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AKHIL MATHEW

1. Introduction

The J-homomorphism is a morphism

πi(O(n))→ πn+i(S
n).

It may be defined as follows. Let H(n) be the group of homotopy self-equivalences of Sn

preserving the point at ∞. There is a natural map O(n) → H(n), since an orthogonal
transformation Rn → Rn extends to a homeomorphism of Sn onto itself. If we give O(n) the
basepoint which is the identity and similarly for H(n), we have a map of pointed spaces.

We can identify H(n) with the union of two components of ΩnSn (which has a Z worth of
connected components). As a result, there is a natural map

O(n)→ H(n)→ ΩnSn.

Consequently, we get a natural map

πi(O(n))→ πi(Ω
nSn) = πn+i(S

n).

Let us observe that these maps are compatible in the following sense. There is an inclusion
O(n)→ O(n+1), and there is a suspension morphism πn+i(S

n)→ πn+1+i(S
n+1). These two

are compatible in there is a commutative diagram

πi(O(n))

��

// πn+i(S
n)

��
πi(O(n+ 1)) // πn+1+i(S

n+1)

.

In fact, we need only show that there is a commutative diagram

O(n)

��

// H(n)

��
O(n+ 1) // H(n+ 1)

where the right vertical map is suspension. But this is easy to see.
As a result, we can take direct limits to get maps πi(O)→ πsi where the latter denotes the

stable homotopy groups of spheres; O is the infinite orthogonal group.

Definition 1. The map πi(O(n)) → πn+i(S
n) is called the J-homomorphism. We will

mostly be interested in the stable version J : πi(O)→ πsi .
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The homotopy groups of O are known by Bott periodicity. We can state them:
i 0 1 2 3 4 5 6 7

πi(O) Z/2 Z/2 0 Z 0 0 0 Z
In particular, the homotopy groups of the form π4n−1(O) are infinite cyclic. The image in

the stable homotopy groups is necessarily finite, since the stable homotopy groups are finite.
Here is the main result describing the image of J :

Theorem 1 (Adams, Quillen). (1) For r > 0 divisible by eight, J ’s image in πsr is finite
cyclic, and J is a monomorphism.

(2) If r ≡ 1 mod 8 and r > 1, then J is a monomorphism, and there is another summand
of Z/2 in πsr .

(3) If r ≡ 2 mod 8, then πsr contains a summand Z/2.
(4) If r = 4s − 1, then the image of J is a cyclic group of order m(2s) and is a direct

summand of πsr .

The part of the theorem which is not yet elucidated concerns the function m(2s).

Definition 2. m(2s) is the denominator of Bs/4s (for Bs the Bernoulli numbers.

In fact, in Adams’s second paper, the actual values are computed explicitly. Adams shows
thatm(2s) is the positive integer whose 2-adic valuation is 3+v2(s) and whose p-adic valuation
for p odd is 0 if 2s 6≡ 0 mod (p− 1) and 1 + vp(t) if t ≡ 0 mod (p− 1).

2. The groups J(X)

Adams’s strategy is to bound from below and above the image of the J-homomorphism.
Before mentioning this, we need an alternative description of it, which actually makes sense
in a more general context.

Let X be a finite CW complex. Recall that KO(X) is the K-group of real vector bundles

on X, and K̃O(X) is the reduced K-group. Classes in K̃O(X) can be represented by stable
equivalence classes of vector bundles E → X: we say that two vector bundles E,E′ are stably
equivalent if there exist integers n,m such that

E ⊕ Rn ' E′ ⊕ Rm.

We can define a weaker notion of stable fiber homotopy equivalence.

Definition 3. We say that two vector bundles E,E′ over X are fiber homotopy equiva-
lence if there are continuous maps over X

f : S(E)→ S(E′), g : S(E′)→ S(E)

for S(E), S(E′) the sphere bundles, such that the composites fg, gf are homotopic to the
respective identities over X.

It is a theorem of Dold-Lashof that we can detect fiber homotopy equivalences via the
following criterion. If there is a fiberwise map f : S(E)→ S(E′) which induces a homotopy
equivalence on each fiber, then S(E), S(E′) are fiberwise homotopy equivalent (in fact, f has
a fiberwise homotopy inverse). Incidentally, there are analogs in HTT for simplicial sets in
the context of the co(ntra)variant model structures.

