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The idea of T-duality

The simplest example is a sigma model on a torus Tn = Rn/�

of radius equal to r , where � is a lattice in Rn.
The (topological) partition function is a theta function,

Z�(r) =
X

z2b�

e�2⇡2r |z|2

where b� is the dual lattice in the dual vector space bRn.
By the Poisson summation formula, this is equivalent to the
partition function Zb� on the dual torus T̂n = bRn/b�, and

r () 1/r .

The situation however gets much more complicated when a
background flux H is turned on.



String theory in a background flux

String theory does not currently have a complete definition.
What we have instead are a set of partial definitions.
A question naturally arises given this state of affairs.

Is each partial definition consistent with the others,
via string dualities?

We will be concerned with 2 of the 6 known manifestations of
string theory.



string theory and dualities
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Type II A string theory

Data for a partial definition for Type IIA string theory is:
Let E be spacetime:

1 A background H-flux H 2 ⌦3(E), dH = 0 with integral
periods;

2 A Riemannian metric g on E satisfying the
Einstein-Maxwell field equations,

Ricij =
1
4

X

p,q

HipqHpq
j ;

3 A Ramond-Ramond (RR) field G 2 ⌦even(E), satisfying
the equations of motion, (d � H^)G = 0;

4 A complex-valued dilaton + axion.



Type IIB string theory

Data for a partial definition for Type IIB string theory is:
Let E be spacetime:

1 A background H-flux H 2 ⌦3(E), dH = 0 with integral
periods;

2 A Riemannian metric g on E satisfying the
Einstein-Maxwell field equations,

Ricij =
1
4

X

p,q

HipqHpq
j ;

3 A Ramond-Ramond (RR) field G 2 ⌦odd(E), satisfying
the equations of motion, (d � H^)G = 0;

4 A complex-valued dilaton + axion.



T-duality in the literature

Spacetime is M ⇥ T, with trivial background flux - then the
T-dual is topologically the same space M ⇥ T̂, and T-duality is
realized by using the correspondence

M ⇥ T⇥ T̂

p

zz

p̂

$$

M ⇥ T M ⇥ T̂



Poincaré line bundle P:

There is a canonical line bundle defined on the 2D torus

P �! T⇥ bT,

called the Poincaré line bundle, defined as follows:
Consider the free action of Z on R⇥ bT⇥ C given by,

Z⇥ (R⇥ bT⇥ C) ! R⇥ bT⇥ C

(n, (r , ⇢, z)) ! (r + n, ⇢, ⇢(n)z)

The Poincaré line bundle is defined as the quotient

P = (R⇥ bT⇥ C)/Z.

It has a connection ⇥ = ✓d ✓̂ whose curvature is F = d✓ ^ d ✓̂.



T-duality in the literature

T-dualizing on T, the Buscher rules for the RR fields can be
conveniently encoded in the Hori formula on M ⇥ T⇥ T̂,

T⇤G =

Z

T
eF G , (1)

Here F = d✓ ^ d ✓̂ is the curvature of the Poincaré line bundle P
on T⇥ T̂, so that eF = ch(P) is the Chern character of P.
G 2 ⌦•(M ⇥ T) is the total RR fieldstrength,

G 2 ⌦even(M ⇥ T) for Type IIA;
G 2 ⌦odd(M ⇥ T) for Type IIB.



T-duality in the literature

Note that G is a closed form if and only if its T-dual T⇤G is a
closed form. The Buscher rules (??) are interpreted as

T⇤ : H•(M ⇥ T)
⇠=����! H•+1(M ⇥ T̂). (2)

That is, T-duality (no background field) gives an equivalence

Type IIA theory () Type IIB theory

N.B. No change in topology!

Remarks:This equivalence can be refined to K-theory



T-duality - The case of circle bundles
In [BEM], we isolated the geometry in the case when E is a
principal T-bundle over M

T ����! E

⇡

??y

M

(3)

classified by its first Chern class c1(E) 2 H2(M,Z), with H-flux
H 2 H3(E ,Z).
The T-dual is another principal T-bundle over M, denoted by Ê ,

T̂ ����! Ê

⇡̂

??y

M

(4)

which has first Chern class c1(Ê) = ⇡⇤H.



T-duality in a background flux

The Gysin sequence for E enables us to define a T-dual H-flux
Ĥ 2 H3(Ê ,Z), satisfying

c1(E) = ⇡̂⇤Ĥ , (5)

where ⇡⇤ and similarly ⇡̂⇤, denote the pushforward maps.

N.B. Ĥ is not fixed by this data, since any integer degree 3
cohomology class on M that is pulled back to Ê also satisfies
(??). However, Ĥ is determined uniquely (up to cohomology)
upon imposing the condition [H] = [Ĥ] on the correspondence
space E ⇥M Ê . Explicit formulae will be given shortly.

T-duality for circle bundles is the exchange,

background H-flux () Chern class



T-duality in a background flux

The surprising new phenomenon is that there is a
change in topology when the H-flux is non-trivial.

An example is S5 with trivial H-flux, is T-dual to CP2 ⇥ T with
H-flux H = a [ b where a = vol 2 H2(CP2,Z), b the generator
of H1(T,Z).

So (AdS5 ⇥ S5,H = 0) and (AdS5 ⇥ CP2 ⇥ T,H = a [ b) are
T-dual spaces.



