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1 Introdution

The D1-D5 system has atalyzed a lot of reent progress in string theory, beginning

with Strominger and Vafa's alulation of extremal blak hole entropy using the ellipti

genus of a ertain two dimensional onformal �eld theory [1℄. Their result was extended

to near extremal blak holes [2, 3℄, and to other near extremal brane systems, suh as D3-

branes [4℄. On the other hand, Banks, Fishler, Shenker, and Susskind proposed [5℄ that

the quantum mehanis of D0-branes ontains a desription of the gravitational dynamis

of M-theory. Maldaena [6℄ gave a vast generalization of this idea, onjeturing that many

brane systems an be deoupled from gravity; and the dynamis of string theory in ertain

situations an be desribed by a gauge theory (or some appropriate generalization) whose

dynamis does not ontain intrinsially gravity within it. This irle of ideas has ome to

be known as the AdS/CFT orrespondene.

In this leture, we revisit the D1-D5 system to give a brief overview of the AdS/CFT

orrespondene. In setion 2, we desribe this brane system and the dynamis on it, and

then present the basi dual desription as a solution to general relativity in the low energy

limit [7, 8℄. Aording to the Maldaena onjeture [6℄, these two di�erent desriptions

are ontained in the moduli spae of a single theory, and we hek in setion 3 that

quantities alulated on both sides agree. In partiular, we illustrate the orrespondene

of (super) onformal symmetry [9℄ and the BPS states [10, 11, 12℄. Then we onsider some

more intriate dynamis, that of wrapped branes and the moduli spae of vaua of the

theory [13℄; these provide some rather sophistiated information about the orrespondene.

Finally in setion 4, we disuss some uses of the orrespondene [14℄. The �eld theory is

a non-linear sigma model on the moduli spae of instantons in the gauge theory, i.e. the

target spae of the sigma model is the moduli spae of solutions to the instanton equations

in the gauge theory. There are a lot of singularities oming from the instantons shrinking

to zero size. We will be able to use the orrespondene to obtain some information about

the singularities using the dual language.

A note to students: the referenes below are intended as a representative guide to

further reading, rather than an exhaustive ompendium of the extant literature, or an

authoritative genealogy of ideas. For that, the reader is referred to [7℄.

2 Outline of the orrespondene

2.1 Field theory on the branes

We onsider the system onsisting of Q

1

D1-branes and Q

5

D5-branes. The diretions

transverse to both suh branes are x

?

= x

6

; : : : ; x

9

, the ommon diretion is x

5

and the
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diretions parallel to the D5-branes and transverse to the D1-branes are x

k

= x

1

; : : : ; x

4

.

We ompatify the system on T

4

in the x

k

diretion with the oordinate size �

i

, i =

1; 2; 3; 4 and on a irle (radius R) in the ommon diretion x

5

. In this situation, there

are a number of di�erent types of strings we an onsider, the open strings whih streth

from the D1-branes bak to themselves and the open strings whih purely attah to the

D5-branes, et..

The lowest mass states of the open string setor onsist of the following �eld ontent.

The strings that streth between D1-branes and D5-branes are the quanta of 1-5 hyper-

multiplet �elds Y whih belong to the (Q

1

;

�

Q

5

) representation of the gauge group (and

their onjugates). Also there are 1-1 strings that desribe the motion of the D1-branes

along x

?

, desribed by a hypermultipletH

1

in the adjoint representation of U(Q

1

). There

is a similar �eld of 5-5 strings, a U(Q

5

) adjoint hypermultiplet H

2

desribing the motion

of the D5-branes along x

?

.

There are also vetor multiplets. The gauge dynamis on the D1-branes involves the

U(Q

1

) vetor multiplet V

1

; the salars in the vetor multiplet desribe the motions of the

D1-branes along x

k

. And among the 5-5 strings, there is the U(Q

5

) vetor multiplet V

5

giving the gauge dynamis of the D5-branes.

In the end, we are going to simplify the system dramatially. In general, the gauge

dynamis is some 5+1 dimensional gauge theory whih ouples to some kind of 1+1

dimensional defets. We want to take a limit where the diretions parallel to the D5-

branes, transverse to the D1-branes (that is �

i

) are to be the size of string sale l

s

and

this sale is going to zero, while the other sale R is to be �xed with respet to the energy

sale of interest. For instane, E �R is held �xed, whereas E ��

i

is taken to zero. In this

limit, the dynamis is e�etively redued to 1+1 dimensions.

Now in the 1+1 dimensional dynamis, salar �elds do not have expetation values; the

salar �elds utuate and in ontrast to the higher dimensional gauge theory, what we talk

about are the regions of the on�guration spae where the wave funtion is onentrated

on large H

1

or large Y . These are alled branhes. There is one branh, where the

separations between D1-branes and D5-branes have non zero values, onventionally alled

the \Coulomb branh"; H

1

6= 0 parametrizes the separation of D1-branes from D5-branes.

The other branh is obtained by bringing the D1-branes on top of the D5-branes. As the

energy ost of string strething between them goes to zero, �elds Y utuate dramatially

and tend to smear the wave funtion of the D1-brane. This is onventionally alled the

\Higgs branh" and Y 6= 0.

