 17.6.6), and so Lemma 18.1.3 implies that
p induces an isomorphism p, : F(EO,X) ~ F(EO,Y). Since B® — B is a weak
equivalence of cofibrant objects, the result now follows from Corollary 8.5.4. O

ProrosiTION 18.1.5. If M is a model category, then a map g: X — Y is a
weak equivalence if either of the following two conditions is satisfied:

1. The map ¢ induces weak equivalences of homotopy function complexes
g«: map(X, X) Zmap(X,Y) and g.: map(Y,X) =Zmap(V,Y).

2. The map ¢ induces weak equivalences of homotopy function complexes
g": map(Y, X) Zmap(X,X) and g¢*: map(Y,Y) = map(X,Y).

Proo¥F. We will prove this using condition 1; the proof using condition 2 is
similar. B

Ifg: X = Y is acofibrant approximation to g, then Theorem 17.5.2 implies that
g induces weak equivalences of homotopy function complexes g, : map()?,f() >
map()?,i?) and §.: map(?,)?) &~ map(?,?). If g: X — Y is a cofibrant fi
brant approximation to ¢, then ¢ is a map of cofibrant-fibrant objects, and The-
orem 17.5.2 implies that g induces weak equivalences of homotopy function com-
plexes g.: map()A(,)A() = map()?,f/) and g, : map(f/,f{) = map(f/,f/). Prop-
osition 18.1.4 now implies that ¢ induces isomorphisms of the sets of homotopy
classes of maps g, : 71'(5(, )A() ~ 71'(5(, 17) and g, : 71'(17, )A() ~ 71'(17, 17), and so Propo-
sition 8.3.28 implies that ¢ is a homotopy equivalence. Thus, § is a weak equivalence,
and so ¢ is a weak equivalence, and so g is a weak equivalence. O

THEOREM 18.1.6. If M is a model category and g: X — Y is a map in M, then
the following are equivalent:

1. The map g is a weak equivalence.

2. For every object W in M the map g induces a weak equivalence of homotopy
function complexes g, : map(W, X) = map(W,Y).

3. For every cofibrant object W in M the map g induces a weak equivalence of
homotopy function complexes g, : map(W, X) = map(W,Y).

4. For every object Z in M the map g induces a weak equivalence of homotopy
function complexes g*: map(Y, 7) = map(X, 7).

5. For every fibrant object Z in M the map g induces a weak equivalence of
homotopy function complexes g*: map(Y, 7) = map(X, 7).

Proo¥. This follows from Theorem 17.5.2; Proposition 18.1.5, and Proposi-
tion 9.1.2. O
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18.2. Homotopic maps of homotopy function complexes

LEMMA 18.2.1. If M is a model category and f,g: X — Y are left homotopic,
right homotopic, or homotopic, then both the induced maps of constant cosimpli-
cial objects cf cg: cX — cY and the induced maps of constant simplicial objects
sf,sg: sX — sY are, respectively, left homotopic, right homotopic, or homotopic.

ProoF. The constant cosimplicial and constant simplicial objects obtained
from either a cylinder object for X or a path object for Y satisfy the conditions of
Proposition 8.3.4. O

ProrosITION 18.2.2. Let M be a model category, and let W, X, Y, and Z be
objects in M.

1. If f,g: X — Y are left homotopic, right homotopic, or homotopic, and if
fas g5 : map(W, X) — map(W,Y) are maps of homotopy function complexes
induced by, respectively, f and ¢, then f. and g. are homotopic.

2. If f,g: X — Y are left homotopic, right homotopic, or homotopic, and if
f*, 9% map(Z, W) — map(Z, W) are maps of homotopy function complexes
induced by, respectively, f and g, then f* and g* are homotopic.

ProoF. We will prove part 1 in the case in which f. and g, are maps of left
homotopy function complexes; the proof in the other cases (and of part 2) are
similar.

Let W be a cosimplicial resolution of W and let f g: X — Y be fibrant approx-
imations to, respectlvely, J and g, such that the maps f« and g, are, respectively,
the maps f : (W X) — M(W Y) and g*. M(W X) — M(W Y) If we factor
the weak equlvalences X5 XandY =V as, respectively, X — X' % X and
Y —> Y 2% ¥V such that tx and iy are trivial cofibrations and px and py are
fibrations, then the “two out of three” axiom implies that px and py are trivial
fibrations.

The dotted arrow exists in the solid arrow diagram

X —>f Y —)iy 3 v
b Py
X X—Y

and a similar diagram implies that the corresponding map ¢’: X' = Y exists.
Thus, f' and ¢’ are cofibrant fibrant approximations to, respectively, f and g, and
we have the diagram

-~

"

Py

5
Bty ——
- 4
=0

in which py f/ = fpx and py§’ = gpx. Lemma 18.2.1 and Proposition 9.2.4 imply
that if f and g are left homotopic, right homotopic, or homotopic, then f’ and ¢’
are, respectively, left homotopic, right homotopic, or homotopic. In any of these
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cases, Proposition 17.6.3 implies that the maps f: M(W,)A(’) — M(ﬁ;,f/’) and
e M(ﬁ;, )A(’) — M(ﬁ;, f/’) are homotopic. Since px and py are weak equivalences
of fibrant objects, Theorem 17.5.1 implies that the maps M(ﬁ;, )A(’) — M(ﬁ;, )A()
and M(ﬁ;, f/’) — M(ﬁ;, 17) are homotopy equivalences of fibrant simplicial sets,
and this implies that f, : M(W,)A() — M(ﬁ;,f/) and gy M(W,)A() — M(ﬁ;,f/)

are homotopic. O

18.3. Homotopy orthogonal maps

If M 1s a simplicial model category and if i: A — B and p: X — Y are maps
such that either

1. 4 is a trivial cofibration and p is a fibration, or
2. 1 1s a cofibration and p is a trivial fibration,

then the map of function complexes Map(B, X) — Map(4, X) xyap(a,v)Map(B,Y)
is a trivial fibration (see axiom M7 of Definition 10.1.2). If we also assume that

1. A and B are cofibrant, and
2. X and Y are fibrant,

then the maps Map(A4, X) — Map(A,Y) and Map(B,Y) — Map(A,Y) are fibra-
tions, and so the pullback Map(A, X') Xuap(a,y) Map(B,Y) is weakly equivalent
to the homotopy pullback (see Corollary 11.2.8). Tt is only in this case (A and B
cofibrant, X and Y fibrant) that these function complexes are homotopy function
complexes, and in this case the “orthogonality” condition is equivalent to saying
that the square

Map(B, X) —— Map(B,Y)

| |

Map(A, X) —— Map(A4,Y)

is a homotopy fiber square (see Definition 11.2.12). Proposition 18.3.1 shows that
this condition on a pair of maps i1s independent of the choice of homotopy function
complex, and then Definition 18.3.3 defines what it means for a pair of maps (¢, p)
to be homotopy orthogonal.

ProrosiTION 18.3.1. Let M be a model category, and let i: A — B and
p: X =Y be maps in M. If there is some homotopy function complex (see Defini-
tion 17.2.6) map(—, —) on M such that the square

(18.3.2) map(B, X) —— map(B,Y)

| |

map(A4, X) —— map(A4,Y)

is a homotopy fiber square of simplicial sets (see Definition 11.2.12), then Dia-
gram 18.3.2 for any other homotopy function complex on M is also a homotopy
fiber square.

ProoF. If map, (—, —) and map,(—, —) are homotopy function complexes on

~

M, then Theorem 17.6.5 implies that there is a homotopy equivalence map, (—, —) =
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map,(—, —) that is natural up to homotopy. If we can alter these homotopy equiva-
lences by homotopies to get maps from Diagram 18.3.2 for map, to Diagram 18.3.2
for map, that commute on the nose, then the result will follow from Proposi-
tion 11.2.13. If the maps map, (A4, X) = map,(4,Y), map,(B,Y) — map,(A4,Y),
and map, (B, X) — mapy (A, X) Xmap,(a,v) map, (B, Y) are fibrations, then we can
use the homotopy lifting property (see Proposition 8.3.8) to alter the homotopy
equivalences from map; to map, in our diagrams by homotopies so that we do get
a map of diagrams. Thus, it is sufficient to show that for any homotopy function
complex, Diagram 18.3.2 maps to one with fibrations as described. We will do this
for left homotopy function complexes; the proofs for right and two-sided homotopy
function complexes are similar.

If map is a left homotopy function complex defined by the cosimplicial resolu-
tion i: A — B to i and the fibrant approximation p: X =Y to p, then we can
factor 7 into a cofibration followed by a trivial fibration A — B’ — B and factor
p into a trivial cofibration followed by a fibration X — X’ - Y. This yields a
diagram

M(B,X) ————— M(B,Y)
l ~S | !
M(B/,X/) T M(B/,Y)
M(A, X) —l—> M(A,Y) l
T~ !

M(A, X)) ————M(A,Y)

in which all four maps from the back square to the front square are weak equiva-
lences (see Theorem 17.5.1), and Corollary 17.4.2 and Theorem 17.4.1 imply that
the front square has the fibrations required. O

DeFINITION 18.3.3. If M 1s a model category and i: A — B and p: X = Y
are maps in M, then we will say that

1. (i,p) is a homotopy orthogonal pair,
2. 1 is left homotopy orthogonal to p, and
3. p is right homotopy orthogonal to ¢

if the square

map(B, X) —— map(B,Y)

| |

map(A4, X) —— map(A4,Y)

is a homotopy fiber square (see Definition 11.2.12). (Proposition 18.3.1 implies that
this is independent of the choice of homotopy function complex.)

ProrosiTION 18.3.4. If M is a model category and g: X — Y is a weak equiva-
lence in M, then g is both left homotopy orthogonal and right homotopy orthogonal
to every map in M.

Proo¥. This follows from Proposition 17.1.14 and Theorem 17.4.1. O

ProprosITION 18.3.5. Let M be a model category.
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1. Ifi: A— BisamapinM and p: X — % is the map to the terminal object
of M, then (i, p) is a homotopy orthogonal pair if and only if i induces a weak
equivalence of homotopy function complexes i*: map(B, X) = map(4, X).

2. Ifp: X - Y isamapinM and i: ) — B is the map from the initial object of
M, then (i,p) is a homotopy orthogonal pair if and only if p induces a weak
equivalence of homotopy function complexes p,.: map(B, X) = map(A4, X).

Proor. This follows directly from the definitions. O

ProPOSITION 18.3.6. Let M be a model category.
1. If p: X = Y is a map in M and we have a square

A—s 4

B—— B

in which the horizontal maps are weak equivalences, then (i, p) is a homotopy
orthogonal pair if and only if (¢, p) is one.
2. Ifi: A — B is a map in M and we have a square

X — X

Y —Y'

in which the horizontal maps are weak equivalences, then (i, p) is a homotopy
orthogonal pair if and only if (4,p') is one.

Proo¥. This follows from Proposition 11.2.13 and Theorem 17.5.2. O

THEOREM 18.3.7. Let M be a model category. If i: A — B andp: X — Y are
maps in M, then the following are equivalent:

1. (i,p) is a homotopy orthogonal pair.

2. For some cosimplicial resolution 7: A — B of i such that 7 is a Reedy
cofibration and some fibrant approximation p: X =Y to p such that p is a
fibration, the map of simplicial sets

M(B, X) = M(A, X) %,

&) M(B.Y)
is a trivial fibration. B B

3. For every cosimplicial resolution i: A — B of ¢ such that i is a Reedy
cofibration and every fibrant approximation p: X — Y to p such that p is a
fibration, the map of simplicial sets

M(B, X) = M(A, X) %,

&) M(B.Y)
is a trivial fibration.

4. For some cofibrant approximation i: A — B to ¢ such that 7 is a cofibration
and some simplicial resolution p: X 5 Y to p such that p is a Reedy
fibration, the map of simplicial sets

M(B, X) = M(A, X) %

(A4,Y) M(an)
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is a trivial fibration. o

5. For every cofibrant approximation Z:/\A — B to ¢ such that 7 is a cofibration
and every simplicial resolution p: X — Y to p such that p is a Reedy
fibration, the map of simplicial sets

M(B, X) = M(A, X) %,

Gy MBY)
is a trivial fibration. B B

6. For some cosimplicial resolution ©: A — B i such that 7 is a Reedy cofibra-
tion and some simplicial resolution p: X — Y to p such that p is a Reedy
fibration, the map of simplicial sets

diag M(B, X) — diag M(A, X)

><diag M(A,?) dlag M(Ba Y)
is a trivial fibration.

7. For every cosimplicial resolution 7: A — B such that 7 is a Reedy cofibra-
tion and every simplicial resolution p: X Y to p such that p is a Reedy
fibration, the map of simplicial sets

diag M(B, X) — diag M(A, X)

><diag M(A,?) dlag M(Ba Y)
is a trivial fibration.

Proo¥. This follows from Proposition 18.3.1, Theorem 17.4.1, and Theorem 17.4.9.
O

ProrosiTION 18.3.8. Let M be a model category. If i: A —- B andp: X =Y

are maps in M, then the following are equivalent:

1. (i,p) is a homotopy orthogonal pair.

2. For some cosimplicial resolution 7: A — B of i such that 7 is a Reedy
cofibration, some fibrant approximation p: X 5V to p such that p is a
fibration, and every n > 0, the dotted arrow exists in every solid arrow
diagram of the form

A© AR 50,0 BO AN — %

Bo A —————— v

3. For every cosimplicial resolution 7: A — B of i such that i is a Reedy
cofibration, every fibrant approximation p: X 5V to p such that p is a
fibration, and every n > 0, the dotted arrow exists in every solid arrow
diagram of the form

A© Al 5 pap B @ 0A[R] ﬁ)j
BoAn —— v

4. For some cofibrant approximation i : A — B toisuch that7is a cofibration,
some simplicial resolution p: X —Y to p such that p is a Reedy fibration,
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and every n > 0, the dotted arrow exists in every solid arrow diagram of the
form

N

B 2 yAl] Xgroat] X oAln]

5. For every cofibrant approximationt: A — B toi such thatiisa cofibration,
every simplicial resolution p: X — Y to p such that p is a Reedy fibration,
and every n > 0, the dotted arrow exists in every solid arrow diagram of the
form

I— s XA

B yall X gronpy XA

PrOOF. Since a map of simplicial sets is a trivial fibration if and only if it has
the right lifting property with respect to the map 0A[n] — A[n] for every n > 0,
this follows from Theorem 18.3.7 and Proposition 17.3.14. O

ProprosIiTION 18.3.9. Let M be a model category. If i: A — B is a cofibration
between cofibrant objects, p: X — Y is a fibration between fibrant objects, and
(i,p) is a homotopy orthogonal pair, then (i,p) is a lifting-extension pair.

ProoOF. Proposition 17.1.31 implies that there is a cosimplicial frame 7: A—
B on i such that 7 is a Reedy cofibration. Proposition 18.3.8 now implies that A®
A[0] — B® A[0] has the left lifting property with respect to p, and Lemma 17.3.5
implies that A @ A[0] — B @ A[0] is isomorphic to the map i. O

ProrosiTION 18.3.10. Let M be a model category.

