The cyclic bar construction.	The circle action and fixed points.	Elementary examples. 00	Cyclic spectra and THH. 00

A visual introduction to cyclic sets and cyclotomic spectra

Cary Malkiewich (UIUC)

July 7, 2015 Young Topologists Meeting Lausanne, Switzerland

The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and THH.

Goal: the cyclic bar construction and topological Hochschild homology (*THH*) in pictures.

Key idea: "cyclotomic" structure.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and THH.

Goal: the cyclic bar construction and topological Hochschild homology (*THH*) in pictures.

Key idea: "cyclotomic" structure.

Useful for algebraic K-theory. And fun!

The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and THH.
00000			
Review of the bar construction.			

The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and THH.
00000			
Review of the bar construction.			

$$B(X, G, Y) = |[k] \mapsto X \times G^{\times k} \times Y|$$
$$X \underbrace{\times}_{d_0} G \underbrace{\times}_{d_1} G \underbrace{\times}_{d_2} G \underbrace{\times}_{d_3} Y$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and THH.
•••••	00000000000	00	00
Review of the bar construction.			

$$B(X, G, Y) = |[k] \mapsto X \times G^{\times k} \times Y|$$
$$X \underbrace{\times}_{d_0} G \underbrace{\times}_{d_1} G \underbrace{\times}_{d_2} G \underbrace{\times}_{d_3} Y$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Recipe for a space: one Δ^k for each (x, g_1, \ldots, g_k, y) .

The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and THH.
• 0 0000	00000000000		
Review of the bar construction.			

$$B(X, G, Y) = |[k] \mapsto X \times G^{\times k} \times Y|$$
$$X \underbrace{\times}_{d_0} G \underbrace{\times}_{d_1} G \underbrace{\times}_{d_2} G \underbrace{\times}_{d_3} Y$$

Recipe for a space: one Δ^k for each (x, g_1, \ldots, g_k, y) .

$$EG = B(*, G, G), \qquad BG = B(*, G, *)$$

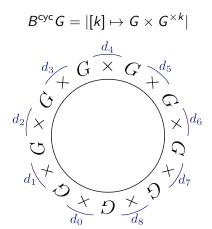
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and THH.
00000			
Review of the bar construction.			

Also works for:

- based spaces with smash product
- abelian groups with tensor product
- spectra with the smash product
- diagrams ("G has many objects")

The cyclic bar construction. ○○●○○○	The circle action and fixed points.	Elementary examples. 00	Cyclic spectra and <i>THH</i> .
The cyclic bar construction.			



◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ○臣 - の々ぐ

The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and THH.
The cyclic bar construction.		00	00

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

The terms $G^{\times k+1}$ form a *cyclic* space.

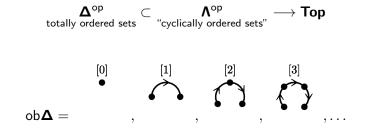
The cyclic bar construction.	The circle action and fixed points.	Elementary examples. 00	Cyclic spectra and <i>THH</i> . 00
The cyclic bar construction.			

The terms $G^{\times k+1}$ form a *cyclic* space.

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

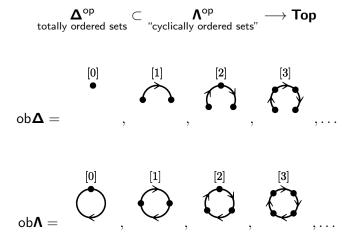
The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and THH.
000000			
The cyclic bar construction.			

The terms $G^{\times k+1}$ form a *cyclic* space.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The terms $G^{\times k+1}$ form a *cyclic* space.



▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The morphisms are "degree 1" functors.

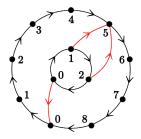
The circle action and fixed points 00000000000 Elementary examples

Cyclic spectra and THH.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The cyclic bar construction.

Here's a morphism $f : [2] \rightarrow [8]$ in Λ



The circle action and fixed points.

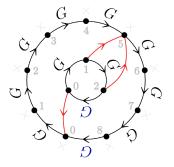
Elementary examples

Cyclic spectra and *THH*.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

The cyclic bar construction.

Here's a morphism $f : [2] \rightarrow [8]$ in Λ



It sends G^9 to G^3 like this:

$$\mathbf{G} \times \mathbf{G}^8 \rightarrow \mathbf{G} \times \mathbf{G}^2$$

The circle action and fixed points.