Aording to Douglas [15℄, if we look at the equations for zeros of the salar potential,

those are the same as the \ADHM equations" for Q

1

instantons in U(Q

5

) gauge theory on

the T

4

. In addition to the zero momentum setor, we an of ourse allow the solution to

these equations to slowly osillate. For instane, the loation of the instanton an move a
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Figure 1: The Coulomb branh and Higgs branh on�gurations.

little bit in the x

k

diretions as we run along x

5

. Thus we get 1+1 dimensional �elds and

the low energy dynamis of the Higgs branh is a non-linear sigma model whose target

spae is the instanton moduli spae. To motivate this a little bit, we should note that

the Yang-Mills oupling g

YM

of the D5-brane gauge theory is related to the parameters of

the string theory (string oupling g

s

and string length l

s

) by g

2

YM

� g

s

l

2

s

, and this is the

same as the inverse tension of a D1-brane. Moreover, the instanton is a odimension 4

objet in the gauge theory, thus it is point-like in four diretions; therefore the instanton

in 5+1 dimensional gauge theory is a solitoni string whose tension is determined by the

Yang-Mills oupling.

The dimension of the instanton moduli spae is 4Q

1

Q

5

up to order one orretions

(whih will be disussed later). The instanton moduli spae is a hyperK�ahler spae and

the brane dynamis is supersymmetri. Thus the sigma model on the hyperK�ahler spae

has four left moving and four right moving supersymmetries and suh a sigma model has

vanishing beta-funtion. The resulting infrared onformal �eld theory has entral harge



IR

= 6Q

1

Q

5

.

There are of ourse many mixed branhes. For instane, one an make some bound

states (Q

0

1

; Q

0

5

) separated in the transverse diretions from another stak of the branes

with (Q

00

1

; Q

00

5

) so long as the harges are onserved. This is alled a \mixed Coulomb-

Higgs branh", where some of the omponents of Y get nontrivial values and some of

the omponents of H

1

get nontrivial values ompatible with the moduli spae of the low

energy theory.

2.2 Gravity solution

On the losed string side, D-branes serve as soures for gravity. The supergravity
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r~q

Ω3

r
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Figure 2: A rough piture of the geometry in the diretions transverse to the branes. The

D-branes serve as soures for gravity.

solution orresponding to this soure (see Figure 2) is given by

ds

2

= (H

1

H

5

)

�

1

2

(�hdt

2

+ dx

2

5

) +

�

H

1

H

5

�

1

2

d~x

2

k

+ (H

1

H

5

)

�

1

2

(h

�1

dr

2

+ d


2

3

); (1)

where the harmoni funtions are given by

H

i

= 1 +

�

q

i

r

�

2

i = 1; 5; h = 1�

�

r

0

r

�

2

: (2)

In the near-extremal limit, the harge radii of the branes q

i

, i = 1; 5 are given approxi-

mately by

q

2

1

' g

s

l

6

s

Q

1

=V

4

; q

2

5

' g

s

l

2

s

Q

5

; (3)

where V

4

= �

1

�

2

�

3

�

4

is the oordinate volume of T

4

and r

0

is the horizon radius.

Allowing the branes to be slightly non-extremal, one obtains a non-trivial h and the

geometry is the orresponding blak D-brane solution.

Now there are a lot of parameters, the two harge radii q

i

, i = 1; 5, the horizon radius

r

0

, various oordinate lengths �

i

of parallel diretions and the radius R of x

5

diretion.

Thus we have many ways of taking saling limits, namely what parameters to hold �xed

as we send l

s

to zero. Here we onsider the saling limit desribed by Maldaena [6℄:

l

s

! 0; with g

6

=

g

s

l

2

s

V

1=2

4

;

�

i

l

s

; ER; E

l

2

s

r

�xed; (4)

where we denote by E the energy sale.

2

In this limit, energy sale is �xed relative to

R, while the oordinate size �

i

is going to zero. Thus the momenta along the other four

diretions possess more and more energy and deouple. Therefore the e�etive dynamis

2

Another onsistent limit is l

s

! 0, with g

6

, �

i

=R, and ER held �xed; here the dynamis is 5+1d { we

keep all the box sizes �xed relative to the instanton string tension. This limit is relevant to the DLCQ limit of

�vebranes [16, 17℄.
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beomes 1+1 dimensional. Moreover, going down the throat, due to the redshift one

does not have enough energy to explore the things that are far away and the dynamis

essentially deouples from the asymptotially at region of the spaetime.

In this limit, we an neglet 1's in H

i

, i = 1; 5 (r � q

i

and so we are far down the

throat in �gure 2) and the metri (1) beomes

ds

2

l

2

s

= (g

2

s

Q

1

Q

5

)

�

1

2

�

r

l

2

s

�

2

(�hdt

2

+dx

2

5

)+

�

Q

1

Q

5

�

1

2

"

d~x

2

k

V

1=2

4

#

+(g

2

6

Q

1

Q

5

)

1

2

"

h

�1

�

dr

r

�

2

+ d


2

3

#

:

(5)

The geometry is loally AdS

3

� S

3

� T

4

and the radius of S

3

is R

AdS

= l

s

(g

2

6

Q

1

Q

5

)

1=4

and the harateristi proper size of T

4

is l

s

(Q

1

=Q

5

)

1=4

.

The analogue on the gravity side of the mixed Coulomb-Higgs branh is the multi-

entered solution, where we write the harmoni funtion as

H =

X

�

q

2

�

j~x� ~x

�

j

2

; h = 0; (6)

where ~x = ~x

?

. Then to keep all of these multi-enter olletions talking to eah other, we

need to make sure that the energy ost assoiated to ommuniating a piee of information

from one to the other does not go to in�nity in the saling limit. Therefore for all � and

� we also need to take

j~x

�

� ~x

�

j ! 0; like l

2

s

E (7)

in the limit. We an also expet approximate non-extremal solutions for r

(�)

0

� j~x

�

� ~x

�

j

for all �.