1. If i: A — B is a cofibration between cofibrant objects and p: X — Y is a
map such that ¢ is left homotopy orthogonal to p, then any pushout of ¢ is
left homotopy orthogonal to p.

2. If p: X — Y 1is a fibration between fibrant objects and i: A — B is a map
such that p is right homotopy orthogonal to i, then any pullback of p is right
homotopy orthogonal to ¢.

ProoF. We will prove part 1; the proof/gf part 2 is dual.

If we choose a simplicial resolution p: X — Y of p such that p is a Reedy
fibration (see Proposition 17.1.12), then Proposition 18.3.8 implies that ¢ has the
left lifting property with respect to the map XAPR] _y y Al X$oALn] X 0AP] for
every n > 0. Since any pushout of ¢ is also a cofibration between cofibrant objects,
the result follows from Lemma 8.2.5 and Proposition 18.3.8. O

COROLLARY 18.3.11. Let M be a model category.

1. If X is an object of M and i: A — B is a cofibration between cofibrant
objects that induces a weak equivalence of homotopy function complexes
i*: map(B,X) = map(A, X), then any pushout of i also induces a weak
equivalence of homotopy function complexes to X.
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2. If B is an object of M and p: X — Y is a fibration between fibrant
objects that induces a weak equivalence of homotopy function complexes
ps: map(B, X) = map(B,Y), then any pullback of p also induces a weak
equivalence of homotopy function complexes from B.

Proo¥. This follows from Proposition 18.3.5 and Proposition 18.3.10. O

PRrROPOSITION 18.3.12. Let M be a model category.

1.Ifi: A= B, j: B—>C,and p: X =Y are maps in M such that (i,p) is a
homotopy orthogonal pair, then (j, p) is a homotopy orthogonal pair if and
only if (ji,p) is one.

2. Ifi: A= B,p: X 5 Y,and q: Y — 7 are maps in M such that (i,q) is a
homotopy orthogonal pair, then (i,p) is a homotopy orthogonal pair if and
only if (i, ¢qp) is one.

Proo¥. This follows from Proposition 11.2.15. O

ProrosiTION 18.3.13. Let M be a model category, and let i: A — B and
p: X =Y be maps in M such that (i,p) is a homotopy orthogonal pair.

1. Ifi:A—> Bisa cosimplicial resolution of ¢ such that 7 is a Reedy cofibration,
then for every n > 0 the map A ® Aln] 11 n] B © 0A[n] - B® Aln] is
left homotopy orthogonal to p.

2. If p: X 5Yisa simplicial resolution of p such that p is a Reedy fibration,
then for every m > 0 the map XAk o yAn X$oALn] X oAl g right
homotopy orthogonal to ¢.

AQAA[

ProoF. We will prove part 1; the proof of part 2 is dual.

Proposition 17.3.7 and Proposition 16.3.7 imply that for every n > 0 the map
on: A® Aln] Uz60a0 B © dA[n] — B @ Aln] is a cofibration between cofibrant
objects. Thus, Proposition 18.3.8 implies that if p: X > Yisa simplicial resolution
of p such that p is a Reedy fibration, then it is sufficient to show that o, has the
left lifting property with respect to the map 7 : XAK _, y AR Xgaalk] X 0AK for
every k > 0. We will do this by induction on n.

Lemma 17.3.5 and Proposition 18.3.6 imply that for every n > 0 the map
A © Aln] = B ® A[n] is left homotopy orthogonal to p. Since the map oy is the
map A ® A[0] = B © A[0], the induction is begun.

We now assume that n > 0 and that the result is true for all lesser values
of n. Lemma 16.3.5 now implies that an — Lnﬁ has the left lifting property
with respect to 1, for every k& > 0. Proposition 16.3.7 implies that L,A — L,B
is a cofibration between cofibrant objects, and so Proposition 18.3.8 and Proposi-
tion 18.3.10 imply that any pushout of an — Lnﬁ is left homotopy orthogonal
to p. Since Lemma 17.3.6 implies that the map A ® A[n] — B @ A[n] is isomorphic
to the map L, A — L, B and the map A @ A[n] - A @ Aln] IS PEIND B © 8A[n]
is a pushout of it, this last map is left homotopy orthogonal to p. Since the compo-
sition A ® A[n] - A® Aln] Uig0a0 B ©0A[n] — B ® Aln] is also left homotopy
orthogonal to p, Proposition 18.3.12 completes the inductive step. O
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18.4. Sequential colimits

ProrosiTION 18.4.1. If M is a model category, A is an ordinal, and

Xo X1 Xa
gul gll gzl
Yo Y Y,

is a map of A-sequences in M such that

1. each of the maps go: Xo — Yy (for o < A) is a weak equivalence of cofibrant
objects, and
2. each of the maps Xo = Xg41 and Yy — Yoy (for o < A) is a cofibration,

then the induced map of colimits (colimgy): colim X, — colimV,, is a weak equiv-
alence.

ProoF. If 7 is an object of M and s7 — Zisa simplicial resolution of Z| then
Theorem 18.1.6 implies that it is sufficient to show that the map M(colim Yy, 2) —
M(colim X, 2) is a weak equivalence of simplicial sets.

Theorem 17.5.1 implies that the map ¢*: M(Ya,i) — M(Xa,i) is a weak
equivalence of fibrant simplicial sets for every a < A, and so the diagram

e M (Y, Z) —— M(Y1, Z) —— M(Yy, Z)

J J |

~ ~ ~

e —>M(X2,Z) —>M(X1,Z) —>M(X0,Z)

is a weak equivalence of towers of fibrations of fibrant simplicial sets. Thus, the
induced map limM(Ya,i) — limM(Xa,i) is a weak equivalence. Since this
map is isomorphic to the map M(colimYy, 2) — M(colim X, 2), the proof is
complete. O

18.5. Properness

18.5.1. Sequential colimits.

PROPOSITION 18.5.2. Let M be a left proper model category (see Definition 11.1.1).
If X is an ordinal and

Xy X4 X5
gul gll gzl
Yy Y Y

is a map of A-sequences in M such that

1. each of the maps Xo — Xqq1 and Yo = Yoq1 (for o < A) is a cofibration;
2. each of the maps go: Xo — Yo (for o < A) is a weak equivalence;

then the induced map (colimgy): colim X, — colimY,, is a weak equivalence.

Proor. This is identical to the proof of Proposition 11.1.21, except that we
use Proposition 18.4.1 in place of Proposition 10.5.6. O
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ProrosITION 18.5.3. Let M be a left proper model category. If A is an ordinal
and

Xo=Xi2Xo—> -5 Xg— - (B <)

is a A-sequence in M such that Xg — X1 is a cofibration for every § < A, then
there is a A-sequence

)~(0—>)~(1%)~(2—>~~—>)~(@%m (B <)
and a map of A-sequences
550 )?1 )}2 )?ﬁ (B <)
gul gll gzl gﬂJ
Xo X1 Xo Xp (B <A)
such that

1. every )?@ is cofibrant,

2. every gg: )?@ — X 1s a weak equivalence,

3. every )?@ — )~(@+1 is a cofibration, and

4. the map colimgcx )?@ — colimg«x Xp Is a weak equivalence.

Proor. This is identical to the proof of Proposition 11.1.22, except that we
use Proposition 18.5.2 in place of Proposition 11.1.21. O

18.5.4. Homotopy orthogonal maps.

ProrosiTION 18.5.5. Let M be a left proper model category, andlet p: X — Y
be a map in M. If i: A — B is left homotopy orthogonal to p, the diagram

A—1=c
B——D

is a pushout, and at least one of ¢ and j is a cofibration, then k is left homotopy
orthogonal to p.

PrOOF. Let i: A — B be a cofibrant approximation to ¢ such that 7 is a
cofibration (see Proposition 9.1.9). Proposition 18.3.6 implies that 7 is left homotopy
orthogonal to p, and so Proposition 18.3.10 implies that any pushout of 7 is left
homotopy orthogonal to p. Since Proposition 11.3.2 implies that & has a cofibrant
approximation that is a pushout of 7, the result follows from Proposition 18.3.6. O

ProrosiTiON 18.5.6. Let M be a right proper model category, and let i: A —
B be amap in M. If p: X — Y is right homotopy orthogonal to i, the diagram

W—X
1k
ZT>Y

is a pullback, and at least one of p and ¢ is a fibration, then r is right homotopy
orthogonal to i.
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ProorF. This is dual to Proposition 18.5.5 (see Remark 8.1.7). O

18.6. Quillen functors and resolutions

ProprosITION 18.6.1. Let M and N be model categories and let F: M = N :U
be a Quillen pair (seeDefinition 9.8.1).

1.IfBisa cosimplicial resolution in M (see Definition 17.1.16), then FB is a
cosimplicial resolution in N.
2. If X is a simplicial resolution in N, then UX is a simplicial resolution in M.

ProoF. We will prove part 1; the proof of part 2 is dual.

Corollary 16.6.2 implies that FB is Reedy cofibrant. Since B is Reedy cofi-
brant, all of the objects B™ are cofibrant in M, and so the coface and codegeneracy
operators are weak equivalences of cofibrant objects. Thus, Corollary 8.5.2 implies
that all of the coface and codegeneracy operators of FB are weak equivalences. [l

ProprosITION 18.6.2. Let M and N be model categories and let F: M = N :U
be a Quillen pair (see Definition 9.8.1).

1. If B is a cofibrant object in M and Bisa cosimplicial resolution of B, then
FBis a cosimplicial resolution of FB.

2. If X is a fibrant object in N and X isa simplicial resolution of X, then UXx
is a simplicial resolution of UX.

Proo¥. This follows from Proposition 18.6.1 and Corollary 8.5.2. O

COROLLARY 18.6.3. Let C be a Reedy category, let M and N be small cate-

gories, and let F: M = N :U be a Quillen pair.

1. Ifi: A — B is amap of cofibrant objects in M and 7: A Bisa cosimplicial
resolution of i such that i is a Reedy cofibration, then Fi: FA - FB is a
cosimplicial resolution of Fi and F7 is a Reedy coﬁbrzit\ion.

2. If p: X =Y is a map of fibrant objects in N and p: X — Y isa simplicial
resolution of p such that p is a Reedy fibration, then Up is a simplicial
resolution of Up and Up is a Reedy fibration.

Proo¥. This follows from Proposition 16.6.1 and Proposition 18.6.2. O
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CHAPTER 19

Homotopy colimits and homotopy limits

The main references for this chapter are [15, Chapters X through XII], [18],
and [31]. Our definitions for diagrams of simplicial sets are essentially those of [15]
(see Remark 19.1.15). Our definitions for diagrams in a general model category are
due to D. M. Kan, who also established their properties using methods different
from the ones used here.

19.1. Homotopy colimits and homotopy limits
19.1.1. Homotopy colimits.

DEFINITION 19.1.2. Let M be a framed model category (see Definition 17.1.33),
and let C be a small category. If X : € — M is a C-diagram in M, then the homotopy
colimit hocolim X of X 1s defined to be the coequalizer of the maps

[T X.oB@le)” ﬁ; [T X.oB@ie)r

(0: a—a’)eC ¥ a€0b(C)

(see Definition 17.3.1, Definition 9.4.1, and Definition 14.4.2) where X, is the
natural cosimplicial frame on X, the map ¢ on the summand o: o — o' is the
composition of the map

0« @ 1B(aryey: X, ® B(a' [ C)" — X ® B(a’ ] C)*

with the natural injection into the coproduct, and the map ¥ on the summand
o: o — o is the composition of the map

13, ®B(0"): X0 @ B(o/ L €)% = X, @ B(a | ©)F

(where o*: (o’ | €)Y = (a | €)°F; see Definition 14.5.2) with the natural injection
into the coproduct.

For a discussion of the relation of our definition of the homotopy colimit to
that of [15], see Remark 19.1.15.

REMARK 19.1.3. If M is a simplicial model category, then for every object X
in M and every simplicial set K, the object X ® K (where X is the standard
cosimplicial frame on X; see Proposition 17.1.35) is naturally isomorphic to X @ K
(see Proposition 17.3.10). Thus, if € is a small category and X : ¢ — M is a C-
diagram in M, then hocolim X is naturally isomorphic to the coequalizer of the
maps

[
[T Xe.oBEle)® ——= J[ X.@B@le)™
(o: a—a’)eC ¥ a€0b(C)
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For example, with the standard framings on the simplicial model categories SS,
SS., Top, and Top, (see Notation 1.1.2),

XoxB(@l€)®  ifM=SS
~ op\t _
X. ©B(alC)P ~ XM(B(N@)O) if 2 = 55.
XO(X|B(O[\LG) p| lfMITOp
XA Bl L6+ if 20 = Top.
(see Definition 1.1.11).

ExaMPLE 19.1.4. If g: X — Y is a map in Spc, (see Notation 1.1.2), then
the homotopy colimit of this diagram is the mapping cylinder of g.

ExampLE 19.15. If Z ¢~ X 5V are maps in Spc,y (see Notation 1.1.2),
then the homotopy colimit of this diagram is the double mapping cylinder of g and

h.

ProprosiTiON 19.1.6. If C is a small category and P: C — SS is the diagram
of simplicial sets in which P, is a single point for every object « in C, then there
is a natural isomorphism hocolim P = BC°P,

Proo¥F. Remark 19.1.3 implies that hocolim P is naturally isomorphic to the
coequalizer of the maps

o [
II Beie® —= J] Ble)™
(o: a—a’)eC ¥ a€0b(C)

where the map ¢ is the identity map and the map + on the summand o: o — o’
is the composition of the map B(o*): B(a’' | €)" — B(a | €)°" with the natural
injection into the coproduct. We define a map B(a | €)°Y — BE°P by sending the
simplex

(es} 01 Tn

of B(a|@)? to the simplex gy + 01 < -+ < 0, of BC°P. This defines a sur-
jective map hocolim P — BC°P which is also injective because every simplex of
Haeob(e) B(a ) €)°" that is mapped to 0g <= 01 < - - - < 7, is equal (in hocolim P)
to the simplex

On

S|

O

DEFINITION 19.1.7. Let M be a framed model category, let € and D be small
categories, and let F: € — D be a functor. If X: D — M is a D-diagram in M,
then composition with F defines a C-diagram F*X in M which we will call the
C-diagram induced by F. If « is an object in €, then (F*X), = Xpq, and if
o:a—a in € then (F*X), = Xvo: Xva = Xro-
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ProprosiTION 19.1.8. Let M be a framed model category. If C and D are small
categories, F: € — D is a functor, and X : D — M is a D-diagram in M, then there
is a natural map

hocglim X — hocglim X

defined by sending ﬁa @B(a ] C)F = fFa @B(a ] C)F to fFa @ B(Fa | D)P.
Proor. This follows directly from the definitions. O

It is often of interest to know conditions on a functor F that ensure that the nat-
ural map of Proposition 19.1.8 is a weak equivalence for all D-diagrams of cofibrant
objects. For this, see Theorem 19.5.11.

