
NOTES ON CRYSTALS AND ALGEBRAIC D-MODULES

Let X be a smooth manifold, and let V be a vector bundle on X equipped with a flat
connection

∇ : V → V ⊗ ΩX .

Then the flat sections of V determine a local system L on X. For every point x ∈ X, the fiber
of the local system Lx can be identified with the fiber Vx. Given a path p : [0, 1] from x = p(0)
to y = p(1), there is a map p! : Lx → Ly is given by parallel transport along p, using the
connection ∇; moreover the map p! depends only on the homotopy class of the path p. This
construction is entirely reversible: the local system L determines the vector bundle V and its
connection ∇ up to canonical isomorphism. In other words, the category of vector bundles with
flat connection on X is equivalent to the category of local systems of vector spaces on X.

Now suppose that X is a smooth algebraic variety over a field k of characteristic zero (fixed
through the remainder of this lecture). There is a purely algebraic notion of a vector bundle
with flat connection on X: that is, an algebraic vector bundle V on X equipped with a map of
sheaves

∇ : V → V ⊗ ΩX

which satisfies the Leibniz rule. If k is the field of complex numbers, then the set of k-valued
pointsX(k) is endowed with the structure of a smooth (complex) manifold, so that V determines
a local system on X(k) as above. However, the relationship between vector bundles with
connection to local systems is essentially transcendental. There is no algebraic notion of a path
from a point x ∈ X to another point y ∈ X, and hence no algebraic theory of parallel transport
along paths.

Let us return for the moment to a case of a general manifold X. Every point x ∈ X has
a neighborhood U which is homeomorphic to a Euclidean space Rn. Consequently, for every
point y which is sufficiently close to x (so that y ∈ U), we can choose a path from x to y which
is contained in U : moreover, this path is uniquely determined up to homotopy. Consequently,
parallel transport along some connection from x to y does not depend on a choice of path,
provided that path lies in U . We can summarize this informally as follows: if x and y are
nearby points of X and V is a vector bundle with connection on X, then we get a canonical
isomorphism Vx ' Vy.

If X is an algebraic variety, then it typically does not have a basis consisting of “contractible”
Zariski-open subsets (for example, if X is a smooth curve of genus > 0, then it has no simply-
connected open subsets at all). However, Grothendieck’s theory of schemes provides a good
substitute: namely, the notion of infinitesimally close points.

Definition 0.1. LetX be a scheme over k, letR be a k-algebra. We letX(R) = Hom(SpecR,X)
be the set of R-valued points of X. Let I denote the nilradical of R: that is, the ideal in R con-
sisting of nilpotent elements. We say that two R-valued points x, y ∈ X(R) are infinitesimally
close if x and y have the same image under the map X(R)→ X(R/I).

Remark 0.2. Note that if x, y : SpecR→ X are infinitesimally close points, then they induce
the same map of topological spaces from SpecR into X: the only difference is what happens
with sheaves of functions. This is one sense in which x and y really can be regarded as “close”.
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Using this notion of “infinitesimally close” points, we can formulate what it means for a sheaf
F on a scheme X to have a good theory of “parallel transport along short distances”:

Definition 0.3. [Grothendieck] Let X be a smooth scheme over k. A crystal of quasi-coherent
sheaves on X consists of the following data:

(1) A quasi-coherent sheaf F on X. For every R-valued point x : SpecR→ X, the pullback
x∗(F) can be regarded as a quasi-coherent sheaf on SpecR: that is, as an R-module.
We will denote this R-module by Fx.

(2) For every pair of infinitesimally close points x, y ∈ X(R), an isomorphism of R-modules
ηx,y : F(x) → F(y). These isomorphisms are required to be functorial in the following
sense: let R → R′ be any map of commutative rings, so that x and y have images
x′, y′ ∈ X(R′). Then

ηx′,y′ : F(x′) ' F(x)⊗R R′ → F(y)⊗R R′ ' F(y′)

is obtained from ηx,y by tensoring with R′.
(3) Let x, y, z ∈ X(R). If x is infinitesimally close to y and y is infinitesimally close to

z, then x is infinitesimally close to z; we require that ηx,z ' ηy,z ◦ ηx,y. In particular
(taking x = y = z), we see that ηx,x is the identity on F(x), and (taking x = z) that
ηx,y is inverse to ηy,x.

