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Toposes

[. . .] vi el Aleph, desde todos los puntos,
vi en el Aleph la tierra, y en la tierra otra
vez el Aleph y en el Aleph la tierra, vi mi
cara y mis vísceras, vi tu cara, y sentí
vértigo y lloré. . .

JLB

Topos theory is a cornerstone of category theory linking together
algebra, geometry and logic.

In each topos it is possible to re-enact Mathematics; today we
focus on

• Logic (better said, a fragment of dependent type theory)
• Differential geometry (better said, iterated tangent bundles)
• (Secretly, algebraic topology)
• . . .
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Sheaves on spaces

Let (X , τ) be a topological space; a sheaf on X is a functor
F : τop → Set such that for every U ∈ τ and every covering {Ui}
of U one has

• if s, t ∈ FU are such that s|i = t|i in FUi for every i ∈ I , then
s = t in FU.

• if si ∈ FUi is a family of elements such that si |ij = sj |ij , then
there exists a s ∈ FU such that s|i = si .1

1We denote s|i the image of s ∈ FU under the nameless map FU → FUi

induced by the inclusion Ui ⊆ U.
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Examples of sheaves

Every construction in Mathematics that exhibits a local character is
a sheaf:

• sending U 7→ CU, continuous functions with domain U

(similarly, differentiable, C∞, Cω, holomorphic. . . )
• sending U 7→ ΩpU, differential forms supported on U

(similarly: distributions, test functions. . . )
• . . . sending U 7→ {f : U → R | f has property P locally} for

some P .

Every construction that does involve global properties, is not a
sheaf:

• sending U 7→ {bounded functions f : U → R}
• sending U 7→ {L1 functions f : U → R}
• . . .
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Grothendieck topologies

A sieve on an object X of a category C is a subobject S of the hom
functor yX = C( ,X );

A Grothendieck topology on a category amounts to the choice of a
family of covering sieves for every object X ∈ C; this family of
sieves is chosen in such a way that

[ list of axioms abstracting the fact that

• if {Ui} covers U, then for every V ⊆ U V ∩ Ui covers V ;

• if {Ui} covers U and {Vij} covers Ui , then Vij covers U;

• {U} covers U.

]
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Grothendieck topologies

A Grothendieck site is a category with a Grothendieck topology, i.e.
a function j that assigns to every object a family of covering sieves.

We denote a site as the pair (C, j).
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Sheaves on a site

A sheaf on a small site C is a functor F : Cop → Set such that for
every covering sieve R → yU and every diagram

R
f //

m
��

F

yU

>>

there is a unique dotted extension yU ⇒ F (by the Yoneda lemma,
this consists of a unique element s ∈ FU: exercise, derive the sheaf
axioms from this).

The full subcategory of sheaves on a site (C, j) is denoted Sh(C, j).
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Giraud Theorem

By general facts on locally presentable categories, the subcategory
of sheaves on a site is reflective via a functor

r : Cat(Cop, Set)→ Sh(C, j)

called sheafification of a presheaf F : Cop → Set.

Grothendieck was the first to note that in every topos of sheaves the internal
language is sufficiently expressive to concoct higher-order logic and he strived to
advertise his intuitions to an audience of logicians.

But it wasn’t until Lawvere devised the notion of elementary topos that the
community agreed on the potential of this theory.
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Elementary toposes

An elementary topos is a category E that

• it has finite limits (products, equalizers, pullbacks);

• is cartesian closed (every A× has a right adjoint);

• has a subobject classifier, i.e. an object Ω ∈ E such that the
functor Sub : Eop → Set sending A into the set of isomorphism
classes of monomorphisms

U
↓
A

is representable by the object Ω.
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Elementary toposes

The natural bijection E(A,Ω) ∼= Sub(A) is obtained pulling back a
“characteristic arrow” χU : A→ Ω along a universal arrow
t : 1→ Ω to obtain the monic U, as in the diagram

U

y

//

m
��

1
t
��

A χm
// Ω

The bijection is induced by the maps

• χ− :
[
U
↓
A

]
7→ χm and

• −×Ω t : χU 7→ χU ×Ω t.
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Grothendieck ⊂ elementary

En los libros herméticos está escrito que
lo que hay abajo es igual a lo que hay
arriba, y lo que hay arriba, igual a lo que
hay abajo; en el Zohar, que el mundo
inferior es reflejo del superior.†

JLB

• Every Grothendieck topos is elementary;
• An elementary topos is Grothendieck if and only if it is a

locally finitely presentable category.