19.1.9. Homotopy limits.

DEFINITION 19.1.10. Let M be a framed model category (see Definition 17.1.33)
and let C be a small category. If X : € — M is a C-diagram in M, then the homotopy
limit holim X of X is defined to be the equalizer of the maps

— ¢ —
H (XQ)B(@ia) — H (Xa,)B(@ia)
a€0b(C) ¥ (o: a—=al)eC

(see Definition 17.3.1, Definition 9.4.1, and Definition 14.4.1) where A/X'\OC is the
standard simplicial frame on X, the projection of the map ¢ on the factor o: o —
o' is the composition of a natural projection from the product with the map

o~

Uimem): (X\Q)B(ew) N (XQI)B(C¢Q)

and the projection of the map 1 on the factor o: o — o’ is the composition of a
natural projection from the product with the map

(1)? )B(a*): (/X\QI)B(@¢Q’) - (/X\QI)B(Cia)
(where o.: (Cla) = (Cla'); see Definition 14.5.7).

For a discussion of the relation of our definition of the homotopy limit to that
of [15], see Remark 19.1.15.

If € is a small category and M is a category of spaces (i.e., one of SS, SS., Top,
or Top, ), then the homotopy limit of a C-diagram in M can be described as a space
9£maps betw/egn diagrams. If X 1s a space and K is a simplicial set, then the space
X¥E (where X is the standard simplicial frame on X; see Proposition 17.1.35) is
naturally isomorphic to

Map(K, X) if M =SS

%K A Map, (Kt , X) if M =SS,
T Y map(|K|,X)  if M = Top
map*(|K|+,X) if M = Top,
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(see Proposition 17.3.10 and Definition 1.1.11). Thus, in these cases, Definition 19.1.10
defines holim X as the equalizer of the maps

Il Map(B(€le),X.)= J[ Map(B(Cla),Xu) if M =SS
ae0b(C) (o: a—a’)eC

Map,(B(€la)*, X,) = [ Map.(B(€la)" Xa) if M =SS.
)

aeOb(C (0: a—a’)eC
H map(|B(@¢a)|,Xa) = H map(|B(€¢a)|,Xa/) ifM=Top

a€0b(C) (0: a—a’)eC
H map*(|B(€¢a)|+,Xa) = H map*(|B(@¢a)|+,Xa/) if M = Top,

a€0b(C) (0: a—a’)eC

This is exactly the definition of the space of maps
from B(CL—)  to X in SS°, if M =SS
from B(€} )T to X in SS¢, if M = SS.
from [B(C|—)| to X in Top®,  if M = Top
from [B(C| —)|* to X in Top{,  if M = Top,
PropPosITION 19.1.11. If M is a category of spaces (i.e., one of SS, SS., Top,

or Top, ), € is a small category, and X: € — M is a C-diagram of spaces, then
holim X is naturally isomorphic to the space of maps

Map(B(@i—),X), if M =SS
Map, (B(¢4—)", X), if M =SS,
map(|B(€¢—)|,X>, if M =Top

map, (|[B(€{-)|*,X),  if M = Top,
(see Definition 1.1.6).

Proo¥. This follows from the discussion immediately preceding the proposi-
tion. O

ExampLE 19.1.12. If g: X — Y is a map in Spc(*)(seeNotation 1.1.2), then
the homotopy limit of this diagram is the mapping path space of g.

REMARK 19.1.13. When considering diagrams of spaces, there is a fundamental
difference between the homotopy colimit and the homotopy limit regarding the
significance of working in a category of pointed spaces. In Section 20.7, we will
show that if X 1s a diagram of pointed spaces, then the homotopy colimit of X
formed in the category of pointed spaces is not, in general weakly equivalent to
the homotopy colimit formed in the category of unpointed spaces after forgetting
the basepoints of the spaces in the diagram X. However, the homotopy limit of
X formed in the category of pointed spaces is isomorphic (or homeomorphic) to
the space obtained by forgetting the basepoints of the spaces in X and forming
the homotopy limit in the category of unpointed spaces. This is because if X is
an unpointed space and Y is a pointed space, then the space of pointed maps
map, (X+,Y) is isomorphic (or homeomorphic) to the space of unpointed maps
map(X,Y) (except that in the first case we’ve kept track of the basepoint of the
space of maps).

ProprosiTION 19.1.14. Let M be a framed model category. If C and D are small
categories, F: € — D is a functor, and X : D — M is a D-diagram in M, then there
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is a natural map
ho%)imX — hoéim F*X
(see Definition 19.1.7) induced by the natural map B(Cl «) = B(D | Fa).
Proor. This follows directly from the definitions. O

It is often of interest to know conditions on a functor F that ensure that the
natural map of Proposition 19.1.14 is a weak equivalence for all D-diagrams of
fibrant objects. For this, see Theorem 19.5.11.

REMARK 19.1.15. There are two respects in which our definitions of the homo-
topy colimit and the homotopy limit differ from those of [15] (which uses the term
homotopy direct limit for the homotopy colimit). First, we use the diagrams of sim-
plicial sets B(— | €)°" and B(C| —) (see Definition 19.1.2 and Definition 19.1.10)
where [15] uses the diagrams B(— ] €) and B(€J —) (see [15, Chapter XII, Para-
graph 2.1 and Chapter XI, Paragraph 3.2]. Since both B(— | €)°" and B(-€)
are cofibrant approximations to the constant €°P-diagram at a point (see Corol-
lary 14.6.8), these two choices give definitions that are naturally weakly equivalent
for C-diagrams of cofibrant spaces (see Theorem 20.8.4), but our definition was
chosen to make Corollary 20.3.19 true. It is incorrectly stated in [15, Chapter XII,
Proposition 4.1] that this is true for the definitions used in [15]; this is due to
an error in the proof of [15, Chapter XII, Proposition 4.1]. This error is a minor
one, since the spaces claimed there to be isomorphic are in fact naturally weakly
equivalent, which is all that was needed.

The second difference between our definitions and those of [15] is that the
definition of the classifying space (i.e., the nerve) of a category used in [15] is “op-
posite” to our definition (see Definition 9.4.1 and [15, Chapter XI, Paragraph 2.1]),
i.e., if € is a small category, then the definition of BC used in [15] (which is called
there the underlying space of the category) is isomorphic to our definition of BE°P.

The combined effect of the above two differences is that our definition of the
homotopy colimit is isomorphic to that of [15], but our definition of the homotopy
limit is different. Since the C-diagrams of simplicial sets B(€] —) and B(€] —)°"
are both free cell complexes (see Definition 14.1.28), these two definitions of the
homotopy limit are naturally weakly equivalent for diagrams of fibrant spaces (see

Theorem 20.8.1).

19.2. Adjointness
19.2.1. Coends and ends.

DEFINITION 19.2.2. Let M be a framed model category (see Definition 17.1.33)
and let C be a small category.

1. If X: C — Mis a C-diagram in M and K : C°? — SS is a C°P-diagram of
simplicial sets, then X ®e K is defined to be the object of M that is the
coequalizer of the maps

H }oc®Koc’ ﬁ H AXJO(@-KQ

(o: a—a’)eC ¥ a€0b(C)
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(see Definition 17.3.1) where }a is the natural cosimplicial frame on X,
the map ¢ on the summand ¢: a — o’ is the composition of the map

Ox @ 1Ka/ : }oc®KOc’ _>/—X-/oc’ @ Ko

(where o : 3(:& — ,XJO/) with the natural injection into the coproduct, and
the map ¢ on the summand ¢: a — o’ is the composition of the map

15((1@0'*1?04@1{04' X, 0K,
(where 6*: K, — K ) with the natural injection into the coproduct.

2.1f X: € — M is a C-diagram in M and K: C — SS is a C-diagram of
simplicial sets, then home(K, X)) is defined to be the equalizer of the maps

[[ Xo¥ —= [I &)X
a€0b(C) (o: a—=al)eC

(see Definition 17.3.1) where A/X'\OC is the natural simplicial frame on X, the
projection of the map ¢ on the factor o: a — o’ is the composition of a
natural projection from the product with the map

1 —~ —~
O_*Ka . (XQ)KQ — (XQI)KQ
(where o,: A/X'\OC — A/X\Oéz) and the projection of the map ¢ on the factor

o: o — o' is the composition of a natural projection from the product with
the map

(15 )5 (Xa)Eer = (X o) Ko
(where o.: (Cla) = (Cla'); see Definition 14.5.7).

EXAMPLE 19.2.3. Let M be a framed model category and let C be a small
category.
1. If X: € — M is a C-diagram in M, then X @¢ B(— ] €)°" is the homotopy
colimit of X (see Definition 19.1.2).
2. If X: € = Mis a C-diagram in M, then home(B((‘fi —), X)) is the homotopy
limit holim X of X (see Definition 19.1.10).

REMARK 19.2.4. Let M be a framed model category and let € be a small cat-
egory.

1. The construction of the object X ®e¢ K in M from the functor XoK:€x
C°P — M is an example of the general construction known as a coend (see
[41, pages 222-223]). In the notation of [41], X @ec K = [“ X, ® K.

2. The construction of the object home(K, X)) of M from the functor X ¥ : €x
C°P — M is an example of a general construction known as an end (see [41,
pages 218-223] or [8, page 329]). In the notation of [41], hom® (K, X) =
Jo (X o) Ko

ProprosiTION 19.2.5. Let M be a framed model category and let C be a small
category.
1. If X: C— M is a C-diagram in M, and P: C°P — SS is a single point for
every object o in C, then X ®¢ P is naturally isomorphic to colim X.
2. If X: C — M is a C-diagram in M, and P: C — SS is a single point for
every object « in C, then home(P, X)) is naturally isomorphic to lim X .
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Proo¥. For part 1, P, is naturally isomorphic to A[0] for every object a in
C°P, and so we have natural isomorphisms
X0 Pym Xo@ Al0] & (}a)o ~ X,

(see Lemma 17.3.5). Under these isomorphisms, the map ¢ of Definition 19.2.2 is
defined by o, : X, = X, and the map ¢ is the identity.
For part 2, P, is naturally isomorphic to A[0] for every object « in €, and so
we have natural 1somorphisms
3(\5" ~ A/X'\ﬁ[o] ~ (A/X'\O()o ~ X,

(see Lemma 17.3.5). Under these isomorphisms, the map ¢ of Definition 19.2.2 is
defined by o, : X, = X, and the map ¢ is the identity. O

EXAMPLE 19.2.6. Let M be a framed model category and let C be a small
category.

1. If P: C° — S§S is a single point for every object a in C°P | then the unique
map of €°P-diagrams B(— | €)°* — P induces a natural map
hocolim X = X @e B(a ] €)F — X ®e P = colim X

for all C-diagrams X in M (see Example 19.2.3 and Proposition 19.2.5).
2. If P: C — SS is a single point for every object a in C, then the unique map
of C-diagrams B(C| —) — P induces a natural map

lim X = hom®(P, X) — hom®(B(€} a), X) = holim X
for all C-diagrams X in M.
19.2.7. Adjointness.

ProprosiTION 19.2.8. Let M be a framed model category and let C be a small
category.

1. I X: € - M is a C-diagram in M, K: C°P — SS is a C°P-diagram of
simplicial sets, and Z is an object in M, then there is a natural isomorphism
of sets

M(X ©¢ K, Z) ~ S8 (K, M(X, 7))

where X is the natural cosimplicial frame on X and X ®¢ K is as In
Definition 19.2.2.

2. If X: C— M is a C-diagram in M, K : C — SS is a C-diagram of simplicial
sets, and W is an object in M, then there is a natural isomorphism of sets

M(W, hom®(K, X)) ~ SS¢(K, M(W, X))

where X is the natural simplicial frame on X and home(K,X) Is as In
Definition 19.2.2.

ProOF. For part 1, X ®¢e K is defined as a colimit, and so M(X ®¢e K, 7) is
naturally isomorphic to the limit of the diagram

— #" —
[ ¥Xeok.,z — ] MX.oKe2)
a€0b(C) 4 (o: a—=al)eC
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Theorem 17.3.8 implies that this limit is naturally isomorphic to the limit of the
diagram
— i —
I[I ss(KaM(X.2) — II SS(Ka M(X., %))
a€0b(C) 4 (o: a—=al)eC

which is the definition of SS” (K, M(X, Z)).
For part 2, home(K,X) is defined as a limit, and so M(W, home(K,X)) is
naturally isomorphic to the limit of the diagram

— ¢
H M<Wa (XOC)KQ) e H M<Wa (XOC')KQ>
ae0b(C) ¥ (o: a—=al)eC

Theorem 17.3.8 implies that this limit is naturally isomorphic to the limit of the
diagram

—~ ¢ —~
I ss(KaMW, X,) — I  SS(Ka MW, X))
ae0b(C) ¥ (o: a—=al)eC
which is the definition of SSG(K, M(W, /)Z)) O

ProprosiTION 19.2.9. Let M be a framed model category and let C be a small

category.

1. If X:C — M is a C-diagram in M such that X, is cofibrant for every
object o in C and K : C°P — 8§ is a C°P-diagram of simplicial sets that is a
cofibrant object in SSGOP, then X ®¢ K is cofibrant.

2. If K: C— SS is a C-diagram of simplicial sets that is a cofibrant object in
SS® and X : @ — M is a C-diagram in M such that X, is fibrant for every
object a in C, then home(K, X) is fibrant.

Proo¥. For part 1, Proposition 8.2.3 implies that it is sufficient to show that
if p: Y — Z is a trivial fibration in M, then the dotted arrow exists in every solid
arrow diagram of the form

)y
l L?
X Qe K — 7

(where 0 is the initial object of M). Proposition 19.2.8 implies that this is equivalent
to showing that the dotted arrow exists in every solid arrow diagram in SSC” of
the form

T—ﬂv{(f,y)
K —>M(f Z)

(where ﬂdenotes the i}\ljtial object of SSGOP). Corollary 17.4.3 implies that the map
et M(X o, Y) = M(X, 7) is a trivial fibration in SS for every object a in C°P,
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and so p, 1s a trivial fibration in 55" (see Theorem 14.2.1). Since K is cofibrant
n SSGOP, the result follows.

For part 2, Proposition 8.2.3 implies that it is sufficient to show that if:: A — B
i1s a trivial cofibration in M, then the dotted arrow exists in every solid arrow
diagram of the form

(where * denotes the terminal object of M). Proposition 19.2.8 implies that this is
equivalent to showing that the dotted arrow exists in every solid arrow diagram in

SS° of the form
§ —— M(B, X)
o

K —— M(4, X)
(where ) denotes the initial object of SSG). Corollary 17.4.3 implies that ¥, : M(B, 3(\@) —
M(A, X,) is a trivial fibration in SS® for every object « in ©, and so i* is a triv-

ial fibration in SS® (see Theorem 14.2.1). Since K is cofibrant in SSG, the result
follows. O

ProprosiTiON 19.2.10. Let M be a framed model category and let C be a small

category.

1. If X: C = M is a C-diagram of cofibrant objects in M and f: K — K’
is a weak equivalence of cofibrant C°P-diagrams of simplicial sets, then the
induced map f.: X ®ec K — X @¢ K’ is a weak equivalence of cofibrant
objects in M.

