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Abstract

In this paper, we construct a type theory which deals with non-linear, ordinary dependent types (which we will call
cartesian), and linear types, where both constructs may depend on terms of cartesian types. In the interplay between
the cartesian and linear types we introduce the new type formers ux:AB and @x:A B, akin to ⇧ and ⌃, but where the
dependent type B, (and therefore the resulting construct) is a linear type. These can be seen as internalizing quantification
over linear propositions. We also introduce the modalities M and L, transforming linear types into cartesian types and
vice versa.

We interpret the theory in a split comprehension category ⇡ : T ! C! [Jac93], accompanied by a split monoidal
fibration (Definition 4.3), q : L ! C. The intuition is that C models a category of contexts, so that for any � 2 C, the fiber
T
�

is the category containing the cartesian types which can be formed in the context �, while the fiber L
�

is a monoidal
category of linear types in �. In this setting, the type formers ux:A and @x:A are understood as right and left adjoints
of the monoidal reindexing functor ⇡⇤

A : L
�

! L
�.A corresponding to the weakening projection ⇡A : �.A ! � in C. The

operators M and L give rise to a fiberwise adjunction L a M between L and T , where we understand the traditional
exponential modality as the comonad ! = LM .

We provide two concrete examples of models, the set-indexed families model and the diagrams model. In the former,
cartesian types are interpreted in the familiar way, as sets indexed by their context set �, and linear types are interpreted
as �-indexed family of objects of a symmetric monoidal category V. The latter model extends the groupoid model of
dependent type theory [HS98] to accomodate linear types. Here, cartesian types over a context � are interpreted as a
family of groupoids indexed over the groupoid �, while linear types are interpreted as diagrams over groupoids, A : � ! V
in any symmetric monoidal category V. We show that the diagrams model can under certain conditions model a linear
analogue of the univalence axiom, and provide some discussion on the higher-dimensional nature of linear dependent types.
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1 Introduction & summary of results

Lately, there has been an increasing interest in combining linear and dependent types [Sch14], [KPB15], [V1́5], [McB16].
The idea is that such a theory would inherit the higher-order nature of dependent types, while maintaining a careful
account of how assumptions are used in a derivation. It is not completely clear, however, what the synthesis looks like,
since in dependent type theory, variables may appear in both terms and types, but linear type theory only allows each
variable to appear freely exactly once. Here, we take an approach inspired by [KPB15] and [V1́5], in which we distinguish
between non-linear, dependent types (which we call cartesian), and linear types, and circumvent the issue by only allowing
cartesian terms to appear in types (both cartesian and linear).

The theory splits contexts into two parts, divided by a semicolon, where the first part contains cartesian assumptions,
for which weakening and contraction is admissible, while the second part contains linear assumptions, for which only
exchange is allowed. We introduce two new type formers, ux:AB and @x:A B, akin to ⇧ and ⌃, but where the dependent
type B (and therefore the resulting construct) is a linear. The traditional ! modality is deconstructed as a comonad arising
from the adjoint pair L a M , where L is a functor (or modality) sending cartesian types into linear, and M sends linear
types to cartesian. We have ⇧x:ABM

⇠= (ux:AB)M , for linear B, and, assuming a few additional rules, a linear equivalence
(⌃x:AC)L ⇠=@x:A CL for cartesian C.

Compared to ordinary depdenent type theory, we get additional elimination and computation rules for both ⌃ and
Id-types when eliminating into a linear type.

We postulate the existence of two universes, L and U , containing codes of linear and cartesian types, respectively and
assumed to be closed under all type formers.

We develop categorical semantics for the theory, using traditional ZFC as a metatheory (assuming some inaccesible
cardinals to support universes in Section 5.1.1). Our starting point is a comprehension category [Jac93], ⇡ : T ! C equipped
with a split monoidal fibration q : L ! C over the same base. A split monoidal fibration has just enough structure to
make the fibers L

�

over a context � 2 C into monoidal categories, and reindexing functors (strict) monoidal functors. The
traditional linear type formers &,�, 0,>,( correspond to the existence of binary products and coproducts, initial and
terminal object and internal homs in each fiber, such that these are preserved under reindexing. The new type formers
ux:AB and @x:A B correspond to right and left adjoints to the reindexing functor ⇡⇤

A : L
�

! L
�.A, while the modalities L

and M give rise to a fiber adjunction between L and T . The new rules for ⌃ are automatically satisfied by the semantic
interpretation of ⌃A as a left adjoint to the reindexing functor ⇡⇤

A : T
�

! T
�.A. The new rules for Id-types impose an

additional condition on the semantic interpretation of Id, which are always fulfilled if our identity types are extensional.
We consider two concrete models, the families model, in which cartesian types consist of families of sets, indexed by

their context set �, and a linear type in the context � is a �-indexed family of objects in a given symmetric monoidal
category V. Examples of suitable V supporting all type formers present in our syntax are AbGrp, GCTop⇤, VectF , i.e.
the category of abelian groups, the category of compact generated, pointed topological space and the category of vector
spaces over a field F , respectively.

Generalizing the families model, we get the diagrams model, in which contexts are interpreted as groupoids, and cartesian
types over a groupoid � are diagrams in Gpd over �, and linear types over � are diagrams in a given symmetric monoidal
category V over �. Just as the groupoid model [HS98] can be shown to support a univalent universe, we construct a linear
analogue of the univalence axiom and show that it holds in the diagrams model if the adjunction L a M factors through
sets.

We will be assuming a certain familiarity with basic category theory concepts like limits, adjoints and monoidal
categories. For a good introduction to these notions, the reader is directed to [Awo10].

The structure of this paper is as follows: after reviewing some theory on fibrations, monoidal categories, higher and
enriched categories in the Section 2, we outline the syntax of our linear dependent type theory in Section 3. Section 4 first
defines a minimal categorical framework (the semantic core) necessary for interpreting the structural rules of the theory,
dealing with weakening, context extension and substitution once and for all, and then proceeds by specifying the additional
conditions imposed in order to support various type formers.

We then turn our direction to more concrete models in Section 5, and reexamine these conditions in these particular
settings. We end with some discussion on the particularities of linear dependent type theory: the new elimination rules
it introduces, inductive types in this setting, equality of linear terms and the possible higher dimensional nature of linear
dependent types.

Our theory is both semantically and syntactically motivated, approached through a dialectic where we consider both
the translation of constructs into previously known structures and their independent utility as part of a deductive system.
Therefore, a reader familiar with both category theory and type theory may benefit from jumping between sections to
understand each indivual type former from both perspectives.
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2 Preliminaries

2.1 Dependent type theory

Dependent types are types in which terms from other types may appear freely. The canonical example is the type V ec(n),
of vectors of length n : N. This general class of deductive frameworks was pioneered by Per Martin Löf [ML84] as a
foundation for constructive mathematics. For a thorough introduction to the syntax and semantics of dependent types, the
reader may refer to [Hof97]. Here, we only present three short intuitions on how dependent type theory can be understood:

From a syntactic perspective, a type is a syntactic object whose meaning and function stems from the ways in which
it interacts with the derivation rules of a particular type theory. A definition of this kind is the best we can hope for if
we want to view type theory as a foundational system of mathematical reasoning, as it does not rely on any predefined
semantic framework. Taking a foundational view, the relevant question is not what is a type? but rather, for any other
mathematical construction X how do I express X, type theoretically?.

Relaxing the foundational viewpoint, assuming the words sets, propositions and logic already have meaning to us, we
can understand type theory as an alternative approach to higher order logic, in which we carry along “proof terms”, or
witnesses, for all proven propositions. In this setting, a first approximation of what a type is can be as the simultaneous
generalization of a proposition and a set. This generalization allows us to understand the ⇧-type as both a universal
quantifier and as an implication, and the ⌃-type as both an existential quantifier and ^. This makes type theory a higher
order system of deduction with penchant for a computational interpretation on the nature of proofs.

A third way to understand dependent type theory is as a programming language, forming a unified framework for
computation and their specification. This connection goes under the name of the Curry–Howard correspondence, or the
paradigm of “proposition as types”. The computation rules of our theory provides the dynamics of our language by way
of rewriting terms to express them in a canonical form, while our typing rules ensure that the output has the appropriate
format.

2.2 Linear type theory

Linear logic is a substructural logic in which the structural rules of weakening and contraction:

�,� ` B

�, A,� ` B
Weak

�, A,A,� ` B

�, A,� ` B
Contr

are not admissible.
In other words, assumptions cannot be freely assumed or dismissed; they must be used exactly once in the conclusion.

In linear logic, we are inclined to think of a sequent A
1

, A
2

, . . . , An ` B as modeling a function or process in which the
assumptions A

1

, A
2

, . . . An are resources used to yield B. As a first, toy example, we consider the chemical process of
burning hydrogen:

Example 2.1. Consider the following primitive derivation rule:

O
2

⌦H
2

⌦H
2

` H
2

O ⌦H
2

O

stating that given an oxygen molecule and two hydrogen molecules, burning yields two water molecules. If weakening was
admissible, we would be able to assume an additional hydrogen molecule without changing the antecedent, which does not
make sense under the resource interpretation of linear logic.

Just as inuitionistic logic naturally extends to (dependent) type theory under the slogan of propositions as types, linear
logic can be extended to a linear type theory, where sequents are decorated with proof terms:

x
1

: A
1

, x
2

: A
2

, . . . xn : An ` t : B

and here linearity implies that the free variables of t are x
1

, x
2

, . . . xn, each appearing exactly once.
Semantically, the generalization of a linear logic to linear type theory corresponds to the generalization of symmetric

monoidal preorders to symmetric monoidal categories.
Interest in linear type theory stems from disparate sources. From the perspective of (classical) computer science, it can

be used for modeling state and storage, with linear variables denoting resources like pointers or files [KPB15], or even as a
theoretical description of the resource handling of a blockchain [Mer15]. In quantum physics, linear types respect the no
cloning theorem of quantum states, and can be used to model quantum computation [D+06]. From a semantic perspective,
linear type theory can be interpreted in a symmetric monoidal closed categories, generalizing the structure of a cartesian
closed categories in which (non-dependent) type theories are interpreted.

2.3 Fibrations

A general heuristic for modeling a mathematical object E dependening on another object B is to specify a projection
morphism p : E ! B subject to certain constraints. For example, a family of sets Ai indexed by the set I might equally
well be understood as the set E =

F
i2I Ai together with a morphism p : E ! I such that p�1(i) = Ai. This is the

idea guiding the concept of a fibration. Depending on which kind of mathematical object we are dealing with, we impose
various conditions on the projection p : E ! B to be able to lift certain structure of the base B into fibers Eb = p�1(b)
for b 2 B.
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2.3.1 Grothendieck fibrations

In the context of categories, the appropriate notion is that of a Grothendieck fibration, often just called fibration. In
order for a functor p : E ! B to be a fibration, one needs to be able to lift arrows in the base category B to arrows in E.
We do this by asking for the existence of certain cartesian arrows in E.

Definition 2.2 (Cartesian arrow). Given a functor p : E ! B, an arrow f : e0 ! e00 of E is said to be cartesian with
respect to p if for every h : e ! e00 and ↵ : p(e) ! p(e0) such that p(f)↵ = p(h), there is a unique arrow ↵̂ : e ! e0 such
that p(↵̂) = ↵ and f ↵̂ = h.

The situation is illustrated in the following diagrams:

p(e) e

p(e0) p(e00) e0 e00

8↵
p(h)

!9↵̂ 8h

p(f) f

Definition 2.3 (Grothendieck fibration). A functor p : E ! B is a Grothendieck fibration if, for every e 2 E, b 2 B
and arrow f : b ! p(e) in B, there exists a cartesian arrow f̂ in E such that p(f̂) = f .

We will refer to a cartesian arrow f̂ for which p(f̂) = f as a lift of f . Although lifts are not uniquely determined, their
domain will determined up to unique isomorphism. A basic review of Grothendieck fibrations particularly relevant to the
semantics of dependent type theory can be found in [Jac93]. We will simply repeat the basic notions that will used in our
investigations.

For any object b 2 B in the base, we call the subcategory of E which is mapped to b and its identity morphism the fiber
over b. This will be denoted Eb. A fibration p : E ! B induces for every u : b ! b0 in B a reindexing functor u⇤ : Eb0 ! Eb,
defined by sending every object to the domain of a lift of u. Such functors will be unique up to unique natural isomorphism.
In general, for two compatible morphisms u and v in the base, the reindexing functor of a composition is not identical to
the composition of reindexing functors – only naturally isomorphic. In other words, we have u⇤ � v⇤ ⇠= (u � v)⇤, but not
functoriality on the nose.

Although the definition of a fibration merely stipulates the existence of cartesian arrows, we often consider fibrations
equipped with a collection of liftings {u⇤}u2B , called a cleavage. Fibrations equipped with a cleavage such that the equalities
1⇤
�

= 1L� and u⇤ � v⇤ = (u � v)⇤ holds on the nose for all reindexing functors are called split.

Definition 2.4 (Cartesian functor). Let p : E ! B and q : E0 ! B be fibrations over the same base. A functor
F : E ! E0 is cartesian if qF = p and cartesian morphisms in E with respect to p are mapped to cartesian morphisms
in E0 with respect to q.

This determines a category Fib(B), consisting of fibrations over B and cartesian functors between them. More generally,
one can construct a category Fib whose morphisms from fibrations p : E ! B and q : E0 ! B0 are pairs of functors (F,G)
where F : E ! E0 and G : B ! B0 such that G � p = q � F and F preserves cartesian morphisms. In fact, the functor
Fib ! Cat sending a fibration to its base is itself a fibration whose fibers are Fib(B) for any small category B.

With the notion of a fibred natural transformation, Fib forms a 2-category.

Definition 2.5 (Fibred natural transformation). For two pairs of parallel functors F , H and G, J between fibrations
(E,B) and (E0, B0), as illustrated in the commutative square:

E E0

B B0

p

F

G

p0

H

J

a Fibred natural transformation (�,�0) between (F,H) and (G, J) is a pair of natural transformations � : G ! F and
�0 : A ! B such that p0(�) = p�0 .

Notice that this definition does not ask for F and G to be cartesian functors. But when that is the case, fibred natural
transformations between the parallel morphisms (F,A) and (G,A) in Fib are the 2-morphisms of this 2-category.

An important special case of this is when B = B0 and H = J = 1B . Then a fibred natural transformation � : F ! G is
simply a natural transformation such that all of its components are sent to identities via p0. Such a natural transformation
is sometimes called vertical

Definition 2.6. Let p : E ! B and q : D ! B be fibrations over the same base and F : E ! D and G : D ! E cartesian
functors with respect to these. F is called a fibred left adjoint of G if F a G in the usual way and the unit ⌘ of the
adjunction is vertical. Such an adjunction will be called a fiber adjunction.
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2.3.2 Other types of fibrations

In exploring models of linear and dependent types, fibrations of other structures will arise. Two important examples will
be fibrations of groupoids and fibrations of monoidal categories.

Definition 2.7. A map p : G ! H in Grpd is a fibration of groupoids if for every g 2 G and f : p(g) ! h in H, there
exists an object g0 and map f̂ : g ! g0 in G such that p(g0) = h and p(f̂) = f : p(g) ! p(g0).

When considering fibrations of monoidal categories, we distinguish between the case where both the fibration and the
base are monoidal categories, and when we simply want each fiber to be a monoidal category and the induced functors
between these to be monoidal functors. The former notion is that of a monoidal fibration:

Definition 2.8. A monoidal fibration is a functor � : E ! B such that

• � is a Grothendieck fibration

• E and B are monoidal categories and � is a strict monoidal functor, and

• the tensor product of E preserves cartesian arrows.

In particular, when B is a cartesian monoidal category, an arrow f : b ! p(e) induces a strong monoidal functor
f⇤ : Be ! Bf⇤e between the fibers [Shu08].

A weaker structure is that of a lax monoidal fibration [Zaw11], which does not require neither E nor B to be monoidal.
We simply want each fiber of E to carry a monoidal structure, and that the induced functors between fibers are monoidal.

Definition 2.9. A lax monoidal fibration is a fibration p : E ! B along with

1. Two functors ⌦ : E ⇥B E ! E and I : B ! E fitting into the following diagram:

E ⇥B E E B

B

⌦

p

I

1

B

.

2. Three fibred natural isomorphisms ↵,� and ⇢ associated with the diagrams:

E ⇥B E ⇥B E E ⇥B E

E ⇥B E E

1

E

⇥
B

⌦

⌦⇥
B

1

E

⌦

⌦

↵

and

B ⇥B E E ⇥B E E ⇥B B

E

I⇥
B

1

E

⇡2
⌦

⇡1

1

E

⇥I

� ⇢

3. such that ↵, � and ⇢ satisfies the pentagon and triangle identities in each fiber.

4. for every b 2 B, ⇢I
b

= ��1

I
b

: Ib ⌦ Ib ! Ib

These conditions are su�cient for each fiber to be a monoidal category and for the induced functors between fibers to
be (lax) monoidal [Zaw11].

Example 2.10. An example of a fibration that is lax monoidal but not monoidal is the fibration Gph ! Set tak-
ing a directed graph1 defined by (V,E, dom, cod : E ! V ) to its underlying set of vertices, V . For two graphs A =
(A,O, domA, codA) and B = (B,O, domB , codB) over the same fiber GphO, we define their tensor product by:

A⌦ B = (A⇥O B, codA � ⇡
1

, domB � ⇡
2

)

1Specifically, a directed multigraph with loops allowed, also known as a quiver, defined by the domain and codomain functions from the edge
set to the vertex set

6



where A⇥O B is the pullback in the following diagram:

A⇥O B B

A O

⇡2

⇡1 cod
B

dom
A

This tensor product is only defined over graphs with the same underlying set, i.e. living in the same fiber.

2.4 Enriched and higher categories

The concept of a category can be generalized in a few di↵erent directions. In exploring semantics of linear dependent type
theory, our first encounter with such structures will be enriched categories, where hom-sets are generalized to “hom-objects”
of a monoidal category V.
Definition 2.11. Recall that a monoidal functor F : C ! D is a functor equipped with a natural transformation
µ : F ⇥ F ! F with components µA,B : F(A) ⌦D F(B) ! F(A ⌦C B) and a morphism ID ! F(IC). Satisfying the
following naturality conditions:

1. (Associativity) For all objects x, y, z 2 C the following diagram commutes:

(F (x)⌦D F (y))⌦D F (Z) F (x)⌦D (F (y)⌦D F (z))

F (x⌦C y)⌦D F (z) F (x)⌦D (F (y ⌦C z))

F ((x⌦C y)⌦C z) F (x⌦C (y ⌦C z))

aD
F (x),F (y),F (z)

µ
x,y

⌦id id⌦µ
y,z

µ
x⌦Cy,z

µ
x,y⌦Cz

F (aC
x,y,z

)

where aC and aD denote the associators of the monoidal categories;

2. (Unitality) For all x 2 C the following diagrams commutes:

1D ⌦D F (x) F (1C)⌦D F (x)

F (x) F (1⌦C x)

✏⌦id

`D
F (x)

µ1C ,x

F (`C
x

)

and

F (x)⌦D 1D F (x)⌦D F (1C)

F (x) F (x⌦C 1)

id⌦✏

rD
F (x)

µ
x,1C

F (rC
x

)

where `C , `D, rC , rD denote the left and right unitors of the two monoidal categories, respectively.