Giraud theorem characterises Grothendieck toposes as such
elementary toposes.

†Microcosm principle: a topos, i.e. a place where subobjects are
well-behaved, is but a well-behaved subobject in the 2-category of
presheaf categories.
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Axiomatic Cohesion
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What is cohesion

Cohesion is the mutual attraction of molecules sticking together to
form droplets, caused by mild electrical attraction between them.

Figure 1: Droplets of mercury “exhibiting cohesion”
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What is cohesion

Classes of geometric spaces exhibit similar coagulation properties,
similar to internal forces leading them to adhere and form coherent
conglomerates.

This behaviour is typical of smooth spaces.

Example
Smooth manifolds can be probed via smooth open balls and every
smooth space is a “coherent conglomerate” of cohesive pieces.

Question
Which axioms formalize this intuition? What is axiomatic
cohesion?

Axioms to answer this question have been devised by Lawvere
[Law1] (worth reading, but quite mystical!).
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Desiderata

We would like to operate in a category (a topos) of “cohesive
spaces”, such that

• there is a functor Π: H → Set that sends every cohesive space
X ∈ H into its set of connected components.

• Every set S ∈ Set can be regarded as a cohesive space in two
complementary ways:

• discretely, with a functor Set→ H that regards every singleton
of S as a cohesive droplet;

• codiscretely, with a functor Set→ H that regards the whole S

as an unseparable cohesive droplet.

• Discretely and codiscretely cohesive spaces embed in H, with
fully faithful functors.
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Axiomatic cohesion

An adjunction

Π a disc a Γ a codisc : H ⊥
⊥

⊥

Π //

Γ // Set
discoo

codisc
oo

exhibits the cohesion of H over Set if

• disc and codisc are fully faithful;

• the leftmost adjoint Π preserves finite products.

(Γ “forgets cohesion”: it sends a space to its underlying set of
points)
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Formal fact. Every quadruple of adjoints induces a triple of
adjoints.

• There is an adjoint triple of idempotent co/monads on H,
induced by the cohesion:

H
⊥

⊥

Π //

oo disc

Γ
//
Set

⊥

⊥

disc //

oo Γ

codisc
//
H

monad comonad monad
S (−)[ (−)]

disc ◦ Π disc ◦ Γ codisc ◦ Γ

pron.: shape pron.: flat pron.: sharp
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Modalities, pieces

The triple of adjoints

H [ //
oo S

oo
]

H

is called the shape, flat, sharp string of “co/modalities”
(idempotent co/monads) for the cohesive topos H.

The shape of X ∈ H is the discrete object on the “fundamental
groupoid” of X .

Idea. The adjunction Π a disc has something to do with
(topological) Galois theory.
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Modalities, pieces

1. The flat functor corresponds to the object of flat
connections on X ∈ H: if G is a group,

{ principal
bundles on X } ∼= { X // // BG } { flat con-

nections on X } ∼=

 BG [

��
X //

<<

BG


(keep in mind this equivalences: they will reappear later)

2. sharp of X , X ], corresponds to the codiscrete object on the
sets of points ΓX of X .

3. Co/discrete objects are precisely the objects for which
X [ ∼= X , resp. Y ] ∼= Y .
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Every object fits in a “complex”:

Definition
There is a canonical natural trasformation

]X
ε(discaΓ),X−−−−−−→ X

η(Πadisc),X−−−−−−→ SX

called the “points to pieces” map; this map comes from a natural
transformation

α : Γ⇒ Π

αX : ΓX → ΠX

It is a “comparison” between the action of Γ (send X into its
“sections” or “set of points”) and Π (send X into its “pieces” or
“components”).
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• We say that pieces have points in the cohesive topos H (or
that “H satisfies Nullstellensatz”) if the points-to-pieces
transformation αX : ΓX → ΠX is surjective for all X ∈ H.

• We say that discrete is concrete in H if natural
transformation whose components are

disc(S)→ codisc(Γ(disc(S))) ∼= codisc(S)

is a monomorphism (discrete cohesion sits into codiscrete
cohesion).