2. If X: C =5 M is a C-diagram of fibrant objects in M and f: K — K’
is a weak equivalence of cofibrant C-diagrams of simplicial sets, then the
induced map f*: home(K/,X) — home(K,X) is a weak equivalence of
fibrant objects in M.

Proo¥. For part 1, Theorem 18.1.6 and Proposition 19.2.9 imply that it is
sufficient to show that if Z is a simplicial frame on a fibrant object Z in M, then
the map M(X @c K', 2) - M(X ®c K, 2) is a weak equivalence of simplicial
sets.

Proposition 19.2.8 implies that, for every n > 0, the map M(X ©e K’, in) —
M(X@eK, in) is isomorphic to the map $$&” (K', M(TXi in)) — 887 (K, M(TXi in))
Proposition 17.5.3 implies that M(f, 2) is a simplicial resolution of M(f, 7Z),
which is a fibrant object in SSC™. Since f: K — K’ is a weak equivalence of cofi-
brant objects in S, Theorem 17.5.2 implies that the map S (K’, M(TXi 2)) —
§s¢™” (K, M(z, 2)) i1s a weak equivalence of simplicial sets. Since this map is iso-
morphic to the map M(X @e K’, 2) - M(X e K, 2), the result follows.

For part 2, Theorem 18.1.6 and Proposition 19.2.9 imply that it is sufficient
to show that if W is a cosimplicial frame on a cofibrant object W in M, then
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fe: M(ﬁ;,home(K/,X)) — M(ﬁ;,home(K,X)) is a weak equivalence of sim-

plicial sets. Proposition 19.2.8 implies that for every n > 0 the map of sets
M(ﬁ;”,home(K/,X)) — M(ﬁ;” home(K X)) is isomorphic to the map SS¢ ( M(W”,A/X'\)) —
SSG(K,M(W”,TX\)). Proposition 17.5.3 1mphes that M(W X) Is a simplicial

resolution of the fibrant object M (W, X) in $SS¢. Since f: K - K’ is a weak

equivalence of cofibrant objects in «SS®, Theorem 17.5.2 implies that the map

uSS°® (K/mM(ﬁ;,fX\)) — SSG(K,M(W,X\)) is a weak equivalence of simplicial

sets. Since this map is isomorphic to the map M(ﬁ;, home(K/, X)) — M(ﬁ;, home(K, X)),

the result follows. O

ProprosiTION 19.2.11. Let M be a model category and let € be a small category.

1. If K: C°° — §S is a cofibrant C°P-diagram of simplicial sets and f: X =Y
is an objectwise weak equivalence of C-diagrams of cofibrant objects in M,
then the induced map f.: X ®c¢ K =Y ®¢ K is a weak equivalence.

2. If K: C — SS is a cofibrant C-diagram of simplicial sets and f: X =Y is
an objectwise weak equivalence of C-diagrams of fibrant objects in M, then
the induced map f : home(K, X)— home(K, Y) is a weak equivalence.

Proo¥. For part 1, Theorem 18.1.6 and Theorem 19.3.1 imply that it is suf-
ficient to show that if Z is a simplicial frame on a fibrant object Z in M, then
oMY e K, 2) - M(X @c K, 2) is a weak equivalence of simplicial sets.

Proposition 19.2.8 implies that, for every n > 0, the map of sets M(Y ®¢
K,zn) - M(X e K, Z, ) is isomorphic to the map SSGOP(K M(f’ Z n)) =
§s¢™” (K M(f 2 )) Theorem 17.5.2 implies that for every object a in C the
map M(Ya, Z) — M(Xa, 7) is a weak equivalence of fibrant simplicial sets. Thus
the map M(Y Z) = M(X 7Z) is a weak equivalence of fibrant objects in ss¢
(see Theorem 14.2.1). Since Proposition 17.5.3 implies that the map M(Y Z)
M(X Z) is a 81mphc1al resolution of the map M(Y Z) = M(X Z) and K is a cofi-
brant object in $$€”, Theorem 17.5.2 implies that the map SS&° (K, M(Y, Z))
§s¢™” (K, M(TXi 2)) i1s a weak equivalence of simplicial sets. Since this map is iso-
morphic to the map M(X ®e K, 2) > MY ®c K, 2), the result follows.

For part 2, Theorem 18.1.6 and Theorem 19.3.1 imply that it is sufficient
to show that if W is a cosimplicial frame on a cofibrant object W in M, then
fe: M(ﬁ;, home(K, X)— M(ﬁ;, home(K, Y) is a weak equivalence of simplicial
sets. Proposition 19.2.8 implies that for every n > 0 the map M(f/‘vf” , home(K, X)—
M(ﬁ;”, home(K, Y) is isomorphic to the map ss¢ (K, M(f/‘vf” , 3(\)) — §§°¢ (K, M(f/‘vf” , f’))
Thus, it is sufficient to show that the map SS¢ (K, M(ﬁ;, 3(\)) — §S¢ (K, M(ﬁ;, f’))
is a weak equivalence of simplicial sets.

Theorem 17.5.2 implies that for every object o in € the map M(W, A/X\O() —
M(W, Y «) is a weak equivalence of fibrant simplicial sets. Thus, the map M(W, 3(\) —
M(W, Y) is a weak equivalence of fibrant obJects in SS°¢ (see Theorem 14.2.1). Since
Proposition 17.5.3 implies that the map M(W X) — M(W Y) is a simplicial res-
olution of the map M(W, X) — M(W, Y) and K is a cofibrant object in SS¢,
Theorem 17.5.2 implies the result. D
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19.3. Homotopy invariance

THEOREM 19.3.1. Let M be a framed model category, and let C be a small
category.

1. If X: @ - M is a C-diagram in M such that X, is cofibrant for every object
a in G, then hocolim X is cofibrant.

2. If X: C — M is a C-diagram in M such that X, is fibrant for every object
a in C, then holim X 1is fibrant.

Proo¥. This follows from Proposition 19.2.9 and Corollary 14.6.8. O

THEOREM 19.3.2. Let M be a framed model category, and let C be a small
category.

1. If f: X = Y is a map of C-diagrams in M such that f,: X, — Y, is
a weak equivalence of cofibrant objects for every object o in C, then the
induced map of homotopy colimits f.: hocolim X — hocolimY is a weak
equivalence.

2. If f: X = Y is a map of C-diagrams in M such that f,: X, —> Y, is a
weak equivalence of fibrant objects for every object « in €, then the induced
map of homotopy limits f,: holim X — holimY is a weak equivalence.

Proo¥. This follows from Proposition 19.2.11. O

19.4. Homotopy pullbacks and homotopy limits

If M 1s a right proper framed model category, then the diagram X — 7 + Y
has both a homotopy pullback (see Definition 11.2.2) and a homotopy limit (see
Definition 19.1.10). We will show that for fibrant X, Y, and Z, the homotopy
pullback of a diagram X — Z < Y is naturally weakly equivalent to the homotopy
limit of that diagram (see Proposition 19.4.3). We begin by showing that, for a
map of fibrant objects, the “classical” method of converting a map into a fibration
does provide a factorization into a weak equivalence followed by a fibration.

LEMMA 19.4.1. Let M be a framed model category, and let g: X — Z be a
map of fibrant objects. If evy: ZAW 5 7 is the composition zAn u) ZA0]
Zy ~ 7 (see Lemma 17.3.5) and the square

w—2 ZAl]

X—Z7

is a pullback, then
1. the map evy §: W — 7 is a fibration (where evy: ZAU o 7 s the compo-
sition A0 7 ZA0 & 7~ 7).
2. the map j: X — W (which is defined by the requirements that kj = 1x and

dji: X — ZAU s the map X 5 Z ~ Zo ~ ZAl &) 2A[1]) is a weak
equivalence, and
3. (ev1g)oj=y.
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PrOOF. Since 7 is fibrant, Z is Reedy fibrant, and so evy is a trivial fibration.
Thus, & is a trivial fibration. Since kj = 1x, this implies that j is a weak equiva-

. B 95 )y 5 . . . .
lence. Since the composition Z40] a0 zAl] () ZA ig the identity map, it
follows that (evy §)j = ¢, and so it remains only to show that evy § is a fibration.

Proposition 8.2.3 implies that it is sufficient to show that for every trivial
cofibration A — B in M and every solid arrow diagram

(19.4.2) A——Ww

B—— 7
there exists a dotted arrow making both triangles commute. We first note that,
since X is fibrant, the map kr: A — X can be extended over B. Since W is defined
as a pullback, it remains only to find an appropriate map B — ZAn,

If we compost our map B — X with the composition X ENAS 20 ~ ZAL
7921 (where that last map is induced by the projection of dA[1] &~ A[0] x A[0]
onto the second factor), then we have a map B — Z9AM that makes Thus, we
have the solid arrow diagram

A—— 7Al]

7

B oAl

commute. Since Z is Reedy fibrant, Proposition 17.3.7 implies that ZAl _y ZoAl]
is a fibration, and so the dotted arrow exists in this diagram. This dotted arrow
combines with the map B — X to define the dotted arrow in Diagram 19.4.2. O

ProrosITION 19.4.3. Let M be a right proper framed model category. If X,
Y, and Z are fibrant objects, then the homotopy pullback (see Definition 11.2.2)

of the diagram X Sz dvis naturally weakly equivalent to the homotopy limit
(see Definition 19.1.10) of that diagram.

Proor. If K is the simplicial set that is the union of two copies of A[l1] with
vertex 1 of both copies identified to a single point, then the homotopy limit of the

diagram X % 7 Ly s naturally isomorphic to the limit of the diagram

NN

where the two maps with domain ZK are defined by evaluation on vertex 0 of
the two copies of A[l] (see Definition 19.1.10). The limit of this last diagram is
naturally isomorphic to the limit of the diagram

(19.4.4) X ZAl] ZAl] %
DN N 4
Z Z Z
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(see Proposition 17.3.9). If W, is the pullback of the diagram X Gy 7 & Al

and Wp, 1s the pullback of the diagram Y LNy L 2A[1], then the limit of Dia-
gram 19.4.4 is naturally isomorphic to the pullback of the diagram W, — 7 « W,.
Lemma 19.4.1 implies that the maps W, — Z and W), — Z arise as factorizations
of, respectively, ¢ and h into a weak equivalence followed by a fibration, and so the
result follows from Proposition 11.2.7. O

19.5. Cofinality

In this section, we characterize those functors between small categories that
induce weak equivalences of homotopy limits for all diagrams of fibrant objects,
and those that induce weak equivalences of homotopy colimits for all diagrams of
cofibrant objects.

ProOPOSITION 19.5.1. Let M be a framed model category, let C and D be small
categories, let F: C — D be a functor, and let X : D — M be a D-diagram in M.

1. There is a natural isomorphism of objects in M

hocglimF*X ~ X @p B(—|F)?*

(see Definition 19.1.7 and Definition 14.5.2).
2. There is a natural isomorphism of objects in M

holim F* X ~ hom® (B(F J —), X)

(see Definition 19.2.2 and Definition 14.5.7).

Proo¥. For part 1, we will show that for every object Z in M there is a natural
isomorphism of sets

M(X @p B(=LF)7F,7) ~ M(hocglimF*X, Z);

the Yoneda lemma (see, e.g., [7, page 11], [41, page 61], or [5, pages 26-28]) will
then imply that that isomorphism is induced by an isomorphism hocolime F* X ~
X @p B(= 1 F)™.

Example 19.2.3 implies that hocolime F* X is naturally isomorphic to (F* X )®e¢
B(—{€)°", and so Proposition 19.2.8 implies that there are natural isomorphisms

(19.5.2) M(X @p B(—= L F), Z) & SV (B(— L F)", M(X, 7))
(19.5.3) M(hocolim F* X, 7) ~ S5 (B(~ }.€)*, M(F*X, 7))

(where X is the natural cosimplicial frame on X). Proposition 14.6.5 implies
that the D°P-diagram of simplicial sets B(— J F)°" is a free cell complex with basis
equal to the set of simplices described in Diagram 14.6.6, and that the C°P-diagram
of simplicial sets B(—J] €)°" is a free cell complex with basis equal to the set of
simplices of the form
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Thus, there is a natural one-to-one correspondence between the bases, and we can
now use Proposition 14.7.2 to show by induction on the skeleta of the domains that
the set of maps (19.5.2) is naturally isomorphic to the set of maps (19.5.3).

For part 2, we will show that for every object W in M there is a natural
isomorphism of sets

M(W, holim X ) ~ M(W, hom™ (B(F | —), X));
the Yoneda lemma will then imply that that isomorphism is induced by an isomor-
phism holime F* X ~ hom? (B(F =), X)

Example 19.2.3 implies that holime F* X is naturally isomorphic to hom® (B(@ =), X) ,
and so Proposition 19.2.8 implies that there are natural isomorphisms

(19.5.4) M(W, holim F* X) ~ SS°(B(C.| ), M(W, X))
(19.5.5) M (W, hom® (B(F | —), X)) ~ SSP (B(F | —), M(W, X))

(where X is the natural simplicial frame on X'). Proposition 14.6.5 implies that the
D-diagram of simplicial sets B(F | —) is a free cell complex with basis equal to the
set of simplices described in Diagram 14.6.7, and that the C-diagram of simplicial
sets B(CJ —) is a free cell complex with basis equal to the set of simplices of the
form

o o Cpe1
0[0 o al ! ” 6%
«

Thus, there is a natural one-to-one correspondence between the bases, and we can
now use Proposition 14.7.2 to show by induction on the dimension of the skeleta
of the domains that the set of maps (19.5.4) is naturally isomorphic to the set of
maps (19.5.5). O

THEOREM 19.5.6. Let M be a framed model category, let C and D be small
categories, and let F: € — D be a functor.

1. IfF is right cofinal (see Definition 14.4.5), then for every D-diagram X : D —
M in M such that X, is cofibrant for every object a in D, the natural map
of homotopy colimits (see Proposition 19.1.8)

hocglim F*X — hocglimX
is a weak equivalence.
2. IfF is left cofinal (see Definition 14.4.5), then for every D-diagram X : D —

M in M such that X is fibrant for every object « in D, the natural map
of homotopy limits (see Proposition 19.1.14)

holim X — holim F* X
D e
is a weak equivalence.

ProoF. We will prove part 1; the proof of part 2 is similar.
Proposition 19.5.1 and Example 19.2.3 imply that our map of homotopy col-
imits is isomorphic to the map

X @p B(—\LF)OP - X Qp B(— i@)Op.
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Proposition 14.6.5 and Corollary 14.6.8 imply that both of the D°P-diagrams of
simplicial sets B(— ] F)°" and B(— ] D)" are free cell complexes, and are thus
cofibrant objects in $SST” . Lemma 14.5.3 implies that B(a'| D) is contractible
for every object ain D, and so F is right cofinal if and only if the map B(— | F)°" —
B(— | D) is a weak equivalence of cofibrant objects in SSP™ . The result now
follows from Proposition 19.2.10. O

We are indebted to W. G. Dwyer for the following proposition.

ProPoOsITION 19.5.7. Let C be a small category, let o be an object in C, and let
F be the free C-diagram of sets generated at o (see Definition 14.1.2), regarded
as a C-diagram of discrete simplicial sets.

