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Abstract

These lectures provide an overview of the correspondence between gravity and field
theory in the D1-D5 system. The notes are based on lectures given at the International
Workshop on “Recent Advances in String Theory”, Graduate School of Mathematical
Science, The University of Tokyo, Japan, December 1999.
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1 Introduction

The D1-D5 system has catalyzed a lot of recent progress in string theory, beginning
with Strominger and Vafa’s calculation of extremal black hole entropy using the elliptic
genus of a certain two dimensional conformal field theory [1]. Their result was extended
to near extremal black holes [2, 3], and to other near extremal brane systems, such as D3-
branes [4]. On the other hand, Banks, Fischler, Shenker, and Susskind proposed [5] that
the quantum mechanics of DO-branes contains a description of the gravitational dynamics
of M-theory. Maldacena [6] gave a vast generalization of this idea, conjecturing that many
brane systems can be decoupled from gravity; and the dynamics of string theory in certain
situations can be described by a gauge theory (or some appropriate generalization) whose
dynamics does not contain intrinsically gravity within it. This circle of ideas has come to
be known as the AdS/CFT correspondence.

In this lecture, we revisit the D1-D5 system to give a brief overview of the AdS/CFT
correspondence. In section 2, we describe this brane system and the dynamics on it, and
then present the basic dual description as a solution to general relativity in the low energy
limit [7, 8]. According to the Maldacena conjecture [6], these two different descriptions
are contained in the moduli space of a single theory, and we check in section 3 that
quantities calculated on both sides agree. In particular, we illustrate the correspondence
of (super) conformal symmetry [9] and the BPS states [10, 11, 12]. Then we consider some
more intricate dynamics, that of wrapped branes and the moduli space of vacua of the
theory [13]; these provide some rather sophisticated information about the correspondence.
Finally in section 4, we discuss some uses of the correspondence [14]. The field theory is
a non-linear sigma model on the moduli space of instantons in the gauge theory, i.e. the
target space of the sigma model is the moduli space of solutions to the instanton equations
in the gauge theory. There are a lot of singularities coming from the instantons shrinking
to zero size. We will be able to use the correspondence to obtain some information about
the singularities using the dual language.

A note to students: the references below are intended as a representative guide to
further reading, rather than an exhaustive compendium of the extant literature, or an

authoritative genealogy of ideas. For that, the reader is referred to [7].

2 Qutline of the correspondence

2.1 Field theory on the branes

We consider the system consisting of ()1 D1-branes and ()5 D5-branes. The directions

transverse to both such branes are =, = xg,...,x9, the common direction is x5 and the



directions parallel to the D5-branes and transverse to the D1-branes are z| = 1, ..., 4.
We compactify the system on 7% in the z) direction with the coordinate size X;, i =
1,2,3,4 and on a circle (radius R) in the common direction z5. In this situation, there
are a number of different types of strings we can consider, the open strings which stretch
from the D1-branes back to themselves and the open strings which purely attach to the
Db-branes, etc..

The lowest mass states of the open string sector consist of the following field content.
The strings that stretch between D1-branes and D5-branes are the quanta of 1-5 hyper-
multiplet fields Y which belong to the (Q1,Qs) representation of the gauge group (and
their conjugates). Also there are 1-1 strings that describe the motion of the D1-branes
along x| , described by a hypermultiplet Hy in the adjoint representation of U(Q). There
is a similar field of 5-5 strings, a U(Q5) adjoint hypermultiplet Hs describing the motion
of the D5-branes along z | .

There are also vector multiplets. The gauge dynamics on the D1-branes involves the
U(Q1) vector multiplet V; the scalars in the vector multiplet describe the motions of the
Dl-branes along z;. And among the 5-5 strings, there is the U(Q5) vector multiplet Vs
giving the gauge dynamics of the D5-branes.

In the end, we are going to simplify the system dramatically. In general, the gauge
dynamics is some 541 dimensional gauge theory which couples to some kind of 1+1
dimensional defects. We want to take a limit where the directions parallel to the D5-
branes, transverse to the D1-branes (that is X;) are to be the size of string scale [; and
this scale is going to zero, while the other scale R is to be fixed with respect to the energy
scale of interest. For instance, E - R is held fixed, whereas F - ¥3; is taken to zero. In this
limit, the dynamics is effectively reduced to 141 dimensions.

Now in the 141 dimensional dynamics, scalar fields do not have expectation values; the
scalar fields fluctuate and in contrast to the higher dimensional gauge theory, what we talk
about are the regions of the configuration space where the wave function is concentrated
on large H; or large Y. These are called branches. There is one branch, where the
separations between D1-branes and D5-branes have non zero values, conventionally called
the “Coulomb branch”; Hy # 0 parametrizes the separation of D1-branes from D5-branes.
The other branch is obtained by bringing the D1-branes on top of the D5-branes. As the
energy cost of string stretching between them goes to zero, fields Y fluctuate dramatically
and tend to smear the wave function of the D1-brane. This is conventionally called the
“Higgs branch” and Y # 0.

