NOTES ON THE J-HOMOMORPHISM

AKHIL MATHEW

1. INTRODUCTION

The *J*-homomorphism is a morphism

$$\pi_i(O(n)) \to \pi_{n+i}(S^n).$$

It may be defined as follows. Let H(n) be the group of homotopy self-equivalences of S^n preserving the point at ∞ . There is a natural map $O(n) \to H(n)$, since an orthogonal transformation $\mathbb{R}^n \to \mathbb{R}^n$ extends to a homeomorphism of S^n onto itself. If we give O(n) the basepoint which is the identity and similarly for H(n), we have a map of pointed spaces.

We can identify H(n) with the union of two components of $\Omega^n S^n$ (which has a \mathbb{Z} worth of connected components). As a result, there is a natural map

$$O(n) \to H(n) \to \Omega^n S^n.$$

Consequently, we get a natural map

$$\pi_i(O(n)) \to \pi_i(\Omega^n S^n) = \pi_{n+i}(S^n).$$

Let us observe that these maps are compatible in the following sense. There is an inclusion $O(n) \to O(n+1)$, and there is a suspension morphism $\pi_{n+i}(S^n) \to \pi_{n+1+i}(S^{n+1})$. These two are compatible in there is a commutative diagram

In fact, we need only show that there is a commutative diagram

$$O(n) \longrightarrow H(n)$$

$$\downarrow \qquad \qquad \downarrow$$

$$O(n+1) \longrightarrow H(n+1)$$

where the right vertical map is suspension. But this is easy to see.

As a result, we can take direct limits to get maps $\pi_i(O) \to \pi_i^s$ where the latter denotes the stable homotopy groups of spheres; O is the infinite orthogonal group.

Definition 1. The map $\pi_i(O(n)) \to \pi_{n+i}(S^n)$ is called the **J-homomorphism.** We will mostly be interested in the stable version $J : \pi_i(O) \to \pi_i^s$.

Date: February 10, 2012.

The homotopy groups of O are known by Bott periodicity. We can state them:

In particular, the homotopy groups of the form $\pi_{4n-1}(O)$ are infinite cyclic. The image in the stable homotopy groups is necessarily finite, since the stable homotopy groups are finite. Here is the main result describing the image of J:

Theorem 1 (Adams, Quillen). (1) For r > 0 divisible by eight, J's image in π_r^s is finite cyclic, and J is a monomorphism.

- (2) If $r \equiv 1 \mod 8$ and r > 1, then J is a monomorphism, and there is another summand of $\mathbb{Z}/2$ in π_r^s .
- (3) If $r \equiv 2 \mod 8$, then π_r^s contains a summand $\mathbb{Z}/2$.
- (4) If r = 4s 1, then the image of J is a cyclic group of order m(2s) and is a direct summand of π_r^s .

The part of the theorem which is not yet elucidated concerns the function m(2s).

Definition 2. m(2s) is the denominator of $B_s/4s$ (for B_s the Bernoulli numbers.

In fact, in Adams's second paper, the actual values are computed explicitly. Adams shows that m(2s) is the positive integer whose 2-adic valuation is $3+v_2(s)$ and whose p-adic valuation for p odd is 0 if $2s \neq 0 \mod (p-1)$ and $1+v_p(t)$ if $t \equiv 0 \mod (p-1)$.

2. The groups J(X)

Adams's strategy is to bound from below and above the image of the *J*-homomorphism. Before mentioning this, we need an alternative description of it, which actually makes sense in a more general context.

Let X be a finite CW complex. Recall that KO(X) is the K-group of real vector bundles on X, and $\widetilde{KO}(X)$ is the reduced K-group. Classes in $\widetilde{KO}(X)$ can be represented by stable equivalence classes of vector bundles $E \to X$: we say that two vector bundles E, E' are stably equivalent if there exist integers n, m such that

$$E \oplus \mathbb{R}^n \simeq E' \oplus \mathbb{R}^m$$

We can define a weaker notion of stable fiber homotopy equivalence.

