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Introduction

This volume began with Bob Piacenza’s suggestion that I be the principal lecturer
at an NSF/CBMS Regional Conference in Fairbanks, Alaska. That event took
place in August of 1993, and the interim has seen very substantial progress in this
general area of mathematics. The scope of this volume has grown accordingly.

The original focus was an introduction to equivariant algebraic topology, to sta-
ble homotopy theory, and to equivariant stable homotopy theory that was geared
towards graduate students with a reasonably good understanding of nonequivari-
ant algebraic topology. More recent material is changing the direction of the last
two subjects by allowing the introduction of point-set topological algebra into sta-
ble homotopy theory, both equivariant and non-equivariant, and the last portion
of the book focuses on an introduction to these new developments. There is a
progression, with the later portions of the book on the whole being more difficult
than the earlier portions.

Equivariant algebraic topology concerns the study of algebraic invariants of
spaces with group actions. The first two chapters introduce the basic structural
foundations of the subject: cellular theory, ordinary homology and cohomology
theory, Eilenberg-Mac Lane G-spaces, Postnikov systems, localizations of G-spaces
and completions of G-spaces. In most of this work, G can be any topological group,
but we restrict attention to compact Lie groups in the rest of the book.

Chapter III, on equivariant rational homotopy theory, was written by Georgia
Triantafillou. 1In it, she shows how to generalize Sullivan’s theory of minimal
models to obtain an algebraization of the homotopy category of (nilpotent) G-
spaces for a finite group (. This chapter contains a first surprise: rational Hopf

Gi-spaces need not split as products of Filenberg-Mac Lane G-spaces. This is a hint

1



2 INTRODUCTION

that the calculational behavior of equivariant algebraic topology is more intricate

and difficult to determine than that of the classical nonequivariant theory.

Chapter IV gives two proofs of the first main theorem of equivariant algebraic
topology, which goes under the name of “Smith theory”: any fixed point space
of an action of a finite p-group on a mod p homology sphere is again a mod p
homology sphere. One proof uses ordinary (or Bredon) equivariant cohomology
and the other uses a general localization theorem in classical (or Borel) equivariant

cohomology.

Parts of equivariant theory require a good deal of categorical bookkeeping, for
example to keep track of fixed point data and to construct new G-spaces from
diagrams of potential fixed point spaces. Some of the relevant background, such
as geometric realization of simplicial spaces and the construction of homotopy
colimits, is central to all of algebraic topology. These matters are dealt with
in Chapter V, where Eilenberg-Mac Lane G-spaces and universal .#-spaces for
families .# of subgroups of a given group (' are constructed. Special cases of
such universal .Z-spaces are used in Chapter VII to study the classification of

equivariant bundles.

A different perspective on these matters is given in Chapter VI, which was writ-
ten by Bob Piacenza. It deals with the general theory of diagrams of topological
spaces, showing how to mimic classical homotopy and homology theory in cat-
egories of diagrams of topological spaces. In particular, Piacenza constructs a
Quillen (closed) model category structure on any such category of diagrams and
shows how these ideas lead to another way of passing from diagrams of fixed point

spaces to their homotopical realization by G-spaces.

Chapter VIII combines equivariant ideas with the use of new tools in nonequiv-
ariant algebraic topology, notably Lannes’ functor 7" in the context of unstable
modules and algebras over the Steenrod algebra, to describe one of the most beau-
tiful recent developments in algebraic topology, namely the Sullivan conjecture
and its applications. While many mathematicians have contributed to this area,
the main theorems are due to Haynes Miller, Gunnar Carlsson, and Jean Lannes.
Although the set [X, Y] of homotopy classes of based maps from a space X to a
space Y is trivial to define, it is usually enormously difficult to compute. The Sulli-
van conjecture, in its simplest form, asserts that [BG, X] = 0 if GG is a finite group
and X is a finite CW complex. It admits substantial generalizations which lead

to much more interesting calculations, for example of the set of maps [BG, BH]
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for suitable compact Lie groups G and H. We shall see that an understanding
of equivariant classifying spaces sheds light on what these calculations are really
saying. There is already a large literature in this area, and we can only give an in-
troduction. One theme is that the Sullivan conjecture can be viewed conceptually
as a calculational elaboration of Smith theory. A starting point of this approach
lies in work of Bill Dwyer and Clarence Wilkerson, which first exploited the study
of modules over the Steenrod algebra in the context of the localization theorem in
Smith theory.

We begin the study of equivariant stable homotopy theory in Chapter IX, which
gives a brief introduction of some of the main ideas. The chapter culminates with
a quick conceptual proof of a conjecture of Conner: if G is a compact Lie group
and X is a finite dimensional G-CW complex with finitely many orbit types such
that H(X;Z) =0, then H(X/G;7Z)=0. This concrete statement is a direct con-
sequence of the seemingly esoteric assertion that ordinary equivariant cohomology
with coefficients in a Mackey functor extends to a cohomology theory graded on
the real representation ring RO((); this means that there are suspension isomor-
phisms with respect to the based spheres associated to all representations, not just
trivial ones. In fact, the interplay between homotopy theory and representation

theory pervades equivariant stable homotopy theory.

One manifestation of this appears in Chapter X, which was written by Stefan
Waner. It explains a variant theory of G-CW complexes defined in terms of repre-
sentations and uses the theory to construct the required ordinary RO(G)-graded
cohomology theories with coefficients in Mackey functors by means of appropriate

cellular cochain complexes.

Another manifestation appears in Chapter XI, which was written by Gaunce
Lewis and which explains equivariant versions of the Hurewicz and Freudenthal
suspension theorems. The algebraic transition from unstable to stable phenom-
ena is gradual rather than all at once. Nonequivariantly, the homotopy groups
of first loop spaces are already Abelian groups, as are stable homotopy groups.
Equivariantly, stable homotopy groups are modules over the Burnside ring, but
the homotopy groups of Vth loop spaces for a representation V' are only mod-
ules over a partial Burnside ring determined by V. The precise form of Lewis’s

equivariant suspension theorem reflects this algebraic fact.

Serious work in both equivariant and nonequivariant stable homotopy theory

requires a good category of “stable spaces”, called spectra, in which to work.



4 INTRODUCTION

There is a great deal of literature on this subject. The original construction of the
nonequivariant stable homotopy category was due to Mike Boardman. One must
make a sharp distinction between the stable homotopy category, which is fixed
and unique up to equivalence, and any particular point-set level construction of
it. In fact, there are quite a few constructions in the literature. However, only one
of them is known to generalize to the equivariant context, and that is also the one
that is the basis for the new development of point-set topological algebra in stable
homotopy theory. We give an intuitive introduction to this category in Chapter
XII, beginning nonequivariantly and focusing on the construction of smash prod-
ucts and function spectra since that is the main technical issue. We switch to
the equivariant case to explain homotopy groups, the suspension isomorphism for
representation spheres, and the theory of G-CW spectra. We also explain how to
transform the spectra that occur “in nature” to the idealized spectra that are the

objects of the stable homotopy category.

In Chapters XIII, XIV, and XV, we introduce the most important RO(G')-
graded cohomology theories and describe the G-spectra that represent them. We
begin with an axiomatic account of exactly what RO(G)-graded homology and
cohomology theories are and a proof that all such theories are representable by G-
spectra. We also discuss ring G-spectra and products in homology and cohomology
theories. We show how to construct Eilenberg-Mac Lane G-spectra by representing
the zeroth term of a Z-graded cohomology theory defined by means of G-spectrum
level cochains. This implies an alternative construction of ordinary RO(G')-graded

cohomology theories with coefficients in Mackey functors.

Chapter XIV, which was written by John Greenlees, gives an introduction to
equivariant K -theory. The focus is on equivariant Bott periodicity and its use to
prove the Atiyah-Segal completion theorem. That theorem states that, for any
compact Lie group G, the nonequivariant K-theory of the classifying space BG' is
isomorphic to the completion of the representation ring R((7) at its augmentation
ideal I. The result is of considerable importance in the applications of K-theory,

and it 1s the prototype for a number of analogous results to be described later.

Chapter XV, which was written by Steve Costenoble, gives an introduction to
equivariant cobordism. The essential new feature is that transversality fails in gen-
eral, so that geometric equivariant bordism is not same as stable (or homotopical)
bordism; the latter is the theory represented by the most natural equivariant gen-

eralization of the nonequivariant Thom spectrum. Costenoble also explains the
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use of adjacent families of subgroups to reduce the calculation of equivariant bor-
dism to suitably related nonequivariant calculations. The equivariant results are
considerably more intricate than the nonequivariant ones. While the G-spectra
that represent unoriented geometric bordism and its stable analog split as prod-
ucts of Eilenberg Mac Lane G-spectra for finite groups of odd order, just as in the

nonequivariant case, this is false for the cyclic group of order 2.

Chapters XVI-XIX describe the basic machinery and results on which all work
in equivariant stable homotopy theory depends. Chapter XVI describes fixed point
and orbit spectra, shows how to relate equivariant and nonequivariant homology
and cohomology theories, and, more generally, shows how to relate homology and
cohomology theories defined for a group GG to homology and cohomology theories
defined for subgroups and quotient groups of G. These results about change of
groups are closely related to duality theory, and we give basic information about

equivariant Spanier-Whitehead, Atiyah, and Poincaré duality.
In Chapter XVII, we discuss the Burnside ring A(G'). When G is finite, A(G) is

the Grothendieck ring associated to the semi-ring of finite G-sets. For any compact
Lie group (¢, A(() is isomorphic to the zeroth equivariant stable homotopy group
of spheres. It therefore acts on the equivariant homotopy groups 7(X) = 7, (X%)
of any G-spectrum X, and this implies that it acts on all homology and cohomology
groups of any G-spectrum. Information about the algebraic structure of A(G)
leads to information about the entire stable homotopy category of G-spectra. It
turns out that A(G) has Krull dimension one and an easily analyzed prime ideal
spectrum, making it quite a tractable ring. Algebraic analysis of localizations of
A(G) leads to analysis of localizations of equivariant homology and cohomology
theories. For example, for a finite group G, the localization of any theory at a

prime p can be calculated in terms of subquotient p-groups of G.

In Chapter XVIII, we construct transfer maps, which are basic calculational
tools in equivariant and nonequivariant bundle theory, and describe their basic
properties. Special cases were vital to the earlier discussion of change of groups.
The deepest property is the double coset formula, and we say a little about its
applications to the study of the cohomology of classifying spaces.

In Chapter XIX, we discuss several fundamental splitting theorems in equiv-
ariant stable homotopy theory. These describe the equivariant stable homotopy
groups of (G-spaces in terms of nonequivariant homotopy groups of fixed point

spaces. These theorems lead to an analysis of the structure of the subcategory
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of the stable category whose objects are the suspension spectra of orbit spaces.
A Mackey functor is an additive contravariant functor from this subcategory to
Abelian groups, and, when ' is finite, the analysis leads to a proof that this
topological definition of Mackey functors is equivalent to an earlier and simpler al-
gebraic definition. Mackey functors describe the algebraic structure that is present
on the system of homotopy groups 72(X) = 7,(X¥) of a G-spectrum X, where
H runs over the subgroups of . The action of the Burnside ring on 7&(X) is
part of this structure. It is often more natural to study such systems than to focus
on the individual groups. In particular, we describe algebraic induction theorems
that often allow one to calculate the value of a Mackey functor on the orbit G/
from its values on the orbits GG/H for certain subgroups H. Such theorems have
applications in various branches of mathematics in which finite group actions ap-
pear. Again, algebraic analysis of rational Mackey functors shows that, when G is
finite, rational G-spectra split as products of Eilenberg-Mac Lane G-spectra. This

is false for general compact Lie groups G.

In Chapter XX, we turn to another of the most beautiful recent developments
in algebraic topology: the Segal conjecture and its applications. The Segal con-
jecture can be viewed either as a stable analogue of the Sullivan conjecture or
as the analogue in equivariant stable cohomotopy of the Atiyah-Segal completion
theorem in equivariant K-theory. The original conjecture, which is just a fragment
of the full result, asserts that, for a finite group G, the zeroth stable cohomotopy
group of the classifying space BG is isomorphic to the completion of A(G) at its
augmentation ideal /. The key step in the proof of the Segal conjecture is due
to Gunnar Carlsson. We explain the proof and also explain a number of general-
izations of the result. One of these leads to a complete algebraic determination
of the group of homotopy classes of stable maps between the classifying spaces
of any two finite groups. This is analogous to the role of the Sullivan conjecture
in the study of ordinary homotopy classes of maps between classifying spaces.
Use of equivariant classifying spaces is much more essential here. In fact, the Se-
gal conjecture is intrinsically a result about the [-adic completion of the sphere
Gi-spectrum, and the application to maps between classifying spaces depends on
a generalization in which the sphere G-spectrum is replaced by the suspension

Gi-spectra of equivariant classifying spaces.

Chapter XXTis an exposition of joint work of John Greenlees and myselfin which

we generalize the classical Tate cohomology of finite groups and the periodic cyclic
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cohomology of the circle group to obtain a Tate cohomology theory associated to
any given cohomology theory on (G-spectra, for any compact Lie group G. This
work has had a variety of applications, most strikingly to the computation of the
topological cyclic homology and thus to the algebraic K-theory of number rings.
While we shall not get into that application here, we shall describe the general
Atiyah-Hirzebruch-Tate spectral sequences that are used in that work and we shall
give a number of other applications and calculations. For example, we shall explain
a complete calculation of the Tate theory associated to the equivariant K -theory
of any finite group. This is an active area of research, and some of what we say
at the end of this chapter is rather speculative. The Tate theory provides some of
the most striking examples of equivariant phenomena illuminating nonequivariant
phenomena, and it leads to interrelationships between the stable homotopy groups
of spheres and the Tate cohomology of finite groups that have only begun to be

explored.

Chapters XXII through XXV concern “brave new algebra”, the study of point-
set level topological algebra in stable homotopy theory. The desirability of such
a theory was advertised by Waldhausen under the rubric of “brave new rings”,
hence the term “brave new algebra” for the new subject. Its starting point is the
construction of a new category of spectra, the category of “S-modules”, that has a
smash product that is symmetric monoidal (associative, commutative, and unital
up to coherent natural isomorphisms) on the point-set level. The construction is
joint work of Tony Elmendorf, Igor Kriz, Mike Mandell, and myself, and it changes
the nature of stable homotopy theory. Ever since its beginnings with Adams’ use
of stable homotopy theory to solve the Hopf invariant one problem some thirty-
five years ago, most work in the field has been carried out working only “up to
homotopy”; formally, this means that one is working in the stable homotopy cat-
egory. For example, classically, the product on a ring spectrum is defined only up
to homotopy and can be expected to be associative and commutative only up to
homotopy. In the new theory, we have rings with well-defined point-set level prod-
ucts, and they can be expected to be strictly associative and commutative. In the
associative case, we call these “S-algebras”. The new theory permits constructions
that have long been desired, but that have seemed to be out of reach technically:
simple constructions of many of the most basic spectra in current use in algebraic
topology; simple constructions of generalized universal coefficient, Kiinneth, and

other spectral sequences; a conceptual and structured approach to Bousfield local-
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izations of spectra, a generalized construction of topological Hochschild homology
and of spectral sequences for its computation; a simultaneous generalization of the
algebraic K -theory of rings and of spaces; etc. Working nonequivariantly, we shall
describe the properties of the category of S-modules and shall sketch all but the
last of the cited applications in Chapter XXII.

We return to the equivariant world in Chapter XXIII, which was written jointly
with Elmendorf and Lewis, and sketch how the construction of the category of
Sg-modules works. Here S¢ denotes the sphere G-spectrum. The starting point
of the construction is the “twisted half smash product”, which is a spectrum level
generalization of the half-smash product X x Y = X; AY of an unbased G-
space X and a based G-space Y and is perhaps the most basic construction in
equivariant stable homotopy theory. Taking X to be a certain G-space .Z(j) of
linear isometries, one obtains a fattened version .Z(j) x Ey A --- A E; of the j-
fold smash product of G-spectra. Taking 7 = 2. insisting that the F; have extra
structure given by maps .2 (1)x E; — FE;, and quotienting out some of the fat, one
obtains a commutative and associative smash product of G-spectra with actions
by the monoid .Z(1); a little adjustment adds in the unit condition and gives the
category of Sg-modules. The theory had its origins in the notion of an F., ring
spectrum introduced by Quinn, Ray, and myself over twenty years ago. Such rings
were defined in terms of “operad actions” given by maps £ (j) x £/ — E, where
EJ is the j-fold smash power of F, and it turns out that such rings are virtually
the same as our new commutative Sg-algebras. The new theory makes the earlier
notion much more algebraically tractable, while the older theory gives the basic

examples to which the new theory can be applied.

In Chapter XXIV, which was written jointly with Greenlees, we give a series of
algebraic definitions, together with their brave new algebra counterparts, and we
show how these notions lead to a general approach to localization and completion
theorems in equivariant stable homotopy theory. We shall see that Grothendieck’s
local cohomology groups are relevant to the study of localization theorems in
equivariant homology and that analogs called local homology groups are relevant
to the study of completion theorems in equivariant cohomology. We use these
constructions to prove a general localization theorem for suitable commutative
Sg-algebras Rg. Taking R to be the underlying S-algebra of R and taking
M to be the underlying R-module of an Rg-module Mg, the theorem implies
both a localization theorem for the computation of M,(BG) in terms of M (pt)
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and a completion theorem for the computation of M*(BG) in terms of Mg (pt).
Of course, this is reminiscent of the Atiyah-Segal completion for equivariant K-
theory and the Segal conjecture for equivariant cobordism. The general theorem
does apply to K-theory, giving a very clean description of K.(B®), but it does
not apply to cohomotopy: there the completion theorem for cohomology is true

but the localization theorem for homology is false.

We are particularly interested in stable equivariant complex bordism, repre-
sented by MUg, and modules over it. We explain in Chapter XXII how simple it
is to construct all of the usual examples of M U-module spectra in the homotopical
sense, such as Morava K -theory and Brown-Peterson spectra, as brave new point-
set level MU-modules. We show in Chapter XXIII how to construct equivariant
versions Mg as brave new MUg-modules of all such MU-modules M, where G
is any compact Lie group. We would like to apply the localization theorem of
Chapter XXIV to MUg and its module spectra, but its algebraic hypotheses are
not satisfied. Nevertheless, as Greenlees and I explain in chapter XXV, the lo-
calization theorem is in fact true for MUg when  is finite or a finite extension
of a torus. The proof involves the construction of a multiplicative norm map in
MU, together with a double coset formula for its computation. This depends on
the fact that MUg can be constructed in a particularly nice way, codified in the

notion of a “global .Z -functor with smash product”, as a functor of G.

These results refocus attention on stable equivariant complex bordism, whose
study lapsed in the early 1970’s. In fact, some of the most significant calculational
results obtained then were never fully documented in the literature. In Chapter
XXVI, which was written by Gustavo Comezana, new and complete proofs of these
results are presented, along with results on the relationship between geometric
and stable equivariant complex cobordism. In particular, when G is a compact
Abelian Lie group, Comezana proves that MUS is a free MU,-module on even

degree generators.

In Chapter XXVI, and in a few places earlier on, complete proofs are given
either because we feel that the material is inadequately treated in the published
literature or because we have added new material. However, most of the material
in the book is known and has been treated in full detail elsewhere. Our goal
has been to present what is known in a form that is more readily accessible and
assimilable, with emphasis on the main ideas and the structure of the theory and

with pointers to where full details and further developments can be found.
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Most sections have their own brief bibliographies at the end; thus, if an author’s
work is referred to in a section, the appropriate reference is given at the end of that
section. There is also a general bibliography but, since it has over 200 items, I felt
that easily found local references would be more helpful. With a few exceptions,
the general bibliography is restricted to items actually referred to in the text,
and it makes no claim to completeness. A full list of relevant and interesting
papers would easily double the number of entries. I offer my apologies to authors
not cited who should have been. Inevitably, the choice of topics and of material
within topics has had to be very selective and idiosyncratic.

There are some general references that should be cited here (reminders of their
abbreviated names will be given where they are first used). Starting with Chapter
XII, references to [LMS] (= [133]) are to
L.G. Lewis, J.P. May, and M. Steinberger (with contributions by J.E. McClure). Equivariant
stable homotopy theory. Springer Lecture Notes in Mathematics Vol. 1213. 1986.

Most of the material in Chapter XII and in the five chapters XV-XIX is based
on joint work of Gaunce Lewis and myself that is presented in perhaps excruciating
detail in that rather encyclopedic volume. There are also abbreviated references
in force in particular chapters: [L1]-[L3] = [128, 129, 130] in Chapter XI and [tD]
= [55] in Chapter XVII.

The basic reference for the proofs of the claims in Chapters XXII and XXIII is
[EKMM] A. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Rings, modules, and algebras in
stable homotopy theory. Preprint, 1995.

We shall also refer to the connected sequence of expository papers [73, 88, 89]
[EKMM’] A. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Modern foundations for stable
homotopy theory.

[GM1] J. P. C. Greenlees and J. P. May. Completions in algebra and topology.
[GM2] J. P. C. Greenlees and J. P. May. Equivariant stable homotopy theory.

These are all in the “Handbook of Algebraic Topology”, edited by loan James,
that came out in 1995. While these have considerable overlap with Chapters XXII
through XXIV, we have varied the perspective and emphasis, and each exposition
includes a good deal of material that is not discussed in the other. In particular,
we point to the application of brave new algebra to chromatic periodicity in [GM1]:
the ideas there have yet to be fully exploited and are not discussed here.

In view of the broad and disparate range of topics, we have tried very hard to
make the chapters, and often even the sections, independent of one another. We

have also broken the material into short and hopefully manageable chunks; only
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a few sections are as long as five pages, and all chapters are less than twenty-five
pages long. Very few readers are likely to wish to read straight through, and the
reader should be unafraid to jump directly to what he or she finds of interest.
The reader should also be unintimidated by finding that he or she has insufficient
background to feel comfortable with particular sections or chapters. Unfortunately,
the subject of algebraic topology is particularly badly served by its textbooks. For
example, none of them even mentions localizations and completions of spaces,
although those have been standard tools since the early 1970’s. We have tried to
include enough background to give the basic ideas. Modern algebraic topology is
a thriving subject, and perhaps jumping right in and having a look at some of its
more recent directions may give a better perspective than trying to start at the
beginning and work one’s way up.

As the reader will have gathered, this book is a cooperative enterprise. Perhaps
this is the right place to try to express just how enormously grateful I am to all
of my friends, collaborators, and students. This book owes everything to our joint
efforts over many years. When planning the Alaska conference, I invited some of
my friends and collaborators to give talks that would mesh with mine and help
give a reasonably coherent overview of the subject. Most of the speakers wrote up
their talks and gave me license to edit them to fit into the framework of the book.
Since TeX is refractory about listing authors inside a Table of Contents, I will here

list those chapters that are written either solely by other authors or jointly with me.

Chapter III. Equivariant rational homotopy theory
by Georgia Triantafillou
Chapter VI. The homotopy theory of diagrams
by Robert Piacenza
Chapter X. G-CW(V') complexes and RO(G)-graded cohomology
by Stefan Waner
Chapter XI. The equivariant Hurewicz and suspension theorems
by L. G. Lewis Jr.
Chapter XIV. An introduction to equivariant K-theory
by J. P. C. Greenlees

Chapter XV. An introduction to equivariant cobordism
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by Steven Costenoble
Chapter XXI. Generalized Tate cohomology
by J. P. C. Greenlees and J. P. May
Chapter XXIII. Brave new equivariant foundations
by A. D. Elmendorf, L. G. Lewis Jr., and J. P. May
Chapter XXIV. Brave new equivariant algebra
by J. P. C. Greenlees and J. P. May
Chapter XXV. Localization and completion in complex cobordism
by J. P. C. Greenlees and J. P. May
Chapter XXVI. Some calculations in complex equivariant bordism
by Gustavo Costenoble
My deepest thanks to these people and to Stetan Jackowski and Chun-Nip Lee,

who also gave talks; their topics were the subjects of their recent excellent survey
papers [107] and [125] and were therefore not written up for inclusion here. I would
also like to thank Jim McClure, whose many insights in this area are reflected
throughout the book, and Igor Kriz, whose collaboration over the last six years has
greatly influenced the more recent material. I would also like to thank my current
students at Chicago — Maria Basterra, Mike Cole, Dan Isaksen, Mike Mandell,
Adam Przezdziecki, Laura Scull, and Jerome Wolbert — who have helped catch
many soft spots of exposition and have already made significant contributions to
this general area of mathematics.

It is an especial pleasure to thank Bob Piacenza and his wife Lyric Ozburn for
organizing the Alaska conference and making it a memorably pleasant occasion for
all concerned. Thanks to their thoughtful arrangements, the intense all day math-
ematical activity took place in a wondertully convivial and congenial atmosphere.
Finally, my thanks to all of those who attended the conference and helped make

the week such a pleasant mathematical occasion: thanks for bearing with me.

J. Peter May

December 31, 1995



CHAPTER I

Equivariant Cellular and Homology Theory

1. Some basic definitions and adjunctions

The objects of study in equivariant algebraic topology are spaces equipped with
an action by a topological group (. That is, the subject concerns spaces X to-
gether with continuous actions G x X — X such that ex = z and ¢g(¢'z) = (g¢')z.
Maps f: X — Y are equivariant if f(ga) = ¢gf(x). We then say that f is a G-
map. The usual constructions on spaces apply equally well in the category G of
Gi-spaces and G-maps. In particular GG acts diagonally on Cartesian products of
spaces and acts by conjugation on the space Map(X,Y) of maps from X to Y.
That is, we define g - f by (¢ - f)(z) = gf (g7 ).

As usual, we take all spaces to be compactly generated (which means that
a subspace is closed if its intersection with each compact Hausdorff subspace is
closed) and weak Hausdorff (which means that the diagonal X C X x X is a closed
subset, where the product is given the compactly generated topology). Among

other things, this ensures that we have a GG-homeomorphism
(1.1) Map(X x Y, Z) = Map(X, Map(Y, 7))

for any G-spaces X, Y, and Z.

For us, subgroups of (i are assumed to be closed. For H C G, we write X7 =
{z|he = x for h € H}. For v € X, G, = {h|ha = x} is called the isotropy group
of . Thus z € X" if H is contained in GG,.. A good deal of the formal homotopy
theory of GG-spaces reduces to the ordinary homotopy theory of fixed point spaces.
We let NH be the normalizer of H in G and let WH = NH/H. (We sometimes
write NoH and WgH.) These “Weyl groups” appear ubiquitously in the theory.
Note that X is a W H-space. In equivariant theory, orbits G/ H play the role of

13
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points, and the set of G-maps G/H — G/H can be identified with the group
W H. We also have the orbit spaces X/H obtained by identifying points of X
in the same orbit, and these too are W H-spaces. For a space K regarded as a

Gi-space with trivial G-action, we have

(1.2) GU (K, X) = % (K,X)
and
(1.3) Guw (X, K) =% (X|G, K).

It Y is an H-space, there is an induced G-space G xg Y. It is obtained from
G x Y by identifying (gh,y) with (g, hy) for ¢ € G, h € H, and y € Y. A bit
less obviously, we also have the “coinduced” G-space Mapy(G,Y), which is the
space of H-maps ¢ — Y with left action by ¢ induced by the right action of
G oon itself, (¢ - f)(¢") = f(¢'g). For G-spaces X and H-spaces Y, we have the

adjunctions

(1.4) GU(GxgY, X)=2HU(Y,X)
and
(1.5) Huw(X,Y) =G (X, Mapy(G,Y)).

Moreover, for G-spaces X, we have G-homeomorphisms

(1.6) GxpgX=Z2(G/H)xX
and
(1.7) Mapg (G, X) = Map(G/H, X).

For the first, the unique G-map G xy X — (G/H) x X that sends € X to
(eH, ) has inverse that sends (¢H,z) to the equivalence class of (g,¢ '2).

A homotopy between G-maps X — Y is a homotopy h : X x I — Y that is
a G-map, where & acts trivially on I. There results a homotopy category hG% .
Recall that a map of spaces is a weak equivalence if it induces an isomorphism
of all homotopy groups. A G-map f: X — Y is said to be a weak equivalence
if f7:XH — YH is a weak equivalence for all H C (. We let hG% denote
the category constructed from hAG% by adjoining formal inverses to the weak
equivalences. We shall be more precise shortly. The algebraic invariants of G-
spaces that we shall be interested in will be defined on the category hG% .
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General References

G. E. Bredon. Introduction to compact transformation groups. Academic Press. 1972.
T. tom Dieck. Transformation groups. Walter de Gruyter. 1987.
(This reference contains an extensive Bibliography.)

2. Analogs for based (-spaces

It will often be more convenient to work with based G-spaces. Basepoints are
Gi-fixed and are generically denoted by *. We write X for the union of a G-space
X and a disjoint basepoint. The wedge, or 1-point union, of based G-spaces is
denoted by X VY. The smash product is defined by X AY = X x Y/ X VY. We
write F'(X,Y) for the based G-space of based maps X — Y. Then

(2.1) FIXAY,Z)2 F(X,F(Y,Z)).

We write .7 for the category of based G-spaces, and we have
(2.2) GT(K,X)= T(K,X%)

and

(2.3) GI(X,K)= T(X/G,K)

for a based space K and a based G-space X. Similarly, for a based G-space X

and a based H-space Y, we have

(2.4) GT (G Ag Y, X)=Z HT(Y,X)
and
(2.5) H7(X. V)2 GT (X, Fu(G:,Y)),

where Fr(G4,Y) = Mapg (G, X) with the trivial map as basepoint, and we have

(G-homeomorphisms

(2.6) GiAg X 2 (G/H); AN X
and
(2.7) Fu(G4, X) =2 F(G/Hy, X).

A based homotopy between based G-maps X — Y is given by a based G-
map X A I, — Y. Here the based cylinder X A I, is obtained from X x [ by
collapsing the line through the basepoint of X to the basepoint. There results a
homotopy category h(G.7, and we construct hG.7 by formally inverting the weak
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equivalences. Of course, we have analogous categories hG%, and h(G% in the
unbased context.

In both the based and unbased context, cofibrations and fibrations are defined
exactly as in the nonequivariant context, except that all maps in sight are G-maps.
Their theory goes through unchanged. A based G-space X is nondegenerately

based if the inclusion {*} — X is a cofibration.

3. G-CW complexes

A G-CW complex X is the union of sub G-spaces X™ such that X° is a dis-
joint union of orbits GG/H and X"*! is obtained from X" by attaching G-cells
G/H x D"t! along attaching G-maps G/H x S — X". Such an attaching
map is determined by its restriction S" — (X™)# and this allows the inductive
analysis of G-CW complexes by reduction to nonequivariant homotopy theory.
Subcomplexes and relative G-CW complexes are defined in the obvious way. I will
review my preferred way of developing the theory of G-CW complexes since this
will serve as a model for other versions of cellular theory that we shall encounter.

We begin with the Homotopy Extension and Lifting Property. Recall that a map
f: X — Y is an n-equivalence if 7,(f) is a bijection for ¢ < n and a surjection
for ¢ = n (for any choice of basepoint). Let v be a function from conjugacy classes
of subgroups of (¢ to the integers > —1. We say that a map e : ¥ — 7 is
a v-equivalence if e : YH — 7H is a y(H)-equivalence for all H. (We allow
v(H) = —1 to allow for empty fixed point spaces.) We say that a G-CW complex
X has dimension v if its cells of orbit type GG/ H all have dimension < v(H ).

THEOREM 3.1 (HELP). Let A be a subcomplex of a G-CW complex X of
dimension v and let e : ¥ — Z be a v-equivalence. Suppose given maps ¢ :
A— Y h:AxI— Z and f: X — Z such that eqg = hiy and fi = hig in

the following diagram:

i1

A Ax T A
e

; 7 y |
f/4 TNk AN

X X x I X.

10 i1
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Then there exist maps § and A that make the diagram commute.

PROOF. We construct § and h on AU X™ by induction on n. When we pass
from the n-skeleton to the (n+1)-skeleton, we may work one cell at a time, dealing
with the cells of X not in A. By considering attaching maps, we quickly reduce
the proof to the case when (X, A) = (G/H x D"t' G/H x S™). But this case

reduces directly to the nonequivariant case of (D"*! 5™). O

THEOREM 3.2 (WHITEHEAD). Let € : Y — Z be a v-equivalence and X be a
G-CW complex. Then e, : hGZ (X,Y) — hG% (X, 7Z) is a bijection if X has

dimension less than v and a surjection if X has dimension v.

ProOF. Apply HELP to the pair (X, ) for the surjectivity. Apply HELP to
the pair (X x I, X x 9[) for the injectivity. O

COROLLARY 3.3. If e : Y — Z is a v-equivalence between G-CW complexes

of dimension less than v, then e is a G-homotopy equivalence.

PROOF. A map f: Z — Y such that e.[f] = id is a homotopy inverse to e. [

The cellular approximation theorem works equally simply. A map f: X — Y
between G-CW complexes is said to be cellular if f(X™) C Y for all n, and

similarly in the relative case.

THEOREM 3.4 (CELLULAR APPROXIMATION). Let (X, A) and (Y, B) be rela-
tive G-CW complexes, (X', A") be a subcomplex of (X, A), and f : (X, A) —
(Y, B) be a G-map whose restriction to (X', A") is cellular. Then f is homotopic
rel X' U A to a cellular map g : (X, A) — (Y, B).

PrOOF. This again reduces to the case of a single nonequivariant cell. [J

COROLLARY 3.5. Let X and Y be G-CW complexes. Then any G-map f :
X — Y is homotopic to a cellular map, and any two homotopic cellular maps

are cellularly homotopic.

PROOF. Apply the theorem in the cases (X, 0) and (X x I, X x 9I). O

THEOREM 3.6. For any G-space X, there is a G-CW complex I'X and a weak
equivalence v : I'X — X.
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PROOF. We construct an expanding sequence of G-CW complexes {Y;|: > 0}
together with maps 7; : ¥; — X such that v,41]Y; = ;. Choose a representative
map [ : S7 — X for each element of 7, (X z). Here ¢ runs over the non-
negative integers, H runs over the conjugacy classes of subgroups of (¢, and = runs
over the components of X*. Let Y; be the disjoint union of spaces G/H x S,
one for each chosen map f, and let 79 be the G-map induced by the maps f. In-
ductively, assume that +; : ¥; — X has been constructed. Choose representative
maps (f,g) for each pair of elements of 7, ((Y;)!,y) that are equalized by 7,(v;);
here again, g runs over the non-negative integers, H runs over the conjugacy classes
of subgroups of &, and y runs over the components of (Y;)?. We may arrange that
f and ¢ have image in the ¢-skeleton of Y;. Let Y;;; be the homotopy coequalizer
of the disjoint union of these pairs of maps; that is Y;11 is obtained by attaching a
tube (G//Hy A S?x I via each chosen pair (f,g). Define v;11 by use of homotopies
h 7 f ~ g based at v;(y). It is easy to triangulate Y;1; as a G-CW complex
that contains Y; as a subcomplex. Taking I'X to be the union of the Y; and 7 to
be the map induced by the 7;, we obtain the desired weak equivalence. [

The Whitehead theorem implies that the G-CW approximation I'X is unique
up to G-homotopy equivalence. If f : X — X’ is a G-map, there is a unique
homotopy class of G-maps I'f : 'X — I'X’ such that 4" o I'f ~ fo~. That
is, I' becomes a functor hG%Z — hG% such that v is natural. A construction
of I' that is functorial even before passage to homotopy is possible (Seymour). It
follows that the morphisms of the category hG% can be specified by

(3.7) hGU (X, X') = hGU% (TX,TX') = hGZ(IX,TX"),

where G€ is the category of G-CW complexes and cellular maps. From now on,
we shall write [X, X']¢ for this set, or for its based variant, depending on the
context.

Almost all of this works just as well in the based context, giving a theory of
“G-CW based complexes”, which are required to have based attaching maps. This
notion is to be distinquished from that of a based G-CW complex, which is just
a G-CW complex with a G-fixed base vertex. In detail, a G-CW based complex
X is the union of based sub G-spaces X such that X is a point and X"*! is ob-
tained from X" by attaching G-cells G/ Hy A D"t along based attaching G-maps
G/Hy AN S™ — X™. Observe that such G-CW based complexes are (G-connected
in the sense that all of their fixed point spaces are non-empty and connected.
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Nonequivariantly, one often starts proofs with the simple remark that it suffices
to consider connected spaces. Equivariantly, this won’t do; many important foun-
dational parts of homotopy theory have only been worked out for G-connected
Gi-spaces.

I should emphasize that G has been an arbitrary topological group in this dis-
cussion. When G is a compact Lie group — and we shall later restrict attention to
such groups — there are important results saying that reasonable spaces are trian-
gulable as G-CW complexes or have the homotopy types of G-CW complexes. It
is fundamental for our later work that smooth compact G-manifolds are triangula-
ble as finite G-CW complexes (Verona, [llman). In contrast to the nonequivariant
situation, this is false for topological GG-manifolds, which have the homotopy types
of G-CW complexes but not necessarily finite ones. Metric G-ANR’s have the
homotopy types of G-CW complexes (Kwasik). Milnor’s results on spaces of the
homotopy type of CW complexes generalize to GG-spaces (Waner). In particular,
Map(X,Y') has the homotopy type of a G-CW complex if X is a compact G-space
and Y has the homotopy type of a G-CW complex, and similarly for based function

spaces.
S. llman. The equivariant triangulation theorem for actions of compact Lie groups. Math. Ann.
262(1983), 487-501.

S. Kwasik. On the equivariant homotopy type of G-ANR’s. Proc. Amer. Math. Soc. 83(1981),
193-194.

T. Matumoto. On GG-CW complexes and a theorem of J.H.C. Whitehead. J. Fac. Sci. Univ. of
Tokyo 18(1971), 363-374.

R. M. Seymour. Some functorial constructions on G-spaces. Bull. London Math. Soc. 15(1983),
353-359.

A. Verona. Triangulation of stratified fibre bundles. Manuscripta Math. 30(1980), 425-445.

S. Waner. Equivariant homotopy theory and Milnor’s theorem. Trans. Amer. Math. Soc.
258(1980), 351-368.

4. Ordinary homology and cohomology theories

Let ¢ denote the category of orbit G-spaces G/ H; the standard notation is 0.
Observe that there is a G-map f: G/H — G/K if and only if H is subconjugate
to K since, if f(eH) = gK, then ¢g"'Hg C K. Let h% be the homotopy category of
%4. Both 4 and h¥ play important roles and it is essential to keep the distinction
in mind.

Define a coefficient system to be a contravariant functor hY — &/b. One

example to keep in mind is the system x,(X) of homotopy groups of a based
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G-space X : (X )(G/H) = 7,(X™). Formally, we have an evident fixed point
functor X* : ¢ — 7. The map X* — X¥ induced by a G-map f: G/H —
G/ K such that f(eH) = gK sends x to gz. Any covariant functor h.7 — &/b,
such as w,, can be composed with this functor to give a coefficient system. It
should be intuitively clear that obstruction theory must be developed in terms of
ordinary cohomology theories with coefficients in such coefficient systems. The
appropriate theories were introduced by Bredon.

Since the category of coefficient systems is Abelian, with kernels and cokernels
defined termwise, we can do homological algebra in it. Let X be a G-CW complex.

We have a coefficient system
(4.1) C.(X)=H, (X", X"\ 7).

That is, the value on G/H is H,((X™)7 (X"1H)H). The connecting homomor-
phisms of the triples ((X™)7, (X"~H)H (X"=2)H) specify a map

d : Qn(X) - Qn—l(X)

of coefficient systems, and d* = 0. That is, we have a chain complex of coefficient
systems C.(X). For based G-CW complexes, we define Q*(X) similarly. Write
Homeg (M, M') for the Abelian group of maps of coefficient systems M — M’
and define

(4.2) Ce(X; M) =Homg(C,,(X), M), with 6 = Homg(d,id).

Then CZ(X; M) is a cochain complex of Abelian groups. Its homology is the
Bredon cohomology of X, denoted HE(X; M).

To define Bredon homology, we must use covariant functors N : h9 — &/'b
as coefficient systems. If M : h%9 — /b is contravariant, we define an Abelian
group

M@y N =3 M(G/H)® N(G/H)/(=),
where the equivalence relation is specified by (mf*,n) ~ (m, fin) for a map
f:G/H — G/K and elements m € M(G/K) and n € N(G/H). Here we
write contravariant actions from the right to emphasize the analogy with tensor
products. Such “coends”, or categorical tensor products of functors, occur very

often in equivariant theory and will be formalized later. We define cellular chains

by
(4.3) CHX;N)=C,(X)@g N, withd=da 1.
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Then CE(X; N) is a chain complex of Abelian groups. Its homology is the Bredon
homology of X, denoted HZ(X; N).

Clearly Bredon homology and cohomology are functors on the category G¢ of
G-CW complexes and cellular maps. A cellular homotopy is easily seen to induce
a chain homotopy of cellular chain complexes in our Abelian category of coefficient
systems, so homotopic maps induce the same homomorphism on homology and
cohomology with any coefficients.

The development of the properties of these theories is little different from the
nonequivariant case. A key point is that C,(X) is a projective object in the
category of coefficient systems. To see this, observe that C',(X) is a direct sum of

coefficient systems of the form

(4.4) H (G/KL NS = Ho(GJKL) = Hy(G/K).

If F* denotes the free Abelian group functor on sets, then

(4.5) Ho(G/K)G/H) = Ho((G/K)) = Fro((G/K)) = FIG/H,G/K]q.

Therefore Home (Ho(G/K),M) = M(G/K) via ¢ — ¢(lg/x) € M(G/K). In
detail, for a G-map f: G/H — G/K, we have f = f*(1g/x),

/¥ FIG/K,G/K]¢ — F[G/H,G/K]g,
so that ¢(1g/x) determines ¢ via ¢(f) = f*¢(1lg i ). This calculation implies the

claimed projectivity. It also implies the dimension axiom:

(4.6) H:(G/K; M) = HYG/K; M) = M(G/K)
and
(4.7) HY(G/K;N)=HS(G/K;N)= N(G/K),

these giving isomorphisms of coefficient systems, of the appropriate variance, as
K varies.

If Ais a subcomplex of X, we obtain the relative chain complex C (X, A) =
Q*(X/A). The projectivity just proven implies the expected long exact sequences
of pairs. For additivity, just note that the disjoint union of G-CW complexes is a
G-CW complex. For excision, if X is the union of subcomplexes A and B, then
B/AN B = X/A as G-CW complexes. We take the “weak equivalence axiom” as
a definition. That is, for general G-spaces X, we define

HH(X;M)=Hi(TX; M) and HY(X;N)= HE(TX;N).
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Our results on G-CW approximation of GG-spaces and on cellular approximation
of G-maps imply that these are well-defined functors on the category hG% . Sim-
ilarly, we can approximate any pair (X, A) by a G-CW pair (I'X,T'A). Less obvi-
ously, if (X; A, B) is an excisive triad, so that X is the union of the interiors of A
and B, we can approximate (X; A, B) by a triad (I'X;T'A,I'B), where I'X is the
union of its subcomplexes I'A and I'B.

That is all there is to the construction of ordinary equivariant homology and
cohomology groups satisfying the evident equivariant versions of the Eilenberg-

Steenrod axioms.

G. Bredon. Equivariant cohomology theories. Springer Lecture Notes in Mathematics Vol 34.
1967.

S. Illman. Equivariant singular homology and cohomology. Memoirs Amer. Math. Soc. No.
156. 1975.

S. J. Willson. Equivariant homology theories on G-complexes. Trans. Amer. Math. Soc.

212(1975), 155-271.

5. Obstruction theory

Obstruction theory works exactly as it does nonequivariantly, and I'll just give
a quick sketch. Fix n > 1. Recall that a connected space X is said to be n-simple
if 71(X) is Abelian and acts trivially on #,(X) for ¢ < n. Let (X, A) be a relative
G-CW complex and let Y be a G-space such that Y is non-empty, connected,
and n-simple if H occurs as an isotropy subgroup of X \ A. Let f: X"UA — Y
be a G-map. We ask when f can be extended to X"*!. Composing the attaching
maps G/H x S® — X of cells of X \ A with f gives elements of 7,,(Y!). These

elements specify a well-defined cocycle
ey € O (X, Ay, (Y)),

and f extends to X"*! if and only if ¢; = 0. If f and f’ are maps X" UA — YV
and h is a homotopy rel A of the restrictions of f and f’ to X"71 U A, then f, [,
and h together define a map

RO (X x I — Y.
Applying eu(s,51y to cells j x I, we obtain a deformation cochain
dypn € CG(X, A, (Y))

such that 6dy 5, = ¢ — ¢p. Moreover, given f and d, there exists f’ that coin-
cides with f on X"~ and satisfies d;; = d, where the constant homotopy h is
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understood. This gives the first part of the following result, and the second part
is similar.

THEOREM 5.1. For f: X"UA — Y, the restriction of f to X" ! U A extends
toa map X"t'UA — Y if and only if [¢;] = 0in HET (X, A; 7,,(Y)). Given maps
f.f": X" — Y and a homotopy rel A of their restrictions to X"t U A, there is
an obstruction in HA(X, A;x,(Y)) that vanishes if and only if the restriction of
the given homotopy to X" 2 U A extends to a homotopy f ~ [’ rel A.

G. Bredon. Equivariant cohomology theories. Springer Lecture Notes in Mathematics Vol 34.
1967.

6. Universal coefficient spectral sequences

While easy to define, Bredon cohomology is hard to compute. However, we do
have universal coefficient spectral sequences, which we describe next.

Let Wy H be the component of the identity element of W H and define a coeffi-
cient system J, (X)) by

(6.1) J(X)G/H) = H (X" )W, l; 7).

Thus J,(X) coincides with the obvious coefficient system H (X)) if G is discrete.
We claim that, if G is a compact Lie group, then J, (X) is the coefficient system
that is obtained by taking the homology of C',(X'). The point is that a Lie theoretic

argument shows that
mo((G/K)?) = (G/K)H /Wy H.

We deduce that the filtration of X* /W, H induced by the filtration of X gives rise
to the chain complex C (X)(G/H).

We can construct an injective resolution @)* of the coefficient system M and
form Homg (C,.(X),Q*). This is a bicomplex with total differential the sum of the
differentials induced by those of C,(X) and of @Q*. It admits two filtrations. Using
one of them, the differential on Ky comes from the differential on Q*, and K7
is Ext®!(C(X), M). Since C,(X) is projective, the higher Ext groups are zero,
and Fy reduces to C5L(X; M). Thus Fy = Foo = HE(X; M), and our bicomplex
computes Bredon cohomology. Filtering the other way, the differential on Ej
comes from the differential on C,(X), and we can identify F». Using a projective

resolution of N, we obtain an analogous homology spectral sequence.
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THEOREM 6.2. Let G be either discrete or a compact Lie group and let X be a

G-CW complex. There are universal coefficient spectral sequences
EY? = Exty(J(X), M) = HL(X; M)

and

& Gry.
E;q = Tor, (J(X),N) = H,(X;N).

We should say something about change of groups and about products in coho-
mology, but it would take us too far afield to go into detail. For the first, we simply
note that, for H C G, we can obtain H-coefficient systems from G-coefficient sys-
tems via the functor 7 — ¢ that sends H/K to G/K = G xyg H/K. For the
second, we note that, for groups H and G, projections give a functor from the
orbit category of H x (G to the product of the orbit categories of H and of &, so
that we can tensor an H-coefficient system and a G-coefficient system to obtain
an (H x ()-coefficient system. When H = (7, we can then apply change of groups
to the diagonal inclusion G C GG x (. The resulting pairings of coefficient systems
allow us to define cup products exactly as in ordinary cohomology, using cellular

approximations of the diagonal maps of G-CW complexes.

G. Bredon. Equivariant cohomology theories. Springer Lecture Notes in Mathematics Vol 34.
1967.
S. J. Willson. Equivariant homology theories on G-complexes. Trans. Amer. Math. Soc.

212(1975), 155-271.



CHAPTER 11

Postnikov Systems, Localization, and Completion

1. Eilenberg-MacLane G-spaces and Postnikov systems

Let M be a coefficient system. An Eilenberg-Mac Lane G-space K(M,n) is a
Gi-space of the homotopy type of a G-CW complex such that

. M if ¢ =n,
TR R

While our interest is in Abelian group-valued coefficient systems, we can allow M
to be set-valued if n = 0 and group-valued if n = 1. T will give an explicit construc-
tion later. Ordinary cohomology theories are characterized by the usual axioms,
and, by checking the axioms, it is easily verified that the reduced cohomology of
based G-spaces X is represented in the form

(1.1) HL(X; M) = [X, K(M,n)]a,

where homotopy classes of based maps (in h(G.7) are understood.

Recall that a connected space X is said to be simple if 7y A is Abelian and acts
trivially on 7,(X) for n > 2. More generally, a connected space X is said to
be nilpotent if 71(X) is nilpotent and acts nilpotently on 7,(X) for n > 2. A
G-connected Gi-space X is said to be simple if each X ¥ is simple. A GG-connected
G-space X is said to be nilpotent if each X* is nilpotent and, for each n > 1,
the orders of nilpotency of the 71 (X*)-groups 7,(X*) have a common bound.
We shall restrict our sketch proofs to simple G-spaces, for simplicity, in the next
few sections, but everything that we shall say about their Postnikov towers and
about localization and completion generalizes readily to the case of nilpotent G-

spaces. The only difference is that each homotopy group system must be built up

25
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in finitely many stages, rather than all at once.

A Postnikov system for a based simple GG-space X consists of based G-maps
a,: X — X, and p,i1: X1 — X,

for n > 0 such that Xy is a point, a, induces an isomorphism z,(X) — z,(X,)
for ¢ < n, ppr1an11 = a,, and p,4q is the G-fibration induced from the path space
fibration over a K(x,,1(X),n+2) by a map &"** : X,, — K(x,,,(X),n+2). It
follows that X7 = K(x;(X),1) and that z,(X,) = 0 for ¢ > n. Our requirement
that Eilenberg-Mac Lane GG-spaces have the homotopy types of G-CW complexes
ensures that each X, has the homotopy type of a G-CW complex. The maps
a, induce a weak equivalence X — lim X, but the inverse limit generally will
not have the homotopy type of a G-CW complex. Just as nonequivariantly, the

k-invariants that specify the tower are to be regarded as cohomology classes
k2 e HE (X myq (X)),

These classes together with the homotopy group systems x,,(X) specify the weak
homotopy type of X. On passage to H-fixed points, a Postnikov system for X
gives a Postnikov system for X*. We outline the proof of the following standard
result since there is no complete published proof and my favorite nonequivariant

proof has also not been published. The result generalizes to nilpotent G-spaces.

THEOREM 1.2. A simple G-space X of the homotopy type of a G-CW complex

has a Postnikov tower.

PROOF. Assume inductively that «, : X — X, has been constructed. By the
homotopy excision theorem applied to fixed point spaces, we see that the cofiber
C(ay) is (n + 1)-connected and satisfies

En+2(COén) = En-l—l (X)

More precisely, the canonical map F'(ea,,) — QC(a,) induces an isomorphism on

T, for ¢ < n + 1. We construct
j i Clan) — K(mp(X).n +2)

by inductively attaching cells to C'(a,) to kill its higher homotopy groups. We
take the composite of j and the inclusion X,, C C'(a,) to be the k-invariant A"+
By our definition of a Postnikov tower, X, ;1 must be the homotopy fiber of £"*2.
Its points are pairs (w, ) consisting of a path w:/ — K(z,,(X),n +2) and a
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point € X,, such that w(0) = * and w(1) = k"**(x). The map p,t1 : Xoy1 —
X, is given by ppy1(w,x) = @, and the map a,41 : X — X, 41 is given by
apt1(2) = (w(x), an(x)), where w(x)(t) = j(x,1 — 1), (x,1 —t) being a point on
the cone CX C C(ay,). Clearly py10,41 = o, It is evident that a1 induces an
isomorphism on z, for ¢ < n, and a diagram chase shows that this also holds for
g=n+1. O

2. Summary: localizations of spaces

Nonequivariantly, localization at a prime p or at a set of primes 7' is a standard
first step in homotopy theory. We quickly review some of the basic theory. Say
that a map f: X — Y is a T-cohomology isomorphism if

o H (Y A) — HY (X A)
is an isomorphism for all T-local Abelian groups A.

THEOREM 2.1. The following properties of a nilpotent space Z are equivalent.
When they hold, Z is said to be T-local.

(a) Each 7,(7) is T-local.
(b) If f: X — Y is a T-cohomology isomorphism, then f*:[Y, 7] — [X, 7]
is a bijection.

(¢) The integral homology of Z is T-local.

THEOREM 2.2. Let X be a nilpotent space. The following properties of a map
A X — X7 from X to a T-local space Xp are equivalent. There is one and, up
to homotopy, only one such map A. It is called the localization of X at T'.

(a) A" : [ X7, 7] — [X, Z] is a bijection for all T-local spaces Z.
(b) X is a T-cohomology isomorphism.

)
(¢) A mu(X) — 7 (X7) is localization at T
(d) A H (X;Z)— H.(Xrp;Z) is localization at T

A. K. Bousfield and D. M. Kan. Homotopy limits, completions, and localizations. Springer
Lecture Notes in Mathematics Vol 304. 1972.

D. Sullivan. The genetics of homotopy theory and the Adams conjecture. Annals of Math.
100(1974), 1-79.
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3. Localizations of (G-spaces

Now let (G be a compact Lie group. Say that a G-map f : X — Y is a

T-cohomology isomorphism if
[7 He (Y M) — He (X5 M)
is an isomorphism for all T-local coefficient systems M.

THEOREM 3.1. The following properties of a nilpotent GG-space Z are equivalent.
When they hold, Z is said to be T-local.

(a) Each ZH is T-local.
(b) If f: X — Y is a T-cohomology isomorphism, then

[V, Zle — [X, Z]q
is a bijection.

THEOREM 3.2. Let X be a nilpotent G-space. The following properties of a
map A : X — X7 from X to a T-local G-space X7 are equivalent. There is one
and, up to homotopy, only one such map A. It is called the localization of X at T'.

(a) A" : [ X7, Z] — [X, Z] is a bijection for all T-local G-spaces Z.

(b) X is a T-cohomology isomorphism.

(c) Bach M : X# — (X7)H is localization at T'.

PRrROOFS. We restrict attention to simple G-spaces. Assuming (a) in Theo-
rem 3.1, we may replace Z by a weakly equivalent Postnikov tower and we may
assume that the G-spaces X and Y given in (b) are G-CW complexes, so that
we are dealing with actual homotopy classes of maps. Then (a) implies (b) by a
word-for-word dualization of our proof of the Whitehead theorem. Conversely, (b)
implies (a) since the specialization of (b) to T-cohomology isomorphisms of the
form G/Hy A f, where f : X — Y is a nonequivariant 7-cohomology isomor-
phism, implies (b) of Theorem 2.1. In Theorem 3.2, (a) implies (b) by letting 7
run through K(M,n)’s, and (b) implies (a) by Theorem 3.1. Let Z7 be the local-
ization of Z at T'. One sees that (c) implies (b) by applying the universal coefficient
spectral sequence of 1.6.2, taken with homology and coefficient systems tensored
with Z. The maps A induce isomorphisms on homology with coefficients in Zr,
and one can deduce (with some work in the general compact Lie case) that they
therefore induce an isomorphism J, (X;Z7) — J.(X7;Z7). Since the universal

property (a) implies uniqueness, to complete the proof we need only construct a
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map A that satisfies (c). For this, we may assume that X is a Postnikov tower,
and we localize its terms inductively by localizing k-invariants and comparing fi-
bration sequences. The starting point is just the observation that the algebraic

localization M — My = M @ Zy of coefficient systems induces localization maps

A K(M,n) — K(Mp,n). The relevant diagram is:
Kz (X)m 4+ 1) = X, X, K533 (X +2)

| | | |

K(zpr (X)r,n + 1) —= (Xogt )1 — (X )7 — K(Zpa (X1, + 2).

We construct the right square by localizing the k-invariant, we define (X,41)7 to
be the fiber of the localized k-invariant, and we obtain X, 41 — (X,.4+1)r making
the middle square commute and the left square homotopy commute by standard

fiber sequence arguments. [J

J. P. May. The dual Whitehead theorems. London Math. Soc. Lecture Note Series Vol 86, 1983,
46-54.

J. P. May, J. McClure, and G. V. Triantafillou. Equivariant localization. Bull. London Math.
Soc. 14(1982), 223-230.

4. Summary: completions of spaces

Completion at a prime p or at a set of primes T' is another standard first step
in homotopy theory. Since completion at T' is the product of the completions at
p for p € T, we restrict to the case of a single prime. We first review some of the
nonequivariant theory. The algebra we begin with is a preview of algebra to come
later in our discussion of completions of G-spectra at ideals of the Burnside ring.

The p-adic completion functor, Ap = lim(A/p™A), is neither left nor right exact

in general, and it has left derived functors Ly and Lq. If
0 —F —F —A—0

is a free resolution of A, then LgA and LA are the cokernel and kernel of F’p —

N

F,, and there results a natural map n : A — LgA. The higher left derived

functors are zero, and a short exact sequence
2
00— A —A— A —0
gives rise to a six term exact sequence

0 — WA — LA — LA" — LyA" — LyA — LyA” — 0.
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It L4A=0,then wecallnp: A — LyA the “p-completion” of A. It must not to be
confused with the p-adic completion. We say that A is “p-complete” if L1 A = 0 and
n is an isomorphism. The groups LoA, L1 A, and Ap are p-complete for any Abelian
group A. While derived functors give the best conceptual descriptions of LgA and
L1 A, there are more easily calculable descriptions. Let Z/p™ be the colimit of the
sequence of homomorphisms p : Z/p" — Z/p"t'. Then Z/p> = Z[p~'|/Z and

there are natural isomorphisms
Lo(A) Z Ext(Z/p™,A) and Li(A) = Hom(Z/p™, A).
There is also a natural short exact sequence
0 — lim' Hom(Z/p", A) — LoA — Ap — 0.
In particular, L1 A =0 and LA = Ap if the p-torsion of A is of bounded order.
Say that a map f: X — Y is a p-cohomology isomorphism if
[T A (Y5 A) — HY (X5 A)

is an isomorphism for all p-complete Abelian groups A. This holds if and only
if it holds for all F,-vector spaces A, and this in turn holds if and only if f, :
H.(X;F,) — H.(Y;F,) is an isomorphism, where F, is the field with p elements.
While this homological characterization is essential to our proofs, we prefer to

emphasize cohomology.
THEOREM 4.1. The following properties of a nilpotent space Z are equivalent.
When they hold, Z is said to be p-complete.
(a) Each 7,(7) is p-complete.
(b) If f: X — Y is a p-cohomology isomorphism, then f*: [V, 7] — [X, 7]
is a bijection.
THEOREM 4.2. Let X be a nilpotent space. The following properties of a map

v: X — Xp from X to a p-complete space Xp are equivalent. There is one and,

up to homotopy, only one such map ~. It is called the completion of X at p.
(a) v*: [Xp, Z] — [X, Z] is a bijection for all p-complete spaces Z.
(b) ~ is a p-cohomology isomorphism.

For n > 1, there is a natural and splittable short exact sequence

0 — Lomn(X) — Fn(Xp) — Lymp1(X) — 0.
If Li7.(X) =0, then v is also characterized by
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(¢) v :mu(X) — F*(Xp) is completion at p.

A. K. Bousfield and D. M. Kan. Homotopy limits, completions, and localizations. Springer
Lecture Notes in Mathematics, Vol. 304. 1972.

D. Sullivan. The genetics of homotopy theory and the Adams conjecture. Annals of Math.
100(1974), 1-79.

5. Completions of G-spaces

Now let (G be a compact Lie group. Say that a G-map f : X — Y is a

p-cohomology isomorphism if
[7 He (Y M) — He (X5 M)

is an isomorphism for all p-complete coefficient systems M. This will hold if each
fH . XH —— YH is a p-cohomology isomorphism by another application of the

universal coefficients spectral sequence, with a little work in the general compact

Lie case to handle J_ (f).

THEOREM 5.1. The following properties of a nilpotent Gi-space Z are equivalent.
When they hold, Z is said to be p-complete.
(a) Each Z# is p-complete.
(b) If f: X — Y is a p-cohomology isomorphism, then f* : [V, Z]¢ —
[X, Z] is a bijection.

THEOREM 5.2. Let X be a nilpotent G-space. The following properties of a
map v : X — X, from X to a p-complete G-space X, are equivalent. There is
one and, up to homotopy, only one such map +. It is called the completion of X
at p.

(a) v*: [Xp, Z] — [X, Z] is a bijection for all p-complete G-spaces Z.

(b) ~ is a p-cohomology isomorphism.

(c) Bach 7 : X# — (X)) is completion at p.

For n > 1, there is a natural short exact sequence

0 — Lom, (X) — [n(f(p) — L7, 1(X) — 0.

PRrOOFS. The proofs are the same as those of Theorems 3.1 and 3.2, except that
completions of Eilenberg-Mac Lane G-spaces are not Eilenberg-Mac Lane G-spaces

in general. For a coefficient system M, n : M — LoM induces p-completions

K(M,n) — K(LoM,n) whenever 1M = 0. For the general case, let F'M be
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the coefficient system obtained by applying the free Abelian group functor to M
regarded as a set-valued functor. There results a natural epimorphism FM — M
of coefficient systems. Let F'M be its kernel. Since L; vanishes on free modules,
we can construct the completion of K(M,n) at p via the following diagram of

fibrations:

K(FM,n) — K(M,n) — K(F'M,n + 1) K(FM,n+1)

| | | |

K(LoFM,n) —> K(M,n)) — K(LoF"M,n +1) —> K(LoF'M,n +1).

That is, K(M,n);\ is the fiber of K(Lol"M,n 4+ 1) — K(LoF'M,n +1). It is
complete since its homotopy group systems are complete. The map K(M,n) —
K(M, n);\ is a p-cohomology isomorphism because its fixed point maps are so, by

the Serre spectral sequence. [

J. P. May. Equivariant completion. Bull. London Math. Soc. 14(1982), 231-237.



CHAPTER III

Equivariant Rational Homotopy Theory

by Georgia Triantafillou

1. Summary: the theory of minimal models

Let GG be a finite group. In this chapter, we summarize our work on the alge-
braicization of rational G-homotopy theory.

To simplify the statements we assume simply connected spaces throughout the
chapter. The theory can be extended to the nilpotent case in a straightforward
manner. We recall that by rationalizing a space X, we approximate it by a space
Xo the homotopy groups of which are equal to 7.(X)® Q, thus neglecting the tor-
sion. The advantage of doing so is that rational homotopy theory is determined
completely by algebraic invariants, as was shown by Quillen and later by Sullivan.
Our theory is analogous to Sullivan’s theory of minimal models, which we now re-
view. For our purposes we prefer Sullivan’s approach because of its computational
advantage and its relation to geometry by use of differential forms.

The algebraic invariants that determine the rational homotopy type are certain
algebras that we call DGA’s. By definition a DGA is a graded, commutative,
associative algebra with unit over the rationals, with differential d : A" — A"+
for n > 0. We say that A is connected it H°(A) = Q and simply connected if, in
addition, H'(A) = 0. Again we assume that all DGA’s in sight are connected and
simply connected. A map of DGA’s is said to be a quasi-isomorphism if it induces
an isomorphism on cohomology.

Certain DGA’s, the so called minimal ones, play a special role to be described
below. A DGA M is said to be minimal if it is free and its differential is decom-

33
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posable. Freeness means that M is the tensor product of a polynomial algebra
generated by elements of even degree and an exterior algebra generated by elements
of odd degree. Decomposability of the differential means that d(M) C M+TAMT,
where M™ is the set of positive degree elements of M.

There is an algebraic notion of homotopy between maps of DGA’s that mirrors
the topological notion. Let Q(t,dt) be the free DGA on two generators ¢ and d?
of degree 0 and 1 respectively with d(¢) = dt.

DEFINITION 1.1. Two morphisms f, ¢ : A — B are homotopic if there is a map
H: A — B®Q(t,dt) such that ego H = f and e; o H = g, where ¢ is the
projection t = 0,dt = 0 and e; the projection ¢t = 1,dt = 0.

The basic example of a DGA in the theory is the PL. De Rham algebra £x of a

simplicial complex X, which is constructed as follows. Let
o' =A" = {(to,tl, ce ,tn)|0 S tz S 1,2?:0t2' == 1}

be an n-simplex of X canonically embedded in R"*!. A polynomial form of degree

pon o™ is an expression

S filtos .o ot)dty Ao Adi,
I

where [ = {i1,...,1,} and f; is a polynomial with coefficients in Q. A global
PL (piecewise linear) form on X is a collection of polynomial forms, one for each
simplex of X, which coincide on common faces. The set of PL forms of X is the
DGA Ex. A version of the classical de Rham theorem holds, namely that

1 (Ex) = HY(X; Q).
We have the following facts.

THEOREM 1.2. A quasi-isomorphism between minimal DGA’s is an isomor-

phism.

THEOREM 1.3. If f : A — B is a quasi-isomorphism of DGA’s and M is a
minimal DGA; then f, : [M, A] — [M, B] is an isomorphism.

THEOREM 1.4. For any simply connected DGA A there is a minimal DGA M
and a quasi-isomorphism p : M — A. Moreover M is unique up to (non-canonical)
isomorphism, namely if p’ : M’ — A is another quasi- isomorphism then there is

an isomorphism e : M — M’ such that p’ o e and p are homotopic.
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Here M is said to be the minimal model of A. The minimal model My of
the PL. de Rham algebra £x of a simply connected space X is called the minimal
model of X.

THEOREM 1.5. The correspondance X — My induces a bijection between ra-
tional homotopy types of simplicial complexes on the one hand and isomorphism

classes of minimal DGA’s on the other.

More precisely, assuming X is a rational space, the homotopy groups 7,(X) of
X are isomorphic to Q(Mx),, where Q(M) = MT/ M+ A M* is the space of
indecomposables of M. The nth stage X,, of the Postnikov tower of X has M x(n)
as its minimal model, where M(n) denotes the subalgebra of M that is generated
by the elements of degree < n. The k-invariant k"** € H"*?(X,,, 7,41(X)), which
can be represented as a map m,41(X)* — H"t*(X,,), is determined by the dif-
ferential d : Q(Mx )pp1 — H"T?*(Mx(n)). These properties enable the inductive
construction of a rational space that realizes a given minimal algebra.

On the morphism level we have
THEOREM 1.6. If Y is a rational space then
(X, Y] = My, Mx].

We warn here that the minimal model, though very useful computationally, is
not a functor. In particular a map of spaces induces a map of the corresponding

minimal models only up to homotopy.

D. Quillen. Rational Homotopy Theory, Ann of Math. 90(1968), 205-295.
D. Sullivan. Infinitesimal Computations in Topology, Publ. Math. THES 47(1978), 269-332.

2. Equivariant minimal models

For finite groups (¢ an analogous theory can be developed for G-rational homo-
topy types of G-simplicial complexes. For simplicity we assume throughout that
the spaces X are G-connected and G-simply connected, which means that each
fixed point space X¥ is connected and simply connected; however, the theory
works just as well for G-nilpotent spaces. In fact, by work of B. Fine, the the-
ory can be extended in such a way that no fixed base point and no connectivity
assumption on the fixed point sets are required.

Let Vece be the category of rational coefficient systems and Vecy, the category of

covariant functors from G to rational vector spaces. Our invariants for determining
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Gi-rational homotopy types are functors of a special type from G into DGA’s, which

we now describe.

DEFINITION 2.1. A system of DGA’s is a covariant functor from G to simply

connected DGA’s such that the underlying functor in Vecy, is injective.

The injective objects of Vec or, equivalently, the projective rational coefficient

systems can be characterized as follows.

THEOREM 2.2. (i) For H C (¢ and a W H-representation V, there is a projective
coefficient system V € Vecg such that

V(G/K) = Q(G/H)"] @omwm V-
where the first factor is the vector space generated by the set (G/H)¥.

(ii) Every projective coefficient system is a direct sum of such Vs.

The basic system of DGA’s in the theory is the system of de Rham algebras Ex#
of the fixed point sets X of a G-simplicial complex X. We denote this system
by £y. It is crucial to realize that £y is injective and that this property is central
to the theory. The injectivity of £y can be shown by utilising the splitting of X
into its orbit types.

We note that Ex together with the induced G-action determine a minimal al-
gebra equipped with a G-action. However there are in general many G-rational
homotopy types of G-simplicial complexes that realize this minimal G-algebra. In
order to have unique spacial realizations we need to take into account the algebraic
data of all fixed point sets, which leads us to systems of DGA’s.

Define the cohomology of a system A of DGA’s with respect to a covariant coeffi-
cient system N € Vec, to be the cohomology of the cochain complex Homg(N, A).
An equivariant de Rham theorem follows by use of the universal coefficients spec-

tral sequence.
THEOREM 2.3. For M € Vecg with dual M™ € Vecg,
HE (X5 M) = H(Ex: M),

The lack of functoriality of the minimal model of a space complicates the con-
struction of equivariant minimal models. We cannot, for instance, define “the
system of minimal models” M xu of the fixed point sets of a G-complex X. It
turns out that the right definition of minimal models in the equivariant context is

the following.
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DEFINITION 2.4. A system M of DGA’s is said to be minimal if

(i) each algebra M(G//H) is free commutative,
(ii) the DGA M(G/G) is minimal, and
(iii) the differential on each M(G/H) is decomposable when restricted to the
intersection of the kernels of the maps M(G/H) — M(G/K) induced by
proper inclusions H C K.

One can think of (ii) as an “initial condition” and of (iii) as the minimality
condition that guarantees the uniqueness of equivariant minimal models. As in

the nonequivariant case, minimal systems are classified by their cohomology.

THEOREM 2.5. A quasi-isomorphism between minimal systems of DGA’s is an

isomorphism.
Also, Theorems 1.3, 1.4, 1.5, and 1.6 have equivariant counterparts.

THEOREM 2.6. If A is a system of DGA’s, then there is a quasi-isomorphism
f: M — A where M is a minimal system. Moreover M is unique up to (non-

canonical) isomorphism.

This result provides the existence of equivariant minimal models. Unlike the
nonequivariant case the proof is rather involved and is based on a careful inves-
tigation of the universal coefficients spectral sequence. We define the equivariant
minimal model Mx of a G-simplicial complex X to be the minimal system of
DGA’s that is quasi-isomorphic to the system of de Rham algebras €.

A notion of homotopy can be defined for systems of DGA’s. If A is a system of
DGA’s we denote by A @ Q(¢,dt) the functor

A@Q(t,dt)(G/H) = A(G/H) @ Q(t,dt).

It can be shown that this functor is injective and therefore it forms a system of
DGA’s. Homotopy of maps of systems of DGA’s can now be defined in the obvious
way suggested by the nonequivariant case. Let [A, B]s denote homotopy classes

of maps of systems.

THEOREM 2.7. If f: A — B is a quasi-isomorphism of systems of DGA’s and
M is a minimal system of DGA’s, then

f* : [M,A]G — [M,B]G

is an isomorphism.
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The equivariant minimal model determines the rational G-homotopy type of a

Gi-space, namely

THEOREM 2.8. The correspondence X — M x induces a bijection between ra-
tional G-homotopy types of G-simplicial complexes on the one hand and isomor-

phism classes of minimal systems of DGA’s on the other.

More precisely, there is a filtration of minimal subsystems of DGA’s
- CMx(n) ST Mx(n+1)C--- C My

such that each stage is the equivariant minimal model of the equivariant Postnikov
term X,, of the space X. The system of rational homotopy groups of the fixed
point sets 7, (X) ® Q and the rational equivariant k-invariants can also be read
from the model M yx. This makes the inductive construction of the Postnikov
decomposition of the rationalization Xy possible if the equivariant minimal model
is given.

On the morphism level we have

THEOREM 2.9. If YV is a rational G-simplicial complex then there is a bijection
[X,Y] = [My, Mx].

G. Trnantafillou. Aquivariante Rationale Homotopietheorie, Bonner Math. Schriften Vol. 110.
1978.
G. Triantafillou. Equivariant minimal models. Trans. Amer. Math. Soc. 274(1982), 509-532.

3. Rational equivariant Hopf spaces

In spite of the conceptual analogy of the equivariant theory to the nonequivariant
one, the calculations in the equivariant case are much more subtle and can yield
surprising results. We illustrate this by describing our work on rational Hopt G-
spaces. It is a basic feature of nonequivariant homotopy theory that the rational
Hopf spaces split as products of Eilenberg-Mac Lane spaces. The equivariant
analogue is false. By a Hopt GG-space we mean a based G-space X together with a
G-map X x X — X such that the base point is a two-sided unit for the product.
Examples include Lie groups K with a G-action such that ¢ is a finite subgroup
of the inner automorphisms of K, and loop spaces Q(X) of G-spaces based at a
G-fixed point of X.
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THEOREM 3.1. Let X be a G-connected rational Hopf G-space of finite type.
It G is cyclic of prime power order, then X splits as a product of Eilenberg-
Mac Lane G-spaces. It G = Z, x Z, for distinct primes p and ¢, then there are

counterexamples to this statement.

Outline of proof: In this outline we suppress the technical part of the proof
which is quite extensive. As in the nonequivariant case, the n'* term X, of
a Postnikov tower of X is a Hopf G-space. Moreover the k-invariant k"% €
H"?(X,;7,41(X)) is a primitive element. This means that

m (K"F2) = (p1)"(K") + (p2)"(K"7),

in H"*(X,, x X,;; 7,,1(X)), where m is the product and the p; are the projections.

The difference in the two cases Z,» and Z, x Z, stems from the fact that rational
coefficient systems for these groups have different projective dimensions. Indeed,
systems for Z,x have projective dimension at most 1, whereas there are rational
coefficient systems for Z, x Z, of projective dimension 2. Using this fact about
L, we can compute inductively the equivariant minimal model of each Postnikov
term X, and its cohomology. In particular we show that all non-zero elements of
HEP (X5 7,44 (X)) are decomposable and therefore non-primitive.

In the case of Z, x Z, we construct counterexamples which are 2-stage Postnikov
systems with primitive k-invariant. As in the nonequivariant case, if X has only
two non-vanishing homotopy group systems, then the primitivity of the unique k-
invariant is a sufficient condition for X to be a Hopf G-space. By construction, the
two systems of homotopy groups 7,,(X) and 7, ,(X) are as follows. The groups

*Za) = 7. The groups

7.(XH) are zero for all proper subgroups H and 7, (X%
Tni1(XT) are zero for all nontrivial subgroups H and 7,.1(X) = Z. The first
coefficient system has projective dimension 2. This and the universal coefficients
spectral sequence yields HE:(X,; ,41(X)) = Z. Moreover all non-zero elements
of this group are primitive. This gives an infinite choice of primitive k-invariants
and therefore an infinite collection of rationally distinct Hopf G-spaces which do
not split rationally into products of Eilenberg-Mac Lane G-spaces.

The counterexamples X constructed in the theorem are infinite loop G-spaces
in the sense that there are G-spaces F,, and homotopy equivalences F,, — QF, 1.
with X = FEy. For the more sophisticated notion of infinite loop G-spaces where
indexing over the representation ring of (¢ is used, no such pathological behavior

is possible.
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As a final comment we mention that the theory of equivariant minimal models
has been used by my collaborators and myself to obtain aplications of a more
geometric nature, like the classification of a large class of G-manifolds up to finite

ambiguity and the equivariant formality of G-Kahler manifolds.

M. Rothenberg and G. Triantafillou. On the classification of G-manifolds up to finite ambiguity.
Comm. in Pure and Appl. Math. 1991.

B. Fine and G. Triantafillou. Equivariant formality of G-Kahler manifolds. Canadian J. Math.
To appear.

G. Triantafillou. Rationalization of Hopf G-spaces. Math. Zeit. 182(1983), 485-500.



CHAPTER IV
Smith Theory

1. Smith theory via Bredon cohomology

We shall explain two approaches to the classical results of P.A. Smith. We begin
with the statement. Let GG be a finite p-group and let X be a finite dimensional
G-CW complex such that H*(X;F,) is a finite dimensional vector space, where
[, denotes the field with p elements. All cohomology will have coefficients in F,
here.

THEOREM 1.1. If X is a mod p cohomology n-sphere, then X% is empty or is a
mod p cohomology m-sphere for some m < n. If p is odd, then n —m is even and

X% is non-empty if n is even.

If H is a non-trivial normal subgroup of G, then X% = (X™)%/H By induction
on the order of GG, Theorem 1.1 will be true in general if it is true when G = Z /p is
the cyclic group of order p. Our first proof is an almost trivial exercise in the use
of Bredon cohomology. We restrict attention to G = Z/p, but we do not assume
that X is a mod p cohomology sphere until we put things together at the end.

Observe that an exact sequence
0 —L—M-—N—70

of coefficient systems give rise to a long exact sequence

(1.2)
c— HL(X L) — HL(X; M) — HL(X;N) — HE'(X; L) — -

Let X = X/X%. The action of G on F'X is free away from the basepoint. There
are coefficient systems L, M, and N such that

41
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HL(X:L) = HY(FX/G),
HE(X5 M) = HY(X),
and
HL(X;N) = HY(X%).

To determine L, M, and N, we need only calculate the right sides when ¢ = 0 and
X is an orbit, that is, X = G or X = x. We find:

Let I be the augmentation ideal of the group ring F,[G], and let ™ denote both
the n'* power of I and the coefficient system whose value on (' is I™ and whose
value on * is zero. Then IP~! = L. It is easy to check that we have exact sequences

of coefficient systems
00— — M —LPN —0

and

0 —L —M—1HN — 0.

These exact sequences coincide if p = 2. By (1.2), they give rise to long exact

sequences
s HE(XST) — HO(X) — [(PX/G) & HY(X) — HE (X 1) — o
and
- — HY(FX/G) — H(X) — HL(X;NOH(XY) — HP(FX/G) — -
Define
a, = dim[:]q(FX/G), a, = dim HL(X; 1), b, = dim HY(X), ¢, = dim H(X).
Note that a, = a, if p = 2. We read off the inequalities
ag+ ¢y <by+ a1 and a,+ ¢, < by + agq.
I[teratively, these imply the following inequality for ¢ > 0 and r > 0.

(1.3) ag+ ¢t g1+t gy by F bgrr 0+ by + agprty
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where r is odd if p > 2. In particular, with ¢ = 0 and r large,

(1.4) Zcq < qu.
Using the further short exact sequences
0 — 1" 1" S L—0,1<n<p-1,
we can also read off the the Euler characteristic formula
(1.5) X(X) = X (X9) + px(FX/G).

FIRST PROOF OF THEOREM 1.1. Here 3~ b, = 2, hence }"¢, < 2. The case
S c, = 1 is ruled out by the congruence y(X) = x(X“) mod p; when p > 2, this
congruence also implies that n —m is even and that X is non-empty if n is even.

Taking ¢ = n+1 and r large in (1.3), we see that m cannot be greater than n. O

J. P. May. A generalization of Smith theory. Proc. Amer. Math. Soc. 101 (1987), 728-730.
P. A. Smith. Transformations of finite period. Annals of Math. 39 (1938), 127-164.

2. Borel cohomology, localization, and Smith theory

Let EG be a free contractible G-space. For a G-space X, the Borel construction
on X is the orbit space EG xg X and the Borel homology and cohomology of
X (with coefficients in an Abelian group A) are defined to be the nonequivariant
homology and cohomology of this space. For reasons to be made clear later, the
Borel construction is also called the “homotopy orbit space” and is sometimes
denoted Xj. People not focused on equivariant algebraic topology very often
refer to Borel cohomology as “equivariant cohomology.” We can relate it to Bredon
cohomology in a simple way. Let A denote the constant coefficient system at A.

Since the orbit spaces (G//H)/G are points, we see immediately from the axioms
that HE(X; A) is isomorphic to H*(X/G; A), and similarly in homology. Therefore

H(FEG xg X;A) 2 HLUEG x X;A) and H*(EG xg X;A) 2 HL(EG x X; A).

Observe that the Borel cohomology of a point is the cohomology of the classifying
space BG = EG/G. In this section, we shall use the notation

HL(X) = H*(EG % X),

standard in much of the literature.
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Here we fix a prime p and understand mod p coefficients. If X is a based G-space,

we let Hz(X) be the kernel of Hz(X) — Hz () = H*(BG). Equivalently,
H5(X) = H(EG Ag X).

Because G acts freely on EG, it acts freely on EG x X. Therefore, by the
Whitehead theorem, if f: X — Y is a G-map between G-CW complexes that is

a nonequivariant homotopy equivalence, then
Ixf:EGx X — EGXxY
is a G-homotopy equivalence and therefore
I xXgf:EGxg X — EG xgY

is a homotopy equivalence. At first sight, it seems unreasonable to expect FG x ¢ X
to carry much information about X, but it does.

We now assume that i is an elementary Abelian p-group, GG = (Z/p)" for some
n, and that X is a finite dimensional G-CW complex. We shall describe how to
use Borel cohomology to determine the mod p cohomology of X% as an algebra
over the Steenrod algebra, and we shall sketch another proof of Theorem 1.1. Our
starting point is the localization theorem.

Since G = (Z/p)*, H*(BG) is a polynomial algebra on n generators of degree
one if p = 2 and is the tensor product of an exterior algebra on n generators of
degree one and the polynomial algebra on their Bocksteins if p > 2. Let S be the
multiplicative subset of H*(B() generated by the non-zero elements of degree one

if p = 2 and by the non-zero images of Bocksteins of degree two if p > 2.

THEOREM 2.1 (LOCALIZATION). For a finite dimensional G-CW complex X,

the inclusion 7 : X¢ — X induces an isomorphism
" STEHE(X) — STUHE(XE).

Proof. Let F'X = X/X% By the cofiber sequence Xf — X, — FX,
it suffices to show that S™'HZ(FX) = 0. Here FX is a finite dimensional G-
CW complex and (FX)Y = *. By induction up skeleta, it suffices to show that
STUHE(Y) = 0 when Y is a wedge of copies of G/Hy A S9 for some H # G,
and such a wedge can be rewritten as Y = G/H, A K, where K is a wedge of
copies of S?. Since EG x¢ (G/H) = EG/H is a model for BH, we see that

EGi N Y = BHi N K. At least one element of S restricts to zero in H*(BH),
and this implies that S~ H%(Y) = 0.
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Localization theorems of this general sort appear ubiquitously in equivariant
theory. As here, the proofs of such results reduce to the study of orbits by general
nonsense arguments, and the specifics of the situation are then used to determine

what happens on orbits. When n = 1, we can be a little more precise.

LEMMA 2.2. If G = Z/p and dim X = r, then ¢* : HL(X) — HL(X%) is an

isomorphism for ¢ > r.

PRrROOF. It suffices to show that Hz(FX) = 0 for ¢ > r. Since FX is G-
free away from its basepoint, the projection FG, — SY induces a GG-homotopy

equivalence EGy A FX — FX and therefore a homotopy equivalence EG, Ag
FX — FX/G. Obviously dim(FX/G) <r. O

Since G acts trivially on X9, EG x¢ X9 = BG x X©.

SECOND PROOF OF THEOREM 1.1. Take G = Z/p and let X be a mod p ho-
mology n-sphere. We assume that X is non-empty. The Serre spectral sequence

of the bundle FG x X — BG converges from
H*(G;H"(X)) = H"(BG) @ H*(X)

to H5(X). Since a fixed point of X gives a section, Fy = Ey,. Therefore Hz(X)
is a free H*(BG)-module on one generator of degree n and, in high degrees, this

must be isomorphic to
H:(X9) = H*(BG, A XY) = H(BG) @ H*(XY).

By a trivial dimension count, this can only happen if X% is a mod p cohomology
m-sphere for some m. Naturality arguments from the H*( BG)-module structure
show that m must be less than n and must be congruent to n mod 2 if p > 2.
To see that X is non-empty if p > 2 and n is even, one assumes that X is
empty and deduces from the multiplicative structure of the spectral sequence that

X cannot be finite dimensional. [

Returning to the context of the localization theorem, one would like to retrieve
H*(X%) algebraically from S™YH(X). As a matter of algebra, S™LH(X) inherits
a structure of algebra over the mod p Steenrod algebra A from H5(X). However,

it no longer satisfies the instability conditions that are satisfied in the cohomology
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of spaces. For any A-module M, the subset of elements that do satisfy these

conditions form a submodule Un(M). Obviously the localization map

HH(BG) & H*(XO) = Hy(X%) — §~HH(X%) = 515 (X)
takes values in Un(S™'HE(X)). By a purely algebraic analysis, using basic infor-
mation about the Steenrod operations, Dwyer and Wilkerson proved the following

remarkable result. (They assume that X is finite, but the argument still works

when X is finite dimensional.)

THEOREM 2.3. For any elementary Abelian p-group G and any finite dimen-
sional G-CW complex X,

H*(BG) @ H*(XY) — Un(S™ H;(X))
is an isomorphism of A-algebras and H*(BG))-modules. Therefore
H*(XY) =T, Qe Un(STHE(X)).
We will come back to this point when we talk about the Sullivan conjecture.

A. Borel, et al. Seminar on transformation groups. Annals of Math. Studies 46. Princeton.
1960.

G.E. Bredon. Introduction to compact transformation groups. Academic Press. 1972.

T. tom Dieck. Transformation groups. Walter de Gruyter. 1987.

W.G. Dwyer and C.W. Wilkerson. Smith theory revisited. Annals of Math. 127(1988), 191-198.
W.-Y. Hsiang. Cohomology theory of topological transformation groups. Springer. 1975.



CHAPTER V

Categorical Constructions; Equivariant Applications

1. Coends and geometric realization

We pause to introduce some categorical and topological constructs that are used
ubiquitously in both equivariant and nonequivariant homotopy theory. They will
be needed in a number of later places. We are particularly interested in homotopy
colimits. These are examples of geometric realizations of spaces, which in turn are
examples of coends, which in turn are examples of coequalizers.