According to Douglas [15], if we look at the equations for zeros of the scalar potential,
those are the same as the “ADHM equations” for )1 instantons in U(Q5) gauge theory on
the T*. In addition to the zero momentum sector, we can of course allow the solution to

these equations to slowly oscillate. For instance, the location of the instanton can move a
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Figure 1: The Coulomb branch and Higgs branch configurations.

little bit in the x| directions as we run along z5. Thus we get 1+1 dimensional fields and
the low energy dynamics of the Higgs branch is a non-linear sigma model whose target
space is the instanton moduli space. To motivate this a little bit, we should note that
the Yang-Mills coupling gy of the D5-brane gauge theory is related to the parameters of
the string theory (string coupling g5 and string length Is) by ¢2,, ~ gs/2, and this is the
same as the inverse tension of a D1-brane. Moreover, the instanton is a codimension 4
object in the gauge theory, thus it is point-like in four directions; therefore the instanton
in 541 dimensional gauge theory is a solitonic string whose tension is determined by the
Yang-Mills coupling.

The dimension of the instanton moduli space is 4Q1Qs up to order one corrections
(which will be discussed later). The instanton moduli space is a hyperKéhler space and
the brane dynamics is supersymmetric. Thus the sigma model on the hyperKahler space
has four left moving and four right moving supersymmetries and such a sigma model has
vanishing beta-function. The resulting infrared conformal field theory has central charge
crr = 6Q10Q)s.

There are of course many mixed branches. For instance, one can make some bound
states (Q}, Q%) separated in the transverse directions from another stack of the branes
with (Qf, QY) so long as the charges are conserved. This is called a “mixed Coulomb-
Higgs branch”, where some of the components of Y get nontrivial values and some of
the components of H; get nontrivial values compatible with the moduli space of the low

energy theory.

2.2 Gravity solution

On the closed string side, D-branes serve as sources for gravity. The supergravity



Figure 2: A rough picture of the geometry in the directions transverse to the branes. The

D-branes serve as sources for gravity.

solution corresponding to this source (see Figure 2) is given by

1
H 5
ds? = (H; Hs) ™% (—hdt® + dz?) + (#) ’ Az} + (HHs)"2 (A dr? +d02), (1)
5

where the harmonic functions are given by

A 2 2
Hi:1+<@> i=1,5 h:l—(r—()). 2)

T T

In the near-extremal limit, the charge radii of the branes ¢;, ¢ = 1,5 are given approxi-

mately by
@ ~ g5l8Q1/ Vi,  ¢¢ ~ g,l2Qs, (3)

where V; = $1X533%, is the coordinate volume of T* and ry is the horizon radius.
Allowing the branes to be slightly non-extremal, one obtains a non-trivial A and the
geometry is the corresponding black D-brane solution.

Now there are a lot of parameters, the two charge radii ¢;, : = 1,5, the horizon radius
rg, various coordinate lengths 33; of parallel directions and the radius R of x5 direction.
Thus we have many ways of taking scaling limits, namely what parameters to hold fixed

as we send [ to zero. Here we consider the scaling limit described by Maldacena [6]:

g2 % 12
ls >0, with g6 = 1/52, —, ER, E-X fixed, (4)
Vv, ls T

where we denote by E the energy scale.? In this limit, energy scale is fixed relative to
R, while the coordinate size ¥; is going to zero. Thus the momenta along the other four

directions possess more and more energy and decouple. Therefore the effective dynamics

2Another consistent limit is I, — 0, with g¢, ¥;/R, and ER held fixed; here the dynamics is 5+1d — we

keep all the box sizes fixed relative to the instanton string tension. This limit is relevant to the DLCQ limit of

fivebranes [16, 17].



becomes 141 dimensional. Moreover, going down the throat, due to the redshift one
does not have enough energy to explore the things that are far away and the dynamics

essentially decouples from the asymptotically flat region of the spacetime.

throat in figure 2) and the metric (1) becomes

In this limit, we can neglect 1’s in H;, i = 1,5 (r < ¢; and so we are far down the
1 dr\ 2
+(96@1Q5)2 [hl <7> +dQ§] :

1 dii}
V41/2
(5)

The geometry is locally AdS3 x 83 x T* and the radius of S® is R4 = ls(gngQg))l/4
1/4

ds?
2z

(92Q1Q5) 2 (Z—Q)Q (—hdt2+dx§)+<%>

and the characteristic proper size of T% is I4(Q1/Qs5)
The analogue on the gravity side of the mixed Coulomb-Higgs branch is the multi-

centered solution, where we write the harmonic function as

q
H:Zﬁa h,ZO, (6)

where £ = Z|. Then to keep all of these multi-center collections talking to each other, we
need to make sure that the energy cost associated to communicating a piece of information
from one to the other does not go to infinity in the scaling limit. Therefore for all « and
B we also need to take

|Zo — 5| = 0, like I2FE (7)

in the limit. We can also expect approximate non-extremal solutions for r[(]a) L |Zo — 25|

for all 3.