Definition 4. The group J(X) is defined to be the collection of classes of vector bundles
E modulo the relation of stable fiber homotopy equivalence: that is, the classes of E,E′ are
identified if E ⊕ Rn, E′ ⊕ Rn have fiberwise homotopy equivalent sphere bundles.
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One has to check that this is in fact an abelian group, i.e. that addition of vector bun-
dles preserves fiber homotopy equivalence; however, addition of vector bundles is basically
fiberwise join. So it’s ok. There is a natural homomorphism

j : K̃O(X)→ J(X)

given by quotienting.
Let us try to connect this with the old definition in case X is a sphere Sr. In this case,

K̃O(Sr) can be identified with πr−1(O) by the “clutching” construction. The claim is that
J(X) can be identified with the image of the previously defined J-homomorphism

πr−1(O)→ πsr−1.

In fact, let’s work out exactly when two elements f, g in πr−1(O) are identified in J(Sr):
they are if, for some N � 0 and for some reduction to f, g : Sr−1 → O(N), there is a
fiber homotopy equivalence, between the sphere bundles defined by f, g. This corresponds to
saying that f, g are homotopic in the space of homotopy equivalences SN → SN , and this is
precisely the condition that f and g are identified in πsr−1 under the usual J-homomorphism.

As a result, one can study these groups J(X) instead of simply studying the J-homomorphism.
It is known, and proved in Atiyah’s paper “Thom complexes,” that they are always finite. In
fact, it is known that J(X) is contained in [X,BH] for H the “stable” homotopy equivalences
of the sphere. The homotopy groups of this are finite (they are the stable homotopy groups
of spheres).

3. The groups J ′′(X)

The language of K-theory is convenient, though, because it gives us various other tools. For
instance, we have the Adams operations ψk; these are given by raising to the kth power on a
line bundle and are additive (even ring) operations KO(X)→ KO(X) for any X. Assuming
the following, Adams was able to bound the image of the J-homomorphism:

Adams conjecture. If k ∈ N, then for any x ∈ K̃O(X), we have kn(ψk(x)−
x) = 0 in J(X) for some n� 0.

So the Adams conjecture is saying that when one localizes at k and quotients by the kernel
of j, the operation ψk doesn’t do anything.

The Adams conjecture was proved by Quillen. If we believe it, we can work out an upper
bound for the J-homomorphism in the 4n− 1 case. That is, we can see:

Proposition 1. The image of J : π4n−1(O)→ πs4n−1 has order dividing m(2n).

In fact, Adams defines for any finite complex X, a group J ′(X): this is defined by taking
KO(X), and forming the subgroup H defined as follows. Consider any function f : N→ N,

and the subgroup Hf generated by elements of the form kf(k)(ψkx− x). We let H =
⋂
f Hf .

Definition 5. J ′(X) := K̃O(X)/H where H is as above.

According to the Adams conjecture (and the finite generation of KO(X)), we find that
there is a surjection

J ′(X)→ J(X).

Proof of the proposition. We can calculate J ′(S4n) and thus find an “upper bound” for J(S4n).

By Bott periodicity, we know that K̃O(S4n) = Z, and we know that the complexification
homomorphism

K̃O(S4n)→ K̃(S4n) = Z
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is nonzero (in fact, its image is at least 2Z), and consequently K̃O(S4n) is generated by a
class x whose complexification is nonzero. As a result, we can easily work out what the

Adams operations on x are, in view of the fact that we know them for K̃(S2n) by ordinary
Bott periodicity.

In fact, we use the fact from ordinary complex K-theory that ψk(y) = k2ny for y ∈ K̃(S4n).

Consequently, the same holds for any element of K̃O(S4n).
In fact, we need only prove this in complex K-theory, but the above observations; but we

can check this for S2 using the generator H − 1 of K̃(S2). Then, everything else follows by
induction and taking powers.