The next thing we should ask is where this solution beomes a valid approximation to

string theory. One thing we should worry about is whether the urvature of the geometry

ever beomes of order the string sale. At this sale, we will expet �

0

orretions to

the gravity equations. This sale (urvature � l

�2

s

) is alled the orrespondene point.

Then from the radius of urvature (the radius of S

3

), we an see g

2

6

Q

1

Q

5

� 1 at the

orrespondene point and we an trust the supergravity when g

2

6

Q

1

Q

5

� 1. On the other

hand, the perturbative sigma model �eld theory desription should be a good desription

when g

2

6

Q

1

Q

5

� 1.

We should also worry about whether the string oupling is suÆiently small and thus

the e�etive desription needs g

s

� 1. The volume of T

4

is Q

1

=Q

5

in the string units and

the oupling g

6

is proportional to the string oupling divided by the square root of the

volume of T

4

and therefore the ondition g

s

� 1 beomes

g

6

�

s

Q

5

Q

1

: (8)

If this ondition is not satis�ed, we should perform an S-duality transformation and a

D-string beomes a fundamental string and a D5-brane beomes a NS5-brane.
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6
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1

D1-D5F1-NS5

Figure 3: The valid desription for eah region of g

�1

6

.

Finally, there is an U-duality symmetry that takes this solution into itself. This is the

automorphism g

6

! 1=g

6

; the spei� transformation is ST

1234

S, whih preserves Q

1

and

Q

5

. The S-duality takes D1-D5 to F1-NS5, the T-duality does not a�et these harges,

and S-duality just takes us bak.

Thus we an draw a piture of what the theory looks like as a funtion of the parameter

g

�1

6

(see Figure 3). g

�1

6

= 1 is the point at whih the theory is taken bak to itself

under the above U-duality, and in the region 1 < g

�1

6

<

q

Q

1

Q

5

there is a low energy

desription in terms of F-strings and NS5-branes as the bakground harges. In the

region

q

Q

1

Q

5

< g

�1

6

<

p

Q

1

Q

5

, a D1-D5 supergravity solution is valid and beyond that

there is a regime where the perturbative sigma model should be a valid desription, and

thus g

�1

6

�

p

Q

1

Q

5

is the orrespondene point.

Indeed, g

�1

6

is the harateristi sale, namely (the square root of) the volume of

the sigma model on the instanton moduli spae (see setion 3.3). The sigma model

perturbation theory is the expansion in the volume of the target spae in the units of

the string sale. Thus the perturbative sigma model is valid at large volume (large g

�1

6

)

preisely as seen in Figure 3.

Unfortunately this parameter is only a small part of the full parameter spae of the

sigma model. We know that the moduli spae of type II string theory ompati�ed on

the T

4

is

� n SO(5; 5;R)=SO(5) � SO(5); (9)

where � = SO(5; 5;Z) is the duality group. Thus one of the things we will try to do is

to extend the desriptions of the sigma model to this full moduli spae. As laimed by

Maldaena, what we will see is that the gravitational desription in terms of supergravity

and the �eld theoretial desription are di�erent dual desriptions of the same physis.

3 Cheks of the orrespondene

3.1 Conformal symmetry

When we take the limit (4), the near horizon geometry is AdS

3

� S

3

� T

4

on the

gravitational side and we have a (4,4) superonformal sigma model on the other side of

7



the orrespondene. Thus the question is whether we an �nd the in�nite dimensional

onformal algebra of this two dimensional �eld theory on the gravitational side.

First of all, AdS

3

�S

3

is isomorphi to the group manifold SL(2;R)�SU(2) and that

has left and right ations of the group. Thus the global symmetry is

[SL(2;R) � SU(2)℄

L

� [SL(2;R) � SU(2)℄

R

: (10)

This is the global bosoni part of in�nite dimensional superonformal algebra and the

supersymmetri ompletion is the supergroup SU(1; 1j2) (just the AdS

3

version of the

SU(2; 2j4) for D3-branes).

We an also investigate the loal part [9, 18, 19, 20℄. We deform the asymptoti metri

in the AdS

3

part as

ds

2

AdS

3

�

�

r

R

AdS

�

2

(�dudv) +R

2

AdS

�

dr

r

�

2

+

6



T (u)du

2

+

6



T (v)dv

2

; (11)

where we use the natural light one oordinates on t and x

5

u = t+ x

5

; v = t� x

5

: (12)

First two terms are the AdS

3

parts of the metri (5) and the last two terms are the

deformations whih are sub-leading in the expansion in r=R

AdS

. T (u) is the analyti

funtion of u and  = 6Q

1

Q

5

. Similarly for T (v) in the obvious fashion.

This metri is invariant under the following transformations [20℄

u = f(u

0

); (13)

r = r

0

(�

0

f)

�1=2

; (14)

v = v

0

�

1

2

(r

0

)

�2

�

02

f

�

0

f

; (15)

and most importantly

T

0

(u

0

) = T (u)(�

0

f)

2

�



12

ff; u

0

g: (16)

This is exatly the anomalous Virasoro transformation law. After a little work, one an

indeed show that T (u) satis�es Poisson braket algebra whih is the in�nite dimensional

onformal algebra with the entral harge  = 6Q

1

Q

5

.