The next thing we should ask is where this solution becomes a valid approximation to
string theory. One thing we should worry about is whether the curvature of the geometry
ever becomes of order the string scale. At this scale, we will expect o corrections to
the gravity equations. This scale (curvature ~ [,2) is called the correspondence point.
Then from the radius of curvature (the radius of S3), we can see g2Q1Qs ~ 1 at the
correspondence point and we can trust the supergravity when g2Q1Qs > 1. On the other
hand, the perturbative sigma model field theory description should be a good description
when ¢2Q1Q5 < 1.

We should also worry about whether the string coupling is sufficiently small and thus
the effective description needs gy < 1. The volume of T* is Q1/Qs in the string units and
the coupling gg is proportional to the string coupling divided by the square root of the

volume of T* and therefore the condition g; < 1 becomes

Qs
g6 < \/; : (8)

If this condition is not satisfied, we should perform an S-duality transformation and a

D-string becomes a fundamental string and a D5-brane becomes a NS5-brane.
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Figure 3: The valid description for each region of gg .

Finally, there is an U-duality symmetry that takes this solution into itself. This is the
automorphism gg — 1/gg; the specific transformation is STi2345, which preserves Q1 and
Q@s5. The S-duality takes D1-D5 to F1-NS5, the T-duality does not affect these charges,
and S-duality just takes us back.

Thus we can draw a picture of what the theory looks like as a function of the parameter

Je ' (see Figure 3). Je ! = 1 is the point at which the theory is taken back to itself

< % there is a low energy

under the above U-duality, and in the region 1 < g4
description in terms of F-strings and NS5-branes as the background charges. In the
region % < gs' < VQ1Qs, a D1-D5 supergravity solution is valid and beyond that
there is a regime where the perturbative sigma model should be a valid description, and
thus g4 L'~ /Q1Q5 is the correspondence point.

Indeed, g4 1 is the characteristic scale, namely (the square root of) the volume of
the sigma model on the instanton moduli space (see section 3.3). The sigma model
perturbation theory is the expansion in the volume of the target space in the units of
the string scale. Thus the perturbative sigma model is valid at large volume (large gg 1)
precisely as seen in Figure 3.

Unfortunately this parameter is only a small part of the full parameter space of the
sigma model. We know that the moduli space of type II string theory compactified on
the T% is

'\ SO(5,5;R)/SO(5) x SO(5), (9)

where I' = SO(5,5;Z) is the duality group. Thus one of the things we will try to do is
to extend the descriptions of the sigma model to this full moduli space. As claimed by
Maldacena, what we will see is that the gravitational description in terms of supergravity

and the field theoretical description are different dual descriptions of the same physics.

3 Checks of the correspondence

3.1 Conformal symmetry

When we take the limit (4), the near horizon geometry is AdS3 x S x T* on the

gravitational side and we have a (4,4) superconformal sigma model on the other side of



the correspondence. Thus the question is whether we can find the infinite dimensional
conformal algebra of this two dimensional field theory on the gravitational side.

First of all, AdS; x S3 is isomorphic to the group manifold SL(2, R) x SU(2) and that
has left and right actions of the group. Thus the global symmetry is

[SL(2,R) x SU(2)]1, x [SL(2,R) x SU(2)]g. (10)

This is the global bosonic part of infinite dimensional superconformal algebra and the
supersymmetric completion is the supergroup SU(1,1]2) (just the AdS3 version of the
SU(2,2|4) for D3-branes).

We can also investigate the local part [9, 18, 19, 20]. We deform the asymptotic metric
in the AdS3 part as

r

2 dr\? 6 6
) (—dudv) + R% s < ) + —T(u)du® + =T (v)dv?, (11)
C C

ds? ~ ( —
AdSs Roads ,

where we use the natural light cone coordinates on ¢ and x5
u=t+xz5, v=1t—1zs. (12)

First two terms are the AdS3 parts of the metric (5) and the last two terms are the
deformations which are sub-leading in the expansion in r/Rags. T(u) is the analytic
function of u and ¢ = 6Q1 Q5. Similarly for T'(v) in the obvious fashion.