• We say that H has contractible subobjects or has
sufficient cohesion if Π(Ω) ∼= ∗. This implies that for all
X ∈ H also Π(ΩX ) ∼= ∗.

• . . . and many others (see [Law]).
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Example of modal truth

Definition
ψ : S ↪→ A in a cohesive topos H is a proposition of type A in the
internal logic of H. We say that ψ is discretely true if the pullback
ψ∗(S)→ A

ψ∗(S) //

��
y

[S

[ψ
��

A η
// [A

is an isomorphism in H, where η : A→ [A is the [-unit of the flat
monad.
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Example of modal truth

• Discrete truth specifies a mode/modality in which a
proposition can be true. Propositions true over all discrete
objects (i.e., such that [ψ is an iso) are discretely true.

• Let H = Sh(Cart, J) be the topos of sheaves over cartesian
spaces (hom(m, n) = smooth maps Rn → Rm) is cohesive.

• Let ψ : Zp(U) ↪→ Ωp(U) be the proposition in H given by “the
p-form ω is closed on a neighbourhood Vx ⊆ U of a point
x ∈ U”. Then ψ is discretely true (“every form is closed over a
discrete space”).
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Examples
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EX: The Sierpiński topos

Let C = {0→ 1} be the interval category with a unique
non-identity arrow.

The category H = Cat(C, Set) exhibits cohesion: an object in H is
an arrow in Set, and

• the functor Π sends an object S → I to its codomain I ;

• the functor Γ sends an object S → I to its domain S ;

• the functor disc sends a set K into the identity 1 : K → K ;

• the functor codisc sends a set K into its terminal morphism
K → ∗.
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EX: The Sierpiński topos

Evidently these functors form an adjunction (Π a disc a Γ a codisc)

so that H exhibits cohesion; this matches our intuition, in that

• The “points to pieces” transformation sends f : S → I into
S = Γ(f )→ Π(f ) = I ;

• disc(K ) “keeps all the pieces of K maximally distinguished” and

• codisc(K ) “lumps all the pieces of K together”.
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EX: Pointed categories

Let C small and with a terminal object. Then there exists a triple

[Cop, Set]

lim−→ //

lim←−
//
Setconstoo

that extends to lim←− a

K

:

S
K

7→
(
c 7→ Set(C(∗, c), S)

)
(Dually, if C has an initial object. . . )

Proposition
If C has both an initial and a terminal object (e.g. it is pointed)
then [Cop, Set] exhibits cohesion with

(lim−→ a const a lim←− a

K

) : [Cop, Set]
const
� Set
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EX: Simplicial sets

Proposition
Let ∆ be the simplex category having objects nonempty finite
ordinals and morphisms monotone maps. The topos
H = [∆op, Set] exhibits cohesion, and in H pieces have points.

• Γ = (−)0 sends a simplicial set X into its set of 0-simplices X0

• Π = π0 sends a simplicial set X into its set of connected
components coeq

(
X1 ⇒ X0

)
.

• disc sends a set S into the constant simplicial set in S having
constant set of simplices and identities as faces and
degeneracies.

• codisc sends a set S into the simplicial set whose n-simplices
are (n + 1)-tuples of elements of S (and faces and
degeneracies forget and add elements accordingly).
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EX: Tangent cohesion

Consider the codomain fibration

C→ p // C

of a finitely complete category C, sending an arrow f : X → Y to
its codomain. The fiber p←(Y ) is canonically isomorphic to the
category C/Y of arrows over Y .

There exists a fibration TC → C having typical fiber the fiberwise
abelianization of C/Y , i.e. the category Ab(C/Y ) of abelian groups
in C/Y .

(hint: un/straighten the prestack C → Cat : Y 7→ Ab(C/Y )).

Proposition
If C is a topos over S, then so is TC; moreover, the projection
q : TC → C creates co/limits.
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Tangent cohesion

Proposition
Functor δ : TC → C = domain projection. Has left adjoint the
functor Ω: C → TC that is also a section for q.

Ω(A) = the complex of differential forms on an internal abelian
group A ∈ Ab(C/X ).

In classical differential geometry a leading theorem is that the
co/tangent bundle to a smooth manifold is itself a smooth
manifold. Here we can prove that

Fact
The tangent category to a cohesive topos is itself a cohesive
topos.
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Infinitesimal cohesion

Let H be cohesive. An infinitesimal thickening of H is a new
cohesive topos H̃ linked to the previous by a quadruple of adjoints

H� _

(i!ai∗ai!ai !)