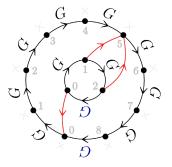
Elementary examples

Cyclic spectra and THH.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The cyclic bar construction.

Here's a morphism $f: [2] \rightarrow [8]$ in Λ



It sends G^9 to G^3 like this:

$$\mathbf{G} \times \mathbf{G}^8 \rightarrow \mathbf{G} \times \mathbf{G}^2$$

 $g_0, g_1, g_2, g_3, g_4, g_5, g_6, g_7, g_8 \mapsto g_6 g_7 g_8 g_0, g_1 g_2 g_3 g_4 g_5, 1$

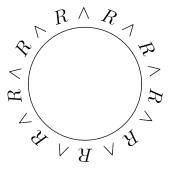
The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and THH.
000000			
Topological Hochschild homology			

To make *Topological Hochschild homology*, just form B^{cyc} in the category of spectra.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and THH.
00000			
Topological Hochschild homology			

To make *Topological Hochschild homology*, just form B^{cyc} in the category of spectra.



(日)、

æ

R a ring spectrum.

The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and <i>THH</i> .
000000		00	00
The circle action.			

Theorem

If $X_{\bullet} : \Lambda^{\text{op}} \longrightarrow$ Top is a cyclic space, the realization $|X_{\bullet}|$ has a natural action by the circle group S^1 .

The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and <i>THH</i> .
000000		00	00
The circle action.			

Theorem

If $X_{\bullet} : \Lambda^{\text{op}} \longrightarrow \text{Top}$ is a cyclic space, the realization $|X_{\bullet}|$ has a natural action by the circle group S^1 .

Proof: X_{\bullet} always a colimit of cyclic sets $\Lambda(-, [n])$ for varying n.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The cyclic bar construction.	The circle action and fixed points.	Elementary examples. 00	Cyclic spectra and <i>THH</i> .
The circle action.			

Theorem

If $X_{\bullet} : \Lambda^{\text{op}} \longrightarrow \text{Top}$ is a cyclic space, the realization $|X_{\bullet}|$ has a natural action by the circle group S^1 .

Proof: X_{\bullet} always a colimit of cyclic sets $\Lambda(-, [n])$ for varying n.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Just need the circle action on $\Lambda^n := |\mathbf{\Lambda}(-, [n])|$.

Elementary examples

Cyclic spectra and THH. 00

The circle action.

Simplices in $\Lambda^n \leftrightarrow maps [k] \longrightarrow [n]$.

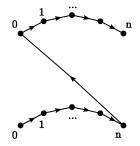
Elementary examples

Cyclic spectra and THH.

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

The circle action.

Simplices in $\Lambda^n \leftrightarrow \text{maps } [k] \longrightarrow [n]$. Lift to the "universal cover" of [n]:

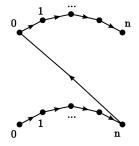


Elementary examples.

Cyclic spectra and THH.

The circle action.

Simplices in $\Lambda^n \leftrightarrow \text{maps } [k] \longrightarrow [n]$. Lift to the "universal cover" of [n]:



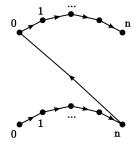
 \leftrightarrow an increasing function

 $f: \{0,\ldots,k\} \longrightarrow \{(0,0), (0,1), \ldots, (0,n), (1,0), (1,1), \ldots, (1,n)\}.$

Elementary examples. 00 Cyclic spectra and THH.

The circle action.

Simplices in $\Lambda^n \leftrightarrow \text{maps } [k] \longrightarrow [n]$. Lift to the "universal cover" of [n]:



 \leftrightarrow an increasing function

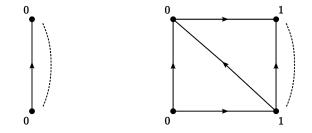
 $f: \{0, \dots, k\} \longrightarrow \{(0, 0), (0, 1), \dots, (0, n), (1, 0), (1, 1), \dots, (1, n)\}.$ Unique, unless $f(k) \le (0, n)$ or $f(0) \ge (1, 0)$.

The cyclic bar construction.	The circle action and fixed points.	Elementary examples. 00	Cyclic spectra and <i>THH</i> . 00
The circle action.			