Definition 2.12. For a monoidal category V, a V-enriched category C, consists of the following:

1. A set C
0

of objects,

2. for each pair a, b 2 C
0

, an object Va,b 2 V,
3. for every a, b, c 2 C

0

, a composition law, i.e. a functor Ma,b,c : Vb,c ⌦ Va,b ! Va,c and

4. an identity element ja : I ! Va,a
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such that for all a, b, c, d, the following associativity and identity diagrams commute:

(Vc,d ⌦ Vb,c)⌦ Va,b Vc,d ⌦ (Vb,c ⌦ Va,b)

Vb,d ⌦ Va,b Vc,d ⌦ Va,c

Va,d

M
b,c,d

⌦id

↵

id⌦M
a,b,c

M
a,b,d

M
a,c,d

I ⌦ Va,b Va,b Va,b ⌦ I

Vb,b ⌦ Va,b Va,b ⌦ Va,a

j
b

⌦id

l
r

id⌦j
a

M
a,b,b

M
a,a,b

where a, l and r are the associator, and left and right unitor isomorphisms associated with the monoidal structure of V.
Note that for the special case of V = Set we get back the definition of a category. Plenty of examples of constructions

in enriched categories can be found in the comprehensive introduction Basic concepts of enriched category theory by Max
Kelly, [Kel05].

Another generalization of a category is suggested by the direction in which categories generalize sets/classes by allowing
arrows between objects. Thinking of arrows as one-dimensional objects between zero-dimensional objects, one can imagine
the existence of 2-dimensional arrows between 1-dimensional ones. This leads to the notion of a 2-category. These come in
two di↵erent forms, strict 2-categories (or just 2-categories) or weak 2-categories (also known as bicategories). Equipped
with the notion of an enriched category, strict 2-categories can be defined concisely as:

Definition 2.13. A (strict) 2-category is a Cat-enriched category.

Breaking down this definition provides a more illuminating view. A strict 2-category, C, consists of
• a collection of objects C

0

,

• for any pair of objects a, b 2 C
0

, a category Ca,b, whose objects will be called “1-morphisms” and whose morphisms
are renamed “2-morphisms”.

• for any object a 2 C
0

, an “identity” functor 1a : 1 ! Ca,a,

• for any triple of objects a, b, c 2 C
0

, a functor Ma,b,c : Cb,c ⇥ Ca,b ! Ca,c satisfying the associativity and identity
diagrams from the definition of enriched categories.

The action of M on 1-morphisms is called “horizontal composition” and is written gf := Ma,b,c(g, f) for f 2 Ca,b and
g 2 Cb,c, whereas the composition between 2-morphisms ↵ : f =) g, ↵0 : g =) h for f, g, h 2 Ca,b is written ↵0 � ↵.
Thanks to the functoriality of M , these satisfy the following interchange law :

(�0 � �)(↵0 � ↵) = (�0↵0) � (�↵)

The road from strict 2-categories to weak 2-categories is marched to the category theoretic mantra that “it is undesirable to
speak of equality between objects in a category”. In the presence of 2-morphisms, the same becomes true for 1-morphisms,
as we are given a way to relate 1-morphisms up to isomorphism instead of on-the-nose equality. Thus we are inclined
to loosen the restriction of the associativity and unital diagrams in the definition of a 2-category to only commute up to
coherent natural isomorphism:

Definition 2.14. A weak 2-category or bicategory C is a collection of objects, 1-morphisms and 2-morphisms with
composition, Ma,b,c : Cb,c ⇥ Ca,b, and identity 1a : 1 ! Ca,a functors as before, and for all a, b, c, d 2 C

0

, natural
isomorphisms:

� : Ma,b,d(Mb,c,d, 1C
a,b

) =) Ma,c,d(1C
c,d

,Ma,b,c)a

�a,b : l =) Ma,b,b(1b, id)

⇢a,b : r =) Ma,a,b(id, 1a)

in other words, associated with the diagram of functors:

(Cc,d ⇥ Cb,c)⇥ Ca,b Cc,d ⇥ (Cb,c ⇥ Ca,b)

Cb,d ⇥ Ca,b Cc,d ⇥ Ca,c

Ca,d

(M
b,c,d

,id)

↵

(id,M
a,b,c

)

M
a,b,d

�

M
a,c,d
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1⇥ Ca,b Ca,b Ca,b ⌦ 1

Cb,b ⇥ Ca,b Ca,b ⇥ Ca,a

(1

b

,id)
�

l
r

(id,1
a

)

⇢

M
a,b,b

M
a,a,b

subject to the following coherence conditions. For all 1-morphisms: s 2 Ca,b, t 2 Cb,c, u 2 Cc,d, v 2 Cd,e, the following
diagram in Ca,e,

((vu)t)s (v(ut))s

(vu)(ts) v((ut)s)

v(u(ts))

(�(vu)t),ids)

�(vu)t)s �(v(ut))s

�(vu)(ts)

(id
v

,�(ut)s)

and the following diagram in Ca,c,

(t1b)s t(1bs)

ts

�(t1
b

)s

(r,id
s

)

(id
t

,l)

commutes.

2.5 Monoidal structure of the category of symmetric monoidal categories

In section 5.3, we will consider the category of small symmetric monoidal categories, and the fact that there is a particular
monoidal structure on this category itself. That is, for two symmetric monoidal categories A and B, we will define a
symmetric monoidal category A ⌦ B. Here we briefly outline the idea behind the construction of this category and its
monoidal structure. The full details, as well as many other results about the monoidal structure of SMCat, can be found
in [Sch07].

Definition 2.15. For A,B 2 SMCat, let their tensor product category be the symmetric monoidal category A ⌦ B
whose objects are the words generated by the constant unit symbol I and the 2-ary symbol ⌦ and the language of
Ob(A)⇥Ob(B). In other words, Ob(A⌦ B) is generated inductively from:

• I 2 Ob(A⌦ B), and for a 2 A and b 2 B, a⌦ b 2 A⌦ B
• If X and Y are in A⌦ B, then X ⌦ Y 2 A⌦ B.

The arrows of A⌦ B are generated by the following:

• A natural isomorphism of associativity, with components assX,Y,Z : (X ⌦ Y )⌦ Z ! X ⌦ (Y ⌦ Z).

• Natural isomorphism l and r, with components lX : X ! I ⌦X and rX : X ! X ⌦ I.

• Natural isomorphism s, with components sX,Y : X ⌦ Y ! X ⌦ Y , satisfying sX,Y � sY,X = 1Y,X .

• For each b 2 B, a morphism ↵b : I ! IA ⌦ b, natural in b.

• For each a 2 A, a morphism �a : I ! a⌦ IB, natural in a.

• For any f : b ! b0 in B, an arrow a⌦ f : a⌦ b ! a⌦ b0

• For any f : a ! a0 in A, an arrow f ⌦ a : a⌦ b ! a0 ⌦ b

• For X and f : Y ! Z, an arrow X ⌦ f : X ⌦ Y ! X ⌦ Z.

subject to a variety of coherence conditions, as outlined in [Sch07].

To provide some intuition for this construction, compare it to the construction of the tensor product of abelian groups.
The natural transformation �, is essentially a categorification of the relation:

(a
1

, b) + (a
2

, b) ⇠ (a
1

+ a
2

, b)

(a, b
1

) + (a, b
2

) ⇠ (a, b
1

+ b
2

)

in the presentation of the abelian tensor product as a quotient of the direct product of groups.
The tensor product of symmetric monoidal categories extends to a 2-functor Ten : SMCat⇥ SMCat ! SMCat.

Definition 2.16. There is a symmetric monoidal category I, consisting of words generated by one letter, ?, where the
tensor product is given by word concatenation and the empty word is the unit.
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There is a small caveat due to the higher dimensional nature of this construction; the functors Ten and I do not
technically form a monoidal structure on SMCat. The associativity, left and right unitor and symmetries are all functors,
A : (A ⌦ B) ⌦ C ! A ⌦ (B ⌦ C) equipped with corresponding functors, A0 : A ⌦ (B ⌦ C) ! (A ⌦ B) ⌦ C, but A and A0

are not “on the nose” inverses to each other. Rather, the roundabouts A � A0 and A0 � A are naturally isomorphic to the
identity. One might call this a lax symmetric monoidal 2-categorical structure on SMCat.

However, by identifying 1-cells connected by a 2-cell, we get the quotient category SMCat/⇠, which has a symmetric
closed monoidal structure.

As a final note, which will become important in section 5.3, one can easily see from the definition that if A and B are
groupoids, their tensor product category will be a groupoid as well.

10



3 Syntax

The particular linear dependent type theory under consideration is a simplified version of the work of Krishnaswami in
[KPB15], with slight syntactic changes motivated by our semantic interpretation2. Types are either cartesian, in which
case we simply write “� ` A type”, or linear, written “� ` A linear”. When making typing judgments of linear terms,
contexts will be split into two parts, separated by a semicolon. The first part contains cartesian assumptions, for which
weakening and contraction is allowed, while the second part is the linear part, containing linear assumptions for which
only exchange is allowed. The derivation rules for linear types will force the linear variables to occur exactly once in the
conclusion. Both linear and cartesian types may depend on cartesian terms, but linear terms can only appear in linear
terms.

3.1 Structural rules

We will be dealing with the following judgments:

Judgment:
` � ctxt

` �;⌅ ctxt

� ` A type

� ` A linear

� ` M : A

�;⌅ ` M : A

� ` A ⌘ A

0
type

� ` A ⌘ A

0
linear

� ` M ⌘ N : A

�;⌅ ` x ⌘ y : A

Meaning:
� is a well-formed cartesian context.

�;⌅ is a well-formed mixed context

A is a cartesian type in �

A is a linear type in �

M is a term of the cartesian type A in �

M is a (linear) term of the linear type A in �;⌅

A and A

0
are equal cartesian types in �

A and A

0
are equal linear types in �;⌅

M and N are equal cartesian terms of A in �

x and y are equal linear terms of A in �;⌅

Figure 1: Judgments of linear dependent type theory

The basic structural rules for the linear dependent type theory are given in Figure 2. Omitted are the rules concerning
judgmental equality, which specify that it is an equality relation which is congruent with respect to the other structural
rules.

` · ctxt CI-Base

` ·; · ctxt CM-Base

� ` A type

` �, x : A ctxt

C-int-ext

� ` A type ` �,� ctxt

` �, x : A,� ctxt

C-weak-1

� ` A type ` �,�;⌅ ctxt

` �, x : A,�;⌅ ctxt

C-weak-2

` �;⌅ ctxt � ` A linear

` �;⌅, x : A ctxt

C-lin-ext

�;⌅, x : A, y : B,⌅

0 ` t : A

0

�;⌅, y : B, x : A,⌅

0 ` t : A

0 Lin-exch

� ` A type �,�

0
;⌅ ` t : A

0

�, x : A,�

0
;⌅ ` t : A

0 Weak-L

� ` A type �,�

0 ` J
�, x : A,�

0 ` J
Weak-I

� ` M : A �, x : A,�

0 ` J
�,�

0
[M/x] ` J [M/x]

Int-subst-1

� ` M : A �, x : A,�

0
;⌅ ` t : A

0

�,�

0
[M/x];⌅[M/x] ` t : A

0
[M/x]

Int-subst-2

�;⌅, x : A ` t : B �;⌅

0 ` M : A

�;⌅,⌅

0 ` t[M/x] : B

Lin-subst

�, x : A,�

0
ctxt

�, x : A,�

0 ` x : A

Int-var

` �;x : A ctxt

�;x : A ` x : A

Lin-var

Figure 2: Structural rules

J denotes a judgment of the form A type, A linear or M : A (for a cartesian type A).

3.2 Cartesian typing rules

The cartesian types that we will use are the standard ⇧, ⌃ and Id-types. For ⌃ and Id we will introduce an extra elimi-
nation and computational rule for the case where the type being eliminated into is linear.

2Some concrete di↵erences between our syntax and [KPB15] are our intensional identity types, the fact that we allow for elimination of cartesian
types into linear types, and the rules for the operators M and L.
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� ` A type �, x : A ` B type

� ` ⇧

x:AB type

⇧-F

�, x : A ` b : B

� ` �x.b : ⇧

x:AB
⇧-I

� ` t : ⇧

x:AB type

� ` M : A

� ` t(M) : B[M/x]

⇧-E

�, x : A ` b : B � ` M : A

� ` �x.b(M) ⌘ b[M/x] : B[M/x]

⇧-C

� ` A type �, x : A ` B type

� ` ⌃

x:AB type

⌃-F

` � ctxt

� ` 1 type

1-F

� ctxt

� ` ? : 1

1-I

�, x : 1 ` C type � ` c : C[?/x] � ` M : 1

� ` ĉ[M ] : C[M/x]

1-E

� ` M : A � ` N : B[M/x]

� ` (M,N) : ⌃

x:AB
⌃-I

�, t : ⌃

x:AB ` C type

�, x : A, y : B ` c : C[(x, y)/t]

� ` s : ⌃

x:AB

� ` ĉ[s] : C[s/t]

⌃�E
1

�, t : ⌃

x:AB ` C linear

�, x : A, y : B;⌅ ` c : C[(x, y)/t]

� ` s : ⌃

x:AB

�;⌅[pr1(s)/x][pr2(s)/y] ` ĉ[s] : C[s/t]

⌃-E
2

� ` ĉ[(a, b)] : C[(a, b)/t]

� ` ĉ[(a, b)] ⌘ c[(a, b)/t] : C[(a, b)/t]

⌃-C
1

�;⌅ ` ĉ[(a, b)] : C[(a, b)/t]

�;⌅ ` ĉ[(a, b)] ⌘ c[(a, b)/t] : C[(a, b)/t]

⌃-C
2

� ` ĉ[?] : C[?/x]

� ` ĉ[?] ⌘ c[?/x] : C[?/x]

1-C

Figure 3: (Cartesian) dependent sum and product types
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� ` M : A � ` N : A

� ` M =

A

N type

=-F

� ` M : A

� ` refl(M) : M =

A

M

=-I

�, x, y : A, p : x =

A

y ` C type

�, z : A ` c : C[z/x, z/y, refl(z)/p]

� ` M : A � ` N : A

� ` P : M =

A

N

� ` R

Id

[x,y,p](c,M,N, P ) : C[M/x,N/y, P/p]

=-E
1

�;⌅[M/x,M/y, refl(M)/p] ` R

Id

[x,y,p](c,M,M, refl(M)) : C[M/x,M/y, refl(M)/p]

�;⌅[M/x,M/y, refl(M)/p] ` R

Id

[x,y,p](c,M,M, refl(M)) ⌘ c[M/z] : C[M/x,M/y, refl(M)/p]

=-C
2

` �, x, y : A, p : x =

A

y;⌅ctxt

�, x, y : A, p : x =

A

y ` C linear

�, z : A;⌅[z/x, z/y, refl(z)/p] ` c : C[z/x, z/y, refl(z)/p]

� ` M : A

� ` N : A

� ` P : M =

A

N

�;⌅[M/x,N/y, P/p] ` R

Id

[x,y,p](c,M,N, P ) : C[M/x,N/y, P/p]

=-E
2

� ` R

Id

[x,y,p](c,M,M, refl(M)) : C[M/x,M/y, refl(M)/p]

� ` R

Id

[x,y,p](c,M,M, refl(M)) ⌘ c[M/z] : C[M/x,M/y, refl(M)/p]

=-C
1

Figure 4: (Cartesian) identity type

3.3 Linear typing rules

Perhaps the most important linear types are the ⌦- and I-types, as they will provide an interpretation of linear contexts.
Semantically, we will not distinguish between the context ⌅ :⌘ x

1

: A
1

, x
2

: A
2

, . . . xn : An and x
1

⌦ x
2

⌦ . . . xn :
A

1

⌦A
2

⌦ . . . An.

� ` A linear � ` B linear

� ` A⌦B linear

⌦-F

�;⌅ ` a : A �;⌅

0 ` b : B

�;⌅,⌅

0 ` (a, b) : A⌦B

⌦-I

�;⌅

0 ` t : A⌦B �;⌅, x : A, y : B ` c : C

�;⌅,⌅

0 ` let x, y be t in c : C

⌦-E

�;⌅ ` let x, y be (a, b) in c : C

�;⌅ ` let x, y be (a, b) in c ⌘ c[a/x][b/y] : C

⌦-C

� ` I linear

I-F

�; · ` ⇤ : I

I-I

�;⌅ ` c : C �;⌅

0 ` t : I

�;⌅,⌅

0 ` let ⇤ be t in c : C

I-E

�;⌅ ` let ⇤ be ⇤ in c : C

�;⌅ ` let ⇤ be ⇤ in c ⌘ c : C

I-C

Figure 5: Linear ⌦ and I type formers

The typing rules for the remaining linear rules are standard.

13



� ` A linear � ` B linear

� ` A ( B linear

(-F

�;⌅, x : A ` b : B

�;⌅ ` �x.b : A ( B

(-I

�;⌅ ` f : A ( B �;⌅

0 ` a : A

�;⌅,⌅

0 ` f(a) : B

(-E

�;⌅ ` �x.b(a) : B

�;⌅ ` �x.b(a) ⌘ b[a/x] : B

(-C

� ` A linear � ` B linear

� ` A&B linear

&-F

�;⌅ ` a : A �;⌅ ` b : B

�;⌅ ` ha, bi : A&B

&-I

�;⌅ ` t : A&B

�;⌅ ` fst(t) : A

&-E
1

�;⌅ ` t : A&B

�;⌅ ` snd(t) : B

&-E
2

�;⌅ ` fst(ha, bi) : A
�;⌅fst(ha, bi) ⌘ a : A

&-C
1

�;⌅ ` snd(ha, bi) : B
�;⌅ ` snd(ha, bi) ⌘ b : B

&-C
2

� ` A linear � ` B linear

� ` A�B linear

�-F

�;⌅ ` a : A

�⌅ ` inl(a) : A�B

�-I
1

�;⌅ ` b : B

�⌅ ` inr(b) : A�B

�-I
2

�;⌅, x : A ` c : C �;⌅, y : B ` d : C;�;⌅

0 ` t : A�B

�;⌅,⌅

0 ` case t of inl(x) ! c||inr(y) ! d : C

�-E

�;⌅ ` case inl(a) of inl(x) ! c||inr(y) ! d : C

�;⌅ ` case inl(a) of inl(x) ! c||inr(y) ! d ⌘ c[a/x] : C

�-C
1

�;⌅ ` case inr(b) of inl(x) ! c||inr(y) ! d : C

�;⌅ ` case inr(b) of inl(x) ! c||inr(y) ! d ⌘ d[b/y] : C

�-C
2

� ` > linear

>-F

` �;⌅ctxt

�;⌅ `! : > >-I

� ` 0 linear

0-F

�;⌅ ` t : 0

�;⌅,⌅

0 ` EFQ(t) : B

0-E

Figure 6: Linear (, &, �, > and 0 type formers

3.4 Linear-Cartesian interplay

We introduce two the modal operators M and L, which transfers a linear type/term to its cartesian counterpart and vice
versa. Semantically, this will establish a fiberwise monoidal adjunction between the categories of linear and cartesian types:

L
�

T
�

M

L

`

where the exponential modality from traditional linear logic is understood as the comonad ! = LM . The decomposition of
the exponential into an adjunction goes back to at least [Ben95], and is given an interesting new light in [LSR17], where
it is seen as a particular case of a more general procedure of encoding structure in contexts.