��

� _

��

H̃

OOOO OO

such that i∗, i! are fully faithful and i! commutes with finite
products.

If such a structure exists, H “exhibits infinitesimal cohesion”.

Neighbourhoods of some spaces are “infintesimally extended around a
single (global) point”. Cohesive structure can be refined to capture this
phenomenon. 30



Infinitesimal cohesion

• The cohesion exhibited by H̃ factors through that of H, in that

(ΠH̃ a discH̃ a ΓH̃) : H̃
i !

//
oo i∗

i∗ //
H

Γ
//

oo disc

Π //
Set

• Infinitesimal cohesion describes formally infinitesimally
extended neighbourhoods: if the functor i∗ is interpreted as a
contraction of a fat point onto its singleton, then X ∈ H̃ is
infinitesimal if i∗(X ) ∼= ∗. This motivates the fact that

H̃(∗,X ) ∼= H̃(i!(∗),X ) ∼= H(∗, i∗(X )) ∼= H(∗, ∗) ∼= ∗

so that H sees X as a “small neighbourhood concentrated
around a single point ∗X ”.
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Higher order cohesion: jet spaces

Most examples of infinitesimal cohesions come equipped with an
infinite chain of thickening approximations.

Consider the infinitesimal shape modality = := i∗i
∗

(it comes equipped with other two adjoints, < a = a &)2

In several cases (like smooth manifolds) we have a chain of
infinitesimal thickenings

H̃0

� � //
oo i∗

(0)� � i∗,(0) //oo
H̃1

� � //
oo i∗

(1)� � i∗,(1) //oo
H̃2

� � //
oo i∗

(2)� � i∗,(2) //oo
· · ·

� � //
oo i∗#� � i∗,# //
oo

H̃∞

� � //
oo i∗

(∞)� � i∗,(∞) //oo
H

here we speak of a sequence of orders of differential structures.

2This is the same general fact inducing S a [ a ] adjunction.
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Higher order cohesion: jet spaces

Each of these approximations comes equipped with an order k
infinitesimal shape modality =(k)X in a sequence

X → =X = =(0)X → =(1)X → =(2)X → · · ·

Example: Every cohesive topos exhibits infinitesimal cohesion via
its tangent cohesive topos. This cohesion extends to any order of
differential structure (“cohesive jet spaces”).
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One can go way further, but the terminology becomes pretty dire:

[DCCT170811], 1040 pages of Hegel-ish mathematics

uses axiomatic cohesion of ∞-toposes to axiomatise string theory.
With Aufhebung.
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Supergeometry: rheonomy

We can speak of supergeometry and show that certain categories of
supersmooth manifolds exhibit cohesion (but not over Set. . . ):

SuperSmoothSOO

c

OO

d Γ
��

Π
��
SuperS

The quadruple of adjoints generates the triple

⇒ a  a Rh

(in some sense “fermions” a “bosons”)
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Supergeometry: rheonomy

There is a “quadruple-to-triple”pattern here:

⇒  

Rh

solidity
< =

&

elasticity
S [

]

cohesion
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de Rham cohomology in cohesion

• Let H be a cohesive topos, and 0→ A a pointed object (e.g.
an internal abelian group); then, A fits into a pullback square

[dRA //

��
y

[A

��
0 // A

where [dRA is the object of coefficients for de Rham
cohomology.

• Let X ∈ H any object; we define SdRX to be the pushout

X //

��

0

��
SX // SdRX

where SdRX is the de Rham object associated to X .
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de Rham cohomology in cohesion

There is an adjunction

∗/H
[dR //

H
SdR

oo

The mapping space ∗/H(SdRX ,A) ∼= H(X , [dRA) is called the de
Rham space of X with coefficients in A and denoted H0

dR(X ,A).
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de Rham cohomology in cohesion

Consider the pullback defining [dRA and apply the limit-preserving
functor H(X ,−): the square

H(X , [dRA) //

��
y

H(X , [A)

��
0 // H(X ,A)

remains a pullback and the object H(X , [A) identifies to A-valued
differential forms, and the maps X → [dRA are the flat ones: under
the S a [ adjunction, a map X → [A mates to a smooth map

SX → A, corresponding to a square
X → 0
↓ ↓

SX → A
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