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1 Introdu
tion

The D1-D5 system has 
atalyzed a lot of re
ent progress in string theory, beginning

with Strominger and Vafa's 
al
ulation of extremal bla
k hole entropy using the ellipti


genus of a 
ertain two dimensional 
onformal �eld theory [1℄. Their result was extended

to near extremal bla
k holes [2, 3℄, and to other near extremal brane systems, su
h as D3-

branes [4℄. On the other hand, Banks, Fis
hler, Shenker, and Susskind proposed [5℄ that

the quantum me
hani
s of D0-branes 
ontains a des
ription of the gravitational dynami
s

of M-theory. Malda
ena [6℄ gave a vast generalization of this idea, 
onje
turing that many

brane systems 
an be de
oupled from gravity; and the dynami
s of string theory in 
ertain

situations 
an be des
ribed by a gauge theory (or some appropriate generalization) whose

dynami
s does not 
ontain intrinsi
ally gravity within it. This 
ir
le of ideas has 
ome to

be known as the AdS/CFT 
orresponden
e.

In this le
ture, we revisit the D1-D5 system to give a brief overview of the AdS/CFT


orresponden
e. In se
tion 2, we des
ribe this brane system and the dynami
s on it, and

then present the basi
 dual des
ription as a solution to general relativity in the low energy

limit [7, 8℄. A

ording to the Malda
ena 
onje
ture [6℄, these two di�erent des
riptions

are 
ontained in the moduli spa
e of a single theory, and we 
he
k in se
tion 3 that

quantities 
al
ulated on both sides agree. In parti
ular, we illustrate the 
orresponden
e

of (super) 
onformal symmetry [9℄ and the BPS states [10, 11, 12℄. Then we 
onsider some

more intri
ate dynami
s, that of wrapped branes and the moduli spa
e of va
ua of the

theory [13℄; these provide some rather sophisti
ated information about the 
orresponden
e.

Finally in se
tion 4, we dis
uss some uses of the 
orresponden
e [14℄. The �eld theory is

a non-linear sigma model on the moduli spa
e of instantons in the gauge theory, i.e. the

target spa
e of the sigma model is the moduli spa
e of solutions to the instanton equations

in the gauge theory. There are a lot of singularities 
oming from the instantons shrinking

to zero size. We will be able to use the 
orresponden
e to obtain some information about

the singularities using the dual language.

A note to students: the referen
es below are intended as a representative guide to

further reading, rather than an exhaustive 
ompendium of the extant literature, or an

authoritative genealogy of ideas. For that, the reader is referred to [7℄.

2 Outline of the 
orresponden
e

2.1 Field theory on the branes

We 
onsider the system 
onsisting of Q

1

D1-branes and Q

5

D5-branes. The dire
tions

transverse to both su
h branes are x

?

= x

6

; : : : ; x

9

, the 
ommon dire
tion is x

5

and the
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dire
tions parallel to the D5-branes and transverse to the D1-branes are x

k

= x

1

; : : : ; x

4

.

We 
ompa
tify the system on T

4

in the x

k

dire
tion with the 
oordinate size �

i

, i =

1; 2; 3; 4 and on a 
ir
le (radius R) in the 
ommon dire
tion x

5

. In this situation, there

are a number of di�erent types of strings we 
an 
onsider, the open strings whi
h stret
h

from the D1-branes ba
k to themselves and the open strings whi
h purely atta
h to the

D5-branes, et
..

The lowest mass states of the open string se
tor 
onsist of the following �eld 
ontent.

The strings that stret
h between D1-branes and D5-branes are the quanta of 1-5 hyper-

multiplet �elds Y whi
h belong to the (Q

1

;

�

Q

5

) representation of the gauge group (and

their 
onjugates). Also there are 1-1 strings that des
ribe the motion of the D1-branes

along x

?

, des
ribed by a hypermultipletH

1

in the adjoint representation of U(Q

1

). There

is a similar �eld of 5-5 strings, a U(Q

5

) adjoint hypermultiplet H

2

des
ribing the motion

of the D5-branes along x

?

.

There are also ve
tor multiplets. The gauge dynami
s on the D1-branes involves the

U(Q

1

) ve
tor multiplet V

1

; the s
alars in the ve
tor multiplet des
ribe the motions of the

D1-branes along x

k

. And among the 5-5 strings, there is the U(Q

5

) ve
tor multiplet V

5

giving the gauge dynami
s of the D5-branes.

In the end, we are going to simplify the system dramati
ally. In general, the gauge

dynami
s is some 5+1 dimensional gauge theory whi
h 
ouples to some kind of 1+1

dimensional defe
ts. We want to take a limit where the dire
tions parallel to the D5-

branes, transverse to the D1-branes (that is �

i

) are to be the size of string s
ale l

s

and

this s
ale is going to zero, while the other s
ale R is to be �xed with respe
t to the energy

s
ale of interest. For instan
e, E �R is held �xed, whereas E ��

i

is taken to zero. In this

limit, the dynami
s is e�e
tively redu
ed to 1+1 dimensions.

Now in the 1+1 dimensional dynami
s, s
alar �elds do not have expe
tation values; the

s
alar �elds 
u
tuate and in 
ontrast to the higher dimensional gauge theory, what we talk

about are the regions of the 
on�guration spa
e where the wave fun
tion is 
on
entrated

on large H

1

or large Y . These are 
alled bran
hes. There is one bran
h, where the

separations between D1-branes and D5-branes have non zero values, 
onventionally 
alled

the \Coulomb bran
h"; H

1

6= 0 parametrizes the separation of D1-branes from D5-branes.

The other bran
h is obtained by bringing the D1-branes on top of the D5-branes. As the

energy 
ost of string stret
hing between them goes to zero, �elds Y 
u
tuate dramati
ally

and tend to smear the wave fun
tion of the D1-brane. This is 
onventionally 
alled the

\Higgs bran
h" and Y 6= 0.

A

ording to Douglas [15℄, if we look at the equations for zeros of the s
alar potential,

those are the same as the \ADHM equations" for Q

1

instantons in U(Q

5

) gauge theory on

the T

4

. In addition to the zero momentum se
tor, we 
an of 
ourse allow the solution to

these equations to slowly os
illate. For instan
e, the lo
ation of the instanton 
an move a

3
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Figure 1: The Coulomb bran
h and Higgs bran
h 
on�gurations.

little bit in the x

k

dire
tions as we run along x

5

. Thus we get 1+1 dimensional �elds and

the low energy dynami
s of the Higgs bran
h is a non-linear sigma model whose target

spa
e is the instanton moduli spa
e. To motivate this a little bit, we should note that

the Yang-Mills 
oupling g

YM

of the D5-brane gauge theory is related to the parameters of

the string theory (string 
oupling g

s

and string length l

s

) by g

2

YM

� g

s

l

2

s

, and this is the

same as the inverse tension of a D1-brane. Moreover, the instanton is a 
odimension 4

obje
t in the gauge theory, thus it is point-like in four dire
tions; therefore the instanton

in 5+1 dimensional gauge theory is a solitoni
 string whose tension is determined by the

Yang-Mills 
oupling.