This metric is invariant under the following transformations [20]

u = f(u), (13)
r o= ,r/(a/f)—l/2, (14)
812
Rt (e 8 (15)
and most importantly
T'() = T(u)( f)* = 5 {F.'}. (16)

This is exactly the anomalous Virasoro transformation law. After a little work, one can
indeed show that T'(u) satisfies Poisson bracket algebra which is the infinite dimensional
conformal algebra with the central charge ¢ = 6Q1 Q5.

From this correspondence of the sub-leading term in the metric with the modes of

Virasoro algebra (after Fourier transformation in u), let us identify

Lo=%(E+ D), Ly=3(E- D), (17)

where Ly and Lj are zero modes of T' and T'; E is the energy and Ps is the momentum
along the x5 direction. There is a nice matching, once we allow the solution to be non-

extremal [18]. The non-extremality in the metric appears as the sub-leading term in

8



powers of 7/ R 445 in the coefficient of (dt)? and (dzs)?. One can check that if we convert
the quantity rg in equation 5 into the expression of energy F, the following is true. The

entropy of the black hole solution given by the proper area of the horizon in the metric

Area c C -
5= InGy ”(\/6°+\/6°> (18)

This expression can be compared with the conformal field theory for the asymptotic

density of the states p(E, Ps) [1, 2, 3]. Therefore the entropy is

given as

S ~ loglp(E, Py)]. (19)

Due to the Cardy’s formula [21], one finds that this is exactly the same expression for the
asymptotic density of the states as in the conformal field theory.

Note that everything in this subsection is at lowest order in the semi-classical ex-
pression of supergravity. The quantum corrections of supergravity are in powers of
1/Q1Q5 ~ (I,/Rags)* in terms of the six dimensional Planck scale, and so the entropy of
the supergravity solution should be regarded as an approximate expression in the expan-

sion in terms of 1/Q1Qs.

3.2 BPS states

The next thing to check is that the perturbations of the geometry from any of the
256 modes of supergravity match the corresponding deformations of the conformal field
theory [10, 11, 12].

On the geometrical side, AdS3 is the SL(2,R) group manifold. Therefore the wave
operators (Laplacian) involve the quadratic Casimir of SL(2,R)

1
L= (Ll +Loiln) = L, (20)

and similar for L? . The lowest energy state for a given mass is the primary state in the

language of the two dimensional conformal field theory. That is the state which satisfies
Lip=Lip =0, Loy =hyp, Lop = hy. (21)

In terms of that data, i + h is related to the mass of supergravity field via

h+h=1+/m2R% o +1 (22)

with h —h = s = AdS3 spin. Of course we can then act with L", L™, which generate the
Fourier modes of AdS; waves for the given mass and the spin.
The perturbative field theory and the geometry are appropriate descriptions in different

parts of the moduli space, and therefore we have to compare the quantities that are



invariant across the moduli space. Thus we should look at the states that are protected
from getting corrections as a function of the moduli and these are the BPS states. The
BPS condition for the superconformal symmetry is simply that the left moving SU(2)
spin is the left moving dimension and the right moving SU(2) spin is the right moving

dimension:
Jsu(z) = h, Jsue) =h . (23)

What we would like to do is to compare this with the field theory side.

Now we need to know something about the moduli space of instantons. On the quan-
tum field theory side, the moduli space of Q; instantons in U(Qs) gauge theory on T*
has the topology

(T4)Q1Q5/SQ1Q5 X T47 (24)

which is the analogue of the moduli space of instantons used in [1]. The extra T* is just
coming from the Wilson lines of the overall U(1) in U(Q5) on the T*. In general, the non-
linear sigma model is not metrically that orbifold space but that is good enough because
in the sigma model, BPS states come from the cohomology of the target space. Therefore
the BPS states are in one-to-one correspondence with the orbifold cohomology of the
target space. One can show that the quantum numbers of the Kaluza-Klein reduction of
supergravity on AdSs x S x T* are exactly matched by this cohomology.

We roughly prove this statement as follows. First of all, the cohomology of the 7% in

the tensor product has the following facts:
e i) T* has 16 cohomology elements.

e ii) BPS states which are known as ultrashort multiplets of SU(1,1|2) have 16 ele-

ments = 8 bosons + 8 fermions;
and then the other piece of the cohomology is that of the symmetric product:

e iii) Generators of Sg, ¢, are cycles of length n, 2 <n < Q,Qs.

Therefore we can take any of the cohomology states of i), and each is a short-multiplet ii).
Thus we have 16 x 16 = 256 states. These are identified with the 256 fields of supergravity.
The generator of a cycle of length n in the orbifold carries SU(2)r R-charge j = n/2. But
R-charge of SU(2)g is just the angular momentum on the S in the target space geometry
and fills out the Kaluza-Klein modes on S3 (recall that L"; L™, fills out the modes on
AdS3).