From this orrespondene of the sub-leading term in the metri with the modes of

Virasoro algebra (after Fourier transformation in u), let us identify

L

0

=

1

2

(E + P

5

);

�

L

0

=

1

2

(E � P

5

); (17)

where L

0

and

�

L

0

are zero modes of T and

�

T ; E is the energy and P

5

is the momentum

along the x

5

diretion. There is a nie mathing, one we allow the solution to be non-

extremal [18℄. The non-extremality in the metri appears as the sub-leading term in

8



powers of r=R

AdS

in the oeÆient of (dt)

2

and (dx

5

)

2

. One an hek that if we onvert

the quantity r

0

in equation 5 into the expression of energy E, the following is true. The

entropy of the blak hole solution given by the proper area of the horizon in the metri

given as

S =

Area

4�G

N

= 2�

�

r



6

L

0

+

r



6

�

L

0

�

: (18)

This expression an be ompared with the onformal �eld theory for the asymptoti

density of the states �(E;P

5

) [1, 2, 3℄. Therefore the entropy is

S � log[�(E;P

5

)℄: (19)

Due to the Cardy's formula [21℄, one �nds that this is exatly the same expression for the

asymptoti density of the states as in the onformal �eld theory.

Note that everything in this subsetion is at lowest order in the semi-lassial ex-

pression of supergravity. The quantum orretions of supergravity are in powers of

1=Q

1

Q

5

� (l

p

=R

AdS

)

4

in terms of the six dimensional Plank sale, and so the entropy of

the supergravity solution should be regarded as an approximate expression in the expan-

sion in terms of 1=Q

1

Q

5

.

3.2 BPS states

The next thing to hek is that the perturbations of the geometry from any of the

256 modes of supergravity math the orresponding deformations of the onformal �eld

theory [10, 11, 12℄.

On the geometrial side, AdS

3

is the SL(2;R) group manifold. Therefore the wave

operators (Laplaian) involve the quadrati Casimir of SL(2;R)

L

2

=

1

2

(L

1

L

�1

+ L

�1

L

1

)� L

2

0

; (20)

and similar for

�

L

2

. The lowest energy state for a given mass is the primary state in the

language of the two dimensional onformal �eld theory. That is the state whih satis�es

L

1

 =

�

L

1

 = 0; L

0

 = h ;

�

L

0

 =

�

h : (21)

In terms of that data, h+

�

h is related to the mass of supergravity �eld via

h+

�

h = 1 +

q

m

2

R

2

AdS

+ 1 (22)

with h�

�

h = s = AdS

3

spin. Of ourse we an then at with L

n

�1

�

L

m

�1

, whih generate the

Fourier modes of AdS

3

waves for the given mass and the spin.

The perturbative �eld theory and the geometry are appropriate desriptions in di�erent

parts of the moduli spae, and therefore we have to ompare the quantities that are

9



invariant aross the moduli spae. Thus we should look at the states that are proteted

from getting orretions as a funtion of the moduli and these are the BPS states. The

BPS ondition for the superonformal symmetry is simply that the left moving SU(2)

spin is the left moving dimension and the right moving SU(2) spin is the right moving

dimension:

j

SU(2)

= h;

�

j

SU(2)

=

�

h : (23)

What we would like to do is to ompare this with the �eld theory side.

Now we need to know something about the moduli spae of instantons. On the quan-

tum �eld theory side, the moduli spae of Q

1

instantons in U(Q

5

) gauge theory on T

4

has the topology

(T

4

)

Q

1

Q

5

=S

Q

1

Q

5

� T

4

; (24)

whih is the analogue of the moduli spae of instantons used in [1℄. The extra T

4

is just

oming from the Wilson lines of the overall U(1) in U(Q

5

) on the T

4

. In general, the non-

linear sigma model is not metrially that orbifold spae but that is good enough beause

in the sigma model, BPS states ome from the ohomology of the target spae. Therefore

the BPS states are in one-to-one orrespondene with the orbifold ohomology of the

target spae. One an show that the quantum numbers of the Kaluza-Klein redution of

supergravity on AdS

3

� S

3

� T

4

are exatly mathed by this ohomology.

We roughly prove this statement as follows. First of all, the ohomology of the T

4

in

the tensor produt has the following fats:

� i) T

4

has 16 ohomology elements.

� ii) BPS states whih are known as ultrashort multiplets of SU(1; 1j2) have 16 ele-

ments = 8 bosons + 8 fermions;

and then the other piee of the ohomology is that of the symmetri produt:

� iii) Generators of S

Q

1

Q

5

are yles of length n, 2 � n � Q

1

Q

5

.

Therefore we an take any of the ohomology states of i), and eah is a short-multiplet ii).

Thus we have 16�16 = 256 states. These are identi�ed with the 256 �elds of supergravity.

The generator of a yle of length n in the orbifold arries SU(2)

R

R-harge j = n=2. But

R-harge of SU(2)

R

is just the angular momentum on the S

3

in the target spae geometry

and �lls out the Kaluza-Klein modes on S

3

(reall that L

n

�1

�

L

m

�1

�lls out the modes on

AdS

3

).

Upshot: All supergravity states with any SL(2;R) � SU(2) ' AdS

3

� S

3

quantum

numbers have the quantum numbers found in the sigma-model with the target spae

(T )

Q

1

Q

5

=S

Q

1

Q

5

.
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Now you might be wondering that in our list of states we found only a math between

the BPS states of the �eld theory and the states of supergravity for Fourier modes whih

have no exitation on the T

4

. That is, we got the states with arbitrary quantum numbers

on AdS

3

� S

3

but not states with arbitrary quantum numbers on the T

4

. The reason for

that is the translations on the T

4

are not global parts of a urrent algebra extension of

the superonformal group.

Therefore the next task is to resolve that disrepany. In fat, there are a lot of BPS

states whih have the quantum numbers of not only Kaluza-Klein modes on the T

4

but

of the branes that we an wrap on the T

4

.