The dimension of the instanton moduli spa
e is 4Q

1

Q

5

up to order one 
orre
tions

(whi
h will be dis
ussed later). The instanton moduli spa
e is a hyperK�ahler spa
e and

the brane dynami
s is supersymmetri
. Thus the sigma model on the hyperK�ahler spa
e

has four left moving and four right moving supersymmetries and su
h a sigma model has

vanishing beta-fun
tion. The resulting infrared 
onformal �eld theory has 
entral 
harge




IR

= 6Q

1

Q

5

.

There are of 
ourse many mixed bran
hes. For instan
e, one 
an make some bound

states (Q

0

1

; Q

0

5

) separated in the transverse dire
tions from another sta
k of the branes

with (Q

00

1

; Q

00

5

) so long as the 
harges are 
onserved. This is 
alled a \mixed Coulomb-

Higgs bran
h", where some of the 
omponents of Y get nontrivial values and some of

the 
omponents of H

1

get nontrivial values 
ompatible with the moduli spa
e of the low

energy theory.

2.2 Gravity solution

On the 
losed string side, D-branes serve as sour
es for gravity. The supergravity

4



r~q

Ω3

r
to the branes

Figure 2: A rough pi
ture of the geometry in the dire
tions transverse to the branes. The

D-branes serve as sour
es for gravity.

solution 
orresponding to this sour
e (see Figure 2) is given by

ds

2

= (H

1

H

5

)

�

1

2

(�hdt

2

+ dx

2

5

) +

�

H

1

H

5

�

1

2

d~x

2

k

+ (H

1

H

5

)

�

1

2

(h

�1

dr

2

+ d


2

3

); (1)

where the harmoni
 fun
tions are given by

H

i

= 1 +

�

q

i

r

�

2

i = 1; 5; h = 1�

�

r

0

r

�

2

: (2)

In the near-extremal limit, the 
harge radii of the branes q

i

, i = 1; 5 are given approxi-

mately by

q

2

1

' g

s

l

6

s

Q

1

=V

4

; q

2

5

' g

s

l

2

s

Q

5

; (3)

where V

4

= �

1

�

2

�

3

�

4

is the 
oordinate volume of T

4

and r

0

is the horizon radius.

Allowing the branes to be slightly non-extremal, one obtains a non-trivial h and the

geometry is the 
orresponding bla
k D-brane solution.

Now there are a lot of parameters, the two 
harge radii q

i

, i = 1; 5, the horizon radius

r

0

, various 
oordinate lengths �

i

of parallel dire
tions and the radius R of x

5

dire
tion.

Thus we have many ways of taking s
aling limits, namely what parameters to hold �xed

as we send l

s

to zero. Here we 
onsider the s
aling limit des
ribed by Malda
ena [6℄:

l

s

! 0; with g

6

=

g

s

l

2

s

V

1=2

4

;

�

i

l

s

; ER; E

l

2

s

r

�xed; (4)

where we denote by E the energy s
ale.

2

In this limit, energy s
ale is �xed relative to

R, while the 
oordinate size �

i

is going to zero. Thus the momenta along the other four

dire
tions possess more and more energy and de
ouple. Therefore the e�e
tive dynami
s

2

Another 
onsistent limit is l

s

! 0, with g

6

, �

i

=R, and ER held �xed; here the dynami
s is 5+1d { we

keep all the box sizes �xed relative to the instanton string tension. This limit is relevant to the DLCQ limit of

�vebranes [16, 17℄.
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be
omes 1+1 dimensional. Moreover, going down the throat, due to the redshift one

does not have enough energy to explore the things that are far away and the dynami
s

essentially de
ouples from the asymptoti
ally 
at region of the spa
etime.

In this limit, we 
an negle
t 1's in H

i

, i = 1; 5 (r � q

i

and so we are far down the

throat in �gure 2) and the metri
 (1) be
omes

ds

2

l

2

s

= (g

2

s

Q

1

Q

5

)

�

1

2

�

r

l

2

s

�

2

(�hdt

2

+dx

2

5

)+

�

Q

1

Q

5

�

1

2

"

d~x

2

k

V

1=2

4

#

+(g

2

6

Q

1

Q

5

)

1

2

"

h

�1

�

dr

r

�

2

+ d


2

3

#

:

(5)

The geometry is lo
ally AdS

3

� S

3

� T

4

and the radius of S

3

is R

AdS

= l

s

(g

2

6

Q

1

Q

5

)

1=4

and the 
hara
teristi
 proper size of T

4

is l

s

(Q

1

=Q

5

)

1=4

.

The analogue on the gravity side of the mixed Coulomb-Higgs bran
h is the multi-


entered solution, where we write the harmoni
 fun
tion as

H =

X

�

q

2

�

j~x� ~x

�

j

2

; h = 0; (6)

where ~x = ~x

?

. Then to keep all of these multi-
enter 
olle
tions talking to ea
h other, we

need to make sure that the energy 
ost asso
iated to 
ommuni
ating a pie
e of information

from one to the other does not go to in�nity in the s
aling limit. Therefore for all � and

� we also need to take

j~x

�

� ~x

�

j ! 0; like l

2

s

E (7)

in the limit. We 
an also expe
t approximate non-extremal solutions for r

(�)

0

� j~x

�

� ~x

�

j

for all �.

The next thing we should ask is where this solution be
omes a valid approximation to

string theory. One thing we should worry about is whether the 
urvature of the geometry

ever be
omes of order the string s
ale. At this s
ale, we will expe
t �

0


orre
tions to

the gravity equations. This s
ale (
urvature � l

�2

s

) is 
alled the 
orresponden
e point.

Then from the radius of 
urvature (the radius of S

3

), we 
an see g

2

6

Q

1

Q

5

� 1 at the


orresponden
e point and we 
an trust the supergravity when g

2

6

Q

1

Q

5

� 1. On the other

hand, the perturbative sigma model �eld theory des
ription should be a good des
ription

when g

2

6

Q

1

Q

5

� 1.

We should also worry about whether the string 
oupling is suÆ
iently small and thus

the e�e
tive des
ription needs g

s

� 1. The volume of T

4

is Q

1

=Q

5

in the string units and

the 
oupling g

6

is proportional to the string 
oupling divided by the square root of the

volume of T

4

and therefore the 
ondition g

s

� 1 be
omes

g

6

�

s

Q

5

Q

1

: (8)

If this 
ondition is not satis�ed, we should perform an S-duality transformation and a

D-string be
omes a fundamental string and a D5-brane be
omes a NS5-brane.
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(Q1/Q5)1/2 (Q1 Q5)1/2

g -1
6

perturbative CFT

correspondence point

1

D1-D5F1-NS5

Figure 3: The valid des
ription for ea
h region of g

�1

6

.