There is another way to formulate Definition 0.3. Let X be an arbitrary functor from
commutative rings to sets, not necessarily a functor which is representable by a scheme. A
quasi-coherent sheaf F on X consists of a specification, for every R-point x ∈ X(R), of an
R-module F(x), which is compatible with base change in the following sense:

(a) If R → R′ is a map of commutative rings and x′ ∈ X(R′) is the image of X, we are
given an isomorphism αx,x′ : F(x′) ' F(x)⊗R R′.

(b) Given a pair of maps R → R′ → R′′ and a point x ∈ X(R) having images x′ ∈ X(R′)
and x′′ ∈ X(R′′), the map αx,x′′ is given by the composition

F(x)⊗R R′′ → (F(x)⊗R R′)⊗R′ R′′

αx,x′
→ F(x′)⊗R′ R′′

αx′,x′′
→ F(x′′).

If X is a scheme, then this definition recovers the usual notion of a quasi-coherent sheaf on
X. We define Xdr, the deRham stack of X, to be the functor given by the formula Xdr(R) =
X(R/I), where I is the nilradical of R. If X is a smooth scheme, then the map X(R)→ X(R/I)
is surjective, so that Xdr(R) can be described as the quotient of X(R) by the relation of
“infinitesimal closeness”. Unwinding the definitions, we see that a crystal of quasi-coherent
sheaves on X is essentially the same thing as a quasi-coherent sheaf on Xdr.

The main point of introducing these definitions is the following result:

Theorem 0.4. Let X be a smooth scheme over k. Then the category of crystals of quasi-
coherent sheaves on X is equivalent to the category of quasi-coherent DX-modules.

The equivalence of Theorem 0.4 is compatible with the forgetful functor to quasi-coherent
sheaves. In other words, we are asserting that if F is a quasi-coherent sheaf on X, then equipping
F with a flat connection ∇ : F → F ⊗ ΩX is equivalent to endowing F with the structure of a
crystal. This can be regarded as an algebro-geometric version of the equivalence of categories
mentioned at the beginning of this lecture.

We now sketch the proof of Theorem 0.4. Fix a quasi-coherent sheaf F on X. We would
like to understand, in more concrete terms, how to endow F with the structure (2) described
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in Definition 0.3. To this end, we note that a pair of R-points x, y ∈ X(R) can be regarded as
an R-point of the product X × X. The points x and y are infinitesimally close if and only if
the map SpecR/I → SpecR→ X ×X factors through the diagonal. This is equivalent to the
requirement that the map SpecR → X × X factor set-theoretically through the diagonal. In
other words, it is equivalent to the requirement that (x, y) : SpecR → X ×X factors through
(X ×X)∨, where (X ×X)∨ denotes the formal completion of X ×X along the diagonal.

More concretely, let J denote the ideal sheaf of the diagonal closed immersion X → X ×X.
For each n ≥ 0, we let Jn+1 denote the (n+ 1)st power of the ideal sheaf J, and X(n) ⊆ X ×X
the corresponding closed subscheme. Then (X ×X)∨ is defined to be the Ind-scheme lim−→X(n).
At the level of points, this means that (X ×X)∨(R) ' lim−→X(n)(R). This is because given an
R-point (x, y) : SpecR → X ×X, the points x, y ∈ X(R) are infinitesimally close if and only
if the ideal generated by (x, y)∗J is contained in the nilradical of R, which is equivalent to the
requirement that (x, y)∗Jn has trivial image in R for n� 0.

Consequently, to supply the data described in (2), we need to give an isomorphism π∗1F '
π∗2F, where π1, π2 : (X×X)∨ → X denote the two projections. Let π(n)

i denote the restriction of
πi to X(n); we need to give a compatible family of maps (π(n)

1 )∗F → (π(n)
2 )∗F of quasi-coherent

sheaves on X(n). This is equivalent to giving a map of sheaves

F → (π(n)
1 )∗(π

(n)
2 )∗F

on X. To understand this data, we need to understand the functor (π(n)
1 )∗(π

(n)
2 )∗ from the

category of quasi-coherent sheaves on X to itself.
Note that the underlying topological space of X(n) coincides with the underlying topological

space of X. We may therefore view the structure sheaf OX(n) as a sheaf on X; the projection
maps π(n)

1 and π
(n)
2 endow OX(n) with two (different!) OX -module structures. The functor

(π(n)
1 )∗(π

(n)
2 )∗ is given by the relative tensor product

F 7→ OX(n) ⊗OX
F.

