
FIBRATION SEQUENCES AND PULLBACK SQUARES

CARY MALKIEWICH

Abstract. We lay out some foundational facts about fibration sequences and pull-

back squares of topological spaces. We pay careful attention to connectivity ranges

and to basepoint issues. All of these results are probably well-known.
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Fibration sequences and pullback squares are some of the most basic and frequently

used tools of homotopy theory, but their behavior is somewhat tricky to nail down

when you’re trying to be careful with basepoints, or when you are only studying maps

that are an equivalence in a certain range. In this note we’ll attempt to give a complete

treatment of the core technical results for these constructions.

1. Fibration sequences: definitions and warnings.

Recall the following definition. Given a map of unbased spaces E −→ B and a choice

of point b ∈ B, the homotopy fiber hFb is the pullback

hFb
//

��

E

��
(B, b)(I,0)

ev1 // B

Definition 1.1. A fibration sequence or fiber sequence is a sequence of maps of based

spaces

F
i−→ E

p−→ B
1
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together with one of the following extra sets of data:

• A zig-zag of weak equivalences to some other sequence in which the map p is a

Serre fibration and i is the inclusion of the fiber over the basepoint.

• A choice of equivalence in the homotopy category of spaces over E between F

and the homotopy fiber of p at the basepoint.

• A choice of nullhomotopy for p ◦ i, possibly after cofibrant replacement of F

and fibrant replacement of E and B, yielding a map F −→ hF which is a weak

equivalence.

A map of fibration sequences is a commuting diagram

F
i //

f
��

E
p //

g

��

B

h
��

F ′
i′ // E′

p′ // B′

which agrees with the extra data described above.

It is not hard to see that these conditions are equivalent, and by standard homotopy

theory they each yield the long exact sequence of homotopy sets

. . . −→ πi+1(B, ∗) −→ πi(F, ∗) −→ πi(E, ∗) −→ πi(B, ∗) −→ πi−1(F, ∗) −→ . . .

At the end of this sequence we get the map of sets π0E −→ π0B which need not be

surjective.

If p actually is a Serre fibration, and i is actually the inclusion of the fiber, there is

a canonical choice for each of these three kinds of data. Furthermore, any commuting

diagram as above forms a map between two such fibration sequences. In this lucky

situation, one can speak of the “fibration sequence” property as a condition, not extra

data. However this condition is not invariant under weak equivalence. Once we move

away from point-set fibrations, it is essential to remember the extra data.

As a cautionary example, the well-known “fiber sequence”

ΩX −→ ∗ −→ X

is not actually a fiber sequence in our sense, unless we supply extra data. It seems

sloppy to call this a fiber sequence. Rather, one should use the path space

ΩX −→ PX −→ X

or remember a choice of equivalence between ΩX and the homotopy fiber of ∗ −→ X.

This is more than just pendantry. In the following diagram

ΩX //

0
��

∗ //

��

X

id
��

ΩX // PX // X
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every square commutes, the rows are fiber sequences, and the middle and right verticals

are equivalences; however the left vertical is NOT an equivalence. This is why a map of

fiber sequences has to be more than just a couple of commuting squares!

Remark. In the stable setting, the extra data can be rewritten as the third map in

a distinguished triangle. Of course, a map of triangles has to give three commuting

squares, not just two. The homotopy fiber is also characterized by the fact that it fits

into such a triangle, so any two candidates that do this are equivalent, but the choice

of equivalence between them is not unique.

So far, we have assumed that all of our spaces are based. If B has multiple path

components, then each one can have a different homotopy fiber. Unfortunately, our

fiber sequence only tells us about the behavior of E over the basepoint component of

B. The other components could have very different behavior. Some of them may even

have empty preimage in E. This makes it hard to use F to go from B to E, or from

E to B. As a second cautionary example, if X is any unbased space, the sequence

∗ −→ ∗ −→ X+ is a fibration sequence!

It’s tempting to amend the definition of fiber sequence, requiring further that π0E −→
π0B is surjective. But that doesn’t solve our problems. We still can’t control the

homotopy type of E over the non-basepoint components of B. It’s also problematic

because we want the dual of a cofibration sequence to be a fibration sequence, but very

often the fibration sequence we get does not end with a π0-surjection.