As a result, we can determine the group J ′(S4n). Let x ∈ K̃O(S4n) be a generator. For
all functions f : N→ N, we need to consider the subgroup generated by

kf(k)(k2n − 1)x, k ∈ N
and take the intersection over all f .

Here we need a little number theory. In Adams’s second paper, it is shown that as f
varies, the greatest common divisor of the set

{
kf(k)(k2n − 1), k ∈ N

}
always divides the

denominator m(2n) of B2n/4n, and choosing f large we can get precisely this. Consequently,
it follows that J ′(S4n) is precisely Z/m(2n)Z. �

4. The cannibalistic classes ρk

To bound below the image of J (which had already been done in some cases by Milnor-
Kervaire), Adams used a characterization of when something is zero in J(X) in terms of
characteristic classes: that is, he constructed a quotient J ′′(X) of J(X) and computed that.

We will need a general formalism of characteristic classes. Let F, T be cohomology theo-
ries. Suppose that they have a natural theory of Thom classes with respect to a certain class
of vector bundles (e.g. complex vector bundles). That is, given such a vector bundle E → X,

we should have a Thom class uE ∈ F̃ (XE) which is natural in E, and similarly tE ∈ T̃ (XE).
Suppose moreover that we have a natural transformation of cohomology theories f : F → T .
Then, we can construct characteristic classes in T of any vector bundle E → X.

Construction: Let E → X be a vector bundle. Consider the Thom class uE ∈ F̃ (XE), and

its image f(uE) ∈ T̃ (XE). Inverse Thom it back to T (X) to get a characteristic class of E

f(uE)/tE ∈ T (X).

This is clearly natural in E, and gives a characteristic class.

Example. Let F, T be Z/2-cohomology, and f be the Steenrod square Sqi. Then the char-
acteristic class thus obtained is the Stiefel-Whitney class wi.

There is a natural choice of Thom classes in K-theory for complex vector bundles: that is,
complex K-theory is complex oriented. The construction is convenient: it has the multiplica-
tive property. That is, if E → X,E′ → Y are vector bundles, then we have

XE ∧ Y E′
= (X × Y )E⊕E

′
,

and the product of the Thom classes of E,E′ is the Thom class for E ⊕ E′ → X × Y .
An explicit construction of the complex orientation can be given as follows. If π : E → X

is a vector bundle, we take the Koszul complex

0→ π∗E →
2∧
π∗E → . . .
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on E; the boundary map on (v, x) is given by wedging with v ∈ Ex. This is a complex of
vector bundles on E, and outside of the zero section it is exact; by the “difference bundle”

construction, it defines an element of K̃(XE), which is the Thom class. We denote the Thom
class by uE .

Atiyah, Bott, and Shapiro have constructed (using Clifford theory) natural Thom classes
in KO-theory for Spin-bundles, and natural Thom classes in K-theory for Spinc-bundles (the
latter is a weaker condition than having a complex structure). This is used in the construction
of the ρk for real vector bundles, which we won’t try to deal with here.

Example. Let F be K-theory, and let T be ordinary cohomology with Q-coefficients. Let f
be the Chern character. Then the associated characteristic class of complex vector bundles
is the Borel-Hirzebruch class. If the qi are the Chern roots of a vector bundle E, then we
have

Bh(E) =
∏
i

eqi − 1

qi
.

(This is not quite the usual definition.) Let’s prove this.
By multiplicativity of the Thom isomorphisms and the splitting principle, we can restrict to

the case of a line bundle. Then we can even reduce to the “universal case” of the “universal”
line bundle over CP∞. In fact, we know that K(CP∞) = Z[[x]] for x the Euler class (in
K-theory) of the canonical line bundle: in other words, x corresponds to L−1 for L the class
of the canonical line bundle. The Thom space MU(1) = CP∞ is the same thing and the
Thom class is L− 1. The Thom isomorphism

K(CP∞) ' K̃(MU(1)) = K̃(CP∞)

is just multiplication by H − 1.
The Thom class is x = H − 1, as before. The completed (rational) cohomology ring is

Q[[y]] where y has degree two and c1(H) = y (so y is the Thom class in rational cohomology).
Applying the Chern character to the Thom class gives ey − 1, and then we have to divide by
y for the inverse Thom isomorphism.