Definition 3. We say that two vector bundles E, E' over X are fiber homotopy equivalence if there are continuous maps over X

$$f: S(E) \to S(E'), \quad g: S(E') \to S(E)$$

for S(E), S(E') the sphere bundles, such that the composites fg, gf are homotopic to the respective identities over X.

It is a theorem of Dold-Lashof that we can detect fiber homotopy equivalences via the following criterion. If there is a fiberwise map $f: S(E) \to S(E')$ which induces a homotopy equivalence on each fiber, then S(E), S(E') are fiberwise homotopy equivalent (in fact, f has a fiberwise homotopy inverse). Incidentally, there are analogs in HTT for simplicial sets in the context of the co(ntra)variant model structures.

Definition 4. The group J(X) is defined to be the collection of classes of vector bundles E modulo the relation of stable fiber homotopy equivalence: that is, the classes of E, E' are identified if $E \oplus \mathbb{R}^n, E' \oplus \mathbb{R}^n$ have fiberwise homotopy equivalent sphere bundles.

One has to check that this is in fact an abelian group, i.e. that addition of vector bundles preserves fiber homotopy equivalence; however, addition of vector bundles is basically fiberwise join. So it's ok. There is a natural homomorphism

$$j: KO(X) \to J(X)$$

given by quotienting.

Let us try to connect this with the old definition in case X is a sphere S^r . In this case, $\widetilde{KO}(S^r)$ can be identified with $\pi_{r-1}(O)$ by the "clutching" construction. The claim is that J(X) can be identified with the image of the previously defined J-homomorphism

$$\pi_{r-1}(O) \to \pi_{r-1}^s$$

In fact, let's work out exactly when two elements f, g in $\pi_{r-1}(O)$ are identified in $J(S^r)$: they are if, for some $N \gg 0$ and for some reduction to $f, g : S^{r-1} \to O(N)$, there is a fiber homotopy equivalence, between the sphere bundles defined by f, g. This corresponds to saying that f, g are homotopic in the space of homotopy equivalences $S^N \to S^N$, and this is precisely the condition that f and g are identified in π_{r-1}^s under the usual J-homomorphism.

As a result, one can study these groups J(X) instead of simply studying the *J*-homomorphism. It is known, and proved in Atiyah's paper "Thom complexes," that they are always finite. In fact, it is known that J(X) is contained in [X, BH] for *H* the "stable" homotopy equivalences of the sphere. The homotopy groups of this are finite (they are the stable homotopy groups of spheres).

3. The groups J''(X)

The language of K-theory is convenient, though, because it gives us various other tools. For instance, we have the Adams operations ψ^k ; these are given by raising to the kth power on a line bundle and are additive (even ring) operations $KO(X) \to KO(X)$ for any X. Assuming the following, Adams was able to bound the image of the J-homomorphism:

Adams conjecture. If $k \in \mathbb{N}$, then for any $x \in KO(X)$, we have $k^n(\psi^k(x) - \psi^k(x))$

x) = 0 in J(X) for some $n \gg 0$.

So the Adams conjecture is saying that when one localizes at k and quotients by the kernel of j, the operation ψ^k doesn't do anything.

The Adams conjecture was proved by Quillen. If we believe it, we can work out an upper bound for the J-homomorphism in the 4n - 1 case. That is, we can see:

Proposition 1. The image of $J: \pi_{4n-1}(O) \to \pi_{4n-1}^s$ has order dividing m(2n).

In fact, Adams defines for any finite complex X, a group J'(X): this is defined by taking KO(X), and forming the subgroup H defined as follows. Consider any function $f : \mathbb{N} \to \mathbb{N}$, and the subgroup H_f generated by elements of the form $k^{f(k)}(\psi^k x - x)$. We let $H = \bigcap_f H_f$.

Definition 5. $J'(X) := \widetilde{KO}(X)/H$ where H is as above.

According to the Adams conjecture (and the finite generation of KO(X)), we find that there is a surjection

$$J'(X) \to J(X).$$

Proof of the proposition. We can calculate $J'(S^{4n})$ and thus find an "upper bound" for $J(S^{4n})$. By Bott periodicity, we know that $\widetilde{KO}(S^{4n}) = \mathbb{Z}$, and we know that the complexification homomorphism

$$KO(S^{4n}) \to K(S^{4n}) = \mathbb{Z}$$

AKHIL MATHEW

is nonzero (in fact, its image is at least $2\mathbb{Z}$), and consequently $\widetilde{KO}(S^{4n})$ is generated by a class x whose complexification is nonzero. As a result, we can easily work out what the Adams operations on x are, in view of the fact that we know them for $\widetilde{K}(S^{2n})$ by ordinary Bott periodicity.