Below are the syntactic rules for the operators M and L3.

3We have not introduced universes yet, but there is a subtlety involved with how they interact with the operators M and L, which may warrant
restricting the operators M and L to only act on small types. See section 4.2.7
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� ` A type

� ` AL linear
L-F

� ` a : A
�; · ` aL : AL

L-I

(� ` B linear)
(` �;⌅0 ctxt)

�;⌅ ` y : AL �, x : A;⌅0 ` t : B

�;⌅,⌅0 ` let x be y in t : B
L-E

�;⌅ ` let x be sL in t : B

�;⌅ ` let x be sL in t ⌘ t[s/x] : B
L-C

�; y : AL,⌅ ` t : B
(�, x : A;⌅ ` t[xL/y] : B)

�;⌅0 ` a : AL

�;⌅,⌅0 ` let x be a in t[xL/y] ⌘ t[a/y] : B
L-U

� ` B linear
� ` BM type

M-F

�; · ` b : B

� ` bM : BM
M-I

� ` t : BM

�; · ` �(t) : B
M-E

� ` bM : BM

�; · ` �(bM ) ⌘ b : B
M-C

1

� ` �(t)M : BM

� ` �(t)M ⌘ t : BM
M-C

2

As a motivation for the semantic interpretation of L and M as adjoint functors given in 4.20, we will demonstrate that
they already satisfy the relevant conditions from a syntactic point of view. That is, in the spirit of functional programming,
we think of the cartesian and linear types (in a context �) of our theory forming the respective categories T and L whose
objects are types and morphisms are functions and composition is given by function composition. The identity function
�x.x : A ! A, yields the identity on cartesian types, while �x.x : B ( B is the identity for linear B.

Definition 3.1. Define �̂ : (B ( C) ( (A ( B) ( (A ( C) and � : (B ! C) ! (A ! B) ! (A ! C) by:

g�̂f = �x.g(f(x))

g � f = �x.g(f(x))

Theorem 3.2. M is a (syntactic) functor. In other words, for any linear types, � ` A linear and � ` B linear, there is
a term

fmap : (A ( B)M ! AM ! BM

such that fmap (idA)M ⌘ idA
M

and fmap ((g�̂f)M ) ⌘ fmap gM � fmap fM

Proof. Define:
fmap f := �a.(�(f)�(a))M

and see that for f = (idA)M , we have (�(idA)�(a))M ⌘ (�(a))M ⌘ a : AM , as well as:

�x.(�(�y.g(f(y)))M (�x))M ⌘ �x.(�y.g(f(y))(�x))M ⌘ �x.(g(f(�(x))))M

Similarly, for L we have:

Theorem 3.3. L is a functor. i.e. for any cartesian types, A and B, there is a term fmap : L(A ! B) ( (LA ( LB)
such that fmap L(idA) ⌘ idLA.

Proof. Define:
fmap f a := let f̂ be f in (let a be y in f(y)L)

where f̂ : A ( B and y : A. When f = (idA)L we get:

fmap (idA)L a = let a be y in idA(y)L

which by L-U is equal to (idA)L.

Furthermore, the categories of cartesian and monoidal types carry a natural monoidal structure, given by (⇥, 1) and
(⌦, I), respectively, where ⇥ is simply ⌃ where the second argument does not depend on the first. M and L are monoidal
functors with respect to these.

As our current syntactic endeavors mainly serve as motivation for the semantic interpretation of these operators, given
in 4.20, we will not prove the complete statement here. We omit the naturality conditions and only prove the following:

Theorem 3.4. There are terms t
1

, t
2

, t
3

, t
4

, relating the operators M and L so that the judgments:

�, x : 1 ` t
1

: IM

�, x : AM ⇥BM ` t
2

: (A⌦B)M

�;x : I ` t
3

: 1L

�;x : AL ⌦BL ` t
4

: (A⇥B)L

hold.
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Proof. t
1

is given by the following expression:
�, x : 1 ` ⇤M : IM

and t
2

can easily be derived:

�, x : AM ⇥BM ` (�(pr
1

(x))⌦ �(pr
2

(x)))M : (A⌦B)M

t
3

is given by:
�;x : I ` let x be ⇤ in ?L : 1L

t
4

is a bit more involved, as it requires two applications of L-E. For clarity, we display the complete proof tree of the term:

�, x : A, y : B ` x : A

�, x : A, y : B ` y : B

�, x : A, y : B ` (x, y) : A⇥B

�, x : A, y : B; · ` (x, y)L : (A⇥B)L �, x : A; y0 : BL ` y0 : BL

�, x : A; y0 : BL ` let y be y0 in (x, y)L : (A⇥B)L �;x0 : AL ` x0 : AL
L-E

�;x0 : AL, y
0 : BL ` let x be x0 in (let y be y0 in (x, y)L) : (A⇥B)L �; z : AL ⌦BL ` z : AL ⌦BL⌦-E
�; z : AL ⌦BL ` let (x0, y0) be z in (let x be x0 in (let y be y0 in (x, y)L)) : (A⇥B)L

Finally, we show that M and L can be thought of as adjoint functors, in any context. In other words, we will show
that there exists a “natural transformation” ✏ : LM ! 1 satisfying the following universal property:
For any f : L(A) ! B, there is a unique morphism g : A ! BM , such that ✏B � L(g) = f .
Translated into the syntax of our type theory, the statement becomes the following:

Theorem 3.5 (L a M). There is a term �;�
1

: BLM ` ✏B : B with the following property:
For any term: �; y : AL ` f : B, there is a unique term �, x : A ` g : BM such that �; y : AL ` ✏B [let x be y in gL/�1

] ⌘
f : B.

Proof. The counit ✏ : LM ! 1L� is at any component B given by:

�,�
1

: BLM ` �
1

: BLM

�,�
2

: BM ; · ` �(�
2

) : B

�;�
1

: BLM ` let �
2

be �
1

in �(�
2

) : B

where the last line is given by applying L-E to the first and third line.
For any �;x : AL ` f : B, we get the corresponding g through:

�, x : A ` x : A

�, x : A; · ` xL : A

�, x : A; · ` f [xL/y] : B

�, x : A ` f [xL/y]M : BM

making Lg the term:

�; y : AL ` let x be y in f [xL/y]LM : BLM

our composite ✏B � Lg is given by substituting the above for �
1

in the term corresponding to ✏B , yielding:

�; y : AL ` let �
2

be (let x be y in f [xL/y]LM ) in �(�
2

) : B

Finally, if we substitute xL for y in the above, we can rewrite the expression using L-C to:

�, x : A; · ` let �
2

be fLM in �(�
2

) : B ⌘
�, x : A; · ` �(�

2

)[fM/�
2

] ⌘ f : B

so by L-U, we can transform this equality to the desired

�; y : AL ` let �
2

be (let x be y in f [xL/y]LM ) in �(�
2

) ⌘ f : B

It remains to show that for any other term �;x : A ` h : BM such that ✏B � Lh = f , we have g = h. Syntactically,
✏B � Lh = f corresponds to the judgment:

�; y : AL ` let �
2

be (let x be y in hL) in �(�
2

) ⌘ f : B
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If we weaken the cartesian context by x : A, we can substitute xL for y and get:

�, x : A; · ` let �
2

be (let x be xL in hL) in �(�
2

) ⌘ �(h) ⌘ f [xL/y] : B

finally, we apply M and get:
�, x : A ` �(h)M ⌘ h ⌘ f [xL/y]M : B

Since we are inclined to think of M as right adjoint, we should expect it to preserve limits. This is true, at least for
product types:

Theorem 3.6. For all linear types A and B in �, there is an isomorphism:

� ` AM ⇥BM
⇠= (A&B)M

Proof. Construct a function f : AM ⇥BM ! (A&B)M by:

f :⌘ �x.
⇣
�(pr

1

(x)),�(pr
2

(x))
⌘

M

and g : (A&B)M ! AM ⇥BM :

g :⌘ �y.
⇣�

fst(�(y))
�
M
,
�
snd(�(y))

�
M

⌘

which are easily seen to be mutually inverse.

It is hard to reason about equality of linear terms since the ordinary Id-type is a dependent type, and in the theory
we do not allow for type dependency on linear terms. In the presence of the M operator, however, we can form the type
aM = bM for two terms �; · ` a, b : A, which can serve as a surrogate for linear equality. Furthermore, we can compare
terms �;⌅ ` t : A and �;⌅ ` t0 : A of the same type in the same context by repeated currying to form the identity type
(�⇠.t)M =

(⌅(A)

M

(�⇠.t0)M
4. More on this in Section 6.2.

If we add extensionality to our theory so that propositional equality implies judgmental equality, then aM =A
M

bM
implies �; · ` a ⌘ b : A.

3.4.1 Linear dependent types

Since we allow linear types to depend on terms of cartesian types, we can form new versions of the ⇧- and ⌃-types. We
will denote these linear variants of ⇧- and ⌃-types by u and @, respectively.

� ` A type �, x : A ` B linear

� ` ux:AB linear
u-F

` �;⌅ ctxt
�, x : A;⌅ ` b : B

�;⌅ ` �x.b : ux:AB
u-I

�;⌅ ` t : ux:AB � ` a : A

�;⌅ ` t(a) : B[a/x]
u-E

�;⌅ ` �x.b(a) : ux:AB

�;⌅ ` �x.b(a) ⌘ b[a/x] : B[a/x]
u-C

� ` A type �, x : A ` B linear

� `@x:A B linear
@-F

� ` s : A �;⌅ ` b : B[s/x]

�;⌅ ` (s, b) :@x:A B
@-I

` �;⌅0 ctxt
� ` C linear

�;⌅ ` t :@x:A B �, x : A;⌅0, y : B ` c : C

�;⌅,⌅0 ` let x, y be t in c : C
@-E

�;⌅ ` let x, y be (s, t) in c : C

�;⌅ ` let x, y be (s, t) in c ⌘ c[s/x][t/y] : C
@-C

How are we to understand these types? Either in their own right (motivated by examples), as linear analogues of ⇧ and
⌃ (motivated by theorem 3.7 and 3.8), or as the type theoretic analogue of quantification in linear logic. Since the free
variables occurring in linear type B in the context � are precisely the variables of �, the constructs u and @ can be
understood as a universal or existential quantification over a variable. An example of a u type, consider for any linear
type A, the n-fold tensor product An :⌘ A ⌦ A . . . A, which we can define by induction over the natural numbers (using
universes) via:

A0 :⌘ I

Asuc (n) :⌘ A⌦An

with this construct, recall the example of burning hydrogen given in 2.1, now expressed as a linear function burn :
O

2

⌦H
2

⌦H
2

( H
2

O ⌦H
2

O. With a dependent, linear function type, we can generalize this process to the function:

burn : un:NO
n
2

⌦H2n
2

( H
2

O2n

4Abusing notation to treat ⌅ as a single type, instead of a list of types
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An example of the @ type comes from Krishnaswami’s treatment of linear dependent logic as a way to model imperative
programs [KPB15]. Here, a primitive type of memory locations, � ` Loc type, is introduced, the terms x of which can
reference a term of any cartesian type A by means of a term of the linear pointer type [x 7! A]:

� ` A type

�, x : Loc ` [x 7! A] linear

Given a location a : Loc and a term t : A in a context �, one may allocate some memory at a, and create a pointer a 7! t
at a certain fixed cost, ⌅:

� ` t : A � ` a : Loc
�;⌅ ` a 7! t : [a 7! A]

But if we want to reason more generally about our pointers, we might be interested in a more general pointer type, where
the location variable is bound in a @-type. This type is formed in any context �, for any type A:

� ` A type �, x : Loc ` [x 7! A] linear

� `@x:A [x 7! A] linear

with terms introduced by:
� ` t : A � ` a : Loc �;⌅ ` t : [a 7! A]

�;⌅ ` (a, t) :@x:Loc [x 7! A]

The sense in which u and @ are “linear analogues” of ⇧ and ⌃ can be formalized in the following way:

Theorem 3.7. For all � ` A type and �, x : A ` B linear, there is an isomorphism:

⇧x:ABM
⇠= (ux:AB)M

Proof. Construct the function
h :⌘ �f.

�
�x.�(f(x))

�
M

: ⇧x:ABM ! (ux:AB)M

and in the other direction:
h�1 :⌘ �g.�y.

�
�(g)(y)

�
M

: (ux:AB)M ! ⇧x:ABM

which are mutually inverse:

h � h�1 :⌘ �↵.�f.
�
�x.�(f(x))

�
M

⇣
�g.�y.

�
�(g)(y)

�
M

⌘
(↵) ⌘

�↵.�f.
�
�x.�(f(x))

�
M

�
�y.(�(↵)(y))M

�
⌘

�↵.
⇣
�x.�

⇣
(�y.

�
�(↵)(y)

�
M
)(x)

⌘⌘

M
⌘

�↵.
⇣
�x.�

⇣�
�(↵)(x)

�
M

⌘⌘

M
⌘

�↵.
⇣
�x.�(↵)(x)

⌘

M
⌘ �↵.↵

h�1 � h :⌘ �↵.(�g.�y.
�
�(g)(y)

�
M

⇣
�f.

�
�x.�(f(x))

�
M

⌘
(↵) ⌘

�↵.(�g.�y.
�
�(g)(y)

�
M

�
�x.�(↵(x))

�
M

⌘

�↵.�y.
�
�
⇣�

�x.�(↵(x))
�
M

⌘
(y)

�
M

⌘

�↵.�y.
�
�x.�

�
↵(x)

�
(y)

�
M

⌘
�↵.�y.

�
�
�
↵(y)

��
M

⌘
�↵.�y.↵(y) ⌘ �↵.↵

We would like to show a similar result relating ⌃ and @, but for this we need two additional rules. First, we assume
the following uniqueness rules for ⌃ and @ 5:

� ` p : ⌃x:AB

� ` (pr
1

(p), pr
2

(p)) ⌘ p
⌃-U

�;⌅ ` let x, y be t in (x, y) : A

�;⌅ ` let x, y be t in (x, y) ⌘ t : A
@-U

Second, suppose we are given terms:

�;⌅, y : B ` e : C

�, x : A;⌅0 ` u : B

�;⌅00 ` t : AL

5The former is provable as a propositional identity, see for example [Pro13, Corollary 2.7.3]. Perhaps it is possible to obtain a similar result for
@, using the “surrogate equality” described in the end of Section 3.4
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Using the elimination rule for the L operator, we can either first combine the second and third line followed by a substitution
into the first to get:

�;⌅,⌅0,⌅00 ` e[let x be t in u/y] : C

or weaken the cartesian context of the first line, substitute u for y and then apply L-E to get:

�;⌅,⌅0,⌅00 ` let x be t in e[u/y] : C

The rule NatL postulates that these terms are equal:

�;⌅, y : B ` e : C
�, x : A;⌅0 ` u : B

�;⌅00 ` t : AL

�;⌅,⌅0,⌅00 ` e[let x be t in u/y] ⌘ let x be t in e[u/y] : C
NatL

Theorem 3.8. Assuming the NatL and the uniqueness rules for ⌃ and @, there is a linear isomorphism:

(⌃x:AB)L ⇠=@x:A BL

Proof. We first construct the linear function j : (⌃x:AB)L (@x:A BL by:

j :⌘ �f.let p be f in
⇣
pr

1

(p),
�
pr

2

(p)
�
L

⌘
: (⌃x:AB)L (@x:A BL

and its inverse, j�1, by:

�; q :@x:A BL ` q :@x:A BL

�, x : A; y : BL ` y : BL

�, x : A, z : B ` x : A �, x : A, z : B ` z : B

�, x : A, z : B ` (x, z) : ⌃x:AB

�, x : A, z : B; · ` (x, z)L : (⌃x:AB)L

�, x : A; y : BL ` let z be y in (x, z)L : (⌃x:AB)L

�; q :@x:A BL ` let x, y be q in (let z be y in (x, z)L) : (⌃x:AB)L

�; · ` �q.let x, y be q in (let z be y in (x, z)L) :@x:A BL ( (⌃x:AB)L

and see that:

j � j�1 :⌘ �↵.�f.let p be f in
⇣
pr

1

(p),
�
pr

2

(p)
�
L

⌘�
�q.let x, y be q in (let z be y in (x, z)L)

�
↵ ⌘ ((-C)

�↵.�f.let p be f in
⇣
pr

1

(p),
�
pr

2

(p)
�
L

⌘�
let x, y be ↵ in (let z be y in (x, z)L)

�
⌘ ((-C)

�↵.let p be f in
⇣
pr

1

(p),
�
pr

2

(p)
�
L

⌘
[
�
let x, y be ↵ in (let z be y in (x, z)L)

�
/f ] ⌘ (NatL)

�↵.let x, y be ↵ in
⇣
let p be (let z be y in (x, z))L in

⇣
pr

1

(p),
�
pr

2

(p)
�
L

⌘⌘
⌘ (NatL)

�↵.let x, y be ↵ in
⇣
let p be (x, let z be y in z)L in

⇣
pr

1

(p),
�
pr

2

(p)
�
L

⌘⌘
⌘ (L-C + ⌃-C)

�↵.let x, y be ↵ in
⇣
x,

�
let z be y in z

�
L

⌘
⌘ (NatL)

�↵.let x, y be ↵ in
⇣
x, (let z be y in zL)

⌘
⌘ (L-U) + (@-U)

�↵.↵.

and in the other direction:

j�1 � j :⌘ �↵.�q.let x, y be q in (let z be y in (x, z)L)
�
�f.let p be f in

⇣
pr

1

(p),
�
pr

2

(p)
�
L

⌘�
↵ ⌘ ((-C)

�↵.�q.let x, y be q in (let z be y in (x, z)L)
�
let p be ↵ in

⇣
pr

1

(p),
�
pr

2

(p)
�
L

⌘�
⌘ ((-C)

�↵.�q.let x, y be q in (let z be y in (x, z)L)[
�
let p be ↵ in

⇣
pr

1

(p),
�
pr

2

(p)
�
L

⌘�
/q] ⌘ (NatL)

�↵.let p be ↵ in
⇣
let x, y be (pr

1

(p), pr
2

(p)L) in
�
let z be y in (x, z)L

� ⌘
⌘ (@-C)

�↵.let p be ↵ in
⇣�

let z be pr
2

(p)L in (pr
1

(p), z)L
� ⌘

⌘ (L-C)

�↵.let p be ↵ in
⇣�

pr
1

(p), pr
2

(p)
�
L

⌘
⌘ (⌃-U) + (L-U)

�↵.↵.