2. Connectivity and fiber sequences.

Next we recall the notion of connectedness, both for maps and for spaces.

Definition 2.1. • A map of unbased spaces A −→ X is 0-connected when it

induces a surjection on π0.

• The map A −→ X is n-connected for some n > 0 when it induces an isomor-

phism on π0, and on each component of A (or equivalently X) it induces an

isomorphism on πi when 1 ≤ i < n and a surjection on πn.

• A map that is n-connected for all n is a weak equivalence.

• A based or unbased space X is n-connected when it is path-connected and all

homotopy groups vanish through degree n. Equivalently, any map ∗ −→ X is

n-connected.

• By convention, all nonempty spaces are (−1)-connected, and the empty space

∅ is (−2)-connected. We do not define negative connectivity for maps. We say

that π0(∅) = ∅, and all higher homotopy groups are undefined, since they rely

on a choice of basepoint. Therefore ∅ −→ ∅ is a weak equivalence. On the other

hand, ∅ −→ X is not even 0-connected when X is nonempty.
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Of course, n-connected is always stronger than (n−1)-connected, regardless of whether

we are talking about maps or about spaces. We will also list the standard theorems on

connectivity without proof:

Proposition 2.2. A map A −→ X is n-connected iff it can be factored into an inclusion

A −→ X ′ of a relative CW complex with cells in dimension n + 1 and higher, followed

by a weak equivalence X ′ −→ X.

Proposition 2.3. A map A −→ X is n-connected iff every square

Sk−1 //

��

A

��
Dk //

==

X

has a lift up to a homotopy of pairs ((Dk, Sk−1), (X,A)), for all 0 ≤ k ≤ n. If A −→ X

is a Serre fibration, then it is n-connected iff such lifts exist on the nose for all 0 ≤ k ≤ n.

It is easy to relate the connectivity of a map to that of its homotopy fibers.

Proposition 2.4. The following are equivalent for a map E
p−→ B and integer n ≥ 0.

• p is n-connected.

• Every homotopy fiber of p is (n− 1)-connected.

• In each path component of B, the homotopy fiber over some point b is (n− 1)-

connected.

Proof. Use the long exact sequence of the fibration, for one point b ∈ B in each path

component of B. We see that 0-connectedness is equivalent to the fibers being nonempty

(i.e. −1-connected), and that higher connectedness can be read off directly from the

homotopy groups of the fibers. �

The next proposition has an easy proof, because if the space B is highly connected, we

do not have to worry about multiple path components.

Proposition 2.5. Given a fiber sequence

F
i−→ E

p−→ B

and integer k ≥ 0,

• If E is k-connected and B is (k + 1)-connected then F is k-connected.

• If B is k-connected and F is k-connected then E is k-connected.

• If F is (k − 1)-connected, E is k-connected, and B is 0-connected, then B is

k-connected.
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Proof. Remember that for us “fiber sequence” means that all the spaces have basepoints,

so they are nonempty. The proposition follows quickly from the long exact sequence

of homotopy sets. If a pointed set in such a sequence is preceded and followed by the

trivial one-point set, it must be the trivial set as well. �

When we consider maps between fiber sequences, we are not so lucky. Similar results

are true, but more work is needed because of multiple path components.

Proposition 2.6. Given a map of fiber sequences

F
i //

f
��

E
p //

g

��

B

h
��

F ′
i′ // E′

p′ // B′

and integer k ≥ 0,

(1) If g is k-connected and h is (k + 1)-connected then f is k-connected.

(2) If h is k-connected, and for each b ∈ B the map of homotopy fibers Fb −→ F ′h(b)
is k-connected, then g is k-connected.

(3) If g is k-connected, h is 0-connected, and for each b ∈ B the map of homotopy

fibers Fb −→ F ′h(b) is a (k − 1)-connected map of nonempty spaces, then h is

k-connected.