1. If K: C°P — §S is a C°P-diagram of simplicial sets, then the natural map
K,~{l)}xK,C(FlaxKy— F2ecK

(see Definition 19.2.2) is an isomorphism.
2. If K: C — SS is a C-diagram of simplicial sets, then the natural map

LU CFa)
o 1le
hom®(F2 K) — K(Fe X, K,

1s an isomorphism.

Proor. For part 1, we will show that for every simplicial set Z our natural
map induces an isomorphism of the sets of maps

SS(F® @e K, 7) ~ SS(K ., Z);

the result will then follow from the Yoneda lemma. Proposition 19.2.8 and Propo-
sition 17.3.10 imply that there are natural isomorphisms of sets

SS(F? ®e K, Z) ~ SS(K @¢ F?,Z) ~ SS(F2,SS(K, Z))

and Proposition 14.1.3 implies that this last set is naturally isomorphic to SS(K o, 7).
For part 2, we will show that for every simplicial set W our natural map induces
an isomorphism of the sets of maps

SS(W, hom®(F2, K)) — SS(W, K );

the result will then follow from the Yoneda lemma. Proposition 19.2.8 implies that
there are natural 1somorphisms of sets

SS(W,hom®(F¢, K)) ~ SS¢(F2,SS(W, K)) ~ SS(W, K ).
O

COROLLARY 19.5.8. If C is a small category and « is an object of C, then
hocolim F¢ (see Definition 14.1.2) is naturally isomorphic to B(a | €)°", and holim F'¢
is naturally isomorphic to B(C | «).

Proo¥. This follows from Proposition 19.5.7 and Example 19.2.3. O

COROLLARY 19.5.9. If C and D are small categories, F: ¢ — D is a functor,
and « is an object in D, then there are natural isomorphisms

F® @p B(— | F)® ~ B(a | F)®
hom® (F%, B(F | —)) ~ B(F | )
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(where F; is the D-diagram of Definition 14.1.2, regarded as a diagram of discrete
simplicial sets).

Proo¥. This follows from Proposition 19.5.7. O

ProprosiTiON 19.5.10. Let € and D be small categories, and let F: € — D be
a functor.

1. If for every D-diagram X : D — 8§ of cofibrant simplicial sets the induced
map of homotopy colimits

hocglim F*X — hocglim X

is a weak equivalence, then F is a right cofinal functor.
2. If for every D-diagram X : D — §S§ of fibrant simplicial sets the induced
map of homotopy limits

holim X — holim F* X
D e
is a weak equivalence, then F is a left cofinal functor.

ProoOF. For part 1, if a is an object of D, we can let X = Fy (see Def-
inition 14.1.2), and regard it as a diagram of discrete simplicial sets. Proposi-
tion 19.5.1, Corollary 19.5.8, and Corollary 19.5.9 imply that B(« | F') and B(« | D)
are weakly equivalent. Since B(a ] D) is always contractible (see Lemma 14.5.3),
Proposition 9.4.5 implies that F' is right cofinal.

For part 2, Proposition 19.5.1 and Proposition 19.1.11 imply that our natural
map of homotopy limits is 1somorphic to the map

Map(B(Di—),X) — Map(B(Fi—),X).

The D-diagrams of simplicial sets B(F' | —) and B(D | —) are always free cell com-
plexes (see Proposition 14.6.5 and Corollary 14.6.8), and are thus cofibrant D-
diagrams (see Theorem 14.2.1). Since B(D | —) is a diagram of contractible simpli-
cial sets (see Lemma 14.5.8), the map B(F'| —) = B(D ] —) is a weak equivalence
of D-diagrams if and only if the functor F' is left cofinal. Since a D-diagram of
simplicial sets is fibrant exactly when it is a diagram of fibrant simplicial sets (see
Theorem 14.2.1), Corollary 20.4.7 implies that we are trying to prove that a map
of cofibrant diagrams is a weak equivalence if and only if it induces a weak equiva-
lence of simplicial mapping spaces to an arbitrary fibrant object. This follows from
Corollary 10.5.5, and so the proof is complete. O

THEOREM 19.5.11. Let € and D be small categories, and let F: C — D be a
functor.

1. F is right cofinal (see Definition 14.4.5) if and only if for every framed model
category M and every D-diagram X : D — M in M of cofibrant objects, the
natural map

hocglim F*X — hocglimX
(see Proposition 19.1.8) is a weak equivalence.

2. F is left cofinal if and only if for every framed model category M and every
D-diagram X : D — M in M of fibrant objects, the natural map

holim X — holimF* X
D e
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(see Proposition 19.1.14) is a weak equivalence.
Proo¥. This follows from Theorem 19.5.6 and Proposition 19.5.10. O

COROLLARY 19.5.12. Let M be a framed model category and let C be a small
category.
1. If a is an initial object of C and X : € — M is a C-diagram of fibrant objects
in M, then the natural map hohm X — X, is a weak equivalence.
2. If « is a terminal object of € and X : ¢ — M is a C-diagram of cofibrant
objects in M, then the natural map X , — hocolim X is a weak equivalence.

Proo¥. This follows from Theorem 19.5.6. O
As a corollary, we obtain Quillen’s “Theorem A” (see [49, Page 93]).

THEOREM 19.5.13 (Quillen). If € and D are small categories and F: € — D
is a right cofinal functor, then F induces a weak equivalence of classifying spaces

BC = BD.

Proo¥. This follows from Theorem 19.5.11, Proposition 19.1.6, and Proposi-
tion 9.4.5. O

ProPoOsITION 19.5.14. Let M be a framed model category. If the object X
is a retract of the cofibrant object Y (with inclusion i: X — Y and retraction
r:Y — X), then X is weakly equivalent to the homotopy colimit of the diagram

vy Ly Dy 2
PrOOF. We have an w-sequence (where w is the first infinite ordinal)
XLy LxSHy L xSy ..
which has the two subdiagrams
) GEEI GRENG G- N

and

vy Ly Dy 2
Both of the subdiagrams are right cofinal, because all of the undercategories have
an initial object (see Proposition 9.4.4). Thus, Theorem 19.5.11 implies that the
homotopy colimits of the three diagrams are all weakly equivalent. Since X is a
retract of a cofibrant object, it is cofibrant, and so the second diagram is a Reedy

cofibrant diagram. Thus, the homotopy colimit of this diagram is weakly equivalent
to its colimit (Fill in a reference!!), which is isomorphic to X. O
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CHAPTER 20

Leftovers on homotopy colimits and homotopy
limits

20.1. Frames on diagrams

DeFINITION 20.1.1. Let M be a model category, let € be a small category, and
let X:C — M be a C-diagram in M.

1. A cosimplicial frame on X is a diagram X:C— MA of cosimplicial objects
in M together with a map of diagrams i : X — cX to the diagram of constant
cosimplicial objects such that, for every object o in C, the map i,: }a —
cX  is a cosimplicial frame on X, (see Definition 17.1.20).

2. A simplictal frame on X is a diagram X: € — MA” of simplicial ob-
jects in M together with a map of diagrams j: sX — X from the diagram
of constant simplicial objects such that, for every object a in €, the map
Ja:8Z, — A/X'\OC 1s a simplicial frame on X ,.

ExAMPLE 20.1.2. If M is a framed model category (see Definition 17.1.33), Cis
a small category, and X : € — M is a C-diagram in M, then there is a cosimplicial
frame X: € — M on X and a simplicial frame X: € — Mon X where 3(:& and
A/X'\OC are defined by the frame on M for every object « in C.

DEeFINITION 20.1.3. Let M be a model category, let C be a Reedy category, and
let : € — M be a C-diagram in M.

1. A Reedy costmplicial frame on X is a cosimplicial frame X: € — MA on
X (see Definition 20.1.1) such that if X is a Reedy cofibrant diagram in M
(see Definition 16.3.2), then Xisa Reedy cofibrant diagram in M#A.

2. A Reedy simplicial frame on X is a simplicial frame X:C - MA" on X
such that if X is a Reedy fibrant diagram in M, then Xisa Reedy fibrant
diagram in M27 .

ProrosiTION 20.1.4. Let M be a simplicial model category and let C be a

Reedy category. If X : C — M is a C-diagram in M, then

1. the cosimplicial frame on X defined by the standard frame on M (see Defi-

nition 17.1.26) is a Reedy cosimplicial frame on X, and

2. the simplicial frame on X defined by the standard frame on M is a Reedy
simplicial frame on X.

ProoF. We will prove part 1; the proof of part 2 is dual.
Let X be Reedy cofibrant, and let X : € — M? be the cosimplicial frame on
X defined by the standard frame on M. For every object « in €, let LM X — X,

denote the latching map of X in M, and let LaMAf — X denote the latching map
of X in MA. For every object o in €, LM X — X is a cofibration in M, and we
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must show that LaMAf — }a is a cofibration in M%. Thus, Proposition 17.3.7
implies that we must show that, for every n > 0, the relative latching map

(20.1.5) X0 @ OA[] g o )00 a0 LA X) @ Aln] = X o © Aln]

(see Proposition 17.3.7) is a cofibration in M. Since the latching object LaMAf is
defined as a colimit (see Definition 16.2.17), Proposition 17.3.10 and Lemma 10.2.3
imply that the map (??) is isomorphic to the map

X0 @ 0AI] U axygoapm (LX) @ Aln] = X0 @ Aln].

Since LM X — X, is a cofibration in the simplicial model category M, Proposi-
tion 10.1.8 implies that this is a cofibration. O

ProrosiTION 20.1.6. If M is a model category and C is a Reedy category, then

1. there is a functorial Reedy cosimplicial frame on every C-diagram in M, and
2. there is a functorial Reedy simplicial frame on every C-diagram in M.

Proo¥r. Fill this in!! It follows from the equivalence of the two Reedy
model category structures on C x A-diagrams in M. O

ProOPOSITION 20.1.7. Let M be a model category and let C be a Reedy cat-
egory. If B: € — M is a C-diagram in M that is Reedy cofibrant and X is a
simplicial resolution in M, then the diagram M(B, X ) (which on an object a in C
is M(Bg, X)) is a Reedy fibrant C°P-diagram of simplicial sets.

ProoOF. If « is an object in € and L, B is the latching object of B at « (see
Definition 16.2.17), then Proposition 16.2.15 implies that

M(LoB, X) = Jv[( colim B,X)
(Tla)-1a)
~ lim M(B, X)
(Tla)=1a)er
~ lim M(B, X)
(a4 &P)=1)
~ M M(B, X)
and so M(L, B, X) is naturally isomorphic to the matching object at a of the
C°P-diagram of simplicial sets M(B, X). Since the latching map L,B — B,

is a cofibration, Corollary 17.4.2 implies that the matching map M(B., X) —
M M(B, X) is a fibration, and so M(B, X) is a Reedy fibrant diagram. O

20.2. Realizations and total spaces
20.2.1. The realization of a simplicial object.

DEFINITION 20.2.2. We need to rephrase this to use a Reedy frame on
the diagram category, but first we’ve got to type up the definition of
Reedy frame!! If M is a framed model category and X : A°? — M is a simplicial
object in M, the realization |X| of X is the coequalizer of the maps

— ¢ —
[T X.oaw — J[ X.cAl
(o: [n]=[k])eA ¥ [n]€Ob(A)
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where X, is the cosimplicial frame on X ,,, the map ¢ on the summand o : [n] — [¥]
1s the composition of the map

7e ® Lap]: Xn @ AlR] = Xg © AlK]

(where o, 3(:” — fk) with the natural injection into the coproduct, and the map
¢ on the summand o: [n] — [k] is the composition of the map

Iz @0 X, @ Alk] = X, © Aln)
(where o*: A[k] = A[n]) with the natural injection into the coproduct.

REMARK 20.2.3. Since each standard simplex A[n] is a contractible simplicial
set, the map from each A[n] to a point is a weak equivalence. Thus, the cosimpli-
cial standard simplex is a diagram of simplicial sets weakly equivalent to a point.
We will show in Corollary 16.4.10 that the cosimplicial standard simplex is also a
cofibrant diagram in the Reedy model category structure on cosimplicial spaces.
This will imply that the cosimplicial standard simplex is a Reedy cofibrant ap-
proximation to the constant diagram at a point (see Definition 9.1.1), as is the
diagram of opposites of undercategories B(— ] A)°" (see Corollary 16.4.4), which
will imply that that realization of a simplicial space that is cofibrant in each degree
is naturally weakly equivalent to the homotopy colimit of the simplicial space (see
Theorem 20.11.6). This is all rearranged enough so that we can just prove
all this right now!!

20.2.4. The total space of a cosimplicial space. The principal reference
for cosimplicial spaces and their total spaces is [15, Chapter X].

DEeFINITION 20.2.5. Rewrite this to use a Reedy frame!! If M is a framed
model category and X : A — M is a cosimplicial object in M (see Definition 16.1.7),
the total object Tot X of the cosimplicial object X is the equalizer of the maps

[

[n]eOb(A) v (0: [n]=[k])eA

where X" is the natural simplicial frame on X", the projection of the map ¢ on
the factor o: [n] — [k] is the composition of a projection from the product with
the map

UilA[n]): (/X\n)A[n] s (/X\k)A[n]

and the projection of the map ¥ on the factor o: [n] — [k] is the composition of a
projection from the product with the map

(15(k)0* . (/X\k)A[k] - (/X\k)A[n]
(where o.: Aln] = A[K]).

ExAMPLE 20.2.6. If M is a framed model category, X : A — M is a cosimpli-
cial object in M, and A is the cosimplicial standard simplex (see Definition 16.1.9),

then home(A,fX\) is the total space of X (see Definition 20.2.5).
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REMARK 20.2.7. If M is a category of spaces, then the space (X”)A[”] takes a
different form in each of the categories in which we work (see Definition 1.1.11):

map(|A[n]|, X") if Spc(*) = Top
Map(A[n], X™) if Spe(.y =SS
Map, (A[n]™, X")  if Spc,y = SS.

Thus, in each case the homotopy limit is constructed by first taking the codegree-
wise mapping space of the cosimplicial space |A| (or |A|+, or A, or AT) and the
cosimplicial space X, and then taking a subspace of the product of these mapping
spaces. The total space is actually an example of a space of maps between diagrams
(see Example 20.4.3).

REMARK 20.2.8. Since each standard simplex A[n] is a contractible space, the
map from each A[n] to a point is a weak equivalence. Thus, the cosimplicial stan-
dard simplex is a diagram of spaces weakly equivalent to a point. We will show
in Corollary 16.4.10 that the cosimplicial standard simplex is also a cofibrant dia-
gram in the Reedy model category structure on cosimplicial spaces. This will imply
that the cosimplicial standard simplex is a Reedy cofibrant approximation to the
constant diagram at a point (see Definition 9.1.1), as is the diagram of overcate-
gories B(A | —) (see Corollary 16.4.4), which will imply that that total space of
a Reedy fibrant cosimplicial space is weakly equivalent to its homotopy limit (see

Theorem 20.11.5).