Let A be a small category and let € be a category that has all colimits. Write J]
for the categorical coproduct in €. The coequalizer C(f, f') of maps f, f': X —
YVisamap g :Y — C(f, f) such that ¢f = ¢gf and g is universal with this
property. It can be constructed as the pushout in the following diagram, where
V =1+ 1 is the folding map:

XTIx F+f v

"

X Cf. 1)

Coends are categorical generalizations of tensor products. Given a functor F' :

AP x A — €, the coend
A
/ F(n,n)

is defined to be the coequalizer of the maps

L T Feym) — T F(n,n)

d:m—n

47
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whose restrictions to the ¢th summand are
F(¢,id): F(n,m) — F(m,m) and F(Id,¢): F(n,m)— F(n,n),

respectively. It satisfies a universal property like that of tensor products. If the

objects of F'(n,n) have points that can be written in the form of “tensors” x @y,

then the coend is obtained from the coproduct of the F'(n,n) by identifying x¢ @y

with = @ ¢y whenever this makes sense. Here ¢ is a map in A, contravariant actions

are written from the right, and covariant actions are written from the left.
Dually, if € has limits, a functor /' : A x A — % has an end

/A F(n,n).

It is defined to be the equalizer, E(f, f'), of the maps
L0 Fm) — IT Fm,n)

d:m—n

whose projections to the ¢th factor are
F(@d,¢): F(m,m) — F(m,n) and F(¢,id): F(n,n) — F(m,n).

Recall that a simplicial object in a category % is a contravariant functor A —
€, where A is the category of sets n = {0,1,2,... ,n} and monotonic maps. Using
the usual face and degeneracy maps, we obtain a covariant functor A.: A — %
that sends n to the standard topological n-simplex A,. For a simplicial space
X, : A — %, we have the product functor

XiX At AP X N — Y.
Define the geometric realization of X, to be the coend
N
(1.1) X :/ X % A

It X, is a simplicial based space, so that all its face and degeneracy maps are
basepoint preserving, then all points of each subspace {*} x A, are identified to
the point (x,1) € Xo x A in the construction of | X.|, hence

A
(1.2) X.| = / X A (D)
If X. is a simplicial G-space, then |X,| inherits a G-action such that
(1.3) X7 = |XF| for all H C G.
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S. Mac Lane. Categories for the Working Mathematician. Springer. 1976.
J. P. May. The Geometry of Tterated Loop Spaces (§11). Springer Lecture Notes Vol 271. 1972.

2. Homotopy colimits and limits

Let & be any small topological category. We understand & to have a discrete
object set and to have spaces of maps d — d’ such that composition is continuous.
Let B,(Z) be the set of n-tuples f = (f1,..., f,) of composable arrows of Z,
depicted

f f In
dy <— dy <—— - d,.

Here Byo(Z) is the set of objects of Z and B,(Z) is topologized as a subspace of the
n-fold product of the total morphism space [ Z(d,d"). With zeroth and last face

given by deleting the zeroth or last arrow of n-tuples f (or by taking the source or

target of f; if n = 1) and with the remaining face and degeneracy operations given
by composition or by insertion of identity maps in the appropriate position, B.(Z)
is a simplicial set called the nerve of Z. Its geometric realization is the classifying
space BZ. If 7 has a single object d, then G = 2(d, d) is a topological monoid
(= associative Hopf space with unit) and BZ = B(G is its classifying space.

We can now define the two-sided categorical bar construction. It will specialize
to give homotopy colimits. Let T : & —— % be a continuous contravariant
functor. This means that each T'(d) is a space and each function T': Z(d,d') —
2 (T(d"), T(d))is continuous. Let S : Z — % be a continuous covariant functor.
We define

(2.1) B(T,2,5) = |B/T,2,5)|.
Here B.(T, 2, 5) is the simplicial space whose set of n-simplices is
{(t, f,9)[t € T(do), f € Bu(Z), and s € S5(dn)},

topologized as a subspace of the product ([I7T(d)) x (II Z(d,d'))" x (11 5(d));
Bo(T,2,5)=11T(d) x S(d). The zeroth and last face use the evaluation of the
functors T' or .S; the remaining faces and the degeneracies are defined like those of
B.2.

Since the coend of T' x S : PP x & — 9/ is exactly the coequalizer of dy, d; :
B(T,2,5) — Bo(T,Z,S5), we obtain a natural map

(2.2) ¢: B(T,2,5) — /@ T(d) x S(d) =T @ 5.



50 V. CATEGORICAL CONSTRUCTIONS; EQUIVARIANT APPLICATIONS

It is obtained by using iterated compositions to mapB.(T, Z, S)to the constant
simplicial space at the cited coend, which we denote by T'®4 S.

Let Z. be the covariant functor represented by an object e of Z, so that Z.(d) =
Z(e,d). Then € reduces to a map

e:B(T,2,7.) — T(e),

and this map is a homotopy equivalence. In fact, using the identity map of e, we
obtain an inclusion 5 : T'(e) — B(T, 2, Z.) such that en = 1 and a simplicial
deformation ne ~ id. There is a left—right symmetric analogue.

If the functor S takes values in G%, then B.(T,Z,5) is a simplicial G-space
and B(T,2,5) is a G-space such that

(2.3) B(T,7,5)" = B(T,2,5%).
We define the homotopy colimit of our covariant functor S by
(2.4) Hocolim S = B(*, Z,95),

where x : & — 9/ is the trivial functor to a 1-point space. Here the coend on

the right of (1.5) is exactly the ordinary colimit of S. Thus we have
(2.5) ¢ : hocolim S — colim S.

When ( is a group regarded as category with a single object and X is a (left) G-
space regarded as a covariant functor, the homotopy colimit of X is the “homotopy
orbit space” FG x¢ X = X/hG, and ¢ is the natural map X/hG — X/G.

Our preferred definition of homotopy limits is precisely dual. We have a cosim-
plicial space C.(T, 2, 5), the two-sided cobar construction. Its set of n-cosimplices
is the product over all f € B,(Z) of the spaces T'(dy) x S(dy), topologized as a
subspace of Map(B,(2),[1T(d) x S(d')). The fth coordinates of the cofaces and
codegeneracies with target C,(T,2,5) are obtained by projecting onto the co-
ordinate of their source that is indexed by the corresponding face or degeneracy

applied to f, except that, for the zeroth and last coface, we must compose with
T(f1) xid : T'(do) x S(dn) — T(dy) x S(d,)

or

id % S(f) : T(do) x S(dy) —> T(do) % S(dp_y).
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We define the geometric realization, or totalization, “TotY,” of a cosimplicial

space Y, to be the end
(2.6) TotY, = / Map(A, V).
A

Here we are using the evident functor A? x A — %/ that sends (m,n) to

Map(A,,, Yy). If Y takes values in based spaces, we may rewrite this as
(2.7) TotY, = / F((An)s, Vo).
A

We then define
(2.8) C(1,2,5) = TotC.(T, 2. ),
and we have a natural map
@

(2.9) 0 :/ T(d) x S(d) — C(T, 7, S).

We define the homotopy limit of our contravariant functor T : & — % to be
(2.10) Holim T’ = TotC. (T, 7, +),
and we see that n specializes to give a natural map
(2.11) g :imT — holimT.

When G is a group regarded as a category with a single object and X is a
(right) G-space regarded as a contravariant functor, the homotopy limit of X is

the “homotopy fixed point space” of G-maps KG' — X,
Mapg(EG, X) = Map(EG, X)9 = X9,

and 7 is the natural map X¢ — X"“ that sends a fixed point to the constant
function at that point. This map is the object of study of the Sullivan conjecture.
A. K. Bousfield and D. M. Kan. Homotopy limits, completions, and localizations. Springer

Lecture Notes in Mathematics Vol 304. 1972.
J. P. May. Classifying spaces and fibrations (§12). Memoirs Amer. Math. Soc. No. 155, 1975.
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3. Elmendorf’s theorem on diagrams of fixed point spaces

Recall that ¢ is the category of orbit spaces. We shall regard ¢ as a topological
category with a discrete set of objects. We write [G/H] for a typical object, to
avoid confusing it with the G-space GG/H. The space of morphisms [G/H] —
[G/K] is the space of G-maps G/H — G//K, and this space may be identified
with (G/K)". Define a ¥-space to be a continuous contravariant functor 4 —
7. A map of ¥-spaces is a natural transformation, and we write 4% for the
category of G-spaces. We shall compare this category with G%. We have already

observed that a G-space X gives a ¥-space X*, and we write
S:GU — GU

for the functor that sends X to X*. We wish to determine how much information
the functor ® loses.

By the definition of € (X), it is clear that the ordinary homology and coho-
mology of X depend only on ®X. If T': ¢ — 9% is a ¥-space such that each
T(G/H) is a CW-complex and each T(G/K) — T(G/H) is a cellular map, then
we can define HE(T; M) exactly as we defined HA(X; M). Note, however, that
unless G is discrete, X* will not inherit a structure of a CW-complex from a
G-CW complex X. Indeed, for compact Lie groups, we saw that it was not quite
the functor X that was relevant to ordinary cohomology, but rather the functor

that sends G/H to X /W, H.

There is an obvious way that ¢-spaces determine G-spaces.

LEMMA 3.1. Define a functor © : Y% — G by OT = T(G/e), with the
G-maps GG/e — G/e inducing the action. Then O is left adjoint to P,

GU (T, 0X) = Gw (0T, X).

ProOOF. Clearly ©0X = X. The quotient map G — G/H induces a map
n: T(G/H) — T(G/e), and these maps together specify a natural map 7 :
T — ®OT. Passage from ¢ : T' — ®X to O¢ : OT — X is a bijection whose
inverse sends f : 0T — X to®fon. O

The following result of Elmendorf shows that ¢-spaces determine GG-spaces in a
less obvious way. In fact, up to homotopy, any ¥-space can be realized as the fixed
point system of a GG-space and, up to homotopy, the functor ® has a right adjoint
as well as a left adjoint. Note that we can form the product T' x K of a ¥-space
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T and a space K by setting (T'x K)(G/H) =T(G/H) x K. In particular, T' x [
is defined, and we have a notion of homotopy between maps of ¢-spaces. Write

[T, T'4 for the set of homotopy classes of maps T — T".

THEOREM 3.2 (ELMENDORF). There is a functor ¥ : Y% — G% and a
natural transformation ¢ : ®¥ — id such that each e : (U7 — T(G/H) is
a homotopy equivalence. If X has the homotopy type of a G-CW complex, then

there is a natural bijection
X, WTg 2 [0X, .

PROOF. Let S : ¢ — G% be the covariant functor that sends the object
[G/H] to the G-space GG/H. On morphisms, it is given by identity maps

Y(|G/H),[G/K]) — GZ(G/H,G/K).
For a ¢¥-space T, define UT to be the G-space B(T,¥,5). We have
SHIG/K) = (G/K)Y! = G (G/H,G/K) = 9([G/H],[G/K]),

and (2.2) and (2.3) give homotopy equivalences ¢ : (VT)# — T(G/H) that define

a natural transformation ¢ : ¥ — id. Clearly
O : VT =00oYT — OT

is a weak equivalence of G-spaces for any 7. With T = ® X, this gives a weak
equivalence Q¢ : VX — X. We can check that W®.X has the homotopy type
of a G-CW complex if X does. Therefore Oc is an equivalence, and we choose a

homotopy inverse (O¢)~!. Define
a:[X,¥T]g — [®X,T]ey and [§:[®X,T]y — [X, VT4

by a(f) = e o ®f and B(¢) = ¥oé o (Oc)~!. Easy diagram chases show that
af(¢) ~ ¢ and Ba(f) =~ (Ve)o (Oz)~! o f. Since Ve is a weak equivalence, the
Whitehead theorem gives that Fa is a bijection. It follows formally that « and

are inverse bijections. [

A. D. Elmendorf. Systems of fixed point sets. Trans. Amer. Math. Soc. 277(1983), 275-284.



54 V. CATEGORICAL CONSTRUCTIONS; EQUIVARIANT APPLICATIONS

4. Eilenberg-Mac Lane (G-spaces and universal F-spaces

We give some important applications of this construction, starting with the

construction of equivariant Eilenberg-Mac Lane spaces that we promised earlier.

EXAMPLE 4.1. Let B be the classifying space functor from topological monoids
to spaces. It is product-preserving, and it therefore gives an Abelian topological
group when applied to an Abelian topological group. If 7 is a discrete Abelian
group, then the n-fold iterate B"r is a K(w,n). A coefficient system M : hY —
/b may be regarded as a continuous functor 4 — % (with discrete values). We
may compose with B" to obtain a ¢-space B™ o M. In view of the equivalences
e:U(B"o M) — K(M(G/H),n), ¥(B"oM)is a K(M,n). Theorem 3.2 gives

a homotopical description of ordinary cohomology in terms of maps of ¥-spaces:
HY(X; M) = [X,K(M,n))g = [®X, B" 0 M]q.

In interpreting this, one must remember that the right side concerns homotopy
classes of genuine natural transformations ®X — B"M, and not just natural
transformations in the homotopy category. The latter would be directly com-

putable in terms of nonequivariant comology.

EXAMPLE 4.2. If M is a contravariant functor from A% to (not necessarily

Abelian) groups, then we can regard BoM as a ¢4-space and so obtain an Eilenberg-

Mac Lane G-space K(M,1) = ¥ (Bo M).

EXAMPLE 4.3. A set-valued functor M on h%¥ is the same thing as a continu-
ous set-valued functor on ¢. Applying ¥ to such an M, we obtain an Eilenberg-
Mac Lane G-space K (M, 0). Its fixed point spaces K (M, 0)? are homotopy equiv-
alent to the discrete spaces M(G//H), but the G-space K(M,0) generally has
non-trivial cohomology groups in arbitrarily high dimension. For set-valued coef-
ficient systems M and M’, let Naty(M, M) be the set of natural transformations
M — M’. Then Theorem 3.2 and the discreteness of M give isomorphisms

(4.4) (X, K(M,0)]g = [0X, My = Natg(zo(X), M).

This may seem frivolous at first sight, but in fact the spaces K(M,0) are cen-
tral to equivariant homotopy theory. For example, we shall see later that the
isomorphisms just given specialize to give a classification theorem for equivariant
bundles — and to reprove the classical classification of nonequivariant bundles.

The relevant K(M,0)’s are special cases of those in the following basic definition.
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DEFINITION 4.5. A family .% in G is a set of subgroups of GG that is closed
under subconjugacy: if H € .% and ¢7'Kg C H, then K € .%. An .Z-space is a
G-space all of whose isotropy groups are in .%. Define a functor .Z : h¥9 — Sets
by sending GG/H to the 1-point set if H € .# and to the empty set if H ¢ %
Define the universal .#-space E.% to be W.Z. It is universal in the sense that, for

F-space X of the homotopy type of a G-CW complex, there is one and, up to
homotopy, only one G-map X — E.Z%. Define the classifying space of the family
F to be the orbit space B.Z = E.% /(.

In thinking about this example, it should be remembered that there are no
maps from a non-empty set to the empty set. In particular, there are no G-maps
X — EZ if X is not an F-space. This also shows that the functor .# only
makes sense if the given set .# of subgroups of G is a family. We augment the

definition with the following relative version. It will become very important later.

DEFINITION 4.6. For a subfamily .# of a family %', define E(.#', %) to be the
cofiber of the based G-map (unique up to homotopy) EF, — EF.. Let &/l
be the family of all subgroups of G, and let £.Z = E(a/ll, F). Since Ea/ U is
G-contractible, £.Z is equivalent to the unreduced suspension of E.Z with one
of the cone points as basepoint. The space (Eﬂ)H is contractible if H € % and
is the two-point space S° if H ¢ #. For .Z C F', the G-space E(.F', .F) is
equivalent to I.7| A EZ.

The following observation will become valuable when we examine the structure

of equivariant classifying spaces.
LEMMA 4.7. Let .% be a family in G and H be a subgroup of G.
(a) Regarded as an H-space, E.% is E(%|H), where
FIH={K|K €.% and K C H}.
(b) If H € .7, then, regarded as a W H-space, (E.Z)! is E(Z"), where
FH = {L|L = K/H for some K € Z such that H C K C NH}.

The classical example is .% = {e}. An {e}-space X is a G-space all of whose
isotropy groups are trivial. That is, X is a free G-space. Then FG = FE{e} is
exactly the standard example of a free contractible G-space, and the quotient map
7 : EG — BG is a principal G-bundle. Given the result that pullbacks of bundles

along homotopic maps are homotopic, we have already proven that = is universal.
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Indeed, if p: £ — B is a principal G-bundle, we have a unique homotopy class
of G-maps f: E — EG. The map f: B — B( that is obtained by passage to
orbits from f is the classifying map of p. Certainly p is equivalent to the bundle
obtained by pulling # back along f.

When G is discrete, the ordinary homology and cohomology of the G-spaces
E.Z admit descriptions as Ext groups, generalizing the classical identification of
the homology and cohomology of groups with the homology and cohomology of
K(m,1)’s. This can be seen from the projectivity of the cellular chains C (F.%)
and inspection of definitions or by collapse of the universal coefficients spectral
sequences. Write Z[.Z] for the free Abelian group functor composed with the
o

functor #

PRrROPOSITION 4.8. Let G be discrete. For a covariant coefficient system N and

a contravariant coefficient system M,

HE(EZ;N) = Tor?(Z[.Z);N) and H}(E.Z; M) = Exty(Z[.Z]; M).



CHAPTER VI

The Homotopy Theory of Diagrams

by Robert J. Piacenza

1. Elementary homotopy theory of diagrams

A substantial portion of the homotopy, homology, and cohomology theory of
Gi-spaces X depends only on the underlying diagram of fixed point spaces ®X :
9 — % . There is a vast and growing literature in which the homotopy theory of
spaces is generalized to a homotopy theory of diagrams of spaces that are indexed
on arbitrary small indexing categories. The purpose of this chapter is to outline
this theory and to demonstrate the connection between diagrams and equivariant
theory. A very partial list of sources for further reading is given at the end of this
section.

Throughout the chapter, we let % be the cartesian category of compactly gener-
ated weak Hausdorff spaces and let J be a small topological category over % with
discrete object space. Define %77 to be the category of continuous contravariant
% -valued functors on J. Its objects are called either diagrams or J-spaces; its
morphisms, which are natural transformations, are called J-maps. Note that 27
is a topological category: its hom sets are spaces and composition is continuous.

Let I be the unit interval in 7. If X and Y are diagrams, then a homotopy
from X toYisa J-map H: [ x X — Y, where [ x X is the diagram defined
on objects j € |J| by (I x X)(j) = I x X(j) and similarly for morphisms of .J. In
the usual way homotopy defines an equivalence relation on the J-maps that gives
rise to the quotient homotopy category h%”. We denote the homotopy classes of
J-maps from X to Y by h%/7(X,Y), abbreviated h(X,Y). An isomorphism in

57
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h? will be called a homotopy equivalence.

A J-map is called a J-cofibration if it has the J homotopy extension property,
abbreviated J — HEP. The basic facts about cofibrations in % apply readily to
J-cofibrations.

The following standard results for spaces are inherited by the category %/7.

THEOREM 1.1 (INVARIANCE OF PUSHOUTS). Suppose given a commutative di-

agram:
4-—1-p
X

[}

/

|
v
. I
&5\1&’ 7 l
Y
X/\B Y/
in which ¢ and ¢ are J-cofibrations, f and f’ are arbitrary J-maps, «, 3, and ~

are homotopy equivalences, and the front and back faces are pushouts. Then the

induced map é on pushouts is also a homotopy equivalence.

THEOREM 1.2 (INVARIANCE OF COLIMITS OVER COFIBRATIONS). Suppose

given a homotopy commutative diagram

10 i1

XO Xl Ce Xk
e K
o Jo Vi J1 o vk Jk

in %7 where the ¢}, and jj are J-cofibrations and the f* are homotopy equivalences.

Then the map colimy, f* : colimy X* — colimy, Y* is a homotopy equivalence.

The reader will readily accept that other such standard results in the homotopy

theory of spaces carry over directly to the homotopy theory of diagrams.

W. G. Dwyer and D. M. Kan. An obstruction theory for diagrams of simplicial sets. Proc. Kon.
Ned. Akad. van Wetensch A87=Ind. Math. 46(1984), 139-146.

W. G. Dwyer and D. M. Kan. Singular functors and realization functors. Proc. Kon. Ned.
Akad. van Wetensch A87=Ind. Math. 46(1984), 147-153.

W. G. Dwyer, K. M. Kan, and J. H. Smith. Homotopy commutative diagrams and their real-
izations. J. Pure and Appl. Alg. 57(1989), 5-24.

E. Dror Farjoun. Homotopy and homology of diagrams of spaces. Springer Lecture Notes in

Mathematics Vol. 1286, 1987, 93-134.
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E. Dror Farjoun. Homotopy theories for diagrams of spaces. Proc Amer. Math. Soc. 101(1987),
181-189.

A. Heller. Homotopy in functor categories. Trans. Amer. Math. Soc. 272(1982), 185-202.

R. J. Piacenza. Homotopy theory of diagrams and CW-complexes over a category. Canadian J.
Math. 43(1991), 814-824.

K. Sarnowski. Homology and cohomology of diagrams of topological spaces. Thesis. University
of Alaska. 1994.

Y. Shitanda. Abstract homotopy theory and homotopy theory of functor category. Hiroshima
Math. J. 19(1989), 477-497.

I. Moerdijk and J. A. Svensson. A Shapiro lemma for diagrams of spaces with appliations to
equivariant topology. Compositio Mathematica 96(1995), 249-282.

2. Homotopy Groups

Let I™ be the topological n-cube and 9I™ its boundary. For an object j € |J],

let j € %7 denote the associated represented functor; its value on an object k is

the space %7 (k,j).

DEFINITION 2.1. By a pair (X,Y) in %77/, we mean a J-space X together with
a sub J-space Y. Morphisms of pairs are defined in the obvious way. Similar
definitions apply to triples, n-ads, etc. Let ¢ : j — Y be a morphism in 7. By
the Yoneda lemma, ¢ is completely determined by the point ¢(id;) = yo € Y(j).
For each n > 0, define

F%(Xv Yv ¢) = h((]nv a]nv {0}) X i’ (X7 Yv Y))

where yo = ¢(id;) € Y(j) serves as a basepoint, and all homotopies are homotopies
of triples relative to ¢. The reader may formulate a similar definition for the
absolute case 7/ (X, ¢). For n = 0 we adopt the convention that I° = {0,1} and
dI° = {0} and proceed as above. These constructions extend to covariant functors

on 7. From now on, we shall often drop ¢ from the notation 7/(X,Y, ).

The following proposition follows immediately from the Yoneda lemma.

PROPOSITION 2.2. There are natural isomorphisms 7/ (X) = 7,(X(j)) and
™ (X,Y) = 7,(X(5),Y(s)) that preserve the group structures when n > 1 (in

the absolute case; the relative case requires n > 2).

As a direct consequence of Proposition 2.2 we obtain the usual long exact se-

quences.
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PROPOSITION 2.3. For (X,Y) and j as in Definition 2.1, there exist natural

boundary maps d and long exact sequences
s T (X, Y) 5 (V) — (X)) — - — m(Y) — m(X)
of groups up to W{(Y) and pointed sets thereafter.

DEFINITION 2.4. A map e : (X,Y) — (X', Y") of pairs in % is said to be
an n-equivalence if e(7) : (X(),Y(j)) — (X'(y),Y’(y)) is an n-equivalence in %
for each j € |J|. A map e is said to be a weak equivalence if it is an n-equivalence
for each n > 0. Observe that e is an n-equivalence if for every j € |J| and
] — Y, e, : F]];(X, Y,¢) — F]];(X/,Y/, e¢) is an isomorphism for 0 < p < n
and an epimorphism for p = n. The reader may easily formulate similar definitions

for J-maps e : X — X’ (the absolute case).

3. Cellular Theory

In this section we adapt May’s preferred approach to the classical theory of CW
complexes to develop a theory of J-CW complexes.

Let D"*! be the topological (n + 1)-disk and S™ the topological n-sphere. Of
course, these spaces are homeomorphic to I"*! and 91" respectively. We shall
construct cell complexes over .J by the process of attaching cells of the form D™ *1 x

J by attaching morphisms with domain 5™ x j.

DEFINITION 3.1. A J-complex is an object X of %7 with a decomposition

X = colim,>¢ X? where
X°= 1] D x J,
a€Ay
and, inductively,
X? =X D J.)
f a€Ay

for some attaching J-map f : [l.ca, Sra=l l, — X?~1: here, for each p > 0,
{Jo | @ € A,} is a set of objects of J. We call X a J-CW complex if X is a
J-complex such that n, = p for all p > 0 and a € A,.

Now J-subcomplexes and relative J-complexes are defined in the obvious way.
We adopt the standard terminology for CW-complexes for J-CW-complexes with-
out further comment.

The following technical lemma reduces directly to its space level analog.
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LEMMA 3.2. Suppose that ¢ : ¥ — Z is an n-equivalence. Then we can
complete the following diagram in %”:

D O LR = IV (V0 LS U

_ / /
7 Y ‘
S . x _
/ \\h \\g
~ ~N

~N

D" xy : D" x I xy : D" x .

20 1

From here, we proceed exactly as in 1§3 to obtain the following results.

THEOREM 3.3 (J-HELP). If (X, A) is a relative J-CW complex of dimension
< nand e :Y — Z is an n-equivalence, then we can complete the following

diagram in Z7:

A Ax T A
7 y
/ b "
X X x T X.

THEOREM 3.4 (WHITEHEAD). Let e : Y — Z be an n-equivalence and X be
a J-CW complex. Then e, : h(X,Y) — h(X, Z) is a bijection if X has dimension
less than n and a surjection if X has dimension n. If ¢ is a weak equivalence, then

€.t M(X,Y) — h(X, Z) is a bijection for all X.

COROLLARY 3.5. If e : Y — Z is an n-equivalence between J-CW complexes
of dimension less than n, then e is a J-homotopy equivalence. If e is a weak

equivalence between J-CW complexes, then e is a J-homotopy equivalence.

THEOREM 3.6 (CELLULAR APPROXIMATION). Let (X, A) and (Y, B) be rela-
tive J-CW complexes, (X', A") be a subcomplex of (X, A), and f : (X, A) —
(Y, B) be a map of pairs in %7 whose restriction to (X', A’) is cellular. Then f is
homotopic rel X' U A to a cellular map ¢ : (X, A) — (Y, B).

COROLLARY 3.7. Let X and Y be J-CW complexes. Then any J-map [ :
X — Y is homotopic to a cellular J-map, and any two homotopic cellular J-

maps are cellularly homotopic.
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Next we discuss the local properties of J-CW complexes. First we develop some
preliminary concepts. Let X be a J-space and, for each j € |J], let t; : X(j) —
colimy X be the natural map of X(j) into the colimit. Observe that, for each
morphism s : ¢« — j of J, t; = t; 0 X(s). For each subspace A C colim; X,
we define A(j) = tj_l(A); for each morphism s : i — j of J, we define A(s) :
A(j) — A(i) to be the restriction of X(s). (As usual, we apply the k-ification
functor to ensure that all spaces defined above are compactly generated.) One
quickly checks that A is a J-space, that colim; A = A, and that there is a natural

inclusion A — X. To simplify notation, we write
X/J = colimy X
from now on.

DEFINITION 3.8. A pair (X, A) is a J-neighborhood retract pair (abbreviated
J-NR pair) if there exists an open subset U of X/J such that A C U and a
retraction r : U — A. A pair (X, A) is a J-neighborhood deformation retract
pair (abbreviated J-NDR pair) if (X, A) is a J-NR pair and the J-map r is a

J-deformation retraction.

Let X be a J-CW complex. The functor colim; sends the J-space A x j de-
termined by a space A and object j to the space A, and it preserves colimits.
Therefore the cellular decomposition of X determines a natural structure of a CW
complex on X/J; its attaching maps are the images under the functor colim; of
the attaching J-maps of X. One may also check that if A is a subcomplex of X/.J,
then A has a natural structure of a subcomplex of X. In particular, if A? is the

p-skeleton of X/J, then A? = X? is the p-skeleton of X.

PROPOSITION 3.9 (LOCAL CONTRACTIBILITY). Let X be a J-CW complex and
A = {a} be a point of X/J. Then there is an object j € |J| such that A 2 j, and
(X, A) is a J-NDR pair.

PROOF. Let a be in the p-skeleton but not in the (p—1)-skeleton of X/.J. Then
there is a unique attaching map f : S7' x j — X?~! such that a is in the interior
of D?. 1t follows that A = J. To construct the required neighborhood U, first take
an open ball Uy contained in the interior of B, and centered at a. Then U is a
neighborhood in (X/.J)? that contracts to A. One then extends Uy inductively cell

by cell by the usual space level procedure to construct the required neighborhood

U. O
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PrOPOSITION 3.10. Let X be a J-CW complex and A be a subcomplex of X/.J.
Then (X, A) is a J-NDR pair.

ProOF. It follows from J-HELP that A — X is a J-cofibration. Just as on
the space level, a J-cofibration is the inclusion of a J-NDR pair. [

R. J. Piacenza. Homotopy theory of diagrams and CW-complexes over a category. Canadian J.

Math. 43(1991), 814-824.

4. The homology and cohomology theory of diagrams

The ordinary homology and cohomology theories of 1§3 are special cases of a
construction that applies to the category %7 for any J. The difference is that
the theory in 1§3 started with G-CW complexes and then passed to the associated
diagrams defined on the orbit category of (&, whereas we here exploit the theory of
J-CW complexes. There is again a vast literature on the cohomology of diagrams,
some relevant references being listed in Section 1.

Define a J-coefficient system to be a continuous contravariant functor M : J —
a/'b. Continuity ensures that M factors through the homotopy category hJ. Let
/0" be the category of J-coefficient systems. It is an Abelian category, and
we can do homological algebra in it. As in [§4, a covariant homotopy invariant
functor  — /b induces a functor from J-spaces to .J-coefficient systems by
composition; we name such functors by underlining the name of the given functor.
Of course, we also have the notion of a covariant J-coefficient system.

Let (X, A) be a relative J-CW complex with n skeleton X" and observe that

(1.1) XX = (LD G )ALS™ %) = 5" A ()

where the 4 indicates the addition of disjoint basepoints. Define a chain complex

C.(X,A) in &b, called the J-cellular chains of (X, A), by setting
(4.2) C.(X,A)=H, (X", X"\ 7).

The connecting homomorphisms of the triples (X", X"~ X"=2) specify the dif-

ferential

(4.3) d:C,(X,A) — C,_, (X, A).
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Clearly (5.1) implies that

(4.4) Co(X, A7) = 3 Ho(J(jjo)+: Z)-
ja
The construction is functorial with respect to cellular maps (X, A) — (Y, B).

For a covariant J-coefficient system N, define the cellular chain complex of

(X, A) with coefficients N by
(4.5) CL(X, A N) = CL(X; 4) @y N,

where the tensor product on the right is interpreted as the coend over .J. Passing
to homology, we obtain the cellular homology H.(X, A; N).
For a contravariant J-coefficient system M, define the cellular cochain complex

of (X, A) with coefficients M by
(4.6) C*(X,A; M) = Hom;(C.(X;A), M).
Passing to cohomology, we obtain the cellular cohomology H*(X, A; M).

THEOREM 4.7. Cellular homology and cohomology for pairs of J-CW complexes
satisfy the standard FEilenberg-Steenrod axioms, suitably reformulated for dia-

grams.

REMARK 4.8. We may extend the cellular theory to arbitrary pairs of diagrams
by means of cellular approximations; see Proposition 4.6. That is, we extend our
homology and cohomology theories to theories that carry weak equivalences to
isomorphisms. We may also adapt Ilman’s construction of equivariant singular
theory to construct a singular theory for diagrams. Of course, the singular theory
is isomorphic to the cellular theory on the category of J-CW complexes.

S. Illman. Equivariant singular homology and cohomology. Memoirs Amer. Math. Soc. No.

156. 1975.

5. The closed model structure on %~

Just as the category of spaces has a (closed) model structure in the sense of
Quillen, so does the category of G-spaces for any (. This point of view has not
been taken earlier since the conclusions are obvious to the experts and perhaps
not very helpful to the novice on a first reading. However, since the homotopical
properties of categories of diagrams are likely to be less familiar than those of the

category of spaces, it is valuable to understand how they inherit model structures
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from the standard model structure on %, which is the special case of the trivial
category J in the definitions here. We use the name g¢-fibration and ¢-cofibration
for the model structure fibrations and cofibrations to avoid confusion with other
kinds of fibrations and cofibrations. The weak equivalences of the model structure
will be the weak equivalences that we have already defined; an acyclic g-fibration
is one that is a weak equivalence, and similarly for acyclic ¢-cofibrations. Consider
diagrams

A—X

1
gl b
/

B——Y

The map ¢ has the left lifting property (LLP) with respect to f if one can always
fill in the dotted arrow. The right lifting property (RLP) is defined dually.

DEFINITION 5.1. A J-map f: X — Y is a ¢-fibration if f(j): Y (y) — X(J)
is a Serre fibration for each object j € |J|. Observe that f is a ¢-fibration if f has
the homotopy lifting property for all objects of the form " xj. Amapg: A — B
is a g-cofibration if it has the LLP with respect to all acyclic ¢-cofibrations.

THEOREM 5.2. With the structure just defined, /7 is a model category.

PROOF. Just as as for spaces, one quickly checks Quillen’s axioms, using the

factorization lemma below to verify the factorization axiom M2. [

As for spaces, the proof leads directly to the following characterizations of ¢-

cofibrations and of acyclic ¢-fibrations.

COROLLARY 5.3. A J-map g : A — B is a ¢-cofibration if and only if it is a
retract of the inclusion A” — B’ of a relative J-complex (B’, A").

COROLLARY 5.4. A J-map f: X — Y is an acyclic ¢g-fibration if and only if
it has the RLP with respect to each ¢-cofibration S x j — D"t! x j.

LEMMA 5.5 (QUILLEN’S FACTORIZATION LEMMA). Any J-map f : X — YV

can be factored as f = po ¢, where ¢ is a ¢-cofibration and p is an acyclic ¢-
fibration.
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ProoFr. We construct a diagram

go g1

X Z° Zt

Y

as follows. Let Z7! = X and p_; = f. Having obtained Z"~!, consider the set of

all diagrams of the form

. to
Sa J, —= gn-1

s

D= xlas—>y

Forming the coproduct over all of the left vertical arrows, we may define g, :

7"t — Z™ by the pushout diagram

We have allowed the zero dimensional pair (D, S™!) = ({pt}, ) in this construc-
tion. Define p, : Z% — Y by pushing out along p,_; and the coproduct of the

maps S,. Then let
Z =colimZ", p=colimp,, and ¢ =colimg,¢,_1--"go.

One may check that ¢ has the LLP with respect to each acyclic ¢-fibration and,
by the “small object argument” based on the compactness of the D", that p is an

acyclic g-fibration. [J

Let A% 7 be the localization of A% obtained by formally inverting the weak
equivalences. The model structure implies that A% 7 is equivalent to the homotopy

category of J-CW complexes, as we indicate next.

LEMMA 5.6. Let X = colim X, taken over a sequence of J-cofibrations such that
each X, has the homotopy type of a J-CW complex. Then X has the homotopy
type of a J-CW complex.
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Proo¥F. Up to homotopy, we may approximate the sequence by a sequence of
J-CW complexes and cellular inclusions; we then use the homotopy invariance of
colimits (Theorem 1.2). O

The following proposition follows easily.

PROPOSITION 5.7. Each J-complex is of the homotopy type of a J-CW com-
plex.

THEOREM 5.8 (APPROXIMATION THEOREM). There is a functor I' : 27/ —
%7 and a natural transformation v : I' — id such that, for each X € 7, I'X is
a J-complex and v : '’X — X is an acyclic ¢g-fibration.

ProOF. Applying Lemma 5.3 to the inclusion of the empty set in X, we obtain
an acyclic ¢-fibration v : '’X — X. By the explicit construction, we see that I'’X

is a J-complex, I' is a functor, and ~ is a natural transformation. [
The following corollary is immediate from the previous two results.

COROLLARY 5.9. The category h% 7 is equivalent to the homotopy category of
J-CW complexes.

D. G. Quillen. Homotopical Algebra. Springer Lecture Notes in Mathematics Vol. 43. 1967.
W. G. Dwyer and J. Spalinsky. Homotopy theories and model categories. In “Handbook of
Algebraic Topology”, edited by .M. James. North Holland, 1995, pp 73-126.

6. Another proof of Elmendorf’s theorem

The theory of diagrams leads to an alternative proof of Elmendort’s theorem
V.3.2, one which gives a precise cellular perspective and illustrates the force of
model category techniques. We adopt the notations of V§3.

Observe that the fixed point diagram functor ® from G-spaces to ¥-spaces
carries X x G/H to X x G/H for a space X regarded as a G-trivial G-space.

Thus it preserves cells. It also preserves the pushouts relevant to cellular theory.

LEMMA 6.1. If

A—X
B Y

R
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is a pushout of GG-spaces in which ¢ is a closed inclusion, then

PA— DX

o

OB ——Y
is a pushout of ¥-spaces.

PROOF. Stripping away the topology we see that this holds on the set level
since every (-set is a coproduct of orbits. One may then check that the topologies

agree. [

THEOREM 6.2. Each ¢-complex (or ¥-CW complex) Y € ¥% is isomorphic to
¢ X for some G-complex (or G-CW complex) X. Therefore ® is an isomorphism
between the category of G-complexes (or 4-CW complexes) and the category of
&-complexes (or 4-CW complexes).

PrOOF. The functor ® carries (G-complexes to ¢-complexes since it preserves
cells, the relevant pushouts, and ascending unions. The assertion follows since ®

is full and faithful: inductively, the attaching maps of Y are in the image of . [
This leads to our alternative version of V.3.2.

THEOREM 6.3 (ELMENDORF). There is a functor ¥ : Y% — G% and a
natural transformation ¢ : ®¥ —— id such that WX is a G-complex, PV X is a
¢-complex, and ¢ : PUX — X is a weak equivalence of G-spaces for each ¥¢-

space X. Therefore ® and U induce an equivalence of categories between h¢%

and hGU .

ProoF. We construct the functor ¥ and transformation ¢ by using the functor
I' and transformation p given in Theorem 5.7 on the level of diagrams and using
Theorem 6.2 to transport from ¥-complexes to GG-complexes. The result follows
from the cited results and Corollary 5.8. O

COROLLARY 6.4. Let Y be a G-space of the homotopy type of a G-CW complex.
Then, for any ¥¢-space X,

hGU (Y, UX) = hgU (DY, X) = h(Y, X).

Proor. This follows from Theorem 6.3 and generalities about model cate-
gories. []
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In turn, this implies the following comparison with the original form, V.3.2, of

Elmendorf’s theorem.

COROLLARY 6.5. Write U’ and &’ for the constructions given in V.3.2. For a
@-space X, there is a weak equivalence of G-spaces ¢ : WX — W'X such that &

is natural up to homotopy and the following diagram commutes up to homotopy:

oUX oYU' X

R

X.
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CHAPTER VII

Equivariant Bundle theory and Classifying Spaces

1. The definition of equivariant bundles

Equivariant bundle theory can be developed at various levels of generality. We
assume given a subgroup II of a compact Lie group I'. We set G = I'/1I, and we
let ¢ : I' — G be the quotient homomorphism. That is, we consider an extension

of compact Lie groups
l—II—I—G—1.

Many sources restrict attention to split extensions, but we see little point in that.
By far the most interesting case is I' = G x II. When Il is O(n) or U(n), this case
will lead to real and complex equivariant K -theory.

Define a principal (II; I')-bundle to be the projection to orbits p: £ — E /Il =
B of a Il-free I'-space E. Note that G acts on the base space B. Let [ be a
I-space. By a G-bundle with structural group II, total group I', and fiber F'| we
mean the projection E xy ' — B induced by a principal (II;T')-bundle E; E is
called the associated principal bundle. Although we prefer to think of bundles this
way, it 1s not hard to give an intrinsic characterization of when a G-map ¥ — B
that is a Il-bundle with fiber F'is such a (II; I')-bundle.

When I' = G x 11, we shall refer to (G, II)-bundles rather than to (II; G x 1I)-
bundles. Here it is usual to require the fiber F' be a Il-space. A principal (G, 1I)-
bundle £ has actions by G and II that commute with one another; it is usual to
write the action of 1I on the right and the action of G on the left. Equivariant
vector bundles fit into this framework: a (G, O(n))-bundle with fiber R" is called

an n-plane G-bundle, and similarly in the complex case. The tangent and normal

71
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bundles of a smooth G-manifold give examples.

EXAMPLE 1.1. A finite G-cover p : ¥ — B is a G-map that is also a finite
cover. Such a map is necessarily a (G, Y, )-bundle with fiber the ¥,-set F' =
{1,...,n}. Its associated principal (G, ¥, )-bundle F is the subspace of Map(F,Y)

consisting of the bijections onto fibers of p.

Classical bundle theory readily generalizes to the equivariant context, and we
content ourselves with a very brief summary of some of the main points. A prin-

cipal (II; T')-bundle is said to be trivial if it is equivalent to a bundle of the form
gxid:I'xy U — G xyxU,

where H C G, A C I', ANIl = e, ¢ maps A isomorphically onto H, and U
is an H-space regarded as a A-space by pullback along ¢. Provided that £ and
therefore also B are completely regular, a principal (II;T')-bundle p : £ — B is
locally trivial. If, in addition, B is paracompact, then p is numerable. Numerable
(II; T')-bundles satisfy the equivariant bundle covering homotopy property, and
a numerable bundle E over B x [ is equivalent to the bundle (£ x {0}) x [I.
Therefore the pullbacks of a numerable (II; I')-bundle along homotopic G-maps

are equivalent.

R. K. Lashof. Equivariant bundles. Tll. J. Math. 26(1982).

R. K. Lashof and J. P. May. Generalized equivariant bundles. Bulletin de la Société Mathéma-
tique de Belgique 38(1986), 265-271.

L. G. Lewis, Jr., J. P. May, and M. Steinberger (with contributions by J. E. McClure). Equiv-
ariant stable homotopy theory. (IV§1.) Springer Lecture Notes in Mathematics Vol. 1213.
1986.

2. The classification of equivariant bundles

Let Z(I;T)(X) be the set of equivalence classes of principal (II;I')-bundles
with base G-space X. We assume that X has the homotopy type of a G-CW
complex, and we check that this implies that any bundle over X has the homotopy
type of a I-"CW complex. Then Elmendort’s theorem, V.3.2, specializes to give a

classification theorem for principal (II; I')-bundles.

DEFINITION 2.1. Define F(II;T') to be the family of subgroups A of I' such
that A N1l = e and observe that an % (II; I')-space is the same thing as a II-free
[-space. Write

E(ILT)=FEZLT) and B(LT) = E(IL; T')/11,
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and let
7 E(I;T) — B(II; T)
be the resulting principal (II;I')-bundle. In the case I' = G x 11, write F(Il) =
F(I; G x 10),
Eq(Il) = E(II; G x IT) and Bg(Il) = B(IL; G x 1I).
Observe that, since E(II;T') is a contractible space, B(II;T') is a model for BII

that carries a particular action by G.

THEOREM 2.2. The bundle = : E(I;T') — B(I;T') is universal . That is,
pullback of 7 along G-maps X — B(I[;I') gives a bijection

(X, B(ILT)]¢ — B(ILT)(X).

It is crucial to the utility of this result to understand the fixed point structure
of B(II;I'). For any principal (II;I')-bundle p : £ — B and any H C G, one
can check that B is the disjoint union of the spaces p(E*), where A runs over
the Il-conjugacy classes of subgroups A C I' such that ANIl = e and ¢(A) = H.
Define

(2.3) I* =11 N NpA = 11N ZrpA,

where Zr A is the centralizer of A in I'; the equality here is an easy observation.
Then E* is a principal (IT*; WrA)-bundle and p(E*) is its base space. We can go
on to analyze the structure of BY as a WgH-space. In the case of the universal
bundle, we can determine the structure of E* by use of IV.4.7. Putting things

together, we arrive at the following conclusion.
THEOREM 2.4. For a subgroup H of GG,
B(ILT)" = [T BI"),

where the union runs over the Il-conjugacy classes of subgroups A of I' such that

ANII =eand ¢g(A) = H; as a W H-space,
BIL DY = [[WaH xvay B(IIY; WrA),

where the union runs over the ¢7*( NgH )-conjugacy classes of such groups A and

V(A) = WrA/TI* is the image of WA in We H.
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Here, by use of Lie group theory, V(A) has finite index in W H.
Specializing to I' = G x 11, we see that the subgroups A of I' such that ANII = e

are exactly the twisted diagonal subgroups

(2.5) Alp) = {(h, p(h))|h € H},

where H is a subgroup of G and p : H — Il is a homomorphism. Let N(p) =
NeaxnA(p) and observe that

N(p)=1{(g,7)lg € NoH and 7wp(h)x~' = p(ghg™") for all h € H}.
Therefore 11 N N(p) coincides with the centralizer
(2.6) I1? = {x|rp(h) = p(h)7 for all h € H}.
Let
W(p) = WGxHA(P) and V(p) = W(p)/Hp C WgH.
As usual, let Rep(G, 1) denote the set of II-conjugacy classes of homomorphisms
(G — 1II. Define an action of the group WgH on the set Rep(H,II) by letting
(¢H)p be the conjugacy class of ¢ - p, where, for ¢ € NoH, g-p: H — 1l is
the homomorphism specified by (¢ - p)(k) = p(¢ ' hg). Observe that the isotropy
group of (p) is V(p).
THEOREM 2.7. For a subgroup H of G,
(BeID" =] B(11*),
where the union runs over (p) € Rep(H,11); as a W H-space,
(Bgﬂ H WgH Xv( ) B(Hp; W(p)),
where the union runs over the orbit set Rep(H,Il)/ W H.

It is important to observe that the group W(p) need not split as a product
V(p) x II” in general. Therefore, in order to fully understand the classifying G-
spaces for (G, 1II)-bundles, one is forced to study the classifying spaces for the
more general kind of bundles that we have introduced. These are complicated
objects, and their study is in a primitive state. In particular, rather little is
known about equivariant characteristic classes. Such classes are understood in
Borel cohomology, however. By the universal property of F(II;I'), there is a
[-map FT' — E(IL;T'), which is unique up to homotopy. The induced G-map
ET/II — B(II;I') is a nonequivariant equivalence and so induces an isomorphism
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on Borel cohomology. The projection FG x ET' — FET is clearly a I'-homotopy

equivalence, and it induces an equivalence
EG xq (ET/II) = (FG x ET)/I' — ET/T' = BI.

This already implies the following calculation. We again denote Borel cohomology
by H for the moment.

THEOREM 2.8. With any coefficients, H(B(IL; T')) = H*(BI'). With field co-
efficients, Hj(Bgll) = H*(BG) @ H*(BIl) as an H*(BG)-module.

The interpretation is that the Borel cohomology characteristic classes of a prin-
cipal (G,II)-bundle F over X are determined by the H*(BG)-module structure
on HZ(X) together with the nonequivariant characteristic classes of the II-bundle
EG xq E over EG xg X.

We shall later see that generalized versions of the Atiyah-Segal completion the-
orem and of the Segal conjecture give calculations of the characteristic classes of

(G, II)-bundles in equivariant K-theory and in equivariant cohomotopy.

R. K. Lashof and J. P. May. Generalized equivariant bundles. Bulletin de la Société Mathéma-
tique de Belgique 38(1986), 265-271.

J. P. May. Characteristic classes in Borel cohomology. J. Pure and Applied Algebra 44(1987),
287-289.

3. Some examples of classifying spaces

It is often valuable to have alternative descriptions of universal bundles. We
have Grassmannian models when II is an orthogonal or unitary group. These lead
to good models for the classifying spaces for equivariant K-theory, and, just as
nonequivariantly, they are useful for the proof of equivariant versions of the Thom

cobordism theorem.

EXAMPLE 3.1. For a real inner product G-space V', let BO(n, V') be the G-space
of n-planes in V and let FO(n, V) be the G-space whose points are pairs consisting
of an n-plane 7 in V and a vector v € x. The map £O(n,V) — BO(n, V) that
sends (7, v) to 7 is a real n-plane G-bundle. Provided that V is large enough, say
the direct sum of infinitely many copies of each irreducible real representation of
G+, p is a universal real n-plane G-bundle. A similar construction works in the

complex case.
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Clearly a principal (IT; T')-bundle £ is universal if and only if E* is contractible
for A € Z(II;T'). Using the fact that the space of G-maps from a free G-CW
complex to a nonequivariantly contractible G-space is contractible, one can use this
criterion to obtain a simple model that has particularly good naturality properties.

Regard F (' as a I'-space via ¢ : ' — (G and define
Sec(EG, ET) C Map(FEG, ET)

to be the sub I'-space consisting of those maps f : G — ET such that the
composite of Fq: ET' — FEG and f is the identity map. Note that

Sec(EG, E(G x II)) = Map(EG, E1T)
since F(G x II) is homeomorphic to EG x EII.

THEOREM 3.2. The I'-space Sec(EG, ET') is a universal principal (II; I')-bundle
and therefore the G-space Sec(EG, ET') /11 is a model for B(II;T'). In particular,
the G x lI-space Map(FE G, E1I) is a universal principal (G, II)-bundle and therefore
the G-space Map(F G, ETI) /1 is a model for Bgll.

Since we are interested in maps from G-CW complexes into classifying spaces,
the fact that these models need not have the homotopy types of G-CW complexes
need not concern us.

Observe that the map 7 : EI' — BI' induces a natural G-map
(3.3) a: B(IL;T') = Sec(EG, ET) /Il — Sec(EG, BT),

where Sec( EG, BT') is the G-space of maps f : FG — BI such that the composite
of fand Bg: BI' — B is 7 : EG — BG. With I' = GG x 11, this map 1s

(3.4) a: Bgll — Map(EG, BII).

These maps have bundle theoretic interpretations. Restricting for simplicity to

the case I' = G' x II, let
Za(I)(X) = [X, Ball]a
be the set of equivalence classes of (G, II)-bundles over X and let Z(I)(X) be

the set of equivalence classes of nonequivariant II-bundles over X. By adjunction,

a G-map X — Map(EG, BII) is the same as a map FG x¢ X — BIl. Thus the
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represented equivalent of « is the Borel construction on bundles that was relevant

to Theorem 2.8; it gives
Be(I)(X) — ZB()(EG xq X).

It is important to know how much information this construction loses, hence it is
important to know how near « is to being an equivalence. Elementary covering

space theory gives the following result.

PROPOSITION 3.5. If T' is discrete, then the G-map « of (3.3) is a homeomor-
phism. If II, but not necessarily (7, is discrete, then the G-map « of (3.4) is a

homeomorphism.

An Abelian compact Lie group is the product of a finite Abelian group and
a torus. Using ordinary cohomology to study the finite factor and continuous
cohomology to handle the torus factor, Lashof, May, and Segal proved another

result along these lines.

THEOREM 3.6. If (G is a compact Lie group and II is an Abelian compact Lie
group, then the G-map « : Bgll — Map(EG, Bll) is a weak equivalence.

Consequences of the Sullivan conjecture will tell us much more about these
maps. To see this, we will need to know the behavior of the maps « on fixed point

spaces. We have determined the fixed point spaces B(II;T), and it is clear that
Sec(EG, BT = Sec(BH, BT
is the space of maps f: BH — BI such that
Bqo f=Bi: BH — BG,

where ¢ : H — (' is the inclusion and we take Bi to be the quotient map

EG/H — EG/G. In particular,
Sec(BH, BG x BIl) = Map(BH, BII).

LEMMA 3.7. Let A C I' satisfy ANIl = e and ¢(A) = H. Define a homomor-
phism g : H x T* — T by u(q(\),7) = Ar and observe that gopu =107 :
H x 11" — . The restriction of

o B(I; T)" — Sec(BH, BT
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to B(IT") is the adjoint of the classifying map
By : BH x B(II*) = B(H x 1I*) — BT,
Therefore, if I' = G x 11, the restriction of
o (BgI)? — Map(BH, BII)
to B(II?), p: H — 11, is the adjoint of the map of classifying spaces
Bv: BH x B(Illp) = B(H x 1I") — BII,
where v : H x [I? — I is defined by v(h,7) = p(h)~.

Consider what happens on components. In nonequivariant homotopy theory,
maps between the classifying spaces of compact Lie groups have been studied for

many years. One focus has been the question of when passage to classifying maps
B : Rep(G,11) — [BG, BlI]
is a bijection. We now see that, for H C G, a map BH — BII not in the

image of B corresponds to a principal II-bundle over BH that does not come
from a principal (G, II)-bundle over an orbit G/H. The equivariant results above
imply that there are no such exotic maps if Il is either finite or Abelian. The
Sullivan conjecture will give information about general compact Lie groups II

under restrictions on .

R. K. Lashof, J. P. May, and G. B. Segal. Equivariant bundles with Abelian structural group.
Contemporary Math. Vol. 19, 1983, 167-176.

J. P. May. Some remarks on equivariant bundles and classifying spaces. Astérisque 191(1990),
239-253.



CHAPTER VIII

The Sullivan Conjecture

1. Statements of versions of the Sullivan conjecture

We defined the homotopy orbit space of a G-space X to be
Xne = EG x¢ X,
and we defined the homotopy fixed point space of X dually:
X" = Map(EG, X)% = Mapg(EG, X)
is the space of G-maps EG — X. The projection FG — * induces
X = Map(*, X)¥ — Map(EG, X) = X",

It sends a fixed point to the constant map KG — X at that fixed point. It is very
natural to ask how close this map is to being a homotopy equivalence. Thinking

equivariantly, it is even more natural to ask how close the G-map
n: X = Map(*, X) — Map(EG, X)

is to being a G-homotopy equivalence. Since a G-map f : X — Y that is a

nonequivariant equivalence induces a weak equivalence of G-spaces
Map(W,Y) — Map(W, X)

for any free G-CW complex W, such as E'G, one cannot expect i to be an equiva-
lence in general. Very little is known about this question for general finite groups.
However, for finite p-groups G, to which we restrict ourselves unless we specify

otherwise, the Sullivan conjecture gives a beautiful answer. We agree to work in
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the categories h% and hG% , implicitly applying CW approximation. This allows

us to ignore the distinction between weak and genuine equivalences.

THEOREM 1.1 (GENERALIZED SULLIVAN CONJECTURE). Let X be a nilpotent
finite G-CW complex. Then the natural G-map

Xp — Map(FG, Xp)
is an equivalence.

The hypothesis that X be nilpotent can be removed by applying the Bousfield-
Kan simplicial completion on fixed point spaces and then assembling these com-
pleted fixed point spaces to a global GG-completion by means of Elmendort’s con-
struction. This equivariant interpretation of the Sullivan conjecture was noticed by
Haeberly, who also gave some information for finite groups that are not p-groups.
Looking at fixed points under H C G and noting that G is a model for FH, we

see that the result immediately reduces to the fixed point space level.

THEOREM 1.2 (MILLER, CARLSSON, LANNES). Let X be a nilpotent finite G-
CW complex, where (5 is a finite p-group. Then the natural map

(X9); = (X,)7 — Map(EG, X,)7 = (X,)"
is an equivalence.

Again, the nilpotence hypothesis is unnecessary provided that one understands
Xp to mean the Bousfield-Kan completion of X, which generalizes the nilpotent
completion that we defined, and takes (X“), and not (XP)G as the source: there
is a natural map

(X9 — (%,)7,
but it is not an equivalence in general. When G acts trivially on X, the result was

first proven by Miller, and he deduced the following powerful consequence.

THEOREM 1.3 (MILLER). Let G be a discrete group such that all of its finitely

generated subgroups are finite and let X be a connected finite dimensional CW

complex. Then 7. F(BG, X) = 0.

To deduce this from Theorem 1.2, one first observes that any map BG — X
induces the trivial map of fundamental groups and so lifts to the universal cover,
while a map X" BG — X for n > 0 trivially lifts to the universal cover. Thus

one can assume that X is simply connected. Note that this reduction depends
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on the fact that we are here working with finite dimensional and not just finite
complexes, and one must generalize Theorem 1.2 accordingly; this seems to require
trivial action on X. One then applies an inductive argument to reduce to the
case G = Z/p. Here the weak equivalence Xp — Map(BG, Xp) implies that
T.F(BG, Xp) = 0, and this implies that 7. F'(BG, X) = 0.

The general case of Theorem 1.2 reduces immediately to the case when G = Z/p,

by induction on the order of G. To see this, consider an extension
l—C—G—J—1,

where (' is cyclic of order p. For any G-space Y, (Y"“)"/ is equivalent to Y"“. In
fact, by passing to G-fixed points by first passing to C-fixed points and then to

J-fixed points, we obtain a homeomorphism
Map(EJ x EG,Y)% = Map(EJ, Map(EG,Y)")”.

Since EJ x E( is a free contractible G-space and EG' is a free contractible C'-space,
this gives the stated equivalence of homotopy fixed point spaces. The equivalence
(X9, — (Xp)hc is a J-map, hence it induces an equivalence on passage to
J-homotopy fixed point spaces, and the map of Theorem 1.2 coincides with the

composite equivalence
(X9 = (XI)); — (X)) — (X)P) = (X,)".

When G = Z/p, Theorem 1.2 was proven independently by Lannes and Miller,
using nonequivariant techniques, and by Carlsson, using equivariant techniques.
Lannes later gave a variant of his original proof that generalizes the result, uses
equivariant ideas, and enjoys a pleasant conceptual relationship to Smith theory.
We shall sketch that proof in the following three sections.

There is a basic principle in equivariant topology to the effect that, when working
at a prime p, results that hold for p-groups can be generalized to p-toral groups

(i, which are extensions of the form
l—T —G—7—1.

The point is that the circle group can be approximated by the union o, of its
p-subgroups o, of (p")th roots of unity, and an r-torus T' can be approximated by
the union 7., of its p-subgroups 7, = (0,)". It is not hard to see that the map
Bt,, — BT induces an isomorphism on mod p homology. Using this basic idea,
Notbohm generalized Theorem 1.2 to p-toral groups.



82 VIII. THE SULLIVAN CONJECTURE

THEOREM 1.4 (NOTBOHM). The generalized Sullivan conjecture, Theorem 1.2,

remains true as stated when G is a p-toral group.

Technically, this still works using Bousfield-Kan completion for “p-good” G-
spaces X, for which X — X, is a mod p equivalence.
A. K. Bousfield and D. M. Kan. Homotopy limits, completions, and localizations. Springer
Lecture Notes in Mathematics Vol. 304. 1972.
G. Carlsson. Equivariant stable homotopy theory and Sullivan’s conjecture. Invent. Math.
(1991), 497-525.
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2. Algebraic preliminaries: Lannes’ functors 7" and Fix

Let V be an elementary Abelian p-group, fixed throughout this section and the
next. It would suffice to restrict attention to V' = Z/p. The notation V indicates
that we think of V' ambiguously as both a vector space over F, and a group that

will act as symmetries of spaces. We refer back to IV.2.3, which gave
(2.1) HY(XY) 2 F, @gev) Un(S™ Hy (X))

for a finite dimensional V-CW complex X.

We begin by describing this in more conceptual algebraic terms. In this section,
we let % be the category of unstable modules over the mod p Steenrod algebra A
and let JZ° be the category of unstable A-algebras. Thus the mod p cohomology
of any space is in #. We shall abbreviate notation by setting H = H*(BV).
The celebrated functor T': % —— % introduced by Lannes is the left adjoint of
H @ (-): for unstable A-modules M and N,

(2.2) W(TM,N) = %(M,H o N).
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Observe that the adjoint of the map M =F, @ M — H @ M induced by the unit
of H gives a natural A-map 7 : T M — M. The key properties of the functor T
are as follows.

(2.3) The functor T' is exact and commutes with suspension.

(2.4) The functor 1" commutes with tensor products.

This property implies that if M is an unstable A-algebra, then so is M. The
resulting functor 7' : J# — J is also left adjoint to H @ (-): for unstable
A-algebras M and N,

(2.5) J(TM,N)= (M, H o N).

The Borel cohomology Hy(X) is both an unstable A-algebra and an H-module.
The action of H is given by a map of A-modules, and the bundle map

EV xy X — BV

induces a map H — H{;(X) of unstable A-algebras. We codify these structures
in algebraic definitions. Thus let H% be the category of unstable A-modules M
together with an H-module structure given by an A-map H @ M — M. For such
an H-A-module M, define an unstable A-module Fix(M) by

The notation “Fix” anticipates a connection with (2.1). Here we have used (2.4)
to give that T'H is an augmented A-algebra and that T'M is a T'H-module; T'H
acts on H through the adjoint TH — H of the coproduct v : H — H @ H. We
have another adjunction. For unstable H-A-modules M and unstable A-modules

N, we have
(2.7) Y (Fix(M),N)= HZ(M,H @ N).

Comparing the adjunctions (2.2) and (2.7), we easily find that, for an unstable
A-module M,

(2.8) Fix(H® M) = TM as unstable A-modules.

Less obviously, one can also construct a natural isomorphism

(2.9) H@rg TM = H® Fix(M) as unstable H- A-modules.



84 VIII. THE SULLIVAN CONJECTURE
The functor Fix has properties just like those of T

(2.10) Fix: HZ — % is exact and commutes with suspension.

The appropriate tensor product in H%Z is M @y N.

(2.11)
There is a natural isomorphism Fix(M @y N) = Fix(M) @ Fix(N).

Define H\.#Z to be the category of unstable A-algebras under H. If M is an
unstable A-algebra under H, then its product factors through M @y M and we
deduce from (2.11) that Fix(M) is an unstable A-algebra. If M is an unstable A-
algebra, then (2.8) is an isomorphism of unstable A-algebras. If M is an unstable
A-algebra under H, then the isomorphism (2.9) is one of unstable A-algebras under

H. We now reach the adjunction that we really want. For an unstable A-algebra

M under H and an unstable A-algebra N,

(2.12) J (Fix(M), N) = (H\J (M, H @ N).

3. Lannes’ generalization of the Sullivan conjecture
Returning to topology, let X be a V-space. Abbreviate
Fixj (X) = Fix(Hy (X)).

This is a cohomology theory on V-spaces. The inclusion ¢ : XV — X induces a

natural map
j: Fixt (X) — Fixh (XY) 2 TH (XY) — H*(X").

Here the middle isomorphism is implied by (2.8) and the last map is an instance
of the natural map = : TM —— M. The map j specifies a transformation of
cohomology theories on X. By a check on V-spaces of the form V/W, A K, one
finds that, it X is a finite dimensional V-CW complex, then

(3.1) j 1 Fix} (X) — H*(XV) is an isomorphism.

An alternative proof using the localization theorem is possible. In fact, this must
be the case: the only way to reconcile (2.1) and (3.1) is to have an algebraic

isomorphism

(3.2) Fix(M) 2 F, @y Un(S™'M)
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for reasonable M. As a matter of algebra, Dwyer and Wilkerson prove that there

is an isomorphism of H-A-algebras
(3.3) H @y TM =2 Un(S™'M)

for any unstable H-A-algebra M that is finitely generated as an H-module. Ten-
soring over H with F,, this gives (3.2). Combined with (2.9), this gives an entirely

algebraic version of the isomorphism
H*(BV)@ H*(XY) 2 Un(S™ Hy: (Xw))

of IV.2.3. Here, it M = H{/(X) is finitely generated over H, the isomorphism (3.2)
agrees with that obtained by combining (2.1) and (3.1). Thus we may view (3.1)
as another reformulation of Smith theory. This reformulation is at the heart of

the Sullivan conjecture, which is a corollary of the following theorem.

THEOREM 3.4 (LANNES). Let X be a V-space whose cohomology is of finite
type and let Z be a space (with trivial V-action) whose cohomology is of finite
type. Let w: EV x Z — X be a V-map. Then the homomorphism of unstable
A-algebras

W Fixy (X)) — H™(Z)
induced by w is an isomorphism if and only if the map
w: Zp — (Xp)hv
induced by w is an equivalence.

The map w determines and is determined by a map
u)/:BVXZ—>EV><VX:XhV

of bundles over BV. The map w# of the theorem is the adjoint via (2.12) of
the map under H induced on cohomology by w’. The map w induces a map
EV x 2p — Xp, and the map @ of the theorem is its adjoint.

To prove the Sullivan conjecture, we take Z = XV and take w : EGx XV — X
to be the adjoint of the canonical map XV — X"V, Then w# is the isomorphism
jof (3.1), and @ : (XV), — (Xp)hv is the map that Theorem 1.2 claims to be
an equivalence. Thus we see the Sullivan conjecture as a natural elaboration of
Smith theory.

Theorem 3.4 has other applications. In the Sullivan conjecture, we applied it to

obtain homotopical information from cohomological information, but its converse
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implication is also of interest. Taking Z = X and letting w : EV x X"V — X

be the evaluation map, the theorem specializes to give the following result.

THEOREM 3.5. Let X be a V-space such that the cohomologies of X and of
X" are of finite type. Then the canonical map

Fixy (X)) — H*(X")
is an isomorphism of unstable A-algebras if and only if the canonical map
(X)) — ()"
is an equivalence.

When both X and X" are p-complete, so that (X"V)  — (Xp)hv is the
identity, we conclude that H*(X"") is calculable as Fixj,(X). This is the starting
point for remarkable work of Dwyer and Wilkerson in which they redevelop a great
deal of Lie group theory in a homotopical context of p-complete finite loop spaces.

If we specialize to spaces without actions and use (2.8), we get the following

nonequivariant version of Theorem 3.4.

THEOREM 3.6. Let Y and Z be spaces with cohomology of finite type and let
w: BV xZ — Y be a map. Then the homomorphism of unstable A-algebras
w¥ : TH*(Y) — H*(Z) induced by w is an isomorphism if and only if the map
W : 2p — Map(BYV, f/p) is an equivalence.

W. G. Dwyer and C. W. Wilkerson. Smith theory and the functor 7. Comment. Math. Helv.
66(1991), 1-17.

W. G. Dwyer and C. W. Wilkerson. Homotopy fixed point methods for Lie groups and finite
loop spaces. Preprint, 1992.

J. Lannes. Sur les espaces fonctionnels dont la source est le classifiant d’un p-groupe abélien

élémentaire. Publ. Math. I. H. E. S. 75(1992), 135-244.

4. Sketch proof of Lannes’ theorem
We briefly sketch the strategy of the proof of Theorem 3.4. The first step is

to reduce it to the nonequivariant version given in Theorem 3.6. It is easy to see

that, for a group G and G-space Y, we have an identification
(4.1) Y = Maps(EG,Y) = Sec( BG, EG x5 Y) = Sec(BG, Yia),

where the right side is the space of sections of the bundle YV, — BG. Let
Map(BG, BG); denote the component of the identity map and Map(BG, Yig )1
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denote the space of maps whose projection to B(G' is homotopic to the identity.
We have a fibration

Map(BG, Yig )1 — Map(BG, BG),

with fiber Y over the identity map.
Now return to ¢ = V. Here easy inspections of homotopy groups show that

evaluation at a basepoint gives an equivalence
e: Map(BV,BV), — BV

and that the composition action of Map(BV, BV); on Map(BV, Y,y )1 induces an

equivalence

Y™ Map(BV, BV); — Map(BV, Yyv):.

For a V-space X, the natural map KV x Xp — (EV x X), induces a natural
map (Xp)hv — (Xuv),, and this map is an equivalence. By (3.7), the map @ of

Theorem 3.4 may be viewed as a map
(4.2) 7, — Sec(BV, (X, ) ).

The map w determines a map KV x 2p — Xp, and this in turn determines and

is determined by a map
(4.3) BV x Z, — (X,)av

of bundles over BG;. The map (3.8) is the composite map of fibers in the following

diagram of fibrations

A A

Z, Map(BV, Z,) Sec(BV, (X, )y

| |

BV x Z, — Map(BV, BV x Z,); — Map(BV, (X, )1

l |

Map(BV, BV ), - Map(BV, BV ).

BV

The left map of fibrations is determined by a chosen homotopy inverse to e :
Map(BV, BV); — BV and the inclusion of Zp in Map(BYV, Zp) as the subspace
of constant functions. Clearly the middle composite is an equivalence if and only
if @ is an equivalence. Applying Theorem 3.6 with Z replaced by BV x Z, Y
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taken to be X,y and w replaced by the adjoint v : BV x BV x Z — X,y of the

composite map
BV x Z — Map(BV, BV x Z); — Map(BV, X}v)

defined as in the middle row, but before applying completions, we find that
the middle composite is an equivalence if and only if the induced map v# :
TH*(Xnv) — H @ H*(Z) is an isomorphism. Now (2.9) gives an isomorphism

H ®TH TH*(th) = H & FIX(H*(th))

of unstable H-A-algebras. Its explicit construction parallels the topology in such
a way that the map w¥ : Fix},(X) — H*(Z) agrees with H @y v*. This allows
us to deduce that v# is an isomorphism if and only if w# is an isomorphism.

It remains to say something about the proof of Theorem 3.6. Since this is
nonequivariant topology of the sort that requires us to join with those who use
the word “space” to mean “simplicial set”, we shall say very little. For a map
¢ : M — N of unstable A-algebras, there are certain algebraic functors that one
may call Extié(M, N; ¢); for fixed t, they are the left derived functors of a certain
functor of derivations Der’y (-, N;-) that is defined on the category of unstable
A-algebras over N. The relevance of the functor T' comes from the fact that its

defining adjunction leads to natural isomorphisms
Ext% (T M, N:¢) = Ext’, (M, H ® N; ¢)

for amap ¢ : M — H @ N of unstable A-algebras with adjoint o
There is an unstable Adams spectral sequence, due originally to Bousfield and
Kan. However, the relevant version is a generalization due to Bousfield. For a

map f: X — )A/p, it starts from
By = Extly (H™(Y), H*(X); f7),

and it converges (in total degree t —s) to m.(Map(X, f/p); f). Under the hypotheses

of Theorem 3.6, the map @ : 2p — Map(BV,f/p) induces a map of spectral

sequences (for any base point of Z) that is given on the Fs-level by the map
Ext’y (H"(Z),F,) — ExtB(TH™(Y), F,) = Ext% (H(Y), H)

induced by w¥ : TH*(Y) — H*(Z). With due care of detail, the deduction that

& is an equivalence if w# is an isomorphism follows by a comparison of spectral
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sequences argument. The converse implication is shown by a detailed inductive
analysis of the spectral sequence.

An alternative procedure for processing Lannes’ algebra to obtain the topological
conclusion of Theorem 3.6 has been given by Morel. Using a topological interpre-
tation of the functor 7" in terms of the continuous cohomology of pro-p-spaces,
together with a comparison of Sullivan’s p-adic completion functor with that of
Bousfield and Kan, he manages to circumvent use of the Bousfield-Kan unstable

Adams spectral sequence and thus to avoid use of heavy simplicial machinery.
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5. Maps between classifying spaces

We shall sketch the explanation given by Lannes in a talk at Chicago of how his
Theorem 3.6 applies to give a version of results of Dwyer and Zabrodsky that apply
the Sullivan conjecture to the study of maps between classifying spaces. Although
these authors apparently were not aware of the connection with equivariant bundle
theory, what is at issue is precisely the map

o [T B(I*) = Ba(I)Y — Map(EG, BII)Y = Map(BG, BII)
that we described in VII.3.7; here the coproduct runs over (p) € Rep(G,II). The

relevant theorem of Lannes is as follows.

THEOREM 5.1 (LANNES). If G is an elementary Abelian p-group and II is a

compact Lie group, then the map
[1 B(11*); — Map(BG, (BIL);)
induced by a is an equivalence.

It should be possible to deduce inductively that the result holds in this form

for any finite p-group. The original version of Dwyer and Zabrodsky is somewhat
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different and in some respects a little stronger, although it seems possible to deduce
much of one from the other. We say that a map f : X — Y is a “mod p
equivalence” if it induces an isomorphism on mod p homology. We say that f is a

“strong mod p equivalence” if it satisfies the following conditions.

(i) f induces an isomorphism mo(X) — 7o(Y');
(ii) f induces an isomorphism 71(X, x) — m1(Y, f(x)) for any = € X

(iii) f induces an isomorphism
H*(Xl’v Fp) - H*(Y/f(l’)v [Fp)

for any = € X, where X, and f/f(x) are the universal covers of the compo-
nents of X and Y that contain x and f(x).

Say that a G-map f : X — Y is a (strong) mod p equivalence if f : X — Y
is a (strong) mod p equivalence for each H C G. In view of VIL.3.7, the following
statements are equivariant reinterpretations of nonequivariant results of Dwyer
and Zabrodsky and Notbohm. In nonequivariant terms, when I' = GG x 11, their

results are statements about the map a“ above.

THEOREM 5.2 (DWYER AND ZABRODSKY). If I is a normal subgroup of a
compact Lie group I' and G = I'/II is a finite p-group, then the G-map « :
B(IL; T') — Sec(EG, BTI') is a strong mod p equivalence.

Actually, Dwyer and Zabrodsky give the result in this generality for G = Z/p,
and they give an inductive scheme to prove the general case when I' = G x II.
However, their inductive scheme works just as well to handle the case of general

extensions. Their result was generalized to p-toral groups by Notbohm.

THEOREM 5.3 (NOTBOHM). If I is a normal subgroup of a compact Lie group
I' and G =T'/Il is a p-toral group, then the G-map o : B(II;I') — Sec(EG, BTI)

is a mod p equivalence.

However, o need not a strong mod p equivalence in this case: the components
of o induce injections but not surjections on the fundamental groups of corre-
sponding components.

These results are some of the starting points for beautiful work of Jackowski,
McClure, and Oliver, and others, on maps between classifying spaces; these authors

have given an excellent survey of the state of the art on this topic.
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Lannes’ deduces Theorem 4.1 from Theorem 3.6 by taking 7 = [ BII” and Y =
BII. The map w is then the sum of the classifying maps of the homomorphisms
v:V x II” — 1II specified in VII.3.7. The deduction is based on the case X = x

of the following calculation.
THEOREM 5.4. Let X be a finite [I-CW complex. Then the natural map
TH(X) — T] Hio (X))
is an isomorphism, where the product runs over (p) € Rep(V, 1I).

PROOF. The proof is an adaptation of methods of Quillen. Embed Il in U(n) for
some large n and let F' be the G-space U(n)/S, where S is a maximal elementary

Abelian subgroup of U(n). Quillen shows that the evident diagram of projections
XxI'xlFF—=XxF——X
induces an equalizer diagram
HE(X) — H{y(X x F) —= Hj(X x F x F).

Let
J7(X) = THp(X)
and
=TT Hi(x0)
(p)ERep(V.IT)
These are both II-cohomology theories in X. Applied to our original diagram of
projections, both give equalizers, the first because the functor T' is exact and the
second by an elaboration of Quillen’s argument. We have an induced map from
the equalizer diagram for j* to that for £*. The isotropy subgroups of the finite
I[I-CW complexes X x I and X x [’ x I are elementary Abelian, and it therefore
suffices to show that the map
TH*(BW) = j*(I/W) — k(I/W) = [  H(ET xpe (IL/W)*)
(p)ERep(V.IT)

is an isomorphism when W is an elementary Abelian subgroup of II. I learned
the details of how to see this from Nick Kuhn. He has shown that 7" enjoys the

property
(5.5) TH*(BW) = H H*(BW),

(U) eReP(va)
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and the map in cohomology that we wish to show is an isomorphism is in fact

induced by a homeomorphism

(5.6) I eUe s ywy" — I BW.

(p)ERep(V 1) (o)ERep(V,W)

To see the homeomorphism, note that Il acts on the disjoint union over p €
Hom(V, 1) of the spaces (II/W)*("): 7 sends a point 7'W fixed by p(V) to the
point #7'W fixed by the w-conjugate of p. It is not hard to check that, as II-spaces,

[T Uxp@wyM= ] awy V= ] 1/w

(p)ERep(V,II) p€Hom(V,IT) o€Hom(V, W)

Taking EII as a model for each EII*Y) this implies the required homeomor-
phism. [
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CHAPTER IX

An introduction to equivariant stable homotopy

Me(V)

1. G-spheres in homotopy theory

What is a G-spherel’ In our work so far, we have only used spheres 5™, which
have trivial action by (. Clearly this is contrary to the equivariant spirit of our
work. The full richness of equivariant homotopy and homology theory comes from
the interplay of homotopy theory and representation theory that arises from the
consideration of spheres with non-trivial actions by . In principle, it might seem
reasonable to allow arbitrary G-actions. However, a closer inspection of the role
of spheres in nonequivariant topology, both in manifold theory and in homotopy
theory, gives the intuition that we should restrict to the linear spheres that arise
from representations. Throughout the rest of the book, we shall generally use the
term “representation of GG” or sometimes “G-module” to mean a finite dimensional
real inner product space with a given smooth action of G through linear isometries.
We may think of V' as a homomorphism of Lie groups p : G — O(V). This
convention contradicts standard usage, in which representations are defined to be
isomorphism classes.

For a representation V', we have the unit sphere S(V), the unit disk D(V),
and the one-point compactification SV; i acts trivially on the point at infinity,
which is taken as the basepoint of S¥. The based G-spheres SV will be central to
virtually everything that we do from now on. We agree to think of n as standing
for R™ with trivial G-action, so that S™ is a special case of our definition. For a
based G-space X, we write

YWX=XASY and QX =F(SY,X).

93
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Of course, ¥V is left adjoint to QY.

When do we use trivial spheres and when do we use representation spheresl’
This is a subtle question, and in some of our work the answer may well seem coun-
terintuitive. In defining weak equivalences of G-spaces, we only used homotopy
groups defined in terms of trivial spheres, and that is unquestionably the right
choice in view of the Whitehead theorem for GG-CW complexes. Nevertheless,
there are homotopy groups defined in terms of representation spheres, and they
often play an important role, although more often implicit than explicit. We may
think of a G-representation V' as an H-representation for any H C (4. For a based
G-space X, we define

(1.1) (X)) =[SV, Xy =[Gy Ag SV, X6,

Here the brackets denote based homotopy classes of based maps, with the ap-
propriate equivariance. For a pair (X, A) of based G-spaces, we form the usual
homotopy fiber F'z of the inclusion 7 : A — X, and we define

(1.2) w0 (X, A4) = =(F).

It is natural to separate out the trivial and non-trivial parts of representations.
Thus we let V(H) denote the orthogonal complement in V' of the fixed point space
V. We then have the long exact sequence

(1.3)

B WXI;I(H)Jrn(X) — WXI;I(H)Jrn(Xv A) > — 7TV(H)(A) - 7TV(H)(X)
of groups up to W‘I;I(H)+1 (X)) and of pointed sets thereafter.

Waner will develop a G-CW theory adapted to a given representation V' in the
next chapter, and Lewis will use it to study the Freudenthal suspension theorem
for these homotopy groups in the chapter that follows. There is a more elementary
standard form of the Freudenthal suspension theorem, due first to Hauschild, that
suffices for many purposes. Just as nonequivariantly, it is proven by studying
the adjoint map n : ¥ — QVXVY . Here one proceeds by reduction to the non-
equivariant case and use of obstruction theory. Recall the notion of a v-equivalence
from 1§3, where v is a function from conjugacy classes of subgroups of G to the
integers greater than or equal to —1. Define the connectivity function ¢*(Y") of
a G-space Y by letting ¢ (Y) be the connectivity of Y for H C (; we set
(V)= —1if Y is not path connected.
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THEOREM 1.4 (FREUDENTHAL SUSPENSION). Themapn:Y — QVYVY isa
v-equivalence if v satisfies the following two conditions:

(1) v(H) < 2c2(Y) + 1 for all subgroups H with VH # 0, and

(2) v(H) < (YY) for all pairs of subgroups K C H with VE £ VI,

Therefore the suspension map
VX, Y] — BVX, YY)

is surjective if dim(X*) < v(H) for all H, and bijective if dim(X") < v(H) — 1.

H. Hauschild. Aquivariante Homotopie I. Arch. Math. 29(1977), 158-165.
U. Namboodiri, Equivariant vector fields on spheres. Trans Amer. Math. Soc. 278(1983),
431-460.

2. G-Universes and stable G-maps

We next explain how to stabilize homotopy groups and, more generally, sets of
homotopy classes of maps between GG-spaces. There are several ways to make this
precise. The most convenient is that based on the use of universes.

DEFINITION 2.1. A G-universe U is a countable direct sum of representations
such that U contains a trivial representation and contains each of its sub-represen-
tations infinitely often. Thus U can be written as a direct sum of subspaces (V;),
where {V;} runs over a set of distinct irreducible representations of . We say
that a universe U is complete if, up to isomorphism, it contains every irreducible
representation of ;. If G is finite, one example is V=, where V is the regular
representation of (G. We say that a universe is trivial if it contains only the trivial
irreducible representation. One example is U for a complete universe U. A finite
dimensional sub G-space of a universe U is said to be an indexing space in U.

We should emphasize right away that, as soon as we start talking seriously about
stable objects, or “spectra”, the notion of a universe will become important even
in the nonequivariant case.

We can now give a first definition of the set {X, Y}« of stable maps between
based G-spaces X and Y.

DEFINITION 2.2. Let U be a complete G-universe. For a finite based G-CW
complex X and any based G-space Y, define

{X,Y}s = colimy[EV X, 2V Y]q,



96 IX. AN INTRODUCTION TO EQUIVARIANT STABLE HOMOTOPY

where V' runs through the indexing spaces in U and the colimit is taken over the
functions

VX, 2YY]e — BV X, 2"Y]e, VW,

that are obtained by sending a map XV X — VY to its smash product with the
identity map of SW-V,

When (' is finite and X is finite dimensional, the Freudenthal suspension the-
orem implies that if we suspend by a sufficiently large representation, then all
subsequent suspensions will be isomorphisms.

COROLLARY 2.3. If (G is finite and X is finite dimensional, there is a represen-
tation Vo = Vo(X) such that, for any representation V,

LSRN PICD 6B LD PPN 5 SLCE L '@ SLCE AR o
is an isomorphism.
Let X and Y be finite G-CW complexes. If (G is finite, the stable value
VX, 2%V, = {X,Y}q

is a finitely generated abelian group. However, if (G is a compact Lie group and
X has infinite isotropy groups, there is usually no representation V4 for which
all further suspensions ¥V are isomorphisms, and {X, Y} is usually not finitely
generated.

REMARK 2.4. The groups {SV,X}q are called equivariant stable homotopy
groups of X and are sometimes denoted w{{(X). However, it is more usual to
denote them by 7(X), relying on context to resolve the ambiguity between sta-
ble and unstable homotopy groups.

The definition of {X,Y }s just given is not the right definition for an infinite
complex X. Observe that

VX, 2V Y]e 2 [X, QY2 Y],
DEFINITION 2.5. Let U be a complete G-universe. For a based G-space X,
define
QX = colimy OV IV X,
where V' runs over the indexing spaces in U and the colimit is taken over the

maps

QVYYX — QVsVWX, VvV cw,
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that are obtained by sending a map SV — X A SV to its smash product with the
identity map of S =Y. Observe that the maps of the colimit system are inclusions.

LEMMA 2.6. Fix an indexing space V in U. For based G-spaces X, there is a
natural homeomorphism

QX = QVEYYX.

PROOF. Clearly X is homeomorphic to colimy~y QW EW X and similarly for

QXY X. By the compactness of SV and the evident isomorphisms of functors
YWYV 2 yWoand QVOV-V =2 QW for V C W,

colim QVEV X = colimQV QY VIV VSV X > QY colim QY EV VRV X
where the colimits are taken over W 2 V. The conclusion follows. [
LEMMA 2.7. If X is a finite G-CW complex, then
[X,V}e 2 [X,QV]6.
ProoOF. This is immediate from the compactness of X, which ensures that
(X, QY]q = colimy[X, QVEVY]q. O

For infinite complexes X, it is [X, QY] that gives the right notion of the stable
maps from X to Y. We shall return to this point in Chapter XII, where we
introduce the stable homotopy category of spectra.

3. Euler characteristic and transfer G-maps

We here introduce some fundamentally important examples of stable maps that
require the use of representations for their definitions. The Euler characteristic
and transfer maps defined here will appear at increasing levels of sophistication
and generality as we go on.

Let M be a smooth closed GG-manifold. We may embed M in a representation
V', say with normal bundle . We may then embed a copy of v as a tubular neigh-
borhood of M in V. Just as for nonequivariant bundles, the Thom complex T'¢ of
a G-vector bundle ¢ is constructed by forming the fiberwise one-point compact-
ification of the bundle, letting G act trivially on the points at infinity, and then
identifying all of the points at infinity to a single G-fixed basepoint *. We then
have the Pontrjagin-Thom map

t: SV T
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It is the based GG-map obtained by mapping the tubular neighborhood isomor-
phically onto v and mapping all points not in the tubular neighborhood to the
basepoint *. The inclusion of v in 7y & v, where 7); is the tangent bundle of M,
induces a based G-map

e:TV—>T(TM@1/)%M+/\SV.
The composite of these two maps is the “transfer map”
(3.1) r(M)=eot:S" — ¥V M,

associated to the projection M — {pt}, which we think of as a trivial G-bundle.
Of course, this projection induces a map

£:9V M, — 2V S0 = gV,
We define the Euler characteristic of M to be the based G-map
(3.2) X(M)=¢or(M): SV — SV,

The name comes from the fact that if we ignore the action of ¢ and regard x (M)
as a nonequivariant map of spheres, then its degree is just the classical Euler
characteristic of M. The proof is an interesting exercise in classical algebraic
topology, but the fact will become clear from our later more conceptual description
of these maps. In fact, from the point of view that we will explain in XV§1, this
map is the Euler characteristic of M, by definition.

Since V' is not well-defined — we just chose some V' large enough that we could
embed M in it — it is most natural to regard the transfer and Euler characteristics
as stable maps

(3.3) (M) e[S Mybe  and (M) € {S° 5%

Observe that, when M = G//H, the map 7(G/H) of (3.1) can be written as the

composite
(34)  1(G/H): S =Gy hg SV =Gy ng SV = (G/H)4 A SY,

where W is the complement of the image in V of the tangent plane L(H) at
the identity coset and e is the extension to a G-map of the H-map obtained by
smashing the inclusion S¢ — ST with SW. The unlabelled isomorphism is
given by [.2.6.
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More generally, for subgroups K C H of (G, there is a stable transfer G-map
7(7): G/ Ky — G/H, associated to the projection G/H — G/K. In fact, we
may view 7 as the extension to a G-map

G xx (K/H) — G/K

of the projection K/H — {pt}, and we may construct the transfer K-map
7(K/H) starting from an embedding of K/H in a G-representation V regarded as
a K-representation by restriction. We then define 7(x) to be the map

(3.5)
() G/KL ANSY =2 Gy A SV — Gy A (KJHL ASY)Y2G/Hy ASY,

where the isomorphisms are given by [.2.6 and the arrow is the extension of the
K-map 7(K/H) to a G-map. Note that any G-map f : G/K;, — G/H; is
the composite of a conjugation isomorphism ¢, : G/K — G/g ' Kg and the
projection induced by an inclusion ¢7'Kg C H. We let 7(¢;) = ¢,~1. With these
definitions, we obtain a contravariantly functorial assignment of stable transfer
maps 7(f) to G-maps f between orbits. Of course, such G-maps may themselves
be regarded as stable G-maps between orbits.