Proof. The idea is to take homotopy fibers in the vertical direction, creating a diagram

in which every row and column is a fiber sequence and every map of rows and columns

is a map of fiber sequences. That is almost enough to reduce this proposition to the

previous one. To complete the proofs, however, we need to show that the desired map

is at least 0-connected, which ensures that every path component of the target can fit

meaningfully into such a square.

Let us describe the giant square in more detail first. We begin by deleting F and F ′.

This is fine because the map f is actually forced by the rest of the data, since a “map of

fiber sequences” has to preserve that extra data. Next, we forget all basepoints, since we

may need to work with multiple path-components in B and B′. We pick a point e ∈ E
and use its images b ∈ B, e′ ∈ E′, and b′ ∈ B′ as a temporary choice of “basepoint.”

With these choices we now form homotopy fibers in both directions:

F ′′
i′′ //

f ′

��

E′′
p′′ //

g′

��

B′′

h′

��
F

i //

f
��

E
p //

g

��

B

h
��

F ′
i′ // E′

p′ // B′
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Since the homotopy fiber construction commutes with itself, this gives four separate

maps of fiber sequences in the above square.

Now we prove (1). First we demonstrate that the map F
f−→ F ′ is 0-connected. Without

loss of generality F and F ′ are strict homotopy fibers. Each component of F ′ has some

point x, which is a point e′ ∈ E′ and path from its image in B′ to the basepoint. Since

E −→ E′ is 0-connected, we can modify e′ by a homotopy (and the path by the image

of that homotopy) so that e′ is in the image of some point e ∈ E. The point e ∈ E has

image b ∈ B, and we just need to produce a path from b to the basepoint lying over our

chosen path in B′. This is a question of lifting

S0 //

��

B

��
D1 //

>>

B′

up to a homotopy of maps ((D1, S0), (B′, B)), which is possible because B −→ B′ is at

least 1-connected. Therefore x ∈ F ′ has a preimage in F up to homotopy, so F −→ F ′

is 0-connected.

Now for each connected component of F ′, take some point in F in the preimage of that

component and use that point’s images in F, F ′, E,E′, B,B′ as a temporary choice of

basepoint. Form the above square of fiber sequences. Since g is k-connected and h is

(k+1)-connected, by Prop 2.4, E′′ is (k−1)-connected and B′′ is k-connected. By Prop

2.5, F ′′ is (k− 1)-connected. Since this works for any component of F ′, we conclude by

Prop 2.4 that f is k-connected.

Now we prove (2). Think of p and p′ as strict fibrations. Then if g were not 0-connected,

some component A′ of E′ would not be hit by E. But A′ has image in B′, which has

preimage up to homotopy in B. Restricting to this path component of B and its image

component in B′, we know that the map of fibers Fb −→ Fh(b) is 0-connected, and so this

point in A′ has preimage up to homotopy in Fb, which has image in E, contradiction.

Therefore g is 0-connected.

Now for each component of E′ we select some e ∈ E hitting that component, and use

the images of e as our basepoints. Construct the above square of fiber sequences. Since

f and h are k-connected, by Prop 2.4, F ′′ and B′′ are (k − 1)-connected. By Prop 2.5,

E′′ is (k−1)-connected. Since this works for any component of E′, we conclude by Prop

2.4 that g is k-connected.

Now we prove (3). Without loss of generality, B′ has just one path component, which

contains the basepoint. When k = 0 there is nothing to prove. Assuming that k ≥ 1, we

can then prove that h is 1-connected. We have already assumed that h is 0-connected,

so we prove that it is also injective on path components. If it is not, then we partition

E into the preimage of the basepoint component of B, called P , and its complement

Q. Since all homotopy fibers are nonempty, Q is nonempty. Let P ′ be the union of
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components of E′ which are hit by the components of P . Then P ′ is not all of E′, since

E −→ E′ is a bijection on path components. Therefore the preimage of i′−1(P ′) in F ′

is not all of F ′. But the entire image of F in F ′ lies inside the preimage of P ′, and

F −→ F ′ is therefore not surjective on path-components, violating the assumption that

it is 0-connected. Therefore B
h−→ B′ is a bijection on path components (and we may

assume both have just one component).