As outlined in section 4.2, the semantic interpretation of the type formers ⇧, u and ⌃, @ are as left and right adjoints
to reindexing functors respectively, which can by lemma 5.2 be constructed via limits and colimits, these results reflect the
fact that the left adjoint L preserves colimits and the right adjoints M preserves limits.
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3.5 Universes

Our cartesian and linear types live in separate universes, U and L. Since linear types are type checked in a purely cartesian
context, the linear universe is a cartesian type. This suggests that there is no need for more than one linear universe.
To simplify the semantics, we also only assume one cartesian and one linear universe, rather than an infinite cumulative
hierarchy, where El(Ui) : Ui+1

, even though this might be more appealing from a syntactic point of view. Our universes
are given á la Tarski and are closed under all previously introduced type formers. Below, we only outline the closure over
the type formers ⇧, ⌦ and u, but this should be su�cient to give the idea. For more detail we refer to Hofmann’s Syntax
and Semantics of Dependent types, [Hof97], or Krishnaswami’s Integrating Linear and Dependent types, [KPB15].

` � ctxt
� ` U type

U-F

� ` t : U
� ` El(t) type

U-El-F

� ` t : U
�, x : El(t) ` v : U
� ` ⇧̂x:El(t)v : U

U-⇧

� ` t : U
�, x : El(t) ` v : U

� ` El(⇧̂x:El(t)v) ⌘ ⇧x:El(t)El(v)
U-⇧-Ty

` � ctxt
� ` L type

L-F

� ` t : L
� ` El(t) linear

L-El-F

� ` t : L � ` s : L
� ` t⌦̂s : L

L-⌦

� ` t : L
� ` s : L

El(t⌦̂s) ⌘ El(s)⌦ El(t)
L-⌦-Ty

� ` t : U
�, x : El(t) ` s : L
� ` ûx:El(t)s : L

L-u

� ` t : U
�, x : El(t) ` s : L

� ` El(ûx:El(t)s) ⌘ ux:El(t)El(s)
L-u-Ty

As an example using universes, we can properly formulate the identity function of cartesian or linear types by:

id : ⇧A:UA ! A

id A a :⌘ a

or

id : uA:LA ( A

id A a :⌘ a

respectively. It also allows us to formulate the type of “pointed linear types”:

� `@A:L A linear
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4 Semantics

4.1 Structural semantic core

To explore the models of linear dependent type theory we begin by constructing a categorical structure which abstracts
the key features of the theory. We will utilize the notion of a comprehension category, which provides the most general
structure in which we can deal with the structural rules like context extensions and substitutions. Once this has been
taken care of we may consider what extra conditions have to be imposed in order for the model to support various type
constructors, and then provide concrete models that satisfy these conditions.

There are only two type constructors that will be assumed in the general semantic structure: the linear tensor product
and unit. This simplifies the core semantics by allowing us to use symmetric monoidal categories instead of multicategories
when interpreting linear types.

The idea behind the core of the semantics is to construct a comprehension category [Jac93], consisting of a base category
of contexts equipped with a fibration of cartesian types over them, and a lax symmetric monoidal fibration consisting of
linear types.

Definition 4.1. A comprehension category consists of a commutative diagram of functors

T C!

C

p

⇡

cod

where B! is the arrow category of B and cod : B! ! B denotes the codomain functor, such that:

1. C has a terminal object

2. p : T ! C is a Grothendieck fibration,

3. ⇡ : T ! C! takes cartesian morphisms in T to cartesian morphisms in C!

Notice that by the second condition, cartesian morphisms in T are mapped to pullback squares in C:
A cartesian morphism (p, q) : f ! g in C! is a commutative square in C

B B0

A A0

g

p q

f

such that for any E0, E, q0 : E0 ! B0, e : E ! E0 and p0 : E ! A as in the following diagram:

E E0

E B0

A A0

id
E

e

q0

p0

q0e

q

f

there is a unique arrow u : E ! B such that p0 = p � u and q0e = g � u. This is precisely the universal property of the
pullback. If C has all pullbacks, then cod : C! ! C is a fibration and we immediately have a comprehension category.
Maps of C that arise via ⇡(A) for some A 2 T will be called projections, and by the remark above, pullbacks of projections
always exist. Terms of a type will be interpreted as sections of the corresponding projections and pullbacks of C will play
the role of substitutions. Here we need to be careful, however:

Remark 4.2. On Coherence. A subtlety often overlooked in the construction of models of type theory are the various
issues arising from the fact that from a categorical point of view, it is natural to consider objects up to isomorphism,
whereas in type theory we speak of equality “on the nose” [Hof95]. In particular, when interpreting substitution as a
pullback, we need to take into account that, in the syntax, substitution is strictly functorial, while pullbacks, in general,
are not. For example, the pullback of f along g � h is isomorphic to the pullback of ⇡

1

along h, below, but not necessarily
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equal to it.

A⇥C B0 ⇠= (A⇥C B)⇥C B0 B0

A⇥C B B

A C

h

⇡1

⇡2 g

f

This problem can generally be overcome by showing that there exists a suitable choice of pullbacks such that this isomor-
phism is an equality, and this is one reason why we ask for our comprehension category to come equipped with a collection
of liftings such that the fibration is split. In fact, every comprehension category is equivalent to a split one, and if a full
comprehension category supports various type formers, then these will also be supported in the corresponding split version.
[LW15]

In dealing with linear dependent type theory, we run into another problem of similar nature. Equipped with a (lax)
monoidal fibration, q : L ! C, we will interpret linear contexts ⌅ = a

1

: A
1

, a
2

: A
2

. . . an : An over a cartesian context �
as the tensor product [[⌅]] = [[A

1

]]⌦ [[A
2

]] · · ·⌦ [[An]] in the monoidal category L
�

. The weakening of a linear context ⌅,
as given by the rule:

` �;⌅ ctxt � ` A type

` �, x : A;⌅ ctxt
C-Weak

will be interpreted as the image of the object [[⌅]] 2 L
�

under the functor ⇡⇤
A : L

�

! L
�.A induced by the projection

morphism ⇡A : �.A ! � in the base. But in general, we do not have an equality of ⇡⇤
A(A) ⌦ ⇡⇤

A(B) and ⇡⇤
A(A ⌦ B). To

accommodate this discrepancy, we introduce the notion of a split monoidal fibration:

Definition 4.3. A split monoidal fibration is a lax monoidal fibration (Definition 2.9) q : L ! C, equipped with a
cleavage {û}u2C such that the induced reindexing functors u⇤ are strict monoidal, u⇤v⇤ = (vu)⇤ and 1⇤

�

= 1L� for all
compatible morphisms u and v.

Notice that this condition is quite strong, as the induced functors of a lax monoidal fibration are generally only lax
monoidal. This disqualifies the graph fibration 2.10 from constituting a model of our type theory. However, it is reasonable
to expect every lax monoidal fibration where the induced functors are strong to be equivalent to a split monoidal fibration.
Equipped with these notions, we define the general structure of the structural core of our type theory:

Definition 4.4. A model for linear dependent type theory consists of a split comprehension category p : T ! C
and a split monoidal fibration q : L ! C, as illustrated in the following picture:

L T C!

C

q p

⇡

cod

Before showing how this structure supports the structural rules of the theory, the following lemma will come in handy:

Lemma 4.5. The pullback of an arrow, g, has a section if g does. In other words, given a pullback of g:

A⇥C B B

A C

g⇤

k

g

f

h

such that gh = 1C , then h⇤ exists and is a section of g⇤.

Proof. Since A with projections 1A and hf forms a cone to the cospan, there exists a unique map u : A ! A ⇥C B such
that hfu = k and g⇤u = 1A, making u a section of g⇤.

Below we outline how to interpret the structural rules of Figure 2 in this semantic framework.6

Theorem 4.6. A split comprehension category p : T ! C together with a split monoidal fibration q : L ! C is a model for
the linear dependent type theory consisting of the structural rules presented in Figure 2.

6Due to the recursive nature of dependent type theory, the set of well-defined types and the set of well-defined sequents cannot be independently
defined. Technically, when defining our interpretation of a judgment J by induction over the structural rules, we are actually defining a function
which maps a proof tree, ', of J to a semantic object. Therefore, in order for Theorem 4.6 to constitute a actual proof of soundness, we would
need to show that a judgment J is interpreted the same way regardless of how it has been derived. The standard approach to this is to define a
partial interpretation function for raw syntax, i.e. expressions that are not necessarily well typed, and then show that this function is total on the
domain of well typed expressions. See [Str91] for details.

22



Proof. We construct an interpretation function [[�]], which sends:

• Cartesian contexts � to objects of C, considered up to definitional equality and renaming of bound variables.

• Linear contexts ⌅ in � to objects of L
[[�]]

.

• Cartesian types A in � to objects of T
[[�]]

.

• Linear types B in � to objects of L
[[�]]

.

• Cartesian terms M : A in � to sections of ⇡([[A]]) : [[�, A]] ! [[�]].

• Linear terms b : B in �;⌅ to morphisms [[b]] : [[⌅]] ! [[B]].

Proceeding by induction on the derivation rules, we will often abuse notation slightly and denote semantic objects the
same as their syntactic counterparts.

• Case of CI-Base: [[·]] is the terminal object 1 of C.
• Case of CM-Base: [[·; ·]] is the unit of L1.

• Case of C-int-ext: By the induction hypothesis, we are given A in T
�

and need to display an object �.A in C. This
object is the domain of the morphism that A is mapped to via ⇡:

�.A
⇡
A��! �

• Case of C-lin-ext: Given objects [[⌅]] and [[A]] in L
[[�]]

, the extended context �;⌅, x : A is interpreted as the object
[[⌅]]⌦ [[A]] 2 L

[[�]]

.

• Case of C-weak-1: Given A,� 2 T
�

, we send � through the functor ⇡⇤
A : T

�

! T
�.A induced by lifting the morphism

⇡A : �.A ! �. The resulting object ⇡⇤
A(�) will be sent to the context p(⇡⇤

A(�)) = �.A.�{⇡⇤} via p, which is the
interpretation of the conclusion of the rule C-weak-1.

• Case of C-weak-2: Notice that since ⇡ is a cartesian functor, the context above fits into the following pullback:

�.A.�{⇡A} �.�

�.A �

q

⇡�{⇡
A

} ⇡�

⇡
A

so by lifting q to the monoidal functor q⇤ : L
�.� ! L

�.A.⇡⇤
(�)

. The context we are looking for is the image of ⌅
under this functor.

• Case of C-lin-ext: For objects ⌅ and A in L
�

, we let their tensor product ⌅⌦A denote the extended context �;⌅, x : A.

• Case of Lin-exch. Since our lax monoidal fibration is symmetric, we have ⌅⌦ A ⌦ B ⌦ ⌅0 ⇠= ⌅⌦ B ⌦ A ⌦ ⌅0 in L
�

.
Applying exchange to a judgment corresponds to composing with this isomorphism.

• Case of Weak-L. For any A 2 T
�

and morphism t : ⌅ ! A in L
�,�0 , we can transfer t along the functor q⇤A,� : L

�,�0 !
L

�.A.�0{⇡
A

} induced by the map qA,�0 arising from the following pullback diagram:

�.A.�0{⇡A} �.�0

�.A �

q
A,�0 ⇡0

�

⇡
A

to yield a morphism q⇤A,�0(t) : q⇤A,�0(⌅) ! q⇤A,�0(A0).

• Case of Weak-I. The morphism qA,�0 above also induces a functor q⇤A,�0 : T
�,�0 ! T

�.A.�0.{⇡
A

}.

• For Int-subst-1, the judgment J can take three forms:

J = B[M/x] type

J = b[M/x] : B[M/x]

J = B[M/x] linear

The corresponding categorical structure work by way of relating substitution in the theory to pullbacks in C. We
begin with showing that there is a type B[M/x] in the context �.�0[M/x].

Suppose we are given the following objects of T :

A 2 T
�

�0 2 T
�.A

B 2 T
�.A.�0
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and a section:

M : � ! �.A

of the projection ⇡A. We first lift M to a cartesian arrow M̂ : �.�0{M} ! �0, which is sent to the following pullback
square by ⇡:

�.�0{M} �.A.�0

� �.A

⇡�0{M⇤}

q(M,�0)

⇡�0

M

where q
(M,�0

)

is given by the structure of the comprehension functor. We then lift q
(M,�0

)

to obtain a cartesian arrow
q̂
(M,�0

)

: �.�0{M⇤}.B{q⇤
(M,�0

)

} ! �.A.�0.B which is sent to the following pullback diagram:

�.�0{M⇤}.B{q⇤
(M,�0

)

} �.A.�0.B

�.�0{M⇤} �.A.�0

⇡
B{q⇤

(M,�0)}

q(q(M,�0),B)

⇡
B

q(M,�0)

The element �.�0{M⇤}.B{q⇤M,�0} of T
�.�0{M⇤} along with its associated projection will be our interpretation of

�.�0[M/x] ` B[M/x] type.

Now suppose there is a section b : �.A.�0 ! �.A.�0.B of the projection ⇡B . To display an element of B[M/x] is to
give a section of ⇡B{q⇤

(M,�0)}
. By lemma 4.5, we get such a section by pulling back b along q

(q(M,�0),B)

.

Finally, if B is an object of L
�.A.�0 , then the image of B under the functor q⇤

(M,�0
)

: L
�.A.�0 ! L

�.�0{M⇤} will be our
interpretation of B[M/x] as a linear type in the context �.�[M/x].

• Case of Int-subst-2. The interpretation of Int-subst-2 is the image of t under q⇤
(M,�0

)

.

• Case of Lin-subst. Given morphisms t : ⌅⌦A ! B and M : ⌅0 ! A we get a morphism t � (id
⌅

⌦M) : ⌅⌦ ⌅0 ! B.
Precomposing with the isomorphism

N
⌅,⌅0 ⇠= ⌅⌦ ⌅0 yields the desired morphism

N
⌅,⌅0 ! B.

• Case of Int-var. For any A 2 T
�

, �.A together with its identity map forms a cone to the cospan:

�.A

�.A �

⇡
A

⇡
A

so by the universal mapping property of the pullback, there is a unique morphism vA : �.A ! �.A.A{⇡A} such that
⇡A{⇡

A

}vA = 1
�.A. This map is thus the interpretation of the judgment �, x : A ` x : A.

• Case of Lin-var. The morphism corresponding to the linear variable term �;x : A ` x : A is given by the identity
morphism on A in L

�

.

4.2 Semantic type formers

In the following, we assume that the comprehension category comprising the core of our syntax is full, i.e. that the functor
⇡ : T ! C! is full and faithful. This allows us to think of homsets T

�

(A,B) as living over the base category projections
C
�

(⇡A : �.A ! �,⇡B : �.B ! �).

Definition 4.7. A model of LDTT is a full, split comprehension category ⇡ : T ! C! and a split monoidal fibration
q : L ! C.

It will sometimes be useful to also assume that the comprehension category has a unit, as this will give rise to an
isomorphism C/�(�.A,�.B) ⇠= T

�.A(1,⇡
⇤
A(B)) [Jac93].

Definition 4.8. A fibration p : T ! C admits a terminal object if there is a functor 1 : C ! T , such that for every
� 2 C, 1(�) is a terminal object of the fiber T

�

, and for every f : � ! �, the canonical map ↵ : f⇤(1(�)) ! 1(�) is an
isomorphism.

As a result of this definition, the functor 1 is full and faithful.

Definition 4.9. A comprehension category ⇡ : T ! C! has a unit if the fibration p : T ! C admits a terminal object
functor 1 which is left adjoint to the functor s(⇡) : T ! C, selecting the source of the morphism assigned by ⇡.

Most of our models will naturally be equipped with such a structure, and this yields the nice property that C/�(�.A,�.B) ⇠=
T
�.A(1,⇡

⇤
A(B)), allowing us to shift in perspective to think of terms depending on � and A as either living in the slice cate-

gory C/� or in the fiber T
�.A. Importantly, since 1 is full and faithful, the unit of the adjunction is a natural isomorphism,

so for every A 2 T
�

, we have ⌘A : �.A ⇠= �.A.1.
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4.2.1 Basic linear types

Definition 4.10. A model of LDTT supports I-types if, for every �, there is exists an object [[I]] 2 L
�

, equipped
with a morphism [[⇤]] : I ! [[I]], such that for every pair of maps t : ⌅0 ! [[I]] and c : ⌅ ! C, there exists a map
[[let t be * in c]] :

N
⌅,⌅0 ! C such that [[let * be * in c]] = c.

This is trivially satisfied by every model by setting [[I]] = I, [[⇤]] = 1I , and [[let t be * in c]] to the composite ⇢(c⌦[[t]])↵ :N
⌅,⌅0 ⇠= ⌅ ⌦ ⌅0 ! C ⌦ I ⇠= C, where ⇢ is the right unitor for the monoidal structure of L

�

, and ↵ is the isomorphismN
⌅,⌅0 ⇠= ⌅ ⌦ ⌅. As for the identity ⇢(c ⌦ 1I)↵ = c, notice that ↵ :

N
⌅ ⇠= ⌅ ⌦ [[·]] = ⌅ ⌦ I is given by ⇢�1, so we get

⇢(c⌦ 1I) = c⇢, from the naturality of ⇢.

Definition 4.11. A model of LDTT supports ⌦-types, if, for every A,B 2 L
�

, there exists an object [[A ⌦ B]] 2 L
�

,
such that for any arrows a : ⌅ ! A, b : ⌅0 ! B, there exists an arrow [[(a⌦b)]] :

N
⌅,⌅0 ! [[A⌦B]] and for arrows t : ⌅0 !

[[A⌦B]] and c :
N

⌅⌦A⌦B ! C, there exists an arrow [[let x⌦ y be t in c : C]] such that [[let x⌦ y be a⌦ b in c]] = c.

Again, it is not hard to see that there is a canonical interpretation of this in any model of LDTT sending [[A⌦B]] to
[[A]]⌦ [[B]]. Some care is needed in order to always make sure contexts are left associated.

Similarly, one can define what it means for a model of LDTT to support (,&,�,> and 0. We may think of these
conditions as corresponding to weak versions of internal homs, binary products and coproducts, and terminal and initial
object of the fibers, that are stable under reindexing functors. Therefore, whenever the fibers of our model are monoidal
closed, complete or co-complete, we know that it supports the corresponding type formers. This is well established and
not the focus of the interplay between linear and dependent types we explore here. For a more detailed treatment we refer
the reader to [Mel09].

4.2.2 ⇧ and ⌃

What it means for a model of linear dependent type theory to support ⇧-types is directly inherited from the standard,
non-linear case.

Definition 4.12. A model of LDTT supports ⇧-types if, for all A 2 T
�

, the induced functor ⇡⇤
A : T

�

! T
�.A has a right

adjoint ⇧A : T
�.A ! T

�

satisfying the following Beck-Chevalley condition:
For all pullbacks in C:

�.E �.E0

� �

⇡
E

q
E,E

0

⇡
E

0

f

(1)

inducing the following functors between fibers:

q⇤E,E0 : T
�.E0 ! T

�.E

f⇤ : T
�

! T
�

⇧E : T
�.E ! T

�

⇧E0 : T
�.E0 ! T

�

The canonical natural transformation f⇤⇧E0 ! ⇧Eq
⇤
E,E0 induced by the adjunction is a natural isomorphism.