In fact, we use the fact from ordinary complex K-theory that $\psi^k(y) = k^{2n}y$ for $y \in \widetilde{K}(S^{4n})$. Consequently, the same holds for any element of $\widetilde{KO}(S^{4n})$.

In fact, we need only prove this in complex K-theory, but the above observations; but we can check this for S^2 using the generator H - 1 of $\tilde{K}(S^2)$. Then, everything else follows by induction and taking powers.

As a result, we can determine the group $J'(S^{4n})$. Let $x \in \widetilde{KO}(S^{4n})$ be a generator. For all functions $f : \mathbb{N} \to \mathbb{N}$, we need to consider the subgroup generated by

$$k^{f(k)}(k^{2n}-1)x, \quad k \in \mathbb{N}$$

and take the intersection over all f.

Here we need a little number theory. In Adams's second paper, it is shown that as f varies, the greatest common divisor of the set $\{k^{f(k)}(k^{2n}-1), k \in \mathbb{N}\}$ always divides the denominator m(2n) of $B_{2n}/4n$, and choosing f large we can get precisely this. Consequently, it follows that $J'(S^{4n})$ is precisely $\mathbb{Z}/m(2n)\mathbb{Z}$.

4. The cannibalistic classes ρ^k

To bound below the image of J (which had already been done in some cases by Milnor-Kervaire), Adams used a characterization of when something is zero in J(X) in terms of characteristic classes: that is, he constructed a quotient J''(X) of J(X) and computed that.

We will need a general formalism of characteristic classes. Let F, T be cohomology theories. Suppose that they have a *natural theory of Thom classes* with respect to a certain class of vector bundles (e.g. complex vector bundles). That is, given such a vector bundle $E \to X$, we should have a Thom class $u_E \in \widetilde{F}(X^E)$ which is natural in E, and similarly $t_E \in \widetilde{T}(X^E)$. Suppose moreover that we have a natural transformation of cohomology theories $f: F \to T$. Then, we can construct characteristic classes in T of any vector bundle $E \to X$.

Construction: Let $E \to X$ be a vector bundle. Consider the Thom class $u_E \in \widetilde{F}(X^E)$, and its image $f(u_E) \in \widetilde{T}(X^E)$. Inverse Thom it back to T(X) to get a characteristic class of E

$$f(u_E)/t_E \in T(X).$$

This is clearly natural in E, and gives a characteristic class.

Example. Let F, T be $\mathbb{Z}/2$ -cohomology, and f be the Steenrod square Sqⁱ. Then the characteristic class thus obtained is the Stiefel-Whitney class w_i .

There is a natural choice of Thom classes in K-theory for complex vector bundles: that is, complex K-theory is *complex oriented*. The construction is convenient: it has the multiplicative property. That is, if $E \to X, E' \to Y$ are vector bundles, then we have

$$X^E \wedge Y^{E'} = (X \times Y)^{E \oplus E'}$$

and the product of the Thom classes of E, E' is the Thom class for $E \oplus E' \to X \times Y$.

An explicit construction of the complex orientation can be given as follows. If $\pi: E \to X$ is a vector bundle, we take the Koszul complex

$$0 \to \pi^* E \to \bigwedge^2 \pi^* E \to \dots$$

on E; the boundary map on (v, x) is given by wedging with $v \in E_x$. This is a complex of vector bundles on E, and outside of the zero section it is exact; by the "difference bundle" construction, it defines an element of $\widetilde{K}(X^E)$, which is the Thom class. We denote the Thom class by u_E .

Atiyah, Bott, and Shapiro have constructed (using Clifford theory) natural Thom classes in KO-theory for Spin-bundles, and natural Thom classes in K-theory for Spin^c-bundles (the latter is a weaker condition than having a complex structure). This is used in the construction of the ρ^k for real vector bundles, which we won't try to deal with here.