Next we prove h is surjective on π1. Replace the square

E
p //

g

��

B

h
��

E′
p′ // B′

by a square of fibrations. (One can do this by the usual construction on h and p′, and

by replacing E by the space of coherent maps of a square into B′, a path into E′ and

B, and a point in E. One thinks of the point as the top-left of the square and the two

paths as the top and left edges.) Now given a loop in B′, it lifts to some path in E′ rel

F ′. Since F −→ F ′ is 0-connected the endpoints of the path can be deformed through

F ′ to lie in the image of F . The image of this path is changed by a homotopy in B′, but

the endpoints never move because their lifts never left F ′. Now the endpoints of this

path have preimages in F . We show that we can lift this path on-the-nose to a path in

E connecting those endpoints:

S0 //

��

E

��
D1 //

>>

E′

This is possible because E −→ E′ is a 1-connected fibration. The lift then projects down

to a closed loop in B lying above our original closed loop in B′. Therefore B
h−→ B′ is

1-connected.

Finally, this allows us to conclude that B′′ is 0-connected. As before, we use Prop

2.4 to see that F ′′ is (k − 2)-connected and E′′ is (k − 1)-connected. By Prop 2.5,

B′′ is (k − 1)-connected. Since B′ is connected, we conclude by Prop 2.4 that h is

k-connected. �

3. Pullback squares: definitions, warnings, and connectivity theorems.

Now we turn to pullbacks. Given a diagram of unbased spaces of the form

B

��
C // D
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the homotopy pullback P is defined as the pullback

P //

��

B × C

��
DI

ev{0,1}// D ×D

In other words, it is the space of all choices of path in D and lifts of the two endpoints

of the path to B and C. Of course, the homotopy pullback of

E

��
{b} // B

is exactly the homotopy fiber of E −→ B at b ∈ B.

Warnings.

• One may define a square

P //

��

B

��
C // D

but it does not commute.

• The construction of P does not rely on a choice of basepoint, in contrast to the

construction of the homotopy fiber.

• The homotopy pullback P may be empty even if B, C, and D are nonempty.

In the spirit of the first section, we might define a homotopy pullback square as a square

A //

��

B

��
C // D

that commutes up to a choice of homotopy. That homotopy allows us to define a map

A −→ P , which we require to be an equivalence. A map of homotopy pullback squares

would then have to preserve this choice of homotopy.

For whatever reason, this is generally considered to be a bad idea. Instead, the common

practice is to modify all of our squares so that they commute strictly. That way we can

always choose our homotopy to be constant. So the map A −→ P will always be the

canonical map from A to the actual pullback, followed by the canonical map from the

actual pullback to the homotopy pullback.1

1Paradoxically, this implies that in a homotopy pullback square, the strict pullback must contain

the homotopy pullback as a retract in the homotopy category. They are usually equivalent in actual

examples, but it would be interesting to give an example where they are not.
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In this way, the “homotopy pullback” condition becomes just a condition, with no

extra data. Every homotopy pullback square can be modified to satisfy this stricter

condition. In particular, the prototypical one above can be modified to the strictly

commuting square

P //

��

B ×D D[0,1/2]

��
D[1/2,1] ×D C // D{1/2}

Definition 3.1. A homotopy pullback square is a commuting square

A //

��

B

��
C // D

such that the canonical map from A to the homotopy pullback P is a weak equivalence.

Since we have abandoned the idea of extra data, it is now completely false that this

commuting square is a homotopy pullback:

ΩX //

��

∗

��
∗ // X

We begin with the most basic theorem for homotopy pullback squares. It gives a “Mayer-

Vietoris” sequence for the homotopy groups of any such square.

Proposition 3.2. If

A //

��

B

��
C // D

is a homotopy pullback square (A
∼−→ P ) then for any choice of basepoint in A and its

images in B, C, and D, there is a natural fiber sequence

ΩD −→ P −→ B × C

yielding a natural long exact sequence of homotopy sets

. . . −→ πi(A) −→ πi(B)× πi(C) −→ πi(D) −→ πi−1(A) −→ . . .

which ends with π0(B)× π0(C).