20.3. Leftovers on coends and ends
20.3.1. Coends.

ProposiTION 20.3.2. If C is a small category, X: € — Spc(,) a diagram of
spaces, K : C°P — §§ a diagram of simplicial sets, and F': Spc(*) — Spc(*) a functor
that is a left adjoint, then there is a natural isomorphism (or homeomorphism)

F(/QXQ(}?KQ) z/a(FXa)®Ka.

Proor. The coend fa X, ® K is the coequalizer of the diagram
H Xa ® Ka’ j H XO( ® KO(
(o: a—a’)eC a€0b(C)
As a functor of X, this is a composition of functors that commute with left adjoints,

and so it commutes with left adjoints. O

COROLLARY 20.3.3. If C is a small category, X : C — Spc a diagram of un-
pointed spaces, A an unpointed space, Y : C — Spc, a diagram of pointed spaces,
and B a pointed space, then there are natural isomorphisms (or homeomorphisms)

A x hocolim X = hocolim(A x X)
B A hocolimY & hocolim(B AY')
AT AhocolimY & hocolim(AT AY)
B A (hocolim X )t & hocolim(B A X T).
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REMARK 20.3.4. The assertion that B A (=)%: Spc — Spc, commutes with
taking the homotopy colimit is really an assertion about the homotopy colimit in
two different categories: the pointed homotopy colimit in Spc, and the unpointed
homotopy colimit in Spc. More specifically, for any pointed space B and diagram
of unpointed spaces X : € — Spc, we have an isomorphism (or homeomorphism)

B A (hocolim X)"' ~ hocolim, (B A Y+)

in Spc, where (in this remark) hocolim X means the homotopy colimit in the
category of unpointed spaces and hocolim, (B A Y+) means the homotopy colimit
in the category of pointed spaces. Similar remarks apply to the assertion about
At A —: Spe, — Spc.

ProOF oF COROLLARY 20.3.3. This follows from Proposition 20.3.2, a deleted
example, the standard adjunctions
Top(A x W, Z) ~ Top(W, Top(4, Z))
Top.(BAU,V) =~ Top, (U, Top, (B, V))

and the analogous formulas for simplicial sets. O

CoROLLARY 20.3.5. If X is a simplicial unpointed space, A an unpointed space,
Y a simplicial pointed space, and B a pointed space, then there are natural iso-
morphisms (or homeomorphisms)
A x |X| ~ |A X X|
BA|Y|~ |BAY|
AYAY | = [ATAY|
BAIX|T~|BAXT
Proo¥. This is similar to the proof of Corollary 20.3.3, using a deleted exam-
ple. O

PrOPOSITION 20.3.6. If C is a small category and X : € — S§§,) is a diagram of
simplicial sets, then there is a natural homeomorphism |hocolimX| ~ hocolim|X |

ProoF. Since the geometric realization functor is a left adjoint and |X@ ®
Ka| ~ |X@| ® K, this is similar to the proof of Proposition 20.3.2, using a
deleted example. O

ProposiTION 20.3.7. If X : A°® — SS(,) is a simplicial simplicial set (i.e., a
simplicial object in the category of simplicial sets), then there is a natural homeo-
morphism from the geometric realization of the simplicial set |X| to the realization
of the simplicial topological space |X|

Proo¥. This is similar to the proof of Proposition 20.3.6. O

ProprosiTION 20.3.8. If X is the diagram of spaces C' < A — B and the
map A — B is a cofibration, then the natural map hocolimX — colim X (see
Example 19.2.6) is a weak equivalence.

Proor. If Spc(*) = Top(*) (in which every space is fibrant) we can use the
homotopy extension property of A — B to define a map colim X — hocolim X
that is a homotopy inverse to the natural map hocolim X — colim X | and so these
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maps are homotopy equivalences. If Spc(*) = §§(«) then Proposition 20.3.6 implies
that the geometric realization of the natural map is a homotopy equivalence, and
so the natural map is a weak equivalence. O

20.3.9. Ends.

ProposiTioN 20.3.10. If € is a small category, X : C — Spc(,) a diagram of
spaces, K: C — 8§ a diagram of simplicial sets, and F': Spc(*) — Spc(*) a functor
that is a right adjoint, then there is a natural isomorphism (or homeomorphism)

F(Axfa) zA(FXQ)KQ.

Proo¥. This is similar to the proof of Proposition 20.3.2. O

CoroLLARY 20.3.11. If € is a small category, X : C — Spc(,) a diagram of
spaces, and A € Ob(Spc(*)) is a space, then there is a natural isomorphism (or
homeomorphism)

(holim X)* & holim(X*)

see Definition 1.1.6) (where X“: @ — Spc,,, is the diagram in which (X*) =
(*) o
(X ,)4 for all « € Ob(C)).

Proo¥. This is similar to the proof of Corollary 20.3.3. O

COROLLARY 20.3.12. If X': A — Spcy, is a cosimplicial space and A € Ob(Spc(*))

is a space, then there is a natural isomorphism (or homeomorphism)
(Tot X )* ~ Tot(X*)
(see Definition 1.1.6) (where X? is the cosimplicial space in which (XA)n =
(X™)4).
Proo¥. This is similar to the proof of Corollary 20.3.11. O
ProrosiTioN 20.3.13. If € is a small category and X : C — Top,) Is a dia-

gram of topological spaces, then there is a natural isomorphism Sing holim X =
holim Sing X'.

Proor. Since the total singular complex functor is a right adjoint and Sing (Xff")

(Sing X@)K", this 1s similar to the proof of Proposition 20.3.10, using a deleted ex-
ample.. O

ProrosiTION 20.3.14. If X : A — Top(*) is a simplicial topological space, then
there is a natural isomorphism Sing Tot X ~ Tot Sing X .

Proo¥. This is similar to the proof of Proposition 20.3.13, using a deleted
example. O

ProrosiTION 20.3.15. If X is the diagram of spaces ' — B + A and the map

A — B s a fibration, then the natural map lim X — holim X is a weak equivalence.

Proo¥. This is similar to the proof of Proposition 20.3.8. O
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20.3.16. Adjointness.

ProposiTION 20.3.17. If € is a small category, X : € — Spc,y a C-diagram of
spaces, K: C°P — §§ a C°P-diagram of simplicial sets, and Y € Spc(*) a space,
then there are natural isomorphisms (or homeomorphisms)

Map(/ XQ®KQ,Y) z/Map(Ka,Map(Xa,Y))
Map(/ XQ®KQ,Y) z/Map(XO“YKa)

YU XeKa) /(YXQ)KQ.

(a4

ProoF. We will establish the first isomorphism; the others are similar.
A deleted definition describes fa X ,® K, as a quotient of Hanb(e) X.0K,.

For each a € Ob(C), we have a natural isomorphism
Map(Xo @ Kqo,Y) ~ Map(K o, Map(Xa,Y))

(see Definition 1.1.11) and so we have natural isomorphisms

Map( I1 XQ®KQ,Y) ~ J[ Map(X.©K..Y)
«€0b(E) «e0b(E)
(20.3.18) ~ ] Map(K, Map(X,,Y)).
a€0b(C)

The relations imposed on Hanb(e) X, ® K, 1n the definition of J”OC X,.® K,
are exactly the relations that must be respected by an element of the right hand
side of (20.3.18) for it to be an element of fa Map(Ka, Map(Xa,Y)), and so the
proposition follows.

COROLLARY 20.3.19. If € is a small category, X : C — Spc(,y a C-diagram of
spaces and Y € Spc(*) a space, then YX is a C°P-diagram of spaces, Map(X,Y)
is a C°P-diagram of simplicial sets, and there are natural isomorphisms (or homeo-
morphisms)

Yhocolime X ~ h%llm(YX)
Map(hocglimX, V)~ h(élim Map(X,Y).

Proo¥. This follows from Proposition 20.3.17, Corollary 14.5.11, Example ?7?
and Example 77. O

20.4. Mapping spaces

20.4.1. The internal mapping space. If C is a small category and X and
Y are C-diagrams of unpointed or pointed topological spaces, then Y X will be the
(unpointed or pointed) topological space of maps of diagrams X — Y, topologized
as a subspace of the product Hanb(e) YQXQ. If X and Y are diagrams of simplicial
sets, then Y will be the (unpointed or pointed) simplicial set with n-simplices the
simplicial maps X ® A[n] = Y (see Definition 14.3.1). All of these mapping spaces
can be described concisely as ends (see Definition ??) of functors constructed from
the internal mapping space functors of Definition 1.1.6.
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DEFINITION 20.4.2. Let € be a small category.
e If X Y: C— Top, then Y X is the unpointed topological space

Y* :/Ygfa :/map(Xa,Ya).

e If X Y:C— Top,, then Y X is the pointed topological space

Y* :/Ygfa :/map*(Xa,Ya).
e If XY : C—SS, then Y X is the unpointed simplicial set
Y* :/Ygfa :/Map(Xa,Ya).
o If X,Y: C—SS,, then YX is the pointed simplicial set
Yy* :/ija :/Map*(Xa,Ya).
ExAMPLE 20.4.3. If X is a cosimplicial space (see Definition 16.1.7), then the
total space (see Definition 20.2.5) of X is
Tot X = X4
(see Definition ?7).

ExAMPLE 20.4.4. More generally, if C is a small category, X: C — Spc(*) is a
C-diagram of spaces and P: € — SS is a C-diagram of simplicial sets, then the end
(see Definition ?7?) of (X, )P« is

/(XQ)PQ - xP
(see Definition ?7).
LEMMA 20.4.5. If C is a small category and X,Y : € — Top are diagrams, then
there is a natural isomorphism of simplicial sets
Sing(Y*) ~ Map(X,Y)
(see Definition 14.3.2 and Definition 20.4.2).

PROOF. This is similar to the proof of Proposition 20.3.10. The space Y% is
the end fa YQX“, i.e., the limit of the diagram

II v = I v
a€0b(C) (0: a—a’)ee
(see Definition ??). Since the total singular complex functor is a right adjoint, it
commutes with all limits, and so the result follows from the natural isomorphism
Sing(Yﬁ") ~ Map(X4,Y o) (see Proposition 1.1.7). O
ProrosiTiON 20.4.6. If C is a small category and X,Y : C — Spc(*) are C-

diagrams of spaces, then the internal mapping spaces YX of Definition 20.4.2 are
related to the simplicial mapping spaces Map(X,Y’) of Definition 14.3.2 as follows:

e If Spc(,y = Top, then the simplicial set Map(X,Y) is the total singular
complex of Y.
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e If'Spc(,y = Top,, the simplicial set Map(X,Y) is the total singular complex
of the unpointed space obtained from Y by forgetting the basepoint.

e If' Spc(,) =SS, then Map(X,Y) equals Y*X.

e If Spe(,y = SS., then Map(X,Y’) is obtained from Y X by forgetting the
basepoint.

Proo¥. This follows from Proposition 1.1.7 and Lemma 20.4.5. O

COROLLARY 20.4.7. If C is a small category, W, X Y Z: C — Spc(*) are C-
diagrams of spaces, and g: W — X and h: Y — Z are maps of C-diagrams, then
he: Y* = ZX is a weak equivalence (of topological spaces (if Speg.y = Top(*)) or
of simplicial sets (ifSpc(*) = §8S(»y)) ifand only if h,: Map(X,Y) — Map(X, Z) is
a weak equivalence of simplicial sets, and g*: Y* 5 YW isa weak equivalence (of
topological spaces or simplicial sets) if and only if ¢*: Map(X,Y) - Map(W,Y)
1s a weak equivalence of simplicial sets.

PrOOF. Since a map of pointed spaces is a weak equivalence if and only if 1t is
a weak equivalence of unpointed spaces after forgetting the basepoint, and a map
of topological spaces is a weak equivalence if and only if its total singular complex
i1s a weak equivalence of simplicial sets, this follows from Proposition 20.4.6. O

ProposiTION 20.4.8. If C is a small category, X: C — Spc(,y a C-diagram of
spaces, Y : C°P — Spc(*) a C°P-diagram of spaces, and 7 € Ob(Spc(*)) a space,
then

(2¥)% m 72U XedY o)
Proo¥F. This is similar to the proof of Proposition 20.3.17. O
COROLLARY 20.4.9. IfY : AP — Spe(, is a simplicial space and Z € Ob(Spc(*))

is a space, then ZY is a cosimplicial space, and there is a natural homeomorphism
(if Speg.y = Top(*)) or isomorphism (if Spegyy = SS(x))
Tot (2Y) =~ ZI¥1.

Proo¥. This follows from Proposition 20.4.8, Example 20.4.3, and Exam-
ple 77. O

ProrosiTION 20.4.10. If C is a small category, X, Y : C — Spc(*) C-diagrams
of spaces, and 7 € Ob(Spc(*)) a space, then there is a natural isomorphism (if
Speg.y = SS(+)) or homeomorphism (if Speg.y = Top(*))

YX7 o (v ) & (v )X

CoroLLARY 20.4.11.If € is a small category, X: € — Spc(,y a C-diagram
of spaces and W € Ob(Spc(*)) a space, then there is a natural isomorphism (if
Speg.y = SS(+)) or homeomorphism (if Speg.y = Top(*))

(holim X)" ~ holim(X").

COROLLARY 20.4.12. If X: A — Spc(*) is a cosimplicial space and W €
Ob(Spc(,)) is a space, then there is a natural isomorphism (if Spc(,) = SS(.))
or homeomorphism (if Spe(,y = Top(,))

(Tot X)W ~ Tot(X").
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LEMMA 20.4.13. If C is a small category, S: € — Set a C-diagram of sets,
Y:C— Spc(*) a C-diagram of spaces, and X € Ob(Spc(*)) a space, then there is
a natural isomorphism (or homeomorphism, if Spc(*) = Top(*))

y(Xes) » (vX)®
(see Definition 1.1.11).

ProposiTION 20.4.14. If € is a small category, Y : € — Spc(,) a C-diagram
of spaces, X € Ob(Spc(*)) a space and «a an object of C, then there is a natural
isomorphism (or homeomorphism, if Speg.y = Top(*))

Yy XQF?) o (Y )X
(see Definition 14.1.2).

Proor. We will discuss the case Spc(*) = Top,; the other cases are similar.
We have natural homeomorphisms

YFOFY & map, (X © F:: Y)

A map*( * map, (X, Y))
A map, (* ,map, (X,Y,))
~map, (X @ *,Y )

~ map, (X, Y,)

~ (Vo)™

(see Lemma 20.4.13) where T denotes the space with one point plus an adjoined
basepoint. O

THEOREM 20.4.15. If € is a small category, Y : C — Spc(,) a C-diagram of
spaces and X : disc Spc(*) a discrete diagram of spaces, then there is a natural
isomorphism (or homeomorphism, if Spc(*) = Top( )) of mapping spaces

YF ~ (UY)*
(where U is the forgetful functor U : SDC(G*) — Spcge)dlsc)

Proo¥. This follows from Proposition 20.4.14. O

20.5. Topological spaces and simplicial sets

We proved in Proposition 20.3.6 that the geometric realization functor com-
mutes with the homotopy colimit functor up to a natural homeomorphism, and
in Proposition 20.3.13 that the total singular complex functor commutes with the
homotopy limit functor up to a natural isomorphism. In this section, we show that,
for a diagram of cofibrant topological spaces, the total singular complex functor
commutes with the homotopy colimit functor up to a natural weak equivalence
and that, for a diagram of fibrant simplicial sets, the geometric realization functor
commutes with the homotopy limit functor up to a natural weak equivalence.