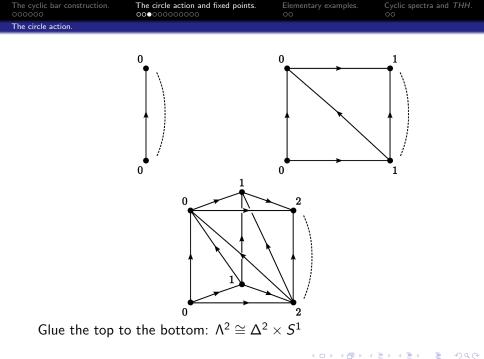
◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

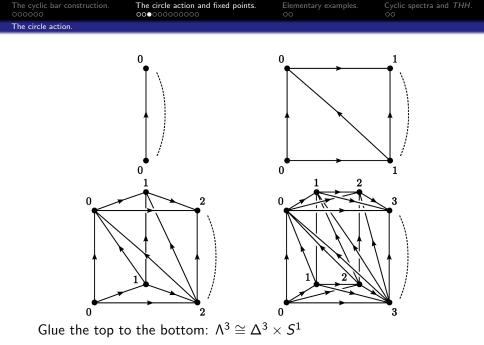
Glue the top to the bottom: $\Lambda^0 \cong \Delta^0 \times S^1$

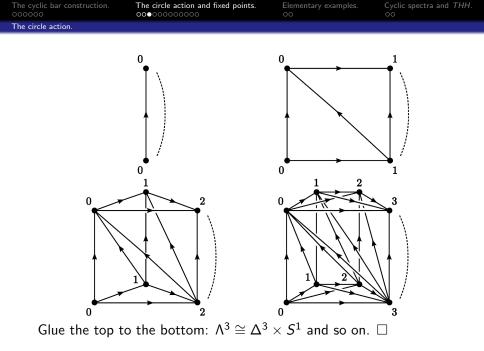
The cyclic bar construction.	The circle action and fixed points.	Elementary examples. 00	Cyclic spectra and <i>THH</i> . 00
The circle action.			



Glue the top to the bottom: $\Lambda^1\cong\Delta^1\times S^1$





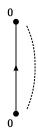


Fixed points.			
	0000000000		
The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and THH.

$C_n \leq S^1$ cyclic subgroup – what are its fixed points?

The cyclic bar construction.	The circle action and fixed points.	Elementary examples. 00	Cyclic spectra and THH. 00
Fixed points.			

 $C_n \leq S^1$ cyclic subgroup – what are its fixed points? Simplicial level 0: get one copy of Λ^0 for each $g \in G$



イロト 不得 トイヨト イヨト

3

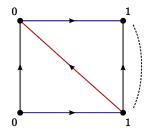
The cyclic bar construction. 000000	The circle action and fixed points.	Elementary examples. 00	Cyclic spectra and THH.
Fixed points.			

 $C_n \leq S^1$ cyclic subgroup – what are its fixed points? Simplicial level 0: get one copy of Λ^0 for each $g \in G$

Degenerate if g = 1, nondegenerate otherwise.

The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and <i>THH</i> .
000000		00	00
Fixed points.			

Simplicial level 1: we get a $\Lambda^1 = \Delta^1 \times S^1$ for each pair (g_1, g_2) .

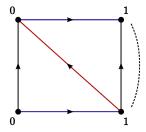


・ロト ・聞ト ・ヨト ・ヨト

æ

The cyclic bar construction.	The circle action and fixed points.	Elementary examples. 00	Cyclic spectra and <i>THH</i> . 00
Fixed points.			

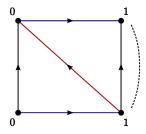
Simplicial level 1: we get a $\Lambda^1 = \Delta^1 \times S^1$ for each pair (g_1, g_2) .



The bottom triangle for (g_1, g_2) is glued to top triangle for (g_2, g_1) and vice-versa.

The cyclic bar construction.	The circle action and fixed points.	Elementary examples. 00	Cyclic spectra and <i>THH</i> .
Fixed points.			

Simplicial level 1: we get a $\Lambda^1 = \Delta^1 \times S^1$ for each pair (g_1, g_2) .