3.3 Wrapped branes

There is more to string theory on AdS

3

� S

3

� T

4

than we have reprodued so far. What

about supergravity modes with momentum on the T

4

, and various branes wrapping on

the T

4

? Thus we would like to disuss the struture of BPS states of K.K. momentum

and wrapped branes on the T

4

[13℄.

The point is that suh states are BPS before taking the saling limit. But we are

interested in what happens after taking the limit :

�

i

� l

s

! 0 ; R� �

i

: (25)

Let us write down the list of objets whih arry nontrivial quantum numbers on the

internal spae:

M

K:K

=

1

�

i

;

1

R

M

F1

=

�

i

l

2

s

;

R

l

2

s

M

D1

=

�

i

g

s

l

2

s

;

R

g

s

l

2

s

M

D3

=

�

i

�

j

�

k

g

s

l

4

s

 

=

v

4

�

ijkl

g

s

�

l

!

;

�

i

�

j

R

g

s

l

4

s

M

D5

=

Rv

4

g

s

l

2

s

M

N5

=

Rv

4

g

2

s

l

2

s

: (26)

where v

4

� �

1

�

2

�

3

�

4

=l

4

s

. Let us see how things sale in the limit. We an lassify their

behavior into 3 types : M � l

0

s

; l

�1

s

; l

�2

s

.

� There are 10 objets (wrapped branes) whih are heaviest (sale as l

�2

s

). There are

10 tensor �elds in 6D supergravity (IIB/T

4

) and they should ouple to strings. Thus

we an identify these 10 objets as suh strings before we further ompatify on S

1

,

whih is obvious from the fat that M / R.

� The number of objets (wrapped branes and K.K. momentum) whih sale as l

�1

s

is 16. They are point like in 6D. They ouple to 16 vetor �elds in 6D maximal

supergravity.

11



� The one objet whih sales as l

0

s

is the K.K. momentum on x

5

. This is the mo-

mentum in the sigma model, therefore its energy is �nite. It is also momentum in

AdS

3

� S

3

and it ouples to the graviton.

Now we onsider the D1-D5 system as a bakground. If we try to add other harges of

the heaviest type, we would hange the vauum in the low energy theory. Thus we would

like to onsider only perturbations of D1-D5 system and their energy sales as � l

�1

s

.

Then we have the following puzzle. These exitations in isolation have naively in�nite

energy in the saling limit and are invisible in the Hilbert spae of the low energy theory.

But that neglets the fat that they form a bound state with the bakground branes and

the binding energy an anel the large bare energy. To see that this is the ase, let us

onsider �rst of all the momentum and winding. The total energy of the D1-D5 system

arrying K.K. momentum and winding is

l

s

M =

"

�

Q

1

R

l

s

g

s

+ P

5

l

s

R

�

2

+

4

X

i=1

�

w

i

�

i

g

s

l

s

+ P

i

l

s

�

i

�

2

#

1

2

+Q

5

Rv

4

g

s

l

s

: (27)

Further if we subtrat the bakground energy, we �nd

l

s

E = l

s

M �Q

5

Rv

4

g

s

l

s

�Q

1

R

l

s

g

s

' P

5

l

s

R

+

l

s

2Q

1

R

4

X

i=1

 

w

i

�

i

p

g

s

l

s

+ P

i

p

g

s

l

s

�

i

!

2

: (28)

Note that E is �nite in the saling limit. If we multiply by

R

l

s

, it beomes

3

RE = P

5

+

1

2Q

1

 

p

g

s

~

P +

1

p

g

s

~w

D1

!

2

; (29)

and it is obvious that l

s

disappears in this equation.

Further we an add other exitations beause if we perform a T-duality on the T

4

, it

exhanges Q

1

for Q

5

, ~w

D1

for ~w

D3

and

~

P for ~w

F1

. Thus we obtain

4

RE = P

5

+

1

2Q

1

 

p

g

s

~

P +

1

p

g

s

~w

D1

!

2

+

1

2Q

5

�

r

g

s

v

4

~w

F1

+

r

v

4

g

s

~w

D3

�

2

: (30)

We should note the following two points.

� This is a BPS formula and is exat in the saling limit.

� We an measure the radius of the sigma model target from the above energy formula

by omparing it to the standard form of energy in string theory; we �nd

�

i

p

g

s

l

s

� g

�

1

2

6

.

This veri�es the previous laim from setion 2.2 regarding the volume of the sigma

model target.

3

Here we de�ned

~

P =

l

s

�

i

P

i

, ~w

D1

=

�

i

l

s

w

i

.

4

Note that g

s

!

g

s

v

4

under the T-duality.
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In this way, we have shown that all of the previous 16 harged objets have �nite

energy and therefore we should �nd them in the dual sigma model.

As disussed in [22℄, one an also show in supergravity that if we look at the gauge

�eld that ouples to eah harge and do the dimensional redution down to AdS

3

, we have

the following Chern-Simons terms in the Lagrangian for the 16 U(1) vetors

�Q

1;5

Z

AdS

3

A ^ dA: (31)

These generate level Q

1

; Q

5

urrent algebras on the boundary of AdS

3

as

U(1)

16

! U(1)

8

L

� U(1)

8

R

: (32)

The wrapped branes are part of the BPS struture. But one we take the saling limit, not

all of these exitations ouple to the superonformal algebra. These states arry U(1)

16

urrent algebra energy, but they arry no angular momentum on the S

3

and have energy

h 6= j

SU(2)

(not BPS !).

BPS states do not depend on the moduli of the CFT. But we here have muh more de-

tailed information about the moduli spae, beause the energetis of U(1) urrent algebra

depends on the moduli.