ProposiTION 20.5.1. If € is a small category and X: C — Top, is a di-
agram of cofibrant topological spaces, then there is a natural weak equivalence
hocolim Sing X — Sing hocolim X .
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ProoF. The natural map of diagrams |SingX| — X induces a natural
weak equivalence hocolim|SingX| — hocolim X (see Theorem 20.6.11). Prop-
osition 20.3.6 implies that this is isomorphic to a natural weak equivalence
|hocolimSingX| — hocolim X, which corresponds (under the standard adjunc-
tion) to a natural weak equivalence hocolim Sing X — Sing hocolim X . O

ProPoOsITION 20.5.2. If € is a small category and X : € — §S(,) is a diagram
of fibrant simplicial sets, then there is a natural weak equivalence |holimX —
holim|X|.

Proo¥. This is similar to the proof of Proposition 20.5.1. O

20.6. Mapping spaces and homotopy invariance

ProrosiTION 20.6.1. Let € be a small category, and let A/ B, X,Y:C —
Spc(*) be diagrams. If i: A — B is a cofibration and p: X — Y is a fibration,
then the map

XB 5 XA xyaY?B
is a fibration in Spc(*) that is also a trivial fibration if either i or p is a weak

equivalence.

ProoF. Since both the total singular complex functor and the functor that
forgets the basepoint of a pointed space commute with limits, this follows from
Theorem 14.2.1 and Proposition 20.4.6. O

COROLLARY 20.6.2. If C is a small category, 1: A — B a cofibration in Spc(e*),

and X a diagram of fibrant spaces, then the map XB 5 X4 is a fibration in
Spc(*) that is a trivial fibration if i is a weak equivalence.

Proo¥. This follows from Proposition 20.6.1. O

COROLLARY 20.6.3. If C is a small category, p: X — Y a fibration in Spc(e*),

and A a cofibrant diagram in Spc(e*), then the map X# — Y# is a fibration in
Spc(*) that is a trivial fibration if p is a weak equivalence.

Proo¥. This follows from Proposition 20.6.1. O
COROLLARY 20.6.4. If C is a small category and p: X — Y is a fibration in

Spc(e*), then the map holim X — holimY is a fibration in Spc(*) that is a trivial
fibration if p is a weak equivalence.

Proor. This follows from Corollary 20.6.3, something deleted, Corollary 14.6.8,
Lemma 14.6.10, and Proposition 14.6.11. O

COROLLARY 20.6.5. If € is a small category and X : C — Spc,, is a diagram
of fibrant spaces, then holim X is a fibrant space.

Proo¥. This follows from Corollary 20.6.4. O

ProrosITION 20.6.6. Let C be a small category, i: A — B a map in Spc(e*)
and K: C°P — SS a free cell complex (see Definition 14.1.28). If i,: A, = B,
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is a cofibration (resp., trivial cofibration) in Spe(, for every o € Ob(C), then the
induced map of coends

(see Definition 7?7 and Definition ?77?) is a cofibration (resp., trivial cofibration) in

ProOOF. Proposition 10.3.5 implies that it is sufficient to show thatif p: X — Y
is a trivial fibration (resp., fibration) in Spc(*), then the map of simplicial sets

Map(/ B, ®KQ,X)

— Map(/ A0 ® Ko, X) Satap(f* avok.v) Map(/ B, K,.Y)

is a trivial fibration. Proposition 20.3.17 and Definition 14.3.2 imply that this is
isomorphic to the map

Map (K, Map(B, X))
— Map(K, Map(A, X)) Xmap(k Map(4,v)) Map (K, Map(B,Y))
(where, e.g., Map(B,X) is the C°P-diagram of simplicial sets in which
(Map(B,X))a = Map(B,, X) for all @« € Ob(€)), and this is isomorphic to the
map
Map (K ,Map(B, X)) — Map (K, Map(A, X) Xyap(a,v) Map(B,Y)).

Since X — Y is a trivial fibration (resp., fibration) and A, — B, is a cofibration
(resp.. trivial cofibration) for every object a of €, the map

Map(B, X) = Map(Aa, X) XMap(4.,y) Map(Ba,Y)

is a trivial fibration for every object « of C. Since K is a free cell complex; it
is a cofibrant object of ss¢ p, and so the result follows from the simplicial model
category structure in SS¢”. (]

THEOREM 20.6.7. If C is a small category and g: X — Y is a map in Spc(e*)
such that go: X, = Y Is a cofibration (resp., trivial cofibration) in Spc(*) for
every o € Ob(C), then the induced map hocolimg: hocolim X — hocolimY is a
cofibration (resp., trivial cofibration) in Spe(y-

Proo¥. This follows from Proposition 20.6.6, Example 7?7, and Corollary 14.6.8.
O

CoROLLARY 20.6.8. If C is a small category and B: C — Spcy,) Is a diagram
such that B, is a cofibrant space for every a € Ob(€), then hocolim B is a cofibrant
space.

Proor. This follows from Theorem 20.6.7. O

THEOREM 20.6.9. If C is a small category and g: X — Y is a map of C-
diagrams of spaces such that g,: X, — Y is a trivial fibration for every a €
Ob(C), then ¢ induces a trivial fibration g.: holimX = holimY (see Defini-
tion 19.1.10).
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Proo¥. This follows from Corollary 20.6.4. O

THEOREM 20.6.10. If C is a small category and g: X — Y is a map of C-
diagrams of spaces such that g,: X, — Y 4 is a weak equivalence of fibrant spaces
for every o € Ob(C), then g induces a weak equivalence g,: holim X = holimY
(see Definition 19.1.10).

Proo¥. This follows from Corollary 20.6.4 and Corollary 8.5.2. O

THEOREM 20.6.11. If C is a small category and g: X — Y is a map of C-
diagrams of spaces such that g,: X, — Y, is a weak equivalence of cofibrant
spaces for every o € Ob(C), then g induces a weak equivalence hocolimX —
hocolimY .

Proo¥r. It is sufficient to show that if W is a fibrant space, then the induced
map Map(hocolimY ;W) — Map(hocolim X, W) is a weak equivalence (see Prop-
osition 10.5.1). This follows from Corollary 20.3.19 and Theorem 20.6.10. O

20.7. Pointed and unpointed homotopy colimits

Given a small category € and a C-diagram of pointed spaces X, we can take
the homotopy limit of the diagram in the category of pointed spaces, or we can
forget the basepoints of the spaces in the diagram and take the homotopy limit in
the category of unpointed spaces, and these two homotopy limits will be isomorphic
(or homeomorphic) after we forget the basepoint of the pointed homotopy limit (see
Remark 19.1.13). On the other hand, the homotopy colimit of X will generally have
different homotopy types when taken in the categories of pointed and unpointed
spaces (see Proposition 20.7.4). In this section, we describe the difference between
the pointed and unpointed homotopy colimit.

NoTaTION 20.7.1. In this section, if X is a diagram of pointed spaces, then
hocolim, X will denote the homotopy colimit formed in the category of pointed
spaces, and hocolim X will denote the homotopy colimit formed in the category of
unpointed spaces after forgetting the basepoints of the spaces in the diagram.

DEeFINITION 20.7.2. A pointed space X is well pointed if the inclusion of the
basepoint into the space is a cofibration in the model category Spc, . Since the one
point space is the initial object in Spec,, a pointed space X is well pointed if and
only if it is a cofibrant space.

ProrosiTION 20.7.3. If Spc, = SS., then every pointed space is well pointed.

ProoF. Every inclusion of simplicial sets is a cofibration. O

The following proposition is due to E. Dror Farjoun ([22]).

ProprosITION 20.7.4. Let C be a small category and let X be a C-diagram of
pointed spaces.

e If Spc, = SS., then there is a natural cofibration BC°? — hocolim X, and
a natural isomorphism (hocolim X')/(BC°P) & hocolim, X

e IfSpc, = Top,, then there is a natural inclusion |B€Op| — hocolim X which
is a cofibration if X is a diagram of well pointed spaces, and a natural
homeomorphism (hocolim X)/(|B@Op |) ~ hocolim, X
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(see Notation 20.7.1) where BCP is the classifying space of the category C°P (see
Definition 9.4.1).

ProoF. This follows from the definition of the homotopy colimit (see Defini-
tion 19.1.2), Remark ??, Proposition 19.1.6, and Theorem 20.6.7. O

COROLLARY 20.7.5. If C is a small category and X : C — Spc, is a diagram of
well pointed spaces such that, for every object « in C, the space X ., is contractible,
then hocolim, X is contractible (see Notation 20.7.1).

Proo¥F. We will prove this in the case Spc, = Top,; the case Spc, = SS. is
similar.

Proposition 20.7.4, Proposition 19.1.6 and Theorem 20.6.11 imply that the map
|B€Op| — hocolim X is a trivial cofibration. Since the quotient space (hocolim X)/(|B@Op |)
is naturally homeomorphic to the pushout of the diagram * + |B€Op| — hocolim X,
this implies that the map * — hocolim, X (see Notation 20.7.1) is a trivial cofibra-
tion. O

ProPosITION 20.7.6. If the classifying space of the small category C is con-
tractible, then, for any C-diagram of well pointed spaces X, the natural map (see
Proposition 20.7.4) hocolimX — hocolim, X is a weak equivalence (see Nota-

tion 20.7.1).

ProoF. We will prove this in the case Spc(,) = Topy,; the case Spe(,) = S5(x)
is similar.

The quotient space (hocolimX)/(|B@Op|) is naturally homeomorphic to the
pushout of the diagram * |B€Op| — hocolim X . Since Spc is a proper model
category (see Theorem 11.1.16), the result now follows from Proposition 20.7.4. O

ExaMpPLE 20.7.7. If € is the category - ¢ - — - then the homotopy colimit
of a C-diagram of well pointed spaces has the same weak homotopy type whether
formed in the category of pointed spaces or in the category of unpointed spaces.

ExamMpLE 20.7.8. If € is the category - — - — - — .-+, then the homotopy
colimit of a C-diagram of well pointed spaces has the same weak homotopy type
whether formed in the category of pointed spaces or in the category of unpointed
spaces.

ExaMPLE 20.7.9. The homotopy colimit of a diagram indexed by a discrete
group does not, in general, have the same weak homotopy type when formed in
the category of pointed spaces as it does when formed in the category of unpointed
spaces.

20.8. The significance of overcategories and undercategories

THEOREM 20.8.1. If C is a small category, X: C — Spc(,y a C-diagram of
fibrant spaces, and P: C — SS a cofibrant approximation (see Definition 9.1.1) to
the constant C-diagram at a point, then fa(Xa)Pa (see Definition ?7?) is naturally
weakly equivalent to holim X .

ProoF. If we choose a fibrant cofibrant approximation @ (see Definition 9.1.1
and Proposition 9.1.2) to the constant C-diagram at a point, then there are weak
equivalences

P—Q«B(Cl-)
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(see Proposition 9.1.6). These somewhat arbitrary (see Remark 20.8.3) weak equiv-
alences induce natural transformations

A(XQ)PQ — A(XQ)QQ — A(XQ)B<@¢—> = holim X

which, for a diagram X of fibrant spaces, are weak equivalences (see something
deleted, if Spc(*) = Top(*) then Proposition 14.6.11, if Spc(*) = Spc, then
Lemma 14.6.10, Corollary 20.4.7, Theorem 14.2.1 and Corollary 10.2.2), and so
the proof is complete. O

CoroLLARY 20.8.2. If C is a small category, X: € — Spc(,, a C-diagram of
fibrant spaces and P: C — SS a cofibrant approximation (see Definition 9.1.1) to
the constant C-diagram at a point, then holim X is naturally weakly equivalent to
xF (see Definition 1.1.11).

Proo¥. This follows from Theorem 20.8.1 and Example 20.4.4. O

REMARK 20.8.3. The natural weak equivalences constructed in the proof of
Theorem 20.8.1 depended on the arbitrary choice of a fibrant cofibrant approxima-
tion to the constant diagram at a point and then the arbitrary choice of two weak
equivalences. The purpose of this remark 1s to point out the essential equivalence
of the various natural chains of weak equivalences resulting from these choices.

Each of the choices of a weak equivalence connecting a cofibrant approximation
to the fibrant cofibrant approximation was actually unique up to simplicial homo-
topy (see Proposition 9.1.6), and so the weak equivalences of ends that it induced
was also unique up to simplicial homotopy (see Example 20.4.4, Corollary 20.4.7
and Proposition 10.4.22).

If we were to make a different choice of fibrant cofibrant approximation, then
the two choices would be connected by a unique simplicial homotopy class of sim-
plicial homotopy equivalences (see Corollary 9.1.7). Furthermore, the composition
of any map in this simplicial homotopy class of simplicial homotopy equivalences
connecting two fibrant cofibrant approximations with the chosen weak equivalence
from either of our cofibrant approximations to the fibrant cofibrant approximation
1s a map that 1s simplicially homotopic to the weak equivalence we chose to the other
fibrant cofibrant approximation. Thus, the natural isomorphism in the homotopy
category that is induced by our natural chain of weak equivalences is unique.

In addition, if we used a longer “zig-zag” of weak equivalences of cofibrant
approximations, then similar arguments would imply that the isomorphism in the
homotopy category that we obtained would still be independent of our chosen “zig-
zag’ of weak equivalences. Thus, if we use these methods to construct isomorphisms
(in the homotopy category) between different ends of functors constructed as above
from cofibrant approximations to the constant C-diagram at a point, then any
chain of isomorphisms that we construct would equal any other such chain, i.e.,
these methods construct a unique isomorphism in the homotopy category between
any two such functors.

THEOREM 20.8.4. If C is a small category, X: C — Spc(,y a C-diagram of
cofibrant spaces, and P: C°°? — S§§ a cofibrant approximation to the constant
C°P-diagram at a point, then fa X ® Py (see Definition 7?) is naturally weakly
equivalent to hocolim X .
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ProoF. Since hocolim X = fa Xo @ B(=1C)°" (see Example ?77), we must
show that this 1s weakly equivalent to fa X, ® P,. The proof of this fact 1s
similar to the proof of Theorem 20.8.1, using Proposition 19.2.10. The discussion
in Remark 20.8.3 applies to this natural weak equivalence as well. O

20.9. Colimits, homotopy colimits, and total derived functors

ProrosiTION 20.9.1. If € is a small category and X : C — Spcy,y 1s a cofi-
brant C-diagram of spaces, then the natural map hocolim X — colim X is a weak
equivalence.