We have the Adams operations ψk : K(X) → K(X) for any space X. In view of these,
and the complex orientation of K, we have:

Definition 6. The cannibalistic classes ρk(E) ∈ K(X) of a complex vector bundle E → X
are defined as ψk(uE)/uE ∈ K(X), for uE the Thom class.

So, in other words, we start with 1 ∈ K(X), apply the Thom isomorphism, apply ψk, and
apply the inverse to the Thom isomorphism. In view of the multiplicativity properties, we
have

ρk(E ⊕ E′) = ρk(E)ρk(E′).

We can describe the cannibalistic classes explicitly using the following formalism.

Example. ρk(L) = 1 + L+ L2 + · · ·+ Lk−1 when L is a line bundle.
To prove this, we may as well work with the universal line bundle H on CP∞. The Thom

space is, as before, MU(1) = CP∞ and the Thom class is H − 1 ∈ K̃(CP∞).
Now to compute ρk(H), we need to divide ψk(H − 1) by H − 1; this gives

Hk − 1

H − 1
= 1 +H + . . . Hk−1.

As an example, we can figure out the cannibalistic classes for the vector bundles on S2n.
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This example completely determines the characteristic class ρk, in view of the splitting
principle. Using it, and using the immediate consequence that ρk(n) = kn, we can define
the ρk as operations from K-theory to K-theory localized at k. In Adams’s blue book, it is
shown that the ρ2 of a stably almost complex manifold can be used to compute the signature
by evaluating on the fundamental class (this is the K-theoretic analog of the Hirzebruch
signature formula).

We have now theoretically figured out all we need to know about ρk, but to help things
out, we can obtain the Chern character of ρk. Let us make the observation that the Chern
character induces an isomorphism

Ch : K(X)⊗Q→ Heven(X;Q)

for X a finite complex. The corresponding operation to ψk is just multiplication by ki on
H2i.

Definition 7. We write ψkH for the operation in ordinary (even) cohomology which is just
multiplication by ki on H2i. As a result, we have a commutative diagram

K(X)

Ch
��

ψk

// K(X)

��
Heven(X;Q)

ψk
H // Heven(X;Q)

.

The vertical maps become isomorphisms after tensoring with Q.
The next result will be our basic computational tool.

Proposition 2. For a vector bundle E of dimension n, we have

(1) Chρk(E) = knψkH(Bh(E))/Bh(E)

for Bh(E) the Borel-Hirzebruch class of E.

Recall that the Borel-Hirzebruch class is the multiplicative characteristic class associated
to ex−1

x . This is the inverse of the usual terminology.

Proof. We need only verify the result for a line bundle; everything here sends direct sums in
E to products. Let x be the class in K-theory of a line bundle; then we have that ψk(x) = xk.
Let x = c1(x). We have

Chρk(E) = Ch(1 + x+ · · ·+ xk−1) = 1 + ex + e2x + · · ·+ e(k−1)x.

We have, on the other hand,

Bh(E) =
ex − 1

x
,

and since x has degree two,

ψkH(Bh(E)) =
ekx − 1

kx
.

If we combine these, we have

kψk(Bh(E))/Bh(E) =
ekx − 1

ex − 1
= 1 + ex + · · ·+ xk−1.

These are the same, now. �
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5. Bounding below the image of J

For simplicity, we will do what Adams does for complex K-theory rather than real K-theory.
In other words, we will consider the composite

K̃(X)→ K̃O(X)→ J(X)

and try to bound below the image by bounding above the kernel.
The key strategy is the observation that if a vector bundle is fiber-homotopically trivial,

then its cannibalistic classes are strongly restricted (just by looking at the definitions). Ap-
plying the previous computation, we’ll translate that into a statement on the Chern character.
This will give a strong (though off by a factor of two) bound on the image.

Proposition 3. If a vector bundle E is fiber-homotopically trivial, then

(2) ρk(E) = kdimE ψ
k(1 + y)

1 + y

for some y ∈ K̃(X).

This result is more complicated for real vector bundles because then one has to specify
exactly when the ρk can even be defined.