T-duality in a background flux

!

3-Sphere ;H = 5 () Lens Space L(5, 1);H = 1



T-duality in a background flux

!

S2 ⇥ S1 ;H = 1 () 3-Sphere ;H = 0



T-duality in a background flux
Lens space L(p, 1) = S3/Zp, where
S3 = {(z1, z2) 2 C2 : |z1|2 + |z2|2 = 1} & Zp action on S3 is

exp(2⇡i/p).(z1, z2) = (z1, exp(2⇡i/p)z2).

L(p, 1) is the total space of the circle bundle overS2 with Chern
class equal to p times the generator of H2(S2,Z) ⇠= Z.
Then L(p, 1) is never homeomorphic to L(q, 1) whenever p 6= q.
Nevertheless

(L(j , 1),H = k .vol) and (L(k , 1),H = j .vol) .

are T-dual pairs! Thus T-duality is the interchange

j () k

Since L(0, 1) = S2 ⇥ T, we see the T-dual pairs:

(S2 ⇥ T,H = k) and (L(k , 1),H = 0)



T-duality in a background flux

Let HZ(k) be the integer Heisenberg group,

HZ(k) =

8
><

>:

0

B@
1 x 1

k z
0 1 y
0 0 1

1

CA : x , y , z 2 Z

9
>=

>;
,

which is a Z-central extension of Z2,

0 ! Z ! HZ(k) ! Z2 ! 0.

Also let HR denote the Heisenberg group,

HR =

8
><

>:

0

B@
1 x z
0 1 y
0 0 1

1

CA : x , y , z 2 R

9
>=

>;
,

Clearly HZ(k) is a discrete subgroup of HR.



T-duality in a background flux

The quotient space HR/HZ(k), is a Heisenberg nilmanifold.
It is a principal circle bundle over the torus T2 with Chern class
equal to k -times the volume form of the torus.

(HR/HZ(k),H = j .vol) and (HR/HZ(j),H = k .vol)

are T-dual pairs.
Thus T-duality is again the interchange

j () k

A similar analysis can be done for circle bundles over all
Riemann surfaces. The total spaces of such circle bundles
are known as Seifert fibered spaces.



T-duality & correspondence spaces

(E ,H)

⇡

��

(E ⇥M Ê , [H] = [Ĥ])

p̂

��

p

��

M

(Ê , Ĥ)

⇡̂

��



T-duality in a background flux - cohomology

The correspondence space is defined as

E ⇥M Ê = {(x , x̂) 2 E ⇥ Ê : ⇡(x) = ⇡̂(x̂)}.

By requiring
[H] = [Ĥ] 2 H3(E ⇥M Ê ,Z),

determines [Ĥ] 2 H3(Ê ,Z) uniquely, via an application of the
Gysin sequence.
A direct construction of Ĥ will be given shortly.



T-duality in a background flux - cohomology

Choosing connection 1-forms A and Â, on the T-bundles E and
Ê , respectively, the rules for transforming the RR fields can be
encoded in the [BEM] generalization of Hori’s formula

T⇤G =

Z

T
eA^Â G , (6)

where G 2 ⌦•(E)T is the total RR fieldstrength,

G 2 ⌦even(E)T for Type IIA;
G 2 ⌦odd(E)T for Type IIB,

and where the right hand side of (6) is an invariant differential
form on E ⇥M Ê , and the integration is along the T-fiber of E .



T-duality in a background flux
Let F = dA and F̂ = dÂ be the curvatures of the connections,
and we can assume wlog that H is T-invariant. Then on E

H = A ^ F̂ � ⌦ , (7)

for some ⌦ 2 ⌦3(M), while the T-dual Ĥ on Ê is given by

Ĥ = F ^ Â � ⌦ . (8)

We note that
d(A ^ Â) = �H + Ĥ , (9)

T⇤ indeed maps dH -closed forms G to dĤ -closed forms T⇤G.
Recall that the twisted cohomology is defined as

H•(E ,H) = H•(⌦•(E), dH = d � H^).

So T-duality T⇤ induces a map on twisted cohomologies,

T⇤ : H•(E ,H) ! H•�1(Ê , Ĥ).



T-duality.

We define the Riemannian metrics on E and Ê by

gE = ⇡⇤gM + A � A, gÊ = ⇡̂⇤gM + Â � Â.

Theorem

Under the above choices of Riemannian metrics and flux forms,

T : ⌦k̄ (E)T ! ⌦k+1(Ê)T̂,

for k = 0, 1, are isometries, inducing isometries on the spaces
of twisted harmonic forms and hence on the twisted
cohomology groups.



Proof of T-duality.

Proof.
For any ! = ⇡⇤!1 + A ^ ⇡⇤!2 2 ⌦•(E)T, where !1,!2 2 ⌦•(M),
we have T (!) = ⇡̂⇤!2 + Â ^ ⇡̂⇤!1.

The isometry of T follows from
Z

E
! ^ ⇤E ! =

Z

M
!1 ^ ⇤M !1 +

Z

M
!2 ^ ⇤M !2

=

Z

Ê
T (!) ^ ⇤Ê T (!)

Since d(p⇤A ^ p̂⇤Â) = �p⇤H + p̂⇤Ĥ, we have T � dH = dĤ � T .
So T acts on the spaces of twisted harmonic forms and on the
twisted cohomology groups.