Let D
≤n
X denote the sheaf of algebraic differential operators on X of order ≤ n. There is a

canonical pairing
〈, 〉 : D

≤n
X ⊗OX

OX(n) ,

which can be described as follows. Think of sections of OX as functions f(x), and sections of
OX(n) as functions g(x, y) of two variables, defined modulo the (n + 1)th power of J. Given a
differential operator D on X, we can regard g(x, y) as a function of x (keeping y constant) to
obtain a new function Dg of two variables. We now define 〈D, g〉(x) = (Dg)(x, x). If D has
order ≤ n, then D carries Jn+1 into J, so that the resulting function on X is independent of
the choice of g.

The pairing defined above is actually perfect: it identifies OX(n) with the OX -linear dual of
D
≤n
X . We will check this in the special case where X is the affine line; the general case follows by

the same reasoning, with more complicated notation. We can identify OX with the polynomial
ring k[x] and OX(n) with the algebra k[x, y]/(x − y)n+1. As a module over k[x], it is free on
a basis {(x, y)k}0≤k≤n. On the other hand, we can identify D

≤n
X with the free OX -module

generated by symbols { 1
k! (

∂
∂x )k}0≤k≤n. A simple calculation shows that these bases are dual

to one another under the pairing 〈, 〉.
It follows that giving a map F → OX(n)⊗OX

F is equivalent to giving a map D
≤n
X ⊗OX

F → F.
Giving a compatible family of such maps for each n is equivalent to giving a map α : DX ⊗OX

F → F. Any such map determines parallel transport morphisms ηx,y : F(x) → F(y) for an
arbitrary pair of infinitesimally close points x, y ∈ X(R).
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To complete the analysis, we should spell out the meaning of condition (3) in Definition
0.3: under what conditions do we have ηx,z ' ηy,z ◦ ηx,y? The translation amounts to the
commutativity of the diagram

DX ⊗OX
DX ⊗OX

F
α //

β

��

DX ⊗OX
F

α

��
DX ⊗OX

F
α // F,

where β is induced by the multiplication on DX . Similarly, the condition that ηx,x = id is
equivalent to the requirement that the unit 1 ∈ DX act by the identity on F (together with
transitivity, this guarantees that ηx,y is inverse to ηy,x, so thateach ηx,y is invertible). This
proves Theorem 0.4: endowing F with the structure of a crystal is equivalent to endowing F

with the structure of a DX -module, compatible with the existing OX -module structure on F.
Theorem 0.4 provides us with two different ways to look at the same kind of structure. Each

has its advantages:
(a) The definition of a crystal of quasi-coherent sheaves was somewhat abstract. The

theory of DX -modules provides a much more concrete approach to the same objects,
and enables us to make use of a battery of tools (such as noncommutative algebra) in
their study.

(b) Definition 0.3 provides a very conceptual way of thinking about DX -modules. Given a
quasi-coherent sheaf F which is described in some functorial way, it might be difficult
to explicitly identify a connection ∇ or a DX action on F. However, Definition 0.3 is
easy to apply if we understand F as a functor.

(c) The theory of crystals has quite a bit of flexibility. For example, differential operators
are badly behaved if the variety X is not smooth. However, we can still contemplate
quasi-coherent sheaves on the deRham stack Xdr. This turns out to behave badly in
general, but it behaves well if we work with complexes of sheaves rather than sheaves
(it recovers the usual derived category of quasi-coherent D-modules on X, which can
be obtained more concretely by embedding X in some smooth variety).

Another advantage of Definition 0.3 is that it adapts easily to nonlinear settings. For example,
we have the following:

Definition 0.5. Let S be a smooth scheme over k. A crystal of schemes on S consists of the
following data:

(1) An S-scheme X → S. For every R-valued point x : SpecR → S, we will denote the
pullback X ×S SpecR by x∗X.

(2) For every pair of infinitesimally close points x, y ∈ S(R), an isomorphism of R-schemes
ηx,y : x∗X ' y∗X. (As in Definition 0.3, we require that these isomorphisms be
compatible with base change in R).

(3) Let x, y, z ∈ S(R). If x is infinitesimally close to y and y is infinitesimally close to z,
then x is infinitesimally close to z; we require that ηx,z ' ηy,z ◦ ηx,y.