We an also look at non-extremal blak holes. The energy ost of U(1) urrent algebra

and angular momentum exitations is subtrated from the total energy, and the entropy

of the remaining exitations is redued. Thus the entropy formula is

S � 2�

s



6

�

h� h

U(1)

�

j

2

4Q

1

Q

5

�

+ 2�

v

u

u

t



6

 

�

h�

�

h

U(1)

�

�

j

2

4Q

1

Q

5

!

; (33)

where h

U(1)

;

�

h

U(1)

is the U(1)

16

urrent algebra part of the energy and j;

�

j is the angular

momentum on S

3

. This entropy is related to the density of states as

S = log �[E;P

5

; ~q

U(1)

; j;

�

j℄: (34)

To onstrut orresponding solutions in supergravity would be a useful exerise as a further

hek of the orrespondene.

If we look at the extremal ase and set the right moving energy to zero, then it is

easy to hek that the result agrees with the E

6(6)

invariant extremal blak hole entropy

formula [23℄.

Let us now return to the sigma model desription. As we have seen, there should be a

U(1)

8

L

� U(1)

8

R

urrent algebra in that CFT. If we were to assume that the target spae

of the sigma model is indeed metrially (T

4

)

N

=S

N

� T

4

(N = Q

1

Q

5

), we an get 8 U(1)

level Q

1

Q

5

urrent algebras from the diagonal T

4

in the symmetri produt and 8 U(1)

level 1 urrent algebras from the extra T

4

. Then we have a puzzle beause the previous

mass formula (30) and Chern-Simons terms in supergravity (31) predit that the level of

13



eah U(1) urrent algebra is Q

1

or Q

5

and the spetrum is naively only ompatible with

the sigma model for Q

5

= 1.

But all of the di�erent hoies (Q

0

1

; Q

0

5

) (Q

0

1

Q

0

5

= N) are related to Q

5

= 1 by duality

transformations, and therefore the above statement is too naive. Later we will return to

this point.

3.4 The moduli spae of vaua

The next task is to investigate the struture of the moduli spae for this CFT. The moduli

spae of type IIB string on the T

4

is given in (9). The generi harge vetor ~q is given in

terms of the 10 heavy bakground harges as

~q = (f

1

; n

5

; Q

1

; Q

5

; d

ij

3

) : (35)

Further we an de�ne

~q

2

= f

1

n

5

�Q

1

Q

5

� d

ij

3

d

kl

3

�

ijkl

; (36)

whih is invariant under the U-duality group SO(5; 5;Z).

It is suÆient for our purposes to onentrate on the four dimensional subspae d

ij

3

= 0.

Then we have a nie representation of the remaining harges as follows

Q =

0

�

f

1

Q

1

Q

5

n

5

1

A

~q

2

= det Q : (37)

A subgroup SO(2; 2;Z) = SL(2;Z)

L

�SL(2;Z)

R

of the whole U-duality group ats on Q

as

Q ! g

L

Q g

�1

R

: (38)

Using this ation, we an transform as follows

5

Q =

0

�

0 Q

1

Q

5

0

1

A

!

^

Q =

0

�

0 Q

1

Q

5

1 0

1

A

: (39)

Therefore all possible hoies whih have the same entral harges of CFT are related

by the U-duality group. But we should be areful beause not only the harges but also

the moduli transform under the U-duality. Let us �x the onvention of harges that we

always map to the anonial frame spei�ed by

^

Q, that is

~q = (0; 0; N; 1; 0) : (40)

5

Here we assume that Q

1

and Q

5

are relatively prime.
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What are the moduli after the saling limit? First we must disuss an important

phenomenon alled the attrator mehanism [24, 25℄, where some of the salar expetation

values are �xed in the near-horizon limit. The moduli in supergravity on T

4

are

f g

ij

; B

ij

; g

s

= e

�

; � ; C

ij

; A

+

ijkl

g: (41)

Let us look at the mass of the bakground whih has Q

1

D1-brane and Q

5

D5-brane

harges [13℄, as a funtion of these moduli.

G

(6)

N

M

2

R

2

=

1

v

4

[Q

1

+ (v

4

�B ^B)Q

5

℄

2

+

g

2

s

v

4

�

�(Q

1

�B ^BQ

5

)�

�

A

4

�

1

2

B ^ C

�

Q

5

�

2

+

�

v

4

1

8

B

2

+ 2B ^B

�

Q

2

5

(42)

The branes themselves exert tension and suh attrative fore an be seen as negative

pressure. But the branes ouple to antisymmetri tensor �elds and their ux lines repel

one another and therefore exert (positive) pressure. The supergravity is trying to deide

whih one to favor and minimize the energy. As we go from in�nity toward the soure,

the salar �elds attrat to the values whih minimize the mass formula. One �nds the

attrator is at

v

4

+B ^B =

Q

1

Q

5

; B = B

�

; v

4

� = A

4

�

1

2

B ^ C (43)

These �ve onditions redue the moduli spae in the near horizon low energy limit to

H

~q

nSO(5; 4)=SO(5)� SO(4) : (44)

HereH

~q

is some subset of the \little group" of a harge vetor, SO(5; 4;Z). H

~q

is generated

(for anonial

^

Q) by

1) ST

�

S where T

�

2 SO(4; 4;Z) is T-duality of T

4

.