Finally, there is an U-duality symmetry that takes this solution into itself. This is the

automorphism g

6

! 1=g

6

; the spe
i�
 transformation is ST

1234

S, whi
h preserves Q

1

and

Q

5

. The S-duality takes D1-D5 to F1-NS5, the T-duality does not a�e
t these 
harges,

and S-duality just takes us ba
k.

Thus we 
an draw a pi
ture of what the theory looks like as a fun
tion of the parameter

g

�1

6

(see Figure 3). g

�1

6

= 1 is the point at whi
h the theory is taken ba
k to itself

under the above U-duality, and in the region 1 < g

�1

6

<

q

Q

1

Q

5

there is a low energy

des
ription in terms of F-strings and NS5-branes as the ba
kground 
harges. In the

region

q

Q

1

Q

5

< g

�1

6

<

p

Q

1

Q

5

, a D1-D5 supergravity solution is valid and beyond that

there is a regime where the perturbative sigma model should be a valid des
ription, and

thus g

�1

6

�

p

Q

1

Q

5

is the 
orresponden
e point.

Indeed, g

�1

6

is the 
hara
teristi
 s
ale, namely (the square root of) the volume of

the sigma model on the instanton moduli spa
e (see se
tion 3.3). The sigma model

perturbation theory is the expansion in the volume of the target spa
e in the units of

the string s
ale. Thus the perturbative sigma model is valid at large volume (large g

�1

6

)

pre
isely as seen in Figure 3.

Unfortunately this parameter is only a small part of the full parameter spa
e of the

sigma model. We know that the moduli spa
e of type II string theory 
ompa
ti�ed on

the T

4

is

� n SO(5; 5;R)=SO(5) � SO(5); (9)

where � = SO(5; 5;Z) is the duality group. Thus one of the things we will try to do is

to extend the des
riptions of the sigma model to this full moduli spa
e. As 
laimed by

Malda
ena, what we will see is that the gravitational des
ription in terms of supergravity

and the �eld theoreti
al des
ription are di�erent dual des
riptions of the same physi
s.

3 Che
ks of the 
orresponden
e

3.1 Conformal symmetry

When we take the limit (4), the near horizon geometry is AdS

3

� S

3

� T

4

on the

gravitational side and we have a (4,4) super
onformal sigma model on the other side of

7



the 
orresponden
e. Thus the question is whether we 
an �nd the in�nite dimensional


onformal algebra of this two dimensional �eld theory on the gravitational side.

First of all, AdS

3

�S

3

is isomorphi
 to the group manifold SL(2;R)�SU(2) and that

has left and right a
tions of the group. Thus the global symmetry is

[SL(2;R) � SU(2)℄

L

� [SL(2;R) � SU(2)℄

R

: (10)

This is the global bosoni
 part of in�nite dimensional super
onformal algebra and the

supersymmetri
 
ompletion is the supergroup SU(1; 1j2) (just the AdS

3

version of the

SU(2; 2j4) for D3-branes).

We 
an also investigate the lo
al part [9, 18, 19, 20℄. We deform the asymptoti
 metri


in the AdS

3

part as

ds

2

AdS

3

�

�

r

R

AdS

�

2

(�dudv) +R

2

AdS

�

dr

r

�

2

+

6




T (u)du

2

+

6




T (v)dv

2

; (11)

where we use the natural light 
one 
oordinates on t and x

5

u = t+ x

5

; v = t� x

5

: (12)

First two terms are the AdS

3

parts of the metri
 (5) and the last two terms are the

deformations whi
h are sub-leading in the expansion in r=R

AdS

. T (u) is the analyti


fun
tion of u and 
 = 6Q

1

Q

5

. Similarly for T (v) in the obvious fashion.

This metri
 is invariant under the following transformations [20℄

u = f(u

0

); (13)

r = r

0

(�

0

f)

�1=2

; (14)

v = v

0

�

1

2

(r

0

)

�2

�

02

f

�

0

f

; (15)

and most importantly

T

0

(u

0

) = T (u)(�

0

f)

2

�




12

ff; u

0

g: (16)

This is exa
tly the anomalous Virasoro transformation law. After a little work, one 
an

indeed show that T (u) satis�es Poisson bra
ket algebra whi
h is the in�nite dimensional


onformal algebra with the 
entral 
harge 
 = 6Q

1

Q

5

.

From this 
orresponden
e of the sub-leading term in the metri
 with the modes of

Virasoro algebra (after Fourier transformation in u), let us identify

L

0

=

1

2

(E + P

5

);

�

L

0

=

1

2

(E � P

5

); (17)

where L

0

and

�

L

0

are zero modes of T and

�

T ; E is the energy and P

5

is the momentum

along the x

5

dire
tion. There is a ni
e mat
hing, on
e we allow the solution to be non-

extremal [18℄. The non-extremality in the metri
 appears as the sub-leading term in

8



powers of r=R

AdS

in the 
oeÆ
ient of (dt)

2

and (dx

5

)

2

. One 
an 
he
k that if we 
onvert

the quantity r

0

in equation 5 into the expression of energy E, the following is true. The

entropy of the bla
k hole solution given by the proper area of the horizon in the metri


given as

S =

Area

4�G

N

= 2�

�

r




6

L

0

+

r




6

�

L

0

�

: (18)

This expression 
an be 
ompared with the 
onformal �eld theory for the asymptoti


density of the states �(E;P

5

) [1, 2, 3℄. Therefore the entropy is

S � log[�(E;P

5

)℄: (19)

Due to the Cardy's formula [21℄, one �nds that this is exa
tly the same expression for the

asymptoti
 density of the states as in the 
onformal �eld theory.

Note that everything in this subse
tion is at lowest order in the semi-
lassi
al ex-

pression of supergravity. The quantum 
orre
tions of supergravity are in powers of

1=Q

1

Q

5

� (l

p

=R

AdS

)

4

in terms of the six dimensional Plan
k s
ale, and so the entropy of

the supergravity solution should be regarded as an approximate expression in the expan-

sion in terms of 1=Q

1

Q

5

.

3.2 BPS states

The next thing to 
he
k is that the perturbations of the geometry from any of the

256 modes of supergravity mat
h the 
orresponding deformations of the 
onformal �eld

theory [10, 11, 12℄.

