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I. Types of algebras, types of operads

Types of algebras

Algebra usually means: unital associative algebra

There are other types of algebras:
Lie, Poisson, Jordan, dendriform, Zinbiel, Leibniz,
Batalin-Vilkovisky, magmatic, A∞, etc.

Each one of these types is encoded by an operad P, either
nonsymmetric (As, Dend, Mag, A∞) or symmetric.

P : Mod→ Mod

1. P(V ) =
⊕

n Pn ⊗ V⊗n

2. P(V ) =
⊕

n P(n)⊗Sn V⊗n

3. ΓP(V ) =
⊕

n(P(n)⊗ V⊗n)Sn (B.Fresse)
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Types of operads

There are several types of operads:

I ns operads,
I symmetric operads,
I divided power operads
I cyclic operads,
I shuffle operads,
I wheeled operads,
I etc.

Question: what does encode a type of operads? In other words:
want to describe the monad on which an operad is an algebra on.

Motivation: Koszul duality.

A = associative alg ⇒ A! = associative alg
A = Lie alg ⇒ A! = commutative alg

At the operad level: As ! = As , Lie! = Com

Given an operad of some type, which type is the Koszul dual?
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Koszul duality for types of operads

In order to perform Koszul duality for types of operads, we need to
know how to encode a type of operads, and, then, to construct a
Koszul duality theory for these objects.

Obviously the relevant object encoding (ns) operads is self-dual,
since the Koszul dual of an (ns) operad is an (ns) operad.

The strategy: look for the free object, discard the variable
ex: T (V ) gives As
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II. An example: planar trees and ns operads
Planar trees

The set of planar rooted trees PT :

| , , , , , , · · ·

They have a root, leaves, vertices, inputs of vertices
The set PT comes with a notion of substitution of a tree at a
given vertex of another tree

Key point: substitution is associative.
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N-modules

M = {Mn}n≥1 where Mn is a K-module (Hyp M1 = 0 for simplicity)

The functor PT : N-mod → N-mod defined by

PT(M)n = span of the pbr trees with n leaves decorated by M

λ2
ν3

µ2

THM The substitution process defines a monoid structure
Γ : PT ◦ PT→ PT on the endofunctor PT, hence (PT, Γ) is a
monad on the category of N-modules.

An algebra over the monad (PT, Γ) is a ns operad
(this is the combinatorial definition, see for instance [JLL-BV]).
PROP PT(M) is the free ns operad on M
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Other examples of types of operads

Construction of the free object:

I ns operads use planar rooted trees
I symmetric operads use nonplanar rooted trees
I cyclic operads use nonplanar nonrooted trees
I strictly cyclic operads use planar nonrooted trees
I shuffle operads use ... shuffle trees (Dotsenko-Khoroshkin)

Question: what is the general framework for all these examples?
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III. Combinatorial patterns and combinads (work
in progress)

Definition of a combinatorial pattern X over N:
X is a set, whose elements are called trees (abuse of terminology)
Any t ∈ X comes with its set of vertices v ∈ vert(t)

and its set of leaves leav(t)
Any vertex v comes with its set of inputs in(v)

For any trees t, s and v ∈ vert(t) and bijection in(v) ∼= leav(s)
there is given a new tree denoted t ◦v s such that
leaves(t ◦v s) = leaves(t), vert(t ◦v s) = (vert(t)\{v}) ∪ vert(s)
We assume associativity of this composition, that is
I. sequential axiom, for w ∈ vert(s): (t ◦v s) ◦w r = t ◦v (s ◦w r)
II. parallell axiom, for w ∈ vert(t): (t ◦v s) ◦w r = (t ◦w r) ◦v s

In the planar case all the sets leaves(t), in(v) are completely
determined by their cardinality n ∈ N.
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Definition of a combinad

A combinad is a monad on N-modules (X , Γ)

X : N-mod → N-mod , Γ : X ◦ X → X

where X is induced by a given combinatorial pattern X

X (M)n = span of the X-trees with n leaves, vertices decorated by M

and the composition Γ is induced by the substitution of the
combinatorial pattern.

An operad of type X is an algebra over the monad X .

Koszul duality of combinads: mimick [JLL-BV] and use rewriting
as in Hoffbeck-Dotsenko-Khoroshkin.
Related to rewriting of polygraphs (work in progress with
Ph.Malbos and Y.Guiraud)
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Algebras Operads Combinads

(associative alg) (ns operads)
T (V ),

U(g), S(V ) As
· · ·

(dendriform alg)
PBT (V ), PT

T sh(V ), Dend
· · ·

(whatever alg)
· · · · · ·

(Lie alg) (symm operads)
Lie(V ),
g, sln Lie
· · ·

(commutative alg)
S(V ),

K [x, y ]/ ∼, Com T

· · ·
(associative alg)

T (V ), · · · Ass

· · · · · ·
(permutads)