2) �

0

(N = Q

1

Q

5

) � SL(2;Z)

L

� SL(2;Z)

R

,

where g 2 �

0

(N) ats on the usual type IIB oupling onstant � as

� = �+

i

g

s

!

a� + b

� + d

( � 0 mod N; ad� b = 1) : (45)

Let us take as an example the N = 6 ase (the anonial harge is ~q = (0; 0; 6; 1; 0)),

and investigate the moduli spae. Here we projet the whole moduli spae into the

partiular two (�) of the 20 moduli for simpliity and in that ase we an regard H

~q

as

�

0

(N). A piture of the fundamental domain is shown in Figure 4. Note that this inludes

the familiar SL(2;Z) fundamental domain whih would onstitute the moduli spae in

the absene of the brane bakground.
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orbifold locus

τ

0 1/3 1/2

i 8

1

GKS

GKS
(1,6) (3,2) (2,3)

(6,1)

Figure 4: Fundamental domain of �

0

(6). Shaded region is the fundamental domain. Thik

dotted lines denote the subspae where the spaetime CFT beomes singular.
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The weak oupling limit of the sigma model for (Q

1

; Q

5

) = (6; 1) or (1; 6) is the upper

end (Im � ! 1) or the lower end (Im � ! 0)

6

. The other rational usps (aligned along

Re � = 0) orrespond to the weak oupling limits for (Q

1

; Q

5

) = (2; 3); (3; 2) as an be seen

from SO(2; 2;Z) transformation. The lesson is that all these di�erent (Q

1

; Q

5

) harges are

ontinuously onneted in the moduli spae. Note that we have in this setting a artoon

of the usual piture of the moduli spae of M-theory, in whih di�erent domains desribed

by weak-oupling perturbation expansions (in this ase sigma models on Q

1

instanton

moduli spae in U(Q

5

) gauge theory) are ontinuously onneted in the moduli spae

through regions of strong oupling, where supergravity is a valid low-energy desription.

Now the puzzle about the level of U(1) urrent algebras is resolved. The point is

that if we move in the moduli spae, identi�ation of the level will hange and thus \The

diagonal U(1) of (T

4

)

Q

1

Q

5

=S

Q

1

Q

5

is level Q

1

Q

5

" is a misleading statement.

Let us mention some theories whih we an assoiate to di�erent regions of the moduli

spae. When g

6

>

q

Q

5

Q

1

(strong oupling region of the sigma model), we should perform

an S-duality to the F1-NS5 system. In suh ase there is a nie desription of string

theory on AdS

3

� S

3

� T

4

, whih is due to Giveon, Kutasov, and Seiberg (so-alled GKS

formalism) [26℄. Thus we would like to know where that is in this moduli spae. We

must turn o� RR �elds to use the perturbative string desription. That means � = 0 or

< � = 0 in Figure 4, or its images under SL(2;Z) that hange the bakground harges;

these are the thik dotted lines on the �gure.

Another theory is the orbifold CFT (T

4

)

Q

1

Q

5

=S

Q

1

Q

5

�T

4

, whih desribes (Q

1

; Q

5

) =

(N; 1). A partiular element of the symmetri group is transposition: T

4

(i)

$ T

4

(j)

. This

ation has a �xed point along the diagonal, whih is roughly speaking anR

4

=Z

2

singularity.

It is well-known from the study of orbifolds that its metri is singular, but the CFT makes

sense on suh a spae beause of a disrete ux of B-�eld through the singularity (b =

1

2

).

Thus this orbifold theory orresponds to the region � =

1

2

in the moduli spae.

We have been able to hek symmetry algebras, BPS states, wrapped branes, and

moduli spaes. There is a nie analysis in a paper [27℄ of Dijkgraaf, where the expliit

map between the moduli spae of supergravity and moduli of the hyperK�ahler sigma

model is given. So perhaps is is time to stop questioning the orrespondene, and ask

what we an do with it.

6

Note that

g

2

s

v

4

= g

2

6

by de�nition and v

4

=

Q

1

Q

5

by the �xed salar equation.
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Coulomb

Higgs

Pulling out
of the system

Shrinking an instanton

Zero size
instanton

Instanton moduli space

Figure 5: The proess of shrinking an instanton.

4 Appliation of the orrespondene

One appliation of the orrespondene [14℄

7

is to investigate the Coulomb branh of the

D1-D5 system. Most of this leture has been spent talking about the Higgs branh.

Therefore the question is what happens if we try to separate the branes into the lusters

(the mixed Coulomb-Higgs branhes) in the following way

Q

1

= Q

0

1

+Q

00

1

; Q

5

= Q

0

5

+Q

00

5

: (46)

The �xed salar onditions that an be obtained by minimizing the mass formula in this

(Q

1

; Q

5

) bakground are given in (43). If we start pulling branes apart to two separate

subsystems, we have to satisfy the �xed salar onditions for eah subsystem. Beause we

assume that Q

1

; Q

5

are relatively prime, it is generially impossible to satisfy the �xed

salar onditions for eah system. Thus if we try to pull the system apart into two piees,

it osts us some energy in the generi bakground. But there are some plaes in the moduli

spae in whih the degeneray onditions are satis�ed. Namely, in the odimension four

subspae

8

:

B = � = A

4

= 0; (47)

the onditions are satis�ed. Roughly speaking, this situation is represented as Figure 5.

The transition from the Higgs branh to the Coulomb branh orresponds to the shrinking

instanton (zero size instanton) singularity.

Note that the orbifold CFT is not singular beause � =

1

2

and it is away from suh a

singularity. However it is a problem for the GKS string desription [26℄ beause � = 0 and

7

The present disussion represents an interpretation of [14℄ developed in disussions with A. Strominger.

8

Note that we have already had the onstraint (43).
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AdS

Boundary
Strings wrapping 
around the boundary

3

Figure 6: Strings wrapping around the boundary.

therefore it is sitting on the singular region. Surprisingly, their original paper desribed

preisely suh strings whih wrap around the entire AdS

3

and are living near the boundary

(see Figure 6). Now we an interpret suh strings as fundamental strings pulled far away

from the soure.