On the geometri
al side, AdS

3

is the SL(2;R) group manifold. Therefore the wave

operators (Lapla
ian) involve the quadrati
 Casimir of SL(2;R)

L

2

=

1

2

(L

1

L

�1

+ L

�1

L

1

)� L

2

0

; (20)

and similar for

�

L

2

. The lowest energy state for a given mass is the primary state in the

language of the two dimensional 
onformal �eld theory. That is the state whi
h satis�es

L

1

 =

�

L

1

 = 0; L

0

 = h ;

�

L

0

 =

�

h : (21)

In terms of that data, h+

�

h is related to the mass of supergravity �eld via

h+

�

h = 1 +

q

m

2

R

2

AdS

+ 1 (22)

with h�

�

h = s = AdS

3

spin. Of 
ourse we 
an then a
t with L

n

�1

�

L

m

�1

, whi
h generate the

Fourier modes of AdS

3

waves for the given mass and the spin.

The perturbative �eld theory and the geometry are appropriate des
riptions in di�erent

parts of the moduli spa
e, and therefore we have to 
ompare the quantities that are

9



invariant a
ross the moduli spa
e. Thus we should look at the states that are prote
ted

from getting 
orre
tions as a fun
tion of the moduli and these are the BPS states. The

BPS 
ondition for the super
onformal symmetry is simply that the left moving SU(2)

spin is the left moving dimension and the right moving SU(2) spin is the right moving

dimension:

j

SU(2)

= h;

�

j

SU(2)

=

�

h : (23)

What we would like to do is to 
ompare this with the �eld theory side.

Now we need to know something about the moduli spa
e of instantons. On the quan-

tum �eld theory side, the moduli spa
e of Q

1

instantons in U(Q

5

) gauge theory on T

4

has the topology

(T

4

)

Q

1

Q

5

=S

Q

1

Q

5

� T

4

; (24)

whi
h is the analogue of the moduli spa
e of instantons used in [1℄. The extra T

4

is just


oming from the Wilson lines of the overall U(1) in U(Q

5

) on the T

4

. In general, the non-

linear sigma model is not metri
ally that orbifold spa
e but that is good enough be
ause

in the sigma model, BPS states 
ome from the 
ohomology of the target spa
e. Therefore

the BPS states are in one-to-one 
orresponden
e with the orbifold 
ohomology of the

target spa
e. One 
an show that the quantum numbers of the Kaluza-Klein redu
tion of

supergravity on AdS

3

� S

3

� T

4

are exa
tly mat
hed by this 
ohomology.

We roughly prove this statement as follows. First of all, the 
ohomology of the T

4

in

the tensor produ
t has the following fa
ts:

� i) T

4

has 16 
ohomology elements.

� ii) BPS states whi
h are known as ultrashort multiplets of SU(1; 1j2) have 16 ele-

ments = 8 bosons + 8 fermions;

and then the other pie
e of the 
ohomology is that of the symmetri
 produ
t:

� iii) Generators of S

Q

1

Q

5

are 
y
les of length n, 2 � n � Q

1

Q

5

.

Therefore we 
an take any of the 
ohomology states of i), and ea
h is a short-multiplet ii).

Thus we have 16�16 = 256 states. These are identi�ed with the 256 �elds of supergravity.

The generator of a 
y
le of length n in the orbifold 
arries SU(2)

R

R-
harge j = n=2. But

R-
harge of SU(2)

R

is just the angular momentum on the S

3

in the target spa
e geometry

and �lls out the Kaluza-Klein modes on S

3

(re
all that L

n

�1

�

L

m

�1

�lls out the modes on

AdS

3

).

Upshot: All supergravity states with any SL(2;R) � SU(2) ' AdS

3

� S

3

quantum

numbers have the quantum numbers found in the sigma-model with the target spa
e

(T )

Q

1

Q

5

=S

Q

1

Q

5

.

10



Now you might be wondering that in our list of states we found only a mat
h between

the BPS states of the �eld theory and the states of supergravity for Fourier modes whi
h

have no ex
itation on the T

4

. That is, we got the states with arbitrary quantum numbers

on AdS

3

� S

3

but not states with arbitrary quantum numbers on the T

4

. The reason for

that is the translations on the T

4

are not global parts of a 
urrent algebra extension of

the super
onformal group.

Therefore the next task is to resolve that dis
repan
y. In fa
t, there are a lot of BPS

states whi
h have the quantum numbers of not only Kaluza-Klein modes on the T

4

but

of the branes that we 
an wrap on the T

4

.

3.3 Wrapped branes

There is more to string theory on AdS

3

� S

3

� T

4

than we have reprodu
ed so far. What

about supergravity modes with momentum on the T

4

, and various branes wrapping on

the T

4

? Thus we would like to dis
uss the stru
ture of BPS states of K.K. momentum

and wrapped branes on the T

4

[13℄.

The point is that su
h states are BPS before taking the s
aling limit. But we are

interested in what happens after taking the limit :

�

i

� l

s

! 0 ; R� �

i

: (25)

Let us write down the list of obje
ts whi
h 
arry nontrivial quantum numbers on the

internal spa
e:

M

K:K

=

1

�

i

;

1

R

M

F1

=

�

i

l

2

s

;

R

l

2

s

M

D1

=

�

i

g

s

l

2

s

;

R

g

s

l

2

s

M

D3

=

�

i

�

j

�

k

g

s

l

4

s

 

=

v

4

�

ijkl

g

s

�

l

!

;

�

i

�

j

R

g

s

l

4

s

M

D5

=

Rv

4

g

s

l

2

s

M

N5

=

Rv

4

g

2

s

l

2

s

: (26)

where v

4

� �

1

�

2

�

3

�

4

=l

4

s

. Let us see how things s
ale in the limit. We 
an 
lassify their

behavior into 3 types : M � l

0

s

; l

�1

s

; l

�2

s

.

� There are 10 obje
ts (wrapped branes) whi
h are heaviest (s
ale as l

�2

s

). There are

10 tensor �elds in 6D supergravity (IIB/T

4

) and they should 
ouple to strings. Thus

we 
an identify these 10 obje
ts as su
h strings before we further 
ompa
tify on S

1

,

whi
h is obvious from the fa
t that M / R.

� The number of obje
ts (wrapped branes and K.K. momentum) whi
h s
ale as l

�1

s

is 16. They are point like in 6D. They 
ouple to 16 ve
tor �elds in 6D maximal

supergravity.

11



� The one obje
t whi
h s
ales as l

0

s

is the K.K. momentum on x

5

. This is the mo-

mentum in the sigma model, therefore its energy is �nite. It is also momentum in

AdS

3

� S

3

and it 
ouples to the graviton.

Now we 
onsider the D1-D5 system as a ba
kground. If we try to add other 
harges of

the heaviest type, we would 
hange the va
uum in the low energy theory. Thus we would

like to 
onsider only perturbations of D1-D5 system and their energy s
ales as � l

�1

s

.

Then we have the following puzzle. These ex
itations in isolation have naively in�nite

energy in the s
aling limit and are invisible in the Hilbert spa
e of the low energy theory.