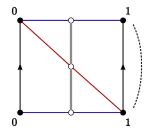


The bottom triangle for (g_1, g_2) is glued to top triangle for (g_2, g_1) and vice-versa. Are any blue points fixed by some nontrivial element of S^1 ?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The cyclic bar construction.	The circle action and fixed points.	Elementary examples. 00	Cyclic spectra and <i>THH</i> .
Fixed points.			

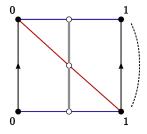
Answer: only the midpoint, and only if $g_1 = g_2$:



▲ロト ▲母 ト ▲目 ト ▲目 ト ● ○ ○ ○ ○ ○

The cyclic bar construction.	The circle action and fixed points.	Elementary examples. 00	Cyclic spectra and THH. 00
Fixed points.			

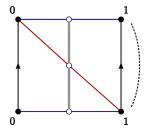
Answer: only the midpoint, and only if $g_1 = g_2$:



The given point must hit itself on the red line again, and only the midpoint does this.

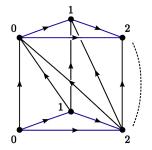
The cyclic bar construction.	The circle action and fixed points.	Elementary examples. 00	Cyclic spectra and THH.
Fixed points.			

Answer: only the midpoint, and only if $g_1 = g_2$:



The given point must hit itself on the red line again, and only the midpoint does this. We get a $G \times \Lambda^0$ in the C_2 -fixed points.

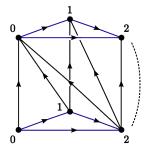
The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and <i>THH</i> .
000000		00	00
Fixed points.			



・ロト ・聞ト ・ヨト ・ヨト

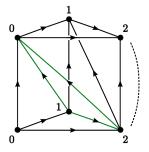
æ

The cyclic bar construction.	The circle action and fixed points.	Elementary examples. 00	Cyclic spectra and <i>THH</i> .
Fixed points.			



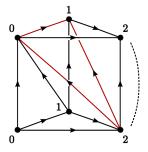
glued by rotating the triple (g_1, g_2, g_3) and rotating the three 3-simplices in the figure.

The cyclic bar construction.	The circle action and fixed points.	Elementary examples. 00	Cyclic spectra and <i>THH</i> .
Fixed points.			



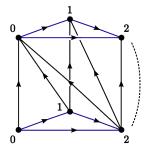
glued by rotating the triple (g_1, g_2, g_3) and rotating the three 3-simplices in the figure.

The cyclic bar construction.	The circle action and fixed points.	Elementary examples. 00	Cyclic spectra and <i>THH</i> .
Fixed points.			



glued by rotating the triple (g_1, g_2, g_3) and rotating the three 3-simplices in the figure.

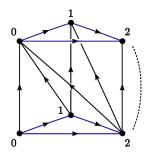
The cyclic bar construction.	The circle action and fixed points.	Elementary examples. 00	Cyclic spectra and <i>THH</i> .
Fixed points.			



glued by rotating the triple (g_1, g_2, g_3) and rotating the three 3-simplices in the figure.

The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and <i>THH</i> .
000000		00	00
Fixed points.			

Which points in the blue simplex are fixed?



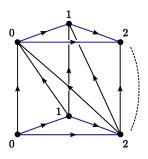
・ロト ・ 日 ト ・ モ ト ・ モ ト

æ

Fixed points.			
	00000000000		
The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and THH.

Which points in the blue simplex are fixed? Triple must be (g_1, g_1, g_1) , point must be fixed under rotation of

vertices of Δ^2

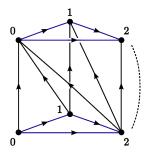


▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

The cyclic bar construction.	The circle action and fixed points.	Elementary examples. 00	Cyclic spectra and <i>THH</i> .
Fixed points.			

Which points in the blue simplex are fixed?

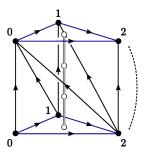
Triple must be (g_1, g_1, g_1) , point must be fixed under rotation of vertices of $\Delta^2 \rightsquigarrow$ only the barycenter.



The cyclic bar construction.	The circle action and fixed points.	Elementary examples. 00	Cyclic spectra and <i>THH</i> .
Fixed points.			

Which points in the blue simplex are fixed?

Triple must be (g_1, g_1, g_1) , point must be fixed under rotation of vertices of $\Delta^2 \rightsquigarrow$ only the barycenter. We get C_3 -fixed points:



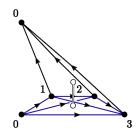
Get another $G \times \Lambda^0$ in the C_3 -fixed points.