Let us now make the connection between Definition 0.5 and the theory of D-schemes de-
scribed earlier in the seminar. Let π : X → S be a crystal of schemes over S, and assume that
π is affine. Then π∗OX is a crystal of quasi-coherent sheaves on S, which we can identify with a
quasi-coherent DS-module A. However, it has more structure: namely, there is a multiplication
π∗OX ⊗OS

π∗OX → π∗OX . This multiplication is a map of crystals, and translates (under the
equivalence of categories of Theorem 0.4) to a map of DS-modules A ⊗OS

A → A. This map
endows A with the structure of a quasi-coherent DS-algebra. As in Theorem 0.4, no information
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is lost in the passage from π : X → S to A: we can recover X as the relative spectrum of A,
and the DS-module structure of A exhibits X as a crystal of schemes on S. We can summarize
our discussion as follows:

Theorem 0.6. Let S be a smooth scheme over k. Then the category of commutative quasi-
coherent DS-algebras is equivalent to the category of crystals of schemes π : X → S such that
π is affine.

Remark 0.7. Theorem 0.6 provides a concrete understanding of crystals of schemes in the
affine case. However, it can be used to understand crystals of schemes in general. Assume for
simplicity that the base S is separated, and suppose that π : X → S is a crystal of schemes over
S. Let U ⊆ X be an affine open subset. We claim that U → S is also a crystal of schemes. To
prove this, we need to give a canonical isomorphism x∗U ' y∗U for every pair of infinitesimally
close moprhisms x, y : SpecR→ S. Note that x∗U and y∗U can be identified with open subsets
of the R-schemes x∗X and y∗X, which are identified by virtue of our assumption that X → S is
a crystal of schemes. We claim that this identification restricts to an isomorphism x∗U ' y∗U .
This is a purely topological question. We may therefore replace R by the quotient R/I, where
I is the nilradical of R. After this maneuver, we have x = y and the result is obvious.

Since S is separated, for every affine open subset U ⊆ X the map π|U is an affine map from
U to S, so that (π|U)∗OU is a sheaf of quasi-coherent OS-algebras which we will denote by AU .
The above reasoning shows that, if X is a crystal of schemes over S, then each AU has the
structure of DS-algebra; moreover, this structure depends functorially on U .

Conversely, suppose we are given a compatible family of DS-algebra structures on AU , for all
open affines U ⊆ X. Then each affine U ⊆ X has the structure of a crystal of schemes over S.
We claim that X then inherits the structure of a crystal of schemes over S. To prove this, we
need to exhibit an isomorphism ηx,y : x∗X → y∗X for every pair of infinitesimally close points
x, y ∈ S(R). The underlying map of topological spaces of ηx,y is clear (since dividing out by
the nilradical of R does not change these topological spaces). The problem of promoting this
map of topological spaces to a map of schemes is then local: it therefore suffices to give such
a map over an open covering of x∗X, and such a covering is given by {x∗U} where U ranges
over the affine open sets in X.

As in the case of quasi-coherent sheaves, we can phrase the definition of crystal in terms
of deRham stacks. More precisely, let S be any functor from the category of commutative k-
algebras to sets. We define an S-scheme to be another functor X from commutative k-algebras
to sets, equipped with a map π : X → S, which is relatively representable in the following sense:
for any R-point s ∈ S(R), the fiber product X ×S {s} (another functor from commutative
k-algebras to sets) is representable by an R-scheme. If S is itself representable by a k-scheme,
this recovers the usual notion of a scheme X with a map to S. If S is a smooth k-scheme, then
an Sdr-scheme is the same thing as a crystal of schemes over S.

Let π : S′ → S be a map of functors. If X is an S-scheme, then the fiber product S′×S X is
an S′-scheme, which we will denote by π∗S. The construction π∗ has a right adjoint π∗, at least
at the level of functors. Namely, let X ′ → S′ be a morphism in the category of functors from
commutative k-algebras to sets. We define π∗X ′ to be the set of pairs (s, φ), where s ∈ S(R)
and φ belongs to the inverse limit lim←−s′ X

′
s′(R

′), taken over all pairs (R′, s′) where R′ is a
commutative R-algebra and s′ ∈ S′(R′) lifts the image of s in S(R′). The functor π∗X ′ is
called the Weil restriction of X ′ along π. In general, it need not be an S-scheme, even if we
assume that X ′ is an S′-scheme.

Example 0.8. Let S be a separated smooth k-scheme, and let π : X → S be an arbitrary
map of schemes. For each n ≥ 0, let S(n) denote the nth order neighborhood of the diagonal



6 NOTES ON CRYSTALS AND ALGEBRAIC D-MODULES

in S × S. We can mimic the constructions appearing in the proof of Theorem 0.4 at the level
of schemes: namely, we can pull X back to S(n) along the first projection, and then push it
forward along the second projection, by means of the Weil restriction. More concretely, we
define J (n)(X) to be an S-scheme with the following universal property: for every S-scheme Y ,
we have a bijection HomS(Y, J (n)(X)) ' HomS(Y ×S S(n), X). A point of J (n)(X) consists of
a point x ∈ X together with an order n jet of a section of π passing through x.