But that negle
ts the fa
t that they form a bound state with the ba
kground branes and

the binding energy 
an 
an
el the large bare energy. To see that this is the 
ase, let us


onsider �rst of all the momentum and winding. The total energy of the D1-D5 system


arrying K.K. momentum and winding is

l

s

M =

"

�

Q

1

R

l

s

g

s

+ P

5

l

s

R

�

2

+

4

X

i=1

�

w

i

�

i

g

s

l

s

+ P

i

l

s

�

i

�

2

#

1

2

+Q

5

Rv

4

g

s

l

s

: (27)

Further if we subtra
t the ba
kground energy, we �nd

l

s

E = l

s

M �Q

5

Rv

4

g

s

l

s

�Q

1

R

l

s

g

s

' P

5

l

s

R

+

l

s

2Q

1

R

4

X

i=1

 

w

i

�

i

p

g

s

l

s

+ P

i

p

g

s

l

s

�

i

!

2

: (28)

Note that E is �nite in the s
aling limit. If we multiply by

R

l

s

, it be
omes

3

RE = P

5

+

1

2Q

1

 

p

g

s

~

P +

1

p

g

s

~w

D1

!

2

; (29)

and it is obvious that l

s

disappears in this equation.

Further we 
an add other ex
itations be
ause if we perform a T-duality on the T

4

, it

ex
hanges Q

1

for Q

5

, ~w

D1

for ~w

D3

and

~

P for ~w

F1

. Thus we obtain

4

RE = P

5

+

1

2Q

1

 

p

g

s

~

P +

1

p

g

s

~w

D1

!

2

+

1

2Q

5

�

r

g

s

v

4

~w

F1

+

r

v

4

g

s

~w

D3

�

2

: (30)

We should note the following two points.

� This is a BPS formula and is exa
t in the s
aling limit.

� We 
an measure the radius of the sigma model target from the above energy formula

by 
omparing it to the standard form of energy in string theory; we �nd

�

i

p

g

s

l

s

� g

�

1

2

6

.

This veri�es the previous 
laim from se
tion 2.2 regarding the volume of the sigma

model target.

3

Here we de�ned

~

P =

l

s

�

i

P

i

, ~w

D1

=

�

i

l

s

w

i

.

4

Note that g

s

!

g

s

v

4

under the T-duality.
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In this way, we have shown that all of the previous 16 
harged obje
ts have �nite

energy and therefore we should �nd them in the dual sigma model.

As dis
ussed in [22℄, one 
an also show in supergravity that if we look at the gauge

�eld that 
ouples to ea
h 
harge and do the dimensional redu
tion down to AdS

3

, we have

the following Chern-Simons terms in the Lagrangian for the 16 U(1) ve
tors

�Q

1;5

Z

AdS

3

A ^ dA: (31)

These generate level Q

1

; Q

5


urrent algebras on the boundary of AdS

3

as

U(1)

16

! U(1)

8

L

� U(1)

8

R

: (32)

The wrapped branes are part of the BPS stru
ture. But on
e we take the s
aling limit, not

all of these ex
itations 
ouple to the super
onformal algebra. These states 
arry U(1)

16


urrent algebra energy, but they 
arry no angular momentum on the S

3

and have energy

h 6= j

SU(2)

(not BPS !).

BPS states do not depend on the moduli of the CFT. But we here have mu
h more de-

tailed information about the moduli spa
e, be
ause the energeti
s of U(1) 
urrent algebra

depends on the moduli.

We 
an also look at non-extremal bla
k holes. The energy 
ost of U(1) 
urrent algebra

and angular momentum ex
itations is subtra
ted from the total energy, and the entropy

of the remaining ex
itations is redu
ed. Thus the entropy formula is

S � 2�

s




6

�

h� h

U(1)

�

j

2

4Q

1

Q

5

�

+ 2�

v

u

u

t




6

 

�

h�

�

h

U(1)

�

�

j

2

4Q

1

Q

5

!

; (33)

where h

U(1)

;

�

h

U(1)

is the U(1)

16


urrent algebra part of the energy and j;

�

j is the angular

momentum on S

3

. This entropy is related to the density of states as

S = log �[E;P

5

; ~q

U(1)

; j;

�

j℄: (34)

To 
onstru
t 
orresponding solutions in supergravity would be a useful exer
ise as a further


he
k of the 
orresponden
e.

If we look at the extremal 
ase and set the right moving energy to zero, then it is

easy to 
he
k that the result agrees with the E

6(6)

invariant extremal bla
k hole entropy

formula [23℄.

Let us now return to the sigma model des
ription. As we have seen, there should be a

U(1)

8

L

� U(1)

8

R


urrent algebra in that CFT. If we were to assume that the target spa
e

of the sigma model is indeed metri
ally (T

4

)

N

=S

N

� T

4

(N = Q

1

Q

5

), we 
an get 8 U(1)

level Q

1

Q

5


urrent algebras from the diagonal T

4

in the symmetri
 produ
t and 8 U(1)

level 1 
urrent algebras from the extra T

4

. Then we have a puzzle be
ause the previous

mass formula (30) and Chern-Simons terms in supergravity (31) predi
t that the level of

13



ea
h U(1) 
urrent algebra is Q

1

or Q

5

and the spe
trum is naively only 
ompatible with

the sigma model for Q

5

= 1.

But all of the di�erent 
hoi
es (Q

0

1

; Q

0

5

) (Q

0

1

Q

0

5

= N) are related to Q

5

= 1 by duality

transformations, and therefore the above statement is too naive. Later we will return to

this point.

3.4 The moduli spa
e of va
ua

The next task is to investigate the stru
ture of the moduli spa
e for this CFT. The moduli

spa
e of type IIB string on the T

4

is given in (9). The generi
 
harge ve
tor ~q is given in

terms of the 10 heavy ba
kground 
harges as

~q = (f

1

; n

5

; Q

1

; Q

5

; d

ij

3

) : (35)

Further we 
an de�ne

~q

2

= f

1

n

5

�Q

1

Q

5

� d

ij

3

d

kl

3

�

ijkl

; (36)

whi
h is invariant under the U-duality group SO(5; 5;Z).

It is suÆ
ient for our purposes to 
on
entrate on the four dimensional subspa
e d

ij

3

= 0.

Then we have a ni
e representation of the remaining 
harges as follows

Q =

0

�

f

1

Q

1

Q

5

n

5

1

A

~q

2

= det Q : (37)

A subgroup SO(2; 2;Z) = SL(2;Z)

L

�SL(2;Z)

R

of the whole U-duality group a
ts on Q

as

Q ! g

L

Q g

�1

R

: (38)

Using this a
tion, we 
an transform as follows

5

Q =

0

�

0 Q

1

Q

5

0

1

A

!