Example. Let F be K-theory, and let T be ordinary cohomology with \mathbb{Q} -coefficients. Let f be the Chern character. Then the associated characteristic class of complex vector bundles is the **Borel-Hirzebruch class.** If the q_i are the Chern roots of a vector bundle E, then we have

$$Bh(E) = \prod_{i} \frac{e^{q_i} - 1}{q_i}.$$

(This is not quite the usual definition.) Let's prove this.

By multiplicativity of the Thom isomorphisms and the splitting principle, we can restrict to the case of a line bundle. Then we can even reduce to the "universal case" of the "universal" line bundle over \mathbb{CP}^{∞} . In fact, we know that $K(\mathbb{CP}^{\infty}) = \mathbb{Z}[[x]]$ for x the Euler class (in K-theory) of the canonical line bundle: in other words, x corresponds to L-1 for L the class of the canonical line bundle. The Thom space $MU(1) = \mathbb{CP}^{\infty}$ is the same thing and the Thom class is L-1. The Thom isomorphism

$$K(\mathbb{CP}^{\infty}) \simeq \widetilde{K}(MU(1)) = \widetilde{K}(\mathbb{CP}^{\infty})$$

is just multiplication by H - 1.

The Thom class is x = H - 1, as before. The completed (rational) cohomology ring is $\mathbb{Q}[[y]]$ where y has degree two and $c_1(H) = y$ (so y is the Thom class in rational cohomology). Applying the Chern character to the Thom class gives $e^y - 1$, and then we have to divide by y for the inverse Thom isomorphism.

We have the Adams operations $\psi^k : K(X) \to K(X)$ for any space X. In view of these, and the complex orientation of K, we have:

Definition 6. The **cannibalistic classes** $\rho^k(E) \in K(X)$ of a complex vector bundle $E \to X$ are defined as $\psi^k(u_E)/u_E \in K(X)$, for u_E the Thom class.

So, in other words, we start with $1 \in K(X)$, apply the Thom isomorphism, apply ψ^k , and apply the inverse to the Thom isomorphism. In view of the multiplicativity properties, we have

$$\rho^k(E \oplus E') = \rho^k(E)\rho^k(E').$$

We can describe the cannibalistic classes explicitly using the following formalism.

Example. $\rho^k(L) = 1 + L + L^2 + \dots + L^{k-1}$ when L is a line bundle.

To prove this, we may as well work with the universal line bundle H on \mathbb{CP}^{∞} . The Thom space is, as before, $MU(1) = \mathbb{CP}^{\infty}$ and the Thom class is $H - 1 \in \widetilde{K}(\mathbb{CP}^{\infty})$.

Now to compute $\rho^k(H)$, we need to divide $\psi^k(H-1)$ by H-1; this gives

$$\frac{H^k - 1}{H - 1} = 1 + H + \dots H^{k - 1}.$$

As an example, we can figure out the cannibalistic classes for the vector bundles on S^{2n} .

AKHIL MATHEW

This example completely determines the characteristic class ρ^k , in view of the splitting principle. Using it, and using the immediate consequence that $\rho^k(n) = k^n$, we can define the ρ^k as operations from K-theory to K-theory localized at k. In Adams's blue book, it is shown that the ρ^2 of a stably almost complex manifold can be used to compute the signature by evaluating on the fundamental class (this is the K-theoretic analog of the Hirzebruch signature formula).

We have now theoretically figured out all we need to know about ρ^k , but to help things out, we can obtain the Chern character of ρ^k . Let us make the observation that the Chern character induces an isomorphism

$$\operatorname{Ch}: K(X) \otimes \mathbb{Q} \to H^{even}(X; \mathbb{Q})$$

for X a finite complex. The corresponding operation to ψ^k is just multiplication by k^i on H^{2i} .