Proof. In fact, we have a homotopy equivalence of the Thom spaces

XE → XE′

where E′ is a trivial bundle. We will show that more generally, if E,E′ are any vector bundles,
and we have a fiberwise homotopy equivalence

φ : XE → XE′
,

then ρk(E) = ρk(E′)ψ
k(1+y)
1+y for some y ∈ K̃(X) (note that 1 + y is a unit). In fact, let’s

compare φ∗uE′ with uE ; clearly there is an element, which we see is of degree one by restricting
to fibers, 1 + y ∈ K(X), such that

φ∗uE′ = uE(1 + y).

Now we recall that
ρk(E) = ψk(uE)/uE ,

and consequently

ρk(E′) = ψk(uE′)/uE′ = ψk(φ∗uE′)/φ∗uE′ = (ψk(uE)/uE)ψk(1 + y)/(1 + y).

�

Combining this result with the previous one, we can get a criterion for when a bundle
is fiber homotopically trivial. As we have seen, the necessary condition is that ρk(E) =
kdimEψk(1 + y)/1 + y, for each k.

Henceforth, let us assume that we are working in a finite complex X such that K(X) is
torsion-free (this happens, e.g., if the cohomology of X is torsion-free). Let E be a complex
vector bundle which is fiber homotopically trivial. Let n = dimE. Thus, an equivalent

restatement is that E − n ∈ K̃(X) maps to zero in J(X). It follows that (if we cancel copies
of kn)

ψkH(Bh(E))/Bh(E) = ψkH(Ch(1 + y))/Ch(1 + y).

Then we have:
ψkH(Bh(E))/Bh(E) = ψkH(Ch(1 + y))/Ch(1 + y),
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and this gives
ψkH(Bh(E)/Ch(1 + y)) = Bh(E)/Ch(1 + y).

We are working in rational cohomology here, and the only fixed points of ψkH are the multiples
of 1. In fact, it follows that

Bh(E) = Ch(uE).

Corollary 1. If E is a stably-fiber-homotopically vector bundle, then

(3) Bh(E) = Ch(1 + y)

for some y ∈ K̃(X).

If we take logarithms (formally), we can write this in a form that makes more transparent
the relation with the Bernoulli numbers; it will imply integrality relations on the Borel-
Hirzebruch classes. The Bernoulli numbers were defined via

x

1− ex
=
∑ βsx

s

s!
, Bs := β2s.

We will just use the βs, though. We can see that

log

(
ex − 1

x

)
= −

∑
αt
xt

t!

where αt = βt/t, t > 1, by differentiation. It follows that if x ∈ K(X), then we have

(4) log(Bh(x)) = −
∞∑
t=1

αtCht(x)

if Cht(x) is the component of Ch(x) of degree 2t. Here the αt as previously.

Proof. Both are additive in x, so we reduce to the case of a line bundle. Then it is clear,

because Cht(x) = c1(x)t

t! and log(Bh(x)) = log ec1(x)−1
c1(x)

. �

Corollary 2. Let X be a space where all cup products are zero. Let E be a vector bundle

over X which is stably fiber-homotopically trivial; let x = E − dimE in K̃(X). Then there

is y ∈ K̃(X) such that
(−1)tαtCht(x) = Cht(1 + y),∀t.

Proof. In fact, we see this from (3) (the subtraction of a trivial bundle does nothing) by
taking logarithms; since all cup products are zero, we have log(1 + Ch(y)) = Ch(y). �

This puts fairly strong restrictions on what Cht(x) can be.
Let’s now say that t is an integer which is divisible by four. Consider the J-homomorphism

K̃(X)→ J(X);

we have seen that if x is in the kernel, then

αt/2Cht/2(x)

is in the image of Cht/2 (which is a monomorphism on K̃(St) = Z). In particular, x must be
divisible by the denominator of αt/2.

We have proved:

Corollary 3. If 4 | t, then J(S4t), or equivalently the image of πt−1(O) → πst−1, has image
a cyclic group of order divisible by the denominator of αt/2.

Since αu = 0 if u is odd, this is not very interesting for things not divisible by four.
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