ProoF. It is sufficient to show that if W € Spc(,) is a fibrant space, then
Map(colim X, W) — Map(hocolim X, W) is a weak equivalence (see Proposition 10.5.1).
Since the natural map hocolim X — colim X is isomorphic to the map

/XQ®B(a¢G)Op—>/ X, ® P,

where P: C°® — SS is the constant diagram at a point (see Example ?7 and
Example ?7), it is sufficient to show that the map

/Map(Xa,WPQ) —>/Map(Xa,WB<“¢@>°p)

is a weak equivalence (see Proposition 20.3.17). This last map is exactly the map
Map(X, WF) = Map(X, WB(—46)™)

(see Definition 14.3.2). Since X is a cofibrant C-diagram and WF — WB(-&)™
is a weak equivalence of fibrant C-diagrams, the proposition follows from Corol-
lary 10.2.2 and Theorem 14.2.1. O

THEOREM 20.9.2. If € is a small category, X: C — Spc(.) a C-diagram of
cofibrant spaces and 1: X — X a cofibrant approximation to X (i.e., X isa
cofibrant C-diagram and i : X, — X, is a weak equivalence for every o € Ob(C)),
then colim X is weakly equivalent to hocolim X .

Proo¥. This follows from Theorem 20.6.11 and Proposition 20.9.1. O

COROLLARY 20.9.3. If C is a small category, X, Y : C — Spc(*) cofibrant C-
diagrams of spaces and g: X =Y a map of diagrams such that for every o € Ob(C)
the map g,: X, — Y, is a weak equivalence, then g,: colimX — colimY is a
weak equivalence.

ProoF. Since a cofibrant C-diagram of spaces is also an C-diagram of cofibrant
spaces, this follows from Theorem 20.9.2 and Theorem 20.6.11. O

REMARK 20.9.4. Corollary 20.9.3 implies that the total left derived functor
L colim: Ho(Spc(e*)) — Ho(Spc(,))

(see [46, Chapter I, Section 4, Definition 2]) of the functor colim: Spc(e*) — SPCy
exists (see [46, Chapter I, Section 4, Proposition 1]) and that if X is a cofibrant C-
diagram, then L colim X is weakly equivalent to colim X . (Note that although there

is a natural functor Ho(Spc(e*)) — (Ho Spc(*)) “itis not, in general, an equivalence.)
Thus, if X is a diagram of cofibrant spaces, then hocolim X represents L colim X .
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For a discussion of homotopy pushouts and homotopy pullbacks from this point of
view, see [31].

ProposiTION 20.9.5. If Cis a small category and X : € — Spey,y is a C-diagram
of cofibrant spaces, then we define a new C-diagram of spaces X as follows: For
every o € Ob(C), we have the functor iy : (Cl o) = C that takes (8 — «) € (Cla)
to 3, and so we have the induced diagram %, X on (€| «) defined on objects by

(@6 X)(pa) = X (ia(pa)) = Xp
We let X¢, = hocolim(eyq) i5, X
1. X°€ is a cofibrant C-diagram.
2. The map X — X that for each o € Ob(C) is the natural map

X< = h(()coli)miZX = (X, = X,
Cla

a

is a weak equivalence of C-diagrams.
3. There is a natural isomorphism colime X = hocolime X .

In particular, X — X is a cofibrant approximation to X.

ExaMPLE 20.9.6. If the discrete group G is considered to be a category with
one object and X is a (G-space, then the construction of Proposition 20.9.5 is known
classically as the Borel construction.

DEeFINITION 20.9.7. A category C is right filtering if C 18 non-empty and

1. If @ and 3 are objects of C, then there exists an object v of € and morphisms
a—~vand §— .

2. If f,9: a — § are morphisms of C, then there exists a morphism h: 8 — v
such that hAf = hg.

ProPosITION 20.9.8. If € is a small category that is right filtering (see Defini-
tion 20.9.7) and X : € — SS(.) is an C-diagram of simplicial sets, then the natural
map (see Example 19.2.6) hocolim X — colim X is a weak equivalence.

ProoF. If f: X — X is a cofibrant approximation to X (see Definition 9.1.1),

then we have the commutative diagram

_ 5 _
hocollm X — colim X

hocolim fl loolim b

hocolim X p—> colim X

Since f,: X, — X, is a weak equivalence of cofibrant spaces for all a € Ob(€),
Theorem 20.6.11 implies that hocolim f is a weak equivalence. Since C is right
filtering, 7, colim X ~ colimm, X for every C-diagram X, and so colim f is also a
weak equivalence. Proposition 20.9.1 implies that p is a weak equivalence, and so
p is a weak equivalence and the proof is complete. O

ProprosiTioN 20.9.9. If X is an ordinal and
Xo=Xi2Xo—> -5 Xg— - (B <)

is a A-sequence (see Definition 12.2.1) of relative cell complexes, then the natural
map hocolimg«y Xg — colimgey X is a weak equivalence.
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Proo¥. This is identical to the proof of Theorem 20.9.8, since for a A-sequence
of relative cell complexes X, we have 7, colim X = colimm, X. O

ProprosiTioN 20.9.10. If A is an ordinal and
e Xg == Xy — X (B <)

is a tower of fibrant spaces such that each Xgi1 — Xg is a weak equivalence, then
the map holimg«) X3 — Xo is a weak equivalence.

ProoF. If we dualize the construction of Proposition 20.9.5 and construct a
new tower

Yy = Y (B < A)

in which Y3 = holima«g X, then for each § the natural map Xz — Y3 is a
weak equivalence and limgcy Y ~ holimgcx Xs. The tower Yj is now a tower of
trivial fibrations, and so its inverse limit is weakly equivalent to each space in the
tower. O

20.10. The category of simplices of a simplicial set

ExamMpLE 20.10.1. If p: £ — B is a map of simplicial sets, we will decompose
E into a (AB)-diagram of simplicial sets p. If ¢ is an n-simplex of B, then the
characteristic map of ¢ is the unique map x,: A[n] — B that takes the non-
degenerate n-simplex of A[n] to o, and we let $(o) be the pullback of the diagram

E

|

If 6: B, — By is a simplicial operator, then § corresponds to a map A[k] — A[n],
and so we get a map p(o,9): 13((5(0')) — p(o). For each simplex ¢ in B there is
an obvious map p(¢) — FE, and these induce an isomorphism of simplicial sets
colim, cop(aB) p(o) = E. We will show in Corollary 20.11.12 that the natural map
hocolim, cob(ap) P(0) — colimyeop(ap) P(0) & F is a weak equivalence.

ProrosiTION 20.10.2. Let X be a simplicial set, and let AX be the category
of simplices of X (see Definition 16.1.11).

L IfY: A"X — Spcy, is a diagram, then hocolimY" (see Definition 19.1.2)

is naturally isomorphic to the homotopy colimit of the simplicial space Z

(see Definition 16.1.5) for which Z,, = Hann Y,.
2. If'Y : AX — Spcy,y Is a diagram, then holimY (see Definition 19.1.10) is
naturally isomorphic to the homotopy limit of the cosimplicial space Z (see

Definition 16.1.7) for which Z" = [[,cx. Yo

ProoF. We will prove part 1; the proof of part 2 is similar.
Definition 19.1.2 describes hocolimY as the coequalizer of the diagram

[T Y.oB(@l@arx)” = [T Y.@B(el(arx))™.
(o—ol)eAPX oc€O0b(APX)
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We have the natural isomorphisms

[T v.oBl@rx)"~]] JI Y.oB(Ria®)”

(o—o')eAPX n>0 o€eX,

<11 I (11 ve)on@iam®

n>08: Xn—=Xk o0€X,
k>0
~[T I 2.oB(kla®)™
n>0 AP ([n],[k])
k>0

and the natural isomorphisms

[ Y.oB(olarx) H( ]_[ Y )®B (o) (AP X))

oc€O0b(APX) n>0
~ ] 2. o B(In]4 A™)™
n>0
and so hocolimY is naturally isomorphic to the coequalizer of the diagram

[T H Z,oB(KIAM)” = [ Z.oB(niAa®)”

n;O A°P([n],[k]) [n]EOb(ACP)
which is exactly the definition of hocolim Z. O

20.11. Homotopy invariance

THEOREM 20.11.1. If g: X — Y is a map of Reedy fibrant cosimplicial spaces
such that g,: X" — Y" Is a weak equivalence for all n > 0, then g induces a weak
equivalence g.: Tot X — TotY (see Definition 20.2.5).

Proo¥. This follows from Theorem 16.3.3, Corollary 16.4.10, Corollary 10.2.2,
and Corollary 1.1.9. O

THEOREM 20.11.2. If C is a Reedy category and g: X — Y is a weak equiva-
lence of Reedy fibrant diagrams in Spc(e*), then the induced map ¢,: holim X —
holimY is a weak equivalence.

Proo¥. This follows from Theorem 20.6.10 and Proposition 16.4.1. O

THEOREM 20.11.3. If C is a Reedy category and g: X — Y is a weak equiva-
lence of Reedy cofibrant diagramsin Spc(e*), then the induced map ¢.: hocolim X —
hocolimY is a weak equivalence.

Proo¥. This is similar to the proof of Theorem 20.6.11, using Theorem 20.11.2
and Lemma 16.4.5. O

COROLLARY 20.11.4. If C is a Reedy category and f: X — Y is a weak equiv-
alence of Reedy cofibrant diagrams, then the induced map f.: colim X — colimY
is a weak equivalence.

Proor. This follows from Theorem 20.11.10 and Theorem 20.11.3. O

THEOREM 20.11.5. The total space of a Reedy fibrant cosimplicial space is
naturally weakly equivalent to its homotopy limit.
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Proo¥. This follows from Corollary 16.4.10 and Theorem 20.11.13. O

THEOREM 20.11.6. The realization of a Reedy cofibrant simplicial space is nat-
urally weakly equivalent to its homotopy colimit.

Proo¥. This follows from Corollary 16.4.10 and Theorem 20.11.14. O

COROLLARY 20.11.7. The diagonal of a bisimplicial set (i.e., a simplicial object
in SS(,)) is naturally weakly equivalent to its homotopy colimit.

Proo¥. This follows from Theorem 20.11.6, Corollary 16.4.7, and Theorem 16.5.4.
O

THEOREM 20.11.8. If g: X — Y is a map of Reedy cofibrant simplicial spaces
such that g,: X, — Y, is a weak equivalence for all n > 0, then the induced map
of realizations g, : |X| — |Y| is a weak equivalence.

Proo¥r. It is sufficient to show that if W is a fibrant space, then the induced
map Map(|Y|, W) — Map(|X|, W) is a weak equivalence (see Proposition 10.5.1).
This follows from Corollary 20.4.9 and Theorem 20.11.1. O

CoROLLARY 20.11.9. If Spc(*) = S85(«y and g: X — Y is a map of simplicial
spaces such that g,: X, — Y, is a weak equivalence for alln > 0, then the induced
map of realizations g, : |X| — |Y| is a weak equivalence.

Proo¥. This follows from Theorem 20.11.8 and Corollary 16.4.7. O

THEOREM 20.11.10. If C is a Reedy category and X : C — Spc(*) is a Reedy
cofibrant diagram of spaces, then the natural map hocolim X — colim X is a weak
equivalence.

Proor. If W is a space and P: C°P — S§ is the constant diagram at a point,
then the matching maps (see Definition 16.2.17) of the C-diagram W ¥ are either
the identity map or the constant map to a point. Thus, if W is a fibrant space,
then WP is a Reedy fibrant C-diagram. Corollary 16.4.4 and Lemma 16.4.5 imply
that if W is a fibrant space, then the C-diagram WPB(=4®)™ is also Reedy fibrant.
The theorem now follows as in the proof of Proposition 20.9.1. O

ProposITION 20.11.11. If p: E — B is a map of simplicial sets, then the (AB)-
diagram of simplicial sets constructed in Example 20.10.1 is Reedy cofibrant.

ProoF. The latching map at the n-simplex o is the inclusion of the part of
p(o) above dA[n] into p(o). O
The following corollary is a theorem of J. F. Jardine ([37, Lemma 2.7]).

COROLLARY 20.11.12. If p: F — B is a map of simplicialsets and p: AB — S§
is the diagram constructed in Example 20.10.1, then the natural map hocolimp —
FE is a weak equivalence.

Proo¥. This follows from Theorem 20.11.10 and Proposition 20.11.11. O

THEOREM 20.11.13. If € 1s a Reedy category, X : C — Spc(,y a Reedy fibrant
C-diagram of spaces, and P: C — Spc(*) a Reedy cofibrant approximation (see

Definition 9.1.1) to the constant C-diagram at a point, then fa(Xa)Pa (see Defi-
nition ?77?) is naturally weakly equivalent to holim X .
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Proo¥. This is similar to the proof of Theorem 20.8.1. O

THEOREM 20.11.14. If C is a Reedy category, X : C — Spc(*) a Reedy cofibrant
C-diagram of spaces, and P: C°P — Spc(*) a Reedy cofibrant approximation (see
Definition 9.1.1) to the constant C°P-diagram at a point, then fa X ® P, (see
Definition ?7?) is naturally weakly equivalent to hocolim X .

Proo¥. This is similar to the proof of Theorem 20.8.4. O

20.12. Realizations and homotopy colimits

ProrosiTION 20.12.1. If X is a simplicial set, AX is the category of simplices
of X (see Definition 16.1.11), and P: (A°’X) — SS is the diagram in which P, is
a single point for all ¢ € Ob(A°PX), then hocolim P is naturally weakly equivalent
to X.

ProoF. Proposition 20.10.2 implies that hocolim P is naturally isomorphic to
hocolim Z where Z: A°F — SS is the bisimplicial set (i.e., simplicial simplicial set)

such that
Z, = H P, = H * = X,
oEXn oEXn
(where we view the set X, as a constant (i.e., discrete) simplicial set). Since the
diagonal of Z is naturally isomorphic to the original simplicial set X, the theorem
follows from Corollary 20.11.7. O

THEOREM 20.12.2. If X is a simplicial set and AX 1is the category of simplices
of X (see Definition 16.1.11), then B(AX) is naturally weakly equivalent to X.

ProOOF. Proposition 19.1.6 implies that if P: (A°?X) — SS is the diagram
in which P, is a single point for all ¢ € Ob(A°PX), then B(AX) is naturally
isomorphic to hocolim P. Proposition 20.12.1 implies that this homotopy colimit
is naturally weakly equivalent to X, and so the proof is complete. O

20.13. Topological spaces and simplicial sets

We proved in Proposition 20.3.7 that the geometric realization functor com-
mutes with the realization functor up to a natural homeomorphism, and in Prop-
osition 20.3.14 that the total singular complex functor commutes with the total
space functor up to a natural isomorphism. In this section, we show that, for
a Reedy cofibrant simplicial topological space, the total singular complex functor
commutes with the realization functor up to a natural weak equivalence, and that,
for a cosimplicial simplicial set, the geometric realization functor commutes with
the total space functor up to a natural weak equivalence.

ProposiTiON 20.13.1. If X: A®® — Top,y is a Reedy cofibrant simplicial
topological space, then there is a natural weak equivalence from the simplicial
set that is the realization of the simplicial simplicial set Sing X to Sing|X|.

Proo¥. This is similar to the proof of Proposition 20.5.1. O

ProposiTION 20.13.2. If X : A — §S(.) is a cosimplicial simplicial set, then
there is a natural weak equivalence |Tot X| — Tot|X|.

Proo¥. This is similar to the proof of Proposition 20.5.1. O
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