
Cohomology groups of Lens spaces

Consider the scaling action of C∗ on Cn+1\{0} ' S2n+1, n ≥ 1. By identifying Z/q with the qth roots of

unity in C∗ we get an action of Z/q on S2n+1. We call the quotient L(n, q) a Lens Space. We allow n =∞.

The action of Z/q on S2n+1 is clearly free, so the quotient map is a covering map with deck group Z/q.
S2n+1 is simply connected so it is the universal cover of L(n, q). This tells us that π1L(n, q) = Z/q and all

higher homotopy groups agree with those of the sphere. In particular L(∞, q) = K(Z/q, 1).

Covering maps are fibrations so we have a fibration

Z/qZ // S2n+1

��

L(n, q)

At this point one is tempted to use the Serre spectral sequence and compute us some cohomology. Alas

L(n, q) is not simply connected. Instead we will write L(n, q) as the total space of a fibration.

Note that even after modding out by Z/q we still have a “leftover” action of S1/(Z/q) = S1 on L(n, q).

If we mod out by this action then we get S2n+1/S1 = CPn:

S1 // L(n, q) // CPn

Now S2n+1 → CPn is a locally trivial fiber bundle with fiber S1 - locally it looks like S1×U → U . But then

L(n, q) → CPn locally looks like S1/(Z/q) × U → U . By Hurwitz’s theorem, L(n, q) → CPn is a fibration

with fiber S1. This time the base space is simply connected so we get a spectral sequence

Ep,q
2 = Hp(CPn, Hq(S1,Z))→ Hp+q(L(n, q),Z)

The E2 page looks like

0 0 0 0 0

H0(CPn, H1(S1,Z)) 0 H2(CPn, H1(S1,Z)) 0 . . . H2n(CPn, H1(S1,Z)) 0

H0(CPn, H0(S1,Z)) 0 H2(CPn, H0(S1,Z)) 0 . . . H2n(CPn, H0(S1,Z)) 0

where the point is that all other entries are zero. In other words it looks like

0 0 0 0 0 0 0 0

Z 0 Z 0 Z . . . Z 0 0

Z 0 Z 0 Z . . . Z 0 0

Because of the positioning of the nonzero entries, all differentials on pages 3 and higher are zero. So E3 = E∞.

Now we claim that d2 is multiplication by q. Recall that H1(L,Z) = Z/q. By the universal coefficient

theorem so is H2(L,Z). Let x be a generator of Z = H0(CPn, H1(S1,Z)) and y be a generator of Z =

H2(CPn, H0(S1,Z)). Considering the second diagonal of the E∞ = E3 page we see that the image of the

map d2 : E0,2
2 → E1,0

2 is qZ, so d2(x) = qy - multiplication by q. d2 is a differential with respect to the

cup product, so d2(xy) = d2(x)y + xd2(y) = qy2. Using the Kunneth formula we know the cup product
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structure on H∗(CPn, H0(S1,Z)), and this tells us that y2 is in fact the generator of H4(CPn, H0(S1,Z)).

Continuing in this fashion we fnd that all the d2 maps are multiplication by q, except for the last map

H2n(CPn, H1(S1,Z))→ H2n+2(CPn, H0(S1,Z)) which is necessarily zero.

Therefore the E3 page is concentrated in the bottom row except for one entry in the top (first) row. The

extension problem for going from E∞ to the cohomology of the total space is vacuous here, and we conclude

Hi(L(n, q),Z) =


Z i = 0

Z/qZ i = 2j, j ≤ n
Z i = 2n+ 1

0 otherwise

These formulas work for n =∞ as well, interpreted in the obvious way.

Computation of πn+1(S
n)

Let X be a CW complex and n be a natural number. By adding cells of dimension at least n+2 to X we can

kill off all πi(X) for i > n, and by CW approximation this will have no effect on πi(X) for i ≤ n. In this way

we get a space Yn with an inclusion X ↪→ Yn inducing an isomorphism on πi for i ≤ n, and with πi(Yn) = 0

for i > n. By adding even more cells of dimension at least n + 1 we get a space Yn−1 satisfying similar

conditions. Further, we can assume that the inclusion Yn ↪→ Yn−1 is a fibration. By the long exact sequence

of fundamental groups associated to a fibration, the fiber of this fibration is a K(πn(X), n). Summarizing

the the above discussion, we get:

Lemma 1. Let X be a CW complex. Then for any n there exists a fibration π : Yn → Yn−1 of CW complexes

with fiber K(πn(X), n), such that πi(Yn−1) = πi(X) for i ≤ n − 1 and πi(Yn−1) = 0 for i ≥ n. Finally, Yn
(is homotopic to a CW complex that) differs from X only by cells of dimensino ≥ n+ 2.