^

Q =

0

�

0 Q

1

Q

5

1 0

1

A

: (39)

Therefore all possible 
hoi
es whi
h have the same 
entral 
harges of CFT are related

by the U-duality group. But we should be 
areful be
ause not only the 
harges but also

the moduli transform under the U-duality. Let us �x the 
onvention of 
harges that we

always map to the 
anoni
al frame spe
i�ed by

^

Q, that is

~q = (0; 0; N; 1; 0) : (40)

5

Here we assume that Q

1

and Q

5

are relatively prime.
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What are the moduli after the s
aling limit? First we must dis
uss an important

phenomenon 
alled the attra
tor me
hanism [24, 25℄, where some of the s
alar expe
tation

values are �xed in the near-horizon limit. The moduli in supergravity on T

4

are

f g

ij

; B

ij

; g

s

= e

�

; � ; C

ij

; A

+

ijkl

g: (41)

Let us look at the mass of the ba
kground whi
h has Q

1

D1-brane and Q

5

D5-brane


harges [13℄, as a fun
tion of these moduli.

G

(6)

N

M

2

R

2

=

1

v

4

[Q

1

+ (v

4

�B ^B)Q

5

℄

2

+

g

2

s

v

4

�

�(Q

1

�B ^BQ

5

)�

�

A

4

�

1

2

B ^ C

�

Q

5

�

2

+

�

v

4

1

8

B

2

+ 2B ^B

�

Q

2

5

(42)

The branes themselves exert tension and su
h attra
tive for
e 
an be seen as negative

pressure. But the branes 
ouple to antisymmetri
 tensor �elds and their 
ux lines repel

one another and therefore exert (positive) pressure. The supergravity is trying to de
ide

whi
h one to favor and minimize the energy. As we go from in�nity toward the sour
e,

the s
alar �elds attra
t to the values whi
h minimize the mass formula. One �nds the

attra
tor is at

v

4

+B ^B =

Q

1

Q

5

; B = B

�

; v

4

� = A

4

�

1

2

B ^ C (43)

These �ve 
onditions redu
e the moduli spa
e in the near horizon low energy limit to

H

~q

nSO(5; 4)=SO(5)� SO(4) : (44)

HereH

~q

is some subset of the \little group" of a 
harge ve
tor, SO(5; 4;Z). H

~q

is generated

(for 
anoni
al

^

Q) by

1) ST

�

S where T

�

2 SO(4; 4;Z) is T-duality of T

4

.

2) �

0

(N = Q

1

Q

5

) � SL(2;Z)

L

� SL(2;Z)

R

,

where g 2 �

0

(N) a
ts on the usual type IIB 
oupling 
onstant � as

� = �+

i

g

s

!

a� + b


� + d

(
 � 0 mod N; ad� b
 = 1) : (45)

Let us take as an example the N = 6 
ase (the 
anoni
al 
harge is ~q = (0; 0; 6; 1; 0)),

and investigate the moduli spa
e. Here we proje
t the whole moduli spa
e into the

parti
ular two (�) of the 20 moduli for simpli
ity and in that 
ase we 
an regard H

~q

as

�

0

(N). A pi
ture of the fundamental domain is shown in Figure 4. Note that this in
ludes

the familiar SL(2;Z) fundamental domain whi
h would 
onstitute the moduli spa
e in

the absen
e of the brane ba
kground.
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orbifold locus

τ

0 1/3 1/2

i 8

1

GKS

GKS
(1,6) (3,2) (2,3)

(6,1)

Figure 4: Fundamental domain of �

0

(6). Shaded region is the fundamental domain. Thi
k

dotted lines denote the subspa
e where the spa
etime CFT be
omes singular.
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The weak 
oupling limit of the sigma model for (Q

1

; Q

5

) = (6; 1) or (1; 6) is the upper

end (Im � ! 1) or the lower end (Im � ! 0)

6

. The other rational 
usps (aligned along

Re � = 0) 
orrespond to the weak 
oupling limits for (Q

1

; Q

5

) = (2; 3); (3; 2) as 
an be seen

from SO(2; 2;Z) transformation. The lesson is that all these di�erent (Q

1

; Q

5

) 
harges are


ontinuously 
onne
ted in the moduli spa
e. Note that we have in this setting a 
artoon

of the usual pi
ture of the moduli spa
e of M-theory, in whi
h di�erent domains des
ribed

by weak-
oupling perturbation expansions (in this 
ase sigma models on Q

1

instanton

moduli spa
e in U(Q

5

) gauge theory) are 
ontinuously 
onne
ted in the moduli spa
e

through regions of strong 
oupling, where supergravity is a valid low-energy des
ription.

Now the puzzle about the level of U(1) 
urrent algebras is resolved. The point is

that if we move in the moduli spa
e, identi�
ation of the level will 
hange and thus \The

diagonal U(1) of (T

4

)

Q

1

Q

5

=S

Q

1

Q

5

is level Q

1

Q

5

" is a misleading statement.

Let us mention some theories whi
h we 
an asso
iate to di�erent regions of the moduli

spa
e. When g

6

>

q

Q

5

Q

1

(strong 
oupling region of the sigma model), we should perform

an S-duality to the F1-NS5 system. In su
h 
ase there is a ni
e des
ription of string

theory on AdS

3

� S

3

� T

4

, whi
h is due to Giveon, Kutasov, and Seiberg (so-
alled GKS

formalism) [26℄. Thus we would like to know where that is in this moduli spa
e. We

must turn o� RR �elds to use the perturbative string des
ription. That means � = 0 or

< � = 0 in Figure 4, or its images under SL(2;Z) that 
hange the ba
kground 
harges;

these are the thi
k dotted lines on the �gure.

Another theory is the orbifold CFT (T

4

)

Q

1

Q

5

=S

Q

1

Q

5

�T

4

, whi
h des
ribes (Q

1

; Q

5

) =

(N; 1). A parti
ular element of the symmetri
 group is transposition: T

4

(i)

$ T

4

(j)

. This

a
tion has a �xed point along the diagonal, whi
h is roughly speaking anR

4

=Z

2

singularity.

It is well-known from the study of orbifolds that its metri
 is singular, but the CFT makes

sense on su
h a spa
e be
ause of a dis
rete 
ux of B-�eld through the singularity (b =

1

2

).

Thus this orbifold theory 
orresponds to the region � =

1

2

in the moduli spa
e.

We have been able to 
he
k symmetry algebras, BPS states, wrapped branes, and

moduli spa
es. There is a ni
e analysis in a paper [27℄ of Dijkgraaf, where the expli
it

map between the moduli spa
e of supergravity and moduli of the hyperK�ahler sigma

model is given. So perhaps is is time to stop questioning the 
orresponden
e, and ask

what we 
an do with it.

6

Note that

g

2

s

v

4

= g

2

6

by de�nition and v

4

=

Q

1

Q

5

by the �xed s
alar equation.
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Figure 5: The pro
ess of shrinking an instanton.

4 Appli
ation of the 
orresponden
e

One appli
ation of the 
orresponden
e [14℄

7

is to investigate the Coulomb bran
h of the

D1-D5 system. Most of this le
ture has been spent talking about the Higgs bran
h.