Proof. It is easy to check that the map P −→ B × C which forgets the path in D is a

Hurewicz fibration, and its fiber over the basepoint is homeomorphic to ΩD. �

The following result is the analogue of Prop 2.5 for pullback squares.
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Proposition 3.3. Given a homotopy pullback square

A //

��

B

��
C // D

and integer k ≥ −1,

• If B and C are k-connected and D is (k + 1)-connected then A is k-connected.

• If A is k-connected and D is k-connected then B and C are k-connected.

• If A is (k− 1)-connected, B and C are k-connected, and D is 0-connected, then

D is k-connected.

Proof. The case of k = −1 is checked directly. When k ≥ 0, we check that basepoints

can always be chosen, and then we apply Prop 2.5 to the fiber sequence

ΩD −→ P −→ B × C

Using the easy fact that the connectivity of B × C is the minimum of the connectivity

of B and of C, this is enough to prove the proposition. A priori, for the second bullet

point it seems we need to assume that B and C are 0-connected. However if that were

not true, one easily checks (using that D is 0-connected) that the pullback P ' A is

not 0-connected, violating the assumption on A. �

To give relative theorems, it will be helpful to note the following fact:

Proposition 3.4. Take any commuting square

A //

��

B

��
C // D

Then it is a homotopy pullback square if and only if for any choice of basepoint in B,

the homotopy fibers in the horizontal direction are equivalent:

F1

∼
��

// A //

��

B

��
F2

// C // D

Of course, the same applies to the homotopy fibers in the vertical direction.

Proof. The above diagram exists and commutes by naturality of the homotopy fiber.

The only nontrivial thing is that the map of homotopy fibers is an equivalence iff the
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square is a homotopy pullback. First suppose that the square is homotopy pullback.

Using the weakly equivalent square

P //

��

B ×D D[0,1/2]

��
D[1/2,1] ×D C // D{1/2}

one checks that the map of homotopy fibers is the projection map of a deformation

retract and therefore a homotopy equivalence. So in our original square, the map of

fibers is also a weak equivalence using Prop 2.6.

Going the other way, we assume the square simply commutes, and that for each choice

of basepoint in B the map of homotopy fibers is an equivalence. For each such choice

of basepoint, we examine the three fiber sequences

F1
//

��
∼

��

A //

��

B

F ′1
//

∼
��

P //

��

B

��
F2

// C // D

and conclude that the map of fibers F1 −→ F ′1 is an equivalence. So by Prop 2.6, the

map A −→ P is a weak equivalence, so our square is a homotopy pullback square. �

Corollary 3.5. If C −→ D is a Serre fibration and

A //

��

B

��
C // D

is a strict pullback square, then it is also a homotopy pullback square.

Proof. It is elementary to check that A −→ B is also a Serre fibration, so the strict

fibers in the horizontal direction are equivalent to the homotopy fibers. But the given

map between these strict fibers is a homeomorphism, so on the homotopy fibers we must

have a weak equivalence. �

Corollary 3.6. In a homotopy pullback square

A //

��

B

��
C // D

If B −→ D is k-connected then A −→ C is k-connected. If A −→ C is k-connected and

B −→ D is 0-connected then B −→ D is k-connected.
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Proposition 3.7. Given a map of a homotopy pullback squares

A //

!!

��

B

""

��
C //

��

D

��
A′ //

!!
B′

!!
C ′ // D′

and integer k ≥ 0, if B −→ B′ and C −→ C ′ are k-connected and D −→ D′ is (k + 1)-

connected then A −→ A′ is k-connected.

Proof. Take homotopy fibers in the horizontal direction

F1
//

∼ !!

��

A //

  

��

B

!!

��

F2
//

��

C //

��

D

��

F ′1
//

∼ ��

A′ //

��

B′

��
F ′2

// C ′ // D′

and apply Prop 2.6 twice. �

Corollary 3.8 (Co-Gluing Lemma). A weak equivalence of pullback diagrams induces

a weak equivalence on their homotopy pullbacks.