4. Mackey functors and coMackey functors

We are headed towards the notions of RO(G')-graded homology and cohomology
theories, but we start by describing what the coefficients of such theories will look
like in the case of “ordinary” RO(()-graded theories.

Recall that the ordinary homology and the ordinary cohomology of G-spaces
are defined in terms of covariant and contravariant coefficient systems, which are
functors from the homotopy category h¥ of orbits to the category Ab of Abelian
groups. Let @/ denote the category that is obtained from A% by applying the free
Abelian group functor to morphisms. Thus @ (G/H,G/K) is the free Abelian
group generated by h¥(G/H,G/K). Then coefficient systems are the same as
additive functors & — 7.

Now imagine what the stable analog might be. It is clear that the sets {X, Y}
are already Abelian groups.

DEFINITION 4.1. Define the Burnside category #s to have objects the orbit
spaces G/ H and to have morphisms

’@G(G/Hv G/[() = {G/H-I-v G/[(-I-}Gv
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with the evident composition. We shall also refer to # as the stable orbit cate-
gory. Observe that it is an “.o/b-category”: its Hom sets are Abelian groups and
composition is bilinear.

We must explain the name “Burnside”. The zeroth equivariant stable homotopy
group of spheres or equivariant “zero stem” {S°, S°}4 is a ring under composition.
We shall denote this ring by Bg for the moment. It is a fundamental insight of
Segal that, if G is finite, then B is isomorphic to the Burnside ring A(G). Here
A(G) is defined to be the Grothendieck ring of isomorphism classes of finite G-sets
with addition and multiplication given by disjoint union and Cartesian product.
For a compact Lie group (i, tom Dieck generalized this description of Bg by
defining the appropriate generalization of the Burnside ring. In this case, A(G)
is defined to be the ring of equivalence classes of smooth closed G-manifolds,
where two such manifolds are said to be equivalent if they have the same Euler
characteristic in Bg; again, addition and multiplication are given by disjoint union
and Cartesian product. An exposition will be given in XVII§2.

DEFINITION 4.2. A covariant or contravariant stable coefficient system is a co-
variant or contravariant additive functor Bo — &b. A contravariant stable
coefficient system is called a Mackey functor. A covariant stable coefficient sys-
tem is called a coMackey functor.

When ' is finite, Dress first introduced Mackey functors, using an entirely
different but equivalent definition, to study induction theorems in representation
theory. We shall explain the equivalence of definitions in XIX§3. The classical
examples of Mackey functors are the representation ring and Burnside ring Mackey
functors, which send GG/H to R(H) or A(H). The generalization to compact Lie
groups was first defined and exploited by Lewis, McClure, and myself.

Observe that we obtain an additive functor @%; — s by sending the ho-
motopy class of a G-map [ : G/H — G/K to the corresponding stable map.
Therefore a (covariant or contravariant) stable coefficient system has an underly-
ing ordinary coefficient system. Said another way, stable coefficient systems can be
viewed as given by additional structure on underlying ordinary coefficient systems.

What is the additional structurel’ Viewed as a stable map, 7(G/H) is a mor-
phism (/G — G/ H in the category H¢, and, more generally, so is 7(f) for any
G-map [ : G/H — G/K. We shall see in XIX§3 that every morphism of the
category K is a composite of stable G-maps of the form f or 7(f). That is, the
extra structure is given by transter maps. When G is finite, we shall explain alge-
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braically how composites of such maps are computed. In the general compact Lie
case, such composites are quite hard to describe. For this reason, it is also quite
hard to construct Mackey functors algebraically. However, we have the following
concrete example. It may not seem particularly interesting at first sight, but we
shall shortly use it to prove an important result called the Conner conjecture.

PRrROPOSITION 4.3. Let G be any compact Lie group. There is a unique Mackey
functor Z : B — /b such that the underlying coefficient system of Z is con-
stant at Z and the homomorphism Z — Z induced by the stable transfer map
G/Ky — G/H, associated to an inclusion H C K is multiplication by the Euler
characteristic x(K/H).

Proo¥F. In XIX§3, we shall give a complete additive calculation of the mor-
phisms of #A, from which the uniqueness will be clear. The problem is to show
that the given specifications are compatible with composition. We do this indi-
rectly. As already noted, we have the Burnside Mackey functor A. Thought of
topologically, its value on G/H is

{G/H}, 5% ¢ 2 {5°, 5%y = B,

and the contravariant functoriality is clear from this description. Define another
Mackey functor I by letting I(G// H) be the augmentation ideal of A(H). Thought
of topologically, its value on G/ H is the kernel of the map

{G/H-I-vSO}G - {G-I-vSO}G =7

induced by the G-map G — G/H that sends the identity element e to the
coset eH. Using XIX.3.2 and the definition of Burnside rings in terms of Euler
characteristics, one can check that [ is a subfunctor of A. A key point is the
identity
X(Y)X(H/K) = x(H xXg Y)

of nonequivariant Fuler classes for H C K and H-spaces Y. One can then define
Z to be the quotient Mackey functor A/I; the desired Euler characteristic formula
can be deduced from the formula just cited. [

T. tom Dieck. Transformation groups and representation theory. Springer Lecture Notes in
Mathematics. Vol. 766. 1979.

A. Dress. Contributions to the theory of induced representations. Springer Lecture Notes in
Mathematics Vol. 342, 1973, 183-240.

L. G. Lewis, Jr., J. P. May, and M. Steinberger (with contributions by J. E. McClure). Equiv-
ariant stable homotopy theory (V§9). Springer Lecture Notes in Mathematics. Vol. 1213. 1986.
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5. RO((G)-graded homology and cohomology

We shall be precise about how to define RO(G')-graded homology and cohomol-
ogy theories in XIII§1. Here we give an intuitive description. The basic idea is
that if we understand G-spheres to be representation spheres SV, then we must
understand the suspension axiom to allow suspension by such spheres. This forces
us to grade on representations. However, the standard term “RO(G)-grading” is
a technical misnomer since the real representation ring RO(G') is defined in terms
of isomorphism classes of representations, and this is too imprecise to allow the
control of “signs” (which must be interpreted as units in the Burnside ring of ().

Thus, intuitively, a reduced RO((G)-graded homology theory E*G defined on
based G-spaces X consists of functors Eg : WG T — /b for all a € RO(G)

together with suitably compatible natural suspension isomorphisms
BE(X) 2 F, (5 X)

for all G-representations V. We require each Eg to carry cofibration sequences
A — X — X/A of based G-spaces to three term exact sequences and to carry
wedges to direct sums. We have combined the homotopy and weak equivalence
axioms in the statement that the £ are defined on hG.7.

For each representation V with V¢ = 0, it follows by use of the suspension iso-
morphism for S* that the groups {E‘C/;_I_n |n € Z} give a reduced Z-graded homology
theory in the sense that the evident equivariant analogs of the Eilenberg-Steenrod
axioms, other than the dimension axiom, are satisfied. Taking V = 0, this gives
the underlying Z-graded homology theory of the given RO((G)-graded theory. We
could elaborate by defining unreduced theories, showing how to construct unre-
duced theories from reduced ones by adjoining disjoint basepoints and defining
appropriate relative groups, and showing that unreduced theories give rise to re-
duced ones in the usual fashion. However, we concentrate on the essential new
feature, which is the suspension axiom for general representations V.

Of course, we have a precisely similar definition of an RO(G)-graded cohomol-
ogy theory. There are two quite different philosophies about these RO(G')-graded
theories. One may view them as the right context in which to formulate calcula-
tions. For example, there are calculations of Lewis that show that the cohomology
of a space may have an elegant algebraic description in RO((G)-graded cohomol-
ogy that is completely obscured when one looks only at the Z-graded part of the
relevant theory. In contrast, one may view RO(G)-gradability as a tool for the
study of the Z-graded parts of theories. Our proof of the Conner conjecture in the
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next section will be a direct application of that philosophy.
When can the Z-graded cohomology theory with coefficients in a coefficient
system M be extended to an RO(()-graded cohomology theory? If we are given

such an extension, then the transfer maps 7(G/H) : SY — G/H, A SV of (3.4)
will induce transfer homomorphisms

Hyy(X; MIH) = HE™ (XY (G/Hy A X); M)
(5.1) l
HE(X; M) = HE(SY X, M).

Taking n = 0 and X = S° we obtain a transfer homomorphism M(G/H) —
M(G/G). An elaboration of this argument shows that the coefficient system M
must extend to a Mackey functor. It is a pleasant fact that this necessary condition
is sufficient.

THEOREM 5.2. Let (G be a compact Lie group and let M and N be a contravari-
ant and a covariant coefficient system The ordinary cohomology theory H (= M)
extends to an RO(G)-graded cohomology theory if and only if M extends to a
Mackey functor. The ordinary homology theory H%(—; N) extends to an RO(G)-
graded homology theory if and only if N extends to a coMackey functor.

We shall later explain two very different proofs. Waner will describe a chain level
construction in terms of G-CW (V') complexes in the next chapter. I will describe
a spectrum level construction of the representing Filenberg-Mac Lane G-spectra

in XI11§4.

L. G. Lewis, Jr. The RO(G)-graded equivariant ordinary cohomology of complex projective
spaces with linear Z/p actions. Springer Lecture Notes in Mathematics Vol. 1361, 1988, 53-122.

6. The Conner conjecture

To illustrate the force of RO(G)-gradability, we explain how the results stated
in the previous two sections directly imply the following conjecture of Conner.

THEOREM 6.1 (CONNER CONJECTURE). Let (& be a compact Lie group and let

X be a finite dimensional G-space with finitely many orbit types. Let A be any
Abelian group. If H*(X;A) =0, then H*(X/G; A) = 0.

This was first proven by Oliver, using Cech cohomology and wholly different
techniques. It was known early on that the conjecture would hold if one could
construct a suitable transfer map.
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THEOREM 6.2. Let X be any G-space and let 7 : X/H — X/G be the natural
projection, where H C (. For n > 0, there is a natural transfer homomorphism

T HY(X/H; A) — H"(X/G; A)
such that 7 o 7* is multiplication by the Euler characteristic x(G/H).

PrOOF. Tensoring the Mackey functor Z of Proposition 4.3 with A, we obtain a
Mackey functor A whose underlying coefficient system is constant at A. The map
A(G/H) — A(G/G) associated to the stable transfer map G/Gy — G/Hy is
multiplication by y(G/H). As we observed in our first treatment of Smith theory
(IVE1), ordinary G-cohomology with coefficients in a constant coefficient system
is the same as ordinary nonequivariant cohomology on orbit spaces:

H'(X/H;A) = Hy(X;AlH) and H"(X/G;R) = HAL(X; A).
Taking M = A, (5.1) already displays the required transfer map. The formula for

Tor* follows formally, but it can also be derived from the fact that the equivariant
Euler characteristic

SV — G/H ANSY — SV,
regarded as a nonequivariant map, has degree x(G/H). O

How does the Conner conjecture follow? Conner himself proved it when G is a
finite extension of a torus, the methods being induction and use of Smith theory
— one proves that both X“ and X/ are A-acyclic. For example, the result for a
torus reduces immediately to the result for a circle. Here the “finitely many orbit
types” hypothesis implies that X = X for C' cyclic of large enough order, so
that we really are in the realm where Smith theory can be applied. Assuming that
the result holds when ' is a finite extension of a torus, let N be the normalizer of
a maximal torus in G. Then N is a finite extension of a torus and y(G/N) = 1.
The composite

ror*: HY(X/G; A) — H"(X/N; A) — H"(X/G; A)
is the identity, and that’s all there is to it.

P. Conner. Retraction properties of the orbit space of a compact topological transformation
group. Duke Math. J. 27(1960), 341-357.

G. Lewis, J. P. May, and J. McClure. Ordinary RO(G)-graded cohomology. Bulletin Amer.
Math. Soc. 4(1981), 208-212.

R. Oliver. A proof of the Conner conjecture. Annals of Math. 103(1976), 637-644.



CHAPTER X
G-CW (V) complexes and RO(G)-graded cohomology

by Stefan Waner

1. Motivation for cellular theories based on representations

It a compact Lie group G acts smoothly on a smooth manifold M then the action
is locally orthogonal. That is, for each € M there is a G-invariant neighborhood
U of z diffeomorphic to the open unit disc in a representation V' of G,. Moreover,
writing G, as H, if L(H) is the tangent representation of H at eH € GG/ H, then
L(H) is a summand of V. (Of course, L(H) = 0 if GG is finite.) It follows that
the G-orbit of & has a neighborhood diffeomorphic to G' xy D(V — L(H)), where
V — L(H) is the orthogonal complement of L(H) in V.

The above remarks seem to suggest that one ought to consider G-complexes
modeled by cells of this form. On the other hand, it has been established by
Bredon and others that ordinary G-CW complexes seem to suffice for practical
purposes. These are G-complexes with “cells” of the form G/H x D", where G
acts trivially on D". Basically, the local neighborhoods G xgy D(V — L(H)) can
be G-triangulated into cells of the above form, so it would seem that there is no
need to consider anything more elaborate than GG-CW complexes. But there are
some theoretical difficulties:

(1) Duality doesn’t work. That is, the cellular chains obtained from G-CW
structures on smooth G-manifolds do not exhibit Poincaré duality. The geometric
reason for this is that the dual of an n-dimensional G-cell G/H x D™ is not a
G-cell. The dual cell to a zero dimensional cell G/H is defined as its star in

the first barycentric subdivision, while the duals of higher dimensional cells are

105
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intersections of such stars. In general, the dual of a G-cell G/H x D™ has the form
G xg D(V — L(H) — R"), where V is the local representation at eH. This really
forces our hand.

(2) One has the result, due to various authors (Lewis, May, McLure, Waner)
that, if M is a Mackey functor, then Bredon cohomology with coefficients in M
extends to an RO(G)-graded cohomology theory. This will be treated from the
stable homotopy category point of view later in the book. The question then is:
what is the geometric representation of the cells in dimension V7 In particular,
can we write the Vth cohomology group in terms of the cohomology of a cellular
cochain complex?

The purpose of this chapter is to outline the basic theory of cell complexes
modeled on representations of ¢, and to use them to construct explicit models of
ordinary RO(G)-graded cohomology in which Poincaré duality holds for certain
classes of GG-manifolds. For reasons of clarity, only complexes modeled on a single
representation V' of (G will be discussed. The more elaborate theory in which V' is
allowed to vary is already completed as joint work with Costenoble and May, and
some of it has appeared in papers of Costenoble and myself. Roughly speaking,
whatever works for a single representation generalizes to the more elaborate case.

When ' is not finite, there appear to be two theories of G-CW(V') complexes.
The one that I will concentrate on will be the one that is not dual to the usual
G-CW theory (on suitable G-manifolds), but that does work as a cellular theory
and gives rise to ordinary RO(G)-graded cohomology. To make amends, we will

very briefly indicate the present state of the variant that gives the true dual theory.

S. R. Costenoble and S. Waner. The equivariant Thom isomorphism theorem. Pacific J. Math.
152(1992), 21-39.
S. R. Costenoble and S. Waner. Equivariant Poincaré duality. Michigan Math. J. 39(1992).

2. G-CW (V) complexes

Let V be a fixed given orthogonal representation of (¢ and write dim V = |V].
To understand the definitions that follow, it is useful to keep in mind the following

observation, whose easy inductive proof will be left to the reader.

LEMMA 2.1. Let H, C H,_1 C --- C Hy = GG be a strictly increasing chain of
subgroups of & such that each H; occurs as the isotropy subgroup of some point
in V' (the point 0 having isotropy group (). Then, as a representation of H,, V

contains a trivial representation of dimension n.
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For H C G, we let V(H) denote the orthogonal complement of VH in V. If W
is an H-module, we let D(W) and S(W) denote the unit disc and sphere in W.

DEFINITION 2.2. A G-CW(V) complex is a G-space X with a decomposition
X = colim, X" such that X° is a disjoint union of G-orbits of the form G/H,

where H acts trivially on V, and X" is obtained from X"~! by attaching “cells”
G xg D(V(H) ®R"), where |V(H)| +t = n, along attaching G-maps

G xp S(V+R) — X1,

Amap f: X — Y between G-CW(V') complexes is cellular if f(X™) C Y™ for all
n, and the notions of skeleta, dimension, subcomplex, relative G-CW (V') complex,

and so on are defined as one would expect from the classical case V = 0.

REMARKS 2.3. (i) Although imprecise, it is convenient to think of V() @ R
as V + R?, where |V|+ s = n and thus |[V| 4+ s = ¢; here s may be negative, but
then the definition implies that |V| > —s for all subgroups H occurring in the
decomposition.

(i1) The stipulation on the dimension implies that the cell G xyz D(V(H) @ RY) is
an (n + dim G/ H)-dimensional G-manifold.

The last observation explains why the definition does not give the true dual
theory when G has positive dimension. The following variant rectifies this. How-
ever, this theory has not yet been worked out thoroughly or extended to deal with

varying representations, although we suspect that all works well.

VARIANT 2.4. Let G be an infinite compact Lie group. There is a variant def-
inition of a G-CW(V') complex which differs from the definition given in that we
require X to be a disjoint union of finite orbits GG/ H such that H acts trivially on
V and we attach cells of the form G xg D((V — L(H)) + R?), where |V|+ s = n,
when constructing X" from X"~'. Here L(H) is the tangent representation of
G//H at eH, and the definition implies that L(H) is contained in Vg for all sub-
groups H occurring in the decomposition. With these stipulations on dimensions,

the n-cells that we attach are n-dimensional G-manifolds.

Part of our motivation comes from consideration of (G-manifolds that are locally

modeled on a single representation.
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DEFINITION 2.5. A smooth GG-manifold M has dimension V' if, for each x € M,
there is a (G, -invariant neighborhood U of z that is diffeomorphic to the open unit
disc in the restriction of V to (. It follows that L(H) embeds in V|g and the
orbit Gz has a neighborhood of the form G xg D(V — (L(H)). Any smooth G-
manifold M each of whose fixed point sets is non-empty and connected must have
dimension V', where V is the tangent representation at any G-fixed point. More
generally, M has dimension V' — i for a positive integer i < |V| if, for each x € M,
(i, acts on V with an i-dimensional trivial summand and there is a (,-invariant
neighborhood U of z that is G,-diffeomorphic to the open unit disc in V — R’
Thus, if M has dimension V, then dM has dimension V — 1. For example, D(V)

is a V-dimensional manifold and S(V') is a (V' — 1)-dimensional manifold.

When G is finite, G-manifolds of dimension V' and their bordism theories were
first discussed by Pulikowski and Kosniowski; I later carried the study further. By
a theorem of Stong, it (& is finite of odd order, then any G-manifold is cobordant
to a sum of GG-manifolds of the form GG x g N, where N has dimension W for some
H-module W.

The classical theory of dual cell decompositions of smooth manifolds (for which
see Seifert and Threlfall) generalizes to V-manifolds. We shall not go into the
definitions needed to make this precise. The intuition comes from equivariant
Spanier-Whitehead and Atiyah duality, which will be discussed in XVI§§7-8. If a
closed smooth GG-manifold M embeds in V, then M, is V-dual to the Thom space
Tv of the normal bundle of the embedding. In the case M = G//H, this normal
bundle is Tv = Gy Ag SVHID,

PROPOSITION 2.6. If (7 is finite, then we obtain a G-CW(V') structure on a
(V — i)-dimensional manifold M by passage to dual cells from an ordinary G-
CW structure. With the variant definition of a G-CW (V') complex, the statement

remains true for general compact Lie groups G.

From now on, we restrict attention to our first definition of a G-CW (V') complex.

LEMMA 2.7. If X is a G-CW complex, then X x D(V) has the structure of a
G-CW(V') complex under the usual product structure. Therefore, for any V, any
G-CW complex is G-homotopy equivalent to a G-CW (V') complex.

PROPOSITION 2.8. For any V, a (G-space has the GG-homotopy type of a G-CW
complex if and only if it has the G-homotopy type of a G-CW(V') complex.
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The lemma gives the forward implication in the case of finite G. The case
for general compact Lie groups is harder, and we need to use the equivariant
version of Brown’s construction to give a brute force weak G-approximation by a
G-CW(V) complex. That this approximation is in fact a G-homotopy equivalence
then follows from the converse and the GG-Whitehead theorem. For the converse,
if X is a G-CW(V) complex, then X is a colimit of spaces of the G-homotopy
type of G-CW complexes, and thus X is also such a homotopy type by a telescope
argument and the homotopy invariance of colimits.

PROPOSITION 2.9. If X and Y have, respectively, a G-CW(V) and G-CW (W)
structure, then X x Y has a G-CW(V & W) structure.

C. Kosniowski. A note on RO(G)-graded G-bordism. Quart J. Math. Oxford 26(1975), 411-419.

W. Pulikowski. RO(G)-graded G-bordism theory. Bull. de L’academie Pol. des Sciences
11(1973), 991-999.

H. Seifert and W. Threlfall. A Textbook of Topology (translation). Academic Press. 1980.
R. E. Stong. Unoriented bordism and actions of finite groups. Memoirs A.M.S. No. 103. 1970.
Equivariant RO(G)-graded bordism theories. Topology and its Applications. 17(1984), 1-26.

3. Homotopy theory of G-CW (V') complexes

We now do a little homotopy theory. Since we are using representations to
define attaching maps, it is reasonable to consider the homotopy groups that were

defined in terms of representations in 1X.1.1.

DEFINITION 3.1. A G-space X is V-connected if X# is [V |-connected for each
closed subgroup H C . Let e : X — Y be a G-map and let n be an integer.
Then e is a (V 4 n)-equivalence if, for each H C G and each choice of basepoint
in X7, e, : W‘I;I(H)+q(X) — W‘I;I(H)+q(Y) is an isomorphism if ¢ < |[VH|4-n —1 and
an epimorphism if ¢ < |[VH| 4 n.

THEOREM 3.2 (HELP). Let ¢ : Y — Z be a (V + n)-equivalence and let
(X, A) be a relative G-CW(V) complex of dimension < |V| 4 n. Then we can
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complete the following homotopy extension and lifting diagram:

10 i1

A Ax T A
S

; 7 y |
7 TN R AN

X X x I X.

10 i1

SKETCH OF PROOF. We extend the G-maps g and h cell-by-cell and work in-
ductively. This reduces the problem to the special case where A = G xy S(W)
and X = G xg D(W). The pair (X, A) then has the structure of a relative G-CW
complex with G-cells of the form G/K x D" with r < |WX| < |[VE| 4+ n and K
subconjugate to . Since ¢ is a (|[VE| + n)-equivalence, this allows us to apply

the HELP theorem of ordinary GG-homotopy theory to complete the proof. [

THEOREM 3.3 (G-CW (V) WHITEHEAD). Let ¢ : ¥ — Z be a (V + n)-
equivalence and let X be a G-CW (V) complex. Then e, : [X,Y]s — [X, Z]a
(unbased G-homotopy classes) is an isomorphism if dim X < n 4 |V|] and an epi-

morphism if dim X = n + |V|. Moreover the conclusion remains true if n = oo.

PROOF. As usual, apply HELP to the pair (X,0) for surjectivity and to the
pair (X x I, X x dI) for injectivity. O

THEOREM 3.4 (CELLULAR APPROXIMATION). Every G-map f : X — Y of
G-CW (V') complexes is G-homotopic to a cellular map. If f is already cellular on

a subcomplex A, then the homotopy can be taken relative to A.

SKETCH OF PROOF. One easily shows that the inclusion ¢ : ¥Y* — Y is a
(V +n—|V]|)-equivalence, and HELP then applies inductively to push X" into Y™
and give the required homotopy. O

THEOREM 3.5. For any G-space X, there is a G-CW (V) complex 7 X and a
weak equivalence v: 7 X — X.

SKETCH OF PROOF. In view of Proposition 2.8, this follows directly from the
analog for ordinary G-CW complexes. [
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4. Ordinary RO((G)-graded homology and cohomology

Recall the discussion of stable coefficient systems, alias Mackey and coMackey
functors, from IX§4. The algebra of stable coefficient systems works in the same
way as the algebra of coefficient systems discussed in 1§3. The categories of Mackey
functors and of coMackey functors are Abelian. If M and N are, respectively,
Mackey and coMackey functors, we have the coend or tensor product M @4, N.
If M and M’ are Mackey functors, we have the group of natural transformations
Homg (M, M').

Observe that, for any based G-spaces X and Y, we have a Mackey functor
{X, Y} with values

[X,Y)(G/H) = {G/H, A X, Ve
The contravariant functoriality is given by composition in the evident way.

DEFINITION 4.1. Let X be a G-CW(V) complex. Define a chain complex
QY(X) in the Abelian category of Mackey functors as follows. Let

OV (X) = { sV Whn xmyxnty

G

This is the stable H-homotopy group of X™/X"™ ! in dimension V — |V|+ n. Let
do: O (X) — oy (X)
be the stable connecting homomorphism of the triple (X", X"~ X"=2).

Observe that X"/ X" is the wedge over the n-cells of X of G-spaces of the
form G/Hy A SY=IVIH+" and that CV(X) is the direct sum of corresponding free
Mackey functors represented by the objects G/H.

DEFINITION 4.2. Let X be a G-CW(V') complex. For a Mackey functor M,
define the ordinary cohomology of X with coefficients in M to be

HYH(X; M) = HV Home,, (CY (X), M),

For a coMackey functor NV, define the ordinary homology of X with coefficients in
N to be

HY L (XiN) = Hy 4 (CY(X) @, N).
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Precisely similar definitions apply to give relative homology and cohomology
groups for relative G-CW (V') complexes (X, A). In the special case when A is a
subcomplex of X, CV(X, A) is isomorphic to CY(X)/CY(A), and we obtain the
expected long exact sequences. If * € X is a G-fixed basepoint and (X, *) is a
relative G-CW(V') complex, we define the reduced homology and cohomology of
X by

AU M) = (X, 6 M) and  HS, (X3 N) = HE, (X, N).

Observe, however, that * cannot be a vertex of X unless G acts trivially on V', by
our limitation on the orbits G/ H that are allowed in the zero skeleta of G-CW (V)
complexes.

Using cellular approximation, homology and cohomology are seen to be functo-
rial on the homotopy category of G-CW (V') complexes. We extend the definition
to arbitrary G-spaces by using approximations by weakly equivalent G-CW (V)
complexes. The definitions for pairs extend similarly. Finally, we extend the

grading to all of RO(G') by setting
HE ™V (X5 M) = HE(2V X M)

and

We easily deduce from a relative version of Proposition 2.9 that, for a relative G-
CW(W) complex (X, *) and any representation V., (XY X, %) inherits a structure
of relative G-CW(V @& W) complex such that the W-cellular chain complex of
(X, ) is isomorphic to the (V & W)-cellular chain complex of (¥ X, *), with an

appropriate shift of dimensions. This gives isomorphisms
Y+ (X M) 2 HYW(sY X)
and
[N{VCI;/—I—TL(X; M) = E'TXC/;@WM(ZVX)-

It is quite tedious, but not difficult, to verify the precise axioms for RO(G)-
graded homology and cohomology theories from the definitions just indicated.
The alternative construction by stable homotopy category techniques in XIII§4 is

less tedious, but perhaps less intuitive.
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REMARKS 4.3. (1) There is a twisted version of the theory, where the twisting
is taken over the fundamental groupoid of X.

(2) As already indicated, this theory also extends to a theory graded on represen-
tations of the fundamental groupoids of G-spaces. Roughly, such a representation
assigns a representation to each component of each fixed point set in an appropri-
ately coherent fashion. We also have a twisted version of this fancier theory.

(3) In the untwisted theory given above, Poincaré duality and the Thom iso-
morphism theorem hold for oriented V-manifolds. These are V-manifolds whose
tangent bundles admit orientations in the geometric sense. They possess funda-
mental classes in dimension V.

(4) There is also a version of the Hurewicz theorem, which Lewis will discuss in
the next chapter.

(5) There is an unpublished theory of equivariant Chern classes which live in
off-integral dimensions, but this theory is not yet well-understood.

(6) The cohomology of a point is highly nontrivial, since there is no dimension
axiom away from integer gradings. Indeed, among other applications related to
ordinary cohomology, I have a curious result to the effect that if you localize the
cohomology of a point by inverting a Chern class in dimension V' — |V, where V

contains a free G-orbit, then you get the cohomology of BG.

REMARK 4.4. The chain level construction just sketched has applications to
manifold theory. Since Poincaré duality works for this theory (V-manifolds have
fundamental classes in the twisted theory), Costenoble and I have been able to
use it to obtain a workable definition of Poincaré duality spaces and to prove a
7 — 7 theorem for such spaces, giving a criterion for a G-CW complex to have the
G-homotopy type of a GG-manifold in the presence of suitable “gap hypotheses”
on the homotopy groups of its fixed point spaces. We have also extended this to
the case of simple G-homotopy theory, since it turns out that Poincaré duality is
given by a simple chain equivalence, just as in the nonequivariant case. Thus we
can say when a G-CW complex has the simple G-homotopy type of a GG-manifold.
S. R. Costenoble and S. Waner. G-transversality revisited. Proc. A.M.S. 116(1992), 535-546.
S. R. Costenoble and S. Waner. The equivariant Spivak normal bundle and equivariant surgery.
Michigan Math. J. To appear.

L. G. Lewis, Jr., Equivariant Eilenberg-Mac Lane spaces and the equivariant Seifert-van Kampen
and suspension theorems. Topology and its Applications 48 (1992), 25-61.

S. Waner. A generalization of the cohomology of groups. Proc. Amer. Math. Soc. 85(1982),
469-474.
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S. Waner. Equivariant covering spaces and cohomology. Proc. Amer. Math. Soc. 88(1983),
351-356.

S. Waner. Mackey functors and G-cohomology. Proc. Amer. Math. Soc. 90(1984), 641-648.

S. Waner. Periodicity in the cohomology of universal G-spaces. Illinois J. Math. 30(1986),
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CHAPTER XI

The equivariant Hurewicz and Suspension Theorems

by L. Gaunce Lewis, Jr.

1. Background on the classical theorems

We begin by recalling the statements of two basic theorems in nonequivariant
homotopy theory. The first of these is the very familiar Hurewicz Theorem.

THEOREM A. If Y is a simply connected space and n > 2, then the following
are equivalent:
(i) H,(Y;Z) = 0 for all k < n.
(ii) 7Y =0 for all k < n.

Moreover, either of these implies that the Hurewicz homomorphism
h:wY — H,(Y;Z)
is an isomorphism.

There is, of course, an extension of this theorem that describes the relation
between 7Y and H;(Y;Z), but we shall here restrict attention to the simply con-
nected case, in both nonequivariant and equivariant homotopy theory, to avoid
some unpleasant technicalities that obscure the central issues. The Hurewicz the-
orem is important because it describes the basic connection between the two most
commonly used functors in algebraic topology. It allows us to convert information
about homology groups, which are relatively easy to compute, into information
about homotopy groups, which are much harder to compute but also much more
useful.

The second theorem is the Freudenthal suspension theorem.

115
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THEOREM B. Let Y be an n-connected space, where n > 1, and let X be a
finite CW complex. Then the suspension map

o [X,)Y] — [EX,XY]
is surjective if dim X < 2n + 1 and bijective if dom X < 2n.

Historically, this result grew out of Freudenthal’s study of the homotopy groups
of spheres. His original version of this result merely gave conditions on m and n
under which the suspension map

o ST — T ST

was surjective or bijective. This initial result was rather quickly extended to one
giving conditions under which the suspension map

oc:mY — m,nY

was surjective or bijective. Eventually, the result was generalized to Theorem B.
As with the Hurewicz Theorem, this result allows us to compare a well-behaved
object that we have some hope of understanding with an apparently less well-
behaved one. The point here is that [Y¥X,XY] is a group and, if we suspend it
once more, it becomes an abelian group. On the other hand, [X, Y] need only
be a pointed set. As a vague general principle, which will be made more precise
later, the more we suspend a space, the more algebraic tools (like group structures)
we gain for the study of the space. The Freudenthal result allows us to convert
information that we obtain working in the more structured setting of objects that
have been repeatedly suspended into information about the original, unsuspended,
objects.

These two basic theorems are actually quite closely related. If one constructs
homology using Eilenberg-Mac Lane spaces, then the Hurewicz theorem follows di-
rectly from the suspension theorem and the simple observation that the Eilenberg-
Mac Lane space K(Z,n) in dimension n associated to the group Z has a CW struc-
ture in which the bottom cell is a sphere in dimension n and in which there are no
(n+1)-cells. The Hurewicz map itself is derived from the inclusion of this bottom
cell. If one thinks of homology in terms of the Eilenberg-Mac Lane spectrum KZ
associated to the group Z, then the Hurewicz theorem follows even more directly
from the suspension theorem and the observation that KZ has a CW structure
in which the bottom cell is a copy of the zero sphere and in which there are no
1-cells.
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We shall discuss the equivariant analogues of these two theorems in this chapter.
Full details and more general versions of the results are given in the first two of
the following three papers; we shall occasionally refer to these papers by number,
and a little guide to them is given in a scholium at the end of the chapter.

[L1] L. G. Lewis, Jr., Equivariant Eilenberg-Mac Lane spaces and the equivariant Seifert-van
Kampen and suspension theorems. Topology and its Applications 48 (1992), 25-61.

[L.2] L. G. Lewis, Jr., The equivariant Hurewicz map. Trans. Amer. Math. Soc., 329 (1992),
433-472.

[L3] L. G. Lewis, Jr., Change of universe functors in equivariant stable homotopy theory. Fund.
Math. To appear.

2. Formulation of the problem and counterexamples

Throughout the chapter, we assume that ¢ is a compact Lie group and that the
spaces considered are left GG-spaces. There are two issues that come up immediately
when one starts thinking about generalizing these basic theorems to the equivariant
context. The first is how one should measure the connectivity of G-spaces. There
are two solutions to this problem. The first is the notion of V-connectivity that
Stefan Waner introduced in the previous chapter. This notion focuses on a single
Gi-representation V and measures the connectivity of a G-space Y as seen through
the “eyes” of that representation. The other notion of equivariant connectivity
is less dependent on individual representations and somewhat less exotic in its
definition. It too has already been introduced earlier, but we recall the definition.

DEFINITION 2.1. (a) A dimension function v is a function from the set of con-
jugacy classes of subgroups of (¢ to the integers > —1. Write n* for the dimension
function that takes the value n at each H. Associated to any G-representation
V is the dimension function |V*| whose value at K is the real dimension of the
K-fixed subspace V& of V.

(b) Let v be a dimension function. Then a G-space Y is G-v-connected if, for
each subgroup K of G, the fixed point space Y® is v(K)-connected. The based
G-space Y is homologically G-v-connected if, for every subgroup K of GG and every
integer m with 0 < m < v(K), the equivariant homology group [:IQY is zero. A
G-space Y is G-connected if it is G-0"-connected. A G-space is simply G'-connected
if it is G-1*-connected. The prefix “G-” will be deleted from the notation whenever
the omission should not lead to confusion.

(c) Define the connectivity function ¢*Y of a G-space Y by letting ¢®Y be the
connectivity of the space Y for each subgroup K of (. Define ¢®Y = —1 if Y&
is not path connected.
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A basic result of Waner indicates that the two rather different measures of
equivariant connectivity that we have described are intimately related.

LEMMA 2.2. Let Y be a G-space and V' be a G-representation. Then the space
Y is V-connected if and only if it is |V*|-connected.

Because of this lemma, we will use the terms V-connected and |V*|-connected
interchangeably.

The second issue that comes up immediately is what sort of suspensions one
wishes to allow in the equivariant context and, intimately tied to that, how one
grades equivariant homotopy and homology groups. The point here is that one
may define XY to be Y A S'. Therefore, in the equivariant context, if V is a
G-representation and SV is its one-point compactification (with @ acting trivially
on the point at infinity, which is taken to be the basepoint), then it is natural to
think of Y A SV as the suspension XVY of Y by V. With this viewpoint, it is
natural to want an equivariant suspension theorem which describes the map

gy . [X,Y]G — [ZVX,ZVY]G.

Moreover, since, in the nonequivariant context, 7,Y is just [S™, Y], it is natural
to regard [SY,Y]s as the V¥ homotopy group (or set) 7{/Y. Thus, we would like
to have a V" homology group HY, an equivariant Hurewicz map

ho:wlY — HEY,

and an equivariant Hurewicz theorem that tells us when this map is an isomor-
phism. The previous chapter has already given one construction of HZY', and
Chapter XIII will give another. The precise definition of the map A is given in
[L2], but it should become apparent from the discussion of the relationship between
equivariant spectra and equivariant homology to be given later.

We must still resolve the issue of what coefficients should be used for this ho-
mology group since it is very important in the nonequivariant Hurewicz Theorem
that integral coefficients be used. Burnside ring coefficients turn out to be the
appropriate ones, essentially because the equivariant zero stem is the Burnside
ring.

It should be fairly clear that the sort of equivariant suspension theorem that we
would like to have would be something along the lines of:
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“THEOREM”. Let Y be a simply G-connected space, X be a finite G-CW com-
plex, and V be a G-representation. Then the suspension map

oy . [X,Y]G — [ZVX,ZVY]G

is surjective if, for every subgroup K of G, dim X* < 2¢8Y 4 1 and is bijective
if, for every subgroup K, dim X% < 28V,

Unfortunately, this result is wildly false. For example, let G = Z/2, n > 3,
and V be the real one-dimensional sign representation of G. Then our proposed
“Theorem” would require that the maps

oy [Sn75'n]G N [Sn+V7Sn+V]G
and
oy [Sn+V7Zn—I—VG+]G N [Sn+2V7Zn+2VG+]G
be isomorphisms. However, simple calculations give that

[S", 8" =7 and [S™FV, 8"V, = 72,

[Sn-l-v7 En+vG+]G _ Z2 and [Sn—I—QV7 Zn—|—2VG+]G — 7.

Thus, the first of the two maps above can’t be surjective and the second can’t
be injective. In fact, calculations for arbitrary groups ' and low-dimensional
nontrivial G-representations V' and W suggest that the suspension map

ow . [SV,SV]G — [SV+W,SV+W]G

is almost never an isomorphism. The restriction of “low dimension” is essential
here because, as we have seen in [X.2.3, if G is finite and V' contains enough
copies of the regular representation of 7, then oy is an isomorphism for any
G-representation W. Similar calculations of equivariant homotopy and homology
groups suggest rather quickly that there is no simple generalization of the Hurewicz
theorem to the equivariant context.

One way to save the equivariant suspension theorem is to insert additional
hypotheses, as in IX.1.4. The inequalities required there between the dimension
of YH and the connectivity of Y when K C H with VE #£ V¥ tend to be quite
restrictive and hard to verify. Thus, what we intend to discuss is another approach
to generalizing the Hurewicz and suspension theorems to the equivariant context.
For this alternative approach, we must revert to the earlier form of the suspension
theorem which deals only with the suspension of homotopy groups.
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3. An oversimplified description of the results

Hereafter, in discussing the suspension map
ow . [X, Y]G — [ZWX, ZWY]G,

we will consider only the case in which X = SV for some G-representation V. As a
matter of convenience, we will assume that the representation V' contains at least
two copies of the one-dimensional trivial G-representation. This ensures that the
set 7Y is an abelian group. The motivation for the alternative approach is that,
even though the suspension map

ow . [SV,SV]G — [SV+W,SV+W]G

is rather badly behaved, we can, at least in theory, compute exactly what it does.
Thus, it is reasonable to ask if our understanding of this map can be used to shed
some light on the suspension map

ow W‘C/;Y = [SV7Y]G — [SV—I—W7ZWY]G = 77€+WZWY

for any suitably connected G-space Y.

A feeling for the sort of result that we should expect is best conveyed by a
slight oversimplification of the actual result. The set [SY,S5V]g is a ring under
composition. Here the right distributivity law depends on the fact that V' contains
two copies of R and uses IX.1.4, which ensures that every element of [SY, SV]s is
a suspension. Moreover,

ow . [SV,SV]G — [SV+W,SV+W]G

is a ring homomorphism. For any based G-space Y, the abelian groups 7¢Y
and 7,1, X"Y may be regarded as modules over [SY, SV]g and [SVW, SV,
respectively. If 77, XY is regarded as a [SY, 5V ]g-module via the ring homo-
morphism

SV, 56 — [SVFW, 8V,
then the map
ow : F‘C;Y — F‘C;_I_WZWY
is a [SY, SY]g-module homomorphism. The usual change of rings functor converts

the [SY, SV]g-module 7Y into the [SVFW, SY*+W],-module

F‘C/;Y DV sV [SV+W, SV+W]G.
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The homomorphism oy induces an [SV+W, SYV+W] -module homomorphism

ow : T€Y®[SV75V]G [SV+W,SV+W]G — F‘C;_'_WZWY

The alternative suspension theorem should, in this oversimplified form, assert that
the map ow, rather than oy, is an isomorphism or epimorphism.

We would also like to obtain an equivariant Hurewicz theorem along the same
lines. Again, to convey some intuition for what we hope to prove, we begin with
an oversimplified version of the desired theorem. If one has a sufficiently slick
definition of the homology group HZY, then it is obvious that this group is a
module over the ring [SV, SV]s . Moreover, there is an equivariant Hurewicz map

h:ﬂ'gY — H‘C/;Y

that is a [SY, SY]g-module homomorphism. However, the group H{Y carries a far
richer structure than just that of a [SY, SV]g-module. For any G-representation
W, there is a homology suspension isomorphism HZY = H‘C/;_l_WZWY. Here, our
assumption that V contains at least two copies of the trivial representation removes
the need to worry about reduced and unreduced homology. This isomorphism
indicates that H{Y actually carries the structure of a [SY+W SV+W] -module. A
bit of fiddling with the definitions indicates that the [SV, SV]g-module structure
on HZY is just that obtained by restricting the [SV*W SV+W].-module structure

along the ring homomorphism
ow . [SV,SV]G — [SV+W,SV+W]G.

Since this is true for every G-representation W, what we have on H{Y is a coherent
family of [SVTW, SY+W] . module structures for all possible representations W.
This suggests that we introduce a new ring in which we let W go to infinity. This
ring ought to be defined as some sort of colimit of the rings [SV*+W, SV+W].. where
W ranges over all possible finite-dimensional representations of .

As was explained in 1X§§3,4, we use a complete G-universe U to make this
colimit precise. With the notations there, the ring structure on Bg = {5°,5%}4 is
that inherited from the ring structures on the [SV,SV]s. Since U is complete, it
contains a copy of every representation V. Selecting one of these copies, we obtain
a ring homomorphism

o0 [SV,5Y]¢ — Ba.
It can be shown that o, is actually independent of the choice of the copy of V in U.
It follows from our observation about the module structures on HZY that HZY

carries the structure of a Bg-module. Moreover, its natural [SV,SY]s-module
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structure is just that obtained by restricting the Bg-module structure along o..
The Hurewicz map

h:wdY — HEY
induces a map
?L . F‘C/;Y ®[SV,SV]G BG — H‘C/;Y

of Bg-modules. In this oversimplified outline form, our equivariant Hurewicz the-
orem gives conditions under which the map ﬁ, rather than the map A, is an iso-
morphism.

The proposed equivariant suspension and Hurewicz theorems may seem more
reasonable if one considers the nonequivariant Hurewicz theorem in dimension 1.
This result asserts that, if Y is connected, then the map h : =Y — H;Y induces
an isomorphism between H;Y and the abelianization of 71 Y. We are encountering
the same sort of phenomenon in the equivariant context—that is, we are trying
to compare two objects which carry rather different structures. The two objects
become isomorphic when we modify the less well-structured one to have the same
sort of structure as that carried by the nicer object.

4. The statements of the theorems

The oversimplification in the introduction to our two theorems comes from the
fact that, in order to understand the maps

ow: Y — 7T€+WZWY

and
ho:wlY — HEZY

fully, one must look not only at the group 7Y, but also at the groups 7%Y for
all the subgroups K of G. The maps ow and I constructed in the rough sketch
of our results do not take into account the influence that the groups #%Y have on
the maps ow and h. In order to take this influence into account, we must replace
the ring [SY, V] with a small Ab-category %(V) and replace the module 7Y
with a contravariant additive functor [‘C;Y from Zs(V) into the category Ab of
abelian groups. The category %e(V) and the functor 7Y should be regarded
as bookkeeping devices that allow us to keep track of the influence of the groups
78Y on the maps oy and h.

Recall the definitions of the Burnside category % and of Mackey functors from
[X.4.1 and IX.4.2.
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DEFINITION 4.1. (a) Let V be a finite-dimensional representation of G that
contains at least two copies of the trivial representation. The V-Burnside category
P (V) has as its objects the orbits /K. The set of morphisms from G/K to
G/J in Be(V)is [¥YG/Ky, XV G/ e Note that the morphism sets of Zg(V)
are abelian groups.

(b) If V and W are G-representations of (¢, then suspension gives a functor

S ,@G(V) — ,@G(V + W)

that is the identity on objects. Moreover, any inclusion of V into the G-universe

U gives a functor

S0t Ba(V) — HBa

that is also the identity on objects. It can be shown that the functor s., is
independent of the choice of the copy of V in U.

Motivated by the interpretation of contravariant additive functors #Zo — <7b
as Mackey functors, we refer to contravariant additive functors Zg(V) — &7/b as
V-Mackey functors for any compact Lie group GG and G-representation V. The cat-
egory of V-Mackey functors and natural transformations between such is denoted

M (V). The category of Mackey functors is denoted ..

EXAMPLES 4.2. (a) If V is a representation of (¢ that contains at least two copies
of the trivial representation and Y is a G-space, then the homotopy group 7¢Y
can be extended to a V-Mackey functor z{}Y. For K < &, we define (z{'Y)(G/K)
to be the group

SVYG/KL,Y]e =[SV, Y]x =abY.
The effect of a morphism f in Ze(V)(G/K,G/J) = [XVG/K,,%VG/J,]a on
(z$Y)(G/J) is just that of precomposition by f.

(b) If V' is a G-representation and Y is a G-space, then the homology group

HGY can be extended to a Mackey functor H3Y. If K < (, then

(HEY)(G/K) = HEY.

The functoriality of H{'Y on % will be apparent from the spectrum level con-
struction of XII1§4.

Our actual equivariant suspension and Hurewicz theorems describe the relations
among the functors 7{Y, nf, ,, EV'Y, and HSY . In order to state these theorems,
we must introduce the change of category functors that replace the change of ring
functors that were used in the intuitive presentation of our results.
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DEFINITION 4.3. (a) Precomposition by the functors s and s., of Definition 4.1
gives functors

5" %G(V + W) — %G(V)
and
soor M — Ma(V).
These functors have left adjoints
Sy ! %G(V) — %G(V + W)
and
Sio . %G(V) — %G
that are given categorically by left Kan extension.
(b) The suspension maps

o Y — W‘I}/y_l_WZWY,
as K varies over the subgroups of (G, fit together to form a natural transformation
ow [‘C;Y — S*E‘Cj_l_WZWY.
The adjoint of this map under the (s, , s*)-adjunction is denoted
Gw : s.mlY — [%_WZWY.
(¢) The Hurewicz maps
ph 2y = HEY,
as K varies over the subgroups of (G, fit together to form a natural transformation
h: [‘C;Y — S:;Oﬂgy
The adjoint of this map under the (s, s )-adjunction is denoted
b s<7lYy  — H{Y.

It is the maps oy and I that play the role in the precise statements of our
Hurewicz and suspension theorems that was played by the maps oy and h in our
intuitive sketch of these results.

THEOREM 4.4 (HUREWICZ). Let Y be a based G-CW complex and let V' be a
representation of (¢ that contains at least two copies of the trivial representation.
Then the following two conditions are equivalent.

(i) Y is |(V — 1)*|-connected.
(ii) Y is simply G-connected and homologically |(V — 1)*|-connected.
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Moreover, if W is any representation of ¢ such that 2* < |W*| < |V*|, then either
of these conditions implies that the map

b s Y — HG Y
is an isomorphism and that both 7§ Y and H$ Y are zero if |W*| < |V*|.

THEOREM 4.5 (FREUDENTHAL SUSPENSION). Let V and W be representations
of G and let Y be a based G-CW complex. If V contains at least two copies of

the trivial representation and Y is |(V — 1)*|-connected, then the suspension map
Gyt salY — [%_WZWY
is an isomorphism.

There are several ways in which these two theorems are a bit disappointing. One
of the most obvious is that, in our anticipated applications, we expect to be able
to compute HS, Y and 75, wE"Y, and we want to derive information about (Y’
from these computations. The presence of the functors s2° and s. would seem to
make it difficult to learn much about z$Y" in this fashion. However, the following
lemma ensures that we can, at least, detect the vanishing of &Y with these two
theorems.

LEMMA 4.6. Let V be a representation of ¢ that contains at least two copies of
the trivial representation and M be a V-Mackey functor. Then the following are
equivalent:

(i) M =0.
(ii) s.M =0 for any representation W of G.
(iii) s*M = 0.

Moreover, the explicit descriptions of the functors s, and s2° given in [L1, L2]
can be used to extract some information about #&Y from a knowledge of s, %Y
or SjoﬂgY even in the cases where [‘C;Y does not vanish.

A second disappointment in these two theorems is that they say nothing about
the case in which V' contains only one copy of the trivial representation. In this
context, 7Y need not be an abelian group, but one would expect generaliza-
tions of our two theorems which relate the abelianization of 7{{Y" to HgY and
W‘C/;_l_WZWY (or more precisely, to H$,Y and [%_WZWY). Generalizations of this
form are given in [L1]. They are omitted here because including them would
require introducing some unpleasant technicalities that would only obscure the
central ideas.
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A third disappointment is that, in our suspension theorem, Y is required to be
|(V — 1)*|-connected, whereas one would expect that connectivity on the order of
|V*|/2 would suffice. There are counterexamples (see [L1]) which show that there
is no simple way to weaken this connectivity condition on Y. The source of this
problem is that the functor s, is not exact. It is therefore able to capture the
effects of suspension only in the lowest dimensions. There is, however, a spectral
sequence whose F?-term is formed from the homotopy groups of Y. This spectral
sequence converges to the homotopy groups of ¥¥Y in the range of dimensions
that one would expect based on the connectivity restrictions in Theorem B; see
[L3].

A further disappointing aspect of our suspension theorem is that it applies only
to the homotopy groups 7{/Y" and not to the set [ X, Y]s of G-homotopy classes of
G-maps out of an arbitrary space X. This restriction seems to be unavoidable in
the equivariant context.

5. Sketch proofs of the theorems

We turn now to the matter of proving our two theorems. The equivariant
Hurewicz theorem follows almost trivially from the equivariant suspension theorem
if one is willing to use a little equivariant stable homotopy theory. We will devote
our attention to the proof of the suspension theorem. The best way to gain
insight into the proof is to look at a rather nonstandard proof of a special case
of the corresponding nonequivariant result. This nonstandard proof uses nothing
more than two rather simple facts about Filenberg-Mac Lane spaces and a simple
lemma from category theory.

Recall that, if n is a positive integer and M is an abelian group, then the
Eilenberg-Mac Lane space K(M,n) is a CW-complex such that =, K(M,n) = M
and 7;K(M,n) = 0 for j # n. This property characterizes K(M,n) up to ho-
motopy. The first fact that we need about Eilenberg-Mac Lane spaces is that, for
any positive integer n and any abelian group M, QK1 M ~ K(M,n). This fact
follows immediately from a computation of the homotopy groups of QK (M, n+1).
If X is any based space, then taking n*" homotopy groups gives a map

7 [X,K(M,n)] — hom (7, X, 7, K(M,n)) = hom (7, X, M)

from the set [ X, K (M, n)] of based homotopy classes of maps from X into K (M, n)
to the set hom (7, X, M) of group homomorphisms from 7, X to M. Since the
Eilenberg-Mac Lane space K(M,n) represents cohomology in dimension n with
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M coefficients, the set [X, K(M,n)] is just H"(X; M). It follows easily from the
nonequivariant Hurewicz theorem and the universal coefficient theorem that the
map 7 is an isomorphism if X is an (n — 1)-connected CW-complex. Homotopy
theorists use this observation on a regular basis.

For our proof of the nonequivariant suspension theorem, we need a categorical
interpretation of this result. Let %#; be the category of (n — 1)-connected based
spaces that have the homotopy types of CW-complexes, and let A%/, be the associ-
ated (based) homotopy category. Then the assignment of the Eilenberg-Mac Lane
space K (M,n) to the abelian group M gives a functor K(—,n) from the category
Ab of abelian groups to the category h#;,. On the other hand, taking n** homo-
topy groups gives a functor =, from A%, to Ab. Our assertion that the map =
above is an isomorphism when X is (n — 1)-connected translates formally into the
categorical assertion that the functor K(—,n) is right adjoint to the functor =,,.
This adjunction is the second fact about Eilenberg-Mac Lane spaces that we need.

Now consider the diagram of categories and functors

/b

b
W, . Wi

The functor ¥ is left adjoint to the functor 2. Thus, we have two functors,
QK (—,n+1)and K(—,n), from Ab to h#; with left adjoints 7,41 0% and 7, re-
spectively. The homotopy equivalences QK1 M ~ K(M,n) fit together to give a
natural isomorphism between the functors QK (—,n+1) and K(—,n). The follow-
ing easy lemma from category theory allows us to convert this natural isomorphism
into a nonequivariant suspension theorem.

LEMMA 5.1. Let ¥ and & be categories, Ry, Ry : € — % be functors from %
to Z,and Ly,Ly : ¥ — % be functors from Z to € such that L; is left adjoint
to R;. Then there is a one-to-one correspondence between natural transformations
7 : Ry — R, and natural transformations 7 : Ly — L. Moreover, the natural
tranformation 7 : Ry — R is a natural isomorphism if and only if the associated
natural transformation 7 : Ly — Ly is a natural isomorphism.

The lemma gives us a natural isomorphism 7,Y — w11 XY for (n — 1)-
connected spaces Y of the homotopy types of CW-complexes. By examining the
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proof of the lemma and chasing a few diagrams, it is possible to see that this
isomorphism is, in fact, the usual suspension map o : 7,Y — 7,11 2Y.

This nonequivariant suspension theorem is, of course, substantially weaker than
Theorem B because it requires much more connectivity of Y and because it applies
only to the homotopy group 7, Y rather than to an arbitrary set [ X, Y] of homotopy
classes of maps. However, counterexamples exist which show that limitations of
this sort are an essential part of an equivariant suspension theorem. Thus, our
alternative approach to proving the nonequivariant suspension theorem is an ideal
approach to proving the equivariant theorem.

Let V' be a representation of (¢ that contains at least two copies of the trivial
representation. Let #4 (V) be the category of based |(V — 1)*|-connected G-spaces
that have the G-homotopy types of G-CW complexes, and let h#(V) be the
associated homotopy category; its morphisms are based G-homotopy classes of
based G-maps.

To prove our equivariant suspension theorem, we must associate an Eilenberg-
Mac Lane space Kg(M,V) to each V-Mackey functor M in such a way that we
obtain a functor from .Z;(V) to h#G(V). We must show that this functor is
right adjoint to the functor z$ : h#&(V) — .#5(V). Then we must demon-
strate that, if N is a (V 4+ W)-Mackey functor, there is a G-homotopy equivalence
OV KG(N,V+W) ~ Kg(s*N,V). Here, the functor s* enters in a way that no
analogous functor appears in the nonequivariant case because, in the equivariant
case, the functors 7f and 7§,y land in different categories, whereas the func-
tors m, and 7,41 both produce abelian groups in the nonequivariant case. Now
consider the diagram

Sx

Ma(V) ——= . A(V + W)
7G| | Ka(=V) 5w | | Ka(=V+W)
w
e (V) eV 4+ W)
QW

of categories and functors. The composites QW Kg(—,V + W) and Kg(s*—, V)

have left adjoints [%_WZW and s.z$ respectively. Thus the natural isomor-

phism QW Kg(—,V + W) — Kg(s*—, V) that is derived from our G-homotopy
equivalences QW Kg(N,V + W) ~ Kg(s*N,V) implies a natural isomorphism

s, — E%_WZW- Again, a bit of diagram chasing confirms that this isomor-
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phism is just the standard suspension map
ow : 3*[3 — E‘Cj_l_WZW.
It is easy enough to say what a V-Eilenberg-Mac Lane space ought to be.

DEFINITION 5.2. Let V' be a representation of (¢ that contains at least two
copies of the trivial representation and M be a V-Mackey functor. A V-Filenberg-
Mac Lane space Kg(M,V) is a based, |(V — 1)*|-connected G-space Kg(M,V)
of the G-homotopy type of a G-CW complex such that 7§/ Kg(M,V) = M and
5 Ka(M, V) =0 for k> 0.

The problem is to show that such spaces exist, that the assignment of K (M, V)
to M gives a functor from (V) to h#¢(V), and that this functor is right
adjoint to 7. In order to fill in these details, we utilize a variant of the G-
CW(V) complexes that Waner described in the previous chapter. Waner worked
with unbased complexes and adjoined his cells using unbased maps. The variant
with which we must work is that of based complexes formed using based attaching
maps. We take our cells to be the cones on spheres of the form XV **G// K, where
k > —1 and K runs over the (closed) subgroups of G. A based G-CW(V') complex
is then a G-space Y together with a sequence {Y*};5_; of closed subspaces such

that Y1 is a point, Y**! is the cofibre of a based map A : \{] YWHG/K; — Y*F
€

for some indexing set .J; and some collection {K};ey, of s]ubljgroups of G, and Y

is the colimit of the Y'*.

There is a general theory of abstract CW complexes that applies to spaces con-
structed in this form. This theory ensures that G-CW (V') complexes have all the
nice properties that one might expect. For us, their most important properties are
that they have the homotopy types of G-CW complexes, that they are [(V — 1)*|-
connected, and that they can be used to approximate, up to weak G-equivalence,
any G-space that is |[(V — 1)*|-connected. Using G-CW(V) complexes, one can
construct a V-Eilenberg-Mac Lane space K¢(M, V) for any V-Mackey functor M
by attaching cells of the form CXV*+*(G/K, in exactly the same way that one con-
structs ordinary, nonequivariant, Eilenberg-Mac Lane spaces by attaching ordinary
cells.

As in the nonequivariant context, there is a map

7 [X, Ka(M,V)]g — hom(z$ X, 7 K(M,n)) = hom(z§ X, M)
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given by taking V' homotopy “groups”. Here, hom means the set of natural
transformations between two functors in .Zg(V). If X is [(V — 1)*|-connected,
then it can be approximated by a G-CW(V) complex. This approximation can
be used to show that the map 7 is an isomorphism. We proved the analogous
result in the nonequivariant context using the Hurewicz theorem and the universal
coefficient theorem. It can, however, be just as easily proved by using a CW
approximation to X and arguing inductively up the skeleton of the approximation.

From here, the second approach to the nonequivariant result generalizes without
any trouble to the equivariant context. The fact that = is an isomorphism when X
is |(V = 1)*|-connected can be used to show that the assignment of Kg(M, V) to
M gives a functor and that this functor is right adjoint to 7%. It can also be used to
construct a G-homotopy equivalence between QW Ko(N,V + W) ~ Kg(s*N, V)
for any (V' + W)-Mackey functor N. This completes the proof of the equivariant
suspension theorem.

ScHOLIUM 5.3. This presentation has been an overview of the papers [L.1] and [L2]. Reference
[L1] provides full details on everything that has been said here about the equivariant suspension
theorem. Tt includes a careful treatment of based G-CW(V') complexes and of V-Eilenberg-
Mac Lane spaces. In that paper, V is assumed to have at least one copy, rather than at least
two copies, of the trivial representation. Thus the theorems in [L1] are more general in that
they describe the effects of the presence of a nontrivial fundamental group on the suspension
and Hurewicz maps. However, this extra generality necessitates several unpleasant technical
complications in the arguments that obscure the basic simplicity of the ideas. Reference [L2]
is an older paper and in some respects obsolete. Its most important results, the absolute and
relative unstable Hurewicz theorems (Theorems 1.7 and 1.8), are restated in a better and more
general form as Theorems 2.8 and 2.9 of [L1]. The improved versions of these theorems take
into account the results in [L1] dealing with the case in which V' contains only one copy of the
trivial representation. On the positive side, [L2] contains a description of the structure of the
categories # (V) and of the functors s, and s2°. Tt contains the proof of Lemma 2.2 above on
the equivalence of V- and |V*|-connectivity in the case when G is a compact Lie group; Waner
proved this result only for finite groups. Lemma 4.6 above on the vanishing of s, M and s°M
is also proved in [L2]. The definitions of the absolute and relative stable and unstable Hurewicz
maps are contained in [L2]. The proof of the stable Hurewicz isomorphism theorem in section
2 of [L2] is a simple application of some of the basic techniques in equivariant stable homotopy
theory that will be covered in later chapters. Going over that argument is a good way to solidify
one’s grasp on these basic tricks. Reference [L2] also contains a description of the process for
deriving the relative Hurewicz theorem from the absolute Hurewicz theorem. All of the other
arguments in [L2], and especially those in sections 5 and 6, are correct but obsolete. I developed
them before I became aware of the basic connection between equivariant Eilenberg-Mac Lane
spaces and the equivariant suspension theorem. The results presented in section 6 of [L2] are
presented in a better and more general form in [L3], which is, essentially, an extension of [L1]
from the realm of equivariant unstable homotopy theory to that of equivariant stable homotopy
theory.



CHAPTER XII

The Equivariant Stable Homotopy Category

1. An introductory overview

Let us start nonequivariantly. As the home of stable phenomena, the subject
of stable homotopy theory includes all of homology and cohomology theory. Over
thirty years ago, it became apparent that very significant benefits would accrue
if one could work in an additive triangulated category whose objects were “stable
spaces”, or “spectra”, a central point being that the translation from topology
to algebra through such tools as the Adams spectral sequence would become far
smoother and more structured. Here “triangulated” means that one has a sus-
pension functor that is an equivalence of categories, together with cofibration
sequences that satisfy all of the standard properties.

The essential point is to have a smash product that is associative, commutative,
and unital up to coherent natural isomorphisms, with unit the sphere spectrum
S. A category with such a product is said to be “symmetric monoidal”. This
structure allows one to transport algebraic notions such as ring and module into
stable homotopy theory. Thus, in the stable homotopy category of spectra —
which we shall denote by h.% — a ring is just a spectrum R together with a
product ¢ : RA R — R and unit  : S — R such that the following diagrams
commute in h.%:

R<"RAS and RARARZ=RAR

Sl S

RANR R.

The unlabelled isomorphisms are canonical isomorphisms giving the unital prop-
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erty, and we have suppressed associativity isomorphisms in the second diagram.
Similarly, there is a transposition isomorphism 7 : E A F — F A E in h.%, and

R is said to be commutative if the following diagram commutes in 7.7

RANR RANR

A

R.
A left R-module is a spectrum M together with a map p: R A M — M such

that the following diagrams commute in 7.7

nAl 1Ap
SAM —RAM and RARAM —RAM

N el o, b

M RAM M.

Over twenty years ago, it became apparent that it would be of great value to
have more precisely structured notions of ring and module, with good properties
before passage to homotopy. For example, when one is working in A.% it is not
even true that the cofiber of a map of R-modules is an R-module, so that one
does not have a triangulated category of R-modules. More deeply, when R is
commutative, one would like to be able to construct a smash product M Ap N
of R-modules. Quinn, Ray, and I defined such structured ring spectra in 1972.
Elmendorf and I, and independently Robinson, defined such structured module
spectra around 1983. However, the problem just posed was not fully solved until
after the Alaska conference, in work of Elmendort, Kriz, Mandell, and myself. We
shall return to this later.

For now, let us just say that the technical problems focus on the construction
of an associative and commutative smash product of spectra. Before June of
1993, I would have said that it was not possible to construct such a product on a
category that has all colimits and limits and whose associated homotopy category
is equivalent to the stable homotopy category. We now have such a construction,
and it actually gives a point-set level symmetric monoidal category.

However, it is not a totally new construction. Rather, it is a natural extension
of the approach to the stable category h.# that Lewis and I developed in the
early 1980’s. Even from the viewpoint of classical nonequivariant stable homotopy

theory, this approach has very significant advantages over any of its predecessors.
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What is especially relevant to us is that it is the only approach that extends
effortlessly to the equivariant context, giving a good stable homotopy category
of G-spectra for any compact Lie group . Moreover, for a great deal of the
homotopical theory, the new point-set level construction offers no advantages over
the original Lewis-May theory: the latter is by no means rendered obsolete by the
new theory.

From an expository point of view this raises a conundrum. The only real defect
of the Lewis-May approach is that the only published account is in the general
equivariant context, with emphasis on those details that are special to that setting.
Therefore, despite the theme of this book, I will first outline some features of the
theory that are nearly identical in the nonequivariant and equivariant contexts,
returning later to a discussion of significant equivariant points. [ will follow in
part an unpublished exposition of the Lewis-May category due to Jim McClure.
A comparison with earlier approaches and full details of definitions and proofs may
be found in the encyclopedic first reference below. The second reference contains
important technical refinements of the theory, as well as the new theory of highly
structured ring and module spectra. The third reference gives a brief general
overview of the theory that the reader may find helpful. We shall often refer to
these as [LMS], [EKMM], and [EKMM’].

General References

[LMS] L. G. Lewis, Jr., J. P. May, and M. Steinberger (with contributions by J. E. McClure).
Equivariant stable homotopy theory. Springer Lecture Notes in Mathematics. Vol. 1213. 1986.
[EKMM] A. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Rings, modules, and algebras in
stable homotopy theory. Preprint, 1995.

[EKMM’] A. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Modern foundations for stable
homotopy theory. In “Handbook of Algebraic Topology”, edited by I. M. James. North Holland,
1995, pp 213-254.

2. Prespectra and spectra

The simplest relevant notion is that of a prespectrum E. The naive version is a

sequence of based spaces F,, n > 0, and based maps
op Xl — 4.

A map D — FE of prespectra is a sequence of maps D, — FE, that commute

with the structure maps o,,. The structure maps have adjoints

op: By — QF, 14,
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and it is customary to say that F is an ()-spectrum if these maps are equivalences.
While this is the right kind of spectrum for representing cohomology theories
on spaces, we shall make little use of this concept. By a spectrum, we mean a
prespectrum for which the adjoints &, are homeomorphisms. (The insistence on
homeomorphisms goes back to a 1969 paper of mine that initiated the present
approach to stable homotopy theory.) In particular, for us, an “Q2-spectrum” need
not be a spectrum: henceforward, we use the more accurate term -prespectrum

for this notion.

One advantage of our definition of a spectrum is that the obvious forgetful
functor from spectra to prespectra — call it { — has a left adjoint spectrification
functor L such that the canonical map L{F — F is an isomorphism. Thus there
is a formal analogy between L and the passage from presheaves to sheaves, which
is the reason for the term “prespectrum”. The category of spectra has limits,
which are formed in the obvious way by taking the limit for each n separately. It
also has colimits. These are formed on the prespectrum level by taking the colimit

for each n separately; the spectrum level colimit is then obtained by applying L.

The central technical issue that must be faced in any version of the category of
spectra is how to define the smash product of two prespectra {D, } and {£,}. Any
such construction must begin with the naive bi-indexed smash product {D,, A E,}.
The problem arises of how to convert it back into a singly indexed object in
some good way. It is an instructive exercise to attempt to do this directly. One
quickly gets entangled in permutations of suspension coordinates. Let us think of
a circle as the one-point compactification of R and the sphere S™ as the one-point
compactification of R”. Then the iterated structure maps ¥"F,, = E,, A 5" —
E,. 1, seem to involve R" as the last n coordinates in R™*", This is literally true
if we consider the sphere prespectrum {5} with identity structural maps. This
suggests that our entanglement really concerns changes of basis. If so, then we
all know the solution: do our linear algebra in a coordinate-free setting, choosing

bases only when it is convenient and avoiding doing so when it is inconvenient.

Let R*™ denote the union of the R®, n > 0. This is a space whose elements
are sequences of real numbers, all but finitely many of which are zero. We give
it the evident inner product. By a universe U, we mean an inner product space
isomorphic to R*. If V is a finite dimensional subspace of U, we refer to V as

an indexing space in U, and we write SV for the one-point compactification of V/,

which is a based sphere. We write XV X for X A SV and QV X for F(SV, X).
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By a prespectrum indexed on U, we mean a family of based spaces KV, one for

each indexing space V in U, together with structure maps
ovw : VTV EV — EW

whenever V' C W, where W — V denotes the orthogonal complement of V in W.

We require oy y = Id, and we require the evident transitivity diagram to commute

for VW C Z:
NI-Wy W=V Py ——s 2 2-W Py

|

NVEV EZ.
We call £ a spectrum indexed on U if the adjoints

BV — QVVEW

of the structural maps are homeomorphisms. As before, the forgetful functor ¢
from spectra to prespectra has a left adjoint spectrification functor L that leaves
spectra unchanged. We denote the categories of prespectra and spectra indexed
on U by ZU and .#U. When U is fixed and understood, we abbreviate notation
to &2 and .7

It U = R* and F is a spectrum indexed on U, we obtain a spectrum in our
original sense by setting £, = ER". Conversely, if {F,} is a spectrum in our
original sense, we obtain a spectrum indexed on U by setting £V = Q¥ -V [,
where n is minimal such that V' C R". It is easy to work out what the structural
maps must be. This gives an isomorphism between our new category of spectra
indexed on U and our original category of sequentially indexed spectra.

More generally, it often happens that a spectrum or prespectrum is naturally
indexed on some other cofinal set &7 of indexing spaces in U. Here cofinality means
that every indexing space V is contained in some A € &7; it is convenient to also
require that {0} € /. We write 22«7 and ./ for the categories of prespectra
and spectra indexed on 7. On the spectrum level, all of the categories ..o/ are
isomorphic since we can extend a spectrum indexed on &/ to a spectrum indexed
on all indexing spaces V' in U by the method that we just described for the case
o = {R"}.

J. P. May. Categories of spectra and infinite loop spaces. Springer Lecture Notes in Mathematics

Vol. 99. 1969, 448-479.
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3. Smash products

We can now define a smash product. Given prespectra £ and £’ indexed on
universes U and U’, we form the collection {EV A E'V'}, where V and V' run
through the indexing spaces in U and U’, respectively. With the evident structure
maps, this is a prespectrum indexed on the set of indexing spaces in U & U’ that
are of the form V @ V'. If we start with spectra £ and E’, we can apply the
functor L to get to a spectrum indexed on this set, and we can then extend the
result to a spectrum indexed on all indexing spaces in U & U’. We thereby obtain
the “external smash product” of F and E’,

EANE € #(Ual).

Thus, if U = U’, then two-fold smash products are indexed on U?, three-fold smash
products are indexed on U?, and so on.

This external smash product is associative up to isomorphism,
(EANEYANE"=EAN(E"ANE").

This is evident on the prespectrum level. It follows on the spectrum level by a
formal argument of a sort that pervades the theory. One need only show that, for
prespectra D and D',

L(L(D) AD'Y= L(DA D)= L(D ACL(D)).

Conceptually, these are commutation relations between functors that are left ad-
joints, and they will hold if and only if the corresponding commutation relations
are valid for the right adjoints. We shall soon write down the right adjoint function
spectra functors. They turn out to be so simple and explicit that it is altogether
trivial to check the required commutation relations relating them and the right
adjoint /.

The external smash product is very nearly commutative, but to see this we need
another observation. If f: U — U’ is a linear isometric isomorphism, then we

obtain an isomorphism of categories f*:.7U" — LU via

(STEN(V) = E'(JV).
Its inverse is f, = (f7Y)*. Il 7: U & U’ — U’ @ U is the transposition, then the

commutativity isomorphism of the smash product is

E'NEXr(ENE.
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Analogously, the associativity isomorphism implicitly used the obvious isomor-
phism of universes (U U")p U" =2 U & (U' ¢ U").

What about unity? We would like E'A S to be isomorphic to E. but this doesn’t
make sense on the face of it since these spectra are indexed on different universes.
However, for a based space X and a prespectrum F, we have a prespectrum £ A X
with

(EANX)(V)=FEVAX.

It we start with a spectrum E and apply L, we obtain a spectrum £ A X. It is
quite often useful to think of based spaces as spectra indexed on the universe {0}.
This makes good sense on the face of our definitions, and we have £ A S° = F,
where S° means the space S°.

Of course, this is not adequate, and we have still not addressed our original
problem about bi-indexed smash products: we have only given it a bit more formal
structure. To solve these problems, we go back to our “change of universe functors”
LU — FU. Clearly, to define f*, the map f : U — U’ need only be a
linear isometry, not necessarily an isomorphism. While a general linear isometry f
need not be an isomorphism, it is a monomorphism. For a prespectrum £ € 22U,

we can define a prespectrum f, £ € U’ by

(3.1) (LEYVY=EVASYV where V = f~1(V' 0 f(U)).
Its structure maps are induced from those of £ via the isomorphisms
(3.2) EV NSV IV NSV = gy A SV A WISV

As usual, we use the functor L to extend to a functor f, : YU — FU'. Asis
easily verified on the prespectrum level and follows formally on the spectrum level,
the inverse isomorphisms that we had in the case of isomorphisms generalize to

adjunctions in the case of isometries:
(3.3) LU (f BB = SU(E, f*E').

How does this help us? Let .7 (U, U’) denote the set of linear isometries U —
U'. 1f V is an indexing space in U, then .#(V,U’) has an evident metric topology,
and we give Z (U, U’) the topology of the union. It is vital — and not hard to prove
— that .#(U,U’) is in fact a contractible space. As we shall explain later, this can
be used to prove a version of the following result (which is slightly misstated for
clarity in this sketch of ideas).
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THEOREM 3.4. Any two linear isometries U — U’ induce canonically and
coherently weakly equivalent functors .U — ZU".

We have not yet defined weak equivalences, nor have we defined the stable
category. A map f: D — F of spectra is said to be a weak equivalence if each of
its component maps DV — FEV is a weak equivalence. Since the smash product
of a spectrum and a space is defined, we have cylinders £ A I, and thus a notion
of homotopy in .ZU. We let h.”U be the resulting homotopy category, and we
let h.7U be the category that is obtained from h.#U by adjoining formal inverses
to the weak equivalences. We shall be more explicit later.

This is our stable category, and we proceed to define its smash product. We
choose a linear isometry f : U? — U. For spectra E and £’ indexed on U, we
define an internal smash product f.(F A E') € ZU. Up to canonical isomorphism
in the stable category h.#U, f.(E A E') is independent of the choice of f. For

associativity, we have
FAENLLENE") 2 (F(1@ f)(EAE AE") = (F(f61)). 2 LULEAE)AE").

Here we write = for isomorphisms that hold on the point-set level and ~ for

isomorphisms in the category h.#U. For commutativity,
J(E'NE)YZ i EANE)Z (fT)(EANE") ~ f.(EANE".

For a space X, we have a suspension prespectrum {%Y X} whose structure maps
are identity maps. We let ¥°X = L{¥V X}. In this case, the construction of L is

quite concrete, and we find that
(3.5) Y2 X ={QXVX}, where QY =[JQ"Q"Y.

This gives the suspension spectrum functor ¥ : .7 — ZU. It has a right
adjoint ° which sends a spectrum F to the space Ey = F{0}:

(3.6) UMYX, FE) 2 T(X,QE).
The functor ) is the same as 2°°X°°. For a linear isometry f: U — U’, we have
(3.7) fXTX =YX

since, trivially, Q> f*E' = E| = Q> FE’. A space equivalent to Fy for some spec-

trum £ is called an infinite loop space.



4. FUNCTION SPECTRA 139

Remember that we can think of the category .7 of based spaces as the category
{0} of spectra indexed on the universe {0}. With this interpretation, 2> coin-
cides with ¢*; where ¢ : {0} — U is the inclusion. Therefore, by the uniqueness
of adjoints, ¥°°X is isomorphic to i,.X. Let i1 : U — U? be the inclusion of U
as the first summand in U @ U. The unity isomorphism of the smash product is
the case X = S of the following isomorphism in h.%U:

(3.8)
FAENS®X) 2 f(i)(EAX)2 (Ffoi)(EAX)~ 1L(EAX)=EAX.

We conclude that, up to natural isomorphisms that are implied by Theorem 3.4
and elementary inspections, the stable category h.#U is symmetric monoidal with
respect to the internal smash product f.(F A E') for any choice of linear isometry
f:U? — U. It is customary, once this has been proven, to write £ A £’ to mean
this internal smash product, relying on context to distinguish it from the external

product.

4. Function spectra

We must define the function spectra that give the right adjoints of our various
kinds of smash products. For a space X and a spectrum F, the function spectrum
F(X, F) is given by

F(X,E)V)=F(X,EV).

Note that this is a spectrum as it stands, without use of the functor L. We have

the isomorphism
F(IEANX,E"YX F(E,F(X,E")
and the adjunction

(4.1) SUEANXE"Y= 7(X,YU(E,E")) = YU(E,F(X,E")),

where the set of maps £ — FE’ is topologized as a subspace of the product over
all indexing spaces V of the spaces F(EV, E'V). As an example of the use of right
adjoints to obtain information about left adjoints, we have isomorphisms

(4.2) (EX)ANY ZEC(XAY)Z X A(EFY).
For the first, the two displayed functors of X both have right adjoint
(Y. E)o = F(Y, Eo).
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More generally, for universes U and U’ and for spectra £’ € #U’ and E" €

(U @ U'), we define an external function spectrum
F(E E"Ye LU

as follows. For an indexing space V in U, define E"[V] € LU’ by

E"VI(V)Y=E"(VaV).
The structural homeomorphisms are induced by some of those of £”, and others
give a system of isomorphisms E”[V] — QY=Y E"[W]. Define

F(E' E"\V)=2U'(E', E"[V]).
We have the adjunction
(4.3) LUUNENE E"Y= SUE, F(E',E")).
When E' = ¥*Y, LU (E' E"[V]) = (Y, E"(V)). Thus, if iy : U — U @ U’ is
the inclusion, then
F(E®Y, E") = F(Y, (1) E").

By adjunction, this implies the first of the following two isomorphisms:

(4.4) (i) ((S2X)AY) 2 52X A DRV 2 (35).(X A (5%Y)).

When U = U’" and f : U* — U is a linear isometry, we obtain the internal
function spectrum F(F', f*F) € U for spectra E, E' € #U. Up to canonical
isomorphism in h.#U, it is independent of the choice of f. For spectra all indexed
on U, we have the composite adjunction

(4.5) FULLENE, E") = SU(E, F(E', [*E")).

Again, it is customary to abuse notation by also writing F'(F’, F) for the internal
function spectrum, relying on the context for clarity. By combining the three iso-
morphisms (3.7), (4.2), and (4.4) — all of which were proven by trivial inspections
of right adjoints — we obtain the following non-obvious isomorphism for internal
smash products.

(4.6) SE(XAY)E (D2X) A (BFY).

Generalized a bit, this will be seen to determine the structure of smash products
of CW spectra.
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5. The equivariant case

We now begin working equivariantly, and we have a punch line: we were led
to the framework above by nonequivariant considerations about smash products,
and yet the framework is ideally suited to equivariant considerations. Let G be
a compact Lie group and recall the discussion of G-spheres and G-universes from
[X§81,2. On the understanding that every space in sight is a G-space and every
map in sight is a G-map, the definitions and results above apply verbatim to give
the basic definitions and properties of the stable category of G-spectra. For a given
G-universe U, we write G.¥Utor the resulting category of G-spectra, hG.#U for
its homotopy category, and hG.#U for the stable homotopy category that results

by adjoining inverses to the weak equivalences.

The only caveat is that #(U,U’) is understood to be the G-space of linear
isometries, with G acting by conjugation, and not the space of GG-linear isometries.
If the G-universes U and U’ are isomorphic — which means that they contain the
same irreducible representations — then # (U, U’) is G-contractible, and therefore

its subspace # (U, U")% of G-linear isometries is contractible.

We already see something new in the equivariant context: we have different
stable categories of G-spectra depending on the isomorphism type of the underlying
universe. This fact will play a vital role in the theory. Remember that a GG-universe
U is said to be complete if it contains every irreducible representation and trivial
if it contains only the trivial irreducible representation. We sometimes refer to
Gi-spectra indexed on a complete G-universe U as genuine G-spectra. We always
refer to G-spectra indexed on a trivial G-universe, such as %, as naive G-spectra;
they are essentially just spectra {F£,} of the sort we first defined, but with each
E,, a G-space and each structure map a G-map. We have concomitant notions of
genuine and naive infinite loop G-spaces. The inclusion ¢ : U9 — U gives us an

adjoint pair of functors relating naive and genuine G-spectra:
(5.1) GAUE, B = GIUYE, " E.

We will see that naive G-spectra represent Z-graded cohomology theories, whereas
genuine (-spectra represent cohomology theories graded over the real representa-
tion ring RO((G). Before getting to this, however, we must complete our develop-

ment of the stable category.
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6. Spheres and homotopy groups

We have deliberately taken a more or less geodesic route to smash products
and function spectra, and we have left aside a number of other matters that must
be considered. At the risk of obscuring the true simplicity of the nonequivariant
theory, we work with G-spectra indexed on a fixed G-universe U from now on in
this chapter. We write G.% for G.#U. Since (G will act on everything in sight, we
often omit the prefix, writing spectra for GG-spectra and so on.

We shall shortly define G-CW spectra in terms of sphere spectra and their cones,
which provide cells. We shall deduce properties of G-CW spectra, such as HELP,
by reducing to the case of a single cell and there applying an adjunction to reduce
to the G-space level. For this, spheres must be defined in terms of suitable left
adjoint functors from spaces to spectra. For n > 0, there is no problem: we take
ST = X*5" We shall later write S™ ambiguously for both the sphere space and
the sphere spectrum, relying on context for clarity, but we had better be pedantic
at first.

We also need negative dimensional spheres. We will define them in terms of shift
desuspension functors, and these functors will also serve to clarify the relationship

between spectra and their component spaces. Generalizing ()*°, define a functor
w6 — a7
by QF = EV for an indexing space V in U. The functor Q' has a left adjoint

shift desuspension functor

Yy G — GT.
The spectrum Y59 X is L{X" =Y X}. Here the prespectrum {ZW=V X} has Wth
space YWV if V. C W and a point otherwise; if V. C W C Z, then the corre-
sponding structure map is the evident identification

ZZ_WZW_VX o~ ZZ_VX.
The Vth space of X7 X is the zeroth space QX of X*X. It is easy to check

the prespectrum level version of the claimed adjunction, and the spectrum level

adjunction follows:
(6.1) GSEYX,E)2GT (X, Q0 F).
Exactly as in (4.2) and (4.6), we have natural isomorphisms

(6.2) (EXX)AY 2SF(XAY) X A(SFY)
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and, for the internal smash product,

(6.3) v (X AY)=EPX ANRY if VW ={0}.
Another check of right adjoints gives the relation

(6.4) X 2 uenVVYX if VW

It is not hard to see that any spectrum FE can be written as the colimit of the

shift desuspensions of its component spaces. That is,
(6.5) E = colim X7 EV,
where the colimit is taken over the maps
o NPEV 2SR (VY EV) — SR EW.

Let us write [/ in the form U = U@ U’ and fix an identification of U with R*.
We abbreviate notation by writing 2° and ¥2° when V = R". Now define 57" =
2059 for n > 0. The reader will notice that we can generalize our definitions
to obtain sphere spectra SV and S~V for any indexing space V. We can even
define spheres SV~ = Y20 SV, We shall need such generality later. However, in
developing G-CW theory, it turns out to be appropriate to restrict attention to
the spheres S™ for integers n. Theorem 6.8 will explain why.

In view of our slogan that orbits are the equivariant analogues of points, we also

consider all spectra
(6.6) Sy =G/HANS", HC G and n € Z,
as spheres. By (6.2), S% = Y*(G/Hy A S™) if n > 0 and S = Y¥°G/Hy if

n < 0. We shall be more systematic about change of groups later, but we prefer to
minimize such equivariant considerations in this section. We define the homotopy

group systems of G-spectra by setting
(6.7) T (B) = m,(E)(G/H) = hG.7 (S}, E).

n

Let %5U be the homotopy category of orbit spectra S%, = X°G/H,; we gen-
erally abbreviate the names of its objects to G/H. This is an additive cate-
gory, as will become clear shortly, and z,,(F) is an additive contravariant functor
BU — /b, Recall from [X§4 that such functors are called Mackey functors
when the universe U is complete. They play a fundamentally important role in

equivariant theory, both in algebra and topology, and we shall return to them
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later. For now, however, we shall concentrate on the individual homotopy groups

7H(E). We shall later reinterpret these as homotopy groups 7, (E!) of fixed point

spectra, but that too can wait.

The following theorem should be viewed as saying that a weak equivalence of
Gi-spectra really is a weak equivalence of G-spectra. Recall that we defined a
weak equivalence f : D — FE to be a G-map such that each space level G-map
fV : DV — EV is a weak equivalence. In setting up CW-theory, which logically
should precede the following theorem, one must mean a weak equivalence to be a

map that induces an isomorphism on all of the homotopy groups 72 of (6.7).

THEOREM 6.8. Let f: F — FE’ be a map of G-spectra. Then each component
map fV : EV — FE'V is a weak equivalence of G-spaces if and only if f, :

™ E — 77 E"is an isomorphism for all H C G and all integers n.
By our adjunctions, we have

(6.9) FH(E) = ﬂ'n((EO)H) if n >0 and FH(E) & Wo((ER”)H) if n <0.

n n

Therefore, nonequivariantly, the theorem is a tautological triviality. Equivariantly,
the forward implication is trivial but the backward implication says that if each
ER" — E'R" is a weak equivalence, then each FV — FE'V is also a weak
equivalence. Thus it says that information at the trivial representations in U
is somehow capturing information at all other representations in U. Its validity
justifies the development of G-CW theory in terms of just the sphere spectra of
integral dimensions.