The Beck-Chevalley condition is in e↵ect saying that substitution commutes with the ⇧-type. For example, if E0 =
E[t̄/ȳ], with the map f⇤ representing the substitution [t̄/ȳ], then the Beck-Chevalley condition reads that for all B 2 T

�

,
we have (⇧x:EB)[t̄/ȳ] ⇠= ⇧x:E[

¯t/ȳ]B[t̄/ȳ].
As the rules ⌃ contains one more eliminator than usual (⌃-E

2

in Figure 3), one might wonder whether this requires
additional conditions for the semantic type formers to ensure that these are well behaved with respect to the linear fibers.
We will shortly see that this is not the case.

Definition 4.13. A model of LDTT supports ⌃-types if it satisfies the following:

1. For all A 2 T
�

, the induced functor ⇡⇤
A : T

�

! T
�.A has a left adjoint, ⌃A,

2. such that for all pullbacks (as in 1), these satisfy the Beck-Chevalley condition, i.e. the natural transformation:
⌃Eq

⇤ ! f⇤⌃E0 is a natural isomorphism, and

3. the induced map pairA,B : �.A.B ! �.⌃AB is an isomorphism

The map pairA,B : �.A.B ! �.⌃AB such that ⇡
⌃

A

BpairA,B = ⇡A⇡B , arises as the image of the unit ⌘ : B ! ⇡⇤
A(⌃AB)

in TA under the comprehension functor ⇡ : T ! C!. The inverse of the pairing map will be denoted (pr
1

, pr
2

) : �.⌃AB !
�.A.B.

This structure is su�cient to support new elimination rule (⌃-E
2

):

Theorem 4.14. If a model of LDTT supports ⌃-types, then for every object C 2 L
�.⌃

A

B and morphism c : ⌅ !
C{pairA,B} in L

�.A.B and section s : � ! �.⌃AB, there exists a morphism ĉs : ⌅{(pr
1

, pr
2

} ! C{s} such that given
sections a : � ! �.A and b : �.A ! �.A.B, then ĉ

(a,b) = c{ba} : ⌅{ba} ! C{ba}.
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Proof. The situation is illustrated in the following diagram:

�.A.B �.⌃AB

�

⇡
A,B

pair
A,B

(pr1,pr2)

⇡⌃
A

B

Let ĉs = c{((pr
1

, pr
2

)s)}. First, this morphism has the correct target since we have

C{((pr
1

, pr
2

)s)}{pairA,B} = C{(pairA,B(pr1, pr2)s)} = C{s}

, relying on the fact our lax monoidal fibration is split. Secondly, we need to show that given sections a : � ! �.A and
b : �.A ! �.A.B, we have c{((pr

1

, pr
2

)(a, b))} = c{a}{b}:

{(pr
1

, pr
2

)(a, b)} = {(pr
1

, pr
2

)pairA,Bba} = {ba} = {a}{b}

We may also speak of a model supporting simple products, which simply correspond to products in the fibers of T
which are stable under reindexing functors. These are of course implied if the model supports ⌃-types.

4.2.3 Identity types

When it comes to Id-types, the situation is not as fortunate. If one wants to keep the theory intensional, we need to add
condition (3) to make sure that the semantic identity types satisfy the added elimination and computation rule, =-E

2

and
=-C

2

in Figure 4.

Definition 4.15 (Id-types). A model of LDTT supports Id-types if, for all A 2 T
�

, there exists an object IdA 2
T
�.A.A{⇡

A

} and a morphism rA : �.A ! �.A.A{⇡A}.IdA such that:

1. The following diagram commutes:

�.A

�.A.A{⇡A}.IdA �.A.A{⇡A}

r
A

v
A

⇡
Id

A

2. For any commutative diagram:

�.A �.C

�.A.A{⇡A}.IdA �

r
A

⇡
C

there exists a lift J : �.A.A{⇡A}.IdA ! �.C making the two triangles commute.

3. For any pair of objects, C,⌅ 2 L
�.A.A+.Id, sections M,N : � ! �.A, P : � ! �.IdA{N+}{M}, and morphism c :

⌅{rA} ! C{rA}, there exists a morphism ĉ
[M,N,P ]

: ⌅{P+}{N+}{M} ! C{P+}{N+}{M} such that ĉ
[M,M,refl] =

c{M}.
If one were to work within an extensional type theory, where judgmental and propositional equality coincide, the third

condition is always satisfied:

Definition 4.16. A model of linear dependent type theory supports extensional identity types if there are objects
IdA and morphisms rA satisfying condition (1) and (2) such that for sections M,N : � ! �.A the existence of a section
P : � ! �.IdA{M}{N+} implies N = M .

Theorem 4.17. Support for extensional identity types implies support for identity types, in other words, extensional
identity types always satisfy condition (3) of definition 4.15

Proof. We will show that when M = N , the morphism P+N+M : � ! �.A.A{⇡A}.IdA is equal to rAM : � !
�.A.A{⇡A}.IdA. This implies that the morphism ĉ

[M,N,P ]

: ⌅{P+}{N+}{M} ! C{P+}{N+}{M} of definition 4.15
really is just c{M} : ⌅{M}{rA} ! C{M}{rA}.
The section N+ : �.A ! �.A.A{⇡A} appearing arises as in lemma 4.5 from the following pullback:

�.A.A{⇡A} �.A

�.A �

⇡
A{⇡

A

} ⇡
AN+

⇡
A

N
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while P+N+M : � ! �.A.A{⇡A}.IdA the composite q
[M,N ],⇡

Id

A

� P in the following commutative square:

�.IdA{N+}{M} �.A.A{⇡A}IdA

� �.A.A{⇡A}

q[M,N],⇡
Id

A

⇡
Id

A

P

N+M

But with extensional identity types, we have M = N . This implies that vAM = M+M , as these are both maps from �
into the pullback �.A.A{⇡A} such that ⇡A{⇡

A

}vAM = ⇡A{⇡
A

}M
+M = M as illustrated below:

�

�.A.A{⇡A} �.A

�.A �

M

M

v
A

M=M+M

⇡
A{⇡

A

} ⇡
A

⇡
A

This makes � a cone to the previous pullback:

�

�.IdA{N+}{M} �.A.A{⇡A}IdA

� �.A.A{⇡A}

1�

r
A

M

P

q[M,N],⇡
Id

A

⇡
Id

A

N+M=v
A

M

forcing rAM = PN+M .

4.2.4 u- and @-types

The semantic type formers for the linear dependent u and @ is akin to that of ⇧ and ⌃. They are given by adjoints to the
functors between fibers of L induced by the projection maps in C.
Definition 4.18. A model of LDTT supports u-types if, for all A 2 T

�

, the induced monoidal functor ⇡⇤
A : L

�

! L
�.A

has a monoidal right adjoint, uA satisfying the following Beck-Chevalley condition:
For all pullback squares in C of the following form:

�.E �.E0

� �

⇡
E

q
E,E

0

⇡
E

0

f

the canonical natural transformation f⇤uE0 ! uEq
⇤
E,E0 is a natural isomorphism.

Definition 4.19. It supports @-types if, for all A 2 T
�

, the functor every ⇡⇤
A has a monoidal left adjoint, satisfying the

following:

1. (Beck-Chevalley): For all pullbacks squares as above, the natural transformation @E q⇤ ! f⇤ @E0 is a natural
isomorphism.

2. (Frobenius reciprocity): For all objects ⌅ 2 L
�

and B 2 L
�.A, the canonical morphism @A (⌅{⇡A}⌦B) ! ⌅⌦ @A B

is an isomorphism.
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To illustrate why these conditions form the appropriate semantic counterpart to the derivation rules, we will outline
the case for @ in detail.

For every object B 2 L
�.A, we get a type @A B 2 L

�

, such that, given any section s : � ! �.A, and map b : ⌅ ! B{s}
in L

�

, we get a map:
s⇤⌘B � b : ⌅ ! B{s} ! s⇤⇡⇤

A(@A B) =@A B

where ⌘B : B ! ⇡⇤(@A B) is the unit of the adjunction. This map is the interpretation of the term (s, b) given by the
introduction rule @-I.

To interpret the elimination rule, we are given maps t : ⌅ !@A B in L
�

and c : ⌅0{⇡A} ⌦ B ! C{⇡A} in L
�.A. By

the adjunction, there exists a map ĉ :@A (⌅{⇡A}⌦ B) ! C such that ⌘
⌅

0{⇡
A

}⌦B � ⇡⇤
Aĉ = c. By the Frobenius reciprocity

condition, we have an isomorphism: �
⌅

0,B : ⌅0⌦ @A B !@A (⌅{⇡A}⌦B), and we get a map:

ĉ� : ⌅0⌦ @A B ⇠=@A (⌅0{⇡A}⌦B) ! C

which we can precompose with 1
⌅

0 ⌦ t to get a map from ⌅0 ⌦ ⌅ to C. We can then precompose with an appropriate
isomorphism ↵0 :

N
(⌅0,⌅) ! ⌅0 ⌦ ⌅ to get a map from

N
⌅0,⌅ to C, which will be the interpretation of the elimination

term from the rule @-E.
The computation rule boils down to showing that the following triangle commutes:

{s}(⌅0{⇡A}⌦B)

s⇤⇡⇤
A @A (⌅0{⇡A}⌦B) =@A (⌅0{⇡A}⌦B) C

s⇤cs⇤⌘(⌅0{⇡
A

}⌦B)

ĉ

which follows from applying the functor s⇤ to the equality ⌘
⌅

0{⇡
A

}⌦B � ⇡⇤
Aĉ = c.

4.2.5 The operators M and L

Definition 4.20. A model of LDTT with unit supports the operators M and L if there exists functors M : L $ T : L
which are cartesian with respect to the fibrations p : T ! C and q : L ! C, such that L a M is a fibred adjunction and
there is an isomorphism of hom-sets:

L
�.A(⇡

⇤
A(⌅

0),⇡⇤
A(B)) ⇠= L

�

(LA⌦ ⌅0, B)

.

Recall that a fibred adjunction implies that there are natural isomorphisms making the following diagram commute:

L
�

T
�

L
�.A T

�.A

⇡
⇤(L)
A

M�

L�

⇡
⇤(T )
A

M�.A

L�.A

which from a syntactic perspective ensures that M and L commute with substitution.
The final condition of the definition is what yields the elimination and computation rules L-U, and while it might

appear somewhat unnatural semantically, it does turn out to hold automatically in a large class of models, due to the
following result:

Theorem 4.21. In a model of LDTT that supports ( type formers, then any fibred adjunction L a M where L(1) ⇠= I
satisfies L

�.A(⇡
⇤
A(⌅

0),⇡⇤(B)) ⇠= L
�

(LA⌦ ⌅0, B).

Proof. A model supporting internal homs must have reindexing functions which preserve these. That is, we have an
isomorphism ⇡⇤

A[⌅, B] ⇠= [⇡⇤
A⌅,⇡

⇤
AB]. We get a chain of isomorphisms:

L
�

(LA⌦ ⌅, B) ⇠=
L

�

(LA, [⌅, B]) ⇠=
T
�

(A,M
�

[⌅, B]) ⇠=
T
�.A(1,⇡

⇤
A(M�

[⌅, B])) ⇠=
T
�.A(1,M�.A⇡

⇤
A[⌅, B])) ⇠=

L
�.A(L�.A(1),⇡

⇤
A[⌅, B])) ⇠=

L
�.A(I,⇡

⇤
A[⌅, B])) ⇠=

L
�.A(I, [⇡

⇤
A⌅,⇡

⇤
AB])) ⇠=

L
�.A(⇡

⇤
A⌅,⇡

⇤
AB).
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4.2.6 Universes

There are various degrees to which a model can support universes. The baseline condition is an object U in every fiber
such there is an object in the same fiber for every section of the corresponding projection. In order to even state what it
means for a universe to be closed under various types, we need to assume that our model supports such types.

Definition 4.22. A model of LDTT supports cartesian universes, if for every � 2 C, there exists objects U
�

2 T
�

and El
�

2 T
�.U� , such that these are stable under reindexing, i.e. for any f : � ! � in C, we have f⇤U

�

= U
�

and
q⇤
(⇡U� ,f)(El

�

) = El
�

. For a section t : � ! �.U to the corresponding projection, we write El(t) for t⇤(El).

For a model that supports the type former in question, a cartesian universe is closed under:

• ⇧-types, (or ⌃) if, for morphisms t : � ! �.U and v : �.El(t) ! �.El(t).U, there is a section ⇧̂El(t)v : � ! �.U such

that El(⇧̂El(t)) = ⇧El(t)El(v) (or ⌃) i.e. if the object corresponding to ⇧̂El(t)v is equal the image of El(v) under the
functor corresponding to the semantic type former.

• Id-types, if, for sections A : � ! �.U, a, b : � ! �.El(A), there is a section Îd(a, b) : � ! �.U, such that
El(Îd(a, b)) = IdA.

Linear universes are defined in the same fashion, keeping in mind that the linear universe is a cartesian type.

Definition 4.23. A model of LDTT supports linear universes, if, for every � 2 C, there are objects L
�

2 T
�

and
El

�

2 L
�.L� , stable under reindexing.

For a model that supports the type former in question, the linear universe is closed under this type if:

• I, (or >, 0): There is a section Î : � ! �.L, such that El(Î) = I in L
�

.

• ⌦ (or (, &): For every pair of sections a, b : � ! �.L, there is a section ˆa⌦ b (or (̂, &̂) such that El( ˆa⌦ b) =
El(a)⌦ El(b)

Definition 4.24. Given a model supporting both cartesian and linear universes, these are closed under:

• M , if, for every section x : � ! �.L, there exists an element M̂(x) : � ! �.U such that El(M̂(x)) = M(El(x)).

• L, if, for every section x : � ! �.U, there exists an element L̂(x) : � ! �.L such that El(L̂(x)) = L(El(x)).

• u (or @), if, for sections t : � ! �.U and s : �.El(t) ! �.El(t).L, there exists a section ûEl(t)s : � ! �.L (or @̂),
such that El(ûEl(t)s) = uEl(t)El(s).

4.2.7 Universes and small type formers

We have not said anything about which types we expect to be contained in our universes. As they stand, the axioms of in
section 3.5 do not postulate that there are any inhabitants of L or U to begin with. One could imagine restating the type
formation rules to be defined with respect to universes, an approach exemplified by [KPB15]. As tempting as it is to think
of any cartesian type being an element of U, this would imply that the code for the universe belongs to itself, which yields
an inconsistency of the theory through Girard’s Paradox [Hur95]. Asking for every linear type to belong to L is a more
reasonable requirement, since the linear universe is a cartesian type. But doing this forces us to restrict the operators M
and L so as to only act on small types.

Definition 4.25. In a model that supports cartesian universes, let the category small(T ) of small cartesian types be
the full subcategory of T whose objects are El(t) for some section t : � ! �.U in some context �.

Definition 4.26. Similarly, we define the category Lsm of small linear types to be the full subcategory of L whose
objects are El(t) for some section t : � ! �.L in some context �.

Definition 4.27. If there is a full subcategory Csm of C such that the restriction of the functors p, q and ⇡ of a model of
linear dependent type theory:

L T C!

C

q p

⇡

cod

to the categories Lsm and T sm has Csm as its codomain, so that:

Lsm T sm Csm!

Csm

q
p

⇡

cod

is a model of linear dependent type theory, we call this a sub-model of small types.

We can now define what it means for a model to support small versions of various type formers.
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Definition 4.28. We say that a model of linear dependent type theory supports M and L for small types, if, for
every � 2 C, there are morphisms L : L () U : M in T

�

natural in �, inducing a fiber adjunction:

Lsm(El(L(t)), El(s)) ⇠= T sm(El(t), El(M(s)))

such that there is an isomorphism of hom-sets:

Lsm
�.El(t)(⇡

⇤
El(t)(El(⇠)),⇡⇤

El(t)(El(b))) ⇠= Lsm
�

(El(Lt)⌦ El(⇠), El(b))

Syntactically, this corresponds to changing the type formation rules of M and L so as to not be defined for all types,
but only those who are contained in the cartesian and linear universes:

� ` A : L
� ` AM : U M-F-U

� ` A : U
� ` AL : L L-F-U

Similarly, we can define support for small u and @ as support for u and @ in a sub-model of small types.

Definition 4.29. We say that the linear universe L is all-encompassing if every object of L is also in Lsm.
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5 Models

5.1 Set indexed families

Our first model will be based on the standard set-theoretic interpretation of dependent type theory [Hof97]. The extension
of this model to the linear realm is fairly straightforward, and provides a good springboard for examples to come. (It is
also su�cient for showing that linear dependent type theory is a proper generalization of both dependent type theory and
linear type theory, as outlined in [V1́5].)

Our linear and cartesian fibrations will both be constructed as fibrations of set indexed families:

Definition 5.1 (Fam(C)). For an arbitrary category C, let Fam(C) denote the category whose objects consists of pairs
(S, f) where S is a set and f is a function f : S ! Ob(C). Morphisms of Fam(C) are pairs (u,↵) : (S, f) ! (S0, g) where
u : S ! S0 and ↵ : S ! Mor(C) such that ↵(s) : f(s) ! g(u(s)) for all s 2 S. Composition is given, for two compatible
morphisms (u,↵) and (v,�), by:

(v,�) � (u,↵) = (v � u, g(u(s)) � f(s))
for all s 2 S.

By projecting a family to its indexing set, we get a fibration p : Fam(C) ! Set, and if C has a terminal object, >
such that the hom-sets C(>, A) are small for all A 2 C, we can form a comprehension category with unit by defining
⇡ : Fam(C) ! Set! as follows.

On objects, let
⇡(S, f) = fst : {(s, t) | s 2 S, t : > ! f(s)} ! S

For a morphism (u,↵) : (S, f) ! (S0, g), let

q
(u,↵)

: {(s, t) | s 2 S, t : > ! f(s)} ! {(s0, t0) | s0 2 S0, t0 : > ! g(s0)}

be defined by q
(u,↵)

(s, t) = (u(s),↵(s) � t). The functor ⇡ sends morphisms (u,↵) to squares:

{(s, t) | s 2 S, t : > ! f(s)} {(s0, t0) | s0 2 S0, t0 : > ! g(s0)}

S S0

q(u,↵)

fst fst

u

in Set. This comprehension category will be full if the global sections functor C(>,�) ! Set is full and faithful.
For a morphism u : S ! p(S0, f) = S0 the canonical choice of a lift u⇤ = (u, i) : (S, fu) ! (S0, f) where i : S ! Mor(C)

is defined by s 7! 1fu(s) makes this a split fibration.
The cartesian part of our semantic structure will simply be the fibration p : Fam(Set) ! Set with ⇡ : Fam(Set) !

Set! as outlined above. Then for any symmetric monoidal category V we form a lax monoidal fibration by letting the
unit object be given at any fiber by mapping a set S to the family constant at the unit of V, and define the tensor product
as:

(S, g)⌦ (S, f) = (S, f ⌦ g) = (S,�s.f(s)⌦ g(s))

For u : S ! p(S0, f) = S0 in the base, we have:

u⇤((S0,↵)⌦ (S0,�)) = (S,�s.↵u(s)⌦ �(u(s))) = u⇤(S0,↵)⌦ u⇤(S0,�)

Since the tensor product is defined pointwise, it is preserved by reindexing functors, so this is in fact a split monoidal
fibration. Putting this together, this forms our first concrete model of the type theory:

Fam(V) Fam(Set) Set!