Therefore the question is what happens if we try to separate the branes into the 
lusters

(the mixed Coulomb-Higgs bran
hes) in the following way

Q

1

= Q

0

1

+Q

00

1

; Q

5

= Q

0

5

+Q

00

5

: (46)

The �xed s
alar 
onditions that 
an be obtained by minimizing the mass formula in this

(Q

1

; Q

5

) ba
kground are given in (43). If we start pulling branes apart to two separate

subsystems, we have to satisfy the �xed s
alar 
onditions for ea
h subsystem. Be
ause we

assume that Q

1

; Q

5

are relatively prime, it is generi
ally impossible to satisfy the �xed

s
alar 
onditions for ea
h system. Thus if we try to pull the system apart into two pie
es,

it 
osts us some energy in the generi
 ba
kground. But there are some pla
es in the moduli

spa
e in whi
h the degenera
y 
onditions are satis�ed. Namely, in the 
odimension four

subspa
e

8

:

B = � = A

4

= 0; (47)

the 
onditions are satis�ed. Roughly speaking, this situation is represented as Figure 5.

The transition from the Higgs bran
h to the Coulomb bran
h 
orresponds to the shrinking

instanton (zero size instanton) singularity.

Note that the orbifold CFT is not singular be
ause � =

1

2

and it is away from su
h a

singularity. However it is a problem for the GKS string des
ription [26℄ be
ause � = 0 and

7

The present dis
ussion represents an interpretation of [14℄ developed in dis
ussions with A. Strominger.

8

Note that we have already had the 
onstraint (43).
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Figure 6: Strings wrapping around the boundary.

therefore it is sitting on the singular region. Surprisingly, their original paper des
ribed

pre
isely su
h strings whi
h wrap around the entire AdS

3

and are living near the boundary

(see Figure 6). Now we 
an interpret su
h strings as fundamental strings pulled far away

from the sour
e.

In the gauge theory whi
h des
ribes the D1-D5 system, the problem appears as follows.

The potential is essentially U �

R

jH

1

Y j

2

, and there is a Coulomb bran
h (Y 6= 0) and

Higgs bran
h (H

1

6= 0). If we turn o� the �elds Y , the instanton shrinks to zero size and

the degenera
y o

urs at that point. A pie
e of the 
on�guration spa
e a where small

instanton develops is a region of high 
urvature. The metri
 of the moduli spa
e be
omes

singular at su
h a point; thus there is a singular CFT in 
odimension 4 subspa
e of the

moduli.

Now let us 
onsider pulling out a single D1-brane and investigate the previous singu-

larity dynami
ally by using a probe D1-brane. There are a number of ways of des
ribing

su
h a brane as follows:

a) Start with the gauge theory and try to integrate out the �elds Y assuming that H

1

is large and the brane is far away. (
.f. Douglas, Pol
hinski, and Strominger [28℄)

b) Do a supergravity analysis. (
.f. Seiberg and Witten [14℄)


) Do S-duality and look at the fundamental string. (
.f. GKS [26℄ or Callan, Harvey,

and Strominger [29℄)

Any of these is suÆ
ient and the e�e
tive a
tion of the probe D1-brane is given by

(see also [30℄)

S

probe

=

Q

5

2

Z

d

2

�

(�H

1

)

2

H

2

1

+ [SU(2)WZW℄+[T

4

part℄+[fermion terms℄: (48)

The angular mode is SU(2) WZW with the level Q

5

� 2 and log(H

2

1

) is an e�e
tive

Liouville mode whi
h 
orresponds to the radial 
oordinate of AdS

3

. The energy s
ale

of mass for Y is � H

1

and therefore this e�e
tive a
tion is only good at large H

1

(in

s
aled units, equation 7). There is an R-symmetry of this e�e
tive theory inherited from

the original Higgs bran
h CFT, whi
h rotated the angular S

3

transverse to the branes.

19



Thus it in
ludes the bosoni
 SU(2) 
urrents and rotation of fermions.

9

The total level is

(Q

5

� 2)+1 = Q

5

� 1 in
luding the fermion 
ontribution. There is also a T

4

part be
ause

the D1-brane 
an move in that dire
tion.

What is the 
entral 
harge after we pull the brane out? Before we pull it out, we �nd

10




Higgs

= 6(Q

1

Q

5

+ 1) : (49)

After we pull out the brane, we �nd

11




Coulomb

= 6[(Q

1

� 1)Q

5

+ 1℄ + 6(Q

5

� 1) + 6

= 6(Q

1

Q

5

+ 1) = 


Higgs

: (50)

Thus the 
entral 
harge does not 
hange in su
h a pro
ess.

It is a simple exer
ise to generalize to all of the other mixed bran
hes. If we 
onsider

the 
ase

Q

1

= Q

0

1

+Q

00

1

Q

5

= Q

0

5

+Q

00

5

; (51)

and integrate out the heavy modes from the string between two 
lusters, we obtain

S

throat

=

Q

0

1

Q

00

5

+Q

0

5

Q

00

1

2

Z

(�H)

2

H

2

+ � � � : (52)

It is again easy to 
he
k that




Higgs

0

+ 


Higgs

00

+ 


throat

= 


Higgs

: (53)

Seiberg and Witten [14℄ argued (following Malda
ena, Mi
helson, and Strominger [31℄)

that this e�e
tive theory is in some sense a dual des
ription of the singularity of the original

Higgs bran
h sigma model when the instanton shrinks to zero size. A rough analogy is

N = 2 4D Yang-Mills theory, where the Coulomb bran
h meets with the Higgs bran
h in

a nonperturbative regime.

As we have seen, the hyperK�ahler sigma model be
omes singular at small instantons

be
ause it has large 
urvature. On the other hand the above e�e
tive theory des
ribes a

slow separation of two systems and has small 
orre
tions when H

1

is large. The problem

here is that we do not have any expe
tation values in the 1+1 dimensional �eld theory.

Therefore if one e�e
tive des
ription be
omes singular, we do not have the option of

9

A se
ond possibility, that the SU(2) R-symmetry only rotates the fermions, arises in a di�erent s
aling

limit; the sigma model has 
 = 6 instead of 
 = 6(Q

5

� 1). Unfortunately, this sigma model is also 
alled the

`Coulomb bran
h' of the e�e
tive dynami
s; but in the s
aling limit, the region of the geometry being des
ribed

de
ouples from the Higgs bran
h, unlike the above model that arises in the s
aling limit 7.

10

6Q

1

Q

5

is from (T

4

)

Q

1

Q

5

=S

Q

1

Q

5

and 6 is from the extra T

4

.