Corollary 3.9. The Quillen model structure on topological spaces is right proper; that

is, a pullback of a weak equivalence along a fibration is a weak equivalence.

These corollaries, in turn, can be used to establish the standard fact that homotopy

limits preserve weak equivalences.

4. Generalization to Cartesian cubes and finite homotopy limits.

We will generalize Prop 3.3 and Prop 3.7 from pullback squares to any finite homotopy

limit. Let I be small category with finitely many strings of composable, non-identity

morphisms. In other words, the classifying space of I is a finite CW complex.

Theorem 4.1. For each object i ∈ I, let d(i) be the length of the longest chain of

nonidentity arrows terminating at i.

• Let k ≥ −1. If X is a diagram indexed by I, and for each object i ∈ I the space

X(i) is k + d(i)-connected, then the homotopy limit holimX is k-connected.

• Let k ≥ 0. If X −→ Y is a map of diagrams indexed by I, and for each object

i ∈ I the map X(i) −→ Y (i) is k + d(i)-connected, then the map of homotopy

limits holimX −→ holimY is k-connected.
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Proof. Filter the homotopy limit holimX by its coskeleta coskn, giving a tower of fibra-

tions

holimX ∼= coskN −→ coskN−1 −→ . . . −→ cosk1 −→ cosk0
∼=

∏
i∈I

X(i)

At each stage we have a pullback square

coskn
//

��

coskn−1

��∏
c0→...→cn

Map(∆n, X(cn)) //
∏

c0→...→cn
Map(∂∆n, X(cn))

where the arrows c0 → . . . → cn must all be non-identity maps. (We have cancelled

out the terms that arise from the “matching object” of the cosimplicial object giving

holimX.) The bottom map of our square is a Hurewicz fibration, so this is a homotopy

pullback square by Cor 3.5.

Now for the first part of the theorem, we know that each X(i) is at least k-connected, so

cosk0(X) is k-connected. Inductively, if coskn−1(X) is k-connected, then in the above

square we check that Map(∆n, X(cn)) has connectivity k+n ≥ k, and Map(∂∆n, X(cn))

has connectivity k + n − (n − 1) = k + 1. By Prop 3.3, the pullback coskn(X) is k-

connected and the induction is complete.

For the second part of the theorem, we observe that the map cosk0(X) −→ cosk0(Y )

is a product of k-connected maps and is therefore k-connected. Inductively, we assume

that coskn−1(X) −→ coskn−1(Y ) is k-connected and draw the cube

coskn(X) //

''

��

coskn−1(X)

((

��

∏
c0→...→cn

Map(∆n, X(cn)) //

��

∏
c0→...→cn

Map(∂∆n, X(cn))

��

coskn(Y ) //

''

coskn−1(Y )

((∏
c0→...→cn

Map(∆n, Y (cn)) //
∏

c0→...→cn
Map(∂∆n, Y (cn))

The lower two vertical maps are at least k-connected and (k+ 1)-connected by assump-

tion. Applying Prop 3.7, the map coskn(X) −→ coskn(Y ) is k-connected as well, which

completes the induction. �

Finally, we arrive at the corollary that motivated these notes. Let I be the poset of

subsets of {1, 2, . . . , n}. We regard I as a finite category, with one object for each subset

and one morphism for each inclusion of subsets. A diagram indexed by I is typically

called an n-cube.
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Let I0 denote the full subcategory on the nonempty subsets of {1, 2, . . . , n}; this is

sometimes called a punctured cube. Given an n-cube X, the inclusion of categories

I0 −→ I induces a map on homotopy limits

X(∅) ' holim
I

X −→ holim
I0

X

We say that X is Cartesian if this map is an equivalence. The above theorem implies

Corollary 4.2. Given a map X −→ Y of Cartesian n-cubes, if for each subset S of

size d > 0 the map X(S) −→ Y (S) is k + (d − 1)-connected, then the map of initial

vertices X(∅) −→ Y (∅) is k-connected.

This theorem can be used to prove connectivity estimates for the Taylor tower of a

contravariant homotopy functor.
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