Upshot: All supergravity states with any SL(2,R) x SU(2) ~ AdS; x S quantum
numbers have the quantum numbers found in the sigma-model with the target space
(T)QIQS/SQle'

10



Now you might be wondering that in our list of states we found only a match between
the BPS states of the field theory and the states of supergravity for Fourier modes which
have no excitation on the 7. That is, we got the states with arbitrary quantum numbers
on AdSs x S3 but not states with arbitrary quantum numbers on the 7%. The reason for
that is the translations on the T* are not global parts of a current algebra extension of
the superconformal group.

Therefore the next task is to resolve that discrepancy. In fact, there are a lot of BPS
states which have the quantum numbers of not only Kaluza-Klein modes on the 7% but

of the branes that we can wrap on the 7.

3.3 Wrapped branes

There is more to string theory on AdS3 x S3 x T* than we have reproduced so far. What
about supergravity modes with momentum on the 7%, and various branes wrapping on
the T*? Thus we would like to discuss the structure of BPS states of K.K. momentum
and wrapped branes on the T* [13].

The point is that such states are BPS before taking the scaling limit. But we are

interested in what happens after taking the limit :
Yi~ls—0, R>Y,;. (25)

Let us write down the list of objects which carry nontrivial quantum numbers on the

internal space:

1 1 i R
M = —, — Mp = =, =
K.K 21,, R F1 lg ) l?
Y R I I vgedkl YiSR
M = ) M = e ,
o gslg gslg s sl;l gsi gsllsl
Ruvy Ry
M = Mpys = ——. 26
ps gsl? NS g2 (26)

where vg = X1%9333,/ l;l. Let us see how things scale in the limit. We can classify their

behavior into 3 types : M ~ 19, [t 172

e There are 10 objects (wrapped branes) which are heaviest (scale as [, 2). There are
10 tensor fields in 6D supergravity (IIB/T**) and they should couple to strings. Thus
we can identify these 10 objects as such strings before we further compactify on S*,

which is obvious from the fact that M o« R.

e The number of objects (wrapped branes and K.K. momentum) which scale as /7!
is 16. They are point like in 6D. They couple to 16 vector fields in 6D maximal

supergravity.

11



e The one object which scales as [? is the K.K. momentum on z°. This is the mo-
mentum in the sigma model, therefore its energy is finite. It is also momentum in

AdS3 x S3 and it couples to the graviton.

Now we consider the D1-D5 system as a background. If we try to add other charges of
the heaviest type, we would change the vacuum in the low energy theory. Thus we would
like to consider only perturbations of D1-D5 system and their energy scales as ~ I '

Then we have the following puzzle. These excitations in isolation have naively infinite
energy in the scaling limit and are invisible in the Hilbert space of the low energy theory.
But that neglects the fact that they form a bound state with the background branes and
the binding energy can cancel the large bare energy. To see that this is the case, let us
consider first of all the momentum and winding. The total energy of the D1-D5 system

carrying K.K. momentum and winding is

= (g e rg) x (v g

Further if we subtract the background energy, we find

RU4
- Q1
gsls lsgs

2
I I, & Y VTl
P }j i P . 2

"R 2R (“’ Vals )

Note that F is finite in the scaling limit. If we multiply by {—:, it becomes

NG ) | 29)

and it is obvious that [; disappears in this equation.

1

2

Rv4
+ Q5 -

(27)

S

lsE = lsM_QE)

12

3

RE = P; + (

Further we can add other excitations because if we perform a T-duality on the T, it

exchanges Q; for Qs, Wp; for Wp3 and P for wr;. Thus we obtain*

RE = P5—|—— <\/_P+ NS D1> 20, (ﬁ _'F1+\/7wD3> . (30)

We should note the following two points.
e This is a BPS formula and is exact in the scaling limit.

o We can measure the radius of the sigma model target from the above energy formula
1
by comparing it to the standard form of energy in string theory; we find \Fls ~ gg °
This verifies the previous claim from section 2.2 regarding the volume of the sigma

model target.

3Here we defined P = Lp, wipr = 2w .
‘Note that g; — 2= under the T-duality.

12



In this way, we have shown that all of the previous 16 charged objects have finite
energy and therefore we should find them in the dual sigma model.

As discussed in [22], one can also show in supergravity that if we look at the gauge
field that couples to each charge and do the dimensional reduction down to AdS3, we have
the following Chern-Simons terms in the Lagrangian for the 16 U(1) vectors

+Q1,5 AN dA. (31)
AdS3

These generate level Q1, Q5 current algebras on the boundary of AdS;3 as
um't - Ui xU1)f. (32)

The wrapped branes are part of the BPS structure. But once we take the scaling limit, not
all of these excitations couple to the superconformal algebra. These states carry U(1)'
current algebra energy, but they carry no angular momentum on the S? and have energy
h # jsu(z) (not BPS!).