The main result of this section is:

Theorem 1. π4(S3) = Z/2

Proof. Apply the construction above in the case n = 4, X = S3, obtaining a fibration Y4 → Y3 with fiber

F = K(π4(S3), 4). Note that to get Y3 we killed off all higher homotopy groups of S3, so Y3 = K(Z, 3). By

the Hurewicz theorem,

Hq(Y3,Z) =


0 q = 1, 2

Z q = 3

? q > 3

Hq(F,Z) =


0 q = 1, 2, 3

π4(S3) q = 4

? q > 4
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Now consider the homology spectral sequence for the fibration F ↪→ Y4 → Y3. The E2 page looks like

π4(S3) ? ? . . .

0 0 0 0 . . .

0 0 0 0 . . .

0 0 0 0 . . .

Z 0 0 H5(K(Z, 3),Z)

d5

__

. . .

Note that

Y4 = S3 ∪ (cells of dimension ≥ 6),

hence H4(Y4) = 0 = H5(Y4). Thus all entries on the fourth and fifth diagonals of E∞ are zero. The only

differential that can affect π4(S3) is d5 : H5(K(Z, 3),Z) → π4(S3), and by the previous remark, this map

has to be an isomorphism. Hence

π4(S3) ∼= H5(K(Z, 3),Z).

By the cohomology spectral squence of the path fibration for K(Z, 3), one easily obtains

TorH6(K(Z, 3)) = Z/2, F reeH5(K(Z, 3)) = 0,

hence H5(K(Z, 3)) = Z/2.

Corollary 1. π4(S2) = Z/2

Proof. Apply the above calculation to the long exact sequence of homotopy groups for the Hopf fibration.

Theorem 2. (Serre) For n ≥ 3, πn+1(Sn) ∼= Z/2.

Proof. Follows from π4(S3) = Z/2 and the suspension theorem.

Whitehead Towers

Let X be a connected CW complex.

Definition. A Whitehead tower of X is a sequence of fibrations . . . → Xn → Xn−1 → . . . → X0 = X,

such that

1. Xn is n-connected

2. πq(Xn) = πq(X) for q ≥ n+ 1

3. the fiber of Xn → Xn−1 is a K(πn, n− 1)

Up to homotopy this may be viewed as a generalization of the universal cover construction: X1 is a

1-connected space whose higher homtopy groups agree with those of X. The fiber of X1 → X0 is a K(π1, 0),

so it is (up to homotopy) a discrete space on |π1| many points.
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Lemma 2. For X a CW complex, Whitehead towers exist.

Proof. We construct Xn inductively. Suppose that Xn−1 has already been defined. Add cells to Xn−1 to kill

off πq(Xn−1) for q ≥ n+ 1. So we get a space Y which, by induction, is a K(πn, n). Now define the space

Xn := {f : I → Y, f(o) = ∗, f(1) ∈ Xn−1}

consisting of of paths in Y beginning at a basepoint ∗ ∈ Xn−1 and ending somewhere in Xn−1. Give it the

compact-open topology. Then the map π : Xn → Xn−1 defined by γ → γ(1) is a fibration.

Note that the fiber of π is just ΩY = K(πn, n− 1). In particular it is a K(πn, n− 1). Now consider the

long exact sequence of homotopy groups associated to the fibration:

. . . πi+1(Xn−1)→ πi(ΩY )→ πi(Xn)→ πi(Xn−1)→ . . .

For i < n− 1, and for i > n get that πi(Xn) = πi(Xn−1) = πi. The interesting part is

πn(ΩY )→ πn(Xn)→ πn(Xn−1)→ πn−1(ΩY )→ πn−1(Xn)→ πn−1(Xn−1)

or,

0→ πn(Xn)→ πn → πn → πn−1(Xn)→ 0

If we can show that the map πn → πn in the middle, i.e. the boundary map πn(Xn−1) → πn−1(ΩY ), is an

isomorphism, then we are done.

Note that we have an isomorphism πn(Xn−1) → πn−1(ΩY ) by taking the map [Sn, Xn−1] → [Sn, Y ]

induced by the inclusion (which is an isomorphism by construction of Y ) and following it with the natural

isomorphism [Sn, Y ] ∼= [Sn−1,ΩY ]. In fact the resulting map πn(Xn−1) → πn−1(ΩY ) is precisely the

boundary map from the long exact sequence above. Think about the definition of the boundary map. Recall

that for α : (In, ∂In)→ (Xn−1, x0) we use the lifting property of the fibration to get a map α′ : (In, ∂In)→
(Xn,ΩY ) and then restrict to get Sn−1 = ∂In → ΩY . In our case we can choose an explicit lift α′.