In the gauge theory whih desribes the D1-D5 system, the problem appears as follows.

The potential is essentially U �

R

jH

1

Y j

2

, and there is a Coulomb branh (Y 6= 0) and

Higgs branh (H

1

6= 0). If we turn o� the �elds Y , the instanton shrinks to zero size and

the degeneray ours at that point. A piee of the on�guration spae a where small

instanton develops is a region of high urvature. The metri of the moduli spae beomes

singular at suh a point; thus there is a singular CFT in odimension 4 subspae of the

moduli.

Now let us onsider pulling out a single D1-brane and investigate the previous singu-

larity dynamially by using a probe D1-brane. There are a number of ways of desribing

suh a brane as follows:

a) Start with the gauge theory and try to integrate out the �elds Y assuming that H

1

is large and the brane is far away. (.f. Douglas, Polhinski, and Strominger [28℄)

b) Do a supergravity analysis. (.f. Seiberg and Witten [14℄)

) Do S-duality and look at the fundamental string. (.f. GKS [26℄ or Callan, Harvey,

and Strominger [29℄)

Any of these is suÆient and the e�etive ation of the probe D1-brane is given by

(see also [30℄)

S

probe

=

Q

5

2

Z

d

2

�

(�H

1

)

2

H

2

1

+ [SU(2)WZW℄+[T

4

part℄+[fermion terms℄: (48)

The angular mode is SU(2) WZW with the level Q

5

� 2 and log(H

2

1

) is an e�etive

Liouville mode whih orresponds to the radial oordinate of AdS

3

. The energy sale

of mass for Y is � H

1

and therefore this e�etive ation is only good at large H

1

(in

saled units, equation 7). There is an R-symmetry of this e�etive theory inherited from

the original Higgs branh CFT, whih rotated the angular S

3

transverse to the branes.
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Thus it inludes the bosoni SU(2) urrents and rotation of fermions.

9

The total level is

(Q

5

� 2)+1 = Q

5

� 1 inluding the fermion ontribution. There is also a T

4

part beause

the D1-brane an move in that diretion.

What is the entral harge after we pull the brane out? Before we pull it out, we �nd

10



Higgs

= 6(Q

1

Q

5

+ 1) : (49)

After we pull out the brane, we �nd

11



Coulomb

= 6[(Q

1

� 1)Q

5

+ 1℄ + 6(Q

5

� 1) + 6

= 6(Q

1

Q

5

+ 1) = 

Higgs

: (50)

Thus the entral harge does not hange in suh a proess.

It is a simple exerise to generalize to all of the other mixed branhes. If we onsider

the ase

Q

1

= Q

0

1

+Q

00

1

Q

5

= Q

0

5

+Q

00

5

; (51)

and integrate out the heavy modes from the string between two lusters, we obtain

S

throat

=

Q

0

1

Q

00

5

+Q

0

5

Q

00

1

2

Z

(�H)

2

H

2

+ � � � : (52)

It is again easy to hek that



Higgs

0

+ 

Higgs

00

+ 

throat

= 

Higgs

: (53)

Seiberg and Witten [14℄ argued (following Maldaena, Mihelson, and Strominger [31℄)

that this e�etive theory is in some sense a dual desription of the singularity of the original

Higgs branh sigma model when the instanton shrinks to zero size. A rough analogy is

N = 2 4D Yang-Mills theory, where the Coulomb branh meets with the Higgs branh in

a nonperturbative regime.

As we have seen, the hyperK�ahler sigma model beomes singular at small instantons

beause it has large urvature. On the other hand the above e�etive theory desribes a

slow separation of two systems and has small orretions when H

1

is large. The problem

here is that we do not have any expetation values in the 1+1 dimensional �eld theory.

Therefore if one e�etive desription beomes singular, we do not have the option of

9

A seond possibility, that the SU(2) R-symmetry only rotates the fermions, arises in a di�erent saling

limit; the sigma model has  = 6 instead of  = 6(Q

5

� 1). Unfortunately, this sigma model is also alled the

`Coulomb branh' of the e�etive dynamis; but in the saling limit, the region of the geometry being desribed

deouples from the Higgs branh, unlike the above model that arises in the saling limit 7.

10

6Q

1

Q

5

is from (T

4

)

Q

1

Q

5

=S

Q

1

Q

5

and 6 is from the extra T

4

.

11

6(Q

5

� 1) is from the \throat" part of the CFT and 6 is from the T

4

part.
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Higgs branch Coulomb branch

Strong coupling

Figure 7: A rough piture of the on�guration spae of the 2D e�etive theory.

replaing the theory with a new theory. All we an do is to say that when the wave

funtion is in the region of singularity, this is an approximate e�etive desription of the

dynamis. It is a little bit di�erent from the usual �eld theory duality where one theory

in weak oupling is dual to another theory in strong oupling. A rough piture is given

in Figure 7.

The singular behavior only ours in odimension 4 in the moduli spae. Thus we

should be able to identify in this probe theory the perturbations whih we an turn on to

lift the degeneray. Suh a perturbation of N = 4 super Liouville model is the Liouville

area term. There is a quartet of these beause any marginal �eld in N = 4 theory has

highest �eld (

1

2

;

1

2

) under SU(2)

R

� SU(2)

L

. The area term (�

R

H

�

) gives an energy

ost and therefore if we turn on this term, the degeneray lifts. These Liouville area terms

orrespond to 4 salar �elds � ; B. Thus there is a rather detailed orrespondene again

between various pitures.
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