The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and THH.
000000	000000000000	00	00
Fixed points.			

Simplicial level 3: look for fixed points in $G^4 \times \Delta^3$.

The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and <i>THH</i> .
000000		00	00
Fixed points.			

Simplicial level 3: look for fixed points in $G^4 \times \Delta^3$. First chance to get mapped to yourself, by C_4 :

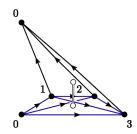


・ロト ・聞ト ・ヨト ・ヨト

э

The cyclic bar construction.	The circle action and fixed points.	Elementary examples. 00	Cyclic spectra and <i>THH</i> . 00
Fixed points.			

Simplicial level 3: look for fixed points in $G^4 \times \Delta^3$. First chance to get mapped to yourself, by C_4 :



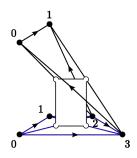
(日)、

-

We get a $G \times \Lambda^0$ in the C_4 -fixed points.

Fixed points.			
	00000000000		
The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and THH.

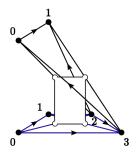
Next chance to get mapped to yourself, by C_2 :



・ロト ・ 日 ト ・ モ ト ・ モ ト

The cyclic bar construction. 000000	The circle action and fixed points.	Elementary examples. 00	Cyclic spectra and THH.

Next chance to get mapped to yourself, by C_2 :



More fixed points! C_2 acts on Δ^3 by rotating the coordinates twice:

$$(t_0, t_1, t_2, t_3) \mapsto (t_2, t_3, t_0, t_1)$$

(日)、

э.

The fixed points form a line Δ^1 .

The cyclic bar construction.

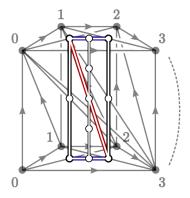
Elementary examples

Cyclic spectra and THH.

★ロト ★週 ト ★ ヨト ★ ヨト 二 ヨ

Fixed points.

So, get a copy of $G^2 \times \Lambda^1$ in the C_2 -fixed points.



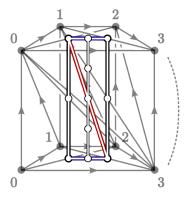
The cyclic bar construction.

Elementary examples

Cyclic spectra and THH.

Fixed points.

So, get a copy of $G^2 \times \Lambda^1$ in the C_2 -fixed points.



Can easily formalize now: if $r \mid n$, the piece $G^n \times \Lambda^{n-1}$ has C_r -fixed points $G^{n/r} \times \Lambda^{n/r-1}$.

The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and <i>THH</i> .
	○○○○○○○○○○●	00	00
Fixed points.			

Collect it all together:

simp. level	S^1	C_1	C_2	<i>C</i> ₃	<i>C</i> ₄
0	$\{1\} imes \Delta^0$	$G imes \Lambda^0$			
1		$G^2 imes \Lambda^1$	$G imes \Lambda^0$		
2		$G^3 imes \Lambda^2$		$G imes \Lambda^0$	
3		$G^4 imes \Lambda^3$	$G^2 imes \Lambda^1$		$G imes \Lambda^0$
4		$G^5 imes\Lambda^4$			
5		$G^6 imes\Lambda^5$	$G^3 imes \Lambda^2$	$G^2 imes \Lambda^1$	
:	:	:	:	:	:
•			•		•

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Notice anything?

The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and <i>THH</i> .
	○○○○○○○○○○●	00	00
Fixed points.			

Collect it all together:

simp. level	S^1	C_1	C_2	<i>C</i> ₃	<i>C</i> ₄
0	$\{1\} imes\Delta^0$	$G imes \Lambda^0$			
1		$G^2 imes \Lambda^1$	$G imes \Lambda^0$		
2		$G^3 imes \Lambda^2$		$G imes \Lambda^0$	
3		$G^4 imes \Lambda^3$	$G^2 imes \Lambda^1$		$G imes \Lambda^0$
4		$G^5 imes\Lambda^4$			
5		$G^6 imes\Lambda^5$	$G^3 imes \Lambda^2$	$G^2 imes \Lambda^1$	
÷	:	:	:	:	

Notice anything?

$$(B^{\operatorname{cyc}}G)^{\mathcal{C}_n}\cong (B^{\operatorname{cyc}}G)^{\mathcal{C}_1}=B^{\operatorname{cyc}}G$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and <i>THH</i> .
	○○○○○○○○○○●	00	00
Fixed points.			