Namely send ~v ∈ In to the path t → α(t~v). Restricted to ∂In this is just the map we get from the natural

isomorphism.

Calculation of π4(S
3) and π5(S

3)

Let us consider the Whitehead tower for X = S3. S3 is 2-connected so (in the notation from the definition

of Whitehead towers) X = X1 = X2. Let πi := πi(X). We have fibrations

K(π4, 3) // X4

��

K(π3, 2) // X3

��

S3

Note that π3 = Z so K(π3, 2) = CP∞. Moreover, we have by definition and Hurewicz that :

π5(S3) ∼= π5(X4) ∼= H5(X4)

π4(S3) ∼= π4(X3) ∼= H4(X3)

Now consider the cohomology spectral sequence for the bottom fibration,

Ep,q
2 = Hp(S3, Hq(CP∞,Z))→ Hp+q(X3,Z)
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The E2 page looks like

...
...

...
...

...

H0(S3, H4(CP∞,Z) 0 0 H3(S3, H4(CP∞,Z)) 0 . . .

0 0 0 0 0 . . .

H0(S3, H2(CP∞,Z) 0 0 H3(S3, H2(CP∞,Z)) 0 . . .

0 0 0 0 0 . . .

H0(S3, H0(CP∞,Z) 0 0 H3(S3, H0(CP∞,Z)) 0 . . .

Thus d2 = 0, so E2 = E3. In addition, for r ≥ 4, dr = 0. So E4 = E∞. X3 is 3-connected so (by

Hurewicz) all entries on the 2nd and 3rd diagonals of E4 are 0. In particular, d3 : H0(S3, H2(CP∞,Z) →
H3(S3, H0(CP∞,Z)) must be an isomorphism. By the Kunneth formula, both of these groups are isomorphic

to Z. Let x be a generator of the former and u be a generator of the latter, so d3(x) = u. From what we

know of CP∞, xn generates H0(S3, H2n(CP∞,Z). By the Leibnitz rule, d3x
n = nxn−1dx = nxn−1u. This

tells us exactly what the E4 page is like, and we get

H3(X3,Z) = 0

H4(X3,Z) = 0

H5(X3,Z) = Z/2
H6(X3,Z) = 0

H7(X3,Z) = Z/3
H8(X3,Z) = 0

H9(X3,Z) = Z/4
...

...

By the universal coefficient theorem,
H3(X3,Z) = 0

H4(X3,Z) = Z/2
H5(X3,Z) = 0

H6(X3,Z) = Z/3
H7(X3,Z) = 0

H8(X3,Z) = Z/4
...

...

In particular, π4 = H4(X3) = Z/2.

In order to get the next homotopy group, we use the homology spectral sequence for the top fibration.

Note that (by Hurewicz) Hi(K(π4, 3),Z) is zero for i < 3 and H3(K(π4, 3),Z) = π4 = Z/2. Thus the E2
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page of the homology spectral sequence looks like

...
...

...
...

...

H0(X3, H5(K(π4, 3),Z)) 0 0 0

? 0 0 0

H0(X3, H3(K(π4, 3),Z)) ∼= Z/2 0 0 0 H4(X3, H
3(K(π4, 3),Z)) 0 . . .

0 0 0 0 0 0 0

0 0 0 0 0 0 0

H0(X3,Z) ∼= Z 0 0 0 H4(X3,Z) ∼= Z/2 0 Z/3

On the portion of the spectral sequence shown in the diagram above, E2 = E4. Further, we know that all

entries on diagonals 3 and 4 at E∞ are zero. Therefore the map d4 : H4(X3,Z)→ H0(X3, H
3(K(π4, 3),Z))

must be an isomorphism. But the former group is Z/2 and the latter group is H3(K(π4, 3),Z) ∼= π4. So we

get back π4 = Z/2.

Moreover, by a spectral sequence argument on the path fibration ofK(Z/2, 3), we obtain: H5(K(Z/2, 3)) =

Z/2. Note also that E2
0,5
∼= Z/2, and this entry can only be affected by d6 : E6

6,0
∼= Z/3→ E6

0,5 = E2
0,5
∼= Z/2,

which is the zero map, so E∞0,5 = Z/2. Thus, on the fifth diagonal of E∞, all entries are zero except

E∞0,5 = Z/2, which yields H5(X4) = Z/2, i.e., π5(S3) = Z/2.
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