Set

q
p

⇡

cod

This model trivially supports ⌦ and I-types (all models do). For any fibration p : Fam(C) ! Sets, its fiberwise limits
and colimits are constructed pointwise, so they exist if and only if they do in C. Since reindexing functors is simply
precomposition, they preserve these (co)limits. We therefore get that the families model supports the type formers �, 0,&
and > if V has binary coproducts, initial object, binary products and terminal object respectively. Similarly, it supports
( if V is monoidal closed, by [(S, f), (S, g)] = (S,�s.[f(s), g(s)]). This is a right adjoint to ⌦, since at every component,
the set of maps f(s)⌦ g(s) ! h(s) is isomorphic to f(s) ! [g(s), h(s)].

For the dependent types, we utilize the following result:

Theorem 5.2. For a fibration p : Fam(C) ! Sets and a function u : S ! S0 in the base, u⇤ : Fam(C)S0 ! Fam(C)S has
a left (right) adjoints if and only if C has small coproducts (products).

31



Proof. For C with small coproducts, define the left adjoint to u⇤ by (S, f) 7! (S0,�s0.
`

s2u�1
(s0) f(s)). Similarly for C with

small products, define a right adjoint to u⇤ by (S, f) 7! (S0,�s0.
Q

s2u�1
(s0) f(s)).

In the other direction, the set of objects we want to take the (co)product of forms a family A = {A}i in Fam(C). The lift
of the unique map ! : p(A) ! 1 in the base has a right (left) adjoint, making ⇧

!

(A) an object of of Fam(C)
1

⇠= C, so that
for every object B 2 C, we have:

C(B,⇧
!

(A)) ⇠= Fam(C)S(!⇤B,A)

where !⇤B = (S,�s.B). This means that every map on the right hand side, which consists of a family of morphisms
fi : B ! Ai gives rise to a unique map on the left hand side, which is precisely the universal property of the product.

Since reindexing functors of Fam(C) are simply given by precomposition, adjoints to reindexing functors always satisfy
Beck-Chevalley condition:

Theorem 5.3. If every lift f⇤ : Fam(C)
�

! Fam(C)
�

0 has a right adjoint Rf⇤ , defined as in Theorem 5.2 then, for all
objects A = (�, a) and pullbacks of the following form:

�0.f⇤A �.A

�0 �

⇡
f

⇤{A}

q
A,f

⇡
A

f

there is a natural isomorphism ⌘ : R⇡
f

⇤
A

q⇤ ⇠= f⇤R⇡
A

: Fam(C)
�.A ! Fam(C)

�

0 .

Proof. Let B = (�.A,↵) be a family of sets indexed over �.A. Then R⇡
f

⇤{A}q
⇤(B) is the family:

0

@(�0 2 �) , ��0
Y

a2f⇤A(�0
)

↵(f(�0), a)

1

A

while f⇤R⇡
A

(B) is the family: 0

@(�0 2 �) , ��0
Y

a2A(f(�0
))

↵(f(�0), a)

1

A

but since f⇤(A(�0)) = A(f(�0)) this is precisely the same thing.

Carrying out the dual of this proof gives the corresponding Beck-Chevalley condition for left adjoints to reindexing
functors. To show that the families model supports ⇧ and ⌃ type formers, then, it remains to check that there exists an
isomorphism �.⌃AB ⇠= �.A.B.

Expanding the left hand side, we get:

{(�, t) | � 2 �, t 2
a

((�,a),b)2fst

�1
(�,a)

⇣
(�, a), b

⌘

while the right hand side is the set:
{(�, a, b) | � 2 �, a 2 A� , b 2 BA

�

}
which are isomorphic in a canonical way. The families model therefore supports the type formers ⇧ and ⌃. It is also clear
that the families model supports u-types if V has small products, and @ if V has small coproducts that distribute over ⌦
(Frobenius reciprocity).

We can form extensional identity types in the families model, by interpreting propositional equality in the same way
as our traditional set theoretic equality. That is, we define the family IdA 2 Fam(Sets)

�.A.A{⇡
A

} by the function:

IdA
(�,a2A

�

,b2A
�

)

=

(
{?}, if a = b

;, otherwise.

This gives rise to extensional identity types, which by lemma 4.17, forms support for identity types in the families model.
To deal with the operators M and L, we make use of the following lemma:

Lemma 5.4. An adjunction

C D
G

F

`

induces a fiber adjunction between the corresponding fibrations:

Fam(C) Fam(D)

Sets

p

G

F

a

q
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Proof. Let G : Fam(C) ! Fam(D) and F : Fam(D) ! Fam(C) be the induced cartesian functors, defined pointwise
in the obvious way. Define the vertical counit ✏ : FG =) 1Fam(C), given at every component {A}I 2 Fam(C)I by the
underlying counit, ✏A = (1I , ✏A

i

). For any morphism (u,↵) : F(O, f) ! (O0, g), any morphism (v,�) : (O, f) ! G(O0, g)
such that ✏

(O0,g) � F(v�) = (u,↵), must satisfy v = u, since F is constant on the function part of a morphism. But then
each component of the family of morphisms, � is a morphism �o : f(o) ! G(g(o0)) fitting into the following diagram:

F (f(o)) FG(g(o0))

g(o0)

↵
o

F (�
o

)

✏
g(o0)

so by the universal property of the counit, each such �o is uniquely defined.

As a result, the families model supports the operators M and L whenever V is a concrete category such that the free
object generated by the singleton is the unit of the monoidal structure.

5.1.1 Universes in the families model

When it comes to universes, we need to be careful so as to not run into size issues. We want to construct universes
which contains as many types as possible, without yielding any inconsistencies or collapsing the entire theory. As an
example of such a collapse, consider the scenario where the category V is small. Then we may define our linear universe
L 2 Fam(Sets)

�

as the constant family
(�,��.Ob(V)).

Since any section of ⇡L : �.L ! � consists of a selection of morphisms

f� : 1 ! Ob(V),

this defines an object (�, f) of Fam(V) where f(�) = f�(?). This universe will be closed under all purely linear type
formers that are supported by V, since these are constructed pointwise.

This may not be as desirable as it appears on first sight however, as at least in classical mathematics, a small V
supporting u in the families model is necessarily a preorder, due to the following result:

Theorem 5.5. Assuming the law of excluded middle, if a category V has products indexed by the collection Arr(V) of
arrows in V, then V is a preorder.

Proof. Assume there are two distinct arrows f, g : A ! B between objects A,B 2 V. We can combine these arrows to get
2|Arr(V)| distinct arrows from a !

Q
|Arr(V)| b, by the universal property of the product. But yields a contradiction, as this

is obviously more arrows than exist in V. By the law of the excluded middle, this implies that there are no distinct arrows
in V.

If we want V to not be a preorder, it is clear that we need to be more careful in distinguishing between small and large
types.

In order to deal with this distinction on the semantic side, we will need to introduce some new notions:

Definition 5.6. For an ordinal ↵, the set V↵, is defined by transfinite induction as follows:

• V
0

= ;
• V↵+1

= P(V↵)

• V� =
S

↵<�(V↵) (� is a limit).

The objects of Set consists of all of the sets such that they are elements of V↵, for some ↵. The collection of all such
sets, V is not a set itself, but a proper class.

Definition 5.7. For any ordinal ↵, the define the full subcategory Set↵ of Set, whose objects are sets X such that
X 2 V↵.

The idea is to select a large enough cardinal , such that Set can be thought of as a model of ZFC itself. This is the
notion of a Grothendieck universe. First, recall the notion of an inaccessible cardinal:

Definition 5.8. A cardinal, . is said to be:

• Uncountable, if it is larger than the smallest infinite set.

• A strong limit, if for any � < , we have 2� < .

• Regular, if it is not the union of a family of sets of size <  indexed by a set of size < .

• Inaccessible, if it is uncountable, a strong limit and regular.

It is important to keep in mind that the existence of inaccessible cardinals is independent of ZFC. But assuming
their existence allows us to form a set theoretic universe which can model ZFC itself, and to interpret type theories with
universes.
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Definition 5.9. A Grothendieck universe is a set V where  is an inaccessible cardinal. With respect to such a
universe, a set X is small if X 2 V, otherwise it is large.

Now calling SETS what we previously called Set, its full subcategory Sets, consisting of all -small sets is closed
under all the usual operations of set theory, and has all limits and colimits for all -small diagrams. We can now enlarge
the families model to the following comprehension category:

Fam(SETS) SETS!

SETS

⇡

cod dom

and define the cartesian universe U 2 Fam(SETS)
�

by the constant family:

U = (�,��.V).

Any section t : � ! �.U defines a � indexed collection (�, t�) of sets in V, which gives an interpretation of El(t). Following
closely the proof of theorem 5.2, paying attention to size, we get the following result:

Corollary 5.10. For any function u : S ! S0 such that for each s 2 S0, the subset u�1(s) is small, the functor
u⇤ : Fam(SETS)S0 ! Fam(SETS)S has left and right adjoints, ⌃ and ⇧. Furthermore, for each family (S0, f) in
Fam(SETS)S , each member of the family ⌃(�, f) 2 Fam(SETS)S is small.

By this argument, we find that the enlarged families model supports cartesian universes that are closed under ⇧ and ⌃.
Since the projections ⇡U : �.U ! � associated to universes are such that the sets ⇡U(�) are small, for sections t : � ! �.U
and s : �.El(t) ! �.El(t).U, define ⇧̂El(t)v as the section which associates each � to the image of the member El(v)�
under functor ⇧. The case for ⌃ is completely analogous.

Similarly, as long as Ob(V) 2 SETS, we can define the linear universe as the family:

L = (�,��.Ob(V))

Where a section t : � ! �.L defines a family El(t) = (�, t�) where t� 2 V.
By this construction, we recover the “small” families model as sub-model of small types. Furthermore, the previous

adjunction L a M , induces, for every �, morphisms L : L () U : M in T
�

, natural in � such that this induces an
adjunction of El(L(�)) a El(M(�)), which forms support for M and L for small types.

5.1.2 Concrete examples

To summarize, these are the conditions imposed in order to support all of the type formers described in section 3 using
the families model:

• A metatheory in which we can construct a Grothendieck universe (in ZFC, at least one inaccessible cardinal).

• A symmetric monoidal closed category V, with small products and coproducts, which distribute over the monoidal
structure.

• An adjunction L a M between V and Sets, such that L{⇤} is isomorphic to the unit of the monoidal structure of V.
Some concrete choices for V that fulfill these conditions are:

• The category AbGroups of abelian groups with the monoidal structure given by the tensor product of abelian
groups. Here L a M arises from the free functor on abelian groups.

• More generally, for any commutative ring R, the category R-Mod of modules over R with the free functor/forgetful
functor adjunction

• The category CGTop⇤, of pointed compactly generated topological spaces, with the smash product as monoidal
structure. The functor M is here the forgetful functor which both forgets the base point and the topology, which has
a left adjoint given by the discrete topology, and then taking the coproduct with the point to create a pointed space.
The unit of CGTop⇤ is the two point discrete set S0, which is precisely the image of the point in the adjunction
above.

5.1.3 Syntactic enriched categories

As an in depth example of a construction in the families model, recall the notion of an enriched category in as defined
in 2.12. Our goal is to form a syntactic construction whose interpretation of this is an enriched category. There are two
ways of doing this. The first we will call a “meta construction”, in which we ask for the existence of certain types and
judgmental equalities to hold, whereas the second, internal definition, is a type Enr-Cat, whose terms are interpreted as
enriched categories. The type Enr-Cat allows us to formulate theorems about enriched categories directly in the syntax,
but requires more involved type formers, such as universes, and the following type, with which we can reason (non-linearly)
about the hom-sets of V:
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� ` A linear � ` B linear
� ` [A,B] type

hom-F

�;x : A ` t : B

� ` [�x.t] : [A,B]
hom-I

� ` f : [A,B] �;⌅ ` a : A

�;⌅ ` f(a) : B
hom-E

�;x : A ` t : B �;⌅ ` a : A

�;⌅ ` [�.x.t](a) ⌘ t[a/x] : B
hom-C

In the presence of linear function types (() and the M -functor, this type is equivalent to (A ( B)M . However, adding it
as a primitive allows us to talk about the hom-sets of V even when it is not closed. Instead, the semantics of [�,�] will be
an object in T which “represents” the morphisms of L:
Definition 5.11. A model of linear dependent type theory supports [�,�]-types, if, for all objects A,B 2 L

�

, there exists
an object T [A,B] 2 T

�

such that T
�

(X,T [A,B]) ⇠= L
�.X(A,B).

Definition 5.12 (meta-theoretic enriched categories). A meta-theoretic V-enriched category in a context � consists of the
following data:

• A (cartesian) type � ` A type,

• for any x, y : A, a linear type �, x, y : A ` Bx,y linear,

• terms �, x, y, z : A; g : By,z, f : Bx,y ` M(g, f) : Bx,z,

• �, x : A; · ` jx : Bx,x and

• judgmental equalities �, x, y : A; f : Bx,y ` f ⌘ M(jy ⌦ f) and �, x, y : A; f : Bx,y ` f ⌘ M(f ⌦ jx).

The interpretation of this in the families model are precisely V-enriched categories. The underlying set of objects will
be [[A]], the interpretation of B is a function B : [[A]]⇥ [[A]] ! V, which for each pair x, y 2 A assigns an object of V.
Definition 5.13 (Internal enriched categories). The type Enr-cat is defined as

Enr-cat :⌘ ⌃A:U⌃B:⇧

x,y:AL⌃M :⇧

x,y,z:A[B
y,z

⌦B
x,y

,B
x,z

]

⌃j:⇧
x:A[I,B

x,x

]

[�f.f ] = [�f.Mx,x,y(f⌦jx)]⇥[�f.f ] = [�f.Mx,x,y(jy⌦f)]

Since Fam(Set) is an extensional model, whenever the type a =A b is inhabited, we have [[a]] ⌘ [[b]]. Furthermore,
since the equalities p, q and r are all identifying morphisms in the image of the faithful functor M , we have:

[[f � 1x]] ⌘ [[1y � f ]] ⌘ [[f ]]

and
[[h � (g � f)]] ⌘ [[(h � g) � f ]]

for all f : Bx,y, g : By,z and h : Bz,w, demonstrating that composition is unital and associative in the enriched category.
For example, we may choose V to be the category of groups equipped with the usual tensor product of groups. Here the
L functor forms the free abelian group of a set, and the construction above will yield an Ab-enriched category.

5.2 Diagrams in monoidal categories

Expanding on the set indexed families example, for any category C, there is a fibration cod : Diag(C) ! Cat, with total
category Diag(C) begin the category of diagrams in C whose objects are functors J : D ! C, and whose morphisms
between J : D ! V and J 0 : C ! V consist of functors F : C ! D equipped with a natural transformation J � F =) J 0.
In other words, the fibers of Diag(C) are functor categories, which we write [�, C], for any small category �. Any functor
F : A ! B in the base induces a canonical lift F ⇤ : [B, C] ! [A, C] simply given by precomposition.

Again, when C has a terminal object > such that the collections C(>, A) are small for any A 2 C, then this forms a
comprehension category,

Diag(C) Cat!

Cat

dom

⇡

cod

where the functor ⇡ is defined as follows. Given any diagram A : � ! C, we let the category �.A be the Grothendieck
construction for A, in other words, the category whose objects are pairs (�, t�) where � 2 � and t� : > ! A(�).
Morphisms (�, t�) ! (�0, t0�0) consists of morphisms u : � ! �0 such that A(u) � t� = t0�0 . If C is a 2-category, this can be
weakened so that morphisms (�, t�) ! (�0, t0�0) are pairs (u,↵), where u : � ! �0 and ↵ is a 2-cell ↵ : A(u) � t� =) t0�0 .
The comprehension functor ⇡ : Diag(C) ! Cat! sends the diagram A : � ! C to obvious forgetful functor:

⇡A : �.A ! �

⇡(�, a�) = �

When C is any symmetric monoidal category V, there is an obvious symmetric monoidal structure on each fiber [�,V],
given pointwise:

J ⌦ J 0(x) = J(x)⌦ J 0(x) : [�,V]
J ⌦ J 0(f) = J(f)⌦ J 0(f) : J(x)⌦ J 0(x) ! J(y)⌦ J 0(y)
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Lifts are simply given by precomposition, and we confirm that for f : � ! �, and A : � ! C, ⇡(f⇤) is the pullback:

�.A{f⇤} �.A

� �

⇡
A{f⇤}

q

⇡
A

f

where q(�, af(�)) = (f(�), af(�). Since reindexing functors are strictly monoidal, this yields a split monoidal fibration.
Restricting the base to groupoids instead of categories, and setting C = Gpd we get a model of linear dependent type
theory which expands the groupoid model by Hofmann and Streicher [HS98]:

Diag(V) Diag (Gpd) Gpd!

Gpd

dom
dom

⇡

cod

Since > is the groupoid 1 consisting of a single object, we will equate the functor t� : 1 ! A(�) with an object a� of A(�),
and the natural transformation ↵ : A(u) � t� =) t0�0 with a morphism ↵� : A(u)(a�) ! a0

�0 .
As shown in [HS98], this model supports ⇧ and ⌃, and importantly provides an example of Id-types where there might

be more terms of x =A x than refl(x), which sets the stage for the homotopy interpretation of dependent type theory.
Here, the interpretation of identity type IdA is the functor IdA : �.A.A+ ! Gpd which sends an object (�, a� , b�) to the
discrete groupoid �HomA(�)(�)(a, b), and a morphism (u,↵,�) : (�, a� , b�) ! (�0, a0

�0 , b0�0) to the functor ↵�1�A(u)(�)�� :

�(HomA(a, b)) ! �(HomA(a
0, b0)), which sends f : a ! b to the composite ↵�1 �A(u)(f) � � : a0 ! A(u)a ! A(u)b ! b0.

We see that the extended context �.A.A+.IdA is equivalent to �.A!, and we define rA : (�.A) ! (�.A!) to be the
functor sending morphisms:

(u,↵) : (�, a�) ! (�0, a0
�0)

to squares:

(�, a�) (�0, a0
�0)

(�, a�) (�0, a0
�0)

(u,↵)

(1

�

,1
a

�

)

(1

�

0 ,1
a

0
�

0
)

(u,↵)

The following special case will become important:

Lemma 5.14. If a functor A : � ! Gpd takes values in discrete groupoids only, then for any two sections M : � ! �.A
and N : � ! �.A, if there exists a section P : � ! �.IdA{M}{N+} then M = N .

Proof. The groupoid �.IdA{M}{N+} has as objects
�
�,M� 2 A(�), N� 2 A(�)), f : M� ! N�

�

where M� 2 A(�) is determined by the section M : � ! �.A. If a section P : � ! �.IdA{M}{N+} exists, it must for each
�, pick out a morphism f : M� ! N� . But since A(�) is a discrete groupoid, f can only be the identity morphism, and we
must have M� = N� , for all � 2 �. Since every A(�) is discrete, this implies that M = N .