Definition 7. We write ψ_H^k for the operation in ordinary (even) cohomology which is just multiplication by k^i on H^{2i} . As a result, we have a commutative diagram

$$\begin{array}{c} K(X) \xrightarrow{\psi^k} K(X) \\ & \downarrow^{\operatorname{Ch}} & \downarrow \\ H^{even}(X; \mathbb{Q}) \xrightarrow{\psi^k_H} H^{even}(X; \mathbb{Q}) \end{array}$$

The vertical maps become isomorphisms after tensoring with \mathbb{Q} . The next result will be our basic computational tool.

Proposition 2. For a vector bundle E of dimension n, we have

(1)
$$\operatorname{Ch}\rho^{k}(E) = k^{n}\psi^{k}_{H}(\operatorname{Bh}(E))/\operatorname{Bh}(E)$$

for Bh(E) the Borel-Hirzebruch class of E.

Recall that the *Borel-Hirzebruch class* is the multiplicative characteristic class associated to $\frac{e^x-1}{r}$. This is the inverse of the usual terminology.

Proof. We need only verify the result for a line bundle; everything here sends direct sums in E to products. Let x be the class in K-theory of a line bundle; then we have that $\psi^k(x) = x^k$. Let $\overline{x} = c_1(x)$. We have

$$\operatorname{Ch}\rho^{k}(E) = \operatorname{Ch}(1 + x + \dots + x^{k-1}) = 1 + e^{\overline{x}} + e^{2\overline{x}} + \dots + e^{(k-1)\overline{x}}.$$

We have, on the other hand,

$$Bh(E) = \frac{e^{\overline{x}} - 1}{\overline{x}},$$

and since \overline{x} has degree two,

$$\psi_H^k(\operatorname{Bh}(E)) = \frac{e^{k\overline{x}} - 1}{k\overline{x}}.$$

If we combine these, we have

$$k\psi^k(\operatorname{Bh}(E))/\operatorname{Bh}(E) = \frac{e^{k\overline{x}} - 1}{e^{\overline{x}} - 1} = 1 + e^{\overline{x}} + \dots + \overline{x}^{k-1}$$

These are the same, now.

5. Bounding below the image of J

For simplicity, we will do what Adams does for complex K-theory rather than real K-theory. In other words, we will consider the composite

$$\widetilde{K}(X) \to \widetilde{KO}(X) \to J(X)$$

and try to bound below the image by bounding above the kernel.

The key strategy is the observation that if a vector bundle is fiber-homotopically trivial, then its cannibalistic classes are strongly restricted (just by looking at the definitions). Applying the previous computation, we'll translate that into a statement on the Chern character. This will give a strong (though off by a factor of two) bound on the image.

Proposition 3. If a vector bundle E is fiber-homotopically trivial, then

(2)
$$\rho^{k}(E) = k^{\dim E} \frac{\psi^{k}(1+y)}{1+y}$$

for some $y \in \widetilde{K}(X)$.

This result is more complicated for real vector bundles because then one has to specify exactly when the ρ^k can even be defined.

Proof. In fact, we have a homotopy equivalence of the Thom spaces

$$X^E \to X^{E'}$$

where E' is a trivial bundle. We will show that more generally, if E, E' are any vector bundles, and we have a fiberwise homotopy equivalence

$$\phi: X^E \to X^{E'},$$

then $\rho^k(E) = \rho^k(E') \frac{\psi^k(1+y)}{1+y}$ for some $y \in \widetilde{K}(X)$ (note that 1+y is a unit). In fact, let's compare $\phi^* u_{E'}$ with u_E ; clearly there is an element, which we see is of degree one by restricting to fibers, $1+y \in K(X)$, such that

$$\phi^* u_{E'} = u_E (1+y).$$

Now we recall that

$$\rho^k(E) = \psi^k(u_E)/u_E$$

and consequently

$$\rho^{k}(E') = \psi^{k}(u_{E'})/u_{E'} = \psi^{k}(\phi^{*}u_{E'})/\phi^{*}u_{E'} = (\psi^{k}(u_{E})/u_{E})\psi^{k}(1+y)/(1+y).$$

Combining this result with the previous one, we can get a criterion for when a bundle is fiber homotopically trivial. As we have seen, the necessary condition is that $\rho^k(E) = k^{\dim E} \psi^k (1+y)/1 + y$, for each k.