We have forgetful maps J (n+1)(X) → J (n)(X) for n ≥ 0. These maps are affine, so that
the inverse limit J(X) = lim←− J

(n)(X) is well-defined. We call J(X) the jet-scheme of the
projection π. By construction, for every R-valued point x ∈ S(R), the pullback x∗J(X) can be
identified with the scheme which parametrizes sections of π over a formal neighborhood of x in
S × SpecR. If x, y ∈ S(R) are infinitesimally close, then their formal neighborhoods coincide
in S × SpecR, so we get a canonical isomorphism of R-schemes x∗J(X) ' y∗J(Y ). These
isomorphsims exhibit J(X) as a crystal of schemes over S.

One can give another more abstract argument that J(X) should have the structure of a
crystal of schemes over S. Namely, we claim that J(X) is given by the Weil restriction of X
along the quotient map π : S → Sdr. More precisely, J(X) is the underlying S-scheme of this
Weil restriction: that is, it is given by π∗π∗X. To prove this, we observe that there is a pullback
diagram

(S × S)∨
π1 //

π2

��

S

π

��
S

π // Sdr.

There is a natural transformation of functors

(π∗π∗X) ' (π2)∗π∗1X,

which can be shown to be an isomorphism in this case. Note that (S × S)∨ ' lim−→S(n), so that
(π2)∗(π∗1X) is the inverse limit of the Weil restrictions of the fiber products X ×S S(n). By
construction, this inverse limit is given by J(X) = lim←− J

(n)(X).
The argument sketched above has an additional virtue: it establishes a universal property

enjoyed by the construction X 7→ J(X). Namely, we have proven the following:

Proposition 0.9. Let S be a smooth separated k-scheme. Then the construction X 7→ J(X) is
right adjoint to the forgetful functor from crystals of S-schemes to S-schemes. In other words,
for any crystal of S-schemes Y , composition with the projection map J(X) → X induces a
bijection between the set HomSdr (Y, J(X)) of maps of crystals to the set HomS(Y,X) of maps
of S-schemes.

We now introduce a more specific example which is relevant to our study in this seminar:

Example 0.10. Let X be an algebraic curve over k and G a reductive algebraic group, and let
π : Gr1 → X denote the Beilinson-Drinfeld Grassmannian. More precisely, an R-valued point of
Gr1 is given by a triple (x,P, η), where x ∈ X(R) is a point of X, P is a G-bundle on X×SpecR,
and η is a section of P over the open set (X × SpecR) − x(SpecR). Then π exhibits Gr1 as
a crystal (of Ind-schemes) over X. To see this, it suffices to observe that if x, y ∈ X(R) are
infinitesimally close, then the open sets (X×SpecR)−x(SpecR) and (X×SpecR)−y(SpecR)
coincide.

Example 0.11. Let X be an algebraic curve. Given an R-point x ∈ X(R), let O∨X,x denote
the ring of functions on the formal scheme given by completing X × SpecR along x. Then
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the ordinary scheme Spec O∨X,x contains SpecR as a divisor; we will denote the difference
Spec O∨X,x − SpecR by D◦x, and refer to it as the punctured formal disk around x. (If R is a
field, or more generally a local ring, then D◦x is noncanonically isomorphic to the spectrum of
a Laurant power series ring R((t)).)

Let Y be a scheme. We define a relative loop space LY as follows: an R-valued point of
LY is given by a pair (x, φ), where x ∈ X(R) and φ : D◦x → Y is a map of schemes. If
Y is affine, then LY is an Ind-scheme, and we have an obvious projection LY → X. This
map exhibits LY as a crystal of Ind-schemes over X. To see this, it suffices to observe that if
x, y ∈ X(R) are infinitesimally close, then the formal completions of X × SpecR along x and y
coincide. We therefore have an isomorphism of rings O∨X,x ' O∨X,y and hence an isomorphism
of affine schemes Spec O∨X,x ' Spec O∨X,y, which restricts to an isomorphism between the open
subschemes D◦x ' D◦y.

In the special case where Y is a reductive algebraic group G, the map LG → X has fibers
over a rational point x ∈ X(k) given by G(Kx), Kx is denotes the field of Laurent series
corresponding to x ∈ X. In this case, LG is a group stack over X, and has a natural action
LG×X Gr1 → Gr1. It is not difficult to see that this action is horizontal: that is, the preceding
map is a map of crystals.