Theorem 5.15. For any indexed groupoid A in �, the construction IdA described above forms support for Id-types in the
diagrams model.

Proof. That IdA satisfies condition (1) and (2) of definition 4.15 is proved in [HS98]. It remains to show that condition
(3) is satisfied by this construction. Let C,⌅ 2 L

�.A.A+.Id
A

, and assume we have sections M,N : � ! �.A and P :
� ! �.IdA{M}{N+}. We are given a natural transformation c : ⌅{rA} ! C{rA}, between between the two functors
⌅ � rA : �.A ! �.A.A+.IdA ! V and C � rA : �.A ! �.A.A+.IdA ! V and need to display a natural transformation
ĉ
[M,N,P ]

between:

⌅ � P+ �N+ �M : � ! �.A ! �.A.A+ ! �.A.A+.Id ! V
to

C � P �N+ �M : � ! �.A ! �.A.A+ ! �.A.A+.IdA ! V
such that ĉ

[M,M,refl(M)]

= c{M}. The key point to observe is that there is always an isomorphism (�, P� : M� ! N�) ⇠=
(�, 1M

�

: M� ! M�) given by the commutative diagram:

(�,M�) (�,M�)

(�, N�) (�,M�)

P

1

M

1

M

P�1
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in the groupoid �.A!, giving rise to a natural isomorphism � : rA � M ⇠= P+ � N+ � M . We define ĉ[M,N,P ] as the
composite:

ĉ[M,N,P ] :⌘ ⌅� � c{M} � C��1 : ⌅ � P+ �N+ �M ! ⌅ � rA �M ! C � rA �M ! C � P+ �N+ �M

. Notice that when M ⌘ N and P = refl(M), � is the identity natural transformation.

As in the families model, limits and colimits are constructed pointwise, and preserved by precomposition, so the model
supports &, >, �, 0, if V has binary products, terminal object, binary coproducts and initial object respectively.

The situation for ( requires a bit of care. Under what conditions is the functor category [C,V] monoidal closed with
respect to the pointwise tensor product? For all F 2 [C,V], we need to find a right adjoint to the functor �⌦ F : [C,V] !
[C,V]. In other words for all functors G,H, we need

For F,G,H : C ! V a natural transformation ⌘ : F ⌦G ! H, a natural transformation is for all g : z ! x and f : x ! y
in C, a diagram:

Fx⌦Gx Fz ⌦ asd
Fg⌦Gf

Naively, F,G,H : C ! V a natural transformation ⌘ : F ⌦ G ! H gives rise to a collection of maps ⌘̂A : F (A) !
[G(A), H(A)], but a priori these maps do not constitute a natural transformation F ! [G,H].

Instead, notice that a natural transformation ⌘ : F ! G, is for each morphism f : A ! B in C, a pair of morphisms ⌘A
and ⌘B such that:

F (A) F (B)

G(A) G(B)

⌘
A

Ff

⌘
B

Gf

or equivalently, an “element” of [F (A), G(A)]⇥ [F (B), G(B)] such that the postcomposing the first component with Gf is
the same as precomposing the second component with Ff :

[F (A), G(A)]⇥ [F (B), G(B)] [F (A), G(B)]
⇡1(Gf⇤

)

⇡2(Ff⇤)

So if V has all limits, a natural candidate for the internal hom of the functor category becomes the equalizer:

[F,G](x) = Eq(⇧x2C [Fx,Gx] ⇧f :x!y[Fx,Gy])
Gf⇤

Ff⇤

also known as the end [F,G](x) =
R
x2C [Fx,Gx] of the functor [F�, G�] : Cop ⇥ C ! V.

Theorem 5.16. If V has internal homs and is complete, [C,V] has internal homs, defined as above.

Proof. For any, F,G,H 2 [C,V], we need to display bijection

[C,V](H ⌦ F,G) ⇠= [C,V](H,

Z

x2C
[Fx,Gx])

natural in G and H. Since [F,G] is a constant functor, a map on the right hand side consists of, for every map f : x !
y 2 Mor(C), of commutative diagrams of the following form:

Hx Hy

R
x2C [Fx,Gx]

⌘
x

Hf

⌘
y

which will determine two unique morphisms, ⌘̂x : Hx ! ⇧x2C [Fx,Gx] and ⌘̂y : Hy ! ⇧x2C [Fx,Gx], such that the
following diagram commutes:

Hx Hy

⇧x2C [Fx,Gx] ⇧f :x!y[Fx,Gy]

⌘̂
x

Hf

⌘̂
y

⇡1(Gf⇤
)

⇡2(Ff⇤)
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projecting out yields a unique collection of morphisms ⇡x⌘̂x : Hx ! [Fx,Gx] such that the following diagram commutes:

Hx Hy

[Fx,Gx] [Fy,Gy]

[Fx,Gy]

Hf

⇡
x

⌘̂
x

⇡
y

⌘̂
y

[1

Fx

,Gf ]
[Ff,1

Gy

]

which by the tensor-hom adjunction in V corresponds precisely to a diagram:

Hx⌦ Fx Hy ⌦ Fy

Gx Gy

Hf⌦Ff

¯⌘̂
x

⇡
x

¯⌘̂
y

⇡
y

Gf

, determining a unique natural transformation H ⌦ F ! G. This yields a bijection of homsets natural in all variables.

Given any functor p : D ! C in the base, we have:

p⇤([G,F ]) = �x.

Z

p(x)2C
[G(p(x)), F (p(x))]) =

Z

x2D
[G(p(x)), F (p(x))] = [p⇤G, p⇤F ]

so we get that the diagrams model supports ( if V is monoidal closed and complete.

Definition 5.17. For any functor p : A ! B in the base, a left or right adjoint to the induced functor p⇤ : [B,V] ! [A,V]
is called a left or right Kan extension of p.

Here is a general fact about Kan extensions:

Theorem 5.18. Left (right) Kan extensions along p : A ! B between two arbitrary small categories A and B exists if and
only if V has all colimits (limits).

Proof. Assume all left Kan extensions exist, and consider the diagram J : A ! V. Denote the left Kan extension along
the functor ! : A ! 1 to the terminal category Lan

!

: [A,V] ! [1,V]. Since functors in the image of !⇤ : [1,V] ! [A,V]
are functors constant at the object v 2 V, a natural transformation between functors J 2 [A,V] and !⇤v are equivalently
cocones over J with v as a vertex. Since we have:

hom
[1,V]

(Lan
!

(J), v) ⇠= hom
[A,V]

(J, !⇤v)

any cocone ⌘ : J !!⇤v gives rise to a unique morphism from the object selected by Lan
!

(J) to v, which is precisely the
universal property of the colimit.

In the other direction, assume V has all colimits. Then we will, for any p : A ! B construct a “pointwise” left Kan
extension of any F 2 A ! V. We define Lanp(F ) to be the functor which sends b 2 B to the colimit of the diagram

(p # b) ! A F�! V

where (p # b) ! A is the forgetful functor illustrated in the following picture:
0

BBBBBB@

p(a) p(a0)

b

p(f)
1

CCCCCCA
7!

✓
a a0f

◆

for any morphism g : b ! b0, there is an induces functor (p # b) ! (p # b0) by postcomposition, which induces a morphism
of colimits:

lim
!

⇣
(p # b) ! A F�! V

⌘
! lim

!

⇣
(p # b0) ! A F�! V

⌘

which we define to be the action of Lanp(F ) on morphisms. We show that this construction gives rise to an adjunction by
constructing the unit ⌘F : F ! p⇤Lanp(F ). For any b 2 B, denote the projections associated with any colimit of Lanp(F )b
by �

(�)

. That is, for:

p(a) p(a0)

b

s

p(f)

t
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have:

F (a) F (a0)

Lanp(F )(b)

�
s

F (f)

�
t

Now, given any a 2 A, we have p⇤Lanp(F )(a) = Lanp(F )(p(a)), the canonical projections in the case where the
components of the slice (p # p(a)) are given by the identity:

F (a)

Lanp(F )(p(a))

�1
p(a)

give rise to a natural transformation ⌘F : F ! p⇤Lanp(F ).
Leaving naturality conditions aside, it remains to show that this natural transformation satisfies the universal property

of the unit. To that end, let G 2 [B,V] be a functor and � : F ! p⇤G a natural transformation. We want to display a
unique natural transformation �̂ : Lanp(F ) ! G such that p⇤(�̂) � ⌘F = �. But a natural transformation � : F ! p⇤G

makes G(p(a)) a cocone to (p # p(a)) ! A F�! V for all a 2 A, so the universal property of the unit follows from the
universal property of the colimit.

The cases for right Kan extensions and limits holds by a dual version of this argument.

The result above ensures the existence of left and right adjoints to reindexing functors in the diagrams model as long as
V is co-complete or complete, respectively. But since our main concern are diagrams over groupoids, it su�ces to consider
the case where V has limits and colimits for these. Similarly to the families model, the fact that our reindexing functors
are given by precomposition ensures that these always satisfy the Beck-Chevalley condition:

Theorem 5.19. If every lift p⇤ : [B,V] ! [A,V] has a right adjoint Ranp : [A,V] ! [B,V], then, for all functors A 2 [�,V]
and pullbacks of the following form:

�0.p⇤A �.A

�0 �

⇡
p

⇤
A

q

⇡
A

p

there is a natural isomorphism p⇤Ran⇡
A

⇠= Ran⇡
p

⇤{A}q
⇤ : [�.A,V] ! [�0,V].

Proof. Let B 2 [�.A,V] be a functor. Then p⇤Ran⇡
A

(B) is the functor sending �0 2 � to the limit of:

(⇡A # p(�0)) ! �.A
B�! V

while Ran⇡
p

⇤
A

q⇤(B)(�0) is the limit to:

(⇡p⇤A # �0) ! �0.p⇤A
q⇤(B)����! V

The former functor is illustrated in the following picture:
0

BBBBBB@

⇡A(�1, a�1 2 A(�
1

)) ⇡A(�2, a�2 2 A(�
2

))

p(�0)

⇡
A

(↵,u)

s
t

1

CCCCCCA
7!

✓
B(�

1

, a�1) B(�
2

, a�2)
B(↵,u)

◆

The latter is given by:
0

BBBBBBB@

⇡p⇤A(�
0
1

, a�0
1
2 A(p(�0

1

))) ⇡A(�
0
2

, a�0
2
2 A(p(�0

2

)))

�0

⇡
p

⇤
A

(�,v)

s
t

1

CCCCCCCA

7!
✓

B(p(�0), a�0
1
) B(p((�0

2

), a�0
2
)

B(�,v)
◆

In both cases, we are looking at the limit of the image of B of all elements (�, a 2 A(�)) such that p(�) ⇠= �0. By the
universal property of the limit, these are therefore canonically isomorphic.
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In order to interpret M and L in this model, the same argument as in lemma 5.4 can be used to show that an adjunction
between V and Gpd induces a fiber adjunction between the respective diagram categories. Therefore, for any diagrams
model which supports ( to support M and L, it su�ces to display an adjunction

V Gpd

L0

M0

such that L(1) ⇠= I.

Remark 5.20. When V is a representable concrete category, we will often find that support for M and L comes “for free”.
Since the composition of two adjunctions is again an adjunction, we get that whenever the functor V(I,�) : V ! Set has
a left adjoint F , then there exists an adjunction between Diag(V) and Diag(Gpd), arising out of:

V Set Gpd

V(I,�)

F

a

�

⇡0

a
where ⇡

0

is the functor sending a groupoid to its set of connected components.

Theorem 5.21. There are models in which M is not faithful.

Proof. Let V to be Gpd so that L = �⇡
0

and M = �Gpd(1,�). This induces a fiber adjunction L a M where L(1) = 1,
but M is not faithful.

5.2.1 Universes in the diagrams model

To support universes, assuming one inaccessible cardinal allows us to shift our perspective to from the category of small
groupoids, Gpd, to the category GPD of all groupoids. Among the objects of GPD we find the large groupoid Gpdcore,
and Vcore, the core (i.e. maximal sub-groupoid) of the corresponding categories. This allows us to define our cartesian
and linear universes in any context � as the functors:

U : � ! GPD

L : � ! GPD

which are constant at Gpdcore and Vcore, respectively. Any section s : � ! �.U will determine a functor ŝ : � ! Gpd,
which will we can embed via the full subcategory embedding Gpd ! GPD to get an interpretation of El(s). Similarly,
we get from each section s : � ! �.L, a functor El(s) : � ! V. Restricting the type formers u, @, M and L to small types
only, this linear universe is all-encompassing.

It is easily seen that defining the linear universe via the core of V gives rise to the following interesting property, hinting
at the possibility of a linear univalence axiom:

Corollary 5.22. For a linear universe defined as above via Vcore, and two sections s, t : � ! �.L, an isomorphism
↵ : El(t) ⇠= El(s) gives rise to a section p : � ! �.IdL{s}{t}.

5.3 Univalence in linear dependent types

A key feature of the groupoid model is that it provides a model of dependent type theory where there might be nontrivial
terms of the identity type. A natural question to ask is whether this higher dimensional feature of type theory can be
extended to the linear dependent setting.

In particular, we want to explore a model in which the following, linear analogue to the univalence axiom, would hold:

� ` A : L
� ` B : L

�; · ` f : El(A) ( El(B)
�; · ` g : El(B) ( El(A)
�; · ` h : El(B) ( El(A)

� ` p : (g � f)M =
(El(A)(El(A))

M

(idA)M
� ` q : (f � h)M =

(El(B)(El(B))

M

(idB)M

� ` ua(f)
[g,h,p,q] : A =L B

L-ua-I

To define the corresponding computation rule, we first define a transport function for linear types:

Lemma 5.23. Suppose the following judgments hold:

�, x : C ` D linear

� ` a : C

� ` b : C

� ` p : a =C b

Then there is a a linear function �; · ` p⇤ : D[a/x] ( D[b/x], which we call the transport along p
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Proof.
�, x, y : C ` D[x/x] ( D[y/x] linear
�, z : C; · ` �u.u : D[z/x] ( D[z/x]

� ` a : C
� ` b : C

� ` p : a =C b

�; · ` RId
[x,y,p](�u.u, a, b, p) : D[a/x] ( D[b/x]

Taking C ⌘ L, and D ⌘ El(x) for any x : L in the procedure above yields, from judgments:

� ` A : L
� ` B : L
� ` p : A =L B

the function �; · ` RId
[x,y,p](�u.u,A,B, p) : El(C) ( El(D). It can easily be shown that this function gives rise to a

linear equivalence between El(C) and El(D). The two computation rules for the linear univalence axiom states that the
procedure of generating an equivalence from an identity is itself an equivalence. In other words, given a linear function
f : El(A) ( El(B) which gives rise to a linear equivalence of El(A) and El(B), turning the equivalence f into an identity
and then back into an equivalence should return f again:

� ` RId
[x,y,p](�u.u,A,B, ua(f)g,h,p,q) : El(A) ( El(B)

� ` RId
[x,y,p](�u.u,A,B, ua(f)g,h,p,q) ⌘ f : El(A) ( El(B)

L-ua-C
1

and in the other direction, given an identity p : A =L B, turning it to an equivalence and then back into an identity should
return p:

� ` ua(RId
[x,y,p](�u.u,A,B, p))

[�,�,�,�]

: A =L B

� ` ua(RId
[x,y,p](�u.u,A,B, p))

[�,�,�,�]

⌘ p : A =L B
L-ua-C

2

5.3.1 Semantic justification

The semantic interpretation of the procedure of turning an identity to an equivalence above is the following:

Lemma 5.24. Given two sections A,B : � ! �.L, and a section p : � ! �.IdL{A}{B+}, there is an natural isomorphism
IdToEquiv(p) : El(A) ⇠= El(B) in [�,V].

Proof. The section p : � ! �.IdL{A}{B+} must for every �, select an object (a 2 A(�), b 2 B(�), f : a ! b) of the
groupoid IdL.{A}{B+}(�) = �Vcore(A,B), and map morphisms to commutative squares, defining a natural isomorphism
El(A) ⇠= El(B) between the diagrams El(A) : � ! V and El(B) : � ! V.

Theorem 5.25. For L a M factoring through Sets as in Remark 5.20, the linear univalence axiom holds in the diagrams
model. That is, given the following data:

• sections: A,B : � ! �.L
• morphisms: f : I ! [El(A), El(B)] and g, h : I ! El(B) in [�,V],
• and sections: p : � ! �.Id

(M [El(A),El(A)])

{M(g � f)}{M(idA)} and q : � ! �.Id
(M [El(B),El(B)])

{M(f � h)}{M(idB)}
Then there is a section ua(f)g,h,p,q : � ! �.IdL{A}{B} such that IdToEquiv(ua(f)) = f and ua(IdToEquiv(p)) = p.

Proof. Since M factors through sets, the interpretation of any type in its image is a functor with values in discrete
groupoids, so by lemma 5.14, the existence of a section p : � ! �.IdM [El(A),El(A)]

{(g � f)M}{(idEl(A)

)M} implies that
the sections (g � f)M : 1 ! M [A,A] and (idEl(A)

)M : 1 ! M [A,A] coincide, which by the adjunction L a M implies
that [[(g � f)]] = idEl(A)

. From the interpretation of ( as internal hom, the syntactic composition operation coincides

with the composition of the corresponding morphisms. In other words, denoting by f̂ the transport of a map via the
isomorphism L

�

(I, [A,B]) ⇠= L
�

(A,B), we have [̂[g � f ]] = ĝ � f̂ and îdEl(A)

= 1El(A)

. We therefore have an isomorphism

f̂ : El(A) ! El(B) with ĝ = ĥ as inverse. Selecting this isomorphism in Vcore gives rise to a section P : � ! �.IdL{A}{B},
which by the previous lemma can be transported back by IdToEquiv(P ) = f̂ .

So the linear univalence axiom holds in the diagrams model as long as M factors through sets, analogous to how
one can prove the univalence axiom in the groupoid model for the universe which only contains discrete groupoids. This
might not be completely satisfying from the perspective of homotopy type theory, as this essentially truncates any higher
dimensional type into a set when transporting them via M . Instead, we could to imagine forming a model where our linear
types have an inherently higher dimensional structure, which is preserved by M . One such model is given by letting the
objects of V be categories, and M be the functor taking a category to its core, i.e. its maximal sub-groupoid. If we want
V to have a non-cartesian monoidal structure the candidate choices Cat and Gpd won’t do. As briefly outlined in in 2.15
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and carefully described in [Sch07], there is a symmetric monoidal structure on SMCat, the category of small symmetric
monoidal categories, symmetric monoidal functors and monoidal natural transformations. 7

Definition 5.26. Let the 2-categorical model of LDTT be given by the diagrams model where V is the 2-category of
small symmetric monoidal categories, symmetric monoidal functors and monoidal natural transformations:

Diag(SMCat) Diag(Gpd) Gpd!