Henceforth, let us assume that we are working in a finite complex X such that K(X) is torsion-free (this happens, e.g., if the cohomology of X is torsion-free). Let E be a complex vector bundle which is fiber homotopically trivial. Let $n = \dim E$. Thus, an equivalent restatement is that $E - n \in \widetilde{K}(X)$ maps to zero in J(X). It follows that (if we cancel copies of k^n)

$$\psi_H^k(\mathrm{Bh}(E))/\mathrm{Bh}(E) = \psi_H^k(\mathrm{Ch}(1+y))/\mathrm{Ch}(1+y).$$

Then we have:

$$\psi_H^k(\operatorname{Bh}(E))/\operatorname{Bh}(E) = \psi_H^k(\operatorname{Ch}(1+y))/\operatorname{Ch}(1+y)$$

and this gives

$$\psi_H^k(\operatorname{Bh}(E)/\operatorname{Ch}(1+y)) = \operatorname{Bh}(E)/\operatorname{Ch}(1+y).$$

We are working in *rational* cohomology here, and the only fixed points of ψ_H^k are the multiples of 1. In fact, it follows that

$$Bh(E) = Ch(u_E).$$

Corollary 1. If E is a stably-fiber-homotopically vector bundle, then

(3)
$$Bh(E) = Ch(1+y)$$

for some $y \in \widetilde{K}(X)$.

If we take *logarithms* (formally), we can write this in a form that makes more transparent the relation with the Bernoulli numbers; it will imply integrality relations on the Borel-Hirzebruch classes. The *Bernoulli numbers* were defined via

$$\frac{x}{1-e^x} = \sum \frac{\beta_s x^s}{s!}, \quad B_s := \beta_{2s}$$

We will just use the β_s , though. We can see that

$$\log\left(\frac{e^x - 1}{x}\right) = -\sum \alpha_t \frac{x^t}{t!}$$

where $\alpha_t = \beta_t/t, t > 1$, by differentiation. It follows that if $x \in K(X)$, then we have

(4)
$$\log(\mathrm{Bh}(x)) = -\sum_{t=1}^{\infty} \alpha_t \mathrm{Ch}_t(x)$$

if $Ch_t(x)$ is the component of Ch(x) of degree 2t. Here the α_t as previously.

Proof. Both are additive in x, so we reduce to the case of a line bundle. Then it is clear, because $\operatorname{Ch}_t(x) = \frac{c_1(x)^t}{t!}$ and $\log(\operatorname{Bh}(x)) = \log \frac{e^{c_1(x)}-1}{c_1(x)}$.

Corollary 2. Let X be a space where all cup products are zero. Let E be a vector bundle over X which is stably fiber-homotopically trivial; let $x = E - \dim E$ in $\widetilde{K}(X)$. Then there is $y \in \widetilde{K}(X)$ such that

$$(-1)^t \alpha_t \operatorname{Ch}_t(x) = \operatorname{Ch}_t(1+y), \forall t.$$

Proof. In fact, we see this from (3) (the subtraction of a trivial bundle does nothing) by taking logarithms; since all cup products are zero, we have $\log(1 + Ch(y)) = Ch(y)$.

This puts fairly strong restrictions on what $Ch_t(x)$ can be.

Let's now say that t is an integer which is divisible by four. Consider the J-homomorphism

$$K(X) \to J(X);$$

we have seen that if x is in the kernel, then

 $\alpha_{t/2} \operatorname{Ch}_{t/2}(x)$

is in the image of $\operatorname{Ch}_{t/2}$ (which is a monomorphism on $\widetilde{K}(S^t) = \mathbb{Z}$). In particular, x must be divisible by the denominator of $\alpha_{t/2}$.

We have proved:

Corollary 3. If 4 | t, then $J(S^{4t})$, or equivalently the image of $\pi_{t-1}(O) \to \pi_{t-1}^s$, has image a cyclic group of order divisible by the denominator of $\alpha_{t/2}$.

Since $\alpha_u = 0$ if u is odd, this is not very interesting for things not divisible by four.

6. Bibliography

- (1) Karoubi K theory
- (1) Harousi in theory
 (2) Adams On the groups J(X)
 (3) Bott Lectures on K(X) (a different viewpoint).