11

6(Q

5

� 1) is from the \throat" part of the CFT and 6 is from the T

4

part.
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Higgs branch Coulomb branch

Strong coupling

Figure 7: A rough pi
ture of the 
on�guration spa
e of the 2D e�e
tive theory.

repla
ing the theory with a new theory. All we 
an do is to say that when the wave

fun
tion is in the region of singularity, this is an approximate e�e
tive des
ription of the

dynami
s. It is a little bit di�erent from the usual �eld theory duality where one theory

in weak 
oupling is dual to another theory in strong 
oupling. A rough pi
ture is given

in Figure 7.

The singular behavior only o

urs in 
odimension 4 in the moduli spa
e. Thus we

should be able to identify in this probe theory the perturbations whi
h we 
an turn on to

lift the degenera
y. Su
h a perturbation of N = 4 super Liouville model is the Liouville

area term. There is a quartet of these be
ause any marginal �eld in N = 4 theory has

highest �eld (

1

2

;

1

2

) under SU(2)

R

� SU(2)

L

. The area term (�

R

H

�

) gives an energy


ost and therefore if we turn on this term, the degenera
y lifts. These Liouville area terms


orrespond to 4 s
alar �elds � ; B. Thus there is a rather detailed 
orresponden
e again

between various pi
tures.

A
knowledgements: I wish to thank T. Egu
hi and S.-K. Yang for their kind invitation

and gra
ious hospitality; and F. Larsen and A. Strominger for 
ollaborations developing

some of the material presented here. I am indebted to M. Nozaki and T. Takayanagi for

their assistan
e in preparing these le
ture notes.

Referen
es

[1℄ A. Strominger and C. Vafa, \Mi
ros
opi
 origin of the Bekenstein-Hawking entropy,"

Phys. Lett. B379 (1996) 99, hep-th/9601029.

[2℄ C. Callan and J. Malda
ena, \ D-brane approa
h to bla
k hole quantum me
hani
s,"

Nu
l. Phys. B475 (1996) 645, hep-th/9602043.

[3℄ S. R. Das and D. Mathur, \Comparing de
ay rates for bla
k holes and D-branes,"

Nu
l. Phys. B478 (1996) 561, hep-th/9606185.

21



[4℄ I. R. Klebanov and A. A. Tseytlin, \Entropy of near-extremal bla
k p-branes," Nu
l.

Phys. B475 (1996) 164, hep-th/9604089.

[5℄ T. Banks, W. Fis
hler, S. H. Shenker, and L. Susskind, \M theory as a matrix model:

A 
onje
ture," Phys. Rev. D55 (1997) 5112, hep-th/9610043.

[6℄ J. Malda
ena, \The large N limit of super
onformal �eld theories and supergravity,"

Adv. Theor. Math. Phys. 2 (1998) 231, hep-th/9711200.

[7℄ O. Aharony, S.S. Gubser, J. Malda
ena, H. Ooguri, and Y. Oz, \Large N Field

Theories, String Theory and Gravity", hep-th/9905111.

[8℄ E. Martine
, \Bla
k holes and the phases of brane thermodynami
s", le
tures at

Carg�ese 1999; hep-th/9909049.

[9℄ J.D. Brown and M. Henneaux, Comm. Math. Phys. 104 (1986) 207.

[10℄ J. Malda
ena and A. Strominger, \AdS

3

bla
k holes and a stringy ex
lusion prin
i-

ple," JHEP 12 (1998) 005, hep-th/9804085.

[11℄ F. Larsen, \The Perturbation Spe
trum of Bla
k Holes in N=8 Supergravity" Nu
l.

Phys. B536 (1998) 258, hep-th/9805208.

[12℄ J.de Boer, \Six-Dimensional Supergravity on S

3

� AdS

3

and 2d Conformal Field

Theory," Nu
l. Phys. B548 (1999) 139, hep-th/9806104.

[13℄ F. Larsen and E. Martine
, \U(1) Charges and Moduli in the D1-D5 System," JHEP

9906 (1999) 019, hep-th/9905064.

[14℄ N. Seiberg and E. Witten, \The D1/D5 System And Singular CFT," JHEP 9904

(1999) 017, hep-th/9903224.

[15℄ Mi
hael R. Douglas, \Gauge �elds and D-branes," J. Geom. Phys. 28 (1998) 255,

hep-th/9604198.

[16℄ O. Aharony, M. Berkooz, S. Ka
hru, N. Seiberg, and E. Silverstein, \Matrix Des
rip-

tion of Intera
ting Theories in Six Dimensions" Adv.Theor.Math.Phys. 1 (1998) 148,

hep-th/9707079.

[17℄ E. Martine
 and V. Sahakian, \A note on the thermodynami
s of `little string' the-

ory", hep-th/9906137.

[18℄ A. Strominger, \Bla
k hole entropy from near-horizon mi
rostates," JHEP 9802

(1998) 009, hep-th/9712251.

[19℄ E. J. Martine
, \Conformal �eld theory, geometry, and entropy," hep-th/9809021.

[20℄ M. Banados, A. Chamblin, G.W. Gibbons, \Branes, AdS gravitons and Virasoro

symmetry," hep-th/9911101.

[21℄ J. Cardy, Nu
l. Phys. B 270 (1986) 186.

22



[22℄ D. Kutasov and N. Seiberg, \More Comments on String Theory on AdS

3

," JHEP

9904 (1999) 008, hep-th/9903219.

[23℄ R. Dijkgraaf, E. Verlinde, H. Verlinde \BPS Spe
trum of the Five-Brane and Bla
k

Hole Entropy" Nu
l.Phys. B486 (1997) 77, hep-th/9603126.

[24℄ S. Ferrara, R. Kallosh, and A. Strominger, \N=2 extremal bla
k holes," Phys. Rev.

D52 (1995) 5412, hep-th/9508072.

[25℄ S. Ferrara and R. Kallosh, \Supersymmetry and attra
tors," Phys. Rev. D54 (1996)

1514, hep-th/9602136.

[26℄ A. Giveon, D. Kutasov, and N. Seiberg, \Comments on String Theory on AdS

3

,"

Adv. Theor. Math. Phys.2(1998)733, hep-th/9806194.

[27℄ R. Dijkgraaf, \Instanton Strings and HyperKaehler Geometry," Nu
l. Phys. B543

(1999) 545, hep-th/9810210.

[28℄ M. Douglas, J. Pol
hinski, and A. Strominger, \Probing Five-Dimensional Bla
k

Holes with D-Branes," JHEP 9712 (1997) 003, hep-th/9703031.

[29℄ C. G. Callan, J. A. Harvey, and A. E. Strominger, \Supersymmetri
 String Solitons,"

hep-th/9112030.

[30℄ E. Witten, \On The Conformal Field Theory Of The Higgs Bran
h, " JHEP 9707

(1997) 003, hep-th/9707093.

[31℄ J. Malda
ena, J. Mi
helson, and A. Strominger, \Anti-de Sitter Fragmentation,"

JHEP 9902 (1999) 011, hep-th/9812073.

23