Collect it all together:

simp. level	S^1	C_1	C_2	<i>C</i> ₃	<i>C</i> ₄
0	$\{1\} imes \Delta^0$	$G imes \Lambda^0$			
1		$G^2 imes \Lambda^1$	$G imes \Lambda^0$		
2		$G^3 imes \Lambda^2$		$G imes \Lambda^0$	
3		$G^4 imes \Lambda^3$	$G^2 imes \Lambda^1$		$G imes \Lambda^0$
4		$G^5 imes\Lambda^4$			
5		$G^6 imes\Lambda^5$	$G^3 imes \Lambda^2$	$G^2 imes \Lambda^1$	
÷	:	÷	÷	÷	:
4	÷	$G^4 imes \Lambda^3$ $G^5 imes \Lambda^4$			$G imes \Lambda^0$:

Notice anything?

$$(B^{\operatorname{cyc}}G)^{C_n} \cong (B^{\operatorname{cyc}}G)^{C_1} = B^{\operatorname{cyc}}G$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

An S^1 -space with this property is *cyclotomic*.

The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and <i>THH</i> .
000000		●○	00
The free loop space.			

X any unbased space, the free loop space is $LX = Map(S^1, X)$.

The cyclic bar construction.	The circle action and fixed points.	Elementary examples. ●○	Cyclic spectra and <i>THH</i> .
The free loop space.			

X any unbased space, the free loop space is $LX = Map(S^1, X)$.

 C_n -fixed loops must follow the same path n times:

 $(LX)^{C_n} \cong LX$

The cyclic bar construction.	The circle action and fixed points.	Elementary examples. ●○	Cyclic spectra and <i>THH</i> . 00
The free loop space.			

X any unbased space, the free loop space is $LX = Map(S^1, X)$.

 C_n -fixed loops must follow the same path n times:

 $(LX)^{C_n} \cong LX$

In fact

Proposition $B^{\text{cyc}}G \simeq L(BG)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Square zero extensions and tense	or algebras.		
		0•	
The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and THH.

Square zero extensions and tenso	or algebras.		
		00	
The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and THH.

X a based space, $S^0 \lor X$ the "square zero extension" of S^0 by X.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and THH.
		0	
Square zero extensions and tenso	or algebras.		

X a based space, $S^0 \lor X$ the "square zero extension" of S^0 by X.

Proposition

 $B^{\text{cyc}}(S^0 \vee X) \cong S^0 \vee (\Lambda^0 / \partial \wedge X) \vee (\Lambda^1 / \partial \wedge_{C_2} X \wedge X) \vee (\Lambda^2 / \partial \wedge_{C_3} X^{\wedge 3}) \vee \dots$

The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and <i>THH</i> .
000000		○●	00
Square zero extensions and tenso	r algebras.		

X a based space, $S^0 \lor X$ the "square zero extension" of S^0 by X.

Proposition

 $B^{\text{cyc}}(S^0 \vee X) \cong S^0 \vee (\Lambda^0 / \partial \wedge X) \vee (\Lambda^1 / \partial \wedge_{C_2} X \wedge X) \vee (\Lambda^2 / \partial \wedge_{C_3} X^{\wedge 3}) \vee \dots$

$$T(X) = S^0 \lor X \lor X^{\land 2} \lor X^{\land 3} \lor \dots$$

$$B^{\mathsf{cyc}}(\mathcal{T}(X)) \cong S^0 \vee (\Lambda^0_+ \wedge X) \vee (\Lambda^1_+ \wedge_{C_2} X \wedge X) \vee (\Lambda^2_+ \wedge_{C_3} X^{\wedge 3}) \vee \dots$$

Proposition

$$T(X) = S^0 \vee X \vee X^{\wedge 2} \vee X^{\wedge 3} \vee \dots$$

 $B^{\text{cyc}}(S^0 \vee X) \cong S^0 \vee (\Lambda^0 / \partial \wedge X) \vee (\Lambda^1 / \partial \wedge_{C_2} X \wedge X) \vee (\Lambda^2 / \partial \wedge_{C_3} X^{\wedge 3}) \vee \dots$

Proposition

Switch to based spaces and smash product. X a based space, $S^0 \lor X$ the "square zero extension" of S^0 by X.