BPS states do not depend on the moduli of the CFT. But we here have much more de-
tailed information about the moduli space, because the energetics of U(1) current algebra
depends on the moduli.

We can also look at non-extremal black holes. The energy cost of U(1) current algebra
and angular momentum excitations is subtracted from the total energy, and the entropy

of the remaining excitations is reduced. Thus the entropy formula is

S~2 f(h—h —L>+2 b By — L (33)
"\'6 T 40,Q5 "™ 6 "0 T 40,Q5 )

where hgr (), i_lU(l) is the U(1)'6 current algebra part of the energy and j, j is the angular

momentum on S2. This entropy is related to the density of states as

S = lOg p[E7P57§U(1)7j73]' (34)

To construct corresponding solutions in supergravity would be a useful exercise as a further
check of the correspondence.

If we look at the extremal case and set the right moving energy to zero, then it is
easy to check that the result agrees with the Eg(g) invariant extremal black hole entropy
formula [23].

Let us now return to the sigma model description. As we have seen, there should be a
U(1)% x U(1)% current algebra in that CFT. If we were to assume that the target space
of the sigma model is indeed metrically (7)Y /Sy x T* (N = Q1Qs5), we can get 8 U(1)
level Q1Q5 current algebras from the diagonal T* in the symmetric product and 8 U(1)
level 1 current algebras from the extra 7. Then we have a puzzle because the previous

mass formula (30) and Chern-Simons terms in supergravity (31) predict that the level of

13



each U(1) current algebra is @1 or Q5 and the spectrum is naively only compatible with
the sigma model for Q5 = 1.

But all of the different choices (Q, Q%) (Q} Q5 = N) are related to @5 = 1 by duality
transformations, and therefore the above statement is too naive. Later we will return to

this point.

3.4 The moduli space of vacua

The next task is to investigate the structure of the moduli space for this CFT. The moduli
space of type IIB string on the T* is given in (9). The generic charge vector ¢ is given in

terms of the 10 heavy background charges as

7= (f1,m5,Q1,Qs,d5) . (35)

Further we can define
& = fins — Q1Qs — d d'eH, (36)

which is invariant under the U-duality group SO(5,5;Z).
It is sufficient for our purposes to concentrate on the four dimensional subspace dgj = 0.

Then we have a nice representation of the remaining charges as follows

Q:(fl Ql) §F =det Q . (37)
Q@5 15

A subgroup SO(2,2;Z) = SL(2,Z)1, x SL(2,Z)g of the whole U-duality group acts on Q

as

Q — g1 Qg - (38)

Using this action, we can transform as follows °

[ 0 ~ [0 Qs
o))

Therefore all possible choices which have the same central charges of CFT are related
by the U-duality group. But we should be careful because not only the charges but also
the moduli transform under the U-duality. Let us fix the convention of charges that we

always map to the canonical frame specified by Q, that is

i: (0707 N’ 170) * (40)

5Here we assume that Q; and Qs are relatively prime.
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What are the moduli after the scaling limit? First we must discuss an important
phenomenon called the attractor mechanism [24, 25], where some of the scalar expectation

values are fixed in the near-horizon limit. The moduli in supergravity on T* are
{g’L] b Bl] y s = e(b y X C’L] b A:;k;l } (41)

Let us look at the mass of the background which has Q; D1-brane and Q5 D5-brane
charges [13], as a function of these moduli.
G© 2 1

e = o [Qit (- BAB)QsP

+% [X(Ql — B ABQs) - <A4 - %B A C) Q5r

1
+ [v4§B2 +2B A B] Q? (42)

The branes themselves exert tension and such attractive force can be seen as negative
pressure. But the branes couple to antisymmetric tensor fields and their flux lines repel
one another and therefore exert (positive) pressure. The supergravity is trying to decide
which one to favor and minimize the energy. As we go from infinity toward the source,
the scalar fields attract to the values which minimize the mass formula. One finds the

attractor is at

1
U4+B/\B=% , B = B* , U4X=A4—§B/\C (43)
5

These five conditions reduce the moduli space in the near horizon low energy limit to
HASO(5,4)/S0O(5) x SO(4) . (44)

Here H g is some subset of the “little group” of a charge vector, SO(5,4; Z). Mz is generated
(for canonical Q) by
1) ST,S where T, € SO(4,4;Z) is T-duality of T%.
2) [o(N = @1Qs) C SL(2,Z)1, x SL(2,Z)p,
where g € T'y(IV) acts on the usual type IIB coupling constant 7 as
1 at +b

= — -
T X+gs cT +d

(c=0 mod N, ad—bc=1). (45)

Let us take as an example the N = 6 case (the canonical charge is ¢ = (0,0,6,1,0)),
and investigate the moduli space. Here we project the whole moduli space into the
particular two (7) of the 20 moduli for simplicity and in that case we can regard H; as
I'o(N). A picture of the fundamental domain is shown in Figure 4. Note that this includes
the familiar SL(2,Z) fundamental domain which would constitute the moduli space in

the absence of the brane background.