Gpd

cod

⇡

cod
dom

For two symmetric monoidal categories A and B, the category [A,B] consisting of monoidal functors and monoidal
transformations between them carries a natural monoidal structure [Sch07], and serves as the internal hom of A and B.
Since SMCat is complete, with limits inherited from Cat equipped with a pointwise monoidal structure, we have support
for u and &, and theorem 5.16 gives us that this model supports ( type formers. 8

Lemma 5.27. There is a functor F : Cat ! SMCat which constructs the free symmetric monoidal category of any
groupoid, i.e. is a left adjoint to the forgetful functor Usmcat : SMCat ! Cat, forgetting the monoidal structure.

Proof. Construct the free symmetric monoidal category FC of a small category C by letting the objects of FC be finite
words (x

1

, x
2

, . . . xn) of the objects of C. Morphisms between words are best thought of as string diagrams, where each
string stems from a morphism in C:

y
1

y
2

y
3

x
1

x
2

x
3

f

g h

The composition of such morphisms are just the composition of the corresponding string diagrams, composing the labels of
strings along the way. The monoidal structure is simply given by concatenation of words, where the empty word corresponds
to the unit. From this construction, it should be clear that given any symmetric monoidal groupoid D, a functor between
groupoids G : C ! UsmcatD induces a functor Ĝ which maps words (x

1

, x
2

, . . . xn) 7! G(x
1

) ⌦ G(x
2

) ⌦ . . . G(xn), which
forms an adjunction F a U .

Combining this adjunction with the familiar adjunction:

Cat Gpd

core

U
gpd

`

where Ugpd is the forgetful functor and core is the functor sending a category to its underlying maximal sub-groupoid, we
get an adjunction:

SMCat Gpd

core �U
smcat

F�U
gpd

`

This adjunction lifts by lemma 5.4 to a fiber adjunction:

Diag(SMCat) Diag(Gpd)

Gpd

cod

M

L

a

cod

Furthermore, it is clear from the definition of F and the unit I of SMCat, defined at 2.15 that the image of 1 under F is
precisely I, so the higher dimensional model supports M and L.

Here we have two choices for our linear universe.9 If we want univalence to hold in this model we can let the linear
universe L be the groupoid consisting of all discrete symmetric monoidal categories, and isomorphisms between them. This

7Technically, the structure on SMCat is not quite symmetric monoidal, as the associators, unitors and symmetry functors are only invertible
up to higher homotopy. However, if one applies these homotopies whenever necessary, one does get a model of linear dependent type theory.

8Note, however, that we do not have all coproducts in SMCat. Therefore, we cannot support � or @. An alternative to be explored is the
category Mult, of multicategories, which is a symmetric monoidal closed, complete and co-complete [EM09]. More on this in section 6

9In our syntax we only defined a single linear universe, but it can easily be extended into several universes, which may be subcategories of each
other, or even an infinite hierarchy of universes
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is equivalently the core of CMon, the category of small commutative monoids (in Set). CMon is a full subcategory of
SMCat, which allows us to let El be the function sending an object of L to an object of SMCat.

Another choice is to let L = SMCatcore, making it an all-encompassing universe. This universe is not univalent, how-
ever, as one-dimensional groupoids do not carry enough higher dimensional structure to capture the weakness distinguishing
an equivalence of categories and an isomorphism of categories.

5.3.2 Univalent linear type theory (syntactic)

It is not uncommon for linear logicians to state equalities likeA ( B ( C = A⌦B ( C to meanA ( B ( C ` A⌦B ( C
and A⌦ B ( C ` A ( B ( C. Here it is important to distinguish between linear logic and linear type theory. In both
linear logic and linear type theory, we have A&A a` A, but there is in general no equivalence A&A ⇠= A, since there may
be more than one term inhabiting A.

Just as the normal, “cartesian” univalence axiom provides mathematicians with a way to equate isomorphic structures,
despite its incompatibility with the “o�cial” doctrines of conventional foundations, the linear univalence axiom allows us
to identify well known equivalences between linear types without feeling guilty.

Theorem 5.28. Assuming L-ua, for all linear types A, B, C, cartesian D in �, and cartesian E in �.D, the following
types are inhabited:

1. � ` A ( B ( C =L A⌦B ( C

2. � ` (⌃x:DE)L =L@x:D EL

3. (A&B)LM =L ALM ⌦BLM

Proof. 1. We construct maps h : (A ( B ( C) ( (A⌦B) ( C

�; f : A ( B ( C ` f : A ( B ( C �; y : A ` y : A
(-E

�; f : A ( B ( C, y : A, z : B ` f(y) : B ( C �; z : B ` z : B
(-E

�; f : A ( B ( C, y : A, z : B ` f(y)(z) : C �;x : A⌦B ` x : A⌦B
⌦-E

�; f : A ( B ( C, x : A⌦B ` let x be (y, z) in f(y)(z) : C
(-I

�; f : A ( B ( C ` �x.let x be (y, z) in f(y)(z) : A⌦B ( C
(-I

�; · ` �f.�x.let x be (a, b) in f(a)(b) : (A ( B ( C) ( (A⌦B ( C)

and h�1 : (A⌦B ( C) ( (A ( B ( C):

�;� : B ` � : B �;↵ : A ` ↵ : A

�;↵ : A,� : B ` ↵⌦ � : A⌦B �; g : A⌦B ( C ` g : A⌦B ( C

�; g : A⌦B ( C,↵ : A,� : B ` g(↵⌦ �) : C

�; g : A⌦B ( C,↵ : A ` g(↵⌦ �) : B ( C
(-I

�; g : A⌦B ( C ` �↵.��.g(↵⌦ �) : A ( B ( C
(-I

�; · ` �g.�↵.��.g(↵⌦ �) : (A⌦B ( C) ( (A ( B ( C)

and show that they are mutually inverse. (h � h�1) : (A⌦B ( C) ( (A⌦B ( C) reduces to:

(h � h�1) :⌘ ��.(�f.�x.let x be (a, b) in f(a)(b))(�g.�↵.��.g(↵⌦ �))� ⌘
��.(�f.�x.let x be (a, b) in f(a)(b))(�↵.��.�(↵⌦ �)) ⌘

��.�x.let x be (a, b) in (�↵.��.�(↵⌦ �))(a)(b) ⌘
��.�x.let x be (a, b) in �(a⌦ b) ⌘

��.let (a⌦ b) be (a, b) in �(a⌦ b) ⌘
id

(A⌦B(C)((A⌦B(C)

and (h�1 � h) : (A ( B ( C) ( (A ( B ( C) reduces to:

(h�1 � h) :⌘ ��.(�g.�↵.��.g(↵⌦ �))(�f.�x.let x be (a, b) in f(a)(b))� ⌘
��.(�g.�↵.��.g(↵⌦ �))(�x.let x be (a, b) in �(a)(b)) ⌘

��.�↵.��.(�x.let x be (a, b) in �(a)(b))(↵⌦ �)) ⌘
��.�↵.��.let (↵⌦ �)) be (a, b) in �(a)(b)) ⌘

��.�↵.��.�(↵)(�) ⌘
id

(A(B(C)((A(B(C)

so we inhabit both (h � h�1)M =
(A⌦B(C)((A⌦B(C)

idM and (h�1 � h)M =
(A⌦B(C)((A⌦B(C)

idM with refl, and
then apply the linear univalence axiom to get the desired equality.

2. By Theorem 3.8, there is a linear equivalence (⌃x:DE)L ⇠=@x:D EL. The linear univalence axiom gives rise to an
equality between these types.
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3. We construct a function f : (A&B)LM ( ALM ⌦BLM by:

f :⌘ �p.let p be x in fst(�(x))LM ⌦ snd(�(x))LM

with inverse f�1 : ALM ⌦BLM ( (A&B)LM :

f�1 :⌘ �q.let q be y, z in
⇣�

let ↵ be y in �(↵)
�
,
�
let � be z in �(�)

�⌘

LM

which are easily seen to be mutually inverse.
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6 Discussion

6.1 Multicategories vs. Symmetric Monoidal Categories

An alternative approach to modeling linear type theory is to start from Multicategories instead of Symmetric Monoidal
Categories. A multicategory is like a category, except that one allows multiple inputs and a single output. These are
slightly more general, as for every monoidal category there is an underlying multicategory, but the converse does not
hold. Although multicategories are less studied than monoidal categories, there are reasons to believe that they can
provide a useful framework for interpreting linear type theory. First of all, they give us precisely the su�cient structure
to interpret the core syntax of a linear type theory, and do not require us to assume support for ⌦ and I at the level
of the “semantic core”, as we have done here. Secondly, in pursuing higher dimensional models of linear dependent type
theory, the categories Mult of unbased multicategories and Mult⇤ of based multicategories are both symmetric monoidal,
closed, and bicomplete, while SMCat does not have all colimits (and its monoidal structure is technically not that of
a monoidal category “on the nose”). There is also a strong connection between multicategories, symmetric spectra and
algebraic K-theory, a connection that might be explored “synthetically” in linear dependent type theory, if one constructs
a model based on multicategories [EM09].

6.2 Equality of linear types and linear function extensionality

A basic assumption of our theory is the restriction disallowing linear terms to appear in types. This implies that we cannot
form the identity type of two terms of a linear type, which could be seen as a lack of proper “internalization” of the notion
of equality between linear terms. However, we can still utilize the “surrogate equality” described at the end of Section
3.4, which compares the image of the two linear terms under M . Building upon this idea, it is tempting to consider the
addition of some kind of “extensionality”-style rules to make the “surrogate equality” useful in practice. Such rules should
allow us to prove equalities of linear terms by reducing it to a proof equalities of their consituent parts. For example,
suppose we are given terms:

�;x : A ` t : B

�;x : A ` s : B

and we know s and t to be equal in some weak (or propositional) sense, and therefore, we would like to say that there is a
term of the type:

� ` (�x.t)M =
(A(B)

M

(�x.s)M

We might say that to prove such an equality, it su�ces to display a proof of the type:

� ` fmap (�x.t) =A
M

!B
M

fmap(�x.s) ⌘
� ` �y.

�
�x.t(�(y))

�
M

=A
M

!B
M

�y.
�
�x.s(�(y))

�
M

which, in the presence of (cartesian) function extensionality reduces to a proof of:

� ` ⇧y:A (t[(�(y)/x]M =B
M

s[�(y)/x]M )

We consider this rule to be a kind of linear function extensionality, even though the name does not reflect the interplay
between M and L present in its formulation. For an application of this rule, consider the proof of Theorem 3.8. There
we displayed a linear equivalence by showing judgmental equality between the roundabout g � f and the identity function,
but it is tempting to weaken this to a propositional equality and drop additional assumption ⌃-U .

We have not investigated the semantic interpretation of linear function extensionality, nor its interplay with univalence
or linear univalence. It appears that more investigation is warranted regarding equality between linear terms.

6.3 Inductive types in linear dependent logic

As we saw in the case for ⌃- and Id-types, we add new elimination and computation rules for our traditional cartesian type
formers for when the type we eliminate into is linear. This should remain true for inductive types. For example, adding
the type of natural numbers to our theory, we would add the rules [N-E

2

], [N-C
2

-0], [N-C
2

-S] to the typical rules for the
natural numbers type:
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` � ctxt
� ` N type

N-F

` � ctxt
� ` 0 : N N-0-I

� ` M : N
� ` Suc(M) : N

N-S-I

�, n : N ` C type
� ` Hz : C[0/n]

�, n : N, x : C ` Hs : C[Suc(n)/x]
� ` M : N

� ` RN
n(Hz, Hs,M) : C[M/n]

N-E
1

� ` RN
n(Hz, Hs, 0) : C[0/n]

� ` RN
n(Hz, Hs, 0) ⌘ HZ : C[0/n]

N-C
1

-0

� ` RN
n(Hz, Hs, Suc(M)) : C[Suc(M)/n]

� ` RN
n(Hz, Hs, Suc(M)) ⌘ Hs[M/n,RN

n(Hz, Hs,M)/x] : C[Suc(M)/n]
N-C

1

-S

�, n : N ` C linear
�;⌅ ` Hz : C[0/n]

�, n : N;⌅, x : C ` Hs : C[Suc(n)/x]
� ` M : N

�;⌅ ` RN
n(Hz, Hs,M) : C[M/n]

N-E
2

�;⌅ ` RN
n(Hz, Hs, 0) : C[0/n]

�;⌅ ` RN
n(Hz, Hs, 0) ⌘ Hz : C[0/n]

N-C
2

-0

�;⌅ ` RN
n(Hz, Hs, Suc(M)) : C[Suc(M)/n]

�;⌅ ` RN
n(Hz, Hs, Suc(M)) ⌘ Hs[M/n,RN

n(Hz, Hs,M)/x] : C[Suc(M)/n]
N-C

2

-S

These rules allow us to define an addition operator for the linear type NL:
We first define a successor operation for NL by:

LSuc : NL ( NL

LSuc :⌘ �x.let n be x in Suc(n)L

and define the function that applies this operation x : N times to any term of NL:

x : N, n : N, z : N;m : NL ` LSuc(m) : NL y : NL ` y : NL

x : N, n : N; y : NL,m : NL ` let z be y in LSuc(m) : N x : N; y : NL ` y : NL

x : N ` x : N
x : N; y : NL ` RN(y, let z be y in LSuc(m), x) : NL

allowing us to define “linear addition operator”:

L+ : NL ( NL ( NL

L+ :⌘ �n.�m.let x be n in RN(y, let z be y in LSuc(m), x)

It remains future work to investigate which conditions these extra rules impose on the semantic interpretation of the
natural numbers type, and to explore more generally how to interpret inductive types in the linear dependent setting. It
would also be interesting to see how inductive types constructed in this fashion compares to the ones considered by Frank
Pfenning in [Pfe02].

6.4 Linearity, pointedness, stability and the delooping hypothesis

In our models, we have kept the categories L and T of linear and cartesian types only related mainly via the adjunction
L a M . This has provided us with a variety of options for understanding linear and cartesian types and their relation, but
at this level of generality there does not seem to be a strong conceptual (or ontological) connection between linear and
cartesian types.

Inspired by the higher categorical interpretation of dependent type theory, we consider a few di↵erent ways of connecting
cartesian and dependent types, both from a syntactic and semantic point of view.

6.4.1 Linear types as pointed cartesian types

For any category C with terminal object, we can consider the its pointed version, C⇤, consisting of objects A 2 C together
with a morphism a : 1 ! A, whose morphisms are commutative triangles:

1

A B

a b

f
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This category has coproducts (called wedge sums) given by pushouts if C has these, products inherited from C, and a
symmetric tensor product (called the smash product) when C has both products and pushouts. Furthermore, when C has
all coproducts, the forgetful functor C⇤/ ! C which forgets the base point has a left adjoint which is given for any object
A by he coproduct 1 +A.

This suggests that whenever we have a model for dependent type theory which supports ⇧ and ⌃, we should get a
model for linear type theory by considering the category of pointed objects over any context. L

�

= T ⇤/
�

.
The connection gives motivation for including the following derivation rules:

` A type
` a : A

` (a,A) linear

` a : A
` b : B

` f : A ! B
` f(a) ⌘ b

·; (a,A) ` f : (b, B)

However, under the homotopical interpretation of type theory, there might be a more interesting relationship between
pointed cartesian types and linear types.

6.4.2 Linear types as looped cartesian types

From the homotopy type theory interpretation of dependent type theory, we are inclined to think of the category of
cartesian types as an n-dimensional or 1-dimensional groupoid, where the identity type provides us with the means of
going “one step up the ladder” of higher dimensions. The

There are higher dimensional analogues to this process of relating pointed categories and monoidal categories, going
under the homotopy theory inspired names of looping and delooping. The full theory and motivation behind this process
falls outside the scope of this paper, and the curious reader is directed to [BS10]. Below we outline the main idea and
discuss how this relates to linear dependent type theory.

Starting with a low dimensional example, we can for any small category A with a distinguished object a construct
a monoid, ⌦(A), the looping of A, whose underlying set of objects is given by Ob(⌦(A)) = C(a, a), and whose monoid
structure is induced by the composition in A. In the other direction, we can for any monoid M , construct a small category
⌃(M) consisting a single object ⇤, whose set of morphisms is given by the underlying set of M , and whose composition is
given by multiplication in M . This procedure extends to an adjoint pair B a ⌦ of functors between the category of pointed
categories and the category of monoids. In the case where the small category A is monoidal, the resulting monoid has two
“monoid operations”, which by an Eckmann–Hilton argument turn out to coincide and yield a commutative monoid.

Going one dimension higher, if (C, a) is a bicategory (recall definition 2.14) with a distinguished object a 2 C
0

, we define
its looping ⌦(A) to be the category whose objects are the 1-morphisms in a, and whose morphisms are the 2-morphisms
between these. In other words:

⌦(A) = Ca,a

Now one can verify that the structure given from the composition Ma,a,a : Ca,a ⇥ Ca,a ! Ca,a and identity functor
1a : 1 ! Ca,a and the associated associators and unitors is precisely that of a monoidal category.

The dual of this procedure takes a monoidal category V and defines ⌃(V) as the bicategory consisting of a single object,
⇤, to which we associate corresponding 1-morphisms and 2-morphisms by:

⌃(V)⇤,⇤ = V

Again, the monoidal structure of V gives us precisely the structure needed to define the coherent composition and identity
functors.

It can be shown that the process of looping and suspension can be extended to functors, which form a sort of adjunction
between monoidal categories and bicategories.

MonCat BiCat

⌦

B

`

By double looping and delooping, we get an adjunction between commutative monoids and pointed bicategories.
Motivated by these lower dimensional examples provides an intuition behind the delooping hypothesis: 10

Hypothesis 6.1. There is an adjoint pair Bk a ⌦k between k-monoidal n-categories and pointed (n+ k)-categories.

What k-monoidal means in this context is the higher dimensional generalization of correspondence between sets,
monoids, commutative monoids in the 0-dimensional case, and categories, monoidal-, braided monoidal- and symmet-
ric monoidal categories in the 1-dimensional case.

10This version is a simplified form of the more general version given in [BS10]
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In the context of dependent linear type theory, the hypothesis suggests that if we want the category L
�

to be a non-
discrete symmetric monoidal category, i.e. a 3-monoidal 1-category, the lowest dimension needed for a non-trivial category
of cartesian types is to let T

�

be a pointed tetracategory, i.e. weak 4-category, connected by the adjunction:

L
�

T
�

⌦

3

B3

`

At this point, one might jump straight to the 1-dimensional case11, and consider all n-dimensional examples as special
cases.

Roughly, this means that we are to understand a cartesian context � as an 1-groupoid as in the simplicial sets model,
from which we can construct the 1-category Sp(�) of spectrum objects, in the sense of [Lur06], if � admits finite limits.
The category Sp(�) should be a symmetric monoidal (1, 1)-category, which seems like a suitable environment to interpret
“higher dimensional” linear types.

This suggests a connection between dependent linear type theory and stable homotopy theory akin to the connection
between dependent type theory and to homotopy theory. This connection was hypothesized in [Sch14].

However, as the connection between linear types and cartesian types relies heavily on pointed objects in the cartesian
realm, one is tempted to experiment with a reformulation of the adjunction L a M that reflects this.

11The definition of a tetracategory spans multiple pages for every single coherence axiom (of which there are many)
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