· · · PermAs

· · · q-permAs SM

· · · · · ·
(shuffle operads)

· · · Ass

· · · Com

· · · q-permAs ShT

· · · ShAs

· · · · · ·



IV. Another example: surjective maps and
permutads

[JLL-MR]

The combinatorial pattern of surjective maps X:
Xn = surjective maps t : n→ k
vertices of t: the elements of k (shown as ×)
inputs of a vertex v of t: the sectors around v (the number is
#t−1(v) + 1)

n = 3 • • •

vertices k = 2 × ×

Substitution: given by composition of surjective maps

An algebra over this combinad is called a permutad.
This is the combinatorial definition of a permutad.
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Permutad vs shuffle algebra

Prop A permutad is an N-module P equipped with linear maps

•γ : Pn+1 ⊗ Pm+1 → Pn+m+1, for γ ∈ Sh(n,m),

verifying:
x •γ (y •δ z) = (x •σ y) •λ z ,

whenever (1n × δ) · γ = (σ × 1r ) · λ in Sh(n,m, r).

For some shuffles: •γ = ◦i (consecutive elements in the second set)

This is the partial definition of a permutad. This is essentially the
definition given by M. Ronco of a shuffle algebra, which are in fact
colored algebras.

M. Ronco, Shuffle bialgebras, Ann.Inst.Fourier 61
(2011), 799–850.
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PermAs and the permutohedron
The analog of As is the permutad generated by a binary operation
and the associativity relation, denoted PermAs

THM PermAsn is one-dimensional (like Asn).
Key lemma: connectedness of a subgraph of the weak Bruhat order
graph:
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Figure: P2 and trees



Figure: P3



Minimal model of PermAs

• Minimal model of the ns operad As is A∞ where

(A∞)n = C∗(associahedron)

• Minimal model of the permutad PermAs is PermAs∞ where

(PermAs∞)n = C∗(permutohedron)

PROP The permutad with one binary operation and relation

(xy)z = q x(yz)

is Koszul for any q.
(In the operad case, only for q = 0, 1,∞)
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V. Further research (work in progress):

a) Feynman diagrams
One can construct a combinad from finite graphs with various
decorations stable by substitution,
for instance Feynman graphs (QED, ϕ4)
(work in progress JLL-N.Nikolov related to vertex algebras)

Symmetry choice in a combinatorial pattern at vertices
with n + 1 flags:

I planar rooted ⇒ symmetry group = {1},
I planar nonrooted ⇒ symmetry group = Cn+1 (cyclic group),
I nonplanar rooted ⇒ symmetry group = Sn,
I nonplanar nonrooted ⇒ symmetry group = Sn+1,
I p inputs, q outputs ⇒ symmetry group = Sp × Sq.
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More general combinatorial patterns

Let Y be a combinatorial pattern, for instance •, N (ladders). A
combinatorial pattern X over Y is
a set X of elements such that each t ∈ X has an underlying set
|t| ∈ Y (replaces n)
Any t ∈ X comes with its set of vertices v ∈ vert(t) and its set of
leaves leav(t) ∈ Y
Any vertex v comes with its set of inputs in(v) ∈ Y

For any trees t, s and v ∈ vert(t) and an isomorphism
in(v) ∼= leav(s) there is given a new tree denoted t ◦v s such that
|t ◦v s| = |t|, vert(t ◦v s) = (vert(t)\{v}) ∪ vert(s)
We assume associativity of this composition, that is
I. sequential axiom, for w ∈ vert(s): (t ◦v s) ◦w r = t ◦v (s ◦w r)
II. parallell axiom, for w ∈ vert(t): (t ◦v s) ◦w r = (t ◦w r) ◦v s
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Combinatorics

ladder = Dynkin diagram An

How to continue the sequence:

k = 0 k = 1 k = 2 k = 3
Mod N-mod PT-mod CPT-mod

• • • • (see picture later)

ladder circled ladder = tree circled tree



Free combinad

The combinatorial pattern is made of circled trees

leaves: elements in Algebras
vertices: operations in Operads
circles: compositions in Combinads

Substitution: as usual

(related to the dendroidal sets of Ieke Moerdijk and Ittay Weiss)
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b) higher operads: opetopes

Alg=0-op Op=1-op Comb=2-op · · ·
· · ·

CPT(W ) CPT

Mag(M) = PT(M) PT

T (V ) = As(V ) As={Asn}n≥1

V = •-module •
M = N-module N • • • comb. pattern over •
W = PT-module PT comb. pattern over N

CPT comb. pattern over PT
etc. comb. pattern over CPT

T (V ),Mag(M),CPT(W ) are free objects,
As, PT are associative objects
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A tower of binary trees

= binary opetope

graphs circled graphs rooted trees
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Opetopes

Similar objects already appeared in the literature in the work:

Baez, J.C.; Dolan, J., Higher-dimensional algebra.
III. n-categories and the algebra of opetopes. Adv.
Math. 135 (1998)

under the name opetopes.