15



s

orbifold locus

N
\
\

GES /o /us uz\\ 1

(1,6) (3.2 (23

Figure 4: Fundamental domain of I'y(6). Shaded region is the fundamental domain. Thick

dotted lines denote the subspace where the spacetime CFT becomes singular.
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The weak coupling limit of the sigma model for (Q1,Q5) = (6,1) or (1,6) is the upper
end (Im 7 — oo) or the lower end (Im 7 — 0)5. The other rational cusps (aligned along
Re 7 = 0) correspond to the weak coupling limits for (Q1, @Q5) = (2, 3), (3,2) as can be seen
from SO(2,2;Z) transformation. The lesson is that all these different (Q1, @Q5) charges are
continuously connected in the moduli space. Note that we have in this setting a cartoon
of the usual picture of the moduli space of M-theory, in which different domains described
by weak-coupling perturbation expansions (in this case sigma models on @ instanton
moduli space in U(Q5) gauge theory) are continuously connected in the moduli space
through regions of strong coupling, where supergravity is a valid low-energy description.

Now the puzzle about the level of U(1) current algebras is resolved. The point is
that if we move in the moduli space, identification of the level will change and thus “The
diagonal U(1) of (T*)?195 /S, g is level Q1Q5” is a misleading statement.

Let us mention some theories which we can associate to different regions of the moduli
space. When gg > % (strong coupling region of the sigma model), we should perform
an S-duality to the F1-NS5 system. In such case there is a nice description of string
theory on AdS® x §% x T*, which is due to Giveon, Kutasov, and Seiberg (so-called GKS
formalism) [26]. Thus we would like to know where that is in this moduli space. We
must turn off RR fields to use the perturbative string description. That means y = 0 or
R 7 = 0 in Figure 4, or its images under SL(2,Z) that change the background charges;
these are the thick dotted lines on the figure.

Another theory is the orbifold CFT (T%)9195 /S, 0, x T*, which describes (Q1,Q5) =
(N,1). A particular element of the symmetric group is transposition: T(4Z.) > T(4j). This
action has a fixed point along the diagonal, which is roughly speaking an R*/Z, singularity.
It is well-known from the study of orbifolds that its metric is singular, but the CFT makes
sense on such a space because of a discrete flux of B-field through the singularity (b = %)
Thus this orbifold theory corresponds to the region y = % in the moduli space.

We have been able to check symmetry algebras, BPS states, wrapped branes, and
moduli spaces. There is a nice analysis in a paper [27] of Dijkgraaf, where the explicit
map between the moduli space of supergravity and moduli of the hyperK&hler sigma
model is given. So perhaps is is time to stop questioning the correspondence, and ask

what we can do with it.

2
%Note that %+ = gg by definition and vy = % by the fixed scalar equation.
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Figure 5: The process of shrinking an instanton.

4 Application of the correspondence

Onme application of the correspondence [14]7 is to investigate the Coulomb branch of the
D1-D5 system. Most of this lecture has been spent talking about the Higgs branch.
Therefore the question is what happens if we try to separate the branes into the clusters

(the mixed Coulomb-Higgs branches) in the following way
Qi=Q1+Qf, Qs5=Q5+Q5. (46)

The fixed scalar conditions that can be obtained by minimizing the mass formula in this
(Q1,Qs5) background are given in (43). If we start pulling branes apart to two separate
subsystems, we have to satisfy the fixed scalar conditions for each subsystem. Because we
assume that @1, Qs are relatively prime, it is generically impossible to satisfy the fixed
scalar conditions for each system. Thus if we try to pull the system apart into two pieces,
it costs us some energy in the generic background. But there are some places in the moduli
space in which the degeneracy conditions are satisfied. Namely, in the codimension four

subspace 8 :

B=x=A;=0, (47)

the conditions are satisfied. Roughly speaking, this situation is represented as Figure 5.
The transition from the Higgs branch to the Coulomb branch corresponds to the shrinking
instanton (zero size instanton) singularity.

Note that the orbifold CFT is not singular because y = % and it is away from such a

singularity. However it is a problem for the GKS string description [26] because x = 0 and

"The present discussion represents an interpretation of [14] developed in discussions with A. Strominger.
8Note that we have already had the constraint (43).
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Figure 6: Strings wrapping around the boundary.

therefore it is sitting on the singular region. Surprisingly, their original paper described
precisely such strings which wrap around the entire AdS3 and are living near the boundary
(see Figure 6). Now we can interpret such strings as fundamental strings pulled far away
from the source.