The cyclic bar construction. The circle action and fixed points. Elementary examples. Cyclic spectra and THH. 000000 0000000000 0● 00 Square zero extensions and tensor algebras. 0000000000 0000000000

Square zero extensions and tensor	r algebras.		
The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and <i>THH</i> .
000000		○●	00

X a based space, $S^0 \lor X$ the "square zero extension" of S^0 by X.

Proposition

 $B^{\text{cyc}}(S^0 \vee X) \cong S^0 \vee (\Lambda^0 / \partial \wedge X) \vee (\Lambda^1 / \partial \wedge_{C_2} X \wedge X) \vee (\Lambda^2 / \partial \wedge_{C_3} X^{\wedge 3}) \vee \dots$

$$T(X) = S^0 \vee X \vee X^{\wedge 2} \vee X^{\wedge 3} \vee \dots$$

Proposition

$$B^{\mathsf{cyc}}(T(X)) \cong S^0 \vee (\Lambda^0_+ \wedge X) \vee (\Lambda^1_+ \wedge_{C_2} X \wedge X) \vee (\Lambda^2_+ \wedge_{C_3} X^{\wedge 3}) \vee \dots$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Very similar!

The cyclic bar construction. 000000	The circle action and fixed points.	Elementary examples. ○●	Cyclic spectra and THH.
Square zero extensions and tenso	r algebras.		

X a based space, $S^0 \lor X$ the "square zero extension" of S^0 by X.

Proposition

 $B^{\text{cyc}}(S^0 \vee X) \cong S^0 \vee (\Lambda^0 / \partial \wedge X) \vee (\Lambda^1 / \partial \wedge_{C_2} X \wedge X) \vee (\Lambda^2 / \partial \wedge_{C_3} X^{\wedge 3}) \vee \dots$

$$T(X) = S^0 \lor X \lor X^{\land 2} \lor X^{\land 3} \lor \dots$$

Proposition

$$B^{\mathsf{cyc}}(T(X)) \cong S^0 \vee (\Lambda^0_+ \wedge X) \vee (\Lambda^1_+ \wedge_{C_2} X \wedge X) \vee (\Lambda^2_+ \wedge_{C_3} X^{\wedge 3}) \vee \dots$$

Very similar! (Koszul duality)

The cyclic bar construction.	The circle action and fixed points.	Elementary examples.	Cyclic spectra and <i>THH</i> .
000000		00	●○
Lifting the arguments to spectra.			

Apply B^{cyc} to a ring spectrum R, result is THH(R).

The cyclic bar construction.	The circle action and fixed points.	Elementary examples. 00	Cyclic spectra and <i>THH</i> . ●○
Lifting the arguments to spectra.			

Apply B^{cyc} to a ring spectrum R, result is THH(R). Above arguments apply verbatim, if we use *orthogonal spectra* and *geometric fixed points*:

 $\Phi^{C_n} THH(R) \cong THH(R)$

Apply B^{cyc} to a ring spectrum R, result is THH(R). Above arguments apply verbatim, if we use *orthogonal spectra* and *geometric fixed points*:

 $\Phi^{C_n}THH(R)\cong THH(R)$

Earlier model (Bökstedt): extra coherence machinery

Apply B^{cyc} to a ring spectrum R, result is THH(R). Above arguments apply verbatim, if we use *orthogonal spectra* and *geometric fixed points*:

 $\Phi^{C_n}THH(R)\cong THH(R)$

Earlier model (Bökstedt): extra coherence machinery Applications: THH(DX) and its dual, mapping spectra between cyclotomic spectra, bivariant algebraic *K*-theory.

The cyclic bar construction.

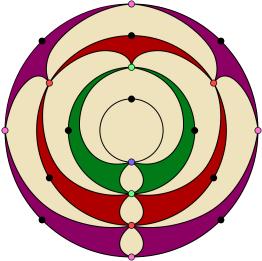
The circle action and fixed points.

Elementary examples.

Cyclic spectra and *THH*. $\odot \bullet$

Thank you!

Takeaway: *THH* is cool!



The face maps of the cyclic bar construction, superimposed on the objects of Λ .