Not surprizing since the philosophy is the same, except that
Baez, Dolan (and then Joyal, Kock, Batanin, etc.) work in the set
environment, while we are working in the linear environment.
Main differences: a set is a co-object, because of the diagonal
(duplication is possible),
in the linear case there is more freedom (Lie is not set-theoretic).
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Quantum groups
Number of binary opetopes a(n), for An,

d(n), for Dn, etc.

:

n 1 2 3 4 5 6 7
a(n) 1 1 2 10 144

6 608 1 044 736
d(n) 1 1 2 12 184 8 704 1 395 456

10 = 5× 2, 144 = (12× 5 + 2× 6)× 2

This is, , the number of regions of linearity for Lusztig’s
piecewise-linear function in type An−1 appearing in the study the
canonical basis of

U−q (sln)

Canonical bases for quantized enveloping algebras were
introduced by George Lusztig and Masaki Kashiwara in the nineties.
Lusztig, G. Canonical bases arising from quantized

enveloping algebras. J.Amer.Math.Soc.3 (1990)

CONJECTURE The number of regions of linearity for A6 is

1 044 736



Quantum groups
Number of binary opetopes a(n), for An,

d(n), for Dn, etc.

:

n 1 2 3 4 5 6 7
a(n) 1 1 2 10 144

6 608 1 044 736
d(n) 1 1 2 12 184 8 704 1 395 456

This is, up to n = 5, the number of regions of linearity for Lusztig’s
piecewise-linear function in type An−1 appearing in the study the
canonical basis of

U−q (sln)

Canonical bases for quantized enveloping algebras were
introduced by George Lusztig and Masaki Kashiwara in the nineties.
Lusztig, G. Canonical bases arising from quantized

enveloping algebras. J.Amer.Math.Soc.3 (1990)

CONJECTURE The number of regions of linearity for A6 is

1 044 736



Quantum groups
Number of binary opetopes a(n), for An,

d(n), for Dn, etc.

:

n 1 2 3 4 5 6 7
a(n) 1 1 2 10 144 6 608

1 044 736
d(n) 1 1 2 12 184 8 704 1 395 456

This is, up to n = 6, the number of regions of linearity for Lusztig’s
piecewise-linear function in type An−1 appearing in the study the
canonical basis of

U−q (sln)

Canonical bases for quantized enveloping algebras were
introduced by George Lusztig and Masaki Kashiwara in the nineties.
Lusztig, G. Canonical bases arising from quantized

enveloping algebras. J.Amer.Math.Soc.3 (1990)

CONJECTURE The number of regions of linearity for A6 is

1 044 736



Quantum groups
Number of binary opetopes a(n), for An,

d(n), for Dn, etc.

:

n 1 2 3 4 5 6 7
a(n) 1 1 2 10 144 6 608 1 044 736

d(n) 1 1 2 12 184 8 704 1 395 456

This is, up to n = 6, the number of regions of linearity for Lusztig’s
piecewise-linear function in type An−1 appearing in the study the
canonical basis of

U−q (sln)

Canonical bases for quantized enveloping algebras were
introduced by George Lusztig and Masaki Kashiwara in the nineties.
Lusztig, G. Canonical bases arising from quantized

enveloping algebras. J.Amer.Math.Soc.3 (1990)

CONJECTURE The number of regions of linearity for A6 is

1 044 736



Quantum groups
Number of binary opetopes a(n), for An, d(n), for Dn, etc.:

n 1 2 3 4 5 6 7
a(n) 1 1 2 10 144 6 608 1 044 736
d(n) 1 1 2 12 184 8 704 1 395 456

This is, up to n = 6, the number of regions of linearity for Lusztig’s
piecewise-linear function in type An−1 appearing in the study the
canonical basis of

U−q (sln)

Canonical bases for quantized enveloping algebras were
introduced by George Lusztig and Masaki Kashiwara in the nineties.
Lusztig, G. Canonical bases arising from quantized

enveloping algebras. J.Amer.Math.Soc.3 (1990)

CONJECTURE The number of regions of linearity for A6 is

1 044 736



More: a helpful lemma in order to compute a(n) and d(n) is the
following. A partition of the graph G is: I and J nonempty
connected subgraphs of G such that each vertex is either in I or in
J. Define ϕ(G ) = sum of “derived graphs” ( forgetful ◦ choice)

Lemma For any graph G we have

ϕ(G ) =
∑
(I ,J)

ϕ(I ) ∨ ϕ(J) ,

where the sum is over all partitions of G .

This decomposition is close to Carter’s method to construct regions
of linearity in
Carter, R.W. Canonical bases, reduced words, and
Lusztig’s piecewise-linear function. ...(1997).

Thanks to Richard Green and Robert Marsh for their help.
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