In the gauge theory which describes the D1-D5 system, the problem appears as follows.
The potential is essentially U ~ [ |H Y |?, and there is a Coulomb branch (Y # 0) and
Higgs branch (H; # 0). If we turn off the fields Y, the instanton shrinks to zero size and
the degeneracy occurs at that point. A piece of the configuration space a where small
instanton develops is a region of high curvature. The metric of the moduli space becomes
singular at such a point; thus there is a singular CFT in codimension 4 subspace of the
moduli.

Now let us consider pulling out a single D1-brane and investigate the previous singu-
larity dynamically by using a probe D1-brane. There are a number of ways of describing
such a brane as follows:

a) Start with the gauge theory and try to integrate out the fields Y assuming that Hy
is large and the brane is far away. (c.f. Douglas, Polchinski, and Strominger [28])

b) Do a supergravity analysis. (c.f. Seiberg and Witten [14])

c¢) Do S-duality and look at the fundamental string. (c.f. GKS [26] or Callan, Harvey,
and Strominger [29])

Any of these is sufficient and the effective action of the probe D1-brane is given by
(see also [30])

_ Q5 2 (8H1)2 4 .
Sprobe = T3 d°o PE + [SU(2)WZW|+[T* part]+[fermion terms]. (48)
i

The angular mode is SU(2) WZW with the level Q5 — 2 and log(H?) is an effective
Liouville mode which corresponds to the radial coordinate of AdS3. The energy scale
of mass for Y is ~ H; and therefore this effective action is only good at large H; (in
scaled units, equation 7). There is an R-symmetry of this effective theory inherited from

the original Higgs branch CFT, which rotated the angular S® transverse to the branes.
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Thus it includes the bosonic SU(2) currents and rotation of fermions.” The total level is
(Qs5 —2) +1 = Q5 — 1 including the fermion contribution. There is also a T part because
the D1-brane can move in that direction.

What is the central charge after we pull the brane out? Before we pull it out, we find'®

CHiggs — 6(@1@5 + 1) . (49)

After we pull out the brane, we find!!

CCoulomb = 6[(@1 - 1)Q5 + 1] + 6(@5 - 1) +6
= G(QIQS + 1) = CHiggs - (50)

Thus the central charge does not change in such a process.
It is a simple exercise to generalize to all of the other mixed branches. If we consider

the case
Q=Qi+Q] Q5=0Q5+0Q5, (51)
and integrate out the heavy modes from the string between two clusters, we obtain

S = UL [ 1)
throat 2 H2

+ (52)
It is again easy to check that

CHiggs' T CHiggs" + Cthroat = CHiggs - (53)

Seiberg and Witten [14] argued (following Maldacena, Michelson, and Strominger [31])
that this effective theory is in some sense a dual description of the singularity of the original
Higgs branch sigma model when the instanton shrinks to zero size. A rough analogy is
N = 2 4D Yang-Mills theory, where the Coulomb branch meets with the Higgs branch in
a nonperturbative regime.

As we have seen, the hyperKahler sigma model becomes singular at small instantons
because it has large curvature. On the other hand the above effective theory describes a
slow separation of two systems and has small corrections when H; is large. The problem
here is that we do not have any expectation values in the 141 dimensional field theory.

Therefore if one effective description becomes singular, we do not have the option of

%A second possibility, that the SU(2) R-symmetry only rotates the fermions, arises in a different scaling
limit; the sigma model has ¢ = 6 instead of ¢ = 6(Q5 — 1). Unfortunately, this sigma model is also called the
‘Coulomb branch’ of the effective dynamics; but in the scaling limit, the region of the geometry being described
decouples from the Higgs branch, unlike the above model that arises in the scaling limit 7.

196Q1 Q5 is from (T*)91@5 /Sy, o, and 6 is from the extra T4.
H6(Qs — 1) is from the “throat” part of the CFT and 6 is from the T* part.
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Figure 7: A rough picture of the configuration space of the 2D effective theory.

replacing the theory with a new theory. All we can do is to say that when the wave
function is in the region of singularity, this is an approximate effective description of the
dynamics. It is a little bit different from the usual field theory duality where one theory
in weak coupling is dual to another theory in strong coupling. A rough picture is given
in Figure 7.

The singular behavior only occurs in codimension 4 in the moduli space. Thus we
should be able to identify in this probe theory the perturbations which we can turn on to
lift the degeneracy. Such a perturbation of N = 4 super Liouville model is the Liouville
area term. There is a quartet of these because any marginal field in N = 4 theory has
highest field (3, 1) under SU(2)r x SU(2)r,. The area term (~ [ H®) gives an energy
cost and therefore if we turn on this term, the degeneracy lifts. These Liouville area terms
correspond to 4 scalar fields x , B. Thus there is a rather detailed correspondence again

between various pictures.
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