We sketch the proof, which goes by induction. We want to prove that each map
fe: F*(EV)H — F*(E/V)H is an isomorphism. Since G contains no infinite de-
scending chains of (closed) subgroups, we may assume that f, is an isomorphism
for all proper subgroups of H. An auxiliary argument shows that we may assume
that V1 = {0}. We then use the cofibration S(V); — D(V); — SV, where
S(V) and D(V) are the unit sphere and unit ball in V and thus D(V); ~ S° Ap-
plying f: F/(-, EV)! — F(-, E'V)H to this cofibration, we obtain a comparison

of fibration sequences. On one end, this is
fo: (QVEV)T = (E)" — (Ep)" = (Q"E'V)",

which is given to be a weak equivalence. On the other end, we can triangulate S(V)
as an H-CW complex with cells of orbit type H/ K, where K is a proper subgroup
of H. We can then use change of groups and the inductive hypothesis to deduce
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that f induces a weak equivalence on this end too. Modulo an extra argument to
handle 7o, we can conclude that the middle map f : (EV)¥ — (E'V)H is a weak

equivalence.

7. G-CW spectra

Before getting to CW theory, we must say something about compactness, which
plays an important role. A compact spectrum is one of the form X3 X for some
indexing space V and compact space X. Since a map of spectra with domain
Y7 X is determined by a map of spaces with domain X, facts about maps out of
compact spaces imply the corresponding facts about maps out of compact spectra.

For example, it £ is the union of an expanding sequence of subspectra F;, then
(7.1) GF (S X, E) = colim G (X7 X, E).

The following lemma clarifies the relationship between space level and spectrum
level maps. Recall the isomorphisms of (6.4).

LEMMA 7.2. Let f: X3 X — XY be a map of G-spectra, where X is com-
pact. Then, for a large enough indexing space Z, there is a map g : 277V X —

$7-WY of G-spaces such that f coincides with
PgYEX =2 uP(RVY) — 23 (nfVY) 2 uny.

This result shows how to calculate the full subcategory of the stable category
consisting of those G-spectra of the form Y X for some indexing space V' and finite
G-CW complex X in space level terms. It can be viewed as giving an equivariant
reformulation of the Spanier-Whitehead S-category. In particular, we have the

following consistency statement with the definitions of 1X§2.

PRrROPOSITION 7.3. For a finite based G-CW complex X and a based G-space
Y

Y

(XY} 2 [S7X, 2V

From here, the development of CW theory is essentially the same equivariantly
as nonequivariantly, and essentially the same on the spectrum level as on the space
level. The only novelty is that, because we have homotopy groups in negative
degrees, we must use two filtrations. Older readers may see more novelty. In
contrast with earlier treatments, our CW theory is developed on the spectrum level

and has nothing whatever to do with any possible cell structures on the component
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spaces of spectra. I view the use of space level cell structures in this context as an
obsolete historical detour that serves no useful mathematical purpose.
Let CE = E N I denote the cone on a G-spectrum F.

DEFINITION 7.4. A G-cell spectrum is a spectrum FE € (.7 that is the union
of an expanding sequence of subspectra E,, n > 0, such that Ey is the trivial
spectrum (each of its component spaces is a point) and F£,41 is obtained from £,
by attaching G-cells C'S%, =2 G/H{ AC S? along attaching G-maps S§, — E,,. Cell
subspectra, or “subcomplexes®, are defined in the evident way. A G-CW spectrum
is a G-cell spectrum each of whose attaching maps S}, — FE,, factors through a
subcomplex that contains only cells of dimension at most ¢. The n-skeleton E™ is

then defined to be the union of the cells of dimension at most n.

LEMMA 7.5. A map from a compact spectrum to a cell spectrum factors through

a finite subcomplex. Any cell spectrum is the union of its finite subcomplexes.

The filtration {F,} is called the sequential filtration. It records the order in
which cells are attached, and it can be chosen in many different ways. In fact,
using the lemma, we see that by changing the sequential filtration on the domain,
any map between cell spectra can be arranged to preserve the sequential filtration.
Using this filtration, we find that the inductive proofs of the following results that
we sketched on the space level work in exactly the same way on the spectrum level.

We leave it to the reader to formulate their more precise “dimension v” versions.

THEOREM 7.6 (HELP). Let A be a subcomplex of a G-CW spectrum D and
let ¢ : B — FE' be a weak equivalence. Suppose given maps g : A — F,
h:ANIL — F', and f: D — FE’ such that eg = hiy and fi = hig in the

following diagram:

A D AN A
P
7 E’ = I3 7
f AN [ \\\
/ iL \\ § \\

7 2

Then there exist maps § and A that make the diagram commute.
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THEOREM 7.7 (WHITEHEAD). Let e : £ — FE’ be a weak equivalence and D
be a G-CW spectrum. Then e, : hG.S (D, F) — hG.Z (D, E') is a bijection.

COROLLARY 7.8. If e : E — FE’' is a weak equivalence between G-CW spectra,

then e is a G-homotopy equivalence.

THEOREM 7.9 (CELLULAR APPROXIMATION). Let (D, A) and (£, B) be rela-
tive G-CW spectra, (D', A’) be a subcomplex of (D, A), and f: (D, A) — (E£,B)
be a G-map whose restriction to (D', A’) is cellular. Then f is homotopic rel D'UA
to a cellular map ¢ : (D, A) — (E, B).

COROLLARY 7.10. Let D and E be G-CW spectra. Then any G-map f: D —
FE is homotopic to a cellular map, and any two homotopic cellular maps are cellu-

larly homotopic.

THEOREM T7.11. For any G-spectrum F, there is a G-CW spectrum 7 E and a
weak equivalence v: T K — F.

Exactly as on the space level, it follows from the Whitehead theorem that ?
extends to a functor hG.¥ — h(GE, where G6 is here the category of G-CW
spectra and cellular maps, and the morphisms of the stable category hG.¥ can be
specified by

(7.12) WG (E,E') = hG.7 (BT E') = hGE(TE, 7 E').

From now on, we shall write [, E'] for this set. Again, 7 gives an equivalence
of categories h(G.¥ — hGE.

We should say something about the transport of functors F' on G.¥ to the
category hG.7. All of our functors preserve homotopies, but not all of them
preserve weak equivalences. If [’ does not preserve weak equivalences, then, on
the stable category level, we understand F' to mean the functor induced by the
composite o7, a functor which preserves weak equivalences by converting them
to genuine equivalences.

For this and other reasons, it is quite important to understand when functors
preserve CW-homotopy types and when they preserve weak equivalences. These
questions are related. In a general categorical context, a left adjoint preserves
CW-homotopy types if and only if its right adjoint preserves weak equivalences.
When these equivalent conditions hold, the induced functors on the categories

obtained by inverting the weak equivalences are again adjoint.
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For example, since QfF preserves weak equivalences (with the correct logical
order, by Theorem 6.8), X7 preserves CW homotopy types. Of course, since our
left adjoints preserve colimits and smash products with spaces, their behavior on
CW spectra is determined by their behavior on spheres. Since 3°° clearly preserves
spheres, it carries G-CW based complexes (with based attaching maps) to G-CW
spectra. This focuses attention on a significant difference between the equivariant
and nonequivariant contexts. In both, a CW spectrum is the colimit of its finite
subcomplexes. Nonequivariantly, Lemma 7.2 implies that any finite CW spectrum
is isomorphic to X°° X for some n and some finite CW complex X. Equivariantly,
this is only true up to homotopy type. It would be true up to isomorphism if
we allowed non-trivial representations as the domains of attaching maps in our
definitions of G-CW complexes and spectra. We have seen that such a theory of
“G-CW(V)-complexes” is convenient and appropriate on the space level, but it
seems to serve no useful purpose on the spectrum level.

Along these lines, we point out an important consequence of (6.3). It implies
that the smash product of spheres S% and 8% is (G/H x G/J); A S™". When
is finite, we can use double cosets to describe G/H x (G/.J as a disjoint union of
orbits G/ K. This allows us to deduce that the smash product of G-CW spectra is
a G-CW spectrum. For general compact Lie groups ¢, we can only deduce that

the smash product of G-CW spectra has the homotopy type of a G-CW spectrum.

8. Stability of the stable category

The observant reader will object that we have called hG.¥ the “stable category”,
but that we haven’t given a shred of justification. As usual, we write 3V E = EASY
and QVE = F(SY, E).

THEOREM 8.1. For all indexing spaces V' in U, the natural maps
n:E—QVSVE and ¢:X¥YQOVE — E

are isomorphisms in hG.¥. Therefore OV and ¥V are inverse self-equivalences of

hG.7.

Thus we can desuspend by any representations that are in /. Once this is
proven, it is convenient to write X7V for QY. There are several possible proofs,
all of which depend on Theorem 6.8: that is the crux of the matter, and this

means that the result is trivial in the nonequivariant context. In fact, once we
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have Theorem 6.8, we have that the functor ¥ preserves G-CW homotopy types.
Using (6.2), (6.4), and the unit equivalence for the smash product, we obtain

E~ENS"ZEASYSY 2 EASFSOASY).

This proves that the functor XV is an equivalence of categories. By playing with
adjoints, we see that QY must be its inverse. Observe that this proof is indepen-
dent of the Freudenthal suspension theorem. This argument and (6.2) give the
following important consistency relations, where we now drop the underline from

our notation for sphere spectra:
82) QE~EASY and SPX = X A STV, where S = %57.5°.

Since all universes contain R, all G-spectra are equivalent to suspensions. This
implies that AG.Y is an additive category, and it is now straightforward to prove
that hG. is triangulated. In fact, it has two triangulations, by cofibrations and
fibrations, that differ only by signs. We have already seen that it is symmetric
monoidal under the smash product and that it has well-behaved function spectra.
We have established a good framework in which to do equivariant stable homotopy

theory, and we shall say more about how to exploit it as we go on.

9. Getting into the stable category

The stable category is an ideal world, and the obvious question that arises
next is how one gets from the prespectra that occur “in nature” to objects in this
category. Of course, our prespectra are all encompassing, since we assumed nothing
about their constituent spaces and structure maps, and we do have the left adjoint
L:GY — (.. However, this is a theoretical tool: its good formal properties
come at the price of losing control over homotopical information. We need an
alternative way of getting into the stable category, one that retains homotopical
information.

We first need to say a little more about the functor L. If the adjoint structure
maps & : BV — QW=VEW of a prespectrum F are inclusions, then (LE)(V) is
just the union over W O V of the spaces QW =V EW. Taking W = V. we obtain
an inclusion n : EV — (LF)(V), and these maps specify a map of prespectra.
If, further, each & is a cofibration and an equivalence, then each map 7 is an
equivalence.

Thus we seek to transform given prespectra into spacewise equivalent ones whose

adjoint structural maps are cofibrations. The spacewise equivalence property will
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ensure that Q-prespectra are transported to -prespectra. It is more natural to
consider cofibration conditions on the structure maps o : YW=V EV — EW, and
we say that a prespectrum FE is “Y-cofibrant” if each o is a cofibration. If F is
a Y-cofibrant prespectrum and if each EV has cofibered diagonal, in the sense
that the diagonal map FV — EV x EV is a cofibration, then each adjoint map
o: BV — QWY EW is a cofibration, as desired.

Observe that no non-trivial spectrum can be Y-cofibrant as a spectrum since
the structure maps o of spectra are surjections rather than injections. We say
that a spectrum is “tame” if it is homotopy equivalent to L £ for some Y-cofibrant
prespectrum F. The importance of this condition was only recognized during the
work of Elmendorf, Kriz, Mandell, and myself on structured ring spectra. Its use
leads to key technical improvements of [EKMM] over [LMS]. For example, the

sharpest versions of Theorems 3.4 and 8.1 read as follows.

THEOREM 9.1. Let AU be the full subcategory of tame spectra indexed on

U. Then any two linear isometries U — U’ induce canonically and coherently
equivalent functors .U — h.AU'. The mapsn : B — QX F and ¢ : YQF —

FE are homotopy equivalences of spectra when F is tame.

Moreover, analogously to (6.5), but much more usefully, if F is a -cofibrant

prespectrum, then
(9.2) LE = colim X7 EV,
where the maps of the colimit system are the cofibrations
o NPEV 2SR (VY EV) — SR EW.

Here the prespectrum level colimit is already a spectrum, so that the colimit is
constructed directly, without use of the functor L. Given a G-spectrum FE’, there

results a valuable lim' exact sequence
(9.3) 0 — lim'[XEV,E'V]g — [LE, E'l¢ — lim[EV, E'V]g — 0

for the calculation of maps in hG.¥ in terms of maps in hG.7.
To avoid nuisance about inverting weak equivalences here, we introduce an

equivariant version of the classical CW prespectra.

DEFINITION 9.4. A GG-CW prespectrum is a X-cofibrant G-prespectrum £ such
that each KV has cofibered diagonal and is of the homotopy type of a G-CW

complex.
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We can insist on actual G-CW complexes, but it would not be reasonable to ask
for cellular structure maps. We have the following reassuring result relating this

notion to our notion of a G-CW spectrum.

ProprosITION 9.5. If F is a G-CW prespectrum, then LFE has the homotopy
type of a G-CW spectrum. If £ is a G-CW spectrum, then each component space
EV has the homotopy type of a G-CW complex.

Now return to our original question of how to get into the stable category.
The kind of maps of prespectra that we are interested in here are “weak maps”
D — E. whose components DV — FEV are only required to be compatible up
to homotopy with the structural maps. If D is Y-cofibrant, then any weak map is
spacewise homotopic to a genuine map. The inverse limit term of (9.3) is given by
weak maps, which represent maps between cohomology theories on spaces, and its
lim' term measures the difference between weak maps and genuine maps, which
represent maps between cohomology theories on spectra.

Applying G-CW approximation spacewise, using [.3.6, we can replace any G-
prespectrum £ by a spacewise weakly equivalent G-prespectrum 7 £ whose com-
ponent spaces are G-CW complexes and therefore have cofibered diagonal maps.
However, the structure maps, which come from the Whitehead theorem and are
only defined up to homotopy, need not be cofibrations. The following “cylin-
der construction” converts a G-prespectrum K whose spaces are of the homotopy
types of G-CW complexes and have cofibered diagonals into a spacewise equivalent
G-CW prespectrum K E. Both constructions are functorial on weak maps.

The composite K7 carries an arbitrary G-prespectrum F to a spacewise equiv-
alent G-CW prespectrum. By Proposition 9.5, LK? FE has the homotopy type
of a G-CW spectrum. In sum, the composite LK7? provides a canonical passage
from G-prespectra to G-CW spectra that is functorial up to weak homotopy and
preserves all homotopical information in the given G-prespectra.

The version of the cylinder construction presented in [LMS] is rather clumsy.
The following version is due independently to Elmendorf and Hesselholt. It enjoys

much more precise properties, details of which are given in [EKMM].

CONSTRUCTION 9.6 (CYLINDER CONSTRUCTION). Let £ be a G-prespectrum
indexed on U. Define KFE as follows. For an indexing space V., let V be the

category of subspaces V' C V and inclusions. Define a functor Ey from V to
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G-spaces by letting Ey (V') = $V=V'EV’. For an inclusion V" — V',
V_V'=(V-V)s(V -V
and o : XY "V"EV" — EV' induces By (V") — Ey(V'). Define
(KE)(V) = hocolim Ey.

An inclusion 7 : V. — W induces a functor ¢ : V. — W, the functor ¥"~V com-
mutes with homotopy colimits, and we have an evident isomorphism V=V &

FE1 of tfunctors V. —— W. Therefore 2 induces a map
o : YWV hocolim Ey = hocolim Y=Y Ey = hocolim Ei — hocolim Eyy.

One can check that this map is a cofibration. Thus, with these structural maps,
K FE is a Y-cofibrant prespectrum. The structural maps o : EyV' — EV specify
a natural transformation to the constant functor at KV and so induce a map
r: (KE)V) — FEV, and these maps r specify a map of prespectra. Regarding
the object V' as a trivial subcategory of V., we obtain j : EV — (K E)(V). Clearly
rj = Id, and jr ~ Id via a canonical homotopy since V' is a terminal object of V.
The maps j specify a weak map of prespectra, via canonical homotopies. Clearly
K is functorial and homotopy-preserving, and r is natural. If each space EV has
the homotopy type of a G-CW complex, then so does each (K E)(V), and similarly

for the cofibered diagonals condition.

A striking property of this construction is that it commutes with smash prod-
ucts: if £ and E’ are prespectra indexed on U and U’, then K EAK E' is isomorphic
over F A E' to K(E A E").



CHAPTER XIII

RO(G)-graded homology and cohomology theories

1. Axioms for RO(G)-graded cohomology theories

Switching to a homological point of view, we now consider RO((G)-graded ho-
mology and cohomology theories. There are several ways to be precise about this,
and there are several ways to be imprecise. The latter are better represented in
the literature than the former. As we have already said, no matter how things are
set up, “RO(G)-graded” is technically a misnomer since one cannot think of rep-
resentations as isomorphism classes and still keep track of signs. We give a formal
axiomatic definition here and connect it up with G-spectra in the next section.

From now on, we shall usually restrict attention to reduced homology and co-
homology theories and shall write them without a tilde. Of course, a Z-graded
homology or cohomology theory on G-spaces is required to satisfy the redun-
dant axioms: homotopy invariance, suspension isomorphism, exactness on cofiber
sequences, additivity on wedges, and invariance under weak equivalence. Here
exactness only requires that a cofiber sequence X — Y —— Z be sent to a three
term exact sequence in each degree. The homotopy and weak equivalence axioms
say that the theory is defined on h(G.7. Such theories determine and are deter-
mined by unreduced theories that satisfy the Eilenberg-Steenrod axioms, minus

the dimension axiom. Since
kg™ (X) 2 ke (X" X)),

only the non-negative degree parts of a theory need be specified, and a non-negative
integer n corresponds to R". Indexing on Z amounts to either choosing a basis for
R* or, equivalently, choosing a skeleton of a suitable category of trivial represen-

tations.

153
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Now assume given a G-universe U, say U = @&(V;)™ for some sequence of distinct
irreducible representations V; with Vi = R. An RO(G;U)-graded theory can be
thought of as graded on the free Abelian group on basis elements corresponding
to the V. It is equivalent to grade on the skeleton of a category of representations
embeddable in U, or to grade on this entire category. The last approach seems to
be preferable when considering change of groups, so we will adopt it.

Thus let ZO(G;5U) be the category whose objects are the representations em-
beddable in U and whose morphisms V' — W are the G-linear isometric isomor-
phisms. Say that two such maps are homotopic if their associated based G-maps
SV — SW are stably homotopic, and let AZO(G;U) be the resulting homotopy

category. For each W, we have an evident functor
W #0(GU) x hGT — ZO(G;U) x hG.T
that sends (V, X) to (V & W, ¥V X).
DEFINITION 1.1. An RO(G;U)-graded cohomology theory is a functor
B hZO(GU) x (hGT)P — &b,

written (V, X) — E}%(X) on objects and similarly on morphisms, together with

natural isomorphisms ¢V : B — Ef o ¥V, written
oV BN (X) — ELEV (W X)),

such that the following axioms are satisfied.

(1) For each representation V, the functor EY is exact on cofiber sequences
and sends wedges to products.
(2) fa: W — W'is a map in ZO(G,U), then the following diagram com-

mutes:

C,_VV
B (X) EgM(BVX)
oW B4 %2 (iq)

ELEW (2 X)

T B (2T X).
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(3) 0 = id and the o are transitive in the sense that the following diagram

commutes for each pair of representations (W, 7):

Eg(X) - EgPM (S X)

Weaz /

EgGBWGBZ (ZW®ZX).

[

We extend a theory so defined to “formal differences V & W” for any pair of
representations (V, W) by setting

ELPV(X) = BL(EVX).

We use the symbol & to avoid confusion with either orthogonal complement or
difference in the representation ring. Rigorously, we are thinking of V & W as
an object of the category hZO(G;U) x hZO(G;U)?, and, for each X, we have
defined a functor from this category to the category of Abelian groups.

The representation group RO(G;U) relative to the given universe U is obtained
by passage to equivalence classes from the set of formal differences V' & W, where

V & W is equivalent to V' © W' if there is a G-linear isometric isomorphism
a: VoW — V' o W;

RO(G;U) is a ring if tensor products of representations embeddable in U are
embeddable in U.

When interpreting RO(G; U)-graded cohomology theories, we must keep track
of the choice of «, and we see that a given a determines the explicit isomorphism

displayed as the unlabelled arrow in the diagram of isomorphisms

CTW/ ! '
EY(SWX) " LW (e X)

l lEg(ET id)

By (SYX) — g (BVIV ),

where 7: W & W' — W' @ W is the transposition isomorphism.

If V¥ =0, write V@& R* = V +n. Axiom (1) ensures that, for each such
V, the E5T™" and ¢! define a Z-graded cohomology theory. Axiom (2), together
with some easy category theory, ensures that we obtain complete information if

we restrict attention to one object in each isomorphism class of representations,
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that is, if we restrict to any skeleton of the category ZO(G;U). One can even
restrict further to a skeleton of its homotopy category. We shall say more about
this in the next section.

We can replace the category h(G.7 of based G-spaces by the category hG.#U
of G-spectra in the definition just given and so define an RO(G; U)-graded co-
homology theory on G-spectra. Observe that, by our definition of the category
ZO(G; U), the isomorphism type of the functor £} depends only on the stable ho-
motopy type of the G-sphere SV. Such stable homotopy types have been classified
by tom Dieck.

We have the evident dual axioms for RO(G; U)-graded homology theories on G-
spaces or GG-spectra. The only point that needs to be mentioned is that homology
theories must be given by contravariant functors on ZO(G;U) in order to make

sense of the homological counterpart of Axiom (2).

T. tom Dieck. Transformation groups and representation theory. Springer Lecture Notes in

Mathematics. Vol. 766. 1979.

2. Representing RO(()-graded theories by (G-spectra

With our categorical definition of RO(G; U)-graded cohomology theories, it is
not obvious that they are represented by G-spectra. We show that they are in
this and the following section, first showing how to obtain an RO(G;U)-graded
theory from a G-spectrum and then showing how to obtain a G-spectrum from
an RO(G;U)-graded theory. Since I find the equivariant forms of these results
in the literature to be unsatisfactory, I shall go into some detail. The problem is
to pass from indexing spaces to general representations embeddable in our given
universe U/, and the idea is to make explicit structure that is implicit in the notion
of a G-spectrum and then exploit standard categorical techniques. We begin with
some of the latter.

Let JO(G;U) and h.ZO(G5U) be the full subcategories of ZO(G;U) and
h#ZO(G; U) whose objects are the indexing spaces in U, let

V. 70(G,U) — Z0(G;U)

be the inclusion, and also write W for the inclusion AL O(G;U) — hZO(G;U).
For each representation V' that is embeddable in U, choose an indexing space ®V

in U and a G-linear isomorphism ¢y : V — ®V. If V is itself an indexing space
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in U, choose ®V =V and let ¢y be the identity map. Extend ® to a functor
¢: 720(G;U) — JO(G;U)
by letting ®«, a: V. — V', be the composite

1% o Py

oV V=V oV,

Then ® o ¥ = Id and the ¢y define a natural isomorphism Id — W o ®. This
equivalence of categories induces an equivalence of categories between h.ZO(G; U)
and AZO(G;U). A functor F from h.Z7O(G;U) to any category % extends to the
functor F'® from hZO(G;U) to €, and we agree to write F' instead of F'® for

such an extended functor.

LEMMA 2.1. Let F be an () G-prespectrum. Then FE gives the object function
of a functor £ : hZO(G;U) — hG.T.

PRrROOF. By the observations above, it suffices to define £ as a functor on
hZO(G;U). Suppose given indexing spaces V' and V' in U and a G-linear iso-
morphism « : V. — V'’ Choose an indexing space W large enough that it
contains both V and V' and that W — V and W — V' both contain copies of
representations isomorphic to V' and thus to V’. Then there is an isomorphism

B:W =V — W' —V’"such that
BAa: W gW-VAGY _, gW=VIp gV o oW

is stably homotopic to the identity. (For the verification, one relates smash product
to composition product in the zero stem 7§’ (.5°), exactly as in nonequivariant stable
homotopy theory.) Then define Fa : EV — EV’ to be the composite

G Q’B_l , , o1
EV —QV-VEW — QW' -V EWw — EV'.
It is not hard to check that this construction takes stably homotopic maps « and

o' to homotopic maps Fa and Fo' and that the construction is functorial on

JO(G;U). O

PROPOSITION 2.2. An Q-G-prespectrum F indexed on a universe U represents
an RO(G;U)-graded cohomology theory EZ, on based G-spaces.
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PRrOOF. For a representation V' that embeds in U, define
EX(X) =[X,E0V]q.
For each a : V — V', define
E&(X) = [X, Bbala.
This gives us the required functor
B hZO(GU) x (hGT)P — &b,

and it is obvious that Axiom (1) of Definition 1.1 is satisfied.
Next, suppose given representations V and W that embed in /. We may write

PVaoW)=V+Ww,
where V' = ¢yaw (V) and W’ = ¢ygw (W). There result isomorphisms
b VISV AN and oy oW I W
where ¢, = ¢vgw|v and @} = dvgw|w. Define
o BY(X) — BEEV (ST X)
by the commutativity of the following diagram:

[id7ELV]

ELX =[X,EdV]g

oW (X, QY BV + W)

lg

V' X, BV @ W)e.

!
[£9W id,id]

EXEV(SWX) = SV X EO(V @& W)

Diagram chases from the definitions demonstrate that X" is natural, that the
diagram of Axiom (2) of Definition 1.1 commutes, and that the transitivity diagram
of Axiom 3 commutes because of the transitivity condition that we gave as part

of the definition of a G-prespectrum. [

There is an analog for homology theories.
A slight variant of the proof above could be obtained by first replacing the
given {)-G-prespectrum by a spacewise equivalent G-spectrum indexed on U and

then specializing the following result to suspension G-spectra. Recall that, for an
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indexing space V', we have the shift desuspension functor ¥ from based G-spaces

to G-spectra. It is left adjoint to the Vth space functor:
(2.3) X7 X, Ele 2 [X, EV]a.

DEFINITION 2.4. For a formal difference V& W of representations of G that
embed in U, define the sphere G-spectrum SVEW by

(2.5) SYEW = vz, SV,

where ¢ : ZO(G;U) — L O(G;U) is the equivalence of categories constructed

above.

PROPOSITION 2.6. A G-spectrum F indexed on U determines an RO(G;U)-
graded homology theory ES and an RO(G; U)-graded cohomology theory EZ on
Gi-spectra.

PRrOOF. For G-spectra X and formal differences V & W of representations that

embed in U, we define

(2.7) Efew(X)=[S""" E A X
and
(2.8) EXEV(X) =[SV A X, Bl =[SV, F(X, B)g.

Of course, in cohomology, to verify the axioms, we may as well restrict attention
to the case W = 0, and similarly in homology. Obviously, the verification reduces
to the study of the properties of the G-spheres 3y, S°, or of the functors Xy . First,
we need functoriality on ZO(G;U), but this is immediate from (2.3) and the
functoriality of the KV given by Lemma 2.1. With the notations of the previous

proof, we obtain the ¢" from the composite isomorphism of functors
00~ Voo ~v VW yico ~ VW yico
Yoy E Xy EXT NPy E LT Ngvaw)

where the three isomorphisms are given by use of ¢y, passage to adjoints from the
homeomorphism & : EV' — QW' E(V' + W), and use of ¢},. From here, the

verification of the axioms is straightforward. [
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3. Brown’s theorem and RO((/)-graded cohomology
We next show that, conversely, all RO(G')-graded cohomology theories on based

(i-spaces are represented by (-G-prespectra and all theories on G-spectra are
represented by G-spectra. We then discuss the situation in homology, which is
considerably more subtle equivariantly than nonequivariantly.

We first record Brown’s representability theorem. Brown’s categorical proof
applies just as well equivariantly as nonequivariantly, on both the space and the
spectrum level. Recall that homotopy pushouts are double mapping cylinders
and that weak pullbacks satisfy the existence but not the uniqueness property of
pullbacks. Recall that a G-space X is said to be GG-connected if each of its fixed

point spaces X' is non-empty and connected.

THEOREM 3.1 (BROWN). A contravariant set-valued functor k& on the homo-
topy category of G-connected based G-CW complexes is representable in the form
kX 2 [X, K| for a based G-CW complex K if and only if k satisfies the wedge and
Mayer-Vietoris axioms: k takes wedges to products and takes homotopy pushouts
to weak pullbacks. The same statement holds for the homotopy category of G-CW

spectra indexed on U for any G-universe U.

COROLLARY 3.2. An RO(G;U)-graded cohomology theory E7 on based G-

spaces is represented by an ()-G-prespectrum indexed on U.

PRrROOF. Restricting attention to GG-connected based G-spaces, which is harmless
in view of the suspension axiom for trivial representations, we see that (1) of
Definition 1.1 implies the Mayer-Vietoris and wedge axioms that are needed to
apply Brown’s representability theorem. This gives that EY, is represented by a
G-CW complex EV for each indexing space V in U. If V. C W then the suspension

isomorphism
oV BL(X) 2 EY(EVTVX)

is represented by a homotopy equivalence & : EV — QW=V EW. The transitivity
of the given system of suspension isomorphisms only gives that the structural maps
are transitive up to homotopy, whereas the definition of a G-prespectrum requires
that the structural maps be transitive on the point-set level. If we restrict to
a cofinal sequence of indexing spaces, then we can use transitivity to define the

structural weak equivalences for non-consecutive terms of the sequence. We can
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then interpolate using loop spaces to construct a representing Q-G-prespectrum

indexed on all indexing spaces. []

We emphasize a different point of view of the spectrum level analog. In fact, we
shall exploit the following result to construct ordinary RO(G)-graded cohomology

theories in the next section.

COROLLARY 3.3. A Z-graded cohomology theory on G-spectra indexed on U is
represented by a G-spectrum indexed on U and therefore extends to an RO(G; U)-
graded cohomology theory on G-spectra indexed on U.

PROOF. Since the loop and suspension functors are inverse equivalences on the
stable category hG.#U, we can reconstruct the given theory from its zeroth term,

and Brown’s theorem applies to represent the zeroth term. [

We showed in the previous chapter that an 2-G-prespectrum determines a space-
wise equivalent GG-spectrum, so that a cohomology theory on based G-spaces ex-
tends to a cohomology theory on G-spectra. The extension is unique up to non-
unique isomorphism, where the non-uniqueness is measured by the lim' term in
(XI1.9.3).

Adams proved a variant of Brown’s representability theorem for functors defined
only on connected finite CW complexes, removing a countability hypothesis that
was present in an earlier version due to Brown. This result also generalizes to the

equivariant context, with the same proof as Adams’ original one.

THEOREM 3.4 (ADAMS). A contravariant group-valued functor k defined on the
homotopy category of GG-connected finite based G-CW complexes is representable
in the form kX = [X| K|g for some G-CW spectrum K if and only if k converts
finite wedges to direct products and converts homotopy pushouts to weak pullbacks

of underlying sets. The same statement holds for the homotopy category of finite
G-CW spectra.

Here the representing G-CW spectrum K is usually infinite and is unique only
up to non-canonical equivalence. More precisely, maps ¢,¢' : Y — Y are said to
be weakly homotopic if ¢ f is homotopic to ¢’ f for any map [ : X — Y defined on
a finite G-CW spectrum X, and K is unique up to isomorphism in the resulting
weak homotopy category of G-CW spectra.

Nonequivariantly, we pass from here to the representation of homology theories

by use of Spanier-Whitehead duality. A finite CW spectrum X has a dual DX
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that is also a finite CW spectrum. Given a homology theory FE. on based spaces

or on spectra, we obtain a dual cohomology theory on finite X by setting
E"(X)=FE_,(DX).

We then argue as above that this cohomology theory on finite X is representable
by a spectrum F, and we deduce by duality that E also represents the originally
given homology theory.

Equivariantly, this argument works for a complete G-universe U, but it does
not work for a general universe. The problem is that, as we shall see later, only
those orbit spectra X*°G/H, such that G/H embeds equivariantly in U have
well-behaved duals. For example, if the universe U is trivial, then inspection of
definitions shows that F(G/H,,S) = S for all H C (, where S is the sphere
spectrum with trivial G-action. Thus X is not equivalent to DD X in general and
we cannot hope to recover E.(X) as E*(DX).

COROLLARY 3.5. If U is a complete G-universe, then an RO(G; U)-graded ho-

mology theory on based GG-spaces or on (GG-spectra is representable.

From now on, unless explicitly stated otherwise, we take our given universe U
to be complete, and we write RO(G) = RO(G;U). As shown by long experience
in nonequivariant homotopy theory, even if one’s primary interest is in spaces, the
best way to study homology and cohomology theories is to work on the spectrum

level, exploiting the virtues of the stable homotopy category.

J. F. Adams. A variant of E. H. Brown’s representability theorem. Topology, 10(1971), 185-198.
E. H. Brown, Jr. Cohomology theories. Annals of Math. 75(1962), 467-484.
E. H. Brown, Jr. Abstract homotopy theory. Trans. Amer. Math. Soc. 119(1965), 79-85.

4. Equivariant Eilenberg-MacLane spectra

From the topological point of view, a coefficient system is a contravariant addi-
tive functor from the stable category of naive orbit spectra to Abelian groups. In
fact, it is easy to see that the group of stable maps G/H, — G/K, in the naive
sense is the free Abelian group on the set of G-maps G/H — G/K.

Recall from [X§4 that a Mackey functor is defined to be an additive contravariant
functor Bz — &/b. Clearly the Burnside category % = H introduced there is
just the full subcategory of the stable category whose objects are the orbit spectra
Y*G/Hy. The only difference is that, when defining %, we abbreviated the
names of objects to G/ H.
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From this point of view, the forgetful functor that takes a Mackey functor to
a coefficient system is obtained by pullback along the functor ¢* from the stable
category of genuine orbit spectra to the stable category of naive orbit spectra. In
X84, Waner described a space level construction of an RO(G')-graded cohomology
theory with coefficients in a Mackey functor M that extends the ordinary Z-graded
cohomology theory determined by its underlying coefficient system ¢*M. We shall
here give a more sophisticated, and I think more elegant and conceptual, spectrum
level construction of such “ordinary” RO((G)-graded cohomology theories, and
similarly for homology.

Our strategy is to construct a genuine Eilenberg-MacLane G-spectrum HM =
K (M,0) to represent our theory. Just as nonequivariantly, an Filenberg-Mac Lane
G-spectrum H M is one such that m,(HM) = 0 for n # 0. Of course, m7y(HM) =
M must be a Mackey functor since that is true of x,(F) for any n and any G-
spectrum F. We shall explain the following result.

THEOREM 4.1. For a Mackey functor M, there is an Eilenberg-MacLane G-
spectrum H M such that mo( HM) = M. It is unique up to isomorphism in AG.%.
For Mackey functors M and M’ [HM, HM']s is the group of maps of Mackey
functors M — M.

There are several possible proofs. For example, one can exploit projective res-
olutions of Mackey functors. The proof that we shall give is the original one of
Lewis, McClure, and myself, which I find rather amusing.

What is amusing is that, motivated by the desire to construct an RO(()-graded
cohomology theory, we instead construct a Z-graded theory. However, this is a
Z-graded theory defined on G-spectra. As observed in Corollary 4.3, it can be
represented and therefore extends to an RO(G')-graded theory. The representing
Gi-spectrum is the desired FEilenberg-MacLane G-spectrum HM. What is also
amusing is that the details that we shall use to construct the desired cohomology
theories are virtually identical to those that we used to construct ordinary theories
in the first place.

We start with G-CW spectra X. They have skeletal filtrations, and we define

Mackey-functor valued cellular chains by setting

(4.2) C(X) =z, (X)X,

T,

We used homology groups in 1§4, but, aside from nuisance with the cases n = 0
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and n = 1, we could equally well have used homotopy groups. Of course, X™/X"~!
is a wedge of n-sphere G-spectra Sf ~ G//H, N S™. We see that the C (X)) are
projective objects of the Abelian category of Mackey functors by essentially the
same argument that we used in I§4. As there, the connecting homomorphism of
the triple (X", X"~ X"=2) specifies a map of Mackey functors

d:C,(X)— C,_1(X),

and d* = 0. Write Homg(M, M') for the Abelian group of maps of Mackey
functors M — M’. For a Mackey functor M, define

(4.3) Ce(X; M) =Homg(C,(X), M), with 6 =Homg(d,1d).

Then C&(X; M) is a cochain complex of Abelian groups. We denote its homology
by HE(X; M).

The evident cellular versions of the homotopy, exactness, wedge, and excision
axioms admit exactly the same quick derivations as on the space level, and we
use G-CW approximation to extend from G-CW spectra to general G-spectra: we
have a Z-graded cohomology theory on h¥.7. It satisfies the dimension axiom

(4.4) HE(Sg: M) = He(Sy; M) = M(G/H),

these giving isomorphisms of Mackey functors. The zeroth term is represented by
a G-spectrum H M, and we read off its homotopy group Mackey functors directly
from (4.4):

ro(HM)=M and x,(HM)=0if n #0.

The uniqueness of HM is evident, and the calculation of [HM, HM']s follows
easily from the functoriality in M of the theories H(X; M).

We should observe that spectrum level obstruction theory works exactly as
on the space level, modulo connectivity assumptions to ensure that one has a
dimension in which to start inductions.

For Gi-spaces X, we now have two meanings in sight for the notation HZ(X; M):
we can regard our Mackey functor as a coefficient system and take ordinary co-
homology as in 184, or we can take our newly constructed cohomology. We know
by the axiomatic characterization of ordinary cohomology that these must in fact
be isomorphic, but it is instructive to check this directly. At least after a single

suspension, we can approximate any GG-space by a weakly equivalent G-CW based
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complex, with based attaching maps. The functor ¥* takes G-CW based com-
plexes to G-CW spectra, and we find that the two chain complexes in sight are

isomorphic. Alternatively, we can check on the represented level:
(XX, X"HM)e 2 [X,Q°Y"HM )¢ = [X, K(M,n)]g.

What about homology? Recall that a coMackey functor is a covariant functor

N : & — o/b. Using the usual coend construction, we define
(4.5) CHX;N)=C.(X)@z N, with d=daId.

Then C¥(X; N) is a chain complex of Abelian groups. We denote its homology by
HE(X; N). Again, the verification of the axioms for a Z-graded homology theory
on h¥9.7 is immediate. The dimension axiom now reads

(4.6) HZ (S N) = Hg'(Spi N) = N(G/H).
We define a cohomology theory on finite G-spectra X by
(4.7) H:(X;N) = HE (DX N).

Applying Adams’ variant of the Brown representability theorem, we obtain a

G-spectrum J N that represents this cohomology theory. For finite X, we obtain
HE(X;N)=H;*(DX;N) 2 [DX,JN|z* = [S,JN A X]|¢ = INF(X).

Thus JN represents the Z-graded homology theory that we started with and ex-
tends it to an RO(()-graded theory. We again see that, on G-spaces X, HZ(X; N)
agrees with the homology of X with coefficients in the underlying covariant coef-
ficient system of N, as defined in 1§4.

What are the homotopy groups of JN7 The answer must be

. (JN) = H(D(G/H, ); N).

For finite GG, orbits are self-dual and the resulting isomorphism of the stable orbit
category with its opposite category induces the evident self-duality of the alge-
braically defined category of Mackey functors to be discussed in XIX§3. This
allows us to conclude that
JN = H(N™),

where N* is the Mackey functor dual to the coMackey functor N.

For general compact Lie groups, however, the dual of G/H, is G x gy S~
and it is not easy to calculate the homotopy groups of JN. This G-spectrum is
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bounded below, but it is not connective. We must learn to live with the fact that
we have two quite different kinds of Eilenberg-MaclLane G-spectra, one that is
suitable for representing “ordinary” cohomology and the other that is suitable for

representing “ordinary” homology.

G. Lewis, J. P. May, and J. McClure. Ordinary RO(G)-graded cohomology. Bulletin Amer.
Math. Soc. 4(1981), 208-212.

5. Ring G-spectra and products

Given our precise definition of RO(G')-graded theories and our understanding of
their representation by G-spectra, the formal apparatus of products in homology
and cohomology theories can be developed in a straightforward manner and is little
different from the nonequivariant case in classical lectures of Adams. However,
in that early work, Adams did not take full advantage of the stable homotopy
category. We here recall briefly the basic definitions from the equivariant treatment
in [LMS, I11§3].

There are four basic products to consider, two external products and two slant
products. The reader should be warned that the treatment of slant products in the
literature is inconsistent, at best, and often just plain wrong. These four products

come from the following four natural maps in hG.¥; all variables are G-spectra.

(5.1) XAEAX'AE —Ms XAXAENE
(5.2) F(X,E)AF(X' E') —2 F(XAX'ENE

FI(XAX,E)AXAE FIX',ENE)
(5.3) gl T
FIX, F(X',E)) A X A E F(X',E) A E

enid

(5.4)
XANX'NENF(X,E) X'NENE

\m

X'NEANF(X,E)
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The 7 are transposition maps and the ¢ are evaluation maps. The map v
can be described formally, but it is perhaps best understood by pretending that
I means Hom and A means @ over a commutative ring and writing down the
obvious analog. Categorically, such coherence maps are present in any symmetric
monoidal category with an internal hom functor. A categorical coherence theorem
asserts that any suitably well formulated diagram involving these transformations
will commute.

On passage to homotopy groups, these maps give rise to four products in RO(G')-
graded homology and cohomology. With our details on RO((G)-grading, we leave
it as an exercise for the reader to check exactly how the grading behaves.

(5.5) ES(X)® E'C(X") — (EAEYS(X AX)
(5.6) EL(X) @ EG(X') — (E A E)S(X A X
(5.7) [ EG(X A X @ BU(X) — (BN E)H(X)
(5.8) \: EZ(XAX) @ BG(X) — (EAE)(X)

A ring G-spectrum F is one with a product ¢ : K AN E — FE and a unit map
n:S — FE such that the following diagrams commute in hG.%:

nAl 1An 1A
SANE—FENE<—EAS and ENENE—FEANEFE

S 1

EANE b

The unlabelled equivalences are canonical isomorphisms in AG.¥ that give the
unital property, and we have suppressed such an associativity isomorphism in the
second diagram. Of course, there is a weaker notion in which associativity is not

required; F is commutative if the following diagram commutes in AG.%:




168 XIII. RO(G)-GRADED HOMOLOGY AND COHOMOLOGY THEORIES

An E-module is a spectrum M together with a map u : K AN M — M such
that the following diagrams commute in hG.7 :

nAl 1Ap
SAM —FEANM and ENEANM —EAM

S o

M EANM M.

We obtain various further products by composing the four external products

displayed above with the multiplication of a ring spectrum or with its action on
a module spectrum. If X = X' is a based G-space (or rather its suspension
spectrum), we obtain internal products by composing with the reduced diagonal
A: X — X AX. Of course, it is more usual to think in terms of unbased spaces,
but then we adjoin a disjoint basepoint. In particular, for a ring G-spectrum £

and a based G-space X, we obtain the cup and cap products

(5.9) U: EL(X)® BL(X) — EL(X)
and
(5.10) N: ES(X)@ EL(X) — BS(X)

from the external products A and \.

It is natural to ask when HM is a ring G-spectrum. In fact, in common with
all such categories of additive functors, the category of Mackey functors has an
internal tensor product (see Mitchell). In the present topological context, we can

define it simply by setting
MaeM =z,(HM NHM").

There results a notion of a pairing M @ M’ — M" of Mackey functors. By killing
the higher homotopy groups of HM A HM', we obtain a canonical map

L HM A HM — H(M @ M),

and ¢ induces an isomorphism on H&(-; M") = [-, HM"]q. It follows that pairings
of G-spectra HM N HM' — HM" are in bijective correspondence with pairings
M @ M — M". From here, it is clear how to define the notion of a ring in
the category of Mackey functors — such objects are called Green functors —
and to conclude that a ring structure on the G-spectrum HM determines and
is determined by a structure of Green functor on the Mackey functor M. These

observations come from work of Greenlees and myself on Tate cohomology.
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There is a notion of a ring G-prespectrum; modulo lim' problems, its associated
G-spectrum (here constructed using the cylinder construction since one wishes to
retain homotopical information) inherits a structure of ring G-spectrum. A good
nonequivariant exposition that carries over to the equivariant context has been
given by McClure.

J. F. Adams. Lectures on generalized cohomology. in Springer Lecture Notes in Mathematics,
Vol. 99, 1-138.

J. P. C. Greenlees and J. P. May. Generalized Tate cohomology (§8). Memoirs Amer. Math.
Soc. Number 543. 1995.

J. E. McClure. Hqo-ring spectra via space-level homotopy theory (§§1-2). In R. Bruner, et
al, Hyo-ring spectra and their applications. Springer Lecture Notes in Mathematics, Vol. 1176.
1986.

B. Mitchell. Rings with several objects. Advances in Math 8(1972), 1-16.
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CHAPTER XIV

An introduction to equivariant A-theory

by J. P. C. Greenlees

1. The definition and basic properties of Ks-theory

The aim of this chapter is to explain the basic facts about equivariant K-theory
through the Atiyah-Segal completion theorem. Throughout, (¢ is a compact Lie
group and we focus on complex K-theory. Real K-theory works similarly.

We briefly outline the geometric roots of equivariant K-theory. A G-vector
bundle over a G-space X is a G-map ¢ : F — X which is a vector bundle such
that G acts linearly on the fibers, in the sense that ¢ : £, — F, is a linear map.
Since G is compact, all short exact sequences of G-vector bundles split. If X is
a compact space, then Kg(X) is defined to be the Grothendieck group of finite
dimensional G-vector bundles over X. Tensor product of bundles makes K¢ (X)
into a ring.

Many applications arise; for example, the equivariant K-groups are the homes
for indices of GG-manifolds and families of elliptic operators.

Any complex representation V' of (¢ defines a trivial bundle over X and, by the
Peter-Weyl theorem, any GG-vector bundle over a compact base space is a summand
of such a trivial bundle. The cokernel of Kg(*) — Kg(X) can therefore be
described as the group of stable isomorphism classes of bundles over X, where
two bundles are stably isomorphic if they become isomorphic upon adding an
appropriate trivial bundle to each. When X has a G-fixed basepoint *, we write
Rg(X) for the isomorphic group ker(Kg(X) — Kg(*)).

171
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The definition of a G-vector bundle makes it clear that G-bundles over a free G-
space correspond to vector bundles over the quotient under pullback. We deduce

the basic reduction theorem:
(1.1) Ka(X)=K(X/G) if X is G —free.

This is essentially the statement that K-theory is split in the sense to be discussed
in XVI§2. It provides the fundamental link between equivariant and nonequivari-
ant K -theory.

Restriction and induction are the basic pieces of structure that link different
ambient groups of equivariance.

It : : H— (G is the inclusion of a subgroup it is clear that a G-space or bundle

can be viewed as an H-space or bundle; we thereby obtain a restriction map
i Kg(X) — Kp(X).

There is another way of thinking about this map. For an H-space Y,

(1.2) Ko(GxgY)= Ky(Y)

since a GG-bundle over G X Y is determined by its underlying H-bundle over Y.
For a G-space X, G xyg X 2 G/H x X, and the restriction map coincides with
the map

Ka(X) — Ko(G/H x X) =2 Kg(X)
induced by the projection G/H — .

It H is of finite index in G, an H-bundle over a (G-space may be made into a
G-bundle by applying the functor Hompy (G, e). We thus obtain an induction map
vt Kp(X) — Kg(X). Howeverif H is of infinite index this construction gives an
infinite dimensional bundle. There are three other constructions one may hope to
use. First, there is smooth induction, which Segal describes for the representation
ring and which should apply to more general base manifolds than a point.

Second, there is the holomorphic transter, which one only expects to exist when
GG/ H admits the structure of a projective variety. The most important case is when
H is the maximal torus in the unitary group U(n), in which case a construction
using elliptic operators is described by Atiyah. Its essential property is that it
satisfies 7,2 = 1. It is used in the proof of Bott periodicity.

Third, there is a transfer map

tr: Kp(SWX) 2 Ko(Gy Ag 2V X) — Ka(2VX)
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induced by the Pontrjagin-Thom construction ¢ : SV — Gy Ag SY associated
to an embedding of G/H in a representation V., where W is the complement of
the image in V' of the tangent H-representation L = L(H) at the identity coset of
G//H. Once we use Bott periodicity to set up RO(G)-graded K-theory, this may
be interpreted as a dimension-shifting transfer K& (X) — K&(X). Clearly this
transfer is not special to K-theory: it is present in any RO(G')-graded theory.

M. F.Atiyah. Bott periodicity and the index of elliptic operators. Quart. J. Math. 19(1968),
113-140.
G. B.Segal. Equivariant K-theory. Pub. THES 34(1968), 129-151.

2. Bundles over a point: the representation ring

Bundles over a point are representations and hence equivariant K-theory is
module-valued over the complex representation ring R(G). More generally, any
G-vector bundle over a transitive G-space G/ H is of the form Gx gV — Gxpy* =
G//H for some representation V of H. Hence K¢(G/H) = R(H). It follows that
K¢(X) takes values in the category of R(G))-modules, and thus it is important to
understand the algebraic nature of R(G).

Before turning to this, we observe that it G acts trivially on X, then

Ke(X) 2 R(G) @ K(X).

Indeed, the map K(X) — Kg(X) obtained by regarding a vector bundle as a G-
trivial G-vector bundle extends to a map p : R(G) @ K(X) of R(G)-modules, and
this map is the required isomorphism. An explicit inverse can be constructed as
follows. For a representation V', let V' denote the trivial G-vector bundle X xV —
X. The functor that sends a G-vector bundle £ to the vector bundle Homg(V, £)
induces a homomorphism ey : Kg(X) — K(X). Let {V;} run through a set
consisting of one representation V; from each isomorphism class [V;] of irreducible
representations. Then a (G-vector bundle ¢ over X breaks up as the Whitney
sum of its subbundles V; @ Homg(V;, €). Define v @ Kg(X) — R(G) @ K(X)
by v(a) = 3;[Vi] @ ev,(«). It is then easy to check that p and v are inverse
isomorphisms.

To understand the algebra of R(('), one should concentrate on the so called
“Cartan subgroups” of . These are topologically cyclic subgroups H with finite
Weyl groups We(H) = Ng(H)/H. Conjugacy classes of Cartan subgroups are
in one-to-one correspondence with conjugacy classes of cyclic subgroups of the
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component group wo((). Every element of ¢ lies in some Cartan subgroup, and

therefore the restriction maps give an injective ring homomorphism

(2.1) R(G) — (H)R(C)

where the product is over conjugacy classes of Cartan subgroups.

The ring R(G') is Noetherian. Indeed, by explicit calculation, R(U(n)) is Noethe-
rian and the representation ring of a maximal torus 7T is finite over it. Any group
(¢ may be embedded in some U(n), and it is enough to show that R((G) is finitely
generated as an R(U(n))-module. Now R(() is detected on finitely many topolog-
ically cyclic subgroups C, so it is enough to show each R(C') is finitely generated
over R(U(n)). But each such C' is conjugate to a subgroup of T, and R(C) is finite
over R(T).

The map (2.1) makes the codomain a finitely generated module over the domain
and consequently the induced map of prime spectra is surjective and has finite
fibers. By identifying the fibers it can then be shown that for any prime @ of

R(G) the set of minimal elements of
{H C G| ¢ is the restriction of a prime of R(H)}

constitutes a single conjugacy class (H) of subgroups, with H topologically cyclic.
We say that (H) is the support of p. If R(G)/¢ is of characteristic p > 0 then the
component group of H has order prime to p.

The first easy consequence is that the Krull dimension of R((7) is one more than
the rank of G.

A more technical consequence which will become important to us later is that
completion is compatible with restriction. Indeed restriction gives a ring homo-
morphism res : R(G) — R(H) by which we may regard an R(H)-module as an
R(G)-module. Using supports, we see that if I(G) = ker{dim : R(G') — Z} is
the augmentation ideal, the ideals I(H) and res(/(()).R(H) have the same rad-
ical. Consequently the I(H)-adic and I(G)-adic completions of an R(H )-module
coincide.

Finally, using supports it is straightforward to understand localizations of equiv-
ariant K-theory at primes of R((G). In fact if (H) is the support of g the inclusion

XWH) - X induces an isomorphism of Kg( ), where XF) is the union of the

£

fixed point spaces X' with H' conjugate to H.
G. B.Segal. The representation ring of a compact Lie group. Pub. THES 34(1968), 113-128.
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3. Equivariant Bott periodicity

Equivariant Bott periodicity is the most important theorem in equivariant K-
theory and is even more extraordinary than its nonequivariant counterpart. It
underlies all of the amazing properties of equivariant K-theory. For a locally
compact G-space X, define Kg(X) to be the reduced K-theory of the one-point
compactification Xy of X. That is, writing * for the point at infinity,

[X’G(X) = ker(Kg(X#) — [X’G(*)

When X is compact, Xy is the union X} of X and a disjoint G-fixed basepoint. We
issue a warning: in general, for infinite G-CW complexes, K¢(X) as just defined
will not agree with the represented Kg-theory of X that will become available

when we construct the K-theory G-spectrum in the next section.

THEOREM 3.1 (THOM ISOMORPHISM). For vector bundles E over locally com-

pact base spaces X, there is a natural Thom isomorphism
¢ Kg(X) = Ka(E).

There is a quick reduction to the case when X is compact, and in this case we can
use that any G-bundle is a summand of the trivial bundle of some representation
V' to reduce to the case when £ =V x X. Here, with an appropriate description

of the Thom isomorphism, one can reinterpret the statement as a convenient and
explicit version of Bott periodicity. To see this, let A(V) € R((G) denote the

alternating sum of exterior powers
)\(V) -1-V T )\ZV et (_1)dimV)\dimV‘/7

let ey : S — SV be the based map that sends the non-basepoint to 0, and,
taking X to be a point, let by = ¢(1) € R(SV). Observe that ey induces

ey - K(SV) — K(SO) = R(G).

THEOREM 3.2 (BOTT PERIODICITY). For a compact G-space X and a complex

representation V' of G, multiplication by by specifies an isomorphism
¢: Ka(Xy) = Ka(X) = Ka(V x X) = K(5" A X,).

Moreover, e(V)*(by) = A(V).
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The Thom isomorphism can be proven for line bundles, trivial or not, by arguing
with clutching functions, as in the nonequivariant case. The essential point is to
show that the K-theory of the projective bundle P(E & C) is the free Kg(X)-
module generated by the unit element {1} and the Hopf bundle H. This implies
the case when F is a sum of trivial line bundles. If G is abelian, every V is a sum
of one dimensional representations so the theorem is proved. This deals with the
case of a torus T'. The significantly new feature of the equivariant case is the use
of holomorphic transfer to deduce the case of U(n). Finally, by change of groups,
the result follows for any subgroup of U(n).

For real equivariant K-theory KOg, the Bott periodicity theorem is true as
stated provided that we restrict V' to be a Spin representation of dimension divis-
ible by eight. However, the proof is significantly more difficult, requiring the use
of pseudo-differential operators.

Now we may extend K;(e) to a cohomology theory. Following our usual con-
ventions, we shall write K, for the reduced theory on based G-spaces X. Since we
need compactness, we consider based finite G-CW complexes, and we then have

the notational conventions that in degree zero
K&(X,) = Kg(X) for finite G-CW complexes X

and
K%(X) = Kg(X) for based finite G-CW complexes X.
Of course we could already have made the definition K;%(X) = K2(X4X) for

positive ¢, but we now know that these are periodic with period 2 since R? = C.

Thus we may take
K&(X)=K&(X) and KZT(X)=K&(Z'X) for all n.

Note in particular that the coefficient ring is R((') in even degrees. It is zero in
odd degrees because all bundles over S are pullbacks of bundles over a point,
G'L,(C) being connected. We can extend this to an RO(G)-graded theory that
is R(G)-periodic, but we let the construction of a representing G-spectrum in the

next section take care of this for us.

M. F.Atiyah. Bott periodicity and the index of elliptic operators. Quart. J. Math. 19(1968),
113-140.

M. F.Atiyah and R. Bott. On the periodicity theorem for complex vector bundles. Acta math.
112(1964), 229-247.

G. B.Segal. Equivariant K-theory. Pub. THES 34(1968), 129-151.
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4. Equivariant K-theory spectra

Following the procedures indicated in XII§9, we run through the construction of
a GG-spectrum that represents equivariant K -theory. Recall from VII.3.1 that the
Grassmannian G-space BU(n, V') of complex n-planes in a complex inner product
Gi-space V' classifies complex n-dimensional G-vector bundles if V' is sufficiently
large, for example if V' contains a complete complex GG-universe.

Diverging slightly from our usual notation, fix a complete G-universe /. For

each indexing space V C % and each ¢ > 0, we have a classifying space
BU(q,V & %)
for g-plane bundles. For VV C W, we have an inclusion
BU(¢,V& %) — BU(q+ W -V|.Wa )
that sends a plane A to the plane A + (W — V). Define
BUs(V)= ][] BU(q,V & %).

920
We take the plane V in BU(|V|,V & %) as the canonical G-fixed basepoint of
BUg(V). For V.C W, we then have an inclusion BUg(V) in BUg(W) of based
G-spaces. Define BUg to be the colimit of the BUq(V).

For finite (unbased) G-CW complexes X, the definition of K (X) as a Groth-
endieck group and the classification theorem for complex GG-vector bundles lead to
an isomorphism

(X1, BUgle = Ka(X) = K&(X,).
The finiteness ensures that our bundles embed in trivial bundles and thus have
complements. In turn, this ensures that every element of the Grothendieck group
is the difference of a bundle and a trivial bundle. For the proof, we may as well
assume that X/G is connected. In this case, a G-map ¢ : X — BUg factors
through a map f : BUg(q,V & % ) for some ¢ and V. If f classifies the G-bundle
&, then the isomorphism sends ¢ to & — V.

The spaces BUg(V) and BUg have the homotopy types of G-CW complexes.
It we wish, we can replace them by actual G-CW complexes by use of the functor
7 from G-spaces to G-CW complexes. For a complex representation V' and based

finite G-CW complexes X, Bott periodicity implies a natural isomorphism

(X, BUgle = KA(X) = Ko(2VX) =2 [X,QVBUdg.
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By Adams’ variant XIII.3.4 of Brown’s representability theorem, this isomorphism
is represented by a G-map & : BUs — QY BUg, which must be an equivalence.
However, we must check the vanishing of the appropriate lim'-term to see that the
homotopy class of & is well-defined. Restricting to a cofinal sequence of represen-
tations so as to arrange transitivity (as in XII1.3.2), we have an Q-G-prespectrum.
It need not be Y-cofibrant, but we can apply the cylinder construction K to make
it so. Applying L, we then obtain a G-spectrum K. It is related to the -
Gi-prespectrum that we started with by a spacewise equivalence. Of course, the
restriction to complex indexing spaces is no problem since we can extend to all
real indexing spaces, as explained in XII§2.

Using real inner product spaces, we obtain an analogous G-space BOg and an

analogous isomorphism
[X, BOgle = KOg(X).

It we start with Spin representations of dimension 8n, those being the ones for
which we have real Bott periodicity, the same argument works to construct a
G-spectrum K O¢ that represents real K-theory.

5. The Atiyah-Segal completion theorem

It is especially important to understand bundles over the universal space EG,
because of their role in the theory of characteristic classes. We have already men-
tioned one very simple construction of bundles. In fact for any representation V we
may form the bundle FG'xV — EG x* and hence we obtain the homomorphism

a: R(G) — Kq(EG).

Evidently « is induced by the projection map = : FG — *. The Atiyah-Segal
completion theorem measures how near « is to being an isomorphism.

Of course, EG is a free G-CW complex. Any free G-CW complex is constructed
from the G-spaces G’y A S™ by means of wedges, cofibers, and passage to colimits.
From the change of groups isomorphism K&(GL A X) =2 K*(X) we see that the
augmentation ideal [ = I(() acts as zero on the K-theory of any space G4 A X.

In particular the K-theory of a free sphere is complete as an R(G)-module for
the topology defined by powers of I. Completeness is preserved by extensions of
finitely generated modules, so we that K (X) is [-complete for any finite free
G-CW complex X. Completeness is also preserved by inverse limits so, provided

lim* error terms vanish, the K-theory of EG is I-complete.
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Remarkably the K-theory of EG is fully accounted for by the representation
ring, in the simplest way allowed for by completeness. The Atiyah-Segal theorem
can be seen as a comparison between the algebraic process of [-adic completion
and the geometric process of “completion” by making a space free.

The map « has a counterpart in all degrees, and it is useful to allow a parameter

space, which will be a based G-space X. Thus we consider the map
7 KE(X) — KL(EGL N X).

Note that the target is isomorphic to the non-equivariant K-theory K*(EG1AgX),
and the following theorem may be regarded as a calculation of this in terms of the

more approachable group K (X).

THEOREM 5.1 (ATIYAH-SEGAL). Provided that X is a finite G-CW-complex,

the map 7* above is completion at the augmentation ideal, so that
KLEGLANX) =2 KL(X)].

In particular,

KYEG,) = R(G)) and KL(EGL) =0.

We sketch the simplest proof, which is that of Adams, Haeberly, Jackowski,
and May. We skate over two technical points and return to them at the end.
For simplicity of notation, we omit the parameter space X. We do not yet know
that Kz (EGYy) is complete since we do not yet know that the relevant lim'-term
vanishes. If we did know this, we would be reduced to proving that = : EG, — S°
induces an isomorphism of /-completed K-theory.

It we also knew that “completed K-theory” was a cohomology theory it would
then be enough to show that the cofiber of # was acyclic. It is standard to let
EG denote this cofiber, which is easily seen to be the unreduced suspension of EG
with one of the cone points as base point. That is, it would be enough to prove
that Kz(EG) = 0 after completion.

The next simplification is adapted from a step in Carlsson’s proof of the Segal
conjecture. If we argue by induction on the size of the group (which is possible since
chains of subgroups of compact Lie groups satisfy the descending chain condition),
we may suppose the result proved for all proper subgroups H of G. Accordingly,
by change of groups, K& (G/H4 ANY') = 0 after completion for any nonequivariantly
contractible space Y and hence by wedges, cofibers, and colimits KG(EAY) =0
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after completion for any G-CW complex FE constructed using cells G/H, A S™ for
various proper subgroups H.

Now if ¢ is finite, let V denote the reduced regular representation and let SV
be the union of the representation spheres S*V. For a general compact Lie group
G, we let SV denote the union of the representation spheres SV as V runs over
the indexing spaces V such that V“ = 0 in a complete G-universe U.

Evidently 5oV is contractible if H is a proper subgroup and S0V = G0 Thys
5°V /89 has no G-fixed points and may be constructed using cells G/Hy A S™ for
proper subgroups . Thus, by the inductive hypothesis, Kz (5" /S A EG) =0

after completion, and hence
K5(5%V N EG) =2 K5(5° N EG) = KL (EG)
after completion. But evidently the inclusion
SV = SV A8 — SV A BG

is an equivariant homotopy equivalence (consider the various fixed point sets).
This proves a most convenient reduction: it is enough to prove that K2 (S*V) =0
after completion.

In fact, it is easy to see that K%(S*Y) = 0 after completion. When  is finite,

one just notes that (ignoring lim' problems again)
K (S5®V) = hian(SW) = hin(Kg(SO), AMV)) =0

because A(V') € I. Indeed the inverse limit has the effect of making the element
A(V) invertible, and if IM = M then M} = 0. The argument in the general
compact Lie case is only a little more elaborate.

To make this proof honest, we must address the two important properties that
we used without justification: (a) that completed K-theory takes cofiberings to
exact sequences and (b) that the K-theories of certain infinite complexes are the
inverse limits of the K-theories of their finite subcomplexes. In other words the
points that we skated over were the linked problems of the inexactness of comple-
tion and the nonvanishing of lim' terms.

Now, since R((7) is Noetherian, completion is exact on finitely generated mod-
ules, and the K groups of finite complexes are finitely generated. Accordingly, one
route is to arrange the formalities so as to only discuss finite complexes: this is

the method of pro-groups, as in the original approach of Atiyah. It is elementary
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and widely useful. Instead of considering the single group K (X) we consider the

inverse system of groups K5 (X,) as X, runs over the finite subcomplexes of X.

We do not need to know much about pro-groups. A pro-group is just an inverse
system of Abelian groups. There is a natural way to define morphisms, and the
resulting category is Abelian. The fundamental technical advantage of working
in the category of pro-groups is that, in this category, the inverse limit functor is
exact. For any Abelian group valued functor 2 on G-CW complexes or spectra, we
define the associated pro-group valued functor h by letting h(X) be the inverse
system {h(X,)}, where X, runs over the finite subcomplexes of X.

As long as all K-theory is interpreted as pro-group valued, the argument just
given is honest. The conclusion of the argument is that, for a finite G-CW complex
X, 7: EFGy N X — X induces an isomorphism of /-completed pro-group valued
K-theory. Here the [-completion of a pro-R(G)-module M = {M,} is just the
inverse system {M,/I"M,}. When M is a constant system, such as K%(.S°), this
is just an inverse system of epimorphisms and has zero lim". It follows from the
isomorphism of pro-groups that lim' is also zero for the progroup Kz (EG, A X),
and hence the group KX(EG A X) is the inverse limit of the K-theories of the
skeleta of EG. A X. We may thus simply pass to inverse limits to obtain the
conclusion of Theorem 3.1 as originally stated for ordinary rather than pro- R(G)-

modules.

There is an alternative way to be honest: we could accept the inexactness and
adapt the usual methods for discussing it by derived functors. In fact we shall
later see how to realize the construction of left derived functors of completion
geometrically. This approach leads compellingly to consideration of completions of
Kg-module spectra and to the consideration of homology. We invite the interested
reader to turn to Chapter XXIV (especially Section 7).
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6. The generalization to families

The above statements and proofs for the universal free G-space KG and the
augmentation ideal I carry over with the given proofs to theorems about the
universal .% -free space /. and the ideal

1.7 = () ker{res : R(G) — R(H)}.
He#x
The only difference is that for most families .% there is no reduction of K¢(F.%)
to the nonequivariant K-theory of some other space. Note that, by the injectivity
of (2.1), if .Z includes all cyclic subgroups then [.% = 0.

THEOREM 6.1. For any family .% and any finite G-CW-complex X the projec-

tion map F.# — * induces completion, so that
KMNEZLNX)2 KL(X)) .

In particular

KYEZ,) = R(G)), and KL(EZF,)=0.

Two useful consequences of these generalizations are that K-theory is detected

on finite subgroups and that isomorphisms are detected by cyclic groups.

THEOREM 6.2 (McCLURE). (a) If X is a finite G-CW-complex and = € Kg(X)
restricts to zero in Ky (X) for all finite subgroups H of GG then x = 0.
(b) If f: X — Y is amap of finite G-CW-complexes that induces an isomorphism
Ke(Y) — K¢ (X) for all finite cyclic subgroups C then f*: Kg(Y) — Ka(X)

is also an isomorphism.

Thinking about characters, one might be tempted to believe that finite sub-
groups could be replaced by finite cyclic subgroups in (a), but that is false.
J. F.Adams, J.-P.Haeberly, S.Jackowski and J. P.May. A generalization of the Atiyah-Segal

completion theorem. Topology 27(1988), 1-6.
J.E.McClure. Restriction maps in equivariant K-theory. Topology 25(1986) 399-409.



CHAPTER XV

An introduction to equivariant cobordism

by S. R. Costenoble

1. A review of nonequivariant cobordism

We start with a brief summary of nonequivariant cobordism.

We define a sequence of groups A, A1, A3, ... as follows: We say that two
smooth closed k-dimensional manifolds M, and M, are cobordant if there is a
smooth (k+1)-dimensional manifold W (the cobordism) such that OW = My [T Ms;
this is an equivalence relation, and .4; is the set of cobordism classes of k-
dimensional manifolds. We make this into an abelian group with addition being
disjoint union. The 0 element is the class of the empty manifold §); a manifold is
cobordant to () if it bounds. Every manifold is its own inverse, since M [[ M bounds
M x I. We can make the graded group ./; into a ring by using cartesian product
as multiplication. This ring has been calculated: A, = Z/2[xy | k # 2° —1]. We'll
say more about how we attack this calculation in a moment. This is the unoriented
bordism ring, due to Thom.

Thom also considered the variant in which the manifolds are oriented. In this
case, the cobordism is also required to be oriented, and the boundary 9W is
oriented so that its orientation, together with the inward normal into W, gives
the restriction of the orientation of W to W. The effect is that, if M is a closed
oriented manifold, then (M x I) = MI[(—M) where —M denotes M with its
orientation reversed. This makes —M the negative of M in the resulting oriented
bordism ring Q.. This ring is more complicated than .4, having both a torsion-
free part (calculated by Thom) and a torsion part, consisting entirely of elements

of order 2 (calculated by Milnor and Wall).
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There are many other variants of these rings, including unitary bordism, .,
which uses “stably almost complex” manifolds; M is such a manifold if there is
given an embedding M C R" and a complex structure on the normal bundle to this
embedding. The calculation is %, = Z[z9;]. This and other variants are discussed
in Stong.

These rings are actually coefficient rings of certain homology theories, the bor-
dism theories (there is a nice convention, due to Atiyah, that we use the name
bordism for the homology theory, and the name cobordism for the related coho-
mology theory). If X is a space, we define the group 4;(X) to be the set of
bordism classes of maps M — X, where M is a k-dimensional smooth closed
manifold and the map is continuous. Cobordisms must also map into X, and the
restriction of the map to the boundary must agree with the given maps on the
k-manifolds. Defining the relative groups A4%(X, A) is a little trickier. We consider
maps (M,0M) — (X, A). Such a map is cobordant to (N,0N) — (X, A) if
there exists a triple (W, 0oW, W), where OW = dyW U 1 W, the intersection
OoW N 4 W is the common boundary 9(doW) = d(hW), and dW = MIIN,
together with a map (W,0;W) — (X, A) that restricts to the given maps on
JoW. (This makes the most sense if you draw a picture.) It’s useful to think of
W as having a “corner” at doW N 0;W; otherwise you have to use resmoothings
to get an equivalence relation. It is now a pretty geometric exercise to show that
there is a long exact sequence

s H(A) — (X)) — ALK, A) — A (A) — -

where the “boundary map” is precisely taking the boundary. There are oriented,
unitary, and other variants of this homology theory.

Calculation of these groups is possible largely because we know the representing
spectra for these theories. Let T'O (the Thom prespectrum) be the prespectrum
whose kth space is TO(k), the Thom space of the universal k-plane bundle over
BO(k). It is an inclusion prespectrum and, applying the spectrification functor L
to it, we obtain the Thom spectrum MO. Its homotopy groups are given by

7 (MO) = colimy 716 (T O(q)).

Then AL =2 7. (MO), and in fact MO represents unoriented bordism.

The proof goes like this: Given a k-dimensional manifold M, embed M in some
R7+* with normal bundle ». The unit disk of this bundle is homeomorphic to a
tubular neighborhood N of M in R?t*, and so there is a collapse map ¢ : S9t%F —
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T'v given by collapsing everything outside of N to the basepoint. There is also a
classifying map Tv — TO(q), and the composite

Stk Ty — TO(q)

represents an element of 7(MQO). Applying a similar construction to a cobor-
dism gives a homotopy between the two maps obtained from cobordant manifolds.
This construction, known as the Pontrjagin-Thom construction, describes the map
Ny — T (MO).

The inverse map is constructed as follows: Given a map f : S9* — TO(q),
we may assume that f is transverse to the zero-section. The inverse image
M = f~Y(BO(q)) is then a k-dimensional submanifold of S9** (provided that
we use Grassmannian manifold approximations of classifying spaces), and the nor-
mal bundle to the embedding of M in S?** is the pullback of the universal bundle.
Making a homotopy between two maps transverse provides a cobordism between
the two manifolds obtained from the maps. One can now check that these two
constructions are well-defined and inverse isomorphisms. The analysis of AL(X, A)
is almost identical.

In fact MO is a ring spectrum, and the Thom isomorphism just constructed is
an isomorphism of rings. The product on MO is induced from the maps

TO(j) A TO(k) — TO(j + k)

of Thom complexes arising from the classifying map of the external sum of the jth
and kth universal bundle. This becomes clearer when one thinks in a coordinate-
free way; in fact, it was inspection of Thom spectra that led to the description of
the stable homotopy category that May gave in Chapter XII.

Now MO is a very tractable spectrum. To compute its homotopy we have
available such tools as the Thom isomorphism, the Steenrod algebra (mod 2), and
the Adams spectral sequence for the most sophisticated calculation. (Stong gives
a calculation not using the spectral sequence.) The point is that we now have
something concrete to work with, and adequate tools to do the job. For oriented
bordism, we replace MO with M SO, which is constructed similarly except that
we use the universal oriented bundles over the spaces BSO(k). Here we use the
fact that an orientation of a manifold is equivalent to an orientation of its normal
bundle. Similarly, for unitary bordism we use the spectrum MU, constructed out
of the universal unitary bundles.

The standard general reference is
R. E. Stong. Notes on Cobordism Theory. Princeton University Press. 1968.
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2. Equivariant cobordism and Thom spectra

Now we take a compact Lie group GG and try to generalize everything to the
Gi-equivariant context. This generalization of nonequivariant bordism was first
studied by Conner and Floyd. Using smooth G-manifolds throughout we can cer-
tainly copy the definition of cobordism to obtain the equivariant bordism groups
A% and, for pairs of G-spaces (X, A), the groups #.%(X, A). We shall concen-
trate on unoriented bordism. To define unitary bordism, we consider a unitary
manifold to be a smooth G-manifold M together with an embedding of M in either
Vor Vg R, where V is a complex representation of (G, and a complex structure
on the resulting normal bundle. The notion of an oriented GG-manifold is compli-
cated and still controversial, although for odd order groups it suffices to look at
oriented manifolds with an action of (; the action of G automatically preserves
the orientation.

It is also easy to generalize the Thom spectrum. Let % be a complete G-
universe. In view of the description of the K-theory G-spectra in the previous
chapter, it seems most natural to start with the universal n-plane bundles

a(V): EO(\V|,V& %) — BO(V|,V& %)

for indexing spaces V in 7. Let TOg(V') be the Thom space of n(V). For V C W,
the pullback of #(W') over the inclusion

is the Whitney sum of #(V') and the trivial bundle with fiber W — V. Its Thom

space is YWV TOg(V), and the evident map of bundles induces an inclusion
o: XVTO6(V) — TOa(W).

This construction gives us an inclusion G-prespectrum T'Og. We define the real
Thom G-spectrum to be its spectrification MOy = LTOg. Using complex rep-
resentations throughout, we obtain the complex analogs TUgs and MUg. This
definition is essentially due to tom Dieck.

The interesting thing is that M Og does not represent .4.%. It is easy to define
a map N9 — 75(MOg) = MOY using the Pontrjagin-Thom construction,
but we cannot define an inverse. The problem is the failure of transversality in
the equivariant context. As a simple example of this failure, consider the group
G =17Z/2,let M = * be a one-point G-set (a 0-dimensional manifold), let N = R
with the nontrivial linear action of ¢, and let Y = {0} C N. Let f: M — N
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be the only G-map that can be defined: it takes M to Y. Clearly f cannot be
made transverse to Y, since it is homotopic only to itself. This simple example is
paradigmatic. In general, given manifolds M and ¥ C N and amap f: M — N,
if f fails to be homotopic to a map transverse to Y it is because of the presence in
the normal bundle to Y of a nontrivial representation of (G that cannot be mapped
onto by the representations available in the tangent bundle of M. Wasserman
provided conditions under which we can get transversality. If G is a product of
a torus and a finite group, he gives a sufficient condition for transversality that
amounts to saying that, where needed, we will always have in M a nontrivial
representation mapping onto the nontrivial representation we see in the normal
bundle to Y. Others have given obstruction theories to transversality, for example
Petrie and Waner and myself.

Using Wasserman’s condition, it is possible (for one of his () to construct the
G-spectrum that does represent .4.%. Again, let % be a complete G-universe. We
can construct a G-prespectrum tog with associated G-spectrum mog by letting
V' run through the indexing spaces in our complete universe % as before, but
replacing % by its G-fixed point space % = R* in the bundles we start with.
That is, we start with the G-bundles

EO(|V|,Va& %% — BO(|V|,V & %)

for indexing spaces V in %/. Again, restricting attention to complex representa-
tions, we obtain the complex analogs tug and mug. The fact that there are so
few nontrivial representations present in the bundle EO(|V|,V @& %) allows us
to use Wasserman’s transversality results to show that mog represents .4#.%. The
inclusion % — % induces a map

mog — MOg

that represents the map .4 — MOY that we originally hoped was an isomor-
phism.

On the other hand, there is also a geometric interpretation of MOY. Using
either transversality arguments or a clever argument due to Brocker and Hook
that works for all compact Lie groups, one can show that

MO (X, A) = colimy 4,5y (X, A) x (D(V),5(V))).

Here the maps in the colimit are given by multiplying manifolds by disks of rep-
resentations, smoothing corners as necessary. We interpret this in the simplest
case as follows. A class in MO = colimy %EM(D(V), S(V)) is represented by a
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manifold (M, 9dM) together with a map (M,9M) — (D(V), S(V)). This map is
equivalent in the colimit to (M x D(W),0(M x D(W))) — (D(VaW), S(VaW))
together with the original map crossed with the identity on D(W). We call the
equivalence class of such a manifold over the disk of a representation a stable man-
ifold. Tts (virtual) dimension is dim M — dimV. We can then interpret MOY
as the group of cobordism classes of stable manifolds of dimension k. A similar
interpretation works for MO (X, A).

With this interpretation we can see clearly one of the differences between .4.“
and MOY. If V is a representation of (¢ with no trivial summands, then there is a
stable manifold represented by * — D(V), the inclusion of the origin. This rep-

resents a nontrivial element x(V) € MO, where n = |[V|. This element is called

the Fuler class of V. Tom Dieck showed the nontriviality of these elements and
we’ll give a version of the argument below; note that if V' had a trivial summand,
then * — D(V) would be homotopic to a map into S(V), so that y(V) = 0.
On the other hand, .#.% has no nontrivial elements in negative dimensions, by
definition.

Here is another, related difference: Stable bordism is periodic in a sense. If V' is
any representation of ¢, then, by the definition of MO¢g, MOg(V) = MO«(|V]);
the point is that M Og (V) really depends only on |V|. This gives an equivalence
YYMOg ~X"MOg if n = |V|, or

MOg ~ YV ""MOg.

One way of defining an explicit equivalence is to start by classifying the bundle
V — x and so obtain an associated map of Thom complexes (a Thom class)

SV — TOg(R™) C MOg(R™).

This is adjoint to a map u(V) : S¥=" = ¥>°8V — MOg. Reversing the roles
of V and R", we obtain an analogous map S~V — MOg. It is not hard to
check that these are inverse units in the RO(G)-graded ring MO%. The required
equivalence is the evident composite

Sv_n A MOG — MOG A MOG — MOG
In homology, this gives isomorphisms of MO%-modules
MOS(2VIX) = MO%(2V X)

and

MO (X)= MOZ_ (2 X)
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for all k. This is really a special case of a Thom isomorphism that holds for every
bundle. The Thom class of a bundle ¢ is the element in cobordism represented
by the map of Thom complexes T¢ — TO(|¢]) € MOg(|¢]) induced by the
classifying map of £&. Another consequence of the isomorphisms above is that
MO (X) =2 MO%(X), so that the RO(G)-graded groups that we get are no
different from the groups in integer grading. We can think of this as a periodicity
given by multiplication by the unit (V). It should also be clear that, if |V]| =m
and |W| = n, then the composite isomorphism

MOF(X) = MOE, (2 X) = MO, (59" X)

agrees with the isomorphism MOF (X) = MOZ, .. (EV®" X) associated with the
representation V ¢ W.

We record one further consequence of all this. Consider the inclusion e : S® —
SV where |V| = n. This induces a map

MO, (X) — MOE,,(5VX) = MOF ().

It is easy to see geometrically that this is given by multiplication by the stable
manifold * — D(V), the inclusion of the origin, which represents y(V) € MO®, .
The similar map in cobordism,

MOL(X) = MOE™(XY X) — MOE™(X)

is also given by multiplication by x(V) € MO, as we can see by representing
x(V) by the stable map

SO SV Y MO ~ X" MOg.

T. Brocker and E. C. Hook. Stable equivariant bordism. Math. Z. 129(1972), 269-277.
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3. Computations: the use of families

For computations, we start with the fact that .4.%(X) is a module over ./ (the
nonequivariant bordism ring, which we know) by cartesian product. The question
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is then its structure as a module. We’ll take a look at the main computational
techniques and at some of the simpler known results.

The main computational technique was introduced by Conner and Floyd. Recall
that a family of subgroups of (G is a collection of subgroups closed under conjugacy
and taking of subgroups (in short, under subconjugacy). If .% is such a family,
we define an .%-manifold to be a smooth GG-manifold all of whose isotropy groups
are in .#. If we restrict our attention to closed .#-manifolds and cobordisms
that are also .Z-manifolds, we get the groups 4#.%[.#] of cobordism classes of
manifolds with restricted isotropy. Similarly, we can consider the bordism theory
N E[F)(X, A). Now there is a relative version of this as well. Suppose that
F' C F. An (F, F')-manifold is a manifold (M, dM) where M is an .#-manifold
and OM is an F'-manifold (possibly empty, of course). To define cobordism
of such manifolds, we must resort to manifolds with multipart boundaries, or
manifolds with corners. Precisely, (M,0M) is cobordant to (N,dN) if there is a
manifold (W, oW, & W) such that W is an .#-manifold, ;W is an .%’-manifold,
and oW = M I]N, where as usual W = doW U W and doW N 0, W is the
common boundary of dgW and 9;W. With this definition we can form the relative
bordism groups A “[.%, Z']. Of course, there is also an associated bordism theory,
although to describe the relative groups of that theory requires manifolds with 2-

part boundaries, and cobordisms with 3-part boundaries!

12

From a homotopy theoretic point of view it’s interesting to notice that .4, [.7]
NG (EZF), since a manifold over F.# must be an .Z-manifold, and any

manifold has a unique homotopy class of maps into £.%. Similarly, 4.9[.Z](X)

*

Y

12

N9(X x EZ), and so on. For the purposes of computation, it is usually more
fruitful to think in terms of manifolds with restricted isotropy, however. Notice
that this gives us an easy way to define MOS[.F]: it is MOS(E.%). We can also
interpret this in terms of stable manifolds with restricted isotropy.

As a first illustration of the use of families, we give the promised proof of the

nontriviality of Euler classes.

LEMMA 3.1. Let (¢ be a compact Lie group and V be a representation of ¢
without trivial summands. Then x(V) # 0 in MO% | where n = |V].

—n?

PrOOF. Let &/ be the family of all subgroups, and let & be the family of
proper subgroups. Consider the map MOS — MO%[/, %7]. We claim that the
image of (V) is invertible in MO%[«7, 2] (which is nonzero), so that x (V) # 0.
Thinking in terms of stable manifolds, x(V) = [+ — D(V)]. Its inverse is
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D(V) — «, which lives in the group MO%[</, 2] because dD(V) = S(V) has
no fixed points. It’s slightly tricky to show that the product, which is represented
by D(V) — « — D(V'), is cobordant to the identity D(V) — D(V), as we
have to change the interpretation of the boundary S(V') of the source from being
the “Z-manifold part” to being the “maps into S(V) part”. However, a little
cleverness with D(V') x I does the trick. O

Returning to our general discussion of the use of families, note that, for a pair
of families (.#, . F'), there is a long exact sequence

= MTF — NET] — NEF T — MG —

Y

where the boundary map is given by taking boundaries. (This is of course the
same as the long exact sequence associated with the pair of spaces (E.#, E.Z").)
We would like to use this exact sequence to calculate .#.¢ inductively. To set
this up a little more systematically, suppose that we have a sequence .y C % C
Fy C -+ of families of subgroups whose union is the family of all subgroups.
If we can calculate 4,%[.%] and each relative term A,%[.%,, %, 1], we may be
able to calculate every .4,[.%,] and ultimately .4#,%. We can also introduce the
machinery of spectral sequences here: The long exact sequences give us an exact
couple

L/V*G[g;p—l] /I/*G[ﬂp]

\ /

J‘/*G[ggpv gzp—l]

and hence a spectral sequence with ) = %G[ﬂp, Z,_1) that converges to ..

This would all be academic if not for the fact that .4,“[.%,,.%, 1] is often com-
putable. Let us start off with the base of the induction: A4 %[{e},0] = A4.%[{e}].
This is the bordism group of free closed G-manifolds. Now, if M is a free G-
manifold, then M/G is also a manifold, of dimension dim M — dim GG. There is a
unique homotopy class of G-maps M — EG, which passes to quotients to give
a map M/G — BG. Moreover, given the map M/G — BG we can recover the
original manifold M, since it is the pullback in the following diagram:

M ——FEG

-

M/G — BG.
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This applies equally well to manifolds with or without boundary, so it applies to
cobordisms as well. This establishes the isomorphism

M e}] & M—ama( BG).

Now the bordism of a classifying space may or may not be easy to compute, but
at least this is a nonequivariant problem.

The inductive step can also be reduced to a nonequivariant calculation. Sup-
pose that G is finite or Abelian for convenience. We say that .# and .#’ are
adjacent if F = ZF' U (H) for a single conjugacy class of subgroups (H), and
it suffices to restrict attention to such an adjacent pair. Suppose that (M,0M)
is an (., .Z')-manifold. Let M7 denote the set of points in M with isotropy
groups in (H); M) lies in the interior of M, since M is an .%#’-manifold, and
M) = UKE(H)MK is a union of closed submanifolds of M. Moreover, these sub-
manifolds are pairwise disjoint, since (H) is maximal in .%. Therefore M) is a
closed G-invariant submanifold in the interior of M, isomorphic to G xyg M*.
(Here is where it is convenient to have G finite or Abelian.) Thus M) has a
G-invariant closed tubular neighborhood in M, call it N. Here is the key step:
(M,0M) is cobordant to (N,0N) as an (.#,.%"')-manifold. The cobordism is pro-
vided by M x I with corners smoothed (this is easiest to see in a picture).

As usual, let WH = NH/H. Now (N,0N) is determined by the free W H-
manifold M and the N H-vector bundle over it which is its normal bundle. Since
W H acts freely on the base, each fiber is a representation of H with no trivial
summands and decomposes into a sum of multiples of irreducible representations.
This also decomposes the whole bundle: Suppose that the nontrivial irreducible
representations of H are Vi, V5, .... Then v = @v;, where each fiber of each v; is
a sum of copies of V;. Clearly v; is completely determined by the free W H-bundle
Homeg(Vi, v;), which has fibers F* where F is one of R, C, or H, depending on V;.
Notice, however, that the N H-action on v induces certain isomorphisms among
the v;: If V; and V} are conjugate representations under the action of NH, then v,
and v; must be isomorphic.

The upshot of all of this is that .4,“[.%,.%"] is isomorphic to the group ob-
tained in the following way. Suppose that the dimension of V; is d; and that
Homeg(Vi, Vi) = F;, where F; = R, C, or H. Consider free W H-manifolds M,
together with a sequence of W H-bundles &, &, --- over M, one for each V;,
the group of & being O(F;,n;) (i.e., O(n;), U(n;), or Sp(n;)). If V; and V; are

conjugate under the action of NH, then we insist that ¢ and ¢; be isomorphic.
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The dimension of (M;&,&,,--+) is dim M + 3 n,d;; that is, this should equal k.
Now define (M;&,&,,--+) to be cobordant to (N;(y, (a, -+ ) if there exists some
(W3 61,05, --) such that dW = M I N and the restriction of §; to W is & 11 ¢;.

It should be reasonably clear from this description that we have an isomorphism

NOF, T2 Y /@WH(EWHX(XZ»BO(E,M)))
ity midi=k

where W H acts on x; BO(F;, n;) via its permutation of the representations of H.
One more step and this becomes a nonequivariant problem: We take the quotient
by W H, which we can do because the argument EWH x (x;BO(F;,n;)) is free
(this being just like the case .4,%[{e}] above). This gives

dim WH+j+)  nidi=k

Notice that, it G is Abelian or if W H acts trivially on the representations of H
for some other reason, then the argument is BWH x (x;BO(F;,n;))).

P. E. Conner and E. E. Floyd. Differentiable periodic maps. Academic Press, Inc. 1964.

4. Special cases: odd order groups and 7Z/2

It G is a finite group of odd order, then the differentials in the spectral sequence
for A% all vanish, and 4% is the direct sum over (H) of the groups displayed in
(3.2). This is actually a consequence of a very general splitting result that will be
explained in XVII§6. The point is that .4 is a Z/2-vector space and, away from
the order of the group, the Burnside ring A(G') splits as a direct sum of copies of
Z[1/|G]], one for each conjugacy class of subgroups of GG. This induces splittings in
all modules over the Burnside ring, including all RO(()-graded homology theories
(that is, those homology theories represented by spectra indexed on complete
universes). The moral of the story is that, away from the order of the group,
equivariant topology generally reduces to nonequivariant topology.

This observation can also be used to show that the spectra mog and MOg split
as products of Filenberg-MaclLane spectra, just as in the nonequivariant case.
Remember that this depends on GG having odd order.

Conner and Floyd computed the additive structure of JKZ/Z, and Alexander
computed its multiplicative structure. There is a split short exact sequence

0 — N — Bocnch Nion(BO(n)) — Noo1(BZ[2) — 0,
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which is part of the long exact sequence of the pair ({Z/2,e},{e}). The first map
is given by restriction to Z/2-fixed points and the normal bundles to these. The
second map is given by taking the unit sphere of a bundle, then taking the quotient
by the antipodal map (a free Z/2-action) and classifying the resulting Z/2-bundle.
This map is the only nontrivial differential in the spectral sequence. Now

Bo<n<kNion(BO(N)) = AN[x1, 29, -],

where z; € A5_1(BO(1)) is the class of the canonical line bundle over RP*~1. On
the other hand,
N(BZ[2) =2 N Aro,r,72,- -+ }

is the free .#;-module generated by {r.}, where r is the class of RP* — BZ/2.
The splitting is the obvious one: it sends r; to zx41. In fact, the =y all live in the
summand A.(BZ/2) = A4.(BO(1)), and the splitting is simply the inclusion of this
summand. Tt follows that 4.2 is a free module over Ny, and one can write down
explicit generators. Alexander writes down explicit multiplicative generators.

A similar calculation can be done for MOZ/*. The short exact sequence is then

0 — MO — @, M_u(BO) — Moy (BL/2) — 0,

where now k and n range over the integers, positive and negative, and the sum in
the middle is infinite. In fact,

DrHNamn(BO) = a7t 21,25, ],

where the x; are the images of the elements of the same name from the geometric
case. Here 7! is the image of v, where L is the nontrivial irreducible represen-
tation of Z/2.

It is natural to ask whether or not moy/, and MOy, are products of Eilenberg-
MacLane Z/2-spectra, as in the case of odd order groups. I showed that the answer
turns out to be no.

J. C. Alexander. The bordism ring of manifolds with involution. Proc. Amer. Math. Soc.
31(1972), 536-542.

P. E. Conner and E. E. Floyd. Differentiable periodic maps. Academic Press, Inc. 1964.

S. Costenoble. The structure of some equivariant Thom spectra. Trans. Amer. Math. Soc.

315(1989), 231-254.



CHAPTER XVI

Spectra and G-spectra; change of groups; duality

In this and the following three chapters, we return to the development of features
of the equivariant stable homotopy category. The basic reference is [LMS], and

specific citations are given at the ends of sections.

1. Fixed point spectra and orbit spectra

Much of the most interesting work in equivariant algebraic topology involves the
connection between equivariant constructions and nonequivariant topics of current
interest. We here explain the basic facts concerning the relationships between
Gi-spectra and spectra and between equivariant and nonequivariant cohomology
theories.

We restrict attention to a complete G-universe U and we write RO(() for
RO(G;U). Given the details of the previous chapter, we shall be more informal
about the RO(G)-grading from now on. In particular, we shall allow ourselves to
write F2(X) for o € RO((), ignoring the fact that, for rigor, we must first fix
a presentation of « as a formal difference V& W. We write 5S¢ instead of Svew
and, for G-spectra X and F, we write

(1.1) ES(X) =[5 EAXa
and
(1.2) BLX)=[ST"AX,FElg =[S F(X, E)s.

To relate this to nonequivariant theories, let ¢ : UY — U be the inclusion of
the fixed point universe. Recall that we have the forgetful functor

i GSU — GrUY

195
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obtained by forgetting the indexing G-spaces with non-trivial G-action. The “un-
derlying nonequivariant spectrum” of F is ¢*E with its action by G ignored. Recall
too that ¢* has a left adjoint

i GLUY — GFU

that builds in non-trivial representations. Explicitly, for a naive G-prespectrum
D and an indexing G-space V,

(L.D)(V)= DV ASY-"",

For a naive G-spectrum D, . = Li, D, as usual. These change of universe
functors play a subtle and critical role in relating equivariant and nonequivariant
phenomena. Since, with G-actions ignored, the universes are isomorphic, the
following result is intuitively obvious.

LEMMA 1.3. For D € G.2U%, the unit G-map n : D — *i,.D of the (i.,7)
adjunction is a nonequivariant equivalence. For F € (.U, the counit G-map
g: 10" F — F is a nonequivariant equivalence.

We define the fixed point spectrum DY of a naive G-spectrum D by passing
to fixed points spacewise, DY(V) = (DV)“. This functor is right adjoint to the
forgetful functor from naive G-spectra to spectra:

(1.4) GZUC, D)= 2UC,D% for C € FU% and D€ GFUC.

It is essential that G act trivially on the universe to obtain well-defined structural
homeomorphisms on D%, For £ € G.#U, we define E“ = (+*F)“. Composing

the (i.,1*)-adjunction with (1.4), we obtain
(1.5) GFUGC,E)= 2U%C,EY) for C € YU and D€ GFU".
The sphere G-spectra G/H, A S™ in G.ZU are obtained by applying 7. to the

corresponding sphere G-spectra in G.U%. When we restrict (1.1) and (1.2) to
integer gradings and take H = (7, we see that (1.5) implies

(1.6) EY9X) 2 m,((E A X))
and
(1.7) EL(X) 21 (F(X, E)Y).

As in the second isomorphism, naive G-spectra D represent Z-graded cohomol-
ogy theories on naive G-spectra or on G-spaces. In contrast, as we have already
noted in XIII§3, we cannot represent interesting homology theories on G-spaces
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X in the form 7.((D A X)) for a naive G-spectrum D: here smash products
commute with fixed points, hence such theories vanish on X/X%. For genuine
Gi-spectra, there is a well-behaved natural map

(1.8) E°N(ENY — (ENEC,

but, even when E’ is replaced by a G-space, it is not an equivalence. In Section
3, we shall define a different G-fixed point functor that does commute with smash
products.

Orbit spectra D /G of naive G-spectra are constructed by first passing to orbits
spacewise on the prespectrum level and then applying the functor L from prespec-
tra to spectra. Here (¥ X)/G = X>(X/G). The orbit functor is left adjoint to
the forgetful functor to spectra:

(1.9) LUYD/G,C) = GLUYD,C) for C € £U% and D€ GFU".

For a genuine G-spectrum £, it is tempting to define /G to be L((¢*F)/G), but
this appears to be an entirely useless construction. For free actions, we will shortly
give a substitute.

[LMS, especially 1§3]

2. Split G-spectra and free GG-spectra

The calculation of the equivariant cohomology of free GG-spectra in terms of the
nonequivariant cohomology of orbit spectra is fundamental to the passage back
and forth between equivariant and nonequivariant phenomena. This requires the
subtle and important notion of a “split G-spectrum”.

DEFINITION 2.1. A naive G-spectrum D is said to be split if there is a nonequi-
variant map of spectra ¢ : D — D% whose composite with the inclusion of D% in
D is homotopic to the identity map. A genuine G-spectrum F is said to be split
if «*F is split.

The K-theory G-spectra K¢g and KOg are split. Intuitively, the splitting is ob-
tained by giving nonequivariant bundles trivial G-action. The cobordism spectra
MOQOg and MUg are also split. The Eilenberg-MaclLane G-spectrum HM associ-
ated to a Mackey functor M is split if and only if the canonical map M(G/G) —
M(G/e) is a split epimorphism; this implies that G acts trivially on M(G/e),
which is usually not the case. The suspension G-spectrum XX of a G-space X
is split if and only if X is stably a retract up to homotopy of X, which again is
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usually not the case. In particular, however, the sphere G-spectrum S = %59 is
split. The following consequence of Lemma 1.3 gives more examples.

LEMMA 2.2. If D € G.#U% is split, then ¢, D € G.#U is also split.

The notion of a split G-spectrum is defined in nonequivariant terms, but it
admits the following equivariant interpretation.

LEMMA 2.3. If F is a G-spectrum with underlying nonequivariant spectrum D,
then £ is split if and only if there is a map of G-spectra ¢.D — FE that is a
nonequivariant equivalence.

Recall that a based G-space is said to be free if it is free away from its G-
fixed basepoint. A G-spectrum, either naive or genuine, is said to be free if it is
equivalent to a G-CW spectrum built up out of free cells Gy A C'S™. The functors
¥ .7 — GFUY and i, : GFUY — G.FU carry free G-spaces to free
naive (G-spectra and free naive G-spectra to free G-spectra. In all three categories,
X is homotopy equivalent to a free object if and only if the canonical G-map
EGL AN X — X is an equivalence. A free G-spectrum F is equivalent to ¢, D for
a free naive G-spectrum D, unique up to equivalence; the orbit spectrum D/G is
the substitute for £/G that we alluded to above. A useful mnemonic slogan is
that “free G-spectra live in the trivial universe”. Note, however, that we cannot
take D = i*E: this is not a free G-spectrum. For example, ¥*°G, € G.2U% clearly
satisfies (XG4 )% = *, but we shall see later that 7,.%°°G, which is the genuine
suspension G-spectrum NG, € G.U, satisfies (*X°G, )% = S.

THEOREM 2.4. If E is a split G-spectrum and X is a free naive G-spectrum,
then there are natural isomorphisms

ES(1.X) 2 E,(2*"9X)/G)  and  EL(i.X) = E"(X/G),

where Ad(() is the adjoint representation of (G and F, and E* denote the theories
represented by the underlying nonequivariant spectrum of E.

The cohomology isomorphism holds by inductive reduction to the case X = Gy
and use of Lemma 2.3. The homology isomorphism is quite subtle and depends
on a dimension-shifting transfer isomorphism that we shall say more about later.
This result is an essential starting point for the approach to generalized Tate
cohomology theory that we shall present later.

In analogy with (1.8), there is a well-behaved natural map

(2.5) V(XYY — (87 X)),
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but it is not an equivalence.
[LMS, especially T1.1.8, I1.2.8, I1.2.12, T1.8.4]
3. Geometric fixed point spectra
There is a “geometric fixed-point functor”
o IV — SUC

that enjoys the properties

(3.1) Y(XY) ~ 99 (N> X)
and
(3.2) PY(E) A BT (L) ~ O (ENE).

To construct it, recall the definition of £.Z for a family .# from V.2.8 and set
(3.3) OE = (ENEP)°,

where 2 is the family of all proper subgroups of i. Here E A E.2 is H-trivial for
all H € &

The name “geometric fixed point spectrum” comes from an equivalent descrip-
tion of the functor ®“. There is an intuitive “spacewise G-fixed point functor”
®“ from G-prespectra indexed on U to prespectra indexed on U%. To be precise
about this, we index G-prespectra on an indexing sequence {V;}, so that V; C V11
and U = UV, and index prespectra on the indexing sequence {VZG} Here we
use indexing sequences to avoid ambiguities resulting from the fact that different
indexing spaces in U can have the same G-fixed point space. For a G-prespectrum
D = {DV;}, the prespectrum ®“D is given by (®“D)(V;) = (DV;)“, with struc-
tural maps ZViil_ViG(DVZ»)G — (DViy1)“ obtained from those of D by passage to
G-fixed points. We are interested in homotopical properties of this construction,
and when applying it to spectra regarded as prespectra, we must first apply the
cylinder functor K and CW approximation functor I' discussed in XI1§9. The re-
lationship between the resulting construction and the spectrum-level construction
(3.3) is as follows. Remember that ¢ denotes the forgetful functor from spectra to
prespectra and L denotes its left adjoint.

THEOREM 3.4. For Y-cofibrant G-prespectra D, there is a natural weak equiv-
alence of spectra

LD — LOCD.
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For GG-CW spectra E, there is a natural weak equivalence of spectra
O“F — LO“KT(E.

It is not hard to deduce the isomorphisms (3.1) and (3.2) from this prespectrum
level description of ®¢.

[LMS, 11§9]

4. Change of groups and the Wirthmauller isomorphism

In the previous sections, we discussed the relationship between G-spectra and
e-spectra, where we write e both for the identity element and the trivial subgroup
of G. We must consider other subgroups and quotient groups of G. First, consider
a subgroup H. Since any representation of NH extends to a representation of G
and since a W H-representation is just an H-fixed N H-representation, the H-fixed
point space U of our given complete G-universe U is a complete W H-universe.

We define
(4.1) B =@e)H, . U" CU.

This gives a functor G.7U — (W H).ZU*. Of course, we can also define F'! as
a spectrum in .#U%. The forgetful functor associated to the inclusion UY — U#
carries the first version of F¥ to the second, and we use the same notation for
both. For D € (NH).UH  the orbit spectrum D/H is also a W H-spectrum.

Exactly as on the space level in 1§1, we have induced and coinduced G-spectra
generated by an H-spectrum D € H.#U. These are denoted by

G[XHD and FH[G,D)

The “twisted” notation X is used because there is a little twist in the definitions
to take account of the action of GG on indexing spaces. As on the space level, these
functors are left and right adjoint to the forgetful functor G.U — H.U: for
D e HZU and F € GXU, we have

(4.2) GAUGxy D,E)= HZU(D, E)
and
(4.3) HZU(E, D)= GXU(E, FylG, D)).

Again, as on the space level, for £ € G.#U we have
(4.4) GurxgE=Z(G/H)y NE
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and
(4.5) FylG,E)= F(G/H., E).
As promised earlier, we can now deduce as in (1.6) that

(4.6) 7H(E) = [G/Hy A S™, Elg 2 [S™, Elg & m.(BY).

n

In cohomology, the isomorphism (4.2) gives
(4.7) EiL(G wxy D)= E5 (D).

We shall not go into detail, but we can interpret this in terms of RO(G) and RO(H)
graded theories via the evident functor ZO(G) — ZO(H). The isomorphism
(4.3) does not have such a convenient interpretation as it stands. However, there
is a fundamental change of groups result — called the Wirthmiiller isomorphism
— which in its most conceptual form is given by a calculation of the functor
Fy[G, D). It leads to the following homological complement of (4.7). Let L(H)
be the tangent H-representation at the identity coset of G/H. Then

(4.8) ES(G xy D)= EA (M D),

THEOREM 4.9 (GENERALIZED WIRTHMULLER ISOMORPHISM). For H-spectra
D, there is a natural equivalence of GG-spectra

FylG, 2" DYy — Gy D.
Therefore, for G-spectra E,
[E,SEH) D)y = [E,G g D).
The last isomorphism complements the isomorphism from (4.2):
(4.10) (G xy D, Ele =D, Ely.

We deduce (4.8) by replacing F in (4.9) by a sphere, replacing D by E A D, and
using the generalization

G[XH(D/\E)g(G[XHD)/\E

of (4.4).

[LMS, 11§§2-4]
K. Wirthmiiller. Equivariant homology and duality. Manuscripta Math. 11(1974), 373-390.
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5. Quotient groups and the Adams isomorphism

Let N be a normal subgroup of &G with quotient group J. In practice, one is
often thinking of a quotient map NH — W H rather than G — J. There is an
analog of the Wirthmiiller isomorphism — called the Adams isomorphism — that
compares orbit and fixed-point spectra. It involves the change of universe functors
associated to the inclusion 7 : UY —— U and requires restriction to N-free G-
spectra. We note first that the fixed point and orbit functors G.#UYN — J#UN
are right and left adjoint to the evident pullback functor from J-spectra to G-
spectra: for D € J.ZUN and £ € G.UN,

(5.1) GZUN(D,E) =2 J7UN(D,EY)
and
(5.2) JSUN(E/N,D) = GsUN(E, D).

Here we suppress notation for the pullback functor J.ZUN — G.#UN. An N-
free G-spectrum FE indexed on U is equivalent to 2. for an N-free GG-spectrum
D indexed on UV, and D is unique up to equivalence. Thus our slogan that “free
Gi-spectra live in the trivial universe” generalizes to the slogan that “N-free G-
spectra live in the N-fixed universe”. This gives force to the following version
of (5.2). It compares maps of J-spectra indexed on UY with maps of G-spectra
indexed on U.

THEOREM 5.3. Let J = G/N. For N-free G-spectra E indexed on UN and
J-spectra D indexed on UV,

[E/N, D)y = [i.F,i.Dla.

The conjugation action of G on N gives rise to an action of G on the tangent
space of N at e; we call this representation Ad(N), or Ad(N;G). The following
result complements the previous one, but is very much deeper. When N = G it is
the heart of the proof of the homology isomorphism of Theorem 2.4. We shall later
describe the dimension-shifting transfer that is the basic ingredient in its proof.

THEOREM 5.4 (GENERALIZED ADAMS ISOMORPHISM). Let J = G//N. For N-
free G-spectra I € G.ZUYN, there is a natural equivalence of J-spectra

E/N — (544N N,
Therefore, for D € J.ZUN,
(D, E/N; = [i,D, 44N _E]g.
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This result is another of the essential starting points for the approach to gener-
alized Tate cohomology that we will present later. The last two results cry out for
general homological and cohomological interpretations, like those of Theorem 2.4.
Looking back at Lemma 2.3, we see that what is needed for this are analogs of the
underlying nonequivariant spectrum and of the characterization of split G-spectra
that make sense for quotient groups JJ. What is so special about the trivial group
is just that it is naturally both a subgroup and a quotient group of G.

The language of families is helpful here. Let .# be a family. We say that a G-
spectrum F is .Z-free, or is an .# -spectrum, if F is equivalent to a G-CW spectrum
all of whose cells are of orbit type in .%. Thus free G-spectra are {e}-free. We say
that a map f: D — E is an .Z-equivalence if ff : DH — E" is an equivalence
for all H € % or, equivalently by the Whitehead theorem, if f is an H-equivalence
for all H € Z.

Returning to our normal subgroup N, let #(N) = #(N; () be the family of
subgroups of (¢ that intersect N in the trivial group. Thus an .#(N)-spectrum
is an N-free G-spectrum. We have seen these tfamilies before, in our study of
equivariant bundles. We can now state precise generalizations of Lemma 2.3 and
Theorem 2.4. Fix spectra

DecJsUN and E e GSU.

LEMMA 5.5. A G-map ¢ : 1.D — FE is an .Z (N )-equivalence if and only if the
composite of the adjoint D — (:*E)Y of ¢ and the inclusion (:*E)Y — *F is

an .Z (N )-equivalence.

THEOREM 5.6. Assume given an .% (N )-equivalence i,D) — FE. For any N-free
G-spectrum X € G.UN,

EG (24N, X)) = D/(X/N) and E%(i.X) = D5(X/N).

Given F, when do we have an appropriate DI' We often have theories that are
defined on the category of all compact Lie groups, or on a suitable sub-category.
When such theories satisfy appropriate naturality axioms, the theory F; associated
to J will necessarily bear the appropriate relationship to the theory Eg associated
to GG. We shall not go into detail here. One assumes that the homomorphisms
a: H — (G in one’s category induce maps of H-spectra &, : a*Eg — FEy in a
functorial way, where some bookkeeping with universes is needed to make sense
of o*, and one assumes that &, is an H-equivalence if « is an inclusion. For each
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H € F(N), the quotient map ¢ : G — J restricts to an isomorphism from H to
its image K. If the five visible maps,

HcG, KcJ, ¢q:G—J ¢q:H— K, and ¢': K — H,

are in one’s category, one can deduce that &, : ¢*F; = t.F; — FEg is an F(N)-
equivalence. This is not too surprising in view of Lemma 2.3, but it is a bit subtle:

Lis not in the cat-

there are examples where all axioms are satisfied, except that ¢~
egory, and the conclusion fails because ¢, is not an H-equivalence. However, this
does work for equivariant K -theory and the stable forms of equivariant cobordism,
generalizing the arguments used to prove that these theories split. For K-theory,
the Bott isomorphisms are suitably natural, by the specification of the Bott el-
ements in terms of exterior powers. For cobordism, we shall explain in XXV§5
that MO¢g and MUy arise from functors, called “global .#, functors with smash
product”, that are defined on all compact Lie groups and their representations
and take values in spaces with group actions. All theories with such a concrete

geometric source are defined with suitable naturality on all compact Lie groups

G.

J. F. Adams. Prerequisites (on equivariant theory) for Carlsson’s lecture. Springer Lecture Notes
in Mathematics Vol. 1051, 1984, 483-532.
[LMS, 11§§8-9]

6. The construction of G/N-spectra from G-spectra

A different line of thought leads to a construction of J-spectra from G-spectra,
J = G/N, that is a direct generalization of the geometric fixed point construction
®“E. The appropriate analog of & is the family .#[N] of those subgroups of
(G that do not contain N. Note that this is a family since N is normal. For a
spectrum F in G.¥U, we define

(6.1) ONE = (EAEZ[N)Y.

We have the expected generalizations of (3.1) and (3.2): for a G-space X,
(6.2) Y (X)) ~ dN(E7X)

and, for G-spectra £ and F’,

(6.3) ON(EYAN DN (E) ~ ON(E A K.

We can define ®7F for a not necessarily normal subgroup H by regarding
E as an N H-spectrum. Although the Whitehead theorem appears naturally as a
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statement about homotopy groups and thus about the genuine fixed point functors
characterized by the standard adjunctions, it is worth observing that it implies a
version in terms of these ®-fixed point spectra.

THEOREM 6.4. A map f: E — E’ of G-spectra is an equivalence if and only
if each @ f . ®H |7 — ®H F' is a nonequivariant equivalence.

Note that, for any family .# and any G-spectra £ and E’,
[EANEFL ENEF)q=0
since F.Z only has cells of orbit type G/H a~nd E.Z is H-contractible for such H.
Therefore the canonical G-map £ — E A E.% induces an isomorphism
(6.5) [EAEZ E'NEZF)q 2 |E,E' NEZ).

In the case of Z[N], E — FE A E.Z[N] is an equivalence if and only if E is
concentrated over N, in the sense that £ is H-contractible if H does not contain V.
Maps into such G-spectra determine and are determined by the J-maps obtained
by passage to ®"V-fixed point spectra. In fact, the stable category of J-spectra is
equivalent to the full subcategory of the stable category of G-spectra consisting of
the G-spectra concentrated over N.

THEOREM 6.6. For J-spectra D € J.ZUV and G-spectra E € G.#U concen-
trated over NV, there is a natural isomorphism

(D, EN); = [i.D A EZ[N], Ee.
For J-spectra D and D', the functor ¢.(-) A E.Z[N] induces a natural isomorphism
[D,D'); = [i,D A EZ[N],i.D A EZ[N]]e.

For general G-spectra E and E’, the functor ®"(-) induces a natural isomorphism

[®NE, ONE'; = [E, E' A EZ[N]|q.

PROOF. The first isomorphism is a consequence of (5.1) and (6.5). The other

two isomorphisms follow once one shows that the unit

D — (i,D AN EZ[N)N = oV (i.D)
and counit

(1.ENYNEZ[N] — E

of the adjunction are equivalences. One proves this by use of a spacewise N-fixed
point functor, also denoted ®V, from G-prespectra to J-prespectra. This functor is
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defined exactly as was the spacewise GG-fixed point functor in Section 3. It satisfies
®N(;.D) = D, and it commutes with smash products. The following generalization
of Theorem 3.4, which shows that the prespectrum level functor ®V induces a
functor equivalent to ®V on the spectrum level, leads to the conclusion. [

THEOREM 6.7. For Y-cofibrant G-prespectra D, there is a natural weak equiv-
alence of J-spectra

ONLD — LOVD.

For G-CW spectra E, there is a natural weak equivalence of J-spectra
ONE — LONKT(E.

As an illuminating example of the use of RO(G)-grading to allow calculational
descriptions invisible to the Z-graded part of a theory, we record how to compute
the cohomology theory represented by ®V(E) in terms of the cohomology theory
represented by F. This uses the Euler classes of representations, which appear
ubiquitously in equivariant theory. For a representation V, we define e(V) €
EL(S%) to be the image of 1 € E2(SY) = EX(SY) under e, where ¢ : S© — SV
sends the basepoint to the point at oo and the non-basepoint to 0.

PROPOSITION 6.8. Let E be a ring G-spectrum. For a finite J-CW spectrum
X, (@Y E)%5(X) is the localization of £%(X) obtained by inverting the Euler classes
of all representations V such that V¥ = {0}.

PROOF. By (6.3), ®"(F) inherits a ring structure from E. In interpreting the
grading, we regard representations of J as representations of G by pullback. A
check of fixed points, using the cofibrations S(V) — B(V) — SV, shows that we
obtain a model for £.Z[N] by taking the colimit of the spaces SV as V ranges over
the representations of G such that V~ 2 {0}. This leads to a colimit description
of (®V E)5(X) that coincides algebraically with the cited localization. [

With motivation from the last few results, the unfortunate alternative notation
E; = ®Y(Eg) was used in [LMS] and elsewhere. This is a red herring from the
point of view of Theorem 5.6, and it is ambiguous on two accounts. First, the
J-spectrum ®V(Eg) depends vitally on the extension J = /N and not just on
the group J. Second, in classical examples, the spectrum “F;” will generally not
agree with the preassigned spectrum with the same notation. For example, the
subquotient J-spectrum “K;” associated to the K-theory G-spectrum K¢ is not
the K-theory J-spectrum K ;. However, if S¢ is the sphere G-spectrum, then the
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subquotient J-spectrum S is the sphere J-spectrum. We shall see that this easy
fact plays a key conceptual role in Carlsson’s proof of the Segal conjecture.

[LMS, 11§9]

7. Spanier-Whitehead duality

We can develop abstract duality theory in any symmetric monoidal category,
such as hG.¥ for our fixed complete G-universe U/. While the elegant approach is
to start from the abstract context, we shall specialize to h(G.% from the start since
we wish to emphasize equivariant phenomena. Define the dual of a G-spectrum

X to be DX = F(X,5). There is a natural map

(7.1) v: F(X.YY)NZ — F(X,Y AN Z).
Using the unit isomorphism, it specializes to

(7.2) v:(DX)ANX — F(X,X).

The adjoint of the unit isomorphism S A X — X gives a natural map : 5 —
F(X,X). We say that X is “strongly dualizable” if there is a coevaluation map
n:S — X A(DX) such that the following diagram commutes, where ~ is the
commutativity isomorphism.

(7.3) nl lw
F(X,X) ~—— (DX) A X

It is a categorical implication of the definition that the map v of (7.1) is an
isomorphism if either X or Z is strongly dualizable, and there are various other
such formal consequences, such as X =2 DD(X) when X is strongly dualizable. In
particular, if X is strongly dualizable, then the map v of (3.2) is an isomorphism.
Conversely, if the map v of (7.2) is an isomorphism, then X is strongly dualizable
since the coevaluation map 7 can and must be defined to be the composite yv~'n
in (7.3). Note that we have an evaluation map ¢ : DX A X — S for any X.

THEOREM 7.4. A G-CW spectrum is strongly dualizable if and only if it is
equivalent to a wedge summand of a finite G-CW spectrum.

PROOF. The evaluation map of X induces a natural map

(%) ex Y, ZNDX|lg — [YANX, Z]c
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via ex(f) = (IdAe)(f A 1d), and X is strongly dualizable if and only if ey is
an isomorphism for all Y and Z. The Wirthmiller isomorphism implies that
D(S*G/H,) is equivalent to G x g S~ and diagram chases show that it also
implies that 4 is an isomorphism. Actually, this duality on orbits is the heart of
the Wirthmuiller isomorphism, and we shall explain it in direct geometric terms in
the next section. If X is strongly dualizable, then so is XX. The cofiber of a map
between strongly dualizable G-spectra is strongly dualizable since both sides of (*)
turn cofibrations in X into long exact sequences. By induction on the number of
cells, a finite G-CW spectrum is strongly dualizable, and it is formal that a wedge
summand of a strongly dualizable G-spectrum is strongly dualizable. For the
converse, which was conjectured in [LMS] and proven by Greenlees (unpublished),
let X be a strongly dualizable G-CW spectrum with coevaluation map 5. Then 75
factors through AA DX for some finite subcomplex A of X, the following diagram
commutes, and its bottom composite is the identity:

Id Ae

ANDX)AX 2225 An g2

|

Therefore X is a retract up to homotopy and thus a wedge summand up to ho-
motopy of A. [

In contrast to the nonequivariant case, wedge summands of finite G-CW spectra
need not be equivalent to finite G-CW spectra.

COROLLARY 7.5 (SPANIER-WHITEHEAD DUALITY). If X is a wedge summand
of a finite G-CW spectrum and F is any G-spectrum, then

v:DXNE — F(X,FE)
is an isomorphism in AG.7. Therefore, for any representation a,
EY(DX) = Ez°(X).

So far, we have concentrated on the naturally given dual DX. However, it is
important to identify the homotopy types of duals concretely, as we did in the case
of orbits. There are a number of equivalent criteria. The most basic one goes as
follows. Suppose given G-spectra X and Y and maps

e YANX — S5 and n: 55— XAY
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such that the composites

~ nAld Id Ae ~
XESAX—XAVYAX—XAXZEX

and

1d .
VY AS 2y axay 2Myasgay

are the respective identity maps. Then the adjoint ¢ : ¥ — DX of ¢ is an
equivalence and X is strongly dualizable with coevaluation map (Id Aé&)n. It is
important to note that the maps n and ¢ that display the duality are not unique
— much of the literature on duality is quite sloppy.

This criterion admits a homological interpretation, but we will not go into that
here. It entails a reinterpretation in terms of the slant products relating homol-
ogy and cohomology that we defined in XIII§5, and it works in the same way
equivariantly as nonequivariantly.

[LMS, 111§§1-3]

8. V-duality of G-spaces and Atiyah duality

There is a concrete space level version of the duality criterion just given. To
describe it, let X and Y be G-spaces and let V' be a representation of (G. Suppose
given G-maps

e:YANX — S and n:5" — XAY

such that the following diagrams are stably homotopy commutative, where o :

SV — SV is the sign map, o(v) = —v, and the v are transpositions.
nAld Id A
SYAX —=XAY AKX and YASY  —YAXAY
\ lld/\s wl ls/\ld
-
1% 1% )
XAS SYANY — = ST AY.

On application of the functor XiF, we find that X*X and XY are strongly
dualizable and dual to one another by our spectrum level criterion.

For reasonable X and Y, say finite G-CW complexes, or, more generally, com-
pact G-ENR’s (ENR = Euclidean neighborhood retract), we can use the space
level equivariant suspension and Whitehead theorems to prove that a pair of G-
maps (¢,n) displays a V-duality between X and Y, as above, if and only if the
fixed point pair (e¥,5) displays an n(H)-duality between X and Y# for each
H C G, where n(H) = dim(V1).
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It X is a compact G-ENR, then X embeds as a retract of an open set of a
Gi-representation V. One can use elementary space level methods to construct an
explicit V-duality between X and the unreduced mapping cone VUC(V —X). For
a (i-cofibration A — X, there is a relative version that constructs a V-duality
between X U CA and (V — A) U C(V — X). The argument specializes to give
an equivariant version of the Atiyah duality theorem, via precise duality maps.
Recall that the Thom complex of a vector bundle is obtained by fiberwise one-
point compactification followed by identification of the points at infinity. When
the base space is compact, this is just the one-point compactification of the total
space.

THEOREM 8.1 (ATIYAH DUALITY). If M is a smooth closed G-manifold em-
bedded in a representation V' with normal bundle v, then M, is V-dual to the
Thom complex Tv. If M is a smooth compact G-manifold with boundary oM,
V =V'&R, and (M,0M) is properly embedded in (V' x [0,00), V' x {0}) with
normal bundles v' of M in V' and v of M in V., then M/OM is V-dual to Tv,
M, is V-dual to Tv/TV', and the cofibration sequence

TV — Tv — Tv/Tv' — XTV'
is V-dual to the cofibration sequence

We display the duality maps explicitly in the closed case. By the equivariant
tubular neighborhood theorem, we may extend the embedding of M in V to an
embedding of the normal bundle v and apply the Pontrjagin-Thom construction
to obtain a map ¢ : SV — T'v. The diagonal map of the total space of v induces
the Thom diagonal A : Tv — M, ATv. The map n is just A ot. The map ¢ is
equally explicit but a bit more complicated to describe. Let s : M — v be the
zero section. The composite of A: M — M x M and s xId: M x M — v x M
is an embedding with trivial normal bundle. The Pontrjagin-Thom construction
givesamapt: TvAMy — My ASY. Let £ : My — S° collapse all of M to the
non-basepoint. The map ¢ is just (£ A Id) ot. This explicit construction implies
that the maps ¢ : M, — S% and ¢ : S¥ — T'v are dual to one another.

Let us specialize this discussion to orbits G/H (compare 1X.3.4). Recall that
L = L(H) is the tangent H-representation at the identity coset of GG/H. We have

T=Gxyg L(H) and Tt =G4 Ay SLH)
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If G/H is embedded in V' with normal bundle v, then v & 7 is the trivial bundle
G/H x V. Let W be the orthogonal complement to L(H) in the fiber over the
identity coset, so that V = L & W as an H-space. Since G/H, is V-dual to Tv,
YG/Hy is dual to XTv. Since SW A S~V ~ S~L as H-spectra, we find that
Z(‘)/OTZ/ ~ G Xy S-L.

[LMS, T11§§3-5]

9. Poincaré duality

Returning to general smooth GG-manifolds, we can deduce an equivariant version
of the Poincaré duality theorem by combining Spanier-Whitehead duality, Atiyah
duality, and the Thom isomorphism.

DEFINITION 9.1. Let £ be a ring G-spectrum and let £ be an n-plane G-bundle
over a (G-space X. An F-orientation of ¢ is an element p € E&(T¢) for some
a € RO(G) of virtual dimension n such that, for each inclusion ¢ : G/H — X,

the restriction of u to the Thom complex of the pullback ¢*¢ is a generator of the
free E7(SY)-module EX(T*E).

Here :*¢ has the form G xy W for some representation W of H and T?*¢ =
Gy A SY has cohomology E5(Ti*¢) = B3 (SY) = E37(S°). Thus the definition
makes sense, but it is limited in scope. It X is G-connected, then there is an
obvious preferred choice for a, namely the fiber representation V' at any fixed
point of X: each W will then be isomorphic to V regarded as a representation of
H. In general, however, there is no preferred choice for a and the existence of an
orientation implies restrictions on the coefficients E3;(.5°): there must be units in
degree a —w € RO(H). If o # w, this forces a certain amount of periodicity in the
theory. There is a great deal of further work, largely unpublished, by Costenoble,
Waner, Kriz, and myself in the area of orientation theory and Poincaré duality,
but the full story is not yet in place. Where it applies, the present definition does
have the expected consequences.

THEOREM 9.2 (THOM ISOMORPHISM). Let ¢ € EZ(T¢) be an orientation of
the G-vector bundle ¢ over X. Then

Up: EG(Xy) — E&T(T¢)

is an isomorphism for all 3.
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There is also a relative version. Specializing to oriented manifolds, we obtain
the Poincaré duality theorem as an immediate consequence. Observe first that,
for bundles ¢ and 7 over X, the diagonal map of X induces a canonical map

T @) — T(Exn) =TEAT.
There results a pairing
(%) EG(T¢) @ Eg(Tn) — EZ(T(E ® n)).

We say that a smooth compact G-manifold M is E-oriented if its tangent bundle
T is oriented, say via g € E&(T7). In view of our discussion above, this makes
most sense when M is a V-manifold and we take a to be V. If M has boundary,
the smooth boundary collar theorem shows that the normal bundle of M in M
is trivial, and we deduce that an orientation of M determines an orientation dpu
of M in degree a — 1 such that, under the pairing (*), the product of du and the
canonical orientation ¢« € EL(X(IM), ) of the normal bundle is the restriction of p
to T'(r|0M). Similarly, if M is embedded in V, then u determines an orientation
w of the normal bundle v such that the product of g and w is the canonical
orientation of the trivial bundle in E& (XY M,).

DEFINITION 9.3 (POINCARE DUALITY). If M is a closed E-oriented smooth G-
manifold with orientation g € F&(T7), then the composite

D : EL(My) — EL ™ (Tv) — ES_ (M)

of the Thom and Spanier-Whitehead duality isomorphisms is the Poincaré duality
isomorphism; the element [M] = D(1) in EY(M) is called the fundamental class
associated to the orientation. If M is a compact F-oriented smooth GG-manifold
with boundary, then the analogous composites

D : EL(My) — B (Tv) — ES_ (M, 0M)

and
D : BA(M,0M) — E& =Y (Tv, T(v|oM)) — ES_4(M)

are called the relative Poincaré duality isomorphisms. With the Poincaré duality
isomorphism for M, they specify an isomorphism from the cohomology long exact
sequence to the homology long exact sequence of (M,0M). Here the element
[M] = D(1) in ES(M,0M) is called the fundamental class associated to the

orientation.
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One can check that these isomorphisms are given by capping with the funda-
mental class, as one would expect.

S. R. Costenoble, J. P. May, and S. Waner. Equivariant orientation theory. Preprint.

S. R. Costenoble and S. Waner. Equivariant Poincaré duality. Michigan Math. J. 39(1992).
[LMS, T11§6]



214 XVI. SPECTRA AND G-SPECTRA; CHANGE OF GROUPS; DUALITY



CHAPTER XVII

The Burnside ring

The basic references are tom Dieck and [LMS]; some specific citations will be given.

[tD] T. tom Dieck. Transformation groups and representation theory. Springer Lecture Notes in

Mathematics. Vol. 766. 1979.

1. Generalized Euler characteristics and transfer maps

There are general categorical notions of Euler characteristic and trace maps
that encompass a variety of phenomena in both algebra and topology. We again
specialize directly to the stable category hG.%. Let X be a strongly dualizable
G-spectrum with coevaluation map n : S — X A DX and define the “Euler
characteristic” x(X) to be the composite

(1.1) Y(X):S—>XADX —=DXAX >3

For a G-space X, we write y(X) = y(X¥*X}); for a based G-space X, we write
X(X) = x(¥X). We shall shortly define the Burnside ring A(G') in terms of these
Euler characteristics, and we shall see that it is isomorphic to 75 (.5), the zeroth
stable homotopy group of G-spheres. Thus, via the unit isomorphism S A E ~ F,
A(G) acts on all G-spectra F and thus on all homotopy, homology, and cohomology
groups of all G-spectra. Its algebraic analysis is central to a variety of calculations
in equivariant stable homotopy theory.

Before getting to this, we give a closely related conceptual version of transfer
maps. Assume given a diagonal map A : X — X A X. We are thinking of X as
Y F, for, say, a compact G-ENR F. We define the “transfer map” 7 = 7(X) :

215
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S — X to be the following composite:

(1.2)
78— XADX —=DXAX S DXAXAX S GAX ~ X,

We shall later call these “pretransfer maps”. When applied fiberwise in a suit-
able fashion, they will give rise to the transfer maps of bundles, which provide
a crucial calculational device in both nonequivariant and equivariant cohomology
theory.

These simple conceptual definitions lead to easy proofs of the basic properties of
these fundamentally important maps. For example, to specify the relation between
them, assume given amap £ = £(X) : X — S such that (Id Af)oA: X — XAS
is the unit isomophism. We are thinking of ¢, where ¢ : Fy — S is the evident
collapse map. In the bundle context, the following immediate consequence of the
definitions will determine the behavior of the composite of projection and transfer.

(1.3) The composite £(X)o7(X): S — S isequal to x(X).

There are many other obvious properties with useful consequences.

Before getting to more of these, we assure the reader that if M is a smooth closed
G-manifold embedded in a representation V', then application of the functor g7
to the explicit geometric transfer map

T(M): SV — ¥V M,

constructed in IX.3.1 does in fact give the same map as the transfer 7 : 5 —
S A My of (1.2). By (1.3), it follows that the Fuler characteristic y(M) above is
obtained by applying X3 to the Euler characteristic y(M) : SV — SV of 1X.3.2.
One way to see this is to work out the description of the transfer map 7 of (1.2) in
the homotopical context of duality for G-ENR’s and then specialize to manifolds
as in XVI§S.

We shall return later to transfer maps, but we restrict attention to Euler char-
acteristics here. We note first that, via a little Lie group theory, (1.5) leads to a
calculation of the nonequivariant Euler characteristics y((G/H)") for subgroups
H and K. The key point is that, since L(H ) is the tangent space at the identity
element of WH, WH is infinite if and only if L(H) contains a trivial representa-
tion, in which case e : S© — ST is null homotopic as an H-map.

LEMMA 1.4. If WH is infinite, then y(G/H) = 0 and x((G/H)¥) = 0 for all
K. If WH is finite and G/H embeds in V, then the degree of f : Ve, gvE
is the cardinality of the finite set (G/H)¥ for each K such that WK is finite.
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This gains force from the next few results, which show how to compute y(X)
in terms of the y(G/H) for any strongly dualizable X.

LEMMA 1.5. Let X and Y be strongly dualizable G-spectra.

(i) x(X) = x(Y)if X is G-equivalent to Y.

(ii) () is the trivial map and yx(.5) is the identity map.
(i) X (X VYY) = x(X) 4+ x (V) and x (X AY) = x(X)x(Y).
(iv) x(E"X) = (=1)"x(X).

A direct cofibration sequence argument from the definition of y(X) gives the
following much more substantial additivity relation.

THEOREM 1.6. For a G-map f: X — Y, x(Cf) = x(Y) — x(X).

By induction on the number of cells, this gives the promised calculation of x(X)

in terms of the x(G/H).

THEOREM 1.7. Let X be a finite G-CW spectrum, and let v(H,n) be the num-
ber of n-cells of orbit type G/H in X. Then

ZZ IX(G/H).

Taking G to be the trivial group, we see from this formula that the Euler
characteristic defined by (1.1) specializes to the classical nonequivariant Euler
characteristic. The formula is written in terms of a chosen cell decomposition. On
the space level, there is a canonical formula for y(X) for any compact G-ENR X,
namely

(1.8) ZX X(G/H).

Here Xz = {z[(G.) = (H)} and X( (/) is the sum of the “internal Euler
Characterlstlcs X(M) = x(M) — x(OM) of the path components M of X(y); M
is the closure of M in X/G and M = M — M.

Define a homomorphism dy : 7§(S) — Z by letting
(1.9) dy(x) = deg(f7), where f: SV — SV represents .

In view of XVL.6.2, ®7 S is a nonequivariant sphere spectrum, and we can write
this more conceptually as

(1.10) dy(x) = deg(® ().
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For a compact G-ENR X, we can deduce from (1.10) and standard properties of
nonequivariant Fuler characteristics that

(1.11) dir(x(X)) = x(X").
Similarly, for a finite G-CW spectrum X, we can deduce that
(1.12) dir(x(X)) = x(®"X).

Note that nothing like this can be true for the genuine fixed points of G-spectra:
XH is virtually never a finite CW-spectrum.

Formula (1.11) shows how the equivariant Euler characteristics of compact G-
ENR’s determine the nonequivariant FEuler characteristics of their fixed point
spaces. Conversely, by the following obstruction theoretic observation, the equiv-
ariant Euler characteristic is determined by nonequivariant Euler characteristics
on fixed point spaces.

PROPOSITION 1.13. Let V be a complex representation of G and let f and f’
be G-maps SV — SV. Then f ~ f' if and only if deg(f) = deg(f’H) for all H
such that W H is finite. Therefore, for compact G-ENR’s X and Y, y(X) = y(Y)
if and only if x(XH) = x(Y!) for all such H.

The integers (X)) as H varies are restricted by congruences. For example, for
a finite p-group, we saw in our study of Smith theory that x(X%) = y(X) mod p.
More general congruences can be derived by use of the Bott isomorphism in equiv-
ariant K -theory.

PrROPOSITION 1.14. Let V' be a complex representation of (¢ and let f be a
G-map SV — SV. If WH is finite, then

SIINH : NHNNKu(K/H)deg(f*) =0 mod |WH|,

where the sum runs over the H-conjugacy classes of groups K such that H C K C
NH and K/H is cyclic and where p(K/H) is the number of generators of K/H.
Therefore, for a compact G-ENR X,

SIINH: NHNNKp(K/H)x(X") =0 mod |[WH|.

Observe that this is really a result about the W H-maps f¥ and is thus a result
about finite group actions.

[tD, 5.1-5.4]
[LMS, 111§§7-8 and V§1]
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2. The Burnside ring A((¥) and the zero stem =§(5)

For a finite group G, the Burnside ring A((G) is the Grothendieck ring associated
to the set of isomorphism classes of finite G-sets, with sum and product given by
the disjoint union and Cartesian product of G-sets. There are ring homomorphisms
¢ : A(G) — 7Z that send a finite G-set S to the cardinality of S*. The product
over conjugacy classes (H) gives a monomorphism ¢ : A(G) — C(G), where
C(G) is the product of a copy of Z for each (H). The image of ¢ is precisely the
subring of tuples (ng) of integers that satisfy the congruences

SINH: NHNNK)pu(K/H)ng =0 mod |WH]|.

It is an insight of Segal that A(() is isomorphic to 7§(9).

The generalization of this insight to compact Lie groups is due to tom Dieck.
We define A(G') to be the set of equivalence classes of compact G-ENR’s under
the equivalence relation X ~ Y if y(X) = y(Y) in 7§ (S5). Disjoint union and
Cartesian product give a sum and product that make A(G) into a ring; Cartesian
product with a compact ENR K with trivial action and x(K) = —1 gives additive
inverses. We can define A(G') equally well in terms of finite G-CW complexes or
finite G-CW spectra. However defined, the results of the previous section imply
that, additively, A(G) is the free Abelian group with a basis element [G//H] for
each conjugacy class (H) such that W H is finite. It is immediate that taking Euler
characteristics specifies a monomorphism of rings x : A(G) — 7§(S). We define

o =dgox:AlG) — Z.

Then, by (1.11), éx([X]) = x(XH) for a compact G-ENR X.

To define the appropriate version of C'((G) for compact Lie groups (¢ we need
a little topological algebra. We let 4G be the set of closed subgroups of GG and
Z (G be the subset of those H such that W H is finite. Let I'G and ®G be the
sets of conjugacy classes of subgroups in €G and .# G, respectively. The set I'G
is countable. The set ®G is finite if and only if WT' acts trivially on the maximal
torus T'. The set of orders of the finite groups |WG/WyG| has a finite bound.

There is a Hausdorff metric on 4G that measures the distance between sub-
groups, and #G is a closed subspace of €G. The conjugation action of G is
continuous. With the orbit space topology, I'G and ®G are totally disconnected
compact metric spaces. Recall that “totally disconnected” means that every sin-
gleton set {a} is a component: the non-empty connected subspaces are points. It
follows that ®G' has a neighborhood basis consisting of open and closed subsets
S. Such a set is specified by a characteristic map ¢ : ®G — S that send points
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in S to 1 and points not in S to —1. The proofs of many statements about A(G)
combine use of characteristic functions with compactness arguments.

Give Z the discrete topology and define C'(G) to be the ring of continuous (=
locally constant) functions @G — Z. Since ®G is compact, such a function
takes finitely many values. The degree function d(f) : ®G — Z specified by
d(f)(H) = deg(f7) for a G-map f : S — SV is continuous, hence there results a
ring homomorphism d : 7§ () — (&), and we define ¢ = dy : A(G) — C(G).

Thus we have the following commutative diagram of rings:

A(G) k 75 (S)
N A
C(G).

THEOREM 2.1. The homomorphism y is an isomorphism. The homomorphisms

¢ and d are monomorphisms. For H € ®G, there is a unique element vy € C(G)
such that |W H|yg = ¢([G//H]), and C(() is the free Abelian group generated by
these elements v7. A map v : &G — Z is in the image of ¢ if and only if, for
each H € G,

SINH: NHNNK)u(K/H)vg =0 mod |WH,|.

Moreover, there is an integer ¢ such that ¢(C(G)/A(G)) =0, and ¢ = |G| if G is
finite.

The index of summation is that specified in Proposition 1.14, which shows that
only maps v that satisfy the congruences can be in the image of ¢. We know
by Proposition 1.13 that d and therefore ¢ is a monomorphism. It is not hard
to prove the rest by inductive integrality arguments starting from rational linear
combinations, provided that one knows a priori that the rationalization of ¢ is an
isomorphism; we shall say something about why this is true shortly.

[tD, 5.5-5.6]
[LMS, V§2]

3. Prime ideals of the Burnside ring

Calculational understanding of the equivariant stable category depends on un-
derstanding of the algebraic properties of A((). For example, suppose given an
idempotent e € A(G). Then eA(() is the localization of A(G) at the ideal gen-
erated by e. For a G-spectrum X, define eX to be the telescope of iterates of
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e: X — X. Then

Visibly, the canonical map X — eX V (1 — €)X induces an isomorphism of
homotopy groups and is thus an equivalence. Therefore splittings of A(G) in
terms of sums of orthogonal idempotents determine splittings of the entire stable
category hG.7.

The first thing to say about A(() is that it is Noetherian if and only if the set
O is finite. For this reason, A(() is a much less familiar kind of ring for general
compact Lie groups than it is for finite groups.

To understand the structure of any commutative ring A, one must understand
its spectrum Spec(A) of prime ideals. In the case of A((), it is clear that every
prime ideal pulls back from a prime ideal of C((). We define

(3.1) q(H,p) = {al¢r(a) = 0 mod p},

where pis a prime or p = 0. Although these are defined for all H, they are redun-
dant when W H is infinite. There are further redundancies. We shall be precise
about this since the basic sources — [tD] and [LMS] — require supplementation
from a later note by Bauer and myself. The only proper inclusions of prime ideals
are of the form ¢(H,0) C ¢(H,p), hence A(G) has Krull dimension one. For a

given prime ideal ¢, we wish to describe {H|q = ¢(H,p)}. This is easy if p = 0.

PROPOSITION 3.2. Let ¢ = ¢(H,0) for a subgroup H of G.

(i) If H < J and J/T is a torus, then ¢ = ¢(.J,0).
(ii) There is a unique conjugacy class (/) in ®G such that ¢ = ¢(K,0); up to
conjugation, H <t K and K/H is a torus.
(iii) If H € ®G and J € &G, then ¢(H,0) = ¢(J,0) if and only if (H) = (J).

Fix a prime p. We say that a group G is “p-perfect” if it has no non-trivial
quotient p-groups. For H C G, let H', be the maximal p-perfect subgroup of H;
explicitly, H’, is the inverse image in H of the maximal p-perfect subgroup of the
finite group H/Hy. Then define H, C N H’, to be the inverse image of a maximal
torus in WH',; H, is again p-perfect, but now W H, is finite. This last fact is
crucial; it will lead to some interesting new results further on.

THEOREM 3.3. Let ¢ = q(H, p) for a subgroup H of (G and a prime p.

(i) If H < J and J/T is an extension of a torus by a finite p-group, then
qg=q(J,p); it H € ®G and |[WH| =0 mod p, then there exists J € &G
such that H < J and J/H is a finite p-group.



222 XVII. THE BURNSIDE RING

i1) There is a unique conjugacy class (K) in ®G such that ¢ = ¢(K,p) and
g
W K| is prime to p; if H € ®G and H is p-perfect, then, up to conjugation
p p; pp ) , Up Jug )
H < K and K/H is a finite p-group.
i) K, = K',, and K, is the unique normal p-perfect subgroup of K whose
p p p g
quotient is a finite p-group.
iv) K, is maximal in {J|q(J,p) = ¢ and J is p — perfect}, and this property
P
characterizes K, up to conjugacy.
(v) (Hp) = (K}), hence q(H,p) = ¢(J,p) if and only if (H,) = (J,).
vi) If H C K, and H is p-perfect, then HT = K,, where T is the identit
P p-p ” P y
component of the center of K.

It is natural to let H? denote the subgroup K of part (ii). If i is finite, we con-
clude that ¢(.J,p) = ¢ if and only if (H,) < (J) < (H?). For general compact Lie
groups, the situation is more complicated and the following seemingly innocuous,
but non-trivial, corollary of the theorem was left as an open question in [LMS].

COROLLARY 3.4. If H C J C K and ¢(H,p) = q(K,p), then ¢(J,p) = ¢(K, p).

S. Bauer and J. P. May. Maximal ideals in the Burnside ring of a compact Lie group. Proc.
Amer. Math. Soc. 102(1988), 684-686.

[tD, 5.7]

[LMS, V§3]

4. Idempotent elements of the Burnside ring

One reason that understanding the prime ideal spectrum of a commutative
ring A is so important is the close relationship that it bears to idempotents. A
decomposition of the identity element of A as a sum of othogonal idempotents
determines and is determined by a partition of Spec(A) as a disjoint union of
non-empty open subsets. In particular, Spec(A) is connected if and only if 0
and 1 are the only idempotents of A. This motivates us to compute the set
7 Spec(A(G)) of components of A(G); we topologize this set as a quotient space
of Spec(A(()). However, there is a key subtlety here that was missed in [LMS]:
while the components of any space are closed, they need not be open (unless the
space is locally connected). In particular, since 7 Spec(A(G)) is not discrete, the
components of Spec(A(()) need not be open, and they therefore do not determine
idempotents in general.

A compact Lie group (' is perfect if it is equal to the closure of its commutator
subgroup. It is solvable if it is an extension of a torus by a finite solvable group.
Let Z2G denote the subspace of €'G consisting of the perfect subgroups and let
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IIG be its orbit space of conjugacy classes; IIG is countable, but it is usually not
finite unless (' is finite.

Any compact Lie group GG has a minimal normal subgroup G, such that G/G,
is solvable, and G, is perfect. Passage from ' to G, is a continuous function
CG — G, PG s a closed subspace of €G, and 11G is a closed subspace of I'G
and is thus a totally disconnected compact metric space. There is a finite normal
sequence connecting G, to (G each of whose subquotients is either a torus or a
cyclic group of prime order. Via the results above, this implies that, for a given
H, all prime ideals ¢(H, p) are in the same component of Spec(A(()) as H,. This
leads to the following result.

PROPOSITION 4.1. Define 8 : I[IGG — =7 Spec(A(G)) by letting B(L) be the

component that contains ¢(L,0). Then  is a homeomorphism.

In particular, G is solvable if and only if A(G) contains no non-trivial idempo-
tents. For example, the Feit-Thompson theorem that an odd order finite group GG
is solvable is equivalent to the statement that A((7) has no non-trivial idempotents.
(Several people have tried to use this fact as the starting point of a topological
proof of the Feit-Thompson theorem, but without success.)

A key point in the proof, and in the proofs of the rest of the results of this
section, is that, for a subring R of Q, the function

q: ®G x Spec(R) — Spec(A(G) @ R)
is a continuous closed surjection. This is deduced from the fact that
q: G x Spec(R) — Spec(C(G) @ R)

is a homeomorphism. In turn, the latter holds by an argument that depends solely
on the fact that ®G is a totally disconnected compact Hausdorff space.

It L is a perfect subgroup of & that is not a limit of perfect subgroups, then
the component of (L) in Spec(A(G) is open and L determines an idempotent ey,
in A(G). Even when (i is finite, it is non-trivial to write ey, in the standard basis
{[G/H]|(H) € &G}, and such a formula has not yet been worked out for general
compact Lie groups. Nevertheless one can prove the following theorem. Observe
that the trivial subgroup of GG is perfect; we here denote it by 1.

THEOREM 4.2. Let L be a perfect subgroup of G that is not a limit of perfect
subgroups. Then there is an idempotent e;, = € in A(() that is characterized by

dpler)=1if (H,) = (L) and ¢p(er) =0if (H,) # (L).



224 XVII. THE BURNSIDE RING

Restriction from G to N L and passage to L-fixed points induce ring isomorphisms
eTA(G) — e FA(NL) — e " A(WL).

[tD, 5.11]
[LMS, V§4]

5. Localizations of the Burnside ring

Let A(G), denote the localization of A(G) at a prime p and let A(G)o denote
the rationalization of A(G). We shall describe these localizations and the local-
izations of A(() at its prime ideals ¢(H,p). We shall also explain the analysis of
idempotents in A((),, which is parallel to the analysis of idempotents in A(G)
just given but, in the full generality of compact Lie groups, is less well understood.

We begin with A(G')o. Let Zy denote Z regarded as an A(G))-module via ¢p :
A(G) — Z.

PROPOSITION 5.1. Let (H) € @G.
(i) The localization of A(G) at ¢(H,0) is the canonical homomorphism

A(G) — (A(G)/q(H,0))o = Q.

(ii) ¢m : A(G) — Zp induces an isomorphism of localizations at ¢(H,0).
(iii) ¢ : A(G) — C(G) induces an isomorphism of rationalizations.

COROLLARY 5.2. Rationalization A(G) — A(G)g = C(G)g is the inclusion of
A(G) in its total quotient ring, and ¢ : A(G) — C((G) is the inclusion of A(G)

in its integral closure in C'(G)o.

Here (i) makes essential use of the compactness of ®G, and (i) implies (ii). To
prove (iii) — which we needed to prove Theorem 2.1 — we can now exploit the fact
that a map of rings is an isomorphism if it induces a homeomorphism on passage
to Spec and an isomorphism upon localization at corresponding prime ideals. If GG
is finite, then A(()g is just a finite product of copies of Q. For general compact Lie
groups (i, A(G)o is a type of ring unfamiliar to topologists but familiar in other
branches of mathematics under the name of an “absolutely flat” or “von Neumann
regular” ring. One characterization of such a commutative ring is that all of its
modules are flat; another, obviously satisfied by A(G)o, is that the localization
of A at any maximal ideal P is A/P. For any such ring A, Spec(A) is a totally
disconnected compact Hausdorff space, and an ideal is finitely generated it and
only if it is generated by a single idempotent element.

PROPOSITION 5.3. Let p be a prime and let (H) € ®G.
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(i) The localization of A(G) at ¢(H,p) is the canonical homomorphism
AG) — (AG)/T(H, )y
here I(H,p) = Ng(J,0), where the intersection runs over
(G H,p) ={(J)|(J) € ®G and ¢(J,p) = q(H,p)}.
(ii) The ring homomorphism

H¢J . A(G) — HZJ
is a monomorphism, where the product runs over (J) € ®(G; H, p).

The following statement only appears in the literature for finite groups. The
general case relies on the full strength of Theorem 3.3, and the line of proof is the
same as that of Theorem 3.6. The essential point is the analog of Proposition 3.5,
and the essential point for this is the following assertion, which is trivially true for
finite groups but has not yet been investigated for general compact Lie groups.

CONIJECTURE 5.4. The function 4G — €'G that sends H to H, is continuous.

THEOREM 5.5. Let L be a p-perfect subgroup of & that is maximal in the set
of p-perfect subgroups H such that ¢(H,p) = ¢(L,p) and is not a limit of such
p-perfect subgroups. If Conjecture 3.10 holds, then there is an idempotent e, = ¢

in A(G), that is characterized by
¢r(er) =11t (Hy) = (L) and ¢p(er) = 0if (Hy) # (L).
Restriction from G to N L and passage to L-fixed points induce ring isomorphisms
eTA(G), — Y PA(NL), — e"FA(WL),.

Moreover, ¢¥ A(G), is isomorphic to the localization of A(G) at ¢(L,p). If G is
finite, then

A(G), = (1_[) egA(G)p-

Taking L to be any group in ®G that is not a limit of groups in ® L and taking
Hy to be H, we see that the statement is true when p = 0. Of course, in the general
compact Lie case, A((), is no longer the product of the ¢¥ A(G),. However, it
seems possible that, by suitable arguments to handle limit groups L, A(G'), can
be described sheaf theoretically in terms of these localizations. The point is that
A(G), has the unusual property that it is isomorphic to the ring of global sections
of its structural sheaf over its maximal ideal spectrum. (Any commutative ring A
is isomorphic to the ring of global sections of its structural sheaf over Spec(A).)
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[tD, 7.8]
[LMS, V§5]

6. Localization of equivariant homology and cohomology

The results of the previous section imply algebraic decomposition and reduction
theorems for the calculation of equivariant homology and cohomology theories.
We shall go into some detail since, in the compact Lie case, the results of [LMS]
require clarification. When (' is finite, we shall obtain a natural reduction of the
computation of homology and cohomology theories localized at a prime p to their
calculation in terms of appropriate associated theories for subquotient p-groups of
(. Tt is interesting that although the proof of this reduction makes heavy use of
idempotents of A((G),, there is no reference to A(() in the description that one
finally ends up with. We shall use this reduction in our proof of the generalized
Segal conjecture.

Recall the geometric fixed point functors ®# from XVI§§3,6. In view of (1.12),
it should seem natural that this and not the genuine fixed point functor on G-
spectra appears in the following results.

THEOREM 6.1. Let L be a perfect subgroup of G that is not a limit of perfect
subgroups. For G-spectra X and Y, there are natural isomorphisms

[X, ng]G — [X, egLY]NL — [07X, €¥VL(I)HY]WL-

We prefer to state the homological consequences in terms of G-spaces, but it
applies just as well to ®-fixed points of G-spectra.

COROLLARY 6.2. Let £ be a G-spectrum and X be a G-space. For o € RO((),
let B = r§a € RO(NL) and v = ¥ € RO(WL). Then there are natural

isomorphisms

el ES(X) — ef "ENM(X) — e PEV (X L)
and

T E(X) — et PEny (X) — e PER (X L),

where ENY and E%; denote the theories that are represented by FE regarded as

an N L-spectrum and EY% and Ej,; denote the theories that are represented by
L E.

Write X, for the localization of a G-spectrum at a prime p. It can be constructed
as the telescope of countably many iterates of p: X — X, and its properties are
as one would expect from the G-space level.
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THEOREM 6.3. Let L be a p-perfect subgroup of (¢ that is maximal in the set of
p-perfect subgroups H of G such that ¢(H,p) = ¢(L,p) and is not a limit of such
p-perfect subgroups. If G is finite, or if Conjecture 3.10 holds, then, for G-spectra
X and Y, there are natural isomorphisms

[X.efVole — [X,ep "Volnp — [07X, e "My Jyy.
When p = 0, the statement holds for L € ®G if L is not a limit of groups in ®G.

Here ®(Y,) ~ (®Y"),. We again state the homological version only for G-
spaces, although it also applies to GG-spectra and ®-fixed points. There is a further
isomorphism here that does not come from Theorem 4.3. We shall discuss it after
stating the corollary.

COROLLARY 6.4. Let E be a G-spectrum and X be a G-space. With L as in
Theorem 4.3, let VL be a p-Sylow subgroup of the finite group W L. For o €
RO(G), let B =710 € RO(NL), v =3¢ ROWL), and § = ri'}'y € RO(VL).

Then there are natural isomorphisms

€L ES(X)y — ep "EFHX), — e PEFH(X L), — EE(XE)
and, assuming that X is a finite G-CW complex,

T EHX)y — e PER(X), — e PER (X L), — By (XP),

where ENL and E%; denote the theories represented by E regarded as an N L-
spectrum, EVL and Ejy; denote the theories represented by ®'FE, and EY% and
E}; denote the theories represented by @ I regarded as a V L-spectrum. There-
fore, it (G is finite, then
ES(X), =[] BYH(x )
()
and, if X is a finite G-CW complex,

LX), = [T By (X
()
When p = 0, the statement holds with V' L taken as the trivial group.

The ideas in XIII§1 are needed to be precise about the grading. Of course,
there is no problem of interpretation for the Z-graded part of the theories. For
finite groups, this gives the promised calculation of the localization of equivariant
homology and cohomology theories at p in terms of homology and cohomology
theories that are associated to subquotient p-groups; in the case of rationalization,
a better result will be described later. For general compact Lie groups, such a
calculation may follow from the fact that one can reconstruct any module over
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A(G), as the module of global sections of its structural sheaf over the maximal
ideal spectrum of A((G),. Intuitively, the idea is that the space of maximal ideals
should carry the relevant Lie group theory; theories associated to subquotient
p-groups should carry the algebraic topology.

We must still explain the “inv” notation and the final isomorphisms that appear
in the corollary. These come from a typical application of the general concept of
induction in the context of Mackey functors. We shall say more about this later,
but we prefer to explain the idea without formalism here.

Let GG be a finite group with p-Sylow subgroup K. We are thinking of WL
and VL. For G-spectra X and Y, we define ([X, Y];"')m” to be the equalizer (=

difference kernel) of the maps
[G/K4y ANX,Y]S — [GKy NG/KL A XY

induced by the two projections G/K AN G/Ky — G/K,. Here we are using the
notational convention
[X,Y]% = [X,Y]q.

For a G-spectrum F, we define E*K(X);m by replacing X by sphere spectra and
replacing Y by E'A X. We define - (X);™ by replacing X by its smash product
with sphere spectra and replacing Y by E. The final isomorphisms of Corollary
3.4 are special cases of the following result; there we must restrict to finite X in
cohomology because it is only for finite X that localized spectra represent algebraic
localizations of cohomology groups.

PROPOSITION 6.5. If (¢ is a finite group with p-Sylow subgroup K, then, for
any G-spectra X and Y, the projection G/K; A X — X induces an isomorphism

Actually, the relevant induction argument works to prove more generally that
the analogous map
G K nu
[X7 Y]q([&",p) - ([X7 Y]qx(f(,p))
is an isomorphism, where (¢ is a compact Lie group and (K) € ®G. The idea is
that we have a complex

0 — [X,V]¢ 2 [G/K, A X, Y] 5 [GIK, AGIK, A X, Y]S5

where d" is the alternating sum of the evident projection maps. When localized
at ¢(K,p), this complex acquires the contracting homotopy that is specified by
s" = [G/K] 't*. Here, for any X, 7 means

TAId: X Z2SANX — (G/K); N X,
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where 7 : S — (G// K )4 is the transfer map discussed in Section 1. It is immediate
from (1.3) that the composite of 7 and the projection ¢ : G/K; — S is the Euler
characteristic x(G/K) : S — S. This implies that 7%£* is multiplication by
[G//K]. The essential point is that [G//K] becomes a unit in A(G)yxp). In the
context of the proposition, the localization of [ X, Y]® at ¢(K, p) is the same as its
localization at p.

[tD, Ch 7]
[LMS, V§6]



230 XVII. THE BURNSIDE RING



CHAPTER XVIII

Transfer maps in equivariant bundle theory

The basic reference is [LMS]; specific citations are given at the ends of sections.

1. The transfer and a dimension-shifting variant

Transfer maps provide one of the main calculational tools in equivariant stable
homotopy theory. We have given a first definition in XVII§1. We shall here refer
to the “transfer map” there as a pretransfer. It will provide the map of fibers
for the transfer maps of bundles, in a sense that we now make precise. We place
ourselves in the context of VII§1, where we considered equivariant bundle theory.

Thus we assume given an extension of compact Lie groups
l—H—T—G—1.

Fix a complete [-universe U/ and note that U is a complete G-universe. Let
Y be a Il-free I-spectrum indexed on U and let B = Y/II. We are thinking of
Y as X* X, for a [I-free I'-space X, but it changes nothing to work with spectra.
In fact, this has some advantages. For example, relative bundles can be treated
in terms of spectrum level cofibers, obviating complications that would arise if we
restricted to spaces. Fix a compact I'"ENR F'. We could take F' to be a spectrum
as well, but we desist.

We have the orbit spectrum £ = Y Ag £y, which we think of as the total G-
spectrum of a G-bundle with base G-spectrum B. Write 7 : £ — B for the map
induced by the projection Fy — S°. Since F'is a compact G-ENR, we have the
stable pretransfer I'-map 7(F) : S® — I, of XVII§I; we have omitted notation
for the suspension I'-spectrum functor, and we shall continue to do so, but it is

essential to remember that 7(F') is a map of genuine I'-spectra indexed on U. As

231
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we discussed in XVI§5, II-free [-spectra live in the II-trivial [-universe U, On

maps, this gives that the inclusion 7 : U — U induces an isomorphism
et [YSY A Fyr — [6Y, (Y A F)e 2 [0Y, 0 A Fir.
DEFINITION 1.1. Let 7: Y — Y A Fy be the I"map indexed on U" such that
(7)) = IdAT(F) 1 .Y — 0.Y A FL.
Define the transfer
r=7(r):B=Y/ll — Y AuF,=F

to be the map of G-spectra indexed on U that is obtained from 7 by passage to

orbits over II.

When G = e, this gives the nonequivariant transfer; specialization to this case
results in no significant simplification. Note that there is no finiteness condition
on the base spectrum B.

The definition admits many variants. When we describe its properties, we shall
often use implicitly that it does not require a complete I'-universe, only a universe
into which F' can be embedded, so that duality applies.

We can apply the same construction to maps other than 7(F'). We illustrate
this by constructing the map that gives the generalized Adams isomorphism of
XVI.5.4. Since the construction is a little intricate and will not be used in the rest
of the chapter, the reader may prefer to skip ahead. The cited Adams isomorphism

is a natural equivalence of G/N-spectra
E/N — (544N N,

where N is a normal subgroup of G and E is an N-free GG-spectrum indexed on the
fixed points of a complete G-universe. By adjunction, such a map is determined

by a “dimension-shifting transter G-map”
L (E[/N) — 544N, g,
We proceed to construct this map.

CONSTRUCTION 1.2. Let N be a normal subgroup of GG and write II for N
considered together with its conjugation action ¢ by . Let ' be the semi-direct
product GG x. II. We then have the quotient map ¢ : I' — G. We also have
a twisted quotient map 6 : I' — G, 0(g,n) = gn, that restricts to the identity



1. THE TRANSFER AND A DIMENSION-SHIFTING VARIANT 233

IT — N. Let X be an N-free GG-space and let §* X denote X regarded as a ['-space

via 6; then 6* X is II-free. It is easy to check that we have G-homeomorphisms
XZ0Xxg N and X/GZ60°X xqpt.

This tells us how to view X as a ll-free I'-space, placing us in the context of
Definition 1.1. Here, however, we really need the spectrum level generalization.
Let £ be an N-free GG-spectrum indexed on (UH)N, where U is a complete I'-
universe. Let ¢ : (UH)N —— U be the inclusion and let Y = i,0*F. Then Y

is a Il-free I-spectrum indexed on UY, and there are natural isomorphisms of

Gi-spectra
WEZ2Y An Ny and . (F/N) =2 Y/IL
The relevant “pretransfer” in the present context is a map
t: S — Z_Ad(N)N_|_

of I'-spectra indexed on U. The tangent bundle of N = I'/G is the trivial bun-
dle N x Ad(N), where I' acts on Ad(N) by pullback along . Embed N in a
[-representation V and let W be the resulting representation V — Ad(N) of T.
Embedding a normal tube and taking the Pontrjagin-Thom construction, we ob-

tain a I'-map
SV—>F+/\G5W2N+/\SW.

We obtain the pretransfer ¢ by applying the suspension spectrum functor and
then desuspending by V. We are now in a position to apply the construction of
Definition 1.1. Letting j denote the inclusion of UM in U to avoid confusion with

7, observe that
J (Y ASTAING) 2 G (2T (Y A N)).

Thus, smashing Y with ¢, pulling back to the universe U, and passing to orbits

over II, we obtain the desired transfer map
L(E/N) 2 Y/ — 24" (y Ag Ny ) =2 240N B,

[LMS, 11§7 and IV§3]
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2. Basic properties of transfer maps

Now return to the context of Definition 1.1. While we shall not go into detail, the
transfer can be axiomatized by the basic properties that we list in the following
omnibus theorem. They are all derived from corresponding statements about
pretransfer maps. By far the most substantial of these properties is (v), which is
proven by a fairly elaborate exercise in diagram chasing of cofiber sequences in the

context of Spanier-Whitehead duality.

THEOREM 2.1. The transfer satisfies the following properties.

(i) Naturality. The transfer is natural with respect to maps f: Y — Y’ of
[I-free I'-spectra.
(ii) Stability. For a representation V of (i regarded by pullback as a represen-

tation of I', ¥V 7 coincides with the transfer
T SY(Y/I) = (YY) — (8VY) An Fy 2 SY(Y A Fy).
(iii) Normalization. With F' = pt, the transfer associated to the identity map
is the identity map.

(iv) Fiber invariance. The following diagram commutes for an equivalence ¢ :

I — F' of compact I"ENR's:

Y An Y Ap Py

Id Ad

(v) Additivity on fibers. Let F be the pushout of a I'-cofibration Fy — F
and a Imap Fy — F,, where the F} are compact I"ENR’s. Let 7 be
the transfer associated to Y Aqg (Fk)-l— — Y/II and let j; : Y A (Fk)-l— —
Y An Fy be induced by the canonical map Fp — F. Then

T =171+ J2T2 — JoTo-
(vi) Change of groups. Assume given an inclusion of extensions

1 C) A H 1

L

1 II r G 1.
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Then the following diagram commutes for a O-free A-spectrum Y indexed

on UM regarded as a A-universe:

Id xr

G[XH(Y/@) G[XH(Y/\@F_|_)

| -

(F XA Y)/H?(F XA Y) AT F+?(F XA (Y/\F+))/H

1R

Modulo a fair amount of extra bookkeeping to make sense of it, part (vi) remains
true if we require only the homomorphism H — (' in our given map of extensions
to be an inclusion. There is also a change of groups property that holds for a
map of extensions in which @ —— 1II is the identity but the other two maps
are unrestricted. Such properties are useful and important, but we shall not go
into more detail here. Rather, we single out a particular example of the kind of
information that they imply. Let H C G and consider the bundles

G/H — pt and BH = FEG xy (G/H) — BG
and the collapse maps ¢ : EGy — S®and ¢ : EH, — S°.

PROPOSITION 2.2. Let F be a split G-spectrum. Then the following diagram
commutes:

Bj(8%) —=> Bj(EH,) — E*(BH,)

EG(8%) —= EG(EGL) —= E*(BGY).

Here E* is the theory represented by the underlying nonequivariant spectrum
of E. For example, if F represents complex equivariant K-theory, then the trans-
fer map on the left is induction R(H) — R(() and the transfer map on the
right is the nonequivariant one. The horizontal maps become isomorphisms upon

completion at augmentation ideals, by the Atiyah-Segal completion theorem.

[LMS, TV§§3-4]

3. Smash products and Euler characteristics

The transfer commutes with smash products, and a special case of this implies a

basic formula in terms of Euler characteristics for the evaluation of the composite
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£ort for a G-bundle £. The commutation with smash products takes several forms.

For an external form, we assume given extensions,
]l —I;, — I, — G, — 1

and complete I';-universes U; for ¢ = 1 and ¢+ = 2.

THEOREM 3.1. The following diagram of (Gy x (3)-spectra indexed on the uni-
verse (U™ @ (Uy)™2 commutes for II;-free T;-spectra Y; and finite I';-spaces Fi:
(Y2/TLy) = (Yy A, Fiy) A (Y2 A, Fay)

| -

(Y1 AYy) /(I x TDo) —— (Y1 A Y2) Ay, (F1 X F2),

(Y1/ILy)

1R

When G = Gy = (5, we can use change of groups to internalize this result.
Modulo a certain amount of detail to make sense of things, we see in this case
that the diagram of the previous theorem can be interpreted as a commutative
diagram of G-spectra. Either specializing this result or just inspecting definitions,
we obtain the following useful observation. We revert to the notations of Definition

1.1, so that U is a ['-complete universe.

COROLLARY 3.2. Let Y be a II-free I'-spectrum indexed on U™, F' be a compact
[-ENR, and F be a G-spectrum indexed on U™. Then the following diagram

commutes:

(YAE)/TT—— (Y ANE)An Fy

. lg

(Y/IH A E — (Y An FL)NE.

In the presence of suitable diagonal maps, this leads to homological formulas
involving cup and cap products. While more general results are valid and useful,
we shall restrict attention to the case of a given space-level bundle. Here the

previous corollary and diagram chases give the following result.

COROLLARY 3.3. Let X be a Il-free I'-space and F' be a compact ["ENR. Then

the following diagram commutes, where we have written A for various maps in-
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duced from the diagonal maps of X and F'

(X/ln)+ L (Xt Py (X/ln)+
(X/M) 4 A (X/H)4 A (X/M)4 A (X/H)4

T/\idl lid/\ﬂ'

(X B) e A (X g s (X B A (X X ) — o (XM A (X 1)

Retaining the hypotheses of the corollary and constructing cup and cap products
as in XIII§5, we easily deduce the following formulas relating the maps induced
on homology and cohomology by the maps A, 7, and ¢ displayed in its diagram.

PRrOPOSITION 3.4. The following formulas hold, where F is a ring G-spectrum.

(1) 7(w)Uy =7 (wU(y)) for we LE(X xgF) and y € Eg&(Y/1)

(i) 2UT*(z) =7 () Uz) for o € EL(X/II) and z € EL(Y An Fy)

(i) yN7 () =&(n(y)Nw) for y € LE(Y/II) and w € E5(X xp F)

(iv) m(y)Né(z) =n(yne) for y e EEY/U) and = € E5(X/II)

Define the Euler characteristic of the bundle ¢ : X x FF' — X to be

(3.5) X(§) = 77(1) € Eg(X/I).
Taking w = 1 in the first equation above, we obtain the following conclusion.

COROLLARY 3.6. The composite

* & * T *
B (X)) — Eg(X xn 1)y — E5(X/11y)
is multiplication by x(§).

In many applications of the transfer, one wants to use this by proving that y(¢)
is a unit and deducing that EZ(X/I1y) is a direct summand of F5(X X F)4.
When x(&) is or is not a unit is not thoroughly understood. The strategy for
studying the problem is to relate y(¢) to the Euler characteristic

X(F) =& (7(F)) € mp(9).

We need a bit of language in order to state the basic result along these lines.
If X/l =G/H, then X =1T'/A for some A such that ANII = e. The composite

A C T' — G maps A isomorphically onto H. Inverting this isomorphism, we
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obtain a homomorphism o : H = A C I'. For a general II-free I'-space X and an
orbit G/H C X/II, the pullback bundle over GG/ H gives rise to such a homomor-
phism « : H — T', which we call the fiber representation of X at G/H. Write
o* F for F regarded as an H-space by pullback along a.

THEOREM 3.7. Let X be a Il-free ['-space and F' be a I-space. Let B = X/II
and consider the bundle ¢ : X xq F' — B. For a ring G-spectrum F, the Euler
characteristic x(¢) € E&(By) is a unit if any of the following conditions hold.

(i) x(«*F) € E%(S) is a unit for each fiber representation o : H — T of X.

(ii) B is G-connected with basepoint * and y(a*F') € EZ(S) is a unit, where

«a : G — Fis the fiber representation of X at x.
(iii) B is G-free and the nonequivariant Euler characteristic y(F') € E(S) is a

unit.

Nonequivariantly, with G = e, the connectivity hypothesis of (ii) is inconsequen-
tial, but it is a serious limitation in the equivariant case and one must in general

fall back on (i). The following implication is frequently used.

THEOREM 3.8. If G is a finite p-group and £ : Y — B is a finite (G-cover whose
fiber F' has cardinality prime to p, then the composite map
0B, LYY, —S.yep,
become an equivalence upon localization at p.

[LMS, TV§5]

4. The double coset formula and its applications

This section summarizes results of Feshback that are generalized and given sim-
pler proofs in [LMS]. Basically, they are consequences of the additivity on fibers of
transfer maps. That result leads to decomposition theorems for the computation
of the transfer associated to any stable bundle ¢ : Y Ay Fy — Y/II, and we state

these first. Since we must keep track of varying orbits, we write
EAT): Y An(T/A); — YT

for the stable bundle associated to a Il-free I'-spectrum Y and the I'-space I'/A,

and we write 7(A, ") for the associated transfer map.
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THEOREM 4.1. Let F' be a finite I-CW complex and let
Ji: /A, CT/A; x D™ — F

be the composite of the inclusion of an orbit and the ¢th characteristic map for

some enumeration of the cells of F'. Then, for any Il-free I'-spectrum Y,
T = Z(—l)”"jﬂ(/\i,r) Y/l — Y A Fy.

There is a more invariant decomposition that applies to a general compact I'-
ENR F'. For A C T, we let F'(®) be the subspace of points whose isotropy groups are
conjugate to A. A path component M of the orbit space F™ /T is called an orbit
type component of F//I'. If M is the closure of M in F/T and OM = M — M, we

defined the (nonequivariant) internal Euler characteristic x(M) to be the reduced
Euler characteristic of the based space M /OM.

THEOREM 4.2. Let F' be a compact I'"ENR and let
vM:T/ACMCF

be the inclusion of an orbit in the orbit type component M. Then, for any Il-free

I'-spectrum Y,

7= X(M)jur(A,T): Y/Il — Y Ap Fy.
M

While it is possible to deduce a double coset formula in something close to our
full generality, we shall simplify the bookkeeping by restricting to the case when
I' = G'x1I, which is the case of greatest importance in the applications. Recall that
a principal (G, 1I)-bundle is the same thing as a [I-free (G x II)-space and let Y be
a [l-free (G x IT)-spectrum indexed on U, where U is a complete (G x IT)-universe.
For a subgroup A of II, we have the stable (G, 1I)-bundle

EAID) :Y/A=2Y A (IT/A)y — Y/T
with associated transfer map (A, II).

THEOREM 4.3 (DOUBLE COSET FORMULA). Let A and @ be subgroups of 11
and let A\I[/® be the double coset space regarded as the space of orbits under A
of II/®. Let {m} be a set of representatives in II for the orbit type component
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manifolds M of A\II/® and let x(M) be the internal Euler characteristic of M in
A\II/®. Then, for any Il-free (G x II)-spectrum Y, the composite

Y/A —S Y/ > Y/
is the sum over M of y(M) times the composite
Y/A 7= Y/O" A — = V™ T Y/,

Here ®™ = m®m™" and ¢,, is induced by the left [I-map I1/®™ — II/® given
by right multiplication by m. In symbols,

(@, INEA D) =3 (M) ¢ 0 (@™ N A, M) 0 7(®™ N A, A).

PRrROOF. The composite
AJO"NA S T1/0m™ "> 11/

is a homeomorphism onto the double coset A m ®. Modulo a little diagram chasing
and the use of change of groups, the conclusion follows directly from the previous
theorem applied to (A, II). O

If ® has finite index in II, then M is the point Am ® and x(M) = 1. Here the
formula is of the same form as the classical double coset formula in the cohomology
of groups. Observe that the formula depends only on the structure of the fibers
and has the same form equivariantly as in the nonequivariant case ¢ = e (which
is the case originally proven by Feshback, at least over compact base spaces).

The theorem is most commonly used for the study of classifying spaces, with
Y = ¥*FE(G,I1);. Here E(G,1I1)/® is a classifying G-space for principal (G, ®)-

bundles and the result takes the following form.
COROLLARY 4.4. The composite
Y% B(GA)y — 2% B(G ), —— Y% B(G, @)

is the sum over M of y(M) times the composite

Y% B(GyA)y ——= S¥B(G, 8™ N A), —— 9% B(G, 0™), "= % B(G, D).
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Of course, the formula is very complicated in general. However, many terms
simplify or disappear in special cases. For example, if the group W® = N® /11 is
infinite, then the transfer 7(®,1II) is trivial. This observation and a little book-
keeping, lead to the following examples where the formula reduces to something

manageable.

COROLLARY 4.5. Let Y be any [I-free (G x II)-spectrum.

(i) If N is the normalizer of a maximal torus T in II, then
F(N,IDE(T, ) = E(T, NY : YT — Y/N.
(ii) If T'is a maximal torus in II, then
(T, INE(T, ) =D ey : YT — YT,

where the sum ranges over a set of coset representatives for the Weyl group
W =WT of 1I.

(iii) If A is normal and of finite index in II, then
T(AIDEATD) =D eyt Y/A — Y/A,
where the sum runs over a set of coset representatives for 11/A.

Typically, the double coset formula is applied to the computation of £ (Y/II)
in terms of F5L(Y/®) for a subgroup ®. Here it is used in combination with the
Euler characteristic formula of Corollary 3.6 and the unit criteria of Theorem 3.7.

We need a definition to state the conclusions.
DEFINITION 4.6. An element € E&(Y/®) is said to be stable if
EPNO", d)(x)=E(P NI, 0) ¢ (x)

for all m € 1. Let E%(Y/®)° denote the set of stable elements and observe that
Im &(®, 1) C EL(Y/®)° since £(®, 1) o ¢,, = £(P™, ).

The double coset and Fuler characteristic formulas have the following direct

implication.

THEOREM 4.7. Let X be a [l-free (G'x1I)-space and let E be a ring G-spectrum.
Let ® C IT and consider & = £(®, 1), If y(¢) € EZ(X/I1) is a unit, then

& BG(X/My) — E5(X/®4)°

is an isomorphism.
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Unfortunately, only the first criterion of Theorem 3.7 applies to equivariant
classifying spaces, and more work needs to be done on this. However, we have the
following application of its last two criteria, and the nonequivariant case GG = e

gives considerable information about nonequivariant characteristic classes.

THEOREM 4.8. Let X be a [l-free (G'x1I)-space and let E be a ring G-spectrum.
Assume further that X/II is either G-connected with trivial fiber representation
G — II at any fixed point or G-free.

(i) If N is the normalizer of a maximal torus in I, then
€1 BG(X/M) — EG(X/Ny)®

is an isomorphism.
(ii) If N(p) is the inverse image in the normalizer of a maximal torus T of a
p-Sylow subgroup of the Weyl group W = WT and FE is p-local, then

& By(X/1y) — E5(X/N(p)4)®

is an isomorphism.

(iii) If 7" is a maximal torus in Il and F is local away from the order of the Weyl

group W = WT, then
& BG(X /M) — E5G(X/Ty )"

is an isomorphism.

(iv) If @ is normal and of finite index in Il and F is local away from |II/®|, then
£ EG(X/L) — E5(X/04)®
is an isomorphism.

It is essential here that we are looking at theories represented by local spectra
and not at theories obtained by algebraically localizing theories represented by
general spectra. The point is that if F' is the localization of a spectrum £ at a
set of primes T, then FZ(X) is usually not isomorphic to EZ(X) @ Zg unless X
is a finite G-CW complex. The proof of the unit criteria makes use of the wedge
axiom, which is not satisfied by the algebraically localized theories.

M. Feshbach. The transfer and compact Lie groups. Trans. Amer. Math. Soc. 251(1979),

139-169.
[LMS, TV§6]
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5. Transitivity of the transfer

While a transitivity relation can be formulated and proven in our original general
context of extensions of compact Lie groups, we shall content ourselves with its
statement in the classical context of products GG x II. We suppose given compact
Lie groups G, 11, and @ and a complete (G x II x ®)-universe U’. Then U = (U")®
is a complete (G x II)-universe and UM = (U/)*® is a complete G-universe.

We shall consider transitivity for stable bundles that are built up from bundles
of fibers. Let P be a ®-free finite (Il x ®)-CW complex with orbit space K = P/®
and let J be any finite -CW complex. Let F' = P x¢ J. The resulting bundle
( : F — K is to be our bundle of fibers. Here I and K are finite II-CW
complexes and ( is a (II, ®)-bundle with fiber J. By pullback, we may regard (
as a (G x II, ®)-bundle. With these hypotheses, we have a transitivity relation for
pretransfers that leads to a transitivity relation for stable G-bundles. It is proven
by using additivity and naturality to reduce to the case when P is an orbit and

then using a change of groups argument.

THEOREM 5.1. The following diagram of (G x Il x ®)-spectra commutes:

S
7(K) \\\\zii)

SR SR,

T

THEOREM 5.2. Let Y be a Il-free (G x II)-spectrum indexed on U™, Observe
that the G-map id A : D A Fy — D Anp Ky is a stable (G, I1 x ®)-bundle with

fiber J and consider the following commutative diagram of stable G-bundles:

idAm¢

Y An Y An Ky

Y/11.

The following diagram of G-spectra commutes:

Y/I

e
)

Y An Ky Y An

r(d Ap¢
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The special case P = II is of particular interest. It gives transitivity for the

diagram of transfers associated to the commutative diagram

Y A (I xg J)y —=Y Ao Jy

| |

Y/~ Y0,

[LMS, TV§7]



CHAPTER XIX

Stable homotopy and Mackey functors

1. The splitting of equivariant stable homotopy groups

One can reprove the isomorphism A(G) & 7§(S) by means of the following

important splitting theorem for the stable homotopy groups of GG-spaces in terms
of nonequivariant stable homotopy groups. When (' is finite, we shall see that this
result provides a bridge connecting the equivariant and non-equivariant versions
of the Segal conjecture. Recall that Ad((') denotes the adjoint representation of
(G. Remember that our homology theories, including 7., are understood to be
reduced.

THEOREM 1.1. For based G-spaces Y, there is a natural isomorphism
)2 N m(EWH Ay SAMTIDY ),
(H)erG

Observe that the sum ranges over all conjugacy classes, not just the conjugacy
classes (H) € ®G. However, WH is finite if and only if AW H) = 0, and
EW H, Ay SAWHYH ig connected if Ad(W H) # 0.

COROLLARY 1.2. For based G-spaces Y, there is a natural isomorphism

o (V) = ( )Z: Ho(W H;mo(YT)).

With Y = S° this is consistent with the statement that A(G) is Z-free on the
basis {[G/H]|(H) € ®G}. We shall come back to this point in the discussion of
Mackey functors in Section 3. Theorem 1.1 implies a description of the G-fixed
point spectra of equivariant suspension spectra.

245
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THEOREM 1.3. For based G-spaces Y, there is a natural equivalence
(2°Y)9 ~ )/ S(EWH, Ay SOy
(H)erG

Here the suspension spectrum functors are ¥*° : G.7 — G.U on the left and
¥ 1T — .ZU% on the right, where U is a fixed complete G-universe. Actually,

the most efficient proof seems to be to first write down an explicit map
0=> 0n:> m(EWH, Ay SMVIDYHY s 26(Y)

of homology theories in Y and use it to prove Theorem 1.1 and then write down

an explicit map
= &y \/S¥(EWH, Ay HSAUTHYH) (Y@

of spectra and prove by a diagram chase that the map induced on homotopy groups
by the wedge summand &5 is the same as the map induced by the summand 6.
We shall first write down these maps and then say a little about the proofs.

Since the definitions of our maps proceed one H at a time, we abbreviate nota-
tion by writing:

N=NH, W=WH, E=EWH, and A= AdWH).

We let L be the tangent N-representation at the identity coset of G/N. A Lie
theoretic argument shows that (G/N) is a single point, and this implies that
L = {0}. Now 0y is defined by the following commutative diagram:

T (Ey Ay 2AYH) — W (Ey AYH) NS EL AY))

eHl lw

RI(Y) i 7Gx By AY)) = 78(G A (By AY)).

Here « is an instance of the Adams isomorphism of XVI1.5.4, w is an instance of the
Wirthmiller isomorphism of XVI1.4.9, (. is induced by a canonical isomorphism of

G-spectra, p : (G xy E); — S is the collapse map, and A is the composite of
W

*

the map 7! — 7 obtained by regarding W-maps as H-fixed N-maps and the

map induced by the inclusion of fixed point spaces
EyANYP = (5B + AV ) — SH(ELAY).

Why is the sum 6 of the 8y an isomorphismI’ Clearly € is a map of homology
theories in Y. Recall the spaces E(#', .7 ) defined in V.4.6 for inclusions of families
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F C F'. For a homology theory E. on G-spaces (or G-spectra), we define the
associated homology theory concentrated between .# and .#’ by

E|F, 7).(X) = E.(X N E(F', F)).

We say that (F',.%) is an adjacent pair if F' — .% consists of a single conjugacy
class of subgroups. One can check, using an easy transfinite induction argument
in the compact Lie case, that a map of homology theories is an isomorphism if the
associated maps of homology theories concentrated between adjacent families are
all isomorphisms.

Returning to 8, consider an adjacent pair of families with .#'—.% = (H). We find
easily that FW.J, A E(F',.7) is W.J-contractible unless (H) = (J). Therefore,
when we concentrate our theories between .% and .%’, all of the summands of the
domain of # vanish except the domain of #y. It remains to prove that Ay is an
isomorphism when Y is replaced by Y AE(.Z', #). We claim that each of the maps
in the diagram defining 5 is then an isomorphism, and three of the five are always
isomorphisms. It is easy to see that (G xx E)¥ = EM which is a contractible
space. Since FE(.Z', . #)7 is contractible unless (J) = (H), the Whitehead theorem
implies that p A Id is a G-homotopy equivalence.

It only remains to consider A. Passage to H-fixed points on representative maps
gives a homomorphism

¢ aN(SHELANY NE(F L F)) — 7 (B ANYE AN B(F F)H)

such that ¢o A = Id. It suffices to show that ¢ is an isomorphism. As an N-space,
E(F', F)is E(Z'|N,Z|N). While (.Z'|N,.Z|N) need not be an adjacent pair,
F'|N — F|N is the disjoint union of N-conjugacy classes (K'), where the K are
G-conjugate to H. It follows that E(.Z'|N,.Z#|N) is N-equivalent to a wedge of
spaces E(&7, &), where each (&7, &) is an adjacent pair with &’ —& = (K) for some
such K. However, it is easy to see that E; A E(&”, &) is N-contractible unless
the N-conjugacy classes (H) and (K') are equal. Thus only the wedge summand
E(&", &) with & — & = (H) contributes to the source and target of ¢. Here
(H) = {H} since H is normal in N. A check of fixed points shows that E(&”, &)
is W-equivalent to F,.

We now claim more generally that

67NV A E(E,6)) — 7V (VT A (6, 6)T) =2V (Y A Ey)
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is an isomorphism for any N-CW complex Y. Writing out both sides as colimits
of space level homotopy classes of maps, we see that it suffices to check that

6 [ X, Y NE(E, )y — [XT, YA B w

is a bijection for any N-CW complex X. By easy cofibration sequence arguments,
we may assume that all isotropy groups of X (except at its basepoint) are in
& — & = {H}. This uses the fact that the set Xg of points of X with isotropy
group not in & is a subcomplex: we first show that X can be replaced by X/Xg,
which has isotropy groups in ”, and we then show that this new X can be replaced
by X, which has isotropy groups in &’ — &. Under this assumption, X = X
and the conclusion is obvious.
Retaining our abbreviated notations, we next describe the map

Ei 2 B°(Ey Aw XYY — (27)9.

This is a map of spectra indexed on U%, and it suffices to describe its adjoint map
of G-spectra indexed on U:

€ - B2(Ey Aw SAYH) — ny,

Here we regard £ Ay LAY H as a G-trivial G-space, and the relevant suspension
spectrum functor is X* : G.7 — G.ZU on both left and right. Suppressing
notation for ¥, implicitly using certain commutation relations between ¥* and
other functors, and abbreviating notation by setting Z = E, Aw X4Y !, we define
£5 to be the composite displayed in the following commutative diagram:

Z i G/Ny A Z = Gy An Z

tH lld/w
Y pAId (G X NE)"' ANY ¢ G‘|‘ AN (E-I- A Y) <T G-I— AN (E_|_ A YH)

On the top line, 7 is the transfer stable G-map S° — G/N, of IX.3.4 (or
XVIIL.1.2). At the right, 7 : Ey Aw S4YH — E, A Y is the stable N-map
obtained by applying ¢, : W.2U" — N.2U, ¢ : UY — U, to the dimension-
shifting transfer W-map of XVIII.1.2 that is at the heart of the Adams isomor-
phism that appears in the definition of 8. A diagram chase shows that the map
on homotopy groups induced by g coincides with 8, and the wedge sum of the
&y is therefore an equivalence.

T. tom Dieck. Orbittypen und aquivariante Homologie. I. Arch. Math. 23(1972), 307-317.
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T. tom Dieck. Orbittypen und aquivariante Homologie. IT. Arch. Math. 26(1975), 650-662.
[LMS, V§§10-11]

2. Generalizations of the splitting theorems

We here formulate generalizations of Theorems 1.1 and 1.3 that are important
in the study of generalized versions of the Segal conjecture. The essential ideas
are the same as those just sketched, but transfer maps of bundles enter into the
picture and the bookkeeping needed to define the relevant maps and prove that
the relevant diagrams commute is quite complicated. We place ourselves in the
context in which we studied generalized equivariant bundles in VII§1. Thus let
IT be a normal subgroup of a compact Lie group I' with quotient group G. Let
E(II;T) be the universal (II; I')-bundle of VII.2.1. Let Ad(II;T") denote the adjoint
representation of I' derived from II; it is the tangent space of 11 at e with the action
of I' induced by the conjugation action of I' on 1. We regard G-spaces as ['-spaces
by pullback. For based I'-spaces X and Y, we write

(XY}, = 227X, 2%Y]p
for integers n. With these notations, we have the following results.

THEOREM 2.1. Let X be a based G-space and Y be a based I'-space. Assume
either that X is a finite G-CW complex or that II is finite. Then {X, Y}l is
naturally isomorphic to the direct sum over the I'-conjugacy classes of subgroups

A of II of the groups
{2, E(WiA; WrA ) Ay SAOTRAWEDy A in /Wit

Here the quotient homomorphism I' — G induces an inclusion of WrA/WpA
in (¢ and so fixes an action of this group on X. Of course, when (' is finite, the
adjoint representations in the theorem are all zero. If we set II = I' (and rename it
(), then the theorem reduces to a mild generalization of Theorem 1.1. When II is
finite, the specified sum satisfies the wedge axiom. In general, the sum is infinite
and we must restrict to finite G-CW complexes X.

THEOREM 2.2. For based I'-spaces Y, there is a natural equivalence of GG-spectra
from (Z*°Y)! to the wedge over the T'-conjugacy classes of subgroups A of II of
the suspension spectra of the G-spaces

Gy AWpA/WiA (E(WHAa WFA)+ Awr A ZAd(WHA;WFA)YA)‘
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Here the suspension spectrum functor applied to Y is X : ' — ['¥U and
that applied to the wedge summands is ¥ : G.7 — G.ZU" | where U is a
complete I'-universe.

[LMS, V§§10-11]

3. Equivalent definitions of Mackey functors

In IX84, we defined a Mackey functor to be an additive contravariant functor
B — /b, and we have observed that the Burnside category ¢ is just the full
subcategory of the stable category whose objects are the orbit spectra ¥*G/H .,
but with objects denoted G/H. This is the appropriate definition of a Mackey
functor for general compact Lie groups, but we show here that it is equivalent to
an older, and purely algebraic, definition when ' is finite. We first describe the
maps in HAg. As observed in [X§4, their composition is hard to describe in general.
However, for finite groups G, there is a conceptual algebraic description. In fact,
in this case there is an extensive literature on the algebraic theory of Mackey
functors, and we shall say just enough to be able to explain the important idea of
induction theorems in the next section.

When we specialize the diagram-chasing needed for the proofs in Section 1 to

the calculation of 7§'(Y'), we arrive at the following simple conclusion. Recall
Corollary 1.2.

PROPOSITION 3.1. For any based G-space Y, 7§(Y) is the free Abelian group
generated by the following composites, where (H) runs over ®G and y runs over
a representative point in Y of each non-basepoint component of Y /W H:

§ T NG H, sy
here 7 is the transfer and § : G/ Hy — Y is the based GG-map such that g(e H) = y.

There is a useful conceptual reformulation of this calculation. Since we are

interested in orbits G/ H, we switch to unbased G-spaces.
COROLLARY 3.2. Let X be an unbased G-space. For H C (G, the group
o (X4) = [B%G/Hy, X% X4 o

is isomorphic to the free Abelian group generated by the equivalence classes of
diagrams of space level G-maps

GIH <2 G/K X,
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where K C H and Wy K is finite. Here (¢, x) is equivalent to (¢',x’) if there
is a G-homeomorphism ¢ : /K — G/K' such that the following diagram is
GG-homotopy commutative:

G/K

G/K'

We are thinking of ¢ as the corresponding transfer map X*G/H, — Y*G/K,,
namely G <y (7), where 7 : S® — ¥ H/K is the transfer H-map.

This result specializes to give a good description of the maps of Z¢. In principle,
their composition can be described in terms of a double coset formula, but this is
quite hard to compute with in general. However, when (' is finite, it admits an
attractive conceptual reformulation.

To see this, let Be; be the category whose objects are the finite G-sets and
whose morphisms are the stable G-maps X; — Y,. That is, up to an abbreviated
notation for objects, B is the full subcategory of the stable category whose objects
are the X* X for finite G-sets X. Clearly A embeds as a full subcategory of ,@G,
and every object of B is a disjoint union of objects of A;. We easily find that
maps in P can be described as equivalence classes [¢, y] of pairs (¢, x), exactly
as in the previous corollary, but now the composite of maps

VWX and X<y Y-y

can be specified as the equivalence class of the diagram
P
w Y
NN
V X Z,

where the top square is a pullback. This gives a complete description of B
in purely algebraic terms, with disjoint unions thought of as direct sums. It is
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important, and obvious, that this category is abstractly self-dual. Moreover, the
duality isomorphism is given topologically by Spanier-Whitehead duality on orbits.

Since an additive functor necessarily preserves any finite direct sums in its do-
main, it is clear that an additive contravariant functor Zs — /b determines
and is determined by an additive contravariant functor Be — /b, In turn, as
a matter of algebra, an additive contravariant functor B —> 'b determines
and is determined by a Mackey functor in the classical algebraic sense. Precisely,
such a Mackey functor M consists of a contravariant functor M™* and a covariant
functor M, from finite G-sets to Abelian groups. These functors have the same
object function, denoted M, and M converts disjoint unions to direct sums. Writ-
ing M*a = o and M,a = a., it is required that a* o 8, = 6. o v* for pullback

P X
’Yl la
Y /.

For an additive contravariant functor M : %s — /b, the maps M[¢,1] and
MI1, ] specify the covariant and contravariant parts ¢* and y. of the correspond-

diagrams of finite G-sets

§
_—

_
8

ing algebraic Mackey functor, and conversely.

[LMS, V§9]

4. Induction theorems

Assuming that G is finite, and working with the algebraic notion of a Mackey
functor just defined, we now consider the problem of computing M (%), where
« = (/G in terms of the M(G//H) for proper subgroups H. For a finite G-set X,
let X™ be the product of n copies of X and let 7r; : X"t — X" be the projection
that omits the ¢th variable. We then have the chain complex

Y

(*) 0 — M(%) — M(X) — M(X?) — -

where the differential d* : M(X") — M(X"*!) is the alternating sum of the
maps (7;)%, 0 < 7 < n. Let M(X)™ be the kernel of d', namely the equalizer
of (mo)* and (71)*. We are interested in determining when the resulting map
M(*) — M(X)™ is an isomorphism. Of course, this will surely hold if the
sequence (*) is exact. We have already seen an instance of this kind of argument

in XVII§6.
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When is (*) exact]’ Let My be the Mackey functor that sends a finite G-set Y’
to M(X xY), and similarly for maps. The projections 7 : X x ¥ — Y induce
a map of Mackey functors 8% : M — My. We say that M is “X-injective” if X
is a split monomorphism. If 8% is split by ¢ : Mx — M, so that 1) o 0x = Id,

then the homomorphisms
P(X™): M(X x X™) — M(X™)

specify a contracting homotopy for (*). Therefore (*) is exact if M is X-injective.

When is M X-injectivel' To obtain a good criterion, we must first specify
the notion of a pairing u : L x M — N of Mackey functors. This consists of
maps p : L(X) @ M(X) — N(X) for finite G-sets X such that the evident
covariant and contravariant functoriality diagrams and the following Frobenius

diagram commute for a G-map f: X — Y.

fx@ld

L(X)® M(Y) L(Y)@ M(Y)

Id®f*l lu

L(X) ® M(X) —= N(X) N(Y).

*

A Green functor is a Mackey functor R together with a pairing p that makes each
R(X) a commutative and associative unital ring, the maps f* being required to
preserve units and thus to be ring homomorphisms. The notion of a module M
over a Green functor R is defined in the evident way. With these notions, one can

prove the following very useful general fact.

PrOPOSITION 4.1. If R is a Green functor and the projection X — * induces

an epimorphism R(X) — R(x), then every R-module M is X-injective. Therefore
M(*) = M(X)™ for every R-module M.

For a Green functor R, there is a unique minimal set {(H)} of conjugacy classes
of subgroups of G such that R(IJG/H) — R(%) is an epimorphism; this set
is called the “defect set” of R. By an “induction theorem”, we understand an
identification of the defect set of a Green functor. For example, the complex
representation rings R(H) are the values on GG/H of a Green functor R, and the
“Brauer induction theorem” states that the set of products P x € of a p-group P
and a cyclic group C'in G contains a defect set of B. We will shortly give another
example, one that we will use later to reduce the generalized Segal conjecture to

the case of finite p-groups.
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We must first explain the relationship of Burnside rings to Mackey functors.
For a finite G-set X, we have a Grothendieck ring A(X) of isomorphism classes
of G-sets over X. The multiplication is obtained by pulling Cartesian products
back along the diagonal of the base G-set X. When X = %, this is the Burnside
ring A(G). More generally, a G-set o : T — G/H over G/H determines and
is determined by the H-set a~!(eH), and it follows that A(G/H) = A(H). A
G-map f: X — Y determines f*: A(Y) — A(X) by pullback along f, and it
determines f. : A(X) — A(Y) by composition with f. In more down to earth
terms, if f: G/H — G/K is the G-map induced by an inclusion H C K, then
f* i A(K) — A(H) sends a K-set to the same set regarded as an H-set and
fe t A(H) — A(K) sends an H-set X to the K-set K x g X; we call f, induction.
This gives the Burnside Green functor A.

Any Mackey functor M is an A-module via the pairings

A(X) @ M(X) — M(X)

that send @« @ m, a : Y — X, to a.a™(m). Therefore, by pullback along the
ring map A(G) = A(x) — A(X), each M(X) is an A(G)-module. Any Green
functor R has a unit map of Green functors n : A — R that sends o : ¥ — X
to a.a*(1). Thus we see that the Burnside Green functor plays a universal role.

Observe that we can localize Mackey functors termwise at any multiplicative
subset S of A(G). We can complete Mackey functors that are termwise finitely
A(G)-generated at any ideal I C A((G). We wish to establish an induction theorem
applicable to such localized and completed Mackey functors. This amounts to
determination of the defect set of S™'Aj.

It is useful to use a little commutative algebra. The following observation is
standard algebra, but its relevance to the present question was noticed in work of
Adams, Haeberly, Jackowski, and myself and its extension by Haeberly. We shall
state it for pro-modules — which are just inverse systems of modules — but only
actual modules need be considered at the moment. Its pro-module version will be
used in the proof of the generalized Segal conjecture in XX§§2. 3. Localizations of
completions of pro-modules M = {M,} are understood to be inverse systems

STIM; = {S™'M,/I" M,}.

LEMMA 4.2. Let M be a pro-finitely generated module over a commutative ring
A, let S be a multiplicative subset of A, and let I be an ideal of A. Then S™1M;j
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is pro-zero if and only if (Sp)~'Mp is pro-zero for every prime ideal P such that
PnNS=0and P DI, where Sp is the multiplicative subset A — P.

For a primeideal P of A(G), we let K(P) be a maximal element of the set{ H|P =
q(H,p)}. We have discussed these subgroups in XVII§3.

LEMMA 4.3. {(K(P))} is the defect set of the Green functor (Sp)~"A.

PRrROOF. Essentially this result was observed, in less fancy language, at the end
of XVII§6. The subgroup K = K(P) is characterized by P = ¢(K, p) and |W K| #
0 mod p. (We allow p =0.) The composite

A(G) — A(K) — A(G)

of restriction and induction is multiplication by [G/K]. Since this element of A(()
maps to a unit in A(G)y ), the displayed composite becomes an isomorphism
upon localization at ¢(K,p). O

PROPOSITION 4.4. Let S be a multiplicative subset of A(G) and let [ be an
ideal of A(G). Then the defect set of the Green functor S™'A;j is

{(K(P)IPNS=0 and P D I}.
PROOF. The statement means that the sum of transfer maps
Y STTA(K(P)); — STTA(G);
is an epimorphism, and Lemmas 4.2 and 4.3 imply that its cokernel is zero. [

The starting point for arguments like this was the following result of McClure
and myself, which is the special case when S = {1} and [ is the augmentation

ideal (alias ¢(e,0)). If P = q(e,p), then K(P) is a p-Sylow subgroup of G.

COROLLARY 4.5. If I is the augmentation ideal of A(G'), then the defect set of
the Green functor A7 is the set of p-Sylow subgroups of G.

This will be applied in conjunction with the following observation.

LEMMA 4.6. Let M be a Mackey functor over a finite p-group G and let 7* :
M(*x) — M(G) be induced by the projection ¢ — . Then the p-adic and

I-adic topologies coincide on Ker(7*).
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PROOF. Since multiplication by [G] is the composite 7.7*, [G]Ker(#x*) = 0.
Since [G] — |G| € I, |G| Ker(x*) C [ Ker(x*). If H # e, then ¢y ([G/K] — |G/K])
is divisible by p because G/ K — (G/K ) is a disjoint union of non-trivial H-orbits.
Therefore ¢(I) C pC(G). Let |G| = p™. Since |G|C(G) C ¢(A(G)), we see that
S(I"1) C péd(I) and thus 1"t C pI. The conclusion follows. [

A. Dress. Induction and structure theorems for orthogonal representations of finite groups.
Annals of Math. 102(1975), 291-325.

J.-P. Haeberly. Some remarks on the Segal and Sullivan conjectures. Amer. J. Math. 110(1988),
833-847.

J. P. May and J. E. McClure. A reduction of the Segal conjecture. Canadian Math. Soc.
Conference Proceedings Vol. 2, part 2, 1982, 209-222.

5. Splittings of rational GG-spectra for finite groups

We here analyze the rational equivariant stable category for finite groups G. The
essential point is that any rational G-spectrum splits as a product of Eilenberg-

MacLane G-spectra K(M,n) =X"HM.

THEOREM 5.1. Let G be finite. Then, for rational G-spectra X, there is a
natural equivalence X — [] K(x,,(X),n).

There is something to prove here since the counterexamples of Triantafillou dis-
cussed in [11§3 show that, unless (G is cyclic of prime power order, the conclusion is
false for naive Gi-spectra. A counterexample of Haeberly shows that the conclusion
is also false for genuine G-spectra when (' is the circle group, the rationalization
of KUg furnishing a counterexample. Greenlees has recently studied what does
happen for general compact Lie groups.

The proof of Theorem 5.1 depends on two facts, one algebraic and one topolog-

ical. We assume that (& is finite in the rest of this section.

PROPOSITION 5.2. In the Abelian category of rational Mackey functors, all ob-

jects are projective and injective.

The analog for coefficient systems is false, and so is the analog for compact Lie
groups. The following result is easy for finite groups and false for compact Lie

groups.

PROPOSITION 5.3. For H C G and n # 0, 7,,(G/Hy) @ Q = 0.
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Let .# = _# denote the Abelian category of Mackey functors over . For
G-spectra X and Y, there is an evident natural map

0:[X,Y]e — [[Hom.4(z,(X),z,(Y)).

Let Y be rational. By the previous result and the Yoneda lemma, # is an isomor-
phism when X = ¥*G/H, for any H. Throwing in suspensions, we can extend 6
to a graded map

0:Y4(X)=[X,Y]§=[E7"X,Y]e — [[ Hom.4(x,(X7°X), m,(Y)).

It is still an isomorphism when X is an orbit. Of course, we obtain the same groups
if we replace X and the Mackey functors z,,(¥79.X) by their rationalizations. Since
the Mackey functors z,, (V') are injective, the right hand side is a cohomology theory
on G-spectra X. Clearly § is a map of cohomology theories and this already
proves the following result. With Y = [[ K(x,(X),n), Theorem 5.1 is an easy

consequence.
THEOREM 5.4. If YV is rational, then 8 is a natural isomorphism.

This classifies rational G-spectra, and we next classify maps between them.
Recall that ¢ @Q : A(G)®Q — C(G)@Q is an isomorphism and that C'(G) 2 Q
is the product of a copy of Q for each conjugacy class (H). There results a complete
set of orthogonal idempotents ey = ¢% in A(G) @ Q. Multiplication by the eg
induces splittings of A(G) ® Q-modules, rational Mackey functors, and rational
Gi-spectra, and we have the commutation relation

. (egX) X eyrm, (X).

In all three settings, there are no non-zero maps ey X — e;Y unless H is conju-
gate to J. This gives refinements of Theorems 5.1 and 5.4.

THEOREM 5.5. For rational G-spectra X, there are natural equivalences
X ~\egX =[] K(epzm,(X),n).
THEOREM 5.6. For rational G-spectra X and Y, there are natural isomorphisms
[(X,Y]e 2 [enX.enY]e 2> [[Hom 4(enr, (X), enm,(Y)).
Moreover, if V,, y(X) = (eyz, (X))(G/H) C 7,(X*), then
Hom 4(epx, (X),enm,(Y)) = Homwu (Vg (X), Vou(Y)).
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Thus the computation of maps between rational G-spectra reduces to the com-
putation of maps between functorially associated modules over subquotient groups.
The last statement of the theorem is a special case of the following algebraic result.

THEOREM 5.7. For rational Mackey functors M and N, there are natural iso-
morphisms

HOIH/[(GHM, GHN) = HOIHWH(VH(M), VH(N)),
where Vi (M) is the Q[W H]-module (eg M )(G/H) C M(G/H).

The proof of Proposition 5.2 is based on the following consequence of the fact
that Vi (V) is a projective and injective Q[W H]-module.

LEMMA 5.8. If the conclusion of Theorem 5.7 holds for all N and for a given M
and H, then ey M is projective; if the conclusion holds for all M and for a given
N and H, then ey N is injective.

Now let .#p be the category of rational Mackey functors over (. Let 2[G] be
the category of Q[G]-modules. Fix H C (. Then there are functors

Uy : My — ZIWH] and Fy: 2IWH| — .
Explicitly,
UsM = M(G/H) and (FgV)(G/K) = (QG/K)T e V)",

These functors are both left and right adjoint to each other if we replace .#g by its
full subcategory .#/ H of those Mackey functors M such that M(G//J) = 0 for all
proper subconjugates J of H. Since (FgV)(G/K) = 0 unless H is subconjugate
to K, FgV isin .4y/H.

PrROOFS OF PROPOSITION 5.2 AND THEOREM 5.7. One easily proves both of
these results when M = FV by use of the adjunctions and idempotents. Even in-
tegrally, every Mackey functor M is built up by successive extensions from Mackey
functors of the form FyV. Rationally, the extensions split by the projectivity of
the FgV. Therefore any rational Mackey functor M is a direct sum of Mackey
functors of the form FyV for varying H and V. [

J. P. C. Greenlees. Some remarks on projective Mackey functors. Journal Pure and Applied
Algebra 81(1992), 17-38.

J. P. C. Greenlees. Rational Mackey functors for compact Lie groups. Preprint, 1993.

J. P. C. Greenlees and J. P. May. Some remarks on the structure of Mackey functors. Proc.

Amer. Math. Soc. 115(1992), 237-243.
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J. P. C. Greenlees and J. P. May. Generalized Tate cohomology, Appendix A. Memoirs Amer.
Math. Soc. No 543. 1995.
J.-P. Haeberly. For G = S there is no Chern character. Contemp. Math. 36 (1985), 113-118.
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CHAPTER XX

The Segal conjecture

1. The statement in terms of completions of GG-spectra

There are many ways to think about the Segal conjecture and its generalizations.
Historically, the original source of the conjecture was just the obvious analogy be-
tween K -theory and stable cohomotopy. According to the Atiyah-Segal completion
theorem, the K-theory of the classifying space of a compact Lie group G is isomor-
phic to the completion of the representation ring R(() at its augmentation ideal.
Here R(G) is K&(5°), and K(S°) = K'(BG4) = 0. The Burnside ring A(G) is
72(5%), and it is natural to guess that the stable cohomotopy of B is isomorphic
to the completion of 7% (S%) at the augmentation ideal I of A(G). This guess is
the Segal conjecture. It is not true for compact Lie groups in general, but it turns
out to be correct for finite groups G. We shall restrict ourselves to finite groups
throughout our discussion. A survey of what is known about the Segal conjecture
for compact Lie groups has been given by Lee and Minami.

Here we are thinking about Z-graded theories, and that is the right way to
think about the proof. However, one can also think about the result in purely
equivariant terms, and the conclusion then improves to a result about G-spectra
and thus about RO(G)-graded cohomology theories. To see this, let’s at first
generalize and consider any G-spectrum kg. We have the projection FG, — S°,

and it induces a G-map
(11) [ kG = F(So,kg) — F(EG+,kg)

We think of ¢ as a kind of geometric completion of k¢.
It is natural to think about such completions more generally. Let .% be a family
of subgroups of G. We have the projection £.%, — 5°, and we have the induced

261
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G-map
(12) [ kG = F(SO, kg) — F(Egﬂ_, kg)

We think of ¢ as the geometric completion of kg at 7.
We want to compare this with an algebraic completion. The family .# deter-
mines an ideal 1.7 of A(G), namely

(1.3) 1.7 = [ Ker(A(G) — A(H)).
HeZF
Just as [ = [{e} = q(e,0), by definition, it turns out algebraically that
(1.4) 1.7 = () q(H,0).
HeZF

Since A(G) plays the same role in equivariant theory that Z plays in nonequiv-
ariant theory, it is natural to introduce completions of G-spectra at ideals of the
Burnside ring. This is quite easy to do. For an element a of A(G), define Sg[a™?],
the localization of the sphere G-spectrum Sg at «, to be the telescope of countably
many iterates of a: S¢ — S¢. Then let K(«) be the fiber of the canonical map
S¢ — Sgla™']. For an ideal I generated by a set {ay,--- ,a,}, define

(1.5) K(I)=K(ag) N N K(ay).

It turns out that, up to equivalence, K (/) is independent of the choice of gener-
ators of I. Now define

(1.6) (ka)1 = F(K(I), ka).

By construction, K (/) comes with a canonical map ¢ : K(/) — S¢, and there
results a map

(1.7) v ke — (ka)i

We call v the completion of kg at the ideal I. For those who know about such
things, we remark that completion at [ is just Bousfield localization at K (7). We
shall later use “brave new algebra” to generalize this construction.

Now specialize to [ = [.% for a family .#. For a € I.#%, o : S¢ — Sg is null
homotopic as an H-map for any H € .Z#. Therefore Sg[a™!] is H-contractible,
K(1.%)is H-equivalent to S¢, and the cofiber of ( is H-contractible. This implies
that there is a unique G-map

(1.8) £ SVEF, — K(I.F)
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over Sg. There results a canonical map of G-spectra
(1.9) & F(K(I7),kG) — F(EF, ka).

We view this as a comparison map relating the algebraic to the geometric comple-
tion of kg at Z.
One can ask for which G-spectra kg the map £* is an equivalence. We can now

state what I find to be the most beautiful version of the Segal conjecture. Recall

that D(E) = F(FE, Sq).
THEOREM 1.10. For every family .#, the map
£ (Sa)is = DIK(LF)) — D(EF,)
is an equivalence of G-spectra.

Parenthetically, one can also pass to smash products rather than function spec-
tra from the map &, obtaining

(111) f* : kG A Egz_|_ — kG A [X’(]gﬂ_)

One can ask for which G-spectra kg this map is an equivalence. A standard
argument shows that £* is an equivalence if kg is a ring spectrum and &, is an
equivalence. Once we introduce Tate theory, we will be able to give a remarkable
partial converse. The point to make here is that ¢, is an equivalence for K, as we
shall explain in XXIV§7, but is certainly not an equivalence for Sg. That would
be incompatible with the splitting of (Sg)“ in XIX§l. Our original analogy will
only take us so far.

J. F. Adams, J.-P. Haeberly, S. Jackowski, and J. P. May. A generalization of the Segal conjec-
ture. Topology 27(1988), 7-21.

J. P. C. Greenlees and J. P. May. Completions of G-spectra at ideals of the Burnside ring.
Adams memorial symposium on algebraic topology, Vol. 2. London Math. Soc. Lecture Note
Series 176, 1992, 145-178.

C.-N. Lee and N. Minami. Segal’s Burnside ring conjecture for compact Lie groups. in Algebraic
topology and its applications. MSRI Publications # 27. Springer-Verlag. 1994, 133-161.

2. A calculational reformulation

What does Theorem 1.10 say calculationallyl’ To give an answer, we go back
to our algebraic completions. The [-adic completion functor is neither left nor
right exact in general, and it has left derived functors Lf. Because A(G) has Krull
dimension one, these vanish for ¢+ > 1. In precise analogy with the calculation
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of the homotopy groups of p-adic completions of spaces, we find that, for any
G-spectrum X, there is a natural short exact sequence

(2.1) 0 — Li(z,—1(X)) — m,(X7) — Lo(z, (X)) — 0,

where we apply our derived functors to Mackey functors termwise. Thinking co-
homologically, for any G-spectra X and kg, there are natural short exact seqences

(22) 0 — LUK (X)) — ((he) (X)) — L (RE(X)) — 0.

As a matter of algebra, the L! admit the following descriptions, which closely
parallels the algebra we summarized when we discussed completions at p in I1§4.

Abbreviate A = A(G') and consider an A-module M. Then we have the following

natural short exact sequences.

(2.3) 0 — lim' Tor(A/I", M) — LY(M) — M; — 0.

(2.4) 0 — lim' Torj (A/I", M) — LI(M) — lim Tor{"(A/I", M) — 0.

There is interesting algebra in the passage from the topological definition of
completion to the algebraic interpretation (2.1). Briefly, there are “local homol-
ogy groups” HI(M) analogous to Grothendieck’s local cohomology groups. Our
topological construction mimics the algebraic definition of the H}(M), and, as
a matter of algebra, LI(M) = HI(M). This leads to alternative procedures for
calculation, but begins to take us far from the Segal conjecture. We shall return
to the relevant algebra in Chapter XXIV.

The last two formulas show that, if M is finitely generated, then LL(M) =2 M;
and LI(M) = 0. When a G-spectrum kg is bounded below and of finite type, in
the sense that each of its homotopy groups is finitely generated, we can construct
a model for (kg); and study its properties by induction up a Postnikov tower,
exactly as we studied p-completion in 11§5. As there, we find that a map from
ke to an “I-complete spectrum” that induces [-adic completion on all homotopy
groups is equivalent to the I-completion of k. Moreover, a sufficient condition
for a bounded below spectrum to be I-complete is that its homotopy groups are
finitely generated modules over A(G);.

We deduce from XIX.1.1 that Sg is of finite type. Thus the [-adic completions
of its homotopy groups are bounded below and of finite type over A(G)7. A little
diagram chase now shows that the following theorem will imply Theorem 1.10.
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THEOREM 2.5. The map ¢ : S¢ — D(F.#,) induces an isomorphism
T.(56)17 — m(D(EFL)).

There is an immediate problem here. A priori, we do not know anything about
the homotopy groups of D(E.%, ), which, on the face of it, need be neither bounded
below nor of finite type. There is a lim' exact sequence for their calculation in
terms of the duals of the skeleta of E.Z,. To prove that the lim' terms vanish, and
to make sure that we are always working with finitely generated A(G)-modules, we
work with pro-groups and only pass to actual inverse limits at the very end. We
have already said nearly all that we need to say about this in XIV§5. Recall that,
for any Abelian group valued functor 2 on G-CW complexes or spectra, we define
the associated pro-group valued functor h by letting h(X) be the inverse system
{h(X,)}, where X, runs over the finite subcomplexes of X. Our functors take
values in finitely generated A(G))-modules. For an ideal I in A(G') and such a pro-
module M = {M,}, M7 is the inverse system {M,/I"M,}. For a multiplicative
subset S, ST'M = {S™'M,}.

We define pro-Mackey functors just as we defined Mackey functors, but changing
the target category from groups to pro-groups. Now Theorem 2.5 will follow from
its pro-Mackey functor version.

THEOREM 2.6. The map ¢ : S¢ — D(F.#,) induces an isomorphism

The point is that the pro-groups on the left certainly satisty the Mittag-Leffler
condition guaranteeing the vanishing of lim' terms, hence the lim" terms for the
calculation of m,(D(FE.Z,)) vanish and we obtain the isomorphism of Theorem 2.5
on passage to limits. We now go back to something we omitted: making sense
of the induced map in Theorem 2.6. For a finite G-CW complex X such that
XH is empty for H ¢ #, we find by induction on the number of cells and the
very definition of I.% that z,(D(X})) is annihilated by some power of I.%. This
implies that the canonical pro-map

7.(D(Xy)) — m(D(Xy))17

is an isomorphism. Applying this to the finite subcomplexes of E.%, we see that
the right side in Theorem 2.6 is [.%-adically complete. Thus the displayed map
makes sense.
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J. F. Adams, J.-P. Haeberly, S. Jackowski, and J. P. May. A generalization of the Segal conjec-
ture. Topology 27(1988), 7-21.

J. P. C. Greenlees and J. P. May. Derived functors of I-adic completion and local homology. J.
Algebra 149(1992), 438-453.

3. A generalization and the reduction to p-groups

Now we change our point of view once more, thinking about individual pro-
homotopy groups rather than Mackey functors. Using a little algebra to check
that the ideal in A(H) generated by the image of I.% under restriction has the
same radical as [(.#|H), we see that the Hth term of the map in Theorem 2.6 is

75 (S 1z — m(E(F|H)y).

We may as well proceed by induction on the order of &7, so that we may assume
this map to be an isomorphism for all proper subgroups. In any case, Theorem
2.6 can be restated as follows.

THEOREM 3.1. The map F.% — # induces an isomorphism
re (i — mEF).

Now E.% —— x* is obviously an example of an .%-equivalence, that is, a map
that induces an equivalence on H-fixed points for H € .%#. We are really proving

an invariance theorem:
P . ‘ . . . . [ n
An F-equivalence f: X — Y induces an isomorphism 7 (f)72.

We can place this in a more general framework. Given a set J# of subgroups
of GG, closed under conjugacy, we say that a cohomology theory is .7-invariant
if it carries .#-equivalences to isomorphisms. We say that a G-space X is J7-
contractible if X# is contractible for € 2. By an immediate cofiber sequence
argument, a theory is .7-invariant if and only if it vanishes on .%-contractible
spaces. It is not difficult to show that, for any cohomology theory h*, there is a
unique minimal class 77 such that A* is J7-invariant: determination of this class
gives a best possible invariance theorem for ~A*. Given an ideal I and a collection
€, we can try to obtain such a theorem for the theory = (-);.

Answers to such questions in the context of localizations rather than completions
have a long history and demonstrated value, but there one usually assumes that

A 1s closed under passage to larger rather than smaller subgroups. For such a
“cofamily” 7, we have the -fixed point subcomplex X7 = {z|G, € J};
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the inclusion 7 : X#* —— X is an J#-equivalence. A cohomology theory is J#-
invariant if and only it carries all such inclusions ¢ to isomorphisms.

It seems eminently reasonable to ask about localizations and completions to-
gether. We can now state the following generalization of Theorem 3.1. Define the
support of a prime ideal P in A(() to be the conjugacy class (L) such that P is in
the image of Spec(A(L)) but is not in the image of Spec(A(K)) for any subgroup
K of L. We know what the supports are: (H) for ¢(H,0) and (H,) for ¢(H, p).

THEOREM 3.2. For any multiplicative subset S and ideal I, the cohomology
theory S™'my,(+)7 is . -invariant, where

A = J{Supp(P)[PNS=0 and P DI}

With S = () and I = I.%, Theorem 3.1 follows once one checks that the resulting
A is contained in .Z. In fact it equals .# since the primes that contain /.# are
all of the ¢(H,p) with H € .#, and this allows p = 0. It looks as if we have made
our work harder with this generalization but in fact, precisely because we have
introduced localization, which we have already studied in some detail, the general
theorem quickly reduces to a very special case.

In fact, by XIX.4.2, it is enough to show that (Sp)™'ws(X)p = 0 if X7 is
contractible for L € Supp(P), where Sp = A — P. By XVIL5.5, there is an
idempotent ¢¥ € A(G), such that (Sp)~tA(G) = ¥ A(G),. Remembering that
the ®-fixed point functor satisfies ®7 Sy = Sy, we see that, for any finite G-CW

complex X, XVII.6.4 specializes to give the chain of isomorphisms
G _n NL_n WL __n L n Lyinv
ermi(X)p — ep TN (X)p — & "mppp(X7)p — mpp(X7))

where V' L is a p-Sylow subgroup of W L. The transfer argument used to prove the
P
75 (X1),. Passing to pro-modules, we conclude that (Sp)™'w5(X)p is a direct

last isomorphism gives further that 7%, (X%)" is naturally a direct summand in
summand in &}, (X1),. Therefore Theorem 3.2 is implied by the following special

case.

THEOREM 3.3. The theory =f(+), is e-invariant for any finite p-group . That
is, it vanishes on nonequivariantly contractible G-spaces.

This is Carlsson’s theorem, and we will discuss its proof in the next section. In
the case of the augmentation ideal there is a shortcut to the reduction to p-groups
and p-adic completion: it is immediate from XIX.4.5 and XIX.4.6. Let us say a
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word about the nonequivariant interpretation of the Segal conjecture in this case.
Since Sg is a split G-spectrum, we can conclude that

(3.4) T5(59); 2 na(EGL) = 75 (BGY ).

Of course, the cohomotopy groups on the left lie in non-positive degrees and are

just the homotopy groups reindexed. By XIX.1.1,

(3.5) & (S%) = (Z)m(BWhu).

The left side is a ring, but virtually nothing seems to be known about the mul-
tiplicative structure on the right. Nor is much known about the A(G)-module

structure. Of course, the last problem disappears upon completion in the case of

p-groups, by XIX.4.6.

J. F. Adams, J.-P. Haeberly, S. Jackowski, and J. P. May. A generalization of the Segal conjec-
ture. Topology 27(1988), 7-21.

4. The proof of the Segal conjecture for finite p-groups

There are two basic strategies. One is to use (3.5) and a nonequivariant in-
terpretation of the completion map to reduce to a nonequivariant problem. For
elementary p-groups, the ideas that we discussed in the context of the Sullivan
conjecture can equally well be used to prove the Segal conjecture, and Lannes has
an unpublished nonequivariant argument that handles general p-groups.

The other is to use equivariant techniques, which is the method used by Carls-
son. Historically, Lin first proved the Segal conjecture for Z/2, Gunawardena for
Z/p, p odd, and Adams, Gunawardena, and Miller for general elementary Abelian
p-groups, all using nonequivariant techniques and the Adams spectral sequence.
Carlsson’s theorem reduced the case of general finite p-groups to the case of ele-
mentary Abelian p-groups. His ideas also led to a substantial simplification of the
proof in the elementary Abelian case, as was first observed by Caruso, Priddy, and
myself. For this reason, the full original proot of Adams, Gunawardena, and Miller
was never published. Since I have nothing to add to the exposition that Caruso,
Priddy, and I gave, which includes complete details of a variant of Carlsson’s proof
of the reduction to elementary Abelian p-groups, I will give an outline that may
gain clarity by the subtraction of most of the technical details.
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We assume throughout that G is a finite p-group. We begin with a general
G-spectrum kg, and we will work with the bitheory

EL(X5Y) = kS (X))

on spaces X and Y. It can be defined as the cohomology of X with coefficients in
the spectrum Y A kg. The following easy first reduction of Carlsson is a key step.
It holds for both represented and pro-group valued theories. Let &2 be the family
of proper subgroups of G.

LEMMA 4.1. Assume that k}; is e-invariant for all H € Z7. Then kf is e-
invariant if and only if k% (E.22) = 0.

PROOF. Let X be e-contractible. We must show that k% (X) = 0 if ké(E,@) =
0. Write Y = EZ. Then Y% = S° and Y is H-contractible for H € 2. Let
7Z =Y/5°. We have the cofiber sequence

X— XAY —- XAZ

We claim that k(W AY) = 0 for any G-CW complex W and that k5L(XAZ) =0
for any G-CW complex Z such that Z¢ = x. The first claim holds by hypothesis
on orbit types GG/G and holds trivially on orbit types G/H with H € 2. The
second claim holds on orbits by the induction hypothesis. The general cases of
both claims follow. []

The cofiber sequence EG, — S° — EG gives rise to a long exact sequence
(4.2) — kL(Y; BEGy) — kL(Y) — EL(Y; EG) 2, WY BGL) — .

The EG terms carry the singular part of the problem; the EG terms carry the
free part.

Let us agree once and for all that all of our theories are to be understood as
pro-group valued and completed at p, since that is the form of the theorem we
need to prove. We must show that #5(Y) = 0. However, studying more general
theories allows a punch line in the elementary Abelian case: there the map ¢ in
(4.2) is proven to be an isomorphism by comparison with a theory for which the
analogue of the Segal conjecture holds trivially.

For a normal subgroup K of H with quotient group J write kj ;- = kj for the
theory represented by ®(kj), where ky denotes kg regarded as an H-spectrum.
We pointed out the ambiguity of the notation k% at the end of XVI§6, but we
also observed there that the notation 7% is correct and unambiguous. As we shall



270 XX. THE SEGAL CONJECTURE

explain in the next section, we can analyze the singular terms in (4.2) in terms of

these subquotient theories.

THEOREM 4.3. Assume that £} is e-invariant for every proper subquotient .J of
G and let Y = [

(i) If G is not elementary Abelian, then k5 (Y; EG) = 0.
(ii) If ¢ = (Z/p)", then k5(Y;EG) is the direct sum of p’~9/2 copies of
NG 6 (59).

Warning: the nonequivariant theory &, is usually quite different from the
underlying nonequivariant theory k* = k.

As we shall explain in Section 6, we can use Adams spectral sequences to analyze
the free terms in (4.2).

THEOREM 4.4. Assume that kg is split and & is bounded below and let Y =
L.

(i) If G is not elementary Abelian, then k5 (Y; FGL) = 0.
(ii) It G = (Z/p)" and H*(k) is finite dimensional, then k5 (Y; EGy) is the
direct sum of p""=Y/2 copies of X7k*(SP).

The hypothesis that H*(k) be finite dimensional in (ii) is extremely restrictive,
although it is satisfied trivially when £ is the sphere spectrum. The hypothesis
is actually necessary. We shall see in Section 7 that the theories 7. (+; BgIly) are
e-invariant for finite groups II. They satisfy all other hypotheses of our theorems,
but here £* and ké/G are different. In such cases, the calculation of kj(Y; EG )
falls out from the e-invariance, which must be proven differently, and (4.2).

Carlsson’s reduction is now the case mg of the following immediate inductive
consequence of the first parts of Theorems 4.3 and 4.4.

THEOREM 4.5. Suppose that G is not elementary Abelian. Assume

(i) k5 is e-invariant for all elementary Abelian subquotients .J;
(ii) ky is split and kg, k is bounded below for all non-elementary Abelian sub-
quotients J = H/K.

Then k% is e-invariant for all subquotients J, including J = G.

Returning to cohomotopy and the proot of the Segal conjecture, it only remains
to prove that the map ¢ in (4.2) is an isomorphism when G = (Z/p)”. We assume
that the result has been proven for 1 < ¢ < r. Comparing Theorems 4.3 and 4.4,
we see that the map 6 in (4.2) is a map between free 7*-modules on the same
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number of generators. It suffices to show that ¢ is a bijection on generators, which
means that it is an isomorphism in degree r — 1. Here ¢ is a map between free
modules on the same number of generators over the p-adic integers Z7' , so that it
will be an isomorphism if it is a monomorphism when reduced mod p.

To prove this, let kg = F(EGy, HF,), where HF, is the Eilenberg-MacLane G-
spectrum associated to the “constant Mackey functor” at F, that we obtain from
[X.4.3. This theory, like any other theory represented by a function spectrum
F(EG.,+), is e-invariant. Since n§'(HF,) = F,, we have a unit map S¢ — HF,,
and we compose with ¢ : HF, — kg to obtain n : S¢ — kg. There is an
induced map S = Sq/¢ — kq/q, and a little calculation shows that it sends the
unit in 7°(5) to an element that is non-zero mod p. We can also check that the
subquotient theories k% are all e-invariant. By the naturality of (4.2), we have the
commutative diagram

(Y BG) — = 7Y EGL)

n*l lm

ke (Y5 BG) — = k(Y EGL).

The bottom map 6 is an isomorphism since k5(Y) = 0. The left map 7. is

the sum of prr=1/2

copies of X" 7'n,, n. : 7%(S) — 7°%(kg/), and is therefore a
monomorphism mod p. Thus the top map é is a monomorphism mod p, and this
concludes the proof.

J. F. Adams, J. H. Gunawardena, and H. Miller. The Segal conjecture for elementary Abelian
p-groups-1. Topology 24(1985), 435-460.

G. Carlsson. Equivariant stable homotopy and Segal’s Burnside ring conjecture. Annals Math.

120(1984), 189-224.

J. Caruso, J. P. May, and S. B. Priddy. The Segal conjecture for elementary Abelian p-groups-II.
Topology 26(1987), 413-433.

5. Approximations of singular subspaces of G-spaces

Let SX denote the singular set of a G-space X, namely the set of points with
non-trivial isotropy group. The starting point of the proof of Theorem 4.3 is the
space level observation that the inclusions

SX — X and S° — EG
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induce bijections
[X,EG A X' — [SX,EGAX'lg — [SX, X'

We may represent theories on finite G-CW complexes via colimits of space level
homotopy classes of maps. The precise formula is not so important. What is
important is that, when calculating k% (X EG), we get a colimit of terms of the
general form [SW, Z]s. We can replace S here by other functors T' on spaces that
satisfy appropriate axioms and still get a cohomology theory in X, called k% (X; 7).
Such functors are called “S-functors”. Natural transformations 7" — T” induce
maps of theories, contravariantly. We have a notion of a cofibration of S-functors,
and cofibrations give rise to long exact sequences. In sum, we have something like
a cohomology theory on S-functors T

We construct a filtered S-functor A that approximates the singular functor 5.
Let & = &/(() be the partially ordered set of non-trivial elementary Abelian
subgroups of G, thought of as a G-category with a map A — B when B C A,
with G acting by conjugation. If G # e, the classifying space B.</ is G-contractible.
In fact, if C' is a central subgroup of order p, then the diagram A «— AC — C
displays the values on an object A of three G-equivariant functors on @/ together
with two equivariant natural transformations between them; these induce a G-
homotopy from the identity to the constant G-map at the vertex C.

We can parametrize &/ by points of SX. Precisely, we construct a topological
G-category /[ X] whose objects are pairs (A, z) such that z € X4; there is a mor-
phism (A,z) — (B,y) if BC Aand y = z, and G acts by g(A, z) = (gAg™, gz).
Projection on the X-coordinate gives a functor &/[X] — SX, where S X is a cate-
gory in the trivial way, and B&/[X] — BSX = SX is a G-homotopy equivalence.
The subspace B/ [*] of B&/[X] is G-contractible. Let AX = Ba/[X]/Ba/[*]. We
still have a G-homotopy equivalence AX — SX, but now A is an S-functor and
our equivalences give a map of S-functors. For any space Y, we have

k(Y5 BG) 2 k(Y S) 2 kLY A).

The functor A arises from geometric realizations of simplicial spaces and carries
the simplicial filtration F,A; here F_1A = % and F,_1A = A, where r = rank (G).

Inspection of definitions shows that the successive subquotients satisty

(Fy APy A)X) =\ SUGy Ay XAW).
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Here w runs over the G-conjugacy classes of strictly ascending chains (Ag, -+, A,)
of non-trivial elementary Abelian subgroups of ¢, H(w) is the isotropy group of w,
namely {glgA;g™' = A;, 0 < i < g}, and A(w) = A,. For each normal subgroup
K of a subgroup H of (7, there is an S-functor C'(K, H) whose value on X is
Gy Ag X%, and, as S-functors,

(5.1) (FyA/ Pyt A) =\ S1C(A(w), H(w)).
By direct inspection of definitions, we find that, for any space Y,
(52) KoY OO H)) 2 by (V5.

This is why the ®-fixed point functors enter into the picture.

To prove Theorem 4.3, we restrict attention to Y = F.Z2. If (¢ is not elementary
Abelian, then Y is contractible and the subquotients H/K are proper for all
pairs (K, H) that appear in (5.1). If G = (Z/p)", and ¢ < r — 2, this is still true.
All these terms vanish by hypothesis. If G = (Z/p)", we are left with the case
g=r—1. Here A(w) = H(w) = G for all chains w, there are p(p — 1)/2 chains w,
and Y9 = S° Using (5.2), Theorem 4.3 follows.

G. Carlsson. Equivariant stable homotopy and Segal’s Burnside ring conjecture. Annals Math.
120(1984), 189-224.

J. Caruso, J. P. May, and S. B. Priddy. The Segal conjecture for elementary Abelian p-groups-II.
Topology 26(1987), 413-433.

6. An inverse limit of Adams spectral sequences

We turn to the proof of Theorem 4.4. Its hypothesis that kg is split allows
us to reduce the problem to a nonequivariant one, and the hypothesis that the
underlying nonequivariant spectrum k is bounded below ensures the convergence
of the relevant Adams spectral sequences. We prove Theorem 4.4 by use of a
particularly convenient model Y for £ | namely the union of the G-spheres
S where V is the reduced regular complex representation of Gi. It is a model
since V¢ = {0} and V¥ #£ 0 for H € 2.

In general, for any representation V', there is a Thom spectrum BG™Y. Here we
may think of —V" as the negative of the representation bundle EG' x5V — BG,
regarded as a map —V : BG' — BO x Z. If V is suitably oriented, for example
if V is complex, there is a Thom isomorphism showing that H*(BG~") is a free
H*(BG)-module on one generator ¢, of degree —n, where n is the (real) dimension
of V. We take cohomology with mod p coefficients. For V' C W, there is a
map f : BG™" — BG™V such that f* : H*(BG™Y) — H*(BG™") carries
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ty to X(W — V). Here x(V) € H*(BG) is the Euler class of V, which is the
Euler class of its representation bundle. For a split G-spectrum kg we have an
isomorphism

kS(SY, EGL) = k(BGTY).
For V. C W, the map f. : k(BG™") — k. (BG™) corresponds under the
isomorphisms to the map induced by e : SV — SW. (The paper of mine cited at
the end gives details on all of this.) With our model Y for E 2, we now see that

k' (Y EGy) = k(Y EGy) 2 limk,(BG™).

Remember that we are working p-adically; we complete spectra at p without
change of notation. The inverse limit £, of Adams spectral sequences of an inverse
sequence { X, } of bounded below spectra of finite type over the p-adic integers Z,
converges from

Fy = Exta(colim H*(X,,),F,)
to limm.(X,,). With X,, = kABG™ this gives an inverse limit of Adams spectral
sequences that converges from
Ey = Exto(H* (k) ® colim H*(BG™),F,)
to kL(Y; EGL). The colimit is taken with respect to the maps
x(V): H(BG™Y) — H*(BG~"DY),

Since VH £ {0}, (V) restricts to zero in H*(BH) for all H € 2. A theorem of
Quillen implies that y (V') must be nilpotent if ¢ is not elementary Abelian, and
this implies that £y = 0. This proves part (i) of Theorem 4.4.

Now assume that G' = (Z/p)". Let L = x(V) € H*®" =Y (BG). Then

colim H*(BG™Y) = H*(BG)[L™"].
It is easy to write L down explicitly, and the heart of part (ii) is the following

purely algebraic calculation of Adams, Gunawardena, and Miller, which gives the

F5 term of our spectral sequence.

THEOREM 6.1. Let St = H*(BG)[L™'] @4 F,, and regard St as a trivial A-
module. Then St is concentrated in degree —r and has dimension p""=1)/2, The

quotient homomorphism ¢ : H*(BG)[L™'] — St induces an isomorphism
Exta(K @ St,F,) — Exta(K © H(BG)[L™],F,)

for any finite dimensional A-module K.
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The notation “St” stands for Steinberg: G'L(r,F,) acts naturally on everything
in sight, and St is the classical Steinberg representation.
Let W be the wedge of p""=1/2 copies of S=". It follows by convergence that

there is a compatible system of maps W — BG™"Y that induces an isomorphism
k(W) = 7ok AW) — limm.(k A BG™Y) = kz*(Y; EGY).

This gives Theorem 4.4(ii). It also implies the following remarkable corollary,
which has had many applications.

COROLLARY 6.2. The wedge of spheres W is equivalent to the homotopy limit,
BG=V of the Thom spectra BG™Y. In particular, with G = Z/2, S7! is
equivalent to the spectrum holim RP%.

J. F. Adams, J. H. Gunawardena, and H. Miller. The Segal conjecture for elementary Abelian
p-groups-1. Topology 24(1985), 435-460.

J. Caruso, J. P. May, and S. B. Priddy. The Segal conjecture for elementary Abelian p-groups-II.
Topology 26(1987), 413-433.

J. P. May. Equivariant constructions of nonequivariant spectra. Algebraic Topology and Alge-
braic K-theory. Princeton Univ. Press. 1987, 345-364.

D. Quillen and B. Venkov. Cohomology of finite groups and elementary Abelian subgroups.
Topology 11(1972), 317-318.

7. Further generalizations; maps between classifying spaces

Even before the Segal conjecture was proven, Lewis, McClure, and 1 showed
that it would have the following implication. Let G and II be finite groups and
let A(G,1I) be the Grothendieck group of Il-free finite (G x II)-sets. Observe that
A(G, 1) is an A(G)-module and let I be the augmentation ideal of A(G).

THEOREM 7.1. There is a canonical isomorphism
af t A(G )} — [E*°BGL, Y BILL].

The map o : A(G,II) — [E*BG,, X Bl can be described explicitly in
terms of transfer maps and classifying maps (and the paper of mine cited at the
end gives more about the relationship between the algebra on the left and the
topology on the right). A Il-free (G x II)-set T" determines a principal II-bundle

EG XgT—>EG XgT/H,
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which is classified by a map &(T') : EFG xgT/Il — BII. It also determines a (not

necessarily connected) finite cover
EG X G T/H — FG X G {*} = BG,
which has a stable transfer map 7(7T') : BG4 — (EG x¢ T/1)4. Both ¢ and 7

are additive in T', and « is the unique homomorphism such that
a(T) = &(T) o 7(T).

In principle, this reduces to pure algebra the problem of computing stable maps
between the classifying spaces of finite groups. Many authors have studied the
relevant algebra — Nishida, Martino and Priddy, Harris and Kuhn, Benson and
Feshback, and Webb, among others — and have obtained a rather good under-
standing of such maps. We shall not go into these calculations. Rather, we shall
place the result in a larger context and describe some substantial generalizations.

Recall that we interpreted the consequences of the Sullivan conjecture for maps
between classifying spaces as statements about equivariant classifying spaces. Anal-
ogously, Theorem 7.1 is a consequence of a result about the suspension G-spectra
of equivariant classifying spaces.

THEOREM 7.2. The cohomology theory 7 (+; ¥ (Bgll) )7 is e-invariant. There-
fore the map F(G' — * induces an isomorphism

Te(S% Y (Bell) )] — 75 (EG; X°(Bell)y ) & 7*(BGy; X BIL, ).

The isomorphism on the right comes from XVI.2.4. In degree zero, this is
Theorem 7.1. The description of the map « of that result is obtained by describing
the map of Theorem 7.2 in nonequivariant terms, using the splitting theorem for
(BsIN)“ of VIL2.7, the splitting theorem for the homotopy groups of suspension
spectra of XIX.1.2, and some diagram chasing.

We next point out a related consequence of the generalization of the Segal
conjecture to families. In it, we let II be a normal subgroup of a finite group I'.

THEOREM 7.3. The projection E(II;T') — * induces an isomorphism
AD)iz@r) — 7 (EALT)4) = 7g(B(ILT),).

This is just the degree zero part of Theorem 2.5 for the family .Z (1I;I') in the
group I'; the last isomorphism is a consequence of XVI.5.4. With the Burnside
ring replaced by the representation ring, a precisely analogous result holds in
K-theory, but in that context the result generalizes to an arbitrary extension of
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compact Lie groups. Of course, these may be viewed as calculations of equivariant
characteristic classes. It is natural to ask if Theorems 7.1 and 7.3 admit a common
generalization or, better, if the completion theorems of which they are special cases
admit a common generalization.

A result along these lines was proven by Snaith, Zelewski, and myself. Here, for
the first time in our discussion, we let compact Lie groups enter into the picture.
We consider finite groups G and J and a compact Lie group II. Let A(G x J,1I)
be the Grothendieck group of principal (G' x J, IT)-bundles over finite (G x .J)-sets.
This is an A(G x J)-module, and we can complete it at the ideal [.Z74(J). As in
VII§1, Z¢(J) is the family of subgroups H of G x J such that H N .J = e.

THEOREM T7.4. There is a canonical isomorphism
Oé}gG(J) . A(G X J7H)}gG(J) — [ZOOng+, ZOOBgﬂ+]G.

Again, the map o : A(G'x J,1I) — [ BgJy, ¥ Bglly )¢ is given on principal
(G x J,II)-bundles as composites of equivariant classifying maps and equivariant
transfer maps. Although the derivation is not quite immediate, this result is a
consequence of an invariance result exactly analogous to the version of the Segal
conjecture given in Theorem 3.2.

THEOREM 7.5. Let II be a normal subgroup of a compact Lie group I' with
finite quotient group G. Let S be a multiplicatively closed subset of A(G) and
let I be an ideal in A(G). Then the cohomology theory S~t'a¥ (+; B(IL;T)4)7 is

¢ -invariant, where
A = J{Supp(P)[PNS=0 and P DI}

The statement is identical with that of Theorem 3.2, except that we have substi-
tuted B(II;T), for S° as the second variable of our bitheory. We could generalize
a bit further by substituting E(II; I'); Ap X for any finite I'-CW complex X. What
other Gi-spaces can be substitutedl” The elementary p-group case of the proof of the
Segal conjecture makes it clear that one cannot substitute an arbitrary G-space.
In fact, very little more than what we have already stated is known.

Theorem 7.5 specializes to give the analog of Theorem 3.1.

THEOREM 7.6. Let .% be a family in GG, where G = I'/Il. The map £.% — x
induces an isomorphism

75(S% BULT) )i s — m(EF S B(ILD),).
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We can restate this in Mackey functor form, as in Theorem 2.5, and then deduce
a conceptual formulation generalizing Theorem 1.10.

THEOREM 7.7. For every family .% in G, the map
& PIK(LF), S B(ILT),) — F(EF,, S B(ILT),)
is an equivalence of G-spectra.

This extends the calculational consequences to the RO(G)-graded represented
theories. Exactly as in Sections 1-3, all of these theorems reduce to the following
special case.

THEOREM 7.8. Let II be a normal subgroup of a compact Lie group I' such
that the quotient group G is a finite p-group. Then the theory @& (-; B(IL; 1)),
is e-invariant.

The proof is a bootstrap argument starting from the Segal conjecture. When
I’ is finite, the result can be deduced from the generalized splitting theorem of
XIX.2.1 and the case of the Segal conjecture for I' that deals with the family of
subgroups of I' that are contained in II. When I" is a finite extension of a torus,
the result is then deduced by approximating I' by an expanding sequence of finite
groups; this part of the argument entails rather rather elaborate duality and colimit
arguments, together with several uses of the generalized Adams isomorphisms
XVI.5.4. Finally, the general case is deduced by a transfer argument.

As is discussed in my paper with Snaith and Zelewski, and more extensively in
the survey of Lee and Minami, these results connect up with and expands what is
known about the Segal conjecture for compact Lie groups.
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CHAPTER XXI

Generalized Tate cohomology

by J. P. C. Greenlees and J. P. May

In this chapter, we will describe some joint work on the generalization of the
Tate cohomology of a finite group G with coefficients in a G-module V' to the Tate
cohomology of a compact Lie group GG with coefficients in a G-spectrum k¢g. There
has been a great deal of more recent work in this area, with many calculations and

applications. We shall briefly indicate some of the main directions.

J. P. C. Greenlees. Representing Tate cohomology of G-spaces. Proc. Edinburgh Math. Soc.
30(1987), 435-443.

J. P. C. Greenlees and J. P. May. Generalized Tate cohomology. Memoirs Amer. Math. Soc.
No 543. 1995.

1. Definitions and basic properties

Tate cohomology has long played a prominent role in finite group theory and
its applications. For a finite group G and a G-module V| the Tate cohomology
HE(V) is obtained as follows. One starts with a free resolution

c— P — Py —7Z—0
of Z by finitely generated free Z[G]-modules, dualizes it to obtain a resolution

0 —Z— Py — P — -,

renames P* = P_,_y, and splices the two sequences together to obtain a Z-graded
exact complex P of finitely generated free Z[G]-modules with a factorization
Py — Z — P_q of dy. The complex P is called a “complete resolution of Z”,
and [:](*;(V) is defined to be the cohomology of the cochain complex Homg (P, V).
There results a “norm exact sequence” that relates [:]C*;(V), HE(V), and HE (V).

279
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In connection with Smith theory, Swan generalized this algebraic theory to a
cohomology theory [:](*;(X; V) on G-spaces X, using Hom(P @ C.(X),V). (Swan
took X to be a G-simplicial complex, but singular chains could be used.) When
G = S'or G = 5% and X is a CW-complex with a cellular action by G, there is
a closely analogous theory that is obtained by replacing P by Z[u,u™!], where u
has degree —2 or —4. Here Hom(P @ C.(X), V) has differential

dp@x)=pedx)+pudi-z,

where ¢ € C1(S5') or ¢ € C5(S?) is the fundamental class. For S, this is periodic
cyclic cohomology theory.

We shall give a very simple definition of a common generalization of these vari-
ants of Tate theory. In fact, as part of a general “norm cofibration sequence”, we
shall associate a Tate G-spectrum t(k¢g) to any G-spectrum k¢, where G is any
compact Lie group. The construction is closely related to the “stable homotopy
limit problem” and to nonequivariant stable homotopy theory.

We have the cofiber sequence
(1.1) EG, — S° — EG,
and the projection EG, — SY induces the canonical map of G-spectra
(1.2) g1k =F(S° ka) — F(EGL, ka).

Taking the smash product of the cofibering (1.1) with the map (1.2), we obtain
the following map of cofiberings of G-spectra:

ke N EG, ke ko N EG
(1.3) s/\idl ls ls/\id
F(EGy, ka) N EGy — F(EG,, kG) — F(EG,, kG) N EG.

We have seen most of the ingredients of this diagram in our discussion of the Segal
conjecture. We introduce abbreviated notations for these spectra. Define

(1.4) f(ka) = ke A EG..

We call f(k¢g) the free G-spectrum associated to k¢. It represents the appropri-
ate generalized version of the Borel homology theory H.(EG x¢ X). Precisely, if
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k¢ is split with underlying nonequivariant spectrum £, then, by XVI1.2.4,
(1.5) Flke)o(X) Z ko (BEGy N SAMD X)),

We refer to the homology theories represented by G-spectra of the form f(kq) as
Borel homology theories. We refer to the cohomology theories represented by the
f(kg) simply as f-cohomology theories. Define

(1.6) F'(ke) = F(EG, ke) A EG,.

It is clear that the map e Ald : f(kg) — f'(kg) is always an equivalence, so that
the G-spectra f(kg) and f'(kg) can be used interchangeably. We usually drop the
notation f’, preferring to just use f. Define

(1.7) f(ke) = ke A EG.

We call f~(kg) the singular G-spectrum associated to ke.
Define

(1.8) clka) = F(EG4, kg).

We call ¢(kg) the geometric completion of kg. The problem of determining the
behavior of ¢ : k¢ — ¢(kg) on G-fixed point spectra is the “stable homotopy limit
problem”. We have already discussed this problem in several cases, and we have
seen that it is best viewed as the equivariant problem of comparing the geometric
completion ¢(k¢g) with the algebraic completion (kg )7 of kg at the augmentation
ideal of the Burnside ring or of some other ring more closely related to kg. As
one would expect, ¢(kq) represents the appropriate generalized version of Borel
cohomology H*(EG x ¢ X). Precisely, if kg is a split G-spectrum with underlying
nonequivariant spectrum k, then, by XVI1.2.4,

(1.9) clhe) (X) 2 K (EG, Ag X).

We therefore refer to the cohomology theories represented by G-spectra ¢(kq) as
Borel cohomology theories. We refer to the homology theories represented by the
c(kg) as c-homology theories.

Finally, define

(1.10) t(ke) = F(EGy, ka) A EG = f~ (k).

We call t(k¢g) the Tate G-spectrum associated to kg. It is the singular part of the
geometric completion of kg. Our primary focus will be on the theories represented
by the t(kg). These are our generalized Tate homology and cohomology theories.
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With this cast of characters, and with the abbreviation of ¢ Aid to ¢, the diagram
(1.3) can be rewritten in the form

flka) e S~ (ka)

(L.11) sl: l l

f'(ke) — c(ka) — t(kc).

The bottom row is the promised “norm cofibration sequence”. The theories rep-
resented by the spectra on this row are all e-invariant.
The definition implies that if X is a free G-spectrum, then

Hke)o(X) = 0 and t(ka)*(X) = 0.
Similarly, if X is a nonequivariantly contractible G-spectrum, then
c(kq)"(X) =0 and f(ka).(X)=0.
By definition, Tate homology i a special case of c-homology,
(1.12) Hke)n(X) = e(ka)n(EG A X).

The two vanishing statements imply that Tate cohomology is a special case of

f-cohomology,

(1.13) tka)"(X) = f(ke)"™(EG A X).

In fact, on the spectrum level, the vanishing statements imply the remarkable
equivalence

(1.14)

t(ka) = F(EG, ka) N EG ~ F(EG,YEG, Akg) = F(EG, S f(ka)).

It is a consequence of the definition that ¢(k¢) is a ring G-spectrum if k¢ is a
ring G-spectrum, and then #(kg) is a ring spectrum.

Much of the force of our definitional framework comes from the fact that (1.11)
is a diagram of genuine and conveniently explicit G-spectra indexed on representa-
tions, so that all of the Z-graded cohomology theories in sight are RO(G)-gradable.
The RO(G)-grading is essential to the proofs of many of the results discussed be-
low. Nevertheless, it is interesting to give a naive reinterpretation of the fixed
point cofibration sequence associated to the norm sequence.

With our definitions, the Tate homology of X is

t(ka)«(X) = m((t(ka) A X))
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Since any kg is e-equivalent to ji for a naive G-spectrum jg and Tate theory is
e-invariant, we may as well assume that kg = i,j5. Provided that X is a finite
G-CW complex, the spectrum (#(kg) A X)“ is then equivalent to the cofiber of an

appropriate transfer map

(jo ASANDX )0 = (jo A BEGy ASAND X)) /G

|

(o A X)) = F(EGy, ja A X)C.

A description like this was first written down by Adem, Cohen, and Dwyer. When
(7 is finite, X = S°, and j; is a nonequivariant spectrum & given trivial action by
G, this reduces to

The interpretation of Tate theory as the third term in a long sequence whose other
terms are Borel k-homology and Borel k-cohomology is then transparent.

A. Adem, R. L. Cohen, and W. G. Dwyer. Generalized Tate homology, homotopy fixed points,
and the transfer. Contemporary Math. Volume 96(1989), 1-13.

J. D. S. Jones. Cyclic homology and equivariant homology. Inv. Math. 87(1987), 403-423.
R. G. Swan. A new method in fixed point theory. Comm. Math. Helv. 34(1960), 1-16.

2. Ordinary theories; Atiyah-Hirzebruch spectral sequences

Let M be a Mackey functor and V' be the mo(G)-module M(G/e). The norm
sequence of HM depends only on V: if M and M’ are Mackey functors for which
M(GJe) = M'(G/e) as mo(G)-modules, then the norm cofibration sequences of
HM and HM' are equivalent. We therefore write

(2.1) HE(X;V) = t(HM).(X) and H5(X;V) = t(HM)"(X).

For finite groups (5, this recovers the Tate-Swan cohomology groups, as the nota-
tion anticipates. We sketch the proof. The simple objects to the eyes of ordinary
cohomology are cells, and the calculation depends on an analogue of the skeletal
filtration of a CW complex that mimics the construction of a complete resolution.
The idea is to splice the skeletal filtration of KG, with its Spanier-Whitehead
dual. More precisely, we define an integer graded filtration on G, or rather on
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its suspension spectrum, by letting

N EGO =00 c(BGY™) fori>1
I"EG = SON forz =10
D(EG1) for s < —1.

The ith subquotient of this filtration is a finite wedge of spectra S A G, and the
E' term of the spectral sequence that is obtained by applying ordinary nonequiv-
ariant integral homology is a complete resolution of Z. Therefore, if one takes the
smash product of this filtration with the skeletal filtration of X and applies an
equivariant cohomology theory kf(-), one obtains the “Atiyah-Hirzebruch-Tate”
spectral sequence

(2.2) B3 = (X5 K) = (k)57 (X).

Here k is the underlying nonequivariant spectrum of k¢, and k? = 7_,(k) regarded
as a G-module. To see that the target is Tate cohomology as claimed, note that
the “cohomological” description (1.14) of the Tate spectrum gives

t(R)e(X) = [EG A X, kEASEG, .

There are compensating shifts of grading in the identifications of the Fy terms and
of the target, so that the grading works out as indicated in (2.2).

When kg = HM, the spectral sequence collapses at the Fy-term by the dimen-
sion axiom, and this proves that t(HM ), (X) is the Tate-Swan cohomology of X.
In general, we have a whole plane spectral sequence, but it converges strongly
to t(ke)*(X) provided that there are not too many non-zero higher differentials.
When k¢ is a ring spectrum, it is a spectral sequence of differential algebras.

With a little care about the splice point and the model of FG used, we can
apply part of this construction to compact Lie groups G of dimension d > 0. In

this case, there is a “gap” in the appropriate filtration of EG:

N EGH = 50U C(EGY™) fori>1
M"EG = SON for —d<21<0
D(EG(D) for i < —d.

The gap is dictated by the fact that the Spanier-Whitehead dual of G is G4 AS™%
In the case of Eilenberg-MaclLane spectra, this gives an explicit chain level
calculation of the coefficient groups ﬁf(V) = [:]*G(SO; V) in terms of the ordinary
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(unreduced) homology and cohomology groups of the classifying space BG:

H"(BG;V) if0<n
(2.3) HAL(V) = t(HM)" = {0 if —d <n <0
H_,_1-4(BG;V) iftn<—d—1.

However, we would really like a chain complex for calculating the ordinary Tate
cohomology of G-CW complexes X, and for groups of positive dimension it is not
obvious how to make one. At present, we only have such descriptions for G = S!
and GG = 5. In these cases, we can exploit the obvious cell structure on G and the
standard models S(C*>) and S(H*>) for £G to put a cunning G-CW structure on
EG 4 AX and to derive an appropriate filtration of EG A X when (' acts cellularly
on X. In the case of S, the resulting chain complex is a cellular version of Jones’
complex for cyclic cohomology, and this proves that t(HZ)%: (X) is the periodic
cyclic cohomology [:Igl (X), as defined by Jones in terms of the singular complex
of X. There is a precisely analogous identification in the case of S®. In general,
the problem of giving FG' A X an appropriate filtration appears to be intractable,
although a few other small groups are under investigation.

Despite this difficulty, we still have spectral sequences of the form (2.2) for
general compact Lie groups i, where k% = n_ (k) is now regarded as a wo(G)-
module. However, in the absence of a good filtration of EG A X, we construct
the spectral sequences by using a Postnikov filtration of kg. In this generality, the
ordinary Tate groups [:](*;(X; V') used to describe the Ey terms are not familiar ones,
and systematic techniques for their calculation do not appear in the literature. One
approach to their calculation is to use the skeletal filtration of X together with
(2.3) and change of groups. More systematic approaches involve the construction
of spectral sequences that converge to [:](*;(X; V), and there are several sensible
candidates. This is an area that needs further investigation, and we shall say no
more about it here.

We have similar and compatible spectral sequences for Borel and f-cohomology,
and in these cases too the FEy-terms depend only on the graded 7o(G)-module £*,
as one would expect from the e-invariance of the bottom row of Diagram (1.11).
This very weak dependence on kg makes the bottom row much more calculationally

accessible than the top row.
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3. Cohomotopy, periodicity, and root invariants

For finite groups G, the Segal conjecture directly implies the determination of
the Tate spectrum associated to the sphere spectrum Sg. Indeed, we have

(3.1) t1(Sq) = F(EG4,S°) A EG = (S6)} A EG ~ (S EG)}.
For instance, if GG is a p-group, then
(3.2) t(Sq) ~ (8 EG)),
and we may calculate from the splitting theorem XIX.1.1 that, after completion,
(33) S = @ (EWal)s M X,
H)#(1

With X = S° the summand for H = G is 7.(5°%), and it follows that, for each
(G, the Atiyah-Hirzebruch-Tate spectral sequence defines a “root invariant” on the
stable stems. Its values are cosets in the Tate cohomology group [:]*(G; 7.(59)).
Essentially, the root invariant assigns to an element o € 7,(SY) all elements of F?
of the appropriate filtration that project to the image of o in the £* term of the
spectral sequence.

These invariants have not been much investigated beyond the classical case of
G = C,, the cyclic group of order p. In this case, our construction agrees with
earlier constructions of the root invariant. Indeed, this is a consequence of the
observations that, if G = (5 and kg = 1.k is the G-spectrum associated to a
non-equivariant spectrum k&, then

(3.4) (k) ~ holim(RP> A k)
and, if G = C, for an odd prime p and kg = 2.k, then
(3.5) t(ke)® ~ holim(L>% A Xk),
where L% is the lens space analog of RP>. Taking & = .5, there results a spectral
sequence that agrees with our Atiyah-Hirzebruch-Tate spectral sequence and was
used in the classical definition of the root invariant.
Similarly, if GG is the circle group and kg = i.k, then
(3.6) t(ke)® ~ holim(CP> A X%k).

These are all special cases of a phenomenon that occurs whenever G acts freely on
the unit sphere of a representation V', and this phenomenon is the source of periodic
behavior in Tate theory. The point is that the union of the S™ is then a model
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for G, and we can use this model to evaluate the right side as a homotopy limit
in the equivalence (1.14). This immediately gives (3.4)—(3.6). These equivalences
allow us to apply nonequivariant calculations of Davis, Mahowald, and others of
spectra on the right sides to study equivariant theories. We will say a little more
about this in Section 6. It also gives new insight into the nonequivariant theories.
In particular, if k is a ring spectrum, then (k) is a ring spectrum. Looking
nonequivariantly at the right sides, this is far from clear.

D. M. Davis and M. Mahowald. The spectrum (PAbo)_«. Proc. Cambridge Phil. Soc. 96(1984)
85-93.

D. M. Davis, D. C. Johnson, J. Klippenstein, M. Mahowald and S. Wegmann. The spectrum
(P ABP{2))_os. Trans. American Math. Soc. 296(1986) 95-110.

4. The generalization to families

The theory described above is only part of the story: it admits a generalization
in which the universal free G-space EG is replaced by the universal .#-space E.%
for any family .# of subgroups of G. The definitions above deal with the case
F = {e}, and there is a precisely analogous sequence of definitions for any other
family. We have the cofibering
(4.1) EZ, —S° — EZ,
and the projection £.Z, — S° induces a G-map
(42) [ kG = F(SO, kg) — F(Egﬂ_, kg)

Taking the smash product of the cofibering (4.1) with the map (4.2), we obtain
the following map of cofiberings of G-spectra:

ke N EZ, ke ko A E
(4.3) s/\idl ls ls/\id
F(EF., kG) N EFy — F(BF4, kG) — F(EZ, kG) N BE.Z
Define the .#-free G-spectrum associated to kg to be
(4.4) fz(ka) = ka N EF,.

We refer to the homology theories represented by G-spectra fz(kg) as F#-Borel
homology theories. Define

(4.5) Fiolke) = F(EF 4, ke) N BEZ,.
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Again, e Ald @ fo(ke) — f(ke) is an equivalence, hence we usually use the
notation fz. Define the .#-singular G-spectrum associated to kg to be

(4.6) f7(ka) =ke NEZ.

Define the geometric .%-completion of kG to be
(4.7) colka) = F(EZ:, kq).

We refer to the cohomology theories represented by G-spectra cg(kg) as 7 -
Borel cohomology theories. The map ¢ : k¢ — ca (k) of (4.2) is the object
of study of such results as the generalized Atiyah-Segal completion theorem and
the generalized Segal conjecture of Adams-Haeberly-Jackowski-May. As in these
results, one version of the .#-homotopy limit problem is the equivariant problem
of comparing the geometric .#-completion ¢z (k) with the algebraic completion
(ka)1.2 of ke at the ideal [.# of the Burnside ring or at an analogous ideal in a
ring more closely related to kg. Observe that we usually do not have analogs of
(1.5) and (1.9) for general families .#; the Adams isomorphism XVI1.5.4 and the
discussion around it are relevant at this point.

Define
(4.8) to(ke) = F(EFy k) N EF = [Fez(ka).

We call t(kg) the F-Tate G-spectrum associated to kg. These G-spectra rep-
resent .%-Tate homology and cohomology theories. With this cast, and with the
abbreviation of £ Aid to ¢, the diagram (4.3) can be rewritten in the form

(4.9) sl: j l
f7(ke) — cz(ke) —tz(ka).

We call the bottom row the “.%-norm cofibration sequence”. The theories repre-

sented by the spectra on this row are all .#-invariant.

The diagram leads to a remarkable and illuminating relationship between the
Tate theories and the .#-homotopy limit problem. Recall that [.# C A(G) is the
intersection of the kernels of the restrictions A(G) — A(H) for H € Z#.

THEOREM 4.10. The spectra ¢z (k) are [.#-complete. The spectra fz(kG)
and t (kg ) are I.7-complete if k¢ is bounded below.
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We promised in XX§1 to relate the questions of when
i (ka)iz = F(K(IF), k) — F(EZ, ka) = cz(ka)

and
f*ikg/\Egﬂ_ —>kg/\[((132)

are equivalences. The answer is rather surprising.

THEOREM 4.11. Let kg be a ring G-spectrum, where G is finite. Then £, is an
equivalence if and only if £* is an equivalence and t #(k¢) is rational.

The proof is due to the first author and will be discussed in XXIV§8. We shall
turn to relevant examples in the next section.

When G is finite and kg is an Eilenberg-MacLane G-spectrum H M, the .%-Tate
G-spectrum t & (H M) represents the generalization to homology and cohomology
theories on G-spaces and G-spectra of certain “Amitsur-Dress-Tate cohomology
theories” f{}(M) that figure prominently in induction theory. We again obtain
generalized Atiyah-Hirzebruch-Tate spectral sequences in the context of families.
These vastly extend the web of symmetry relations relating equivariant theory
with the stable homotopy groups of spheres. In particular, for a finite p-group G,
if we use the family &7 of all proper subgroups of (¢, we obtain a spectral sequence
whose Fy-term is [:]fz([f) and which converges to (7.),. We have moved the
groups m.(BW H,) from the target to ingredients in the calculation of Ey. In this
spectral sequence the “root invariant” of an element a € 7, lies in degree at least
q(|G] —1). The root invariant measures where elements are detected in E? of the
spectral sequence, and the dependence on the order of (G indicates an increasing
dependence of lower degree homotopy groups of spheres on higher degree homotopy
groups of classifying spaces.

More generally, if (¢ is any finite group, we use the family .27 to obtain two re-
lated spectral sequences, both of which converge to the completion of the nonequiv-
ariant stable homotopy groups of spheres at n(%?), where n(.2?) is the product of
those primes p such that Z/pZ is a quotient of G. For example, if G is a nonabelian
group of order pg, p < ¢, then n(Z?) = p and the spectral sequences provide a
mechanism for the prime ¢ to affect stable homotopy groups at the prime p. One
of the spectral sequences is the Atiyah-Hirzebruch-Tate spectral sequence whose
FEs-term is the Amitsur-Dress-Tate homology [:]fz([f) The other comes from a
filtration of FG in terms of the regular representation of (. These spectral se-
quences lead to new equivariant root invariants, and the basic Bredon-Jones-Miller
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root invariant theorem generalizes to the spectral sequence constructed by use of
the regular representation.

A. W. M. Dress. Contributions to the theory of induced representations. Springer Lecture Notes
in Mathematics Vol. 342, 1973, 183-240.

J. P. C. Greenlees. Tate cohomology in commutative algebra. J. Pure and Applied Algebra.
94(1994), 59-83.

J. D. S. Jones. Root invariants, cup-r-products and the Kahn-Priddy theorem. Bull. London

Math. Soc. 17(1985), 479-483.
H. R. Miller. On Jones’s Kahn-Priddy theorem. Springer Lecture Notes in Mathematics Vol.
1418, 1990, 210-218.

5. Equivariant K-theory

Our most interesting calculation shows that, for any finite group G, t{(K¢) is a
rational G-spectrum, namely

(5.1) HKg)~\ K(J©Q,2),

where J is the Mackey functor of completed augmentation ideals of representation
rings and ¢ ranges over the integers. In this case, the relevant Atiyah-Hirzebruch-
Tate spectral sequence is rather amazing. Its Fy-term is torsion, being annihilated
by multiplication by the order of G. If G is cyclic, then Fy = E, and the spectral
sequence certainly converges strongly. In general, the Fs-term depends solely
on the classical Tate cohomology of G and not at all on its representation ring,
whereas t(K¢g)* depends solely on the representation ring and not at all on the
Tate cohomology. Needless to say, the proof of (5.1) is not based on use of the
spectral sequence.

In fact, and the generalization is easier to prove than the special case, t #(K¢)
turns out to be rational for every family .. Again, there results an explicit
calculation of t#(K¢) as a wedge of Eilenberg-MacLane spectra. Let J.# be the
intersection of the kernels of the restrictions R(G) — R(H) for H € Z#. It is
clear by character theory that

J.Z ={x|x(g) = 0 if the group generated by ¢ is in .F },
and we define a rationally complementary ideal J'.# by
J'Z = {x|x(g) = 0 if the group generated by ¢ is not in .7 }.

Then (5.1) generalizes to

(5.2) to(Kg) =\ K(R/T'Z) % @ Q,2),
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where (R/.J' %) 7 denotes the Mackey functor whose value at GG/H is the com-
pletion at the ideal J(.Z|g) of the quotient R(H)/J'(.#|H). This is consistent
with (5.1) since, when .# = {e}, J'(F|H) is a copy of Z generated by the regular
representation of H and JH maps isomorphically onto R(H)/Z. 1t follows in all
cases that the completions t #(K¢)r% are contractible.

The following folklore result is proven in our paper on completions at ideals of the
Burnside ring. On passage to 7§, the unit S¢ — K¢ induces the homomorphism
A(G) — R(G) that sends a finite set X to the permutation representation C[.X].
We regard R((G)-modules as A((G)-modules by pullback.

THEOREM 5.3. The completion of an R(G)-module M at the ideal J.Z of R(()
is isomorphic to the completion of M at the ideal [.# of the Burnside ring A(G).

In fact, the proof shows that the ideals I.# R(G) and J.# of R(G') have the
same radical. Therefore the generalized completion theorem of Adams-Haeberly-
Jackowski-May discussed in XIV.6.1 implies that

& (Kg)izg — F(EF4, Kg)
is an equivalence. By (5.2) and Theorem 4.11, this in turn implies that
f* : kg/\Egﬂ_ — kg/\[((]gz)

is an equivalence. In fact, the latter result was proven by the first author before
the implication was known; we shall explain his argument and discuss the algebra

behind it in Chapter XXIV.

As a corollary of the calculation of #(K), we obtain a surprisingly explicit

calculation of the nonequivariant K-homology of the classifying space BG:
(5.4) Ko(BG) = 7Z and K,(BG)= J(G)ja @ (Q/Z).

In fact, (5.1) and (5.4) both follow easily once we know that ¢(K¢) is rational.
Given that, we have the exact sequence

= KE(EGL) 0 Q = K5(EGL) 0 Q — H(K)g — -,
which turns out to be short exact. The Atiyah-Segal theorem shows that

Ki(EGy) © Q= R(G)H[8,87 0 Q,
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where 3 is the Bott element. Rationally, the K-homology of EG is a summand
of K&, and in fact KE(EG,)© Q= Q|[B, 371]. Tt is not hard to identify the maps

*

and conclude that

HE)G ={R(G)/Z}[3, 57" © Q.
Since, as explained in XIX$§5, all rational G-spectra split, this gives the exact
equivariant homotopy type claimed in (5.1). Now we can deduce (5.4) by analy-
sis of the integral norm sequence, using the Atiyah-Segal completion theorem to
identify KE&(EGL).

We must still say something about why ¢(K¢) and all other ¢ (K¢ ) are rational.
An inductive scheme reduces the proof to showing that t & (Kq) A E 2 is rational,
where &7 is the family of proper subgroups of . If V is the reduced regular
complex representation of V, then 5V is a model for 2. It follows that, for any
Kg-module spectrum M and any spectrum X, (M/\E 22)%(X) is the localization of
ME (X) away from the Euler class (which is the total exterior power) A\(V) € R(G).
Since A(V') is in J 22, it restricts to zero in all proper subgroups. Since the product
over the cyclic subgroups C of GG of the restrictions R(G') — R(C) is an injection,
A(V) = 0 and the conclusion holds trivially unless G is cyclic. In that case, the
Atiyah-Hirzebruch-Tate spectral sequence for ¢ 5»(K¢).(X) gives that primes that
do not divide the order n of GG act invertibly since n annihilates the £%term. An
easy calculational argument in representation rings handles the remaining primes.

The evident analogs of all of these statements for real K-theory are also valid.

In the case of connective K-theory, we do not have the same degree of periodicity
to help, and the calculations are harder. Results of Davis and Mahowald give the

following result.

THEOREM 5.5. If G = (), for a prime p, then
Hkug) ~ [] > H(J),

neZ

and similarly for connective real K-theory.

This result led us to the overoptimistic conjecture that its conclusion would
generalize to arbitrary finite groups. However, Bayen and Bruner have shown that
the conjecture fails for both real and complex connective K-theory.

Finally, we must point out that the restriction to finite groups in the discussion
above is essential; even for ¢ = S' something more complicated happens since
in that case t(Kg)“ is a homotopy inverse limit of wedges of even suspensions of
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K and each even degree homotopy group of ¢(Ks)“ is isomorphic to Z[[x]][x~!],
where 1 — y is the canonical irreducible one-dimensional representation of GG. In
particular, {(Kg) is certainly not rational. Similarly, still taking G = S*, each
even degree homotopy group of #(kg)“ is isomorphic to Z[[x]]. In this case, we
can identify the homotopy type of the fixed point spectrum:

(5.6) tkug)® o~ J[ 2 kug:.

neZ
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1995.
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6. Further calculations and applications

Philosophically, one of the main differences between the calculation of the Tate
K-theory for finite groups and for the circle group is that the Krull dimension of
R(G) is one in the case of finite groups and two in the case of the circle group. Quite
generally, the complexity of the calculations increases with the Krull dimension of
the coefficient ring. It is relevant that the Krull dimension of R(() for a compact
connected Lie group (7 is one greater than its rank.

For finite groups, most calculations that have been carried out to date con-
cern ring GG-spectra k¢, like those that represent K-theory, that are so related to
cobordism as to have Thom isomorphisms of the general form

(6.1) G (EY X)) 2 kG(2VIX)

for all complex representations V. Let ¢(V) : S — SV be the inclusion. Ap-
plying e(V)* to the element 1 € k%(S%) = k%(SY), we obtain an element of
kL (S%) = k%, (SY). The Thom isomorphism yields an isomorphism between this
group and the integer coefficient group k§|v|, and there results an Fuler class
x(V) e kgm. As in our indication of the rationality of ¢(K¢), localizations and
other algebraic constructions in terms of such Fuler classes can often lead to ex-

plicit calculations.
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This works particularly well in cases, such as p-groups, where G acts freely on
a product of unit spheres S(V;) x --- x S(V,,) for some representations V4,..., V.
This implies that the smash product S(coVi)y A -+ A S(ooV, )4 is a model for
EG,, and there results a filtration of EG that has subquotients given by wedges
of smash products of spheres. This gives rise to a different spectral sequence for
the computation of ¢(kg)5(X). When X = S° the Ej-term can be identified as
the “Cech cohomology %, (k*(BG)) of the kj-module k*(BG,) with respect to
the ideal J" = (x(V1), -+, x(Va)) C k7. The relevant algebraic definitions will be
given in Chapter XXIV. These groups depend only on the radical of J', and, when
ki is Noetherian, it turns out that J’ has the same radical as the augmentation
ideal J = Ker(kf, — k).

The interesting mathematics begins with the calculation of the Fy-term, where
the nature of the Euler classes for the particular theory becomes important. In
fact, this spectral sequence collapses unusually often because the complexity is
controlled by the Krull dimension of the coefficients. In cases where one can
calculate the coefficients ¢(k)7;, one can often also deduce the homotopy type of
the fixed point spectrum #(kg)“ because t(kg)“ is a module spectrum over k.
However, the periodic and connective cases have rather different flavors. In the
periodic case the algebra of the coefficients has a field-like appearance and is
more often enough to determine the homotopy type of the fixed point spectrum
t(ke)“. In the connective case the algebra of the coefficients in the answer has
the appearance of a complete local ring and some sort of Adams spectral sequence
argument seems to be necessary to deduce the topology from the algebra. In very
exceptional circumstances, such as the use of rationality in the case of K, one
can go on to deduce the equivariant homotopy type of t(kq).

In the discussion that follows, we consider equivariant forms k¢ of some familiar
nonequivariant theories k. We may take kg to be ik, but any split G-spectrum
with underlying nonequivariant spectrum k could be used instead. Technically,
it is often best to use F(FG4,u.k). This has the advantage that its coefficients
can often be calculated, and it can be thought of as a geometric completion of
any other candidate (and an algebraic completion of any candidate for which a
completion theorem holds).

The most visible feature of the calculations to date is that the Tate construction
tends to decrease chromatic periodicity. We saw this in the case of K¢, where the
periodicity reduced from one to zero. This appears in especially simple form in a
theorem of Greenlees and Sadofsky: if K'(n) is the nth Morava K-theory spectrum,
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whose coefficient ring is the graded field
K(n). =F,[v,, v, '], degv, = 2p" — 2,
then
(6.2) HK(n)g) =~ *.

In fact, this is a quite easy consequence of Ravenel’s result that K(n)*(BGy) is
finitely generated over K(n)*. Another example of this nature is a calculation of
Fajstrup, which shows that if the spectrum K R that represents K-theory with
reality is regarded as a Cy-spectrum, then the associated Tate spectrum is trivial.

These calculations illustrate another phenomenon that appears to be general: it
seems that the Tate construction reduces the Krull dimension of periodic theories.
More precisely, the Krull dimension of ¢(kg)% is usually less than that of k%. In the
case of Morava K-theory, one deduces from Ravenel’s result that K (n)% is finite
over K (n)? and thus has dimension 0. The contractibility of (K (n)g) can then be
thought of as a degenerate form of dimension reduction. More convincingly, work
of Greenlees and Sadofsky shows that for many periodic theories for which k2 is
one dimensional, {(kg)% is finite dimensional over a field. The higher dimensional
case is under consideration by Greenlees and Strickland.

This reduction of Krull dimension is reflected in the Fs-term of the spectral
sequence cited above. When £k is v,-periodic for some n, one typically first proves
that some v;, ¢+ < n is invertible on #(kg) and then uses the localisation of the
norm sequence

K3

> KS(EGL) [07Y] = kL (EGL) [o7Y] = tlka)g — -+
to assist calculations. For example, consider the spectra F(n) with coefficient rings

E(n)* = Z(p)[vlv U2, 5 Un, v_l]'

n

Since there is a cofiber sequence E(2)/p = E(2)/p — K(2), we deduce from (6.2)
that vy is invertibleon ¢((£(2)/p)e). More generally v,,_; is invertible on a suitable
completion of t(E(n)g).

The intuition that the Tate construction lowers Krull dimension is reflected in
the following conjecture about the spectra BP(n) with coefficient rings

BP{n). = Z(p)[vl, Vg, o 4 Uy



296 XXI. GENERALIZED TATE COHOMOLOGY

CONJECTURE 6.3 (DAVIS-JOHNSON-KLIPPENSTEIN-MAHOWALD-WEGMANN).

t(BP(n)c,) ~ [[ ""BP(n —1)).
neZ

The cited authors proved the case n = 2; the case n = 1 was due to Davis and
Mahowald. Since BP(n). has Krull dimension n + 1, the depth of the conjecture
increases with n.

We end by pointing the reader to what is by far the most striking application of
generalized Tate cohomology. In a series of papers, Madsen, Bokstedt, Hesselholt,
and Tsalidis have used the case of S! and its subgroups to carry out fundamentally
important calculations of the topological cyclic homology and thus of the algebraic
K-theory of number rings. It would take us too far afield to say much about this.
Madsen has given two excellent surveys. In another direction, Hesselholt and
Madsen have calculated the coefficient groups of the S!-tate spectrum associated
to the periodic J-theory spectrum at an odd prime. The calculation is consistent

with the following conjecture.
CONJECTURE 6.4 (HESSELHOLT-MADSEN).

t(Jo)" ~ K'(1) v SE'(1) v (] S K)/(\) S EK),

n€EZ neZ

where K'(1) is the Adams summand of p-complete K-theory with homotopy groups
concentrated in degrees = 0mod 2(p — 1).
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CHAPTER XXII

Brave new algebra

1. The category of S-modules

Let us return to the introductory overview of the stable homotopy category given
in XII§1. As said there, Elmendorf, Kriz, Mandell, and I have gone beyond the
foundations of Chapter XII to the construction of a new category of spectra, the
category of “S-modules”, that has a smash product that is symmetric monoidal
(associative, commutative, and unital up to coherent natural isomorphisms) on the
point-set level. The complete treatment is given in [EKMM], and an exposition
has been given in [EKMM’]. The latter emphasizes the logical development of the
foundations. Here, instead, we will focus more on the structure and applications
of the theory. Working nonequivariantly in this chapter, we will describe the
new categories of rings, modules, and algebras and summarize some of their more
important applications. All of the basic theory generalizes to the equivariant
context and, working equivariantly, we will return to the foundations and outline
the construction of the category of S-modules in the next chapter. We begin work
here by summarizing its properties.

An S-module is a spectrum (indexed on some fixed universe U) with additional
structure, and a map of S-modules is a map of spectra that preserves the additional
structure. The sphere spectrum S and, more generally, any suspension spectrum
Y% X has a canonical structure of S-module. The category of S-modules is denoted
M. 1t 1s symmetric monoidal with unit object S under a suitable smash product,
which is denoted Ag, and it also has a function S-module functor, which is denoted
Fs. The expected adjunction holds:

Ms(M As N, P) = _#s(M, Fs(N, P)).

299
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Moreover, for based spaces X and Y, there is a natural isomorphism of S-modules
EUX A EFY ZEF(XAY).

When regarded as a functor from spaces to S-modules, rather than as a functor
from spaces to spectra, X*° is not left adjoint to the zeroth space functor
rather, we have an adjunction

M(SFX, M) = T (X, Ms(S, M)).

Here the space of maps .#s(5, M) is not even equivalent to QM. As observed by
Hastings and Lewis, this is intrinsic to the mathematics: since .#Zs is symmetric
monoidal, .Zs(.S,5) is a commutative topological monoid, and it therefore cannot
be equivalent to the space Q.S = Q9.

For an S-module M and a based space X, the smash product M A X is an
S-module and

MAX=ZMAg XX,

Cylinders, cones, and suspensions of S-modules are defined by smashing with
I., I, and S'. A homotopy between maps f,g : M — N of S-modules is a
map M A I, — N that restricts to f and g on the ends of the cylinder. The
function spectrum F(X, M) is not an S-module; Fs(X*% X, M) is the appropriate
substitute and must be used when defining cocylinder, path, and loop S-modules.

The category .#s is cocomplete (has all colimits), its colimits being created in
7. That is, the colimit in .% of a diagram of S-modules is an S-module that is
the colimit of the given diagram in .#s. It is also complete (has all limits). The
limit in . of a diagram of S-modules is not quite an S-module, but it takes values
in a category .Z[L] of “L-spectra” that lies intermediate between spectra and S-
modules. Limitsin .#[L] are created in ., and the forgetful functor .#Zs — #[L]
has a right adjoint that creates the limits in .#s. We shall explain this scaffolding
in XXIII§2. For pragmatic purposes, what matters is that limits exist and have
the same weak homotopy types as if they were created in ..

There is a “free S-module functor” Fg : . — #s. 1t is not quite free in the
usual sense since its right adjoint Ug : .#s — .% is not quite the evident forgetful
functor. This technicality reflects the fact that the forgetful functor .#s — Z[L]
is a left rather than a right adjoint. Again, for pragmatic purposes, what matters
is that Ug is naturally weakly equivalent to the evident forgettul functor.

We define sphere S-modules by
¢ =TFgS5".
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We define the homotopy groups of an S-module to be the homotopy groups of the
underlying spectrum and find by the adjunction cited in the previous paragraph
that they can be computed as

wo(M) = hott's(S2, M).

From here, we develop the theory of cell and CW S-modules precisely as we
developed the theory of cell and CW spectra, taking the spheres S¢ as the domains
of attaching maps of cells C'S%. We construct the “derived category of S-modules”,
denoted Zs, by adjoining formal inverses to the weak equivalences and find that
Ps 1s equivalent to the homotopy category of CW S-modules. The following
fundamental theorem then shows that no homotopical information is lost if we
replace the stable homotopy category h.# by the derived category Zs.

THEOREM 1.1. The following conclusions hold.

(i) The free functor Fg : ¥ — #s carries CW spectra to CW S-modules.
(ii) The forgetful functor .#Zs — & carries S-modules of the homotopy types
of CW S-modules to spectra of the homotopy types of CW spectra.
(iii) Every CW S-module M is homotopy equivalent as an S-module to FsF
for some CW spectrum F.

The free functor and forgetful functors establish an adjoint equivalence between

the stable homotopy category h.# and the derived category Zs. This equivalence
of categories preserves smash products and function objects. Thus

Is(Fsk, M) = h.(E, M),
Fs : h./(E, E')—=>92s(FsE,FsE'),
Fs(E A E') ~ (FsE) As (FsE'),

and

Fs(F(E, E/)) ~ Fs(FsE, FsE/).

We can describe the equivalence in the language of (closed) model categories
in the sense of Quillen, but we shall say little about this. Both . and .#s are
model categories whose weak equivalences are the maps that induce isomorphisms
of homotopy groups. The g-cofibrations (or Quillen cofibrations) are the retracts
of inclusions of relative cell complexes (that is, cell spectra or cell S-modules).
The g¢-fibrations in . are the Serre fibrations, namely the maps that satisfy the
covering homotopy property with respect to maps defined on the cone spectra
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¥rCS", where ¢ > 0 and n > 0. The g-fibrations in .#Zs are the maps M — N
of S-modules whose induced maps UsM — Ug/N are Serre fibrations of spectra.
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2. Categories of R-modules

Let us think about S-modules algebraically. There is a perhaps silly analogy
that I find illuminating. Algebraically, it is of course a triviality that Abelian
groups are essentially the same things as Z-modules. Nevertheless, these notions
are conceptually different. Thinking of brave new algebra in stable homotopy
theory as analogous to classical algebra, I like to think of spectra as analogues of
Abelian groups and S-modules as analogues of Z-modules. While it required some
thought and work to figure out how to pass from spectra to S-modules, now that
we have done so we can follow our noses and mimic algebraic definitions word for
word in the category of S-modules, thinking of Ag as analogous to @z and Fs as
analogous to Homy,.

We think of rings as Z-algebras, and we define an S-algebra R by requiring a
unit S — R and product R As R — R such that the evident unit and asso-
ciativity diagrams commute. We say that R is a commutative S-algebra if the
evident commutativity diagram also commutes. We define a left R-module simi-
larly, requiring a map R As M — M such that the evident unit and associativity
diagrams commute.

For a right R-module M and left R-module N, we define an S-module M Ar N

by the coequalizer diagram

uAsld

M As RAs N MAs N— M Ar N,

IdAgy

where p and v are the given actions of R on M and N. Similarly, for left R-modules
M and N, we define an S-module Fr(M, N) by an appropriate equalizer diagram.
We then have adjunctions exactly like those relating @r and Hompg in algebra.
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If R is commutative, then M Ag N and Fr(M,N) are R-modules, the category
M of R-modules is symmetric monoidal with unit R, and we have the expected
adjunction relating Ag and Fr. We can go on to define (R, R’)-bimodules and to
derive a host of formal relations involving smash products and function modules
over varying rings, all of which are exactly like their algebraic counterparts.

For a left R-module M and a based space X, M A X =2 M Ag X*X and
Fs(X°X, M) are left R-modules. If K is an S-module, then M Ag K is a left and
Fs(M, K) is a right R-module. We have theories of cofiber and fiber sequences
of R-modules exactly as for spectra. We define the free R-module generated by a
spectrum X to be

FrX = RAsFsX.

Again the right adjoint Ugr of this functor is naturally weakly equivalent to the
forgetful functor from R-modules to spectra. We define sphere R-modules by

&=TFpS™ = R As S2

and find that
(M) = hottr(S}, M).

There is also a natural weak equivalence of R-modules FpS — R.

We develop the theory of cell and CW R-modules exactly as we developed the
theory of cell and CW spectra, using the spheres S}, as the domains of attaching
maps. However, the CW theory is only of interest when R is connective (7,(R) =0
for n < 0) since otherwise the cellular approximation theorem fails. We construct
the derived category Zr from the category .#r of R-modules by adjoining formal
inverses to the weak equivalences and find that Zg is equivalent to the homotopy
category of cell R-modules.

Brown’s representability theorem holds in the category Zgr: a contravariant
set-valued functor k on Zg is representable in the form kM = Zgr(M, N) if and
only if k£ converts wedges to products and converts homotopy pushouts to weak
pullbacks. However, as recently observed by Neeman in an algebraic context,
Adams’ variant for functors defined on finite cell R-modules only holds under a
countability hypothesis on 7.(R).

The category .#p is a model category. The weak equivalences and ¢-fibrations
are the maps of R-modules that are weak equivalences and ¢-fibrations when re-
garded as maps of S-modules. The g-cofibrations are the retracts of relative cell
R-modules. It is also a tensored and cotensored topological category. That is, its
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Hom sets are based topological spaces, composition is continuous, and we have
adjunction homeomorphisms

Mp(MANX,N)2 T (X, Mp(M,N)) = Mp(M, Fs(S<X, N)).

Recently, Hovey, Palmieri, and Strickland have axiomatized the formal prop-
erties that a category ought to have in order to be called a “stable homotopy
category”. The idea is to abstract those properties that are independent of any
underlying point-set level foundations and see what can be derived from that
starting point. Our derived categories Zr provide a wealth of examples.

M. Hovey, J. H. Palmieri, and N. P. Strickland. Axiomatic stable homotopy theory. Preprint.
1995.
A. Neeman. On a theorem of Brown and Adams. Preprint, 1995.

3. The algebraic theory of R-modules

The categories Zg are both tools for the the study of classical algebraic topol-
ogy, and interesting new subjects of study in their own right. In particular, they
subsume much of classical algebra. The Filenberg-MacLane spectrum HR asso-
ciated to a (commutative) discrete ring R is a (commutative) S-algebra, and the
Eilenberg-MacLane spectrum HM associated to an R-module is an H R-module.
Moreover, the derived category Zppg is equivalent to the algebraic derived cate-
gory Zg of chain complexes over R, and the equivalence converts derived smash
products and function modules in topology to derived tensor products and Hom
functors in algebra. In algebra, the homotopy groups of derived tensor product
and Hom functors compute Tor and Ext, and we have natural isomorphisms

To(HM Aprr HN) = Tor® (M, N)
for a right R-module M and left R-module N and
Ten(Fur(HM,HN)) 2 Exth(M, N)

for left R-modules M and N, where HM is taken to be a CW H R-module.
Now return to the convention that R is an S-algebra. By the equivalence of h.%

and Zs, we see that homology and cohomology theories on spectra are subsumed

as homotopy groups of smash products and function modules over S. Precisely,

for a CW S-module M and an S-module NV,
(M As N) = M,(N)

and

_o(Fs(M, N)) = N"(M).



3. THE ALGEBRAIC THEORY OF R-MODULES 305

These facts suggest that we should think of the homotopy groups of smash
product and function R-modules ambiguously as generalizations of both Tor and
Ext groups and homology and cohomology groups. Thus, for a right cell R-module
M and a left R-module N, we define

(3.1) Torf(M,N) = 7,(M Ap N) = ME(N)
and, for a left cell R-module M and a left R-module N, we define
(3.2) Exthy(M,N) = rm_,(Fr(M,N)) = Nj(M).

We assume that M is a cell module to ensure that these are well-defined derived
category invariants.

These functors enjoy many properties familiar from both the algebraic and topo-
logical settings. For example, assuming that R is commutative, we have a natural,
associative, and unital system of pairings of R*-modules (R" = 7_,(R))

ExtRp(M, N) @pgs Exti(L, M) — Exti(L, N).

Similarly, setting DpM = Fr(M, R), a formal argument in duality theory implies
a natural isomorphism

Tor®(DrM,N) = Extz"(M, N)

for finite cell R-modules M and arbitrary R-modules N. Thought of homologically,
this isomorphism can be interpreted as Spanier-Whitehead duality: for a finite cell

R-module M and any R-module NV,
NE(DrM) = N5"(M).

There are spectral sequences for the computation of these invariants. As usual,
for a spectrum F, we write £, = n,(E) = E~".

THEOREM 3.3. For right and left R-modules M and N, there is a spectral se-
quence

2 Ra R
E = Torp7q(M*,N*) = Tor

p+q

(M, N);
For left R-modules M and N, there is a spectral sequence
EP? = ExtBi(M™, N*) = Exth (M, N).

It R is commutative, these are spectral sequences of differential R.-modules, and
the second admits pairings converging from the evident Yoneda pairings on the £
terms to the natural pairings on the limit terms.
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Setting M = FrX in these two spectral sequences, we obtain universal coeffi-
cient spectral sequences.

THEOREM 3.4 (UNIVERSAL COEFFICIENT). For an R-module N and any spec-
trum X, there are spectral sequences of the form

Torf (R.(X), N.) = N.(X)

k3%

and

Extii(R_.(X), N*) = N*(X).

Replacing R and N by FEilenberg-Mac Lane spectra HR and HN for a discrete
ring R and R-module N, we obtain the classical universal coefficient theorems.
Replacing N by FrY and by Fr(FrY, R) in the two universal coefficient spectral
sequences, we obtain Kiinneth spectral sequences.

THEOREM 3.5 (KUNNETH). For any spectra X and Y, there are spectral se-
quences of the form

Torf (R.(X), R(Y)) = R(X AY)

k3%

and

Extii(R_.(X), R (Y)) = R* (X AY).

Under varying hypotheses, the Kiinneth theorem in homology generalizes to an
Eilenberg-Moore type spectral sequence. Here is one example.

THEOREM 3.6. Let F and R be commutative S-algebras and M and N be R-
modules. Then there is a spectral sequence of differential F.(R)-modules of the
form

Tor?*FE (M), E.(N)) = E,o(M Ag N).

p,q

4. The homotopical theory of R-modules

Thinking of the derived category of R-modules as an analog of the stable ho-
motopy category, we have the notion of an R-ring spectrum, which is just like the
classical notion of a ring spectrum in the stable homotopy category.
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DEFINITION 4.1. An R-ring spectrum A is an R-module A with unit n : R —
A and product ¢ : AAR A — A in PR such that the following left and right unit
diagram commutes in Zg:

nAid id An

RARA—— ANgRA<~—ANRR
A AT
A.

A is associative or commutative if the appropriate diagram commutes in Zg. If A
is associative, then an A-module spectrum M is an R-module M with an action

pw: ANg M — M such that the evident unit and associativity diagrams commute
in @R-

LEMMA 4.2. If A and B are R-ring spectra, then so is AAr B. If A and B are
associative or commutative, then so is A Ap B.

When R = 5, S-ring spectra and their module spectra are equivalent to classical
ring spectra and their module spectra. By neglect of structure, an R-ring spectrum
Ais an S-ring spectrum and thus a ring spectrum in the classical sense; its unit is
the composite of the unit of R and the unit of A and its product is the composite
of the product of A and the canonical map

ANA~ANg A — AN A

It A is commutative or associative as an R-ring spectrum, then it is commutative
and associative as an S-ring spectrum and thus as a classical ring spectrum. The
R-ring spectra and their module spectra play a role in the study of Zr analogous
to the role played by ring and module spectra in classical stable homotopy theory.
Moreover, the new theory of R-ring and module spectra provides a powerful con-
structive tool for the study of the classical notions. The point is that, in Zg, we
have all of the internal structure, such as cofiber sequences, that we have in the
stable homotopy category.

This can make it easy to construct R-ring spectra and modules in cases when
a direct proof that they are merely classical ring spectra and modules is far more
difficult, if it can be done at all. We assume that R is a commutative S-algebra
and illustrate by indicating how to construct M/IM and M[Y '] for an R-module
M, where [ is the ideal generated by a sequence {x;} of elements of R, and Y is
a countable multiplicatively closed set of elements of R.. We shall also state some
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results about when these modules have R-ring structures and when such structures
are commutative or associative.
We have isomorphisms
M, = httr(Sy, M).
The suspension X" M is equivalent to S Ag M and, for x € R,, the composite
map of R-modules

zAid

(4.3) Sp AR MY R AR M 2> 0
is a module theoretic version of the map x-: ¥"M — M.

DEFINITION 4.4. Define M/xM to be the cofiber of the map (4.3) and let
p: M — M/xM be the canonical map. Inductively, for a finite sequence
{x1,...,2,} of elements of R,, define

M/(x1,...,2,)M = N/x,N, where N = M/(x1,...,0,-1)M.
For a sequence X = {z;}, define M/XM = tel M/(x1,...,2,)M, where the

telescope is taken with respect to the successive canonical maps p.
Clearly we have a long exact sequence
T Wq—n(M)LWq(M)&Wq(M/xM) — Tyen-1(M) — -+

If « is regular for 7.(M) (xm = 0 implies m = 0), then p, induces an isomorphism
of R.-modules

T(M)/x 7 (M) = r (M/xM).

If {x1,...,2,} is a regular sequence for m.(M), in the sense that x; is regular for

T(M)/(21,... ,2i-1)m(M) for 1 <i < n, then
T(M)/(21,... ,2)7(M) Z 7(M/(21,... ,2,)M),

and similarly for a possibly infinite regular sequence X = {x;}. The following
result implies that M/ X M is independent of the ordering of the elements of the
set X. We write R/X instead of R/ XR.

LEMMA 4.5. For a set X of elements of R,, there is a natural weak equivalence
(R/IX)Ae M — M/XM.
In particular, for a finite set X = {ay,... ,2,},

R/(x1,...,¢n) ~ (R/x1) AR -+ Ar (R/x,).
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It I denotes the ideal generated by X, then it is reasonable to define
M/IM = M/XM.

However, this notation must be used with caution since, if we fail to restrict
attention to regular sequences X, the homotopy type of M/X M will depend on
the set X and not just on the ideal it generates. For example, quite different
modules are obtained if we repeat a generator x; of [ in our construction.

To construct localizations, let {y;} be any sequence of elements of Y that is
cofinal in the sense that every y € Y divides some y;. If y; € R,,, we may
represent y; by an R-map S% — Sz™, which we also denote by ;. Let ¢o = 0
and, inductively, ¢; = ¢;—1 + n;. Then the R-map

yi/\id:S]O%/\RM—>S§”" /\RM

represents multiplication by y;. Smashing over R with Sz~', we obtain a sequence
of R-maps

(46) S];qi_l Ap M — Sﬁql Ar M.

DEFINITION 4.7. Define the localization of M at Y, denoted M[Y '], to be the
telescope of the sequence of maps (4.6). Since M = S% Arp M in Zg, we may
regard the inclusion of the initial stage S% Ar M of the telescope as a natural map

A M — M[Y_l].

Since homotopy groups commute with localization, we see immediately that A
induces an isomorphism of R,-modules

T (MYTH) = m (MY

As in Lemma 4.5, the localization of M is the smash product of M with the
localization of R.

LEMMA 4.8. For a multiplicatively closed set Y of elements of R,, there is a
natural equivalence

RY Y Ap M — M[Y ™.

Moreover, R[Y '] is independent of the ordering of the elements of Y. For sets X
and Y, R[(X UY)™!] is equivalent to the composite localization R[X ~'][Y~'].

The behavior of localizations with respect to R-ring structures is now immediate.
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PROPOSITION 4.9. Let Y be a multiplicatively closed set of elements of R,. If
A is an R-ring spectrum, then so is A[Y™!]. If A is associative or commutative,

then so is A[Y ™'].

PROOF. It suffices to observe that R[Y '] is an associative and commutative

R-ring spectrum with unit A and product the equivalence
RY T Ar RY ™) =~ RY Y]~ RY™'. O

This doesn’t work for quotients since (R/X)/X is not equivalent to R/ X. How-
ever, we can analyze the problem by analyzing the deviation, and, by Lemma 4.5,
we may as well work one element at a time. We have a necessary condition for R/x
to be an R-ring spectrum that is familiar from classical stable homotopy theory.

LEMMA 4.10. Let A be an R-ring spectrum. If A/xA admits a structure of
R-ring spectrum such that p : A — A/xA is a map of R-ring spectra, then
x:AJerA — A/xA is null homotopic as a map of R-modules.

Thus, for example, the Moore spectrum S/2 is not an S-ring spectrum since
the map 2 : S/2 — 5/2 is not null homotopic. We have the following sufficient
condition for when R/x does have an R-ring spectrum structure.

THEOREM 4.11. Let « € R,,,, where 7,11 (R/2) = 0 and ma,41(R/2x) = 0. Then
R/x admits a structure of R-ring spectrum with unit p : R — R/x. Therefore,
for every R-ring spectrum A and every sequence X of elements of R. such that
Tme1(R/x) = 0 and mapmi(R/z) = 0 if @ € X has degree m, A/XA admits
a structure of R-ring spectrum such that p : A — A/X A is a map of R-ring
spectra.

For an R-ring spectrum A and an element z as in the theorem, we give A/z A ~
(R/x) Ar A the product induced by one of our constructed products on R/x and
the given product on A. We refer to any such product as a “canonical” product
on A/xA. We also have sufficient conditions for when the canonical product is
unique and when a canonical product is commutative or associative.

THEOREM 4.12. Let # € R,,, where m,41(R/2) = 0 and map41(R/2x) = 0.
Let A be an R-ring spectrum and assume that ma,42(A/2A) = 0. Then there
is a unique canonical product on A/xA. If A is commutative, then A/zA is
commutative. If A is associative and 73,,43(A/xA) =0, then A/xA is associative.

This leads to the following conclusion.
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THEOREM 4.13. Assume that R; = 0 if ¢z is odd. Let X be a sequence of non
zero divisors in R, such that 7.(R/X) is concentrated in degrees congruent to zero
mod 4. Then R/X has a unique canonical structure of R-ring spectrum, and it is
commutative and associative.

This is particularly valuable when applied with R = MU. The classical Thom
spectra arise in nature as F., ring spectra and give rise to equivalent commutative
S-algebras. In fact, inspection of the prespectrum level definition of Thom spectra
in terms of Grassmannians first led to the theory of E., ring spectra and therefore
of S-algebras. Of course,

MU, = Z[x;|deg x; = 21]
Thus the results above have the following immediate corollary.

THEOREM 4.14. Let X be a regular sequence in MU,, let I be the ideal gen-
erated by X, and let Y be any sequence in MU,. Then there is an MU-ring
spectrum (MU/X)[Y '] and a natural map of MU-ring spectra (the unit map)

n: MU — (MU/X)[Y ]

such that
N : MU, — m((MU/X)[Y_l])

realizes the natural homomorphism of MU.-algebras
MU, — (MU./D[Y™'].

If MU,/I is concentrated in degrees congruent to zero mod 4, then there is a
unique canonical product on (MU/X)[Y '], and this product is commutative and
associative.

In comparison with earlier constructions of this sort based on the Baas-Sullivan
theory of manifolds with singularities or on Landweber’s exact functor theorem
(where it applies), we have obtained a simpler proof of a substantially stronger
result since an MU-ring spectrum is a much richer structure than just a ring
spectrum and commutativity and associativity in the MU-ring spectrum sense
are much more stringent conditions than mere commutativity and associativity of
the underlying ring spectrum.
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5. Categories of R-algebras

In the previous section, we considered R-ring spectra, which are homotopical
versions of R-algebras. We also have a pointwise definition of R-algebras that is
just like the definition of S-algebras. That is, R-algebras and commutative R-
algebras A are defined via unit and product maps R — A and AAg A — A
such that the appropriate diagrams commute in the symmetric monoidal category
M. All of the standard formal properties of algebras in classical algebra carry
over directly to these brave new algebras. For example, a commutative R-algebra
A is the same thing as a commutative S-algebra together with a map of S-algebras
R — A (the unit map), and the smash product AARA’ of commutative R-algebras
A and A’ is their coproduct in the category of commutative R-algebras.

Some of the most subtantive work in [EKMM] concerns the understanding of the
categories @/p and € @/ of R-algebras and commutative R-algebras. The crucial
point is to be able to compute the homotopical behavior of formal constructions in
these categories. Technically, what is involved is the homotopical understanding
of the forgettul functors from @/ and € .@/r to .#r. Although not in itself enough
to answer these questions, the context of enriched model categories is essential
to give a framework in which they can be addressed. We shall indicate some of
the main features here, but this material is addressed to the relatively sophisti-
cated reader who has some familiarity with enriched category and model category
theory. It provides the essential technical underpinning for the applications to
Bousfield localization and topological Hochschild homology that are summarized
in the following two sections.

Both @/ and € ./r are tensored and cotensored topological categories. In fact,
they are topologically complete and cocomplete, which means that they have not
only the usual limits and colimits but also “indexed” limits and colimits. Limits are
created in the category of R-modules, but colimits are less obvious constructions.
In the absence of basepoints in their Hom sets, these categories are enriched over
the category % of unbased spaces. The cotensors in both cases are the function
S-algebras Fis(X* Xy, A) with the R-algebra structure induced from the diagonal
on X and the product on A. The tensors are less familiar. They are denoted
A Qg X and A @4y, X. These are different constructions in the two cases, but
we write A @ X when the context is understood. We have adjunctions

(5.1) Fr(A @ X,B) = % (X, dr(A,B)) 2 on(A, Fs(S*X,, B)),

and similarly in the commutative case. Some idea of the structure and meaning of
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tensors is given by the following result. For R-algebras A and B and a space X, we
say that a map f: AN X, — B of R-modules is a pointwise map of R-algebras
if each composite f o, : A — B is a map of R-algebras, where, for x € X,
iy : A— AN X, is the map induced by the evident inclusion {z}; — X.

PROPOSITION 5.2. For R-algebras A and spaces X there is a natural map of
R-modules

wiANX, — AR X

such that a pointwise map f: AN Xy — B of R- algebras uniquely determines
amap f: A®@ X — Bof R- algebras such that f = f ow. The same statement
holds for commutative R-algebras.

More substantial results tell how to compute tensors when X is the geometric
realization of a simplicial set or simplicial space. These results are at the heart of
the development and understanding of model category structures on the categories
o/p and € /p. In both categories, the weak equivalences and g-fibrations are the
maps of R-algebras that are weak equivalences or g-fibrations of underlying R-
modules. It follows that the g-cofibrations are the maps of R-algebras that satisfy
the left lifting property with respect to the acyclic ¢-fibrations. (The LLP is
recalled in VI§5.) However, the g-cofibrations admit a more explicit description
as retracts of relative “cell R-algebras” or “cell commutative R-algebras”. Such
cell algebras are constructed by using free algebras generated by sphere spectra as
the domains of attaching maps and mimicking the construction of cell R-modules,
using coproducts, pushouts, and colimits in the relevant category of R-algebras.

The question of understanding the homotopical behavior of the forgetful functors
from @/r and € @/p to .#Rr now takes the form of understanding the homotopical
behavior of ¢-cofibrant algebras (retracts of cell algebras) with respect to these
forgetful functors. However, the formal properties of model categories have nothing
to say about this homotopical question.

In what follows, let R be a fixed ¢-cofibrant commutative R-algebra. Since R
is the initial object of &g and of €4’k it is g-cofibrant both as an R-algebra
and as a commutative R-algebra. However, it is not ¢-cofibrant as an R-module.
Therefore the most that one could hope of the underlying R-module of a ¢-cofibrant
R-algebra is the conclusion of the following result.

THEOREM 5.3. If A is a ¢-cofibrant R-algebra, then A is a retract of a cell R-
module relative to R. That is, the unit K — A is a g-cofibration of R-modules.



314 XXII. BRAVE NEW ALGEBRA

The conclusion fails in the deeper commutive case. The essential reason is that
the free commutative R-algebra generated by an R-module M is the wedge of the
symmetric powers M7 /Y and passage to orbits obscures the homotopy type of
the underlying R-module. The following technically important result at least gives
the homotopy type of the underlying spectrum.

THEOREM 5.4. Let R be a g-cofibrant commutative S-algebra. If M is a cell
R-module, then the projection

71 (BY))y As, M7 — MY/,
is a homotopy equivalence of spectra.

The following theorem provides a workable substitute for Theorem 5.3. It shows
that the derived smash product is represented by the point-set level smash product
on a large class €r of R-modules, one that in particular includes the underlying
R-modules of all ¢-cofibrant R-algebras and commutative R-algebras.

THEOREM 5.5. There is a collection ér of R-modules of the underlying ho-
motopy types of CW spectra that is closed under wedges, pushouts, colimits of
countable sequences of cofibrations, homotopy equivalences, and finite smash prod-
ucts over R and that contains all ¢-cofibrant R-modules and the underlying R-
modules of all ¢g-cofibrant R-algebras and all ¢-cofibrant commutative R-algebras.
Moreover, if M, ---, M, are R-modules in &z and Vi« N; — M, are weak
equivalences, where the N; are cell R-modules, then

NAR ARV NiAr--- AR Ny — My Ar--- Ar M,

is a weak equivalence. Therefore the cell R-module Ny Ag -+ Agr N, represents
My AR -+ Arp M, in the derived category Znp.

W. G. Dwyer and J. Spalinski. Homotopy theories and model categories. In “A handbook of
algebraic topology”, edited by I. M. James. North-Holland, 1995, pp 73-126.

G. M. Kelly. Basic concepts of enriched category theory. London Math. Soc. Lecture Note
Series Vol. 64. Cambridge University Press. 1982.

D. G. Quillen. Homotopical algebra. Springer Lecture Notes in Mathematics Volume 43. 1967.

6. Bousfield localizations of R-modules and algebras

Bousfield localization is a basic tool in the study of classical stable homotopy
theory, and the construction generalizes readily to the context of brave new alge-
bra. In fact, using our model category structures, this context leads to a smoother
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treatment than can be found in the classical literature. More important, as we shall
sketch, any brave new algebraic structure is preserved by Bousfield localization.
Let R be an S-algebra and F be a cell R-module. A map f: M — N of

R-modules is said to be an E-equivalence if
id/\RfiE/\RM—>E/\RN

is a weak equivalence. An R-module W is said to be E-acyclicif EArW =~ %, and
a map [ is an F-equivalence if and only if its cofiber is F-acyclic. We say that
an R-module L is E-local if f*: Zp(N,L) — Zr(M, L) is an isomorphism for
any F-equivalence f or, equivalently, if Zr(W, L) = 0 for any E-acyclic R-module
W. Since this is a derived category criterion, it suffices to test it when W is a
cell R-module. A localization of M at F is a map A : M — My such that A is
an F-equivalence and Mg is F-local. The formal properties of such localizations
discussed by Bousfield carry over verbatim to the present context. There is a model
structure on .#p that implies the existence of E-localizations of R-modules.

THEOREM 6.1. The category .#r admits a new structure as a topological model
category in which the weak equivalences are the E-equivalences and the cofibra-
tions are the g-cofibrations in the standard model structure, that is, the retracts
of the inclusions of relative cell R-modules.

We call the fibrations in the new model structure F-fibrations. They are deter-
mined formally as maps that satisfy the right lifting property with respect to the
FE-acyclic g-cofibrations, namely the ¢-cofibrations that are E-equivalences. (The
RLP is recalled in VI§5.) One can characterize the E-fibrations more explicitly,
but the following result gives all the relevant information. Say that an R-module
L is E-fibrant if the trivial map L. — * is an F-fibration.

THEOREM 6.2. An R-module is F-fibrant if and only if it is F-local. Any R-
module M admits a localization A : M — Mg at F.

In fact, one of the standard properties of a model category shows that we can
factor the trivial map M —— % as the composite of an FE-acyclic ¢-cofibration
A: M — Mg and an E-fibration Mg — *, so that the first statement implies
the second. The following complement shows that the localization of an R-module
at a spectrum (not necessarily an R-module) can be constructed as a map of
R-modules.
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PROPOSITION 6.3. Let K be a CW-spectrum and let F be the R-module Fr K.
Regarded as a map of spectra, a localization A : M — Mg of an R-module M at
FE is a localization of M at K.

The result generalizes to show that, for an R-algebra A, the localization of an
A-module at an R-module F can be constructed as a map of A-modules.

PROPOSITION 6.4. Let A be a g-cofibrant R-algebra, let E be a cell R-module,
and let F' be the A-module AARFE. Regarded as a map of R-modules, a localization
A M — Mg of an A-module M at [ is a localization of M at F.

Restrict R to be a ¢-cofibrant commutative S-algebra in the rest of this section.
We then have the following fundamental theorem about localizations of R-algebras.

THEOREM 6.5. For a cell R-algebra A, the localization A : A — Ag can be
constructed as the inclusion of a subcomplex in a cell R-algebra Ag. Moreover, if
f:+A— Bis amap of R-algebras into an F-local R-algebra B, then f lifts to a
map of R-algebras f: Ap — Bsuch that fo) = f;if fis an E-equivalence, then
f is a weak equivalence. The same statements hold for commutative R-algebras.

The idea is to replace the category .#x by either the category /g or the cat-
egory € </r in the development just sketched. That is, we attempt to construct
new model category structures on @/r and € .</p in such a fashion that a factor-
ization of the trivial map A — * as the composite of an E-acyclic ¢-cofibration
and a g¢-fibration in the appropriate category of R-algebras gives a localization of
the underlying R-module of A. The argument doesn’t quite work to give a model
structure because the module level argument uses vitally that a pushout of an
FE-acyclic g-cofibration of R-modules is an E-equivalence. There is no reason to
believe that this holds for ¢-cofibrations of R-algebras. However, we can use Theo-
rems 5.3-5.5 to prove that it does hold for pushouts of inclusions of subcomplexes
in cell R-algebras along maps to cell R-algebras. This gives enough information
to prove the theorem.

The theorem implies in particular that we can construct the localization of R at
I as the unit R — Rpg of a g-cofibrant commutative R-algebra. This leads to a
new perspective on localizations in classical stable homotopy theory. To see this,
we compare the derived category Zg, to the stable homotopy category Zr[E™!]
associated to the model structure on .#y that is determined by E. Thus Zg[E™"]
is obtained from Zpr by inverting the F-equivalences and is equivalent to the full



6. BOUSFIELD LOCALIZATIONS OF R-MODULES AND ALGEBRAS 317

subcategory of Zr whose objects are the E-local R-modules. Observe that, for a
cell R-module M, we have the canonical E-equivalence

fznAidngR/\RM%RE/\RM.
The following observation is the same as in the classical case.

LEMMA 6.6. If M is a finite cell R-module, then Rp Ap M is E-local and there-
fore £ is the localization of M at E.

We say that localization at E is smashing if, for all cell R-modules M, Rgp Ap M
is FE-local and therefore ¢ is the localization of M at K. The following observation
is due to Wolbert.

PROPOSITION 6.7 (WOLBERT). If localization at £ is smashing, then the cat-
egories Zp[E~'] and Zg, are equivalent.

These categories are closely related even when localization at E is not smash-
ing, as the following elaboration of Wolbert’s result shows. Remember that R is
assumed to be commutative.

THEOREM 6.8. The following three categories are equivalent.

(i) The category Zr[E~!] of E-local R-modules.
(i1) The full subcategory Zg, [FE~"'] of Zr, whose objects are the Rg-modules
that are F-local as R-modules.

(iii) The category Zr,[F'~'] of F-local Rg-modules, where F' = R Ag E.

This implies that the question of whether or not localization at E is smashing
is a question about the category of Rp-modules, and it leads to the following
factorization of the localization functor. In the case R = 5, this shows that the
commutative S-algebras Sg and their categories of modules are intrinsic to the
classical theory of Bousfield localization.

THEOREM 6.9. Let ' = Rg Ar £/. The E-localization functor
(g : Zr — Zr[E7]
is equivalent to the composite of the extension of scalars functor
ReAr (*): Pr — Pr,
and the F-localization functor

()r : Dry — Zry[F7.
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COROLLARY 6.10. Localization at I is smashing if and only if all Rg-modules
are F-local as R-modules, so that

.@R[E_l] ~ @RE ~ .@RE[F_I].

We illustrate the constructive power of Theorem 6.5 by showing that the alge-
braic localizations of R considered in Section 4 actually take R to commutative
R-algebras on the point set level and not just on the homotopical level (as given
by Proposition 4.9). Thus let ¥ be a countable multiplicatively closed set of ele-
ments of R,. Using Lemma 4.8, we see that localization of R-modules at R[Y™!]
is smashing and is given by the canonical maps

)\:)\/\RidiMgR/\RM—>R[Y_1]/\RM.

THEOREM 6.11. The localization R — R[Y '] can be constructed as the unit
of a cell R-algebra.

By multiplicative infinite loop space theory and our model category structure on
the category of S-algebras, the spectra ko and ku that represent real and complex
connective K-theory can be taken to be g-cofibrant commutative S-algebras. The
spectra that represent periodic K-theory can be reconstructed up to homotopy by
inverting the Bott element o € ws(ko) or Sy € mo(ku). That is,

KO ~ ko[35'] and KU ~ ku[37'].
We are entitled to the following result as a special case of the previous one.

THEOREM 6.12. The spectra KO and KU can be constructed as commutative
ko and ku-algebras.

In particular, KO and KU are commutative S-algebras, but it seems very hard
to prove this directly. Wolbert has studied the algebraic structure of the derived
categories of modules over the connective and periodic versions of the real and
complex K-theory S-algebras.

REMARK 6.13. For finite groups G, Theorem 6.12 applies with the same proof
to construct the periodic spectra KOg and KUg of equivariant K-theory as com-
mutative kog and kug-algebras. As we shall discuss in Chapter XXIV, this leads
to an elegant proof of the Atiyah-Segal completion theorem in equivariant K-
cohomology and of its analogue for equivariant K-homology.
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7. Topological Hochschild homology and cohomology

As another application of brave new algebra, we describe the topological Hoch-
schild homology of R-algebras with coefficients in bimodules. We assume familiar-
ity with the classical Hochschild homology of algebras (as in Cartan and Eilenberg,
for example). The study of this topic and of topological cyclic homology, which
takes topological Hochschild homology as its starting point and involves equivari-
ant considerations, is under active investigation by many people. We shall just
give a brief introduction.

We assume given a ¢-cofibrant commutative S-algebra R and a ¢-cofibrant R-
algebra A. If A is commutative, we require it to be ¢-cofibrant as a commutative

R-algebra. We define the enveloping R-algebra of A by
A® = A Ng AP,

where A% is defined by twisting the product on A, as in algebra. If A is commu-
tative, then A¥ & A Ar A and the product A° — A is a map of R-algebras. We
also assume given an (A, A)-bimodule M; it can be viewed as either a left or a
right A°-module.

DEFINITION 7.1. Working in derived categories, define topological Hochschild
homology and cohomology with values in Zr by

THHMA; M) =M Age A and  THHR(A; M) = Fy-(A,M).

It A is commutative, then these functors take values in the derived category Z4e.
On passage to homotopy groups, define

THHFA; M) = Tor2 (M, A)  and THH(A; M) = Ext’.(A, M).
When M = A, we delete it from the notations.

Since we are working in derived categories, we are implicitly taking M to be
a cell A>module in the definition of THH®(A; M) and approximating A by a
weakly equivalent cell A°-module in the definition of TH Hg(A; M).

PROPOSITION 7.2. If A is a commutative R-algebra, then T H H(A) is isomor-
phic in Z4 to a commutative A®-algebra.
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The module structures on T H H?( A; M) have the following implication.

PROPOSITION 7.3. If either R or A is the Eilenberg-Mac Lane spectrum of a
commutative ring, then 7 H H®(A; M) is a product of Eilenberg-Mac Lane spectra.

We have spectral sequences that relate algebraic and topological Hochschild
homology. For a commutative graded ring R., a graded R.-algebra A, that is flat
as an R.-module, and a graded (A., A.)-bimodule M., we define

HHE (A M) = Torll)" (M., A) - and  HHEI(A® M) = Ext{. (A", M*),

where p is the homological degree and ¢ is the internal degree. (This algebraic
definition would not be correct in the absence of the flatness hypothesis.) When
M, = A,, we delete it from the notation. If A, is commutative, then HHE: (A.)
is a graded A,-algebra. Observe that (A%?), = (A.).

In view of Theorem 5.5, the spectral sequence of Theorem 3.2 specializes to
give the following spectral sequences relating algebraic and topological Hochschild
homology.

THEOREM T7.4. There are spectral sequences of the form
B}, = Torga (A, A7) = (A)piq,

2 A°), R
B! = Torl*)*(M,, A,) = THH

p+q

(4; M),
and
BT = Ext{fl (A, M™) = THH}™(A; M).
It A, is a flat R.-module, so that the first spectral sequence collapses, then the
initial terms of the second and third spectral sequences are, respectively,

HHI% (A M) and  HHZ (A" M™).

This is of negligible use in the absolute case R = S, where the flatness hypoth-
esis on A, is unrealistic. However, in the relative case, it implies that algebraic
Hochschild homology and cohomology are special cases of topological Hochschild
homology and cohomology.

THEOREM 7.5. Let R be a (discrete, ungraded) commutative ring, let A be an
R-flat R-algebra, and let M be an (A, A)-bimodule. Then

HHE(A; M) = THHPR(HA; HM)

and

HH(A; M) = THH, W (HA; HM).
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If Ais commutative, then HH(A) = THHIR(HA) as A-algebras.

We concentrate on homology henceforward. In the absolute case R = 5, it is
natural to approach TH HZ(A; M) by first determining the ordinary homology of
THH?(A; M), using the case I/ = HF, of the following spectral sequence, and
then using the Adams spectral sequence. A spectral sequence like the following
one was first obtained by Bokstedt. Under flatness hypotheses, there are variants
in which F need only be a commutative ring spectrum, e.g. Theorem 7.12 below.

THEOREM 7.6. Let F be a commutative S-algebra. There are spectral sequence
of differential F.(R)-modules of the forms

B = TortF(E.A, E(A7)) = Epyq(A°)
and
B2 = Torx M (B (M), E(A)) = E,p (THH"(A; M)).

There is an alternative description of topological Hochschild homology in terms
of the brave new algebra version of the standard complex for the computation of
Hochshild homology. Write A for the p-fold Ag-power of A, and let

o6 ANpA— A and n:R— A
be the product and unit of A. Let
b AANRM — M and ¢ MARA— M
be the left and right action of A on M. We have cyclic permutation isomorphisms
T: MAR AP Ap A — AAg M AR AP,

The topological analogue of passage from a simplicial k-module to a chain com-
plex of k-modules is passage from a simplicial spectrum F, to its spectrum level
geometric realization |F.|; this construction is studied in [EKMM].

DEFINITION 7.7. Define a simplicial R-module thhf(A; M), as follows. Its R-
module of p-simplices is M A AP. Its face and degeneracy operators are

& A (idy! ifi=0
d; = CidAGD) TP A @A (Gd)P=7E i1 <i<p
(& A (id)PY)or ifi=p

and s; = id A(id)* A5 A (id)P~%. Define
thAf(A; M) = [thh™(A; M).|;
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When M = A, we delete it from the notation, writing thhf(A). and |thh®(A).|.

PROPOSITION 7.8. Let A be a commutative R-algebra. Then thhf*(A) is a
commutative A-algebra and thh®(A; M) is a thh®(A)-module.

As in algebra, the starting point for a comparison of definitions is the relative
two-sided bar construction B¥(M, A, N). It is defined for a commutative S-algebra

R, an R-algebra A, and right and left A-modules M and N. Its R-module of p-
simplices is M Ar A A N. There is a natural map

W BRA,AN) — N

of A-modules that is a homotopy equivalence of R-modules. More generally, there
is a natural map of R-modules

i BR(M,A,N) — M Ay N

that is a weak equivalence of R-modules when M is a cell A-module. The relevance
of the bar construction to thh is shown by the following observation, which is the
same as in algebra. We write

BR(A) = BR(A, A, A);
BT(A) is an (A, A)-bimodule; on the simplicial level, BE(A) = Ae.
PROPOSITION 7.9. For (A, A)-bimodules M, there is a natural isomorphism
thh®(A; M) = M A4 BE(A).
Therefore, for cell A°-modules M, the natural map
thhB(A; M) = M Age BRALSYM Age A= THHR(A; M)
is a weak equivalences of R-modules, or of A°-modules if A is commutative.

While we assumed that M is a cell A°-module in our derived category level
definition of T'H H, we are mainly interested in the case M = A of our point-set
level construction thh, and A is not of the A®-homotopy type of a cell A°-module
except in trivial cases. However, Theorem 5.5 leads to the following result.

THEOREM T7.10. Let v : M — A be a weak equivalence of A°-modules, where
M is a cell A°-module. Then the map

thRB(id; ) : thhB(A; M) — thhP(A; A) = thhE(A)

is a weak equivalence of R-modules, or of A°-modules if A is commutative. There-

fore T H H™(A; M) is weakly equivalent to thh(A).



7. TOPOLOGICAL HOCHSCHILD HOMOLOGY AND COHOMOLOGY 323

COROLLARY 7.11. In the derived category Zp, THHT(A) = thhf(A).

Use of the standard simplicial filtration of the standard complex gives us the
promised variant of the spectral sequence of Theorem 7.6. For simplicity, we
restrict attention to the absolute case R = 5.

THEOREM T7.12. Let F be a commutative ring spectrum, A be an S-algebra,
and M be a cell A°module. If F,(A) is F.-flat, there is a spectral sequence of the
form

By, = HH,G(E(A); B(M)) = By (thh®(A; M)).

If Ais commutative and M = A, this is a spectral sequence of differential £.(A)-
algebras, the product on E? being the standard product on Hochschild homology.

McClure, Schwanzl, and Vogt observed that, when A is commutative, as we
assume in the rest of the section, there is an attractive conceptual reinterpreta-
tion of the definition of thAf(A). Recall that the category € </g of commutative
R-algebras is tensored over the category of unbased spaces. By writing out the
standard simplicial set S} whose realization is the circle and comparing faces and
degeneracies, it is easy to check that there is an identification of simplicial com-
mutative R-algebras

(7.13) thh®(A), 2 A® S!.

Passing to geometric realization and identifying S* with the unit complex numbers,
we obtain the following consequence.

THEOREM 7.14 (McCLURE, SCHWANZL, VOGT). For commutative R-algebras
A, there is a natural isomorphism of commutative R-algebras

thh®(A)= A @ S

The product of thh*(A) is induced by the codiagonal S'[[S! — S'. The unit
¢ : A — thh®(A) is induced by the inclusion {1} — ST.

The adjunction (5.1) that defines tensors implies that the functor thhf(A) pre-
serves colimits in A, something that is not at all obvious from the original def-
inition. The theorem and the adjunction (5.1) imply much further structure on

thiB(A).
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COROLLARY 7.15. The pinch map S' — S' Vv S! and trivial map S — *
induce a (homotopy) coassociative and counital coproduct and counit

i thhT(A) — thR"(A) Ay thR®(A)  and e :thh"(A) — A
that make thh'(A) a homotopical Hopf A-algebra.

The product on St gives rise to a map
a: (A SHeSt2Ae (ST xS — Ae S

COROLLARY 7.16. For an integer r, define ¢" : St — S by ¢"(e2™) = 2™,
The ¢" induce power operations

O : thhfi(A) — thh®(A).
These are maps of R-algebras such that
P’ = (e, B =id, "0 ®° =",
and the following diagrams commute:

thh®(A) @ St =—— thhF(A)

<I>T®¢Sl lws

thhR(A) @ ST — thhf(A).

Consider naive S'-spectra and let S! act trivially on R and A. Via the adjunc-
tion (5.1), the map « gives rise to an action of S* on thhf(A).

COROLLARY 7.17. thhf(A) is a naive commutative S'-R-algebra. If B is a
naive commutative S'-R-algebra and f : A — B is a map of commutative R-
algebras, then there is a unique map f : thh®(A) — B of naive commutative

S1-R-algebras such that fo ¢ = f.
Finally, the description of tensors in Proposition 5.2 leads to the following result.
COROLLARY 7.18. There is a natural S'-equivariant map of R-modules
w:ANSL — thafi(A)

such that if B is a commutative R-algebra and f : AA S, — B is a map of
R-modules that is a pointwise map of R-algebras, then f uniquely determines a

map of R-algebras f : thh®(A) — B such that f = fow.
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CHAPTER XXIII

Brave new equivariant foundations

by A. D. Elmendort, L. G. Lewis, Jr., and J. P. May

1. Twisted half-smash products

We here give a quick sketch of the basic constructions behind the work of the
last chapter. Although the basic source, [EKMM], is written nonequivariantly, it
applies verbatim to the equivariant context in which we shall work in this chapter.
We shall take the opportunity to describe some unpublished perspectives on the
role of equivariance in the new theory.

The essential starting point is the twisted half-smash product construction from
[LMS]. Although we have come this far without mentioning this construction, it is
in fact central to equivariant stable homotopy theory. Before describing it, we shall
motivate it in terms of the main theme of this chapter, which is the construction of
the category of L-spectra. As we shall see, this is the main step in the construction
of the category of S-modules.

Fix a compact Lie group (¢ and a G-universe U and consider the category G.U
of G-spectra indexed on /. Write U7 for the direct sum of j copies of U. Recall
that we have an external smash product A : G.¥U x G¥U — G.¥U? and an
internal smash product f, o A : GFU?* — G.SU for each G-linear isometry
f : U? — U. The external smash product is suitably associative, commutative,
and unital on the point set level, hence we may iterate and form an external smash
product A : (G.FLU)Y — GFU’ for each j > 1, the first external smash power
being the identity functor. For each G-linear isometry f : U/ — U, we have an
associated internal smash product f, o A : G.XU’ — G.ZU. We allow the case
J = 0; here G#{0} = G.7, the only linear isometry {0} — U is the inclusion ¢,
and i, is the suspension G-spectrum functor. At least if we restrict attention to

327
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tame G-spectra, the functors induced by varying f are all equivalent (see Theorem
1.5 below). Thus varying G-linear isometries f : U/ — U parametrize equivalent
internal smash products.

There is a language for the discussion of such parametrized products in various
mathematical contexts, namely the language of “operads” that was introduced
for the study of iterated loop space theory in 1972. Let .Z(j) denote the space
I (U7,U) of linear isometries U/ — U. Here we allow all linear isometries, not
just the G-linear ones, and G acts on .Z(j) by conjugation. Thus the fixed point
space Z(7) is the space of G-linear isometries // — U. The symmetric group
¥, acts freely from the right on .Z(7), and the actions of G and ¥; commute. The
equivariant homotopy type of .Z(j) depends on U. If U is complete, then, for
ACGxX;, Z(j)" is empty unless AN Y; = ¢ and contractible otherwise. That
is, Z(7) is a universal (G, ¥;)-bundle. We have maps

VL (k) X L) X X L) — L+ + k)
defined by
Vg frooo s fo)=go(fid- D fr)

These data are interrelated in a manner codified in the definition of an operad,
and £ is called the “linear isometries G-operad” of the universe U. When U is
complete, < is an F., G-operad.

There is a “twisted half-smash product”

(1.1) L)< (EyAN---NE))

into which we can map each of the j-fold internal smash products f.(F1A---AE;).
Moreover, if we restrict attention to tame G-spectra, then each of these maps into
the twisted half-smash product (1.1) is an equivalence. The twisted half-smash
products .Z(1) x £ and .Z(2) x £ A E’ are the starting points for the construction
of the category of L-spectra and the definition of its smash product. We shall
return to this point in the next section, after saying a little more about twisted
smash products of G-spectra.

Suppose given G-universes U and U’, and let Z(U,U’) be the G-space of linear
isometries U — U’, with (G acting by conjugation. Let A be an (unbased) G-
space together with a given G-map a : A — (U, U’). We then have a twisted
half-smash product functor

ax():GFU — GLU.

When A has the homotopy type of a G-CW complex and £ € G.ZU is tame,
different choices of a give homotopy equivalent G-spectra « x F. For this reason,
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and because we often have a canonical choice of a in mind, we usually abuse
notation by writing A X £ instead of a x K. Thus we think of A as a space over
J(U,U.

When A is a point, « is a choice of a G-linear isometry f : U — U’'. In
this case, the twisted half-smash functor is just the change of universe functor
fo 1 GFU — GZLU (see XI1.3.1-3.2). Intuitively, one may think of a x F
as obtained by suitably topologizing and giving a G-action to the union of the
nonequivariant spectra a(a).(F) as a runs through A. Another intuition is that
the twisted half-smash product is a generalization to spectra of the “untwisted”
functor Ay A X on based G-spaces X. This intuition is made precise by the
following “untwisting formula” that relates twisted half-smash products and shift
desuspensions.

PROPOSITION 1.2. For a G-space A over #(U,U’) and an isomorphism V = V'
of indexing G-spaces, where V. C U and V' C U’, there is an isomorphism of
Gi-spectra

AxEFX =2 AL ANYNEX
that is natural in G-spaces A over Z(U,U’) and based G-spaces X.

The twisted-half smash product functor enjoys essentially the same formal prop-
erties as the space level functor Ay A X. For example, we have the following
properties, whose space level analogues are trivial to verify.

PRrOPOSITION 1.3. The following statements hold.

(i) There is a canonical isomorphism {idy} x F = F.
(ii) Let A — Z(U,U") and B — Z(U',U") be given and give B x A the

composite structure map
Bx A—s Z(U,U") x Z(U U —— 7(U,U").
Then there is a canonical isomorphism
(BxA)x EZBx (Ax E).

(iii) Let A — Z(Uy,U]) and B — (U, U}) be given and give A x B the

composite structure map

Ax B—s 72U, U x 7(Uy, U} —2» 7(Uy & Uy, U, & UY).
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Let Fy and K5 be G-spectra indexed on U7 and Us; respectively. Then there
is a canonical isomorphism

(Ax B) x (Ey ANEy) = (Ax Ey) A (B x Ey).

(iv) For A —» Z(U,U"), F € GZU, and a based G-space X, there is a canonical

isomorphism

Ax (EANX)Z (A E)AX.
The functor A x (e) has a right adjoint twisted function spectrum functor
FlA): GLU — GZU,
which is the spectrum level analog of the function G-space F(Ay, X). Thus
(1.4) GIU(Ax E,E")Y= GSU(E,F|AE")).

The functor A x E is homotopy-preserving in F. and it therefore preserves
homotopy equivalences in the variable F. However, it only preserves homotopies
over (U, U") in A. Nevertheless, it very often preserves homotopy equivalences
in the variable A. The following central technical result is an easy consequence
of Proposition 1.2 and XI1.9.2. It explains why all j-fold internal smash products
are equivalent to the twisted half-smash product (1.1).

THEOREM 1.5. Let E € GG.¥U be tame and let A be a G-space over .7 (U, U"). If
¢ : A" — Ais a homotopy equivalence of G-spaces, then ¢ xid : A/ F — A E
is a homotopy equivalence of G-spectra.

Since A x F is a G-CW spectrum it A is a G-CW complex and F is a G-CW

spectrum, this has the following consequence.

COROLLARY 1.6. Let £ € G.%U have the homotopy type of a G-CW spectrum

and let A be a G-space over .#(U,U’) that has the homotopy type of a G-CW
complex. Then A x F has the homotopy type of a G-CW spectrum.

[LMS, Chapter VI]
J. P. May. The Geometry of Iterated Loop Spaces. Springer Lecture Notes in Mathematics
Volume 271. 1972.
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2. The category of L-spectra

Return to the twisted half-smash product of (1.1). We think of it as a canonical
j-fold internal smash product. However, if we are to take this point of view
seriously, we must take note of the difference between £ and its “1-fold smash
product” Z(1) x E. The space .Z(1) is a monoid under composition, and the
formal properties of twisted half-smash products imply a natural isomorphism

) x (L) x B)y2(ZL(1)x Z(1)) x E,

where, on the right, .Z(1) x .Z(1) is regarded as a G-space over .Z(1) via the
composition product. This product induces a map

p(Z)xZ(1)x BE— Z(1)x E,

and the inclusion {1} — .Z(1) induces a map n: £ — Z(1) x F. The functor
L given by LE = Z(1) x F is a monad under the product g and unit n. We
therefore have the notion of a G-spectrum F with an action ¢ : LE — F of L;
the evident associativity and unit diagrams are required to commute.

DEFINITION 2.1. An L-spectrum is a G-spectrum M together with an action of
the monad L. Let G.¥[L] denote the category of L-spectra.

The formal properties of G.#[LL] are virtually the same as those of G.¥; since
Z(1) is a contractible G-space, so are the homotopical properties. For tame G-
spectra F, we have a natural equivalence £ = id, £/ — LE. For L-spectra M that
are tame as G-spectra, the action ¢ : LM — M is a weak equivalence. Taking
the LS™ as sphere L-modules, we obtain a theory of G-CW L-spectra exactly like
the theory of G-CW spectra. The functor L preserves G-CW spectra. We let
hG.#[L] be the category that is obtained from the homotopy category hG.7[L]
by formally inverting the weak equivalences and find that it is equivalent to the
homotopy category of G-CW L-spectra. The functor L : G.¥ — G.¥[L] and
the forgetful functor G.¥[L] — G.¥ induce an adjoint equivalence between the
stable homotopy category h(G.# and the category h(G.%[L).

Via the untwisting isomorphism .2 (1) x ¥ X = Z(1); AX*X and the obvious
projection Z(1); — S°, we obtain a natural action of L on suspension spectra.
However, even when X is a G-CW complex, ¥* X is not of the homotopy type of
a G-CW L-spectrum, and it is the functor L o ¥*° and not the functor X*° that is
left adjoint to the zeroth space functor G.[L] — 7.

The reason for introducing the category of L-spectra is that it has a well-behaved
“operadic smash product”, which we define next. Via instances of the structural
maps v of the operad .Z, we have both a left action of the monoid .Z(1) and a
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right action of the monoid .Z(1) x .Z(1) on .Z(2). These actions commute with
each other. If M and N are L-spectra, then .Z(1) x .Z(1) acts from the left on

the external smash product M A N via the map

£ (L) x L(1) ) (MAN) 2 (Z(1) x M) A(ZL(1) x N) L5 41 A N

To form the twisted half smash product on the left, we think of .Z(1) x .Z(1) as
mapping to .#(U?, U?) via direct sum of linear isometries. The smash product over

Z of M and N is simply the balanced product of the two .Z(1) x .Z(1)-actions.
DEFINITION 2.2. Let M and N be L-spectra. Define the operadic smash prod-
uct M A N to be the coequalizer displayed in the diagram
xid
(Z2)x ZL(1)x Z(1))x (M AN) W:;D?(Z) X (MAN)—= M Ag N.
id x ¢
Here we have implicitly used the isomorphism
(Z2)x L) x L) x (MAN)=ZZ22)x [(Z(1) x Z(1)) x (M AN)]
given by Proposition 1.4(ii). The left action of .Z(1) on .Z(2) induces a left action
of Z(1)on M Ag N that gives it a structure of L-spectrum.
We may mimic tensor product notation and write

M/\gN:g(Q) X 2 (1)x2(1) (M/\N)

This smash product is commutative, and a special property of the linear isome-
tries operad, first noticed by Hopkins, implies that it is also associative. There
is a function L-spectrum functor Fl¢ to go with Ag; it is constructed from the
external and twisted function spectra functors, and we have the adjunction

(2.3) GIL) M Age M',M") = GL LM, Fe(M, M")).
The smash product A is not unital. However, there is a natural map
AiSAe M — M

of L-spectra that is always a weak equivalence of spectra. It is not usually an
isomorphism, but another special property of the linear isometries operad implies
that it is an isomorphism if M = S or it M = SA ¢ N for any L-spectrum N. Thus
any L-spectrum is weakly equivalent to one whose unit map is an isomorphism.
This makes sense of the following definition, in which we understand S to mean
the sphere G-spectrum indexed on our fixed chosen G-universe U.
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DEFINITION 2.4. An S-module is an L-spectrum M such that A : SAe M —
M is an isomorphism. The category G.#s of S-modules is the full subcategory of
(.7 [L] whose objects are the S-modules. For S-modules M and M’, define

MAsM/:M/\gM/ and Fs(M,M/):S/\gFg(M,M/).

Although easy to prove, one surprising formal feature of the theory is that the
functor S Ag (+) : GF[L] — G.4s is right and not left adjoint to the forgetful
functor; it is left adjoint to the functor F¢ (5, -). This categorical situation dictates
our definition of function S-modules. It also dictates that we construct limits of
S-modules by constructing limits of their underlying L-spectra and then applying
the functor S Ay (e), as indicated in XXII§1. The free S-module functor Fg :
G.Y — G.#s is defined by

Fs(E) =S Ay LE.

It is left adjoint to the functor Fe(S,-) : G.dls — G, and this is the functor
that we denoted by Ug in XXII§1. From this point, the properties of the category
of S-modules that we described in XXII§1 are inherited directly from the good
properties of the category of L-spectra.

3. A, and F, ring spectra and S-algebras

We defined S-algebras and their modules in terms of structure maps that make
the evident diagrams commute in the symmetric monoidal category of S-modules.
There are older notions of A,, and F, ring spectra and their modules that May,
Quinn, and Ray introduced nonequivariantly in 1972; the equivariant generaliza-
tion was given in [LMS]. Working equivariantly, an A, ring spectrum is a spectrum
R together with an action by the linear isometries G-operad £°. Such an action
is given by G-maps

0;: L(j)x R — R, j >0,

such that appropriate associativity and unity diagrams commute. If the ; are
¥ ;-equivariant, then R is said to be an F., ring spectrum. Similarly a left module
M over an A, ring spectrum R is defined in terms of maps

pi s L)X RTVAM — M, j > 1

in the F., case, we require these maps to be X;_j-equivariant. It turns out that
the higher 0; and p; are determined by the 0; and p; for 5 < 2. That is, we have
the following result, which might instead be taken as a definition.
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THEOREM 3.1. An A, ring spectrum is an L-spectrum R with a unit map
n:S — R and a product ¢ : R ANy R — R such that the following diagrams

commute:
nAid id An

SANg R—= RNy R<—RAx S

\Jg/

idAg
R/\gR/\gR—>R/\3R

oni | |+

RAy R R;

and

R is an F., ring spectrum if the following diagram also commutes:

R/\gR R/\XR
x %
R.

A module over an A, or E ring spectrum R is an L-spectrum M with a map
pw: RANe M — M such that the following diagrams commute:

nAid id Ap

SANeM — RN M and ENe RAoe M ——= RN M
\ l#« (b/\idl l#«
A
M RAy M —- M.

This leads to the following description of S-algebras.

COROLLARY 3.2. An S-algebra or commutative S-algebra is an A, or F. ring
spectrum that is also an S-module. A module over an S-algebra or commutative
S-algebra R is a module over the underlying A, or ., ring spectrum that is also
an S-module.

In particular, we have a functorial way to replace A, and FE., ring spectra and
their modules by weakly equivalent S-algebras and commutative S-algebras and
their modules.

COROLLARY 3.3. For an A, ring spectrum R, S Ae R is an S-algebra and
A SAg R — R is a weak equivalence of A, ring spectra, and similarly in
the F. case. If M is an R-module, then S Ao M is an S Ay R-module and
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A: SAg M — M is a weak equivalence of R-modules and of modules over
S Ae R regarded as an A, ring spectrum.

Thus the earlier definitions are essentially equivalent to the new ones, and earlier
work gives a plenitude of examples. Thom G-spectra occur in nature as F, ring
Gi-spectra. For finite groups (/, multiplicative infinite loop space theory works
as 1t does nonequivariantly; however, the details have yet to be fully worked out
and written up: that is planned for a later work. This theory gives that the
Eilenberg-Mac Lane G-spectra of Green functors, the G-spectra of connective real
and complex K-theory, and the G-spectra of equivariant algebraic K-theory are
E ring spectra. As observed in XXII.6.13, it follows that the G-spectra of pe-
riodic real and complex K-theory are also E, ring G-spectra. Nonequivariantly,
many more examples are known due to recent work, mostly unpublished, of such
people as Hopkins, Miller, and Kriz.

J. P. May (with contributions by F. Quinn, N. Ray, and J. Tornehave). FE ring spaces and
FEo ring spectra. Springer Lecture Notes in Mathematics Volume 577. 1977.

J. P. May. Multiplicative infinite loop space theory. J. Pure and Applied Algebra, 26(1982),
1-69.

4. Alternative perspectives on equivariance

We have developed the theory of L-spectra and S-modules starting from a fixed
given G-universe U. However, there are alternative perspectives on the role of the
universe and of equivariance that shed considerable light on the theory. Much of
this material does not appear in the literature, and we give proofs in Section 6
after explaining the ideas here. Let Siy denote the sphere G-spectrum indexed on a
G-universe U. The essential point is that while the categories G.U of G-spectra
indexed on U vary as U varies, the categories G.#s, of Sy-modules do not: all
such categories are actually isomorphic. These isomorphisms preserve homotopies
and thus pass to ordinary homotopy categories. However, they do not preserve
weak equivalences and therefore do not pass to derived categories, which do vary
with UU. This observation first appeared in a paper of Elmendorf and May, but we
shall begin with a different explanation than the one we gave there.

We shall explain matters by describing the categories of GG-spectra and of L-G-
spectra indexed on varying universes U in terms of algebras over monads defined
on the ground category . = .ZR*> of nonequivariant spectra indexed on R*.
Abbreviate notation by writing L for the monoid .Z(1) = #(R*,R>). Any G-
universe U is isomorphic to R* with an action by G through linear isometries. The
action may be written in the form gz = f(g)(x) for # € R*, where f : G — L is
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a homomorphism of monoids. To fix ideas, we shall write R} for the G-universe
determined by such a homomorphism f. For a spectrum F, we then define

GfE:G[XE,

where the twisted half-smash product is determined by the map f. The multi-

plication and unit of ¢ determine maps p: G;GjEl — GsFE and n: E — G F
that give G a structure of monad in .%". As was observed in [LMS], the category
GYRY of G-spectra indexed on R is canonically isomorphic to the category
Z[Gy] of algebras over the monad G;. Of course, we also have the monad L in .
with LE = L x F; by definition, a nonequivariant L-spectrum is an algebra over
this monad.

ProOPOSITION 4.1. The following statements about the monads L. and G; hold
for any homomorphism of monoids f: G — L = Z(R>,R>).

1) L restricts to a monad in the category . |G| of G-spectra indexed on R%.
gory f p f
(ii) Gy restricts to a monad in the category .#[L] of L-spectra indexed on R*.
111) The composite monads LG, and G¢L in .¥ are isomorphic.
p f f p

Moreover, up to isomorphism, the composite monad LGy is independent of f.

COROLLARY 4.2. The category G.¥R¥[L] = #[G(][L] of L-G-spectra indexed
on R is isomorphic to the category .#[L}[Gy] of G-L-spectra indexed on R7. Up
to isomorphism, this category is independent of f.

The isomorphisms that we shall obtain preserve spheres and operadic smash
products and so restrict to give isomorphisms between categories of S-modules.

COROLLARY 4.3. Up to isomorphism, the category G.#g, of Sy-modules is
independent of the G-universe U.

Thus a structure of Sgpe-module on a naive G-spectrum is so rich that it en-
compasses an Sy-action on a G-spectrum indexed on U for any universe U. This
richness is possible because the action of G on U can itselt be expressed in terms
of the monoid L.

There is another way to think about these isomorphisms, which is given in
Elmendorf and May and which we now summarize. It is motivated by the definition
of the operadic smash product.
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DEFINITION 4.4. Fix universes U and U’, write I and L' for the respective
monads in G.¥U and G.¥U" and write .Z and ¢’ for the respective G-operads.
For an L-spectrum M, define an L'-spectrum I M by

IT'M = 7(UU") % sy M.
That is, I5' M is the coequalizer displayed in the diagram
yKid ,
FJUU)x (AU, U)yx M) —= J(U,U")x M — IJ'M.
id x ¢
Here ¢ : (U, U) x M — M is the given action of L. on M. We regard the
product (U, U") x Z(U,U) as a space over .7 (U, U’) via the composition map
v L (UU) x J(UU) — F(U,U";
Proposition 1.3(ii) gives a natural isomorphism
J(UU Y x (F(UU)x M) = (F(U,U") x Z(U,U)) x M.
This makes sense of the map v x id in the diagram. The required left action of
F(U' Uy on I M is induced by the composition product
v LUU) x £(UU) — 2(U U,
which induces a natural map of coequalizer diagrams on passage to twisted half-
smash products.

PROPOSITION 4.5. Let U, U’, and U"” be G-universes. Consider the functors

IV GIUL] — GLUL]  and ¥ :G7 — GZUL).

(i) 1Y o ¥¢¢ is naturally isomorphic to %25
(ii) 1Y) o 1Y is naturally isomorphic to 15"
(iii) I7 is naturally isomorphic to the identity functor.
Therefore the functor IJ' is an equivalence of categories with inverse I,. Moreover,
the functor 15 is continuous and satisfies 15 (M A X) = (I§' M)A X for L-spectra
M and based G-spaces X. In particular, it is homotopy preserving, and ][[]]/ and
IY, induce inverse equivalences of homotopy categories.

Now suppose that U = R¥ and U’ = R%. Since the coequalizer defining
IY" is the underlying nonequivariant coequalizer with a suitable action of G, we
see that, with all group actions ignored, the functor ][[]]/ is naturally isomorphic
to the identity functor on .#[L]. In this case, the equivalences of categories of
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the previous result are natural isomorphisms and, tracing through the definitions,
one can check that they agree with the equivalences given by the last statement of
Corollary 4.2. Therefore the following result, which applies to any pair of universes
U and U’ is an elaboration of Corollary 4.3.

PROPOSITION 4.6. The following statements hold.

(i) 14 Sy is canonically isomorphic to Sp.
(ii) For L-spectra M and N, there is a natural isomorphism
w: I (M Ay NY = (IF M) Ao (IF'N).
(iii) The following diagram commutes for all L-spectra M:

w

15 (S Ae M) St N (15 M)

! /
IZU]\

IT'M.

(iv) M is an Spy-module if and only if ][[]]/M is an Sy/-module.

Therefore the functors 15" and IY, restrict to inverse equivalences of categories
between GG.#s, and G.#s,, that induce inverse equivalences of categories between

hG. s, and hG.As,,.

This has the following consequence, which shows that, on the point-set level,
our brave new equivariant algebraic structures are independent of the universe in
which they are defined.

THEOREM 4.7. The functor ][[]]/ : GMls, — G.Ms,, is monoidal. If R is an
Syr-algebra and M is an R-module, then If'R is an Sy-algebra and IJ'M is an
1Y’ R-module.

The ideas of this section are illuminated by thinking model theoretically. We
focus attention on the category G.#p~, where GG acts trivially on R*. We can
reinterpret our results as saying that the model categories of Sy-modules for vary-
ing universes U are all isomorphic to the category G.#g~, but given a model
structure that depends on U. Indeed, for any U = R, we have the isomorphism
of categories Iy : G.#yy — G.Mlg, and we can transport the model category
structure of G.#Zy to a new model category structure on G g, which we call
the U-model structure on G.#pe.

The essential point is that I+ does not carry the cofibrant sphere Sp-modules
SgU = Su ANg LS™ to the corresponding cofibrant sphere Sge-modules. The weak
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equivalences in the U-model structure are the maps that induce isomorphisms on
homotopy classes of Sg~-module maps out of the “U-spheres” G/H, A I} 5%,
We define U-cell and relative U-cell Sgp~-modules by using these U-spheres as the
domains of their attaching maps. The U-cofibrations are the retracts of the relative
U-cell Sgeo-modules, and the U-fibrations are then determined as the maps that
satisfy the right lifting property with respect to the acyclic U-cofibrations.

A. D. Elmendorf and J. P. May. Algebras over equivariant sphere spectra. Preprint, 1995.

5. The construction of equivariant algebras and modules

The results of the previous section are not mere esoterica. They lead to homo-
topically well-behaved constructions of brave new equivariant algebraic structures
from brave new nonequivariant algebraic structures. The essential point is to un-
derstand the homotopical behavior of point-set level constructions that have de-
sirable formal properties. We shall explain the solutions to two natural problems
in this direction.

First, suppose given a nonequivariant S-algebra R and an R-module M; for
definiteness, we suppose that these spectra are indexed on the fixed point universe
U% of a complete G-universe U. Is there an Sg-algebra R and an Rg-module Mg
whose underlying nonequivariant spectra are equivalent to R and M in a way that
preserves the brave new algebraic structuresl’ In this generality, the only obvious
candidates for Rg and Mg are 1, R and 1, M, where i : U9 — U is the inclusion.
In any case, we want R and Mg to be equivalent to ¢, R and 1, M. However, the
change of universe functor i, does not preserve brave new algebraic structures.
Thus the problem is to find a functor that does preserve such structures and yet is
equivalent to 7,. A very special case of the solution of this problem has been used
by Benson and Greenlees to obtain calculational information about the ordinary
cohomology of classifying spaces of compact Lie groups.

Second, suppose given an Sg-algebra Rg with underlying nonequivariant S-
algebra R and suppose given an R-module M. Can we construct an Rg-module
M¢ whose underlying nonequivariant R-module is MT' Note in particular that
the problem presupposes that, up to equivalence, the underlying nonequivariant
spectrum of Rg is an S-algebra, and similarly for modules. We are thinking of
MUg and MU, and the solution of this problem gives equivariant versions as
MUg-modules of all of the spectra, such as the Brown-Peterson and Morava K-
theory spectra, that can be constructed from MU by killing some generators and
inverting others.

The following homotopical result of Elmendorf and May combines with Theo-
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rem 4.7 to solve the first problem. In fact, it shows more generally that, up to
isomorphism in derived categories, any change of universe functor preserves brave
new algebraic structures. Observe that, for a linear isometry f : U — U’ and
Sy-modules M € G4, , we have a composite natural map

a: foM — J(UU)x M — [5,M

of G-spectra indexed on U’, where the first arrow is induced by the inclusion
{f} — FA(U,U’) and the second is the evident quotient map.

THEOREM 5.1. Let f: U — U’ be a G-linear isometry. Then for sufficiently
well-behaved Spy-modules M € G.#s,, (those in the collection &5, of XXII.5.5), the
natural map o : f,M — IJ'M is a homotopy equivalence of G-spectra indexed

on U’

Remember that &s, includes the ¢-cofibrant objects in all of our categories
of brave new algebras and modules. We are entitled to conclude that, up to
equivalence, the change of universe functor f, preserves brave new algebras and
modules. The most important case is the inclusion ¢ : U9 — U. If we start
from any nonequivariant ¢-cofibrant brave new algebraic structure, then, up to
equivalence, the change of universe functor z, constructs from it a corresponding
equivariant brave new algebraic structure.

Turning to the second problem that we posed, we give a result (due to May)
that interrelates brave new algebraic structures in G.#y and #6. Its starting
point is the idea of combining the operadic smash product with the functors I7,.
We think of U as the basic universe of interest in what follows.

DEFINITION 5.2. Let U, U’, and U"” be G-universes. For an L/-spectrum M and
an L"-spectrum N, define an L-spectrum M Ag N by

M Ay N=1I5M Ay I5N.

The formal properties of this product can be deduced from those of the functors
I, together with those of the operadic smash product for the fixed universe U/. In
particular, since the functor Ijj, takes Spr-modules to Sy-modules and the smash
product over Sy is the restriction to Sy-modules of the smash product over £,
we have the following observation.

LEMMA 5.3. The functor Ag : GFLU'[L/] x GFU"L"] — GLU[L] restricts

to a functor

/\SU : G%SU’ X G%SU” E— G%SU-
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This allows us to define modules indexed on one universe over algebras indexed
on another.

DEFINITION 5.4. Let R € G.#5s,,, be an Synr-algebra and let M € G.#s,,. Say
that M is a right R-module if it is a right I, R-module, and similarly for left
modules.

To define smash products over R in this context, we use the functors IJ, to
index everything on our preferred universe U and then take smash products there.

DEFINITION 5.5. Let R € G.#s,, be an Sys-algebra, let M € G.#s,, be a
right R-module and let N € G be a left R-module. Define

M/\R N - ]g/M /\IZZ]]HR ][[]]///N.

These smash products inherit good formal properties from those of the smash
products of R-modules, and their homotopical properties can be deduced from the
homotopical properties of the smash product of R-modules and the homotopical
properties of the functors I, as given by Theorem 5.1.

Now specialize to consideration of UY C U. Write Sg for the sphere G-spectrum
indexed on U/ and S for the nonequivariant sphere spectrum indexed on U“. We
take Sg-modules to be in G.#;; and S-modules to be in .#;¢ in what follows.

THEOREM 5.6. Let Rg be a commutative Sg-algebra and assume that Rg is
split as an algebra with underlying nonequivariant S-algebra R . Then there is
a monoidal functor Rg Ar (+) : M — Gtlp,. If M is a cell R-module, then
Ra Ar M is split as a module with underlying nonequivariant E-module M. The
functor Rg Agr(-) induces a derived monoidal functor Zr — G'Zg,. Therefore, if
M is an R-ring spectrum (in the homotopical sense), then Rg Ap M is an Rg-ring
Gi-spectrum.

The terms “split as an algebra” and “split as a module” are a bit technical,
and we will explain them in a moment. However, we have the following important
example; see XV§2 for the definition of MUs;.

PRrROPOSITION 5.7. The G-spectrum M U that represents stable complex cobor-
dism is a commutative Sg-algebra, and it is split as an algebra with underlying
nonequivariant S-algebra MU.

We shall return to this point and say something about the proof of the propo-
sition in XXV§7. We conclude that, for any compact Lie group ¢ and any MU-
module M, we have a corresponding split MUg-module Mg = MUg Apyp M. This
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allows us to transport the nonequivariant constructions of XXII§4 into the equiv-
ariant world. For example, taking M = BP or M = K(n), we obtain equivariant
Brown-Peterson and Morava K-theory MUg-modules BPg and K(n)q. Moreover,
if M is an MU-ring spectrum, then Mg is an MUg-ring G-spectrum, and Mg is
associative or commutative it M is so.

We must still explain our terms and sketch the proof of Theorem 5.6. The notion
of a split G-spectrum was a homotopical one involving the change of universe
functor 7., and neither that functor nor its right adjoint ¢* preserves brave new
algebraic structures. We are led to the following definitions.

DEFINITION 5.8. A commutative Sg-algebra R is split as an algebra if there is
a commutative S-algebra R and a map 7 : I}s R — Rg of Sg-algebras such that
is a (nonequivariant) equivalence of spectra and the natural map o : i, R — IR
is an (equivariant) equivalence of G-spectra. We call R the (or, more accurately,
an) underlying nonequivariant S-algebra of Rg.

Since the composite 7 0 « is a nonequivariant equivalence and the natural map
R — "R is a weak equivalence (provided that R is tame), R is weakly equiva-
lent to "R with G-action ignored. Thus R is a highly structured version of the
underlying nonequivariant spectrum of Rg. Clearly Ry is split as a G-spectrum
with splitting map 7 o a.

We have a parallel definition for modules.

DEFINITION 5.9. Let R be a commutative Sg-algebra that is split as an algebra
with underlying S-algebra R and let Mg be an Rg-module. Regard Mg as an
Ifs R-module by pullback along 5. Then Mg is split as a module if there is an
R-module M and a map x : IJeM — Mg of IjsR-modules such that y is a
(nonequivariant) equivalence of spectra and the natural map o : inM — [/cM
is an (equivariant) equivalence of G-spectra. We call M the (or, more accurately,
an) underlying nonequivariant R-module of M.

Again, M is a highly structured version of the underlying nonequivariant spec-
trum of Mg, and Mg is split as a G-spectrum with splitting map y o a. The
ambiguity that we allow in the notion of an underlying object is quite useful: it
allows us to use Theorem 5.1 and ¢-cofibrant approximation (of S-algebras and of
R-modules) to arrange the condition on « in the definitions if we have succeeded
in arranging the other conditions.

For the proof of Theorem 5.6, Definition 5.5 specializes to give the required
functor Rg Ag (+), and it is clearly monoidal. We may as well assume that our
given underlying nonequivariant S-algebra R is ¢-cofibrant as an S-algebra. Let
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M be a cell R-module. By Theorem 5.1, the condition on « in the definition of an
underlying R-module is satisfied. Define

X =nAid: IjeM = IfeR Ao_g IeM — Re Ajo_g IiaM = Mg
U U

Clearly y is a map of ][[]]GR—modules, and it is not hard to prove that it is an equiv-
alence of spectra. Thus Mg is split as a module with underlying nonequivariant
R-module M. That is the main point, and the rest follows without difficulty.

D. J. Benson and J. P. C. Greenlees. Commutative algebra for cohomology rings of classifying
spaces of compact Lie groups. Preprint. 1995.

A. D. Elmendorf and J. P. May. Algebras over equivariant sphere spectra. Preprint, 1995.

J. P. May. Equivariant and nonequivariant module spectra. Preprint, 1995.

6. Comparisons of categories of L-G-spectra

We prove Proposition 4.1 and Corollary 4.2 here. The proof of Proposition 4.1
is based on the comparison of certain monoids constructed from the monoids G

and L and the homomorphism f : G — L. Thus let G xy L and L x; GG be the
left and right semidirect products of G and L determined by f. As spaces,

GryL=GxL and Lx;G=LxG,
and their multiplications are specified by
(g9, m)(g'sm") = (99, f(g"™ ym [ (g'ym)
and

(m,g)(m',¢") = (mf(g)m'f(g7), 99").

There is an isomorphism of monoids
T:Gxy L — Lx;G
specified by
(g,m) = (flg)mflg™"),9);

there is also an isomorphism of monoids
(:Gxy L —GxL

specified by
C(g,m) = (g, f(g)m);
its inverse takes (g, m) to (g, f(¢~')m). Let

7:Gx L — L
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be the projection. We regard G x L as a monoid over L via m and we regard
G x; L and L x; G as monoids over L via the composites 7 o ( and 7o (o717t
so that ¢ and 7 are isomorphisms over L. Using Proposition 1.3, we see that, for

spectra E € .7, the map 7 induces a natural isomorphism

(6.1) T:GLEZ(GxyL)x E— (L x;G)x E=ZLGE
and the map ( induces a natural isomorphism

(6.2) (:GLE=Z (Gx;L)x E— (Gx L)x E= G4 ANLE.

In the domains and targets here, the units and products of the given monoids
determine natural transformations n and p that give the specified composite monad
structures to the displayed functors . — .. Elementary diagram chases on the
level of monoids imply that the displayed natural transformations are well-defined
isomorphisms of monads. If f is the trivial homomorphism that sends all of G to
1 € L, then G xy L =G x L. Thus in (6.2) we are comparing the monad for the
G-universe R} to the monad determined by R™ regarded as a trivial G-universe.
The conclusions of Proposition 4.1 follow, and Corollary 4.2 follows as a matter of
category theory.

The following two lemmas in category theory may or may not illuminate what is
going on. The first is proven in [EKMM] and shows why Corollary 4.2 follows from
Proposition 4.1. The second dictates exactly what “elementary diagram chases”
are needed to complete the proof of Proposition 4.1.

LEMMA 6.3. Let S be a monad in a category € and let T be a monad in the
category €’[S] of S-algebras. Then the category €’[S|[T] of T-algebras in €7[S] is
isomorphic to the category €’ [TS] of algebras over the composite monad TS in %.

Here the unit of TS is the composite id — S — TS given by the units of S
and T and the product on TS is the composite TSTS — TTS — TS, where the
second map is given by the product of T and the first is obtained by applying T
to the action STS — TS given by the fact that T is a monad in €[S]. In our
applications, we are taking T to be the restriction to €[S] of a monad in €. This
requires us to start with monads S and T that commute with one another.

LEMMA 6.4. Let S and T be monads in €. Suppose there is a natural isomor-
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phism 7 : ST — TS such that the following diagrams commute:

I

SST ST and T
| | RN
St T
STS — TSS T TS ST - TS.

Then T restricts to a monad in €[S] to which the previous lemma applies. Suppose
further that these diagrams with the roles of S and T reversed also commute, as
do the following diagrams:

STST > SSTT —“~ SST > ST and id -~ T —"~§T
TOSTT\L lT H lﬂ'
TSTS ? TTSS W TTS T> TS id T> S —77> TS.

Then 7 : ST — TS is an isomorphism of monads. Therefore the categories

¢ [S][T] and €[T][S] are both isomorphic to the category €[ST| = €[TS].

Here, for the first statement, if X is an S-algebra with action £, then the required
action of S on TX is the composite STX 5TSX 5 TX,
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CHAPTER XXIV

Brave New Equivariant Algebra

by J. P. C. Greenlees and J. P. May

1. Introduction

We shall explain how useful it is to be able to mimic commutative algebra
in equivariant topology. Actually, the nonequivariant specializations of the con-
structions that we shall describe are also of considerable interest, especially in
connection with the chromatic filtration of stable homotopy theory. We have dis-
cussed this in an expository paper [GM1], and that paper also says more about the
relevant algebraic constructions than we shall say here. We shall give a connected
sequence of examples of brave new analogues of constructions in commutative al-
gebra. The general pattern of how the theory works is this. We first give an
algebraic definition. We next give its brave new analogue. The homotopy groups
of the brave new analogue will be computable in terms of a spectral sequence that
starts with the relevant algebraic construction computed on coefficient rings and
modules. The usefulness of the constructions is that they are often related by a
natural map to or from an analogous geometric construction that one wishes to
compute. Localization and completion theorems say when such maps are equiva-
lences.

The Atiyah-Segal completion theorem and the Segal conjecture are examples of
this paradigm that we have already discussed. However, very special features of
those cases allowed them to be handled without explicit use of brave new alge-
bra: the force of Bott periodicity in the case of K-theory and the fact that the
sphere G-spectrum acts naturally on the stable homotopy category in the case of
cohomotopy. We shall explain how brave new algebra gives a coherent general

347
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framework for the study of such completion phenomena in cohomology and anal-
ogous localization phenomena in homology. We have given another exposition of
these matters in [GM2], which says more about the basic philosophy. We shall
describe the results in a little greater generality here and so clarify the application
to K -theory. We shall also explain the relationship between localization theorems
and Tate theory, which we find quite illuminating.

[GM1] J. P. C. Greenlees and J. P. May. Completions in algebra and topology. In “Handbook
of Algebraic Topology”, edited by I.M. James. North Holland, 1995, pp 255-276.
[GM2] J. P. C. Greenlees and J. P. May. Equivariant stable homotopy theory. In “Handbook of
Algebraic Topology”, edited by .M. James. North Holland, 1995, pp 277-324.

2. Local and Cech cohomology in algebra

Suppose given a ring R, which may be graded and which need not be Noetherian,
and suppose given a finitely generated ideal I = (ay,aq,...,a,). If R is graded
the «; are required to be homogeneous.

For any element a, we may consider the stable Koszul cochain complex
K*(a) = (R — R[a™"])
concentrated in codegrees 0 and 1. Notice that we have a fiber sequence
K*a)—R — R[]

of cochain complexes.

We may now form the tensor product
Ko, .. ,a,) = K1) @ ... 0 K*(ay).

It is clear that this complex is unchanged if we replace some «; by a power, and
it is not hard to check the following result.

LEMMA 2.1. If 3 € I, then K*(ay,...,a,)[f7"] is exact. Up to quasi-isomor-
phism, the complex K*(aq, ... ,a,) depends only on the ideal I.
Therefore, up to quasi-isomorphism, K*(aq,. .. ,a,) depends only on the radical

of the ideal I, and we henceforth write K*(I) for it.

Following Grothendieck, we define the local cohomology groups of an R-module

M by

(2.2) (R M) = H*(K*(I) ® M),
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It is easy to see that HY(R; M) is the submodule
L;(M) = {m € M|I*m = 0 for some positive integer k}

of I-power torsion elements of M. If R is Noetherian it is not hard to prove
that Hj(R;-) is effaceable and hence that local cohomology calculates the right
derived functors of I';(+). It is clear that the local cohomology groups vanish above
codegree n; in the Noetherian case Grothendieck’s vanishing theorem shows that
they are actually zero above the Krull dimension of R. Observe that if 5 € [ then
H;(R; M)[3~'] = 0; this is a restatement of the exactness of K*(I)[57].

The Koszul complex K*(«) comes with a natural map ¢ : K*(a) — R; the
tensor product of such maps gives an augmentation ¢ : K*(/) — R. Define
the Cech complex C*(I) to be Y(Ker ). (The name is justified in [GM1].) By
inspection, or as an alternative definition, we then have the fiber sequence of
cochain complexes

(2.3) K*(I) — R — C*(I).
We define the Cech cohomology groups of an R-module M by
(2.4) CH;(R; M) = H*(C*(1) @ M).

We often delete R from the notation for these functors. The fiber sequence (2.3)
gives rise to long exact sequences relating local and Cech cohomology, and these
reduce to exact sequences

0— HY M) — M — CHYM) — H;} (M) — 0
together with isomorphisms

Hiy(M) = CH7Y(M).

A. Grothendieck (notes by R.Hartshorne). Local cohomology. Springer Lecture notes in mathe-
matics, Vol. 42. 1967.

3. Brave new versions of local and Cech cohomology

Turning to topology, we fix a compact Lie group G and consider G-spectra
indexed on a complete G-universe U. We let Si be the sphere GG-spectrum, and
we work in the category of Sg-modules. Fix a commutative Sg-algebra R and
consider R-modules M. We write

MS =x8(M) = Mz".

n



350 XXIV. BRAVE NEW EQUIVARIANT ALGEBRA

Thus R is a ring and ME is an R-module.
Mimicking the algebra, for a € RS we define the Koszul spectrum K (a) by the

fiber sequence
K(a) — R — R[a™"].

Here, suppressing notation for suspensions, R[a™!] = hocolim(R - R - ...);
it is an R-module and the inclusion of R is a module map; therefore K(«) is an
R-module. Analogous to the filtration at the chain level, we obtain a filtration of
K(a) by viewing it as X' (R[1/a] U C'R).

Next we define the Koszul spectrum of a sequence aq,... ,«a, by
K(oaq,...,an) = K(a1) Ag ... A K(ay,).

Using the same proof as in the algebraic case we conclude that, up to equivalence,
K(aq,... ,a,) depends only on the radical of [ = (ay, ... ,a,); we therefore denote
it K(I). We then define the homotopy [-power torsion (or local cohomology)
module of an R-module M by

(3.1) T1(M) = K(I) Ar M.

In particular, I';(R) = K(I).

To calculate the homotopy groups of I';( M) we use the product of the filtrations
of the K(«;) given above. Since the filtration models the algebra precisely, there
results a spectral sequence of the form

(3:2) B3y = Hr (RO MO = ml(T1(M)
with differentials d" : B, — E{_ . .

REMARK 3.3. In practice it is often useful to use the fact that the algebraic local
cohomology Hj(R; M) is essentially independent of R. Indeed if the generators of [
come from a ring Ry (in which they generate an ideal Iy) via a ring homomorphism
0 : Ry — R, then H} (Ro; M) = Hj(R; M). In practice we often use this if the
ideal I of RS may be radically generated by elements of degree 0. This holds for
any ideal of S since the elements of positive degree in S& are nilpotent.

Similarly, we define the Cech spectrum of I by the cofiber sequence of R-modules

(3.4) K(I) — R — C(I).
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We think of C(1) as analogous to EG. We then define the homotopical localization
(or Cech cohomology) module associated to an R-module M by

(3.5) MY = C(I) Ar M.
In particular, R[I~'] = C(I). Again, we have a spectral sequence of the form
(3-6) E?,t = OH;S(RSQ M*G)t = 7T§+t(M[]_1])

with differentials d" : B, — E{_ . .
The “localization” M[I7'] is generally not a localization of M at a multiplica-

tively closed subset of R,. However, the term is justified by the following theorem
from [GM1, §5]. Recall the discussion of Bousfield localization from XXII§6.

THEOREM 3.7. For any finitely generated ideal I = (ay,...,a,) of RY, the
map M — M[I™'] is Bousfield localization with respect to the R-module R[I™]

or, equivalently, with respect to the wedge of the R-modules R[a;*].
Observe that we have a natural cofiber sequence

(3.8) Ly(M) — M — M[I7]

relating our [-power torsion and localization functors.

4. Localization theorems in equivariant homology

For an R-module M, we have the fundamental cofiber sequence of R-modules
(4.1) EGo ANM — M — EG A M.

Such sequences played a central role in our study of the Segal conjecture and
Tate cohomology, for example, and we would like to understand their homotopical
behavior. In favorable cases, the cofiber sequence (3.8) models this sequence and
so allows computations via the spectral sequences of the previous section. The

relevant ideal is the augmentation ideal
I = Ker(res$ : RS — R.).

In order to apply the constructions of the previous section, we need an assumption.
It will be satisfied automatically when RS is Noetherian.

ASSUMPTION 4.2. Up to taking radicals, the ideal [ is finitely generated. That
is, there are elements a4, ... ,a, € [ such that

V0, ..o ap) = V1.
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Under Assumption (4.2), it is reasonable to let K (/) denote K (a1, ..., ;). The
canonical map ¢ : K(I) — R is then a nonequivariant equivalence. Indeed, this is
a special case of the following observation, which is evident from our constructions.

LEMMA 4.3. Let H C G, let 3; € RY, and let v, = res%(3;) € RI. Then,

* 9

regarded as a module over the Sy-algebra R|y,

I((ﬂlv 76n)|H = [((717 7771)

Therefore, if 3; € Kerres$;, then the natural map K(3,---,3,) — R is an
H-equivalence.

Here the last statement holds since K(0) = R. If we take the smash product
of ¢ with the identity map of EG,, we obtain a G-equivalence of R-modules
EGi NK(I) — EGL A R. Working in the derived category (GZg, we may invert
this map and compose with the map

EGLNK(I)— S°ANK(I)= K(I)
induced by the projection EG, — S to obtain a map of R-modules over R
(4.4) k: EGL NR— K(I).
Passing to cofibers we obtain a compatible map
(4.5) ki EGANR— C(I).

Finally, taking the smash product over R with an R-module M, there results a
natural map of cofiber sequences

EGANM — M — EGA M

(4.6) l H
I';(M) M MI[I7"].

Clearly & is an equivalence if and only if kK is an equivalence. When the latter
holds, it should be interpreted as stating that the ‘topological’ localization of M
away from its free part is equivalent to the ‘algebraic’ localization of M away
from I. We adopt this idea in a definition. Recall the homotopical notions of
an R-ring spectrum A and of an A-module spectrum from XXII.4.1; we tacitly
assume throughout the chapter that all given R-ring spectra are associative and
commutative.
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DEFINITION 4.7. The ‘localization theorem’ holds for an R-ring spectrum A if
fg=hkANid: EGANA=EGANRARA — C(I)Ar A

is a weak equivalence of R-modules, that is, if it is an isomorphism in G%g. It is
equivalent that

ka=kANid: EGENA=FEG, NRArA— K(I)Ar A
be an isomorphism in GZg.
In our equivariant context, we define the A-homology of an R-module M by
(4.8) AR (M) = 79 (M AR A);

compare XXII.3.1. This must not be confused with AY(X) = 7%(X A A), which
is defined on all G-spectra X. When A = R, A%% is the restriction of AY to
R-modules. When R = Sg, A9 is AS thought of as a theory defined on Se-

modules. In general, for G-spectra X, we have the relation
(19) AS(X) = ASH(E LX),

where the free R-module FrX is weakly equivalent to the spectrum X A R. The
localization theorem asserts that s is an AfF-isomorphism for all subgroups H
of G and thus that the cofiber Ok is Al acyclic for all H. Observe that the
definition of x impliesthat C'x is equivalent to EG/\K(]). We are mainly interested
in the case A = R, but we shall see in the next section that the localization theorem
holds for K¢ regarded as an Sg-ring spectrum, although it fails for S¢ itself. The
conclusion of the localization theorem is inherited by arbitrary A-modules.

LEMMA 4.10. If the localization theorem holds for the R-ring spectrum A, then
the maps
EGyAM — Ty M) and EGAM — M[I7]

of (4.6) are isomorphisms in G%g for all A-modules M.
PRrOOF. Cx Agr M 1s trivial since it 1s a retract in GPr of Ck AR AAg M. O
When this holds, we obtain the isomorphism
ME(EGy) =70 (EG A M) = 721 (M)

on passage to homotopy groups. Here, in favorable cases, the homotopy groups on
the right can be calculated by the spectral sequence (3.2). When M is split and
(¢ is finite, the homology groups on the left are the (reduced) homology groups
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M. (BG,) defined with respect to the underlying nonequivariant spectrum of M;
see XVI§2. We also obtain the isomorphism

ME(EG) = xZ(EGAM) = 3 (M[I7);

the homotopy groups on the right can be calculated by the spectral sequence (3.5).

More generally, it is valuable to obtain a localization theorem about FG 4 Ag X
for a general based G-space X, obtaining the result about BG . by taking X to
be S°. To obtain this, we simply replace M by M A X in the first equivalence of
the previous lemma. If M is split, we conclude from XVI§2 that

rEETANNEGL A X AM)) 2 MJ(EG, A X),
where Ad((G') is the adjoint representation of (. Thus we have the following
implication.
COROLLARY 4.11. If the localization theorem holds for A and M is an A-module
spectrum that is split as a G-spectrum, then
TS AMDM A X)) = M(EG, A X)
for any based G-space X. Therefore there is a spectral sequence of the form

B2, = Hi*(RY; ME (S48 X)), = Moy (BG4 A X).

5. Completions, completion theorems, and local homology

The localization theorem also implies a completion theorem. In fact, applying
the functor Fr(-, M) to the map &, we obtain a cohomological analogue of Lemma
4.10. To give the appropriate context, we define the completion of an R-module
M at a finitely generated ideal I by

(5.1) M} = Fr(K(I), M).

We shall shortly return to algebra and define certain “local homology groups”
Hy(R; M) that are closely related to the [-adic completion functor. In the topo-
logical context, it will follow from the definitions that the filtration of K(I) gives
rise to a spectral sequence of the form

(5.2) Byt = HL (Rg Mg)' = w2, (M])

with differentials d, : E*' — ESt71="+1 Here, if R} is Noetherian and M is
finitely generated, then
G *
T2 (Mp) = (Mg)7
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Again, a theorem from [GMI1, §5] gives an interpretation of the completion
functor as a Bousfield localization.

THEOREM 5.3. For any finitely generated ideal I = (ay,. .. ,a,) of RS, the map
M — M7 is Bousfield localization in the category of R-modules with respect to

the R-module K(I) or, equivalently, with respect to the smash product of the
R-modules R/ ;.

Returning to the augmentation ideal I, we have the promised cohomological
implication of the localization theorem; the case M = A is called the ‘completion
theorem’ for A.

LEMMA 5.4. If the localization theorem holds for the R-ring spectrum A, then
the map

M} = Fr(K(I),M) — Fp(EG. NR,M) = F(EG,, M)
is an isomorphism in GZp for all A-module spectra M.
PROOF. Fr(Ck, M) is trivial since any map C'x — M factors as a composite
Ck — CkARA— M A A— M,
and similarly for suspensions of C'k. [
When this holds, we obtain the isomorphism
7O (M) = ME(EG,)

on passage to homotopy groups. If M is split, the cohomology groups on the
right are the (reduced) cohomology groups M*(BG ) defined with respect to the
underlying nonequivariant spectrum of M; see XVI§2.

To obtain a completion theorem about FG Ag X for a based G-space X, we
replace M by F(X, M) in the previous lemma. If M is split, then

rS(F(EGy AN X, M)) = M*(EGy A X).

COROLLARY 5.5. If the localization theorem holds for A and M is an A-module
spectrum that is split as a G-spectrum, then

(P(X, M)} = M*(EGy Aq X)
for any based G-space X. Therefore there is a spectral sequence of the form

By = H (Ris ME(X))' = M (EGL Ao X).
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Thus, when it holds, the localization theorem for A implies a calculation of
both M.(EG Ag X) and M*(EG 4 N X) for all split A-modules M and all based
G-spaces X.

We must still define the algebraic construction whose brave new counterpart is
given by our completion functors. Returning to the algebraic context of Section
1, we want to define a suitable dual to local cohomology. Since local cohomology
is obtained as H*(K @ M) for a suitable complex K, we expect to have to take
H.(Hom(K, M)). However this will be badly behaved unless we first replace K by
a complex of projective R-modules. Thus we choose an R-free complex PK*([)
and a homology isomorphism PK*(/) — K*([). Since both complexes consist
of flat modules we could equally well have used PK*(]) in the definition of local
cohomology. For finitely generated ideals [ = (aq,- -+ , ), we take tensor prod-
ucts and define PK*(I) = PK*(a1) @ ...® PK*(a,); independence of generators
follows from that of K*(7).

We may then define local homology by
(5.6) HI(R; M) = H.(Hom(PK*(I), M)).

We often omit R from the notation. Because we chose a projective complex we
obtain a third quadrant univeral coefficient spectral sequence

By = Bxt®(H7'(R), M) = H!,_ (R M)

with differentials d, : E®' — EsT5="t1 that relates local cohomology to local
homology.

It is not hard to check from the definition that if R is Noetherian and M is
either free or finitely generated, then HI(R; M) = M7}, and one may also prove
that in these cases the higher local homology groups are zero. It follows that
HI(R; M) calculates the left derived functors of the (not necessarily right exact)
I-adic completion functor. In fact, this holds under weaker hypotheses on R than
that it be Noetherian.

Returning to our topological context, it is now clear that if R is a commutative
Sg-algebra and I is a finitely generated ideal in RS, then the completion functor
M7 on R-modules is the brave new analogue of local homology: we have the
spectral sequence (5.2).

J.P.C. Greenlees and J.P. May. Derived functors of I-adic completion and local homology. J.
Algebra 149 (1992), 438-453.



6. A PROOF AND GENERALIZATION OF THE LOCALIZATION THEOREM 357

6. A proof and generalization of the localization theorem

To prove systematically that the map x4 of (4.7) is a weak equivalence we
need to know that when we restrict the map x of (4.4) to a subgroup H, we
obtain an analogous map of H-spectra. Write [y for the augmentation ideal
Ker(resi’ C RI). Even for cohomotopy it is not true that res(lz) = Iy, but in
that case they do have the same radical. To give a general result, we must assume

that this holds.

ASSUMPTION 6.1. For all subgroups H C &

vres(lg) = \/E

For theories such as cohomotopy and K-theory, where we understand all of the
primes of R, this is easy to verify. Note that both (4.2) and (6.1) are assumptions
on R that have nothing to do with A. We need an assumption that relates R
to A, Let J = Jg be the augmentation ideal in AY. The unit B — A induces
a homomorphism of rings R — A% that is compatible with restrictions to
subgroups, hence we have an inclusion of ideals I - A C J.

ASSUMPTION 6.2. The augmentation ideals of Rf, and A7, are related by

VI AG =V

Recall from (4.8) that AST(M) = 7%(M Ar A). The final ingredient of our

proof will be the existence of Thom isomorphisms
(6.3) AGRSY A M) = AGE(SIVIA M)

of A%F-modules for all complex representations V and R-modules M. For exam-
ple, with A = R, homotopical bordism and K-theory have such Thom isomor-
phisms. Cohomotopy does not, and that is why our proof (and the theorem) fail
in that case.

THEOREM 6.4 (LOCALIZATION). If A is an R-ring spectrum such that, for all

subgroups H of (i, the theories A'f(.) admit Thom isomorphisms and if as-
sumptions (4.2), (6.1), and (6.2) hold for G and for all of its subgroups, then the
localization theorem holds for A.

PROOF. We have observed that the cofiber of x is equivalent to £G A K(I). We
must prove that EG A K(I)Ar A ~ %. We proceed by induction on the size of the
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group. By Assumption (6.1) and Lemma 4.3, we see that
(EGANK(Ig)|g ~ EH A K(Iy).
Thus our inductive assumption implies that
G/Hy NEGANK(I)Ag A~ x

for all proper subgroups H C (. Arguing exactly as in Carlsson’s first reduction,
XX.4.1, of the Segal conjecture for finite p-groups, we find that it suffices to prove

that £EZAK(I)Ag A ~ . Indeed, (E2)% = S° and E.22/5° can be constructed
from cells G/H, A S™ with H proper. Therefore

(BEZ2/S°YNEGANK(I)Ag A~ *

and thus

EGNK(I)Ap A~ EZ NEGAK(I)Ag A.
However, the map £2 — EZ A EG induced by the map S° — EG is a
Gi-equivalence by a check of fixed point spaces.

Now, if G is finite, consider the reduced regular representation V. As we ob-
served in the proof of the Segal conjecture, S™V = colim S*V is a model for E
since VH £ 0 if H is proper and V< = 0. For a general compact Lie group G, we
write SV for the colimit of the spheres SV, where V runs over a suitably large
set of representations V such that V¢ = {0}, for example all such V that are
contained in a complete G-universe U/. Again, SV is a model for EP.

At this point we must recall how Thom isomorphisms give rise to Euler classes
x(V) € Ac_;i%. Indeed the inclusion e : S — SV and the Thom isomorphism
give a natural map of AS"®-modules

AGT0)SSACR(SY 0 X) 2 ASR(S A X) = AT (X))
and this map is given by multiplication by x (V). Thus, for finite G,
AGR(S<V NK(T)) = colimy ASH(SH A K(1))
= colimy(ASH(K (1)), x(V))
= AZHED) V)T

Here x(V) is in J since e is nonequivariantly null homotopic. Therefore, using
Assumption 6.2 and Remark 3.3, we see that

Hi (RS N)X(V)™1] = HH(AZ N) [ (V)] =0
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for any AY-module N. From the spectral sequence (3.2), we deduce that
ASR(S=V A K(1)) = 0.

A little elaboration of the argument gives the same conclusion when G is a gen-
eral compact Lie group. Since SV is H-equivariantly contractible for all proper
subgroups H, this shows that S=V A K(I) Agp A ~ *, as required. [

There is a substantial generalization of the theorem that admits virtually the
same proof. Recall from V.4.6 that, for a family .%, we have the cofiber sequence

EZ, — S" — EF.
We discussed family versions of the Atiyah-Segal completion theorem in XIV§6
and of the Segal conjecture in XX§§1-3. As in those cases, we define
1.7 = Npez Ker(res$ : RS — R,

Arguing exactly as above, we obtain a map
(6.5) k:EFZ.NR— K(I7).

DEFINITION 6.6. The ‘% -localization theorem’ holds for an R-ring spectrum A
if

ka=kANid: EFZ, NA=EFZ . NRApA— K(IIF)ANr A

is a weak equivalence of R-modules, that is, if it is an isomorphism in GZp.

We combine and record the evident analogs of Lemmas 4.10 and 5.4.

LEMMA 6.7. If the .#-localization theorem holds for the R-ring spectrum A,
then the maps

EF, ANM —T12(M), EFANM — M[[.F™]

Y

and
M}, = Fp(K(I1.Z),M) — Fr(EZ. NR,M) = F(EZ,, M)

are isomorphisms in GGZp for all A-modules M.

A family . in G restricts to a family F|y = {K|K € # and K C H}, and
Assumptions 4.2, 6.1, and 6.2 admit evident analogs for [.%.

THEOREM 6.8 (F-LOCALIZATION). If A is an R-ring spectrum such that, for
all subgroups H of (&, the theories Af'H(-) admit Thom isomorphisms and if, for
a given family .#, the .# versions of assumptions (4.2), (6.1), and (6.2) hold for
G and for all of its subgroups, then the .%-localization theorem holds for A.
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PROOF. Here we must prove that E.Z A K(I.F)Ap A ~ %, and we assume
that G ¢ .# since otherwise E.Z ~ . As in the proof of the localization theorem,
since the evident map 1.7 — EZNE.Z is a G-equivalence, the problem reduces
inductively to showing that .2 A K(I.F) Ag A ~ *. We take SV as our model
for .2 and see that, since V¥ = {0} for all H # G, x(V) € J.Z. The rest is

the same as in the proof of the localization theorem. [

REMARK 6.9. It is perhaps of philosophical interest to note that the localization
theorem is true for all R that satisfy (4.2) and (6.1) provided that we work with
RO(G)-graded rings. Indeed the proof is the same except that instead of using
the integer graded element y (V) € RC_;|V| we must use e(V) = e.(1) € R%,. The
conclusion is only that there are spectral sequences

H;(R) = RE(BG.)

and so forth, where RO(G)-grading of R is understood. In practice this theorem
is not useful because the RO((G)-graded coefficient ring is hard to compute and is
usually of even greater Krull dimension than the integer graded coefficent ring RS,
The Thom isomorphisms allow us to translate the RO(G)-graded augmentation

ideal into its integer graded counterpart.

7. The application to K-theory

We can apply the .Z-localization theorem to complex and real periodic equiv-
ariant K -theory in two quite different ways. The essential point is that Bott
periodicity clearly gives the Thom isomorphisms necessary for both applications
(see XIV§3). Unfortunately, for entirely different reasons, both applications are at
present limited to finite groups.

First, we recall from XXII.6.13 that, for finite groups G, complex and real
equivariant K-theory are known to be represented by commutative Sg-algebras.
In view of Bott periodicity, we may restrict attention to the (complex or real)
representation ring of (& regarded as the subring of degree zero elements of K& or
KOS (compare Remark 3.3), and our complete understanding of these rings makes
verification of the .# versions of (4.2) and (6.1) straightforward. In fact, these ver-
ifications work for arbitrary compact Lie groups G. The following theorem would
hold in that generality if only we knew that Kg and KOg were represented by
commutative Sg-algebras in general. For this reason, although the completion the-
orem is known for all compact Lie groups, the localization theorem is only known
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for finite groups. The problem is that, at this writing, equivariant infinite loop

space theory has not yet been developed for compact Lie groups of equivariance.

THEOREM 7.1. Let G be finite. Then, for every family .%, the .#-localization
theorem holds for K¢ regarded as a Kg-algebra, and similarly for KOg.

Second, we have the first author’s original version of the .#-localization theorem
for K-theory. For that version, we regard K¢ and KOg as Sg-ring spectra. Here
we may restrict attention to the Burnside ring of G regarded as the subring of de-
gree zero elements of 7%(S¢). Again, when G is finite, our complete understanding
of A(G) makes verification of the . versions of (4.2) and (6.1) straightforward,
and we observed in and after XXI.5.3 that the .# version of (6.2) holds. Note,
however, that A(G') is not Noetherian for general compact Lie groups, so that (4.2)
and (6.1) are not available to us in that generality. Moreover, A(G) and R(() are
not closely enough related for (6.2) to hold. For example, the augmentation ideal
of A(G) is zero when G is a torus.

THEOREM 7.2. Let G be finite. Then, for every family .%, the .#-localization
theorem holds for K¢ regarded as an Sg-ring spectrum, and similarly for KOg.

In the standard case .% = {¢}, we explained in XXI§5 how Tate theory allows
us to process the conclusions of the theorems to give an explicit computation
of K.(BG); see XXI.5.4. The following references give further computational
information. A comment on the relative generality of the two theorems is in
order. The first only gives information about Kg-modules of the brave new sort,
whereas the second gives information about Kg-module spectra of the classical
sort. However, a remarkable result of Wolbert shows that the nonequivariant
implications are the same: every classical K-module spectrum is weakly equivalent

to the underlying spectrum of a brave new K-module.

J. P. C. Greenlees. K homology of universal spaces and local cohomology of the representation
ring. Topology 32(1993), 295-308.

J. P. C. Greenlees and J. P. May. Generalized Tate cohomology. Memoir American Math. Soc.
No. 543. 1995.

J. Wolbert. Toward an algebraic classification of module spectra. Preprint, 1995. University of
Chicago. (Part of 1996 PhD thesis in preparation.)

8. Local Tate cohomology

When the .#-localization theorem holds, it implies good algebraic behaviour of
the .7 -Tate spectrum. We here explain what such good behaviour is by defining
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the algebraic ideal to which the Tate spectrum aspires: the local Tate cohomology
groups of a module. We proceed by strict analogy with the construction of the
topological .#-Tate spectrum,

tez(k)=F(BEZ, k)N EZ.

Thus, again working in the algebraic context of Section 1, we define the local
Tate cohomology groups to be

(8.1) H;(R; M) = H*(Hom(PK*(I), M) @ PC*(I)).

Here PC"(]) is the projective Cech complex, which is defined by the algebraic
fiber sequence

(8.2) PK*(I) — R — PC*(I)
of chain complexes. There results a local Tate spectral sequence of the form
Ey" = Hi(HI(R: M)) = Hi(R: M),

In favorable cases this starts with the Cech cohomology of the derived functors of
I-adic completion.

The usefulness of the definition becomes apparent from the form that periodicity
takes in this manifestation of Tate theory. It turns out that unexpectedly many
elements of R induce isomorphisms of the R-module [:]I*(R; M). Tt is simplest to
state this formally when R has Krull dimension 1.

THEOREM 8.3 (RATIONALITY). If R is Noetherian and of Krull dimension 1,
then multiplication by any non-zero divisor of R is an isomorphism on Hj(R; M).

The Burnside ring A(G) and the representation ring R(G') of a finite group G
are one dimensional Noetherian rings of particular topological interest.

COROLLARY 8.4. Let (& be finite. For any ideal I of A(G') and any A(G)-module
M, H;(A(G); M) is a rational vector space.

COROLLARY 8.5. Let (& be finite. For any ideal I of R(() and any R((G)-module
M, HF(R(G); M) is a rational vector space.

Returning to our Sg-algebra R and its modules M, we define the ‘/-local Tate
spectrum’ of M for a finitely generated ideal I C RY by

(3.6) t1(M) = Fr(K(I), M) Ag C(I).
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It is then immediate that there is a spectral sequence
(87) By = Hi(Rg Mg)' = 78 (1(M)).

In particular, we may draw topological corollaries from Corollaries 8.4 and 8.5.

COROLLARY 8.8. Let (¢ be finite. For any ideal I in A(G) = 7§ (Sg) and any
G-spectrum F, t;(F) is a rational G-spectrum.

COROLLARY 8.9. Let G be finite. For any ideal I in R(G) = 7§ (K¢) and any
Kg-module M, t;(M) is a rational G-spectrum.

Now assume the .# version of (4.2). Let A be an R-ring spectrum and consider

the diagram

EFLNA——SONA EZNA

K(LF) Ag A A C(1.F) Ag A

If the .#-localization theorem holds for A, then k4 and £, are weak equivalences
of R-modules. We may read off remarkable implications for the Tate spectrum
t#(M) of any A-module spectrum M. If x4 is a weak equivalence, this .7 -Tate
spectrum is equivalent to the I.%-local Tate spectrum: a manipulation of isotropy
groups is equivalent to a manipulation of ideals in brave new commutative algebra.

THEOREM 8.10. If the .#-localization theorem holds for the R-ring spectrum
A, then the #-Tate and [.%-local Tate spectra of any A-module spectrum M are
equivalent:

tg(M) ~ t[g(M).

PROOF. Since Fr(X, M) is an A-module for any R-module X, Lemma 6.7 im-
plies that all maps in the following diagram are weak equivalences of R-modules:
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tz(M)
|

Fr(K(IZ),M)Ar RA E.F — Fp(EZ, N R,M) g RA B

| |

Fr(K(1.7), M) A C(1.F7) — Fr(EZ, A R, M) Ag C(I.F).

trz(M) O
Theorem 8.3 gives a striking consequence.

COROLLARY 8.11. Assume that RS is Noetherian of dimension 1 and Z-torsion
free. If the .#-localization theorem holds for an R-ring spectrum A, then the
F-Tate spectrum t (M) is rational for any A-module M.

REMARK 8.12. Upon restriction to the Burnside ring A(G) = 7§(Sg), the corol-
lary applies to R = Sg. In this case it has a converse: if the completion theorem
holds for A and f4(A) is rational, then the localization theorem holds for A. The
proof (which is in our memoir on Tate cohomology) uses easy formal arguments
and the fact that x : £.#, A Sq¢ — K(I.%) is a rational equivalence.

We should comment on analogues of Corollary 8.11 in the higher dimensional
case. The essence of Theorem 8.10 is that if the localization theorem holds for
A, then the Tate spectrum of an A-module M is algebraic and is therefore domi-
nated by the behaviour of the local Tate cohomology groups [:]I*( & Mg via the
spectral sequence (8.7). Now these groups are modules over the ring [:]I*(Rg), so
an understanding of the prime ideal spectrum of this ring is fundamental. For
example, the first author’s proof of the Rationality Theorem shows that analogues
of it hold under appropriate hypotheses on spec( Rg,).

These comments are relevant to the discussion of XXI§6. As noted there, we
know that applying the Tate construction to spectra of type E(n), on which v,
is invertible, forces v,_1 to be invertible (in a suitable completion). One guesses
that this can be explained in terms of the subvariety of Spec(E(n)g) defined by
v,—1 and its intersection with that of /. Unfortunately our ignorance of F(n)f
prevents us from justifying this intuition.

J. P. C. Greenlees. Tate cohomology in commutative algebra. J. Pure and Applied Algebra
94(1994), 59-83.
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J. P. C. Greenlees and J. P. May. Generalized Tate cohomology. Memoir American Math. Soc.
No. 543. 1995.
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CHAPTER XXV

Localization and completion in complex bordism

by J. P. C. Greenlees and J. P. May

1. The localization theorem for stable complex bordism

There is a large literature that is concerned with the calculation of homology
and cohomology groups M.(BG) and M*(BG) for MU-module spectra M, such
as MU itself, K, BP, K(n), E(n), and so forth. Here (& is a compact Lie group,
in practice a finite group or a finite extension of a torus. The results do not appear
to fall into a common pattern.

Nevertheless, there is a localization and completion theorem for stable complex
bordism, and this shows that all such calculations must fit into a single general
pattern dominated by the structure of the equivariant bordism ring MU . Indeed,
as we showed in XXIII§5, there is a general procedure for constructing an equiv-
ariant version Mg of any nonequivariant MU-module M. Since Mg is split with
underlying nonequivariant M U-module M, the theorem applies to the calculation
of M.(BG4) and M*(BG,) for all such M. This is not, at present, calculation-
ally useful since rather little is known about MUS. Nevertheless, the theorem
gives an intriguing new relation between equivariant and nonequivariant algebraic
topology.

While the basic philosophy behind the theorem is the same as for the local-
ization theorem XXIV.6.4, that result does not apply because its basic algebraic
assumptions, XXIV.4.2 and 6.1, do not hold. In particular, since the augmenta-
tion ideal of MU is certainly not finitely generated and presumably not radically

finitely generated, it is not even clear what we mean by the localization theorem,

367
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and different techniques are needed for its proof. Let J = Jg denote the aug-
mentation ideal of MUZ (with integer grading understood). For finitely generated
subideals [ of J, we can perform all of the topological constructions discussed in

the previous chapter.

THEOREM 1.1. Let G be finite or a finite extension of a torus. Then, for any
sufficiently large finitely generated ideal I C J, k : EG4 AN MUg — K(I) is an

equivalence.

It is reasonable to define K(.J) to be K([I) for any sufficiently large I and
to define I'y(Mg) and (Mg)} similarly. The theorem implies that these MUg-
modules are independent of the choice of I.

Consequences are drawn exactly as they were for the localization theorem in

Sections 4 and 5 of the previous chapter. In particular,
EG_|_ A MG — FJ(MG) and (Mg)9 — F(EG+,Mg)

are equivalences for any MUg-module M.

The fact that the theorem holds for a finite extension of a torus and thus for the
normalizer of a maximal torus in an arbitrary compact Lie group strongly suggests
that the following generalization should be true, but we have not succeeded in

finding a proof.
CONJECTURE 1.2. The theorem remains true for any compact Lie group G.

Most of this chapter is taken from the following paper, which gives full details.
The last section discusses an earlier completion “theorem” for MUS when G is
a compact Abelian Lie group. While it may be true, we have only been able to

obtain a complete proof in special cases.
J. P. C. Greenlees and J. P. May. Localization and completion theorems for M U/-module spectra.
Preprint, 1995.
2. An outline of the proof
We shall emphasize the general strategy. Let G be a compact Lie group and let

S¢ be the sphere G-spectrum. We assume given a commutative Sg-algebra Rg
with underlying nonequivariant commutative S-algebra K. As in the localization

theorem, we shall assume that the theory R has Thom isomorphisms

(2.1) RE(SY A X) = RE(SMIA X)
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for complex representations V' and G-spectra X. More precisely, we shall assume
this for all subgroups H C G, and we shall later impose a certain naturality
condition on these Thom isomorphisms. We have already seen in XV§2 that MUg
has such Thom isomorphisms. As in the proof of XXIV.6.4, the Thom isomorphism
gives rise to an Euler class y(V) € R|G_V|. Let Jg be the augmentation ideal
Ker(res! : RE — R.); remember that J = Jg.

DEFINITION 2.2. Assume that RY has Thom isomorphisms for all H C (. Let
I be a finitely generated subideal of J and, for H C G, let r&(I) denote the
resulting subideal res%(I) - R of Jy. We say that [ is sufficiently large at H if
there is a non-zero complex representation V of H such that V¥ = 0 and the Euler
class x(V) € R is in the radical 1/r%(I). We say that the ideal [ is sufficiently
large if it is sufficiently large at all H C G.

We have the canonical map of Rg-modules
k: FEGy N Rg — K(I),

and our goal is to prove that it is an equivalence. The essential point of our
strategy is the following result, which reduces the problem to the construction of

a sufficiently large finitely generated subideal I of J.

THEOREM 2.3. Assume that R has Thom isomorphisms for all H C G. If I
is a sufficiently large finitely generated subideal of J, then

k:EGy NRg — K(I)
is an equivalence.

PrOOF. The cofiber of & is equivalent to EG A K(I), and we must prove that

this is contractible. Using the transitivity of restriction maps to see that r%(I)
H

* 9

is a large enough subideal of R.', we see that the hypotheses of the theorem are

inherited by any subgroup. Therefore we may assume inductively that the theorem

holds for H € &7. Observing that
(EGANK(I)|g=EHNK(S(I))

for H C (&, we see that our definition of a sufficiently large ideal provides exactly
what is needed to allow us to obtain the conclusion by parroting the proof the

localization theorem XXIV.6.4. [
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Thus our problem is to prove that there is a large enough finitely generated
ideal 1. One’s first instinct is to take I to be generated by finitely many well
chosen Euler classes. While that does work in some cases, we usually need to
add in other elements, and we shall do so by exploiting norm, or “multiplicative
transfer”, maps. We explain the strategy before stating what it means for a theory
to have such norm maps.

We assume from now on that & is a toral group, namely an extension
l—T—G— F—1,
where T is a torus and F' is a finite group.

THEOREM 2.4. If G is toral and the R for H C G admit norm maps and Thom

isomorphisms, then J contains a sufficiently large finitely generated subideal.
The proof of the theorem depends on two lemmas. As usual, we write
resy : R(G) — R(H)
for the restriction homomorphism. When H has finite index in G, we write
ind% : R(H) — R(G)
for the induction homomorphism. Recall that indf; V = C[G] @cpn V.

LEMMA 2.5. There are finitely many non-zero complex representations V;,--- . Vj
of T" such that T' acts freely on the product of the unit spheres of the representa-
tions

res% indg Vi

While this is not obvious, its proof requires only elementary Lie theory and does
not depend on the use of norm maps. We shall say no more about it since it is

irrelevant when ' is finite.

LEMMA 2.6. Let F’ be a subgroup of F' with inverse image GG’ in (. There is
an element £(F”) of J such that

resgh (E(F)) = (V')
where V' is the reduced regular complex representation of F’ regarded by pullback
as a representation of GG' and w’ is the order of WG' = NG' /(.

We shall turn to the proof of this in the next section, but we first show how

these lemmas imply Theorem 2.4.
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PrOOF OF THEOREM 2.4. We claim that the ideal
I'= (x(indF W), , x(indZ V;)) + (E(F")|F' C F)

is sufficiently large.
It H is a subgroup of G that intersects T non-trivially, then, by Lemma 2.5,
(resG indf V;)#T = {0} for some i and therefore (ind% Vi) = {0}. Since

X(vesi indg Vi) = ves (x(indg V7)) € ri (1),

this shows that [ is sufficiently large at H in this case.

It H is a subgroup of (¢ that intersects T' trivially, as is always the case when G is
finite, then H maps isomorphically to its image F” in F. If G’ is the inverse image
of F"in (G and V' is the reduced regular complex representation of I’ regarded as a
representation of G’, then resG/(V’) is the reduced regular complex representation
of H and (res$ (V') = 0. By Lemma 2.6, we have res& (£(F')) = x(V)*" and

therefore
Y(resS (V)Y = resS (x(V)Y') = res resl, (E(F')) = resS(E(F")) € r&(1).
This shows that [ is sufficiently large at H in this case. [

3. The norm map and its properties

We must still explain the proof of Lemma 2.6, and to do so we must explain
our hypothesis that B¢ has norm maps. We shall give a rather crude definition
that prescribes exactly what we shall use in the proof. The crux of the matter
is a double coset formula, and we need some notations in order to state it. For
g € Gand HC G, let YH = gHg™" and let ¢, : “H — H be the conjugation

isomorphism. For a based H-space X, we have a natural isomorphism
¢y : RI(X) — BRI (X)),

where X denotes X regarded as a 9H-space by pullback along ¢,. We also have a

natural restriction homomorphism
rest 1 RY(X) — RI(X).

DEFINITION 3.1. We say that RS has norm maps if, for a subgroup H of finite
H

2, where r > 0 is even, there is an element

index n in (G and an element y € R

n

normy (1 +y) € Y. RY,

=0
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that satisfies the following properties; here 1 = 1y € RI denotes the identity
element.
(i) normg(l +y)=1+y.
(i) mormy (1) = 1.
(iii) [The double coset formula]

res% normfl (1+y)= Hnormg;m]( reszng cy(1+y),
g

where K is any subgroup of G and {¢} runs through a set of double coset
representatives for K\G//H.

PrOOF OF LEMMA 2.6. Since the restriction of the reduced regular representa-
tion of F' to any proper subgroup contains a trivial representation, the restriction
of x(V') € RY" to a subgroup that maps to a proper subgroup of F' is zero. In

RY ., the double coset formula gives

(3.2)  ress, mormg, (14 y(V')) = Hnorm%/ﬁgl resnar Co(1 4 x(V'),

g
where ¢ runs through a set of double coset representatives for G'\G/G’'. We require
that our Thom isomorphisms be natural with respect to conjugation in the sense
that their Euler classes satisfy ¢,(x(V)) = x(?V), where ¢V is the pullback of V

along ¢,. In particular, this gives that
co(L+x(V) =1+ x(*V).

Here 9V is the reduced regular representation of 9G”. Clearly %G’ NG’ is the inverse
image in G of 9F' N F'. If 9F' N F" is a proper subgroup of F', then the restriction
of x(V') to %G" N G is zero. Therefore all terms in the product on the right side of
(3.2) are 1 except for those that are indexed on elements ¢ € NG’. There is one
such ¢ for each element of WG' = NG'/G', and the term in the product that is
indexed by each such g is just 1 + x(V’). Therefore (3.2) reduces to

(3.3) vesth, mormG (1 + (V) = (1 4+ (V)"

If V' has real dimension r, then the summand of (1 + y(V'))*" in degree rw’ is
(V). Since resl, preserves the grading, we may take £(I7) to be the summand
of degree rw’ in mg,(l +x(V")). O
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4. The idea behind the construction of norm maps

We give an intuitive idea of the construction here, but we need some preliminar-
ies to establish the context. Let H be a subgroup of finite index n in a compact
Lie group G. The norm map is intimately related to ind% : RO(H) — RO(G),
and we begin with a description of induction that suggests an action of G on the
nth smash power X" of any based H-space X. Recall that the wreath product
Y, [ H is the set ¥, x H" with the product

(o, haye oo s h) (TR o R = (o7, hothy, e S henhl).

Choose coset representatives ty,... ,t, for H in (G and define the “monomial rep-

resentation”

a:G— X, [H
by the formula

05(7) = (0-(7)7 h1(7)7 tee 7hn(7))7
where o(7) and h;(v) are defined implicitly by the formula
v = oo hi(7).

LEMMA 4.1. The map « is a homomorphism of groups. If ' is defined with
respect to a second choice of coset representatives {#.}, then «a and o' differ by a

conjugation in %, [ H.

The homomorphism « is implicitly central to induction as the following lemma
explains. Write o*W for a representation W of ., [ H regarded as a representation

of GG by pullback along a.

LEMMA 4.2. Let V be a representation of H. Then the sum nV of n copies of
V' is a representation of 3, [ H with action given by

(0‘, hl, ce ,hn)(vl, Ce ,vn) = (hg—l(l)vg—l(l), Ce ,hg—l(n)vg—l(n)),
and o*(nV) is isomorphic to the induced representation ind% V = R[] Qria V-

LEMMA 4.3. If X is a based H-space, then the smash power X" is a (X, [ H)-
space with action given by

(U, hi,y... ,hn)(l'l A A xn) = hg—1(1)$g—1(1) A A hg—1(n)xg—1(n).
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For a based Y, [ H-space Y, such as Y = X" for a based H-space X, write
a*Y for Y regarded as a G-space by pullback along a. Note in particular that

a*((SV)") = SdZV for an H-representation V.

To begin the construction of morm%, one constructs a natural function

(4.4) normfl : RgI(X) — Rg(a*X”).

The norm map formy, of Definition 3.1 is then obtained by taking X to be the
wedge S° Vv S7. studying the decomposition of X" into wedge summands of G-
spaces described in terms of smash powers of spheres and thus of representations,
and using Thom isomorphisms to translate the result to integer gradings. We shall

say no more about this step here. The properties of norm$; are deduced from the

following properties of norm%.

(4.5) norm¢ is the identity function.
(4.6) norm%(1y) = lg, where 1y € RY(S%) is the identity element.

(4.7)  norm%(zy) = norm%(z)norm%(y) if x € RY(X) and y € RY(Y).
Here the product xy on the left is defined by use of the evident map
(4.8) RI(X)@ RY(Y) — RI(X AY)
and similarly on the right, where we must also use the isomorphism
RE(X"AY™) 2 RS((X AY)).
The most important property is the double coset formula
G

(4.9) rest: norm% (z) = Hnormé%m( resor e Cq(2),
g

where K is any subgroup of G and {g} runs through a set of double coset repre-
sentatives for K\G/H. Here, if H N K has index n(g) in H, then n = > n(g)
and the product on the right is defined by use of the evident map

(4.10) Q) RE (X)) — RE(X™).

g

An element of RY(X) is represented by an H-map x : S¢ — Rs A X. There
is no difficulty in using the product on R to produce an H-map

(4.11) Se = (Sa)" 25 (Ra A X)" = (Rg)" A X" — Rg A X"
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The essential point of the construction is to do this in such a way as to produce
a G-map: this will be norm%(x). This is the basic idea, but carrying it out
entails several difficulties. Of course, since our group actions involve permutations
of smash powers, we must be working in the brave new world of associative and
commutative smash products, with an associative and commutative multiplication
on Rg. Our first instinct is to interpret the smash powers in (4.11) in terms of Ag.
Certainly the maps in (4.11) are then both H-maps and ¥,-maps. However, the
H-action on (R¢)" does not come by pullback along the diagonal of an H"-action,
so that X, [ H need not act on (R¢)". This is only to be expected since (Rg)" is
indexed on the original complete G-universe U on which Rg is indexed, not on a
complete ¥, [ H-universe. Since our (G-actions come by restriction of actions of
wreath products ¥, [ H, it is essential to bring (X, [ H)-spectra into the picture.
External smash products seem more reasonable than Ag for this purpose since the

external smash power (R¢g)" is indexed on the complete X, [ H-universe U".

5. Global Z,-functors with smash product

The solution to the difficulties that we have indicated is to work with a re-
stricted kind of commutative Sg-algebra, namely one that arises from a global
S -functor with smash product, abbreviated 4.7,-FSP. Unlike general commuta-
tive Sg-algebras, these have structure given directly in terms of external smash
products, as is needed to make sense of (4.11).

The notion of an .Z,-FSP was introduced by May, Quinn, and Ray around
1973, under the ugly name of an Z.-prefunctor. (The name “functor with smash
product” was introduced much later by Bokstedt, who rediscovered essentially
the same concept.) While .Z.-FSP’s were originally defined nonequivariantly, the
definition transcribes directly to one in which a given compact Lie group G acts
on everything in sight. The adjective “global” means that we allow G to range
through all compact Lie groups G, functorially with respect to homomorphisms
of compact Lie groups. We let ¢ denote the category of compact Lie groups and

their homomorphisms.

DEFINITION 5.1. Define the global category 4.7 of equivariant based spaces to
have objects (G, X), where (¢ is a compact Lie group and X is a based G-space.

The morphisms are the pairs

(@, f) - (G, X) — (G, X7)
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where a : G — G’ is a homomorphism of Lie groups and f : X — X' is
an a-equivariant map, in the sense that f(gx) = a(g)f(x) for all # € X and
g € G. Topologize the set of maps (G, X) — (G', X’) as a subspace of the

evident product of mapping spaces and observe that composition is continuous.

DEFINITION 5.2. Define the global category ¥4.7. of finite dimensional equivari-
ant complex inner product spaces to have objects (G, V), where (G is a compact
Lie group and V is a finite dimensional inner product space with an action of GG

through linear isometries. The morphisms are the pairs
(o, f) : (G, V) — (G, V)

where a : G — G’ is a homomorphism and f : V — V' is an a-equivariant

linear isomorphism.

The definitions work equally well with real inner product spaces; we restrict at-
tention to complex inner product spaces for convenience in our present application.

Each morphism (a, f) in 4.7, factors as a composite

()G ) D w,

where GG acts through o on W. We have a similar factorization of morphisms
in 9. We also have forgetful functors 4.9, — ¢ and 4.7 — ¢. We shall
be interested in functors 4.7, — 4.7 over ¥, that is, functors that preserve the
group coordinate. For example, one-point compactification of inner product spaces
gives such a functor, which we shall denote by S°. As in this example, the space

coordinate of our functors will be the identity on morphisms of the form (a,¢d).

DEFINITION 5.3. A ¥4.7 -functor is a continuous functor 7' : 4.4, — 4.7 over
¢, written (G, TV) on objects (G, V), such that

T(a,id) = (ayid) : (G, TW) — (H,TW)
for a representation W of H and a homomorphism o : G — H.

The following observation is the germ of the definition of the norm map.

LEMMA 5.4. Let A = Aut(G,V) be the group of automorphisms of (G, V) in
the category ¥4.7,. For any ¥4.7,-tunctor T', the group A x (G acts on the space T'V.
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Define the direct sum functor @ : 4.7, x 4.9, — 4.7, by
(G, V)® (HW)=(Gx HVaW).
Define the smash product functor A : b7 x 47 — 4T by
(G,X)ONH)Y)=(Gx H XAY).
These functors lie over the functor x : ¢ x ¥ — ¥.

DEFINITION 5.5. A 4.7,-FSP is a 9.7, -functor together with a continuous nat-
ural unit transformation 5 : S* — T of functors 4.7, — 9.7 and a continuous
natural product transformation w : TAT — To® of functors 4.7, x 4.7, — 4.7
such that the composite

TV 2TV A STV AT0)-5T(V & 0) 2TV

is the identity map and the following unity, associativity, and commutativity dia-

grams commute:

nAn
SYASYW —=TVANTW

gl l

SVEW ——T(V & W),

wAid

TVATWANTZ —————=T(VaeW)A\TZ

ar] -

TV AT(W & Z) TV & Wd Z),

and

TVANTW —=T(Va& W)

l |70

TW ATV —=T(W & V).

Actually, this is the notion of a commutative 4.7,-FSP; for the more general
non-commutative notion, the commutativity diagram must be replaced by a weaker
centrality of unit diagram. Observe that the space coordinate of each map T'(«, f)
is necessarily a homeomorphism since («, f) = (a,id) o (id, f) and f is an isomor-

phism. Spheres and Thom complexes give naturally occurring examples.
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EXAMPLE 5.6. The sphere functor S* is a 4.7,-FSP with unit given by the
identity maps of the SV and product given by the isomorphisms SV ASW == SVEW,
For any 4.7.-FSP T, the unit  : S* — T is a map of 4.7.-FSP’s.

EXAMPLE 5.7. Let dimV = n and, as in XV§2, define T'V to be the one-point
compactification of the canonical n-plane bundle £V over the Grassmann manifold
Gr,(V & V). An action of G on V induces an action of (G that makes EV a G-
bundle and TV a based G-space. Take V =V & {0} as a canonical basepoint
in Gr,(V @& V). The inclusion of the fiber over the basepoint induces a map
n:SY — TV. The canonical bundle map EV & EW — E(V & W) induces a
map w : TVATW — T(Va&W). With the evident definition of 7" on morphisms,
T is a 9.2 -functor.

It is useful to regard a 4.7,-FSP as a 4.7, -prespectrum with additional structure.

DEFINITION 5.8. A 4.7,-prespectrum is a 4.7, -functor T : 4.9, — 47 to-
gether with a continuous natural transformation o : T'A S* — T o & of functors
947, x 49, — 7 such that the composites

TV =TV AS-LT(V & 0) 2TV

are identity maps and each of the following diagrams commutes:

TV ASY A7 —T s T(V @ W) A S7
TV A SWe7 T(VaWwa ).

LEMMA 5.9. If T is a 4.7,-FSP, then T is a 4.7, -prespectrum with respect to

the composite maps

id An

o TV ASYVETY A TWLT(V & W).

It is evident that a ¥.7,-prespectrum restricts to a G-prespectrum indexed on

U for every (G and U.

NOTATIONS 5.10. Let Tz 7 denote the G-prespectrum indexed on U associated
to a 4.7,-FSP T. Write Rgp for the spectrum LT i associated to Te .
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There is a notion of an Z-prespectrum, due to May, Quinn, and Ray, and T ¢y
is an example. The essential point is that if f: U/ — U is a linear isometry and

V; are indexing spaces in U, then we have maps
(5.11) &) TN TV (R G- & V)BT (Vi@ @ V).

The notion of an .Z-prespectrum was first defined in terms of just such maps. It

was later redefined more conceptually in [LMS] in terms of maps
(5.12) L) x B — E

induced by the &;(f). It was shown in the cited sources that the spectrification
functor L converts Z-prespectra to .£-spectra. We conclude that, for every ¢
and every G-universe U, Rg 7 1s an Z-spectrum and thus an F, ring G-spectrum
when U is complete. Of course, the Z-spectrum Ry determines the weakly
equivalent commutative Sg r-algebra Squ X » Rau.

M. Bokstedt. Topological Hochschild homology. Preprint, 1990.
J. P. May (with contributions by F. Quinn, N. Ray, and J. Tornehave). FE ring spaces and
FEo ring spectra. Springer Lecture Notes in Mathematics Volume 577. 1977.

6. The definition of the norm map
We have the following crucial observation about ¥4.7.-FSP’s.

PROPOSITION 6.1. Let T' be a 4.7.-FSP. For an H-representation V, (TV)"
and T'(V™) are ¥, [ H-spaces and the map

w: (TV)" — T(V")

is (¥, [ H)-equivariant. If U is an H-universe, then U" is a (X, [ H)-universe and
the maps w define a map of (X, [ H)-prespectra indexed on U"

w: (Typ)" — S [HU

n

where (T )" is the nth external smash power of Ty . If T = S°, then w is an

isomorphism of prespectra.

This allows us to define the norm maps we require. Recall Notations 5.10.

DEFINITION 6.2. Let T be a 4.7,.-FSP, let X be a based H-space, and let U be
a complete H-universe. An element x € RI(X) is given by a map of H-spectra
x: Sy — Rpu AN X. Let G act on U” through a : G — X, [ H, observe that

the G-universe U" is then complete, and define the norm of x to be the element
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of RS (a*X™) given by the composite map of G-spectra indexed on U" displayed
in the commutative diagram:

Sepm ——» (Suu)” A (Rgu A X)"

(63) normg(x)l l%
RQUn ANX" (RHU)n ANX"

wAid

Strictly speaking, if we start with H-spectra defined in fixed complete H-
universes Uy for all H, then we must choose an isomorphism Ug = Uj; to transfer
the norm to a map of spectra indexed on Ug, but it is more convenient to de-
rive formulas from the definition as given. From here, all of the properties of the
norm except the double coset formula are easy consequences of the definition. The
proof of the double coset formula is in principle straightforward diagram chasing
from the definitions, but it requires precise combinatorial understanding of double
cosets and some fairly elaborate bookkeeping. It is noteworthy that the formula is
actually derived from a precise equality of the point set level maps that represent

the two sides of the formula.

7. The splitting of MU, as an algebra

In the context of ¥4.7,-FSP’s, we can complete an unfinished piece of business,
namely an indication of the proof that MU is split as an algebra in the sense of
XXIIL5.8. This was at the heart of our assertion that MU-modules M naturally
give rise to split MUg-modules My. In fact, the result we need applies to the
Sg-algebra associated to any 4.7.-FSP T, and we adopt Notations 5.10.

We need a preliminary observation. If f : U — U’ is a linear isometry, we
have maps T'f : TV — T(fV) for indexing spaces V' C U. These specify a
map of prespectra Ty — [*Tz v indexed on U and thus, by adjunction, a map
flau — Tg o of prespectra indexed on U’'. On passage to spectra, these glue
together to define a map

(71) f : f(U, U’) X RQU — RQU/.
Moreover, this map factors over coequalizers to give a map of L/-spectra

(7.2) f : ]U/RG,U = f(U, U/) [><ﬂ(U,U) RQU — RQU/.
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ProrosiTioN 7.3. Consider
R/ = SB7UG /\g R&UG and RG = SQU /\g RQU

(where the subscripts & refer respectively to U% and to U) and let v : B —
R’ be a g-cofibrant approximation of the commutative S-algebra R’. Then the
commutative Sg-algebra R is split as an algebra with underlying nonequivariant

S-algebra R.

ProOF. It suffices to to construct a map 5’ : Ijo R — Rg of Sg-algebras that
is a nonequivariant equivalence of spectra, since we can then precompose it with
I to obtain a map n : IJsR — Rg of Sg-algebras that is a nonequivariant

equivalence. In fact, we shall construct a map 5’ that is actually an isomorphism.
Replace U and U’ by U% and U in (7.2). It is not hard to check from the definition
of a ¥.7.-FSP that

(74) Re,UG = RG,UG and Rﬁ,U == Re,U#v

where the superscript # denotes that we are forgetting actions by . That is,
Rg e is R, pye regarded as a G-trivial G-spectrum indexed on the G-trivial uni-
verse U%, and Rgp regarded as a nonequivariant spectrum indexed on U# is
R.p#. The first equality in (7.4) allows us to specialize the map ¢ to obtain a

map of F, ring spectra
(7.5) £ IfaR pe = I (UYU) e pe) Repe — Rau.

The second equality allows us to identify the target of the underlying map &# of
nonequivariant spectra with B, 4, and it is not hard to check that £# is actually
an isomorphism of spectra. We obtain the required map 7’ on passage to Sg-

algebras, using from XXIII.4.5 that we have an isomorphism of Sg-algebras
IJeR = Sg Ay [HeRops. O

J. P. May. Equivariant and nonequivariant module spectra. Preprint, 1995.

8. LofHler’s completion conjecture

While computations of MUS are in general out of reach, they are more manage-
able for compact Abelian Lie groups. Moreover, in this case MU*(BG) is well
understood due to work of Landweber and others. Early on in the study of stable
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complex cobordism, Loffler stated the following assertion as a theorem, although

details of proof never appeared.
CONJECTURE 8.1 (LOFFLER). If GG is a compact Abelian Lie group, then
(MUE); = MU*(BGy.).

When this holds, it combines with our topological result to force the following

algebraic conclusion. A direct proof would be out of reach.

COROLLARY 8.2. If (G is a compact Abelian Lie group such that the conjecture
holds and I is a sufficiently large ideal in MUS, then

Hy(MUg) = (MUc)i)g = (MUZ)1

and

HI(MUZ)=0 if p#0.

We do not know whether or not the conjecture holds in general, but it does hold
in many cases, as we shall explain in the rest of this section. We also indicate
the flaw in the argument sketched by Loffler. We are indebted to Comezana for
details, and our proofs rely on results that he will prove in the next chapter. In
particular, the following result is XXVI.5.3; it is stated by Loffler, but no proof

appears in the literature.

THEOREM 8.3. For a compact Abelian Lie group G, MU%s a free M U*-module

on even degree generators.

Since MUg is a split G-spectrum, the projection F(G — * induces a natural
map
a: MUL(X) — MUL(EGE N X)Z MU (EGy A X).
We shall mainly concern ourselves with the case X = S° relevant to Conjecture
8.1. We may take F G to be a G-CW complex with finite skeleta, and there results
a model for BG as a CW complex with finite skeleta BG™. We shall need the

following result of Landweber.

PROPOSITION 8.4 (LANDWEBER). For a compact Lie group G and a finite G-
CW complex X, the natural map MU*(EGy Ag X) — im MU*(EGY Ag X) is

an isomorphism.
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The vanishing of lim' terms here is analogous to part of the Atiyah-Segal com-

pletion theorem. In fact, in view of the Conner-Floyd isomorphism
K*(X) 2 MU (X) @pu+ K*

for finite X, the result for MU can be deduced from its counterpart for K. Some
power J? of the augmentation ideal of MU annihilates MU (X) for any finite
free G-CW complex X, by the usual induction on the number of cells, and we

conclude that MUL(EGL) = MU*(BGL) is J-adically complete. Therefore «

gives rise to a natural map
MUL(X)) — MU*(EGy Ag X)

on finite G-CW complexes X.
A basic tool in the study of this map is the Gysin sequence

(8.5)

s MUS(XO) YN UL(X) — MUL(X A SVL) — MUS (X)) — -
where V' is a complex GG-module of complex dimension d and we write SV and
DV for the unit sphere and unit disc of V. Noting that DV is G-contractible

and DV/SV is equivalent to SV, we can obtain this directly from the long exact
sequence of the pair (DV, SV) by use of the Thom isomorphism

MUE(X) — MUY(X A SY).

LEMMA 8.6. Conjecture 8.1 holds when G = S*.

PROOF. Let V = C with the standard action of S. Since SV = S, we have
MU% (SVy) 2 MU, which of course is concentrated in even degrees. Therefore
the Gysin sequence for V, with X = S breaks up into short exact sequences and
multiplication by x(V') is a monomorphism on MUY, . By the multiplicativity of
Euler classes, x(nV) = x(V)". Thus multiplication by x(nV) is also a monomor-

phism and the Gysin sequence of nV breaks up into short exact sequences
0 — MUZ P 2 MUH(S(nV)4) — 0.
Since S' acts freely on SV, the union S(ooV) of the S(nV) is a model for ES*.

On passage to limits, there results an isomorphism
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It is immediate from the Gysin sequence that Js1 = (x(V)), and the result fol-
lows. [

Clearly the proof implies the standard calculation MU*(BS') = MU*[[]],
where ¢ € MU?(BS") is the image of the Euler class.

The steps of the argument generalize to give the following two results.
LEMMA 8.7. For any compact Abelian Lie group G,
(MUZys1 ) vy 2 MUG(BS,) = MUg([e]].

PROOF. Here we regard V = C as a representation of G x S', with (¢ acting
trivially, and we note that S(V) = (G x S*)/G, so that MU, 4 (S(V)1) = MU,
The rest of the proof is as in Lemma 8.6. [

LEMMA 8.8. Let T" = T" be a torus, let V;, = C with 7" acting through its
projection to the gth factor, and let v, = (V). Then Jr = (x1,- -+, Xr)-

PRrROOF. Clearly Jy annihilates MUF(S(Vi)4 A--- A S(V.)y) = MU*. By an

easy inductive use of Gysin sequences, we find that, for 1 < ¢ <r,
MUF(S(Vi)g A= AS(V)y) = MU/ (X1, - s X ) MU
The rest of the proof is as in Lemma 8.6. [
We put the previous two lemmas together to obtain Conjecture 8.1 for tori.
PrOPOSITION 8.9. Conjecture 8.1 holds when G is a torus.

PROOF. Write G = T' x S! and assume inductively that the conclusion holds
for T'. Letting ¢, be the image of y,, we find that

= (MU7)], [[e)] = MU [[er, -+, e]] = MU™(BGL),

the first equality being an evident identification of a double limit with a single

one. []

We would like to deduce the general case of Conjecture 8.1 from the case of a
torus. Thus, for the rest of the section, we consider a group G = Cy x -+ x C,,
where each C, is either S' or a subgroup of S'. This fixes an embedding of ¢ in
the torus T'=T", and of course every compact Abelian Lie group can be written

in this form. We have the following pair of lemmas, the first of which follows
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from the known calculation of MU*(BG); see for example the second paper of
Landweber below.

LEMMA 8.10. The restriction map MU*(BT}) — MU*(BG,) is an epimor-
phism. In particular, MU*(BG) is concentrated in even degrees.

LEMMA 8.11. The restriction map MU; — MU is an epimorphism. In par-
ticular, J7 maps epimorphically onto Jo and the completion of an MUS-module

at Jg is isomorphic to its completion at Jr.
PRrROOF. It suffices to prove that each restriction map

% %
MUquOq+1 XX O 5 MUT‘I—GCquq+1 XX O

is an epimorphism. Let C, be cyclic of order k(¢). Let V, = C regarded as a
T-module with all factors of St acting trivially except the gth, which acts via its
k(q)th power map. Restricting V, to a representation of T? x Cy1q X -+ x O, we
see that its unit sphere can be identified with the quotient group

(T9 X Cyyq X - x CHJ(TT x Oy < Cyyy X -+ x C).
With X = S5% and G =T x Cyqq x -+ x C,, the Gysin sequence of y(V}) breaks

up into short exact sequences that give the conclusion. O

Now consider the following commutative diagram:
(MUY, — MU*(BT})
(8.12) l l
(MULY), — MU(BG,).

The top horizontal arrow is an isomorphism and both vertical arrows are epimor-

phisms. Thus Conjecture 8.1 will hold if the following conjecture holds.
CONJECTURE 8.13. The map (MU);, — MU*(BG) is a monomorphism.,
LEMMA 8.14. Conjecture 8.1 holds if (¢ is a finite cyclic group.

PROOF. We embed (7 in S' and consider the standard representation V = C of
St as a representation of . Again, S(ocoV) is a model for EG. With X = S°, the
Gysin sequence (8.5) breaks up into four term exact sequences. Here we cannot

conclude that multiplication by x(V') is a monomorphism: its kernel is the image
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in MU¢, of the odd degree elements of MUZ(S(V)4). However, in even degrees,

the Gysin sequences of the representations nV’ give isomorphisms
MUL/X(V)"MUE =2 MUZ(S(nV)y).
Therefore (MUC*;)&(V)) maps isomorphically onto MU**( BG.). This proves Con-

jecture 8.13; indeed, since MU*(B(.) is concentrated in even degrees, it proves
Conjecture 8.1 directly. [

Loffler asserts without proof that the general case of Conjecture 8.13 follows
by the methods above. However, although MU*(BG,.) is concentrated in even
degrees, the intended inductive proof may founder over the presence of odd degree
elements in Gysin sequences, and we do not know whether or not the conjecture
is true in general.

P. E. Conner and E. E. Floyd. The relation of corbordism to K-theories. Springer Lecture Notes
in Mathematics Vol. 28. 1966.

P. S. Landweber. Elements of infinite filtration in complex cobordism. Math. Scand. 30(1972),
223-226.

P. S. Landweber. Cobordism and classifying spaces. Proc. Symp. Pure Math. Vol. 22., 1971,
ppl125-129.

P. Loffler. Equivariant unitary bordism and classifying spaces. Proceedings of the International
Symposium on Topology and its Applications, Budva, Yugoslavia 1973, pp. 158-160.



CHAPTER XXVI

Some calculations in complex equivariant bordism

by G. Comezana

In this chapter we shall explain some basic results about the homology and co-
homology theories represented by the spectrum MUg. These theories arise from
stabilized bordism groups of G-manifolds carrying a certain “complex structure”;
exactly what this means is something we feel is not adequately discussed in the
literature. Since the chapter includes a substantial amount of well-known infor-
mation, as well as some new material and proofs of results claimed without proof
elsewhere, we make no claims to originality except where noted. The author would
like to thank Steven Costenoble for discussions and insights that have thrown a

great deal of light on the subject matter.

1. Notations and terminology

G will stand throughout for a compact (and, in most cases, Abelian) Lie group,
and subgroups of a such a group will be assumed to be closed. All manifolds
considered will be compact and smooth, and all group actions smooth. If (X, A)
and (Y, B) are pairs of G-spaces, we will use the notation (X, A) x (Y, B) for the
pair (X x Y, (X x B)U(Y x A)). Homology and cohomology theories on G-spaces
will be reduced.

Gi-vector bundles over a (G-space will be assumed to carry an inner product
(which will be hermitian if the bundle is complex). Unless explicit mention to the
contrary is made, representations will be understood to be finite-dimensional and
R-linear. Depending on the context, we shall sometimes think of V' as a G-vector

bundle over a point. If £ is a G-bundle, |£| will stand for its real dimension, S()

387
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for its unit sphere, D(¢) for its unit disk, and T'({) for its Thom space. If V is
a representation of (7, SV will denote its one-point compactification. The trivial
Gi-vector bundle over a G-space X with fiber V will be denoted ey .

We define the V-suspension ¥V X of a based G-space X to be XASY; thusif ey is
the trivial G-vector bundle over X with fiber V, then T'(sy/) = ¥ X. We define the
V-suspension ©¥ (X, A) of a pair of spaces to be (X, A) x (DV, SV). In both cases,
¥V is a functor; if V is a subrepresentation of W with orthogonal complement

W — V, the inclusion induces a natural transformation W=V : ¥V — ¥W,

2. Stably almost complex structures and bordism

When G is the trivial group, a stably almost complex structure on a compact
smooth manifold M is an element [£] € K (M), which goes to the class [vM] of

the stable normal bundle under the map
K(M) — KO(M).

[t is, of course, essentially equivalent to define this with [T M| replacing [v M], since
these classes are additive inverses in KO(M).

The following definition gives the obvious equivariant generalization of this.

DEFINITION 2.1. If [£] € Kg(M) is a lift of [vM] € KOg(M) under the natural
)

map, we call the pair (M, [£]) a normally almost complex GG-manifold.

We will use the notation M when necessary, but we will drop [{] whenever

there is no risk of confusion.
e

-, 1s the “complex analog”

The bordism theory of these objects, denoted mu
of the unoriented theory mo% discussed in Chapter XV. If V is a complex G-
module and (M,0M)[ is a G-manifold with a stably almost complex structure,
then its V-suspension becomes a G-manifold after “straightening the angles”, and
[€] — [ev] is a complex structure on XV (M, 9M). This gives rise to a suspension
homomorphism

UV : mu*G(Xv A) - mu*G+|V|(ZV(X7 A))v
which sends the class of a map (M,9M) — (X, A) to the class of its suspension.

Due to the failure of G-transversality, both the suspension homomorphisms and
the Pontrjagin-Thom map are generally not bijective.
We construct a stabilized version of this theory as follows. Let % be an infinite-

dimensional complex GG-module equipped with a hermitian inner product whose
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underlying R-linear structure is that of a complete G-universe. Define
MUSZ (X, A) = colimy muS (8Y (X, A)),

where V ranges over all finite-dimensional complex (G-subspaces of %7 and the col-
imit is taken over all suspension maps induced by inclusions. We should perhaps
point out that MUS is not a connective theory unless G is trivial. The advantage
of this new theory over mu® is that the bad behavior of the Pontrjagin-Thom
map is corrected, and the maps induced by suspension by complex GG-modules are
isomorphisms by construction. This should be interpreted as a form of periodic-
ity. Homology or cohomology theories with this property are often referred to in
the literature as complex-stable. Other examples of such theories include equivari-
ant complex K-theory, its associated Borel construction, etc. Complex-stability

isomorphisms should not be confused with suspension isomorphisms of the form
ZV : h*G(Xv A) - h*G-l—[V](ZV(Xv A))v

which are part of the structure of all RO(G)-graded homology theories.

MUE or, more precisely, its dual cohomology theory was first constructed by
tom Dieck in terms of a G-prespectrum T'Ug, bearing the same relationship to
complex Grassmanians as the G-prespectrum T'Og discussed in XV§2, does to
real ones. An argument of Brocker and Hook for unoriented bordism readily
adapts to the complex case to show the equivalence of the two approaches. In
what follows, we shall focus on the spectrification MUg of TUg. As with any
representable equivariant homology theory, MUS can be extended to an RO(G)-
graded homology theory, but we shall concern ourselves only with integer gradings.
We point out, however, that complex-stable theories are always RO(G')-gradable.

A key feature of MUyg, proven in XXV§7, is the fact that it is a split G-spectrum;
this may be seen geometrically as a consequence of the fact that the augmentation
map MUS — MU.,, given on representatives by neglect of structure, can be split
by regarding non-equivariant stably almost complex manifolds as G-manifolds with
trivial action. The splitting makes MUS = MUS (S°) a module over the ring MU.,.

The multiplicative structure of the ring G-spectrum MUg can be interpreted
geometrically as coming from the fact that the class of normally stably almost com-
plex manifolds is closed under finite products. The complex-stability isomorphisms

are well-behaved with respect to the multiplicative structure: in cohomology, we
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have a commutative diagram

MUZ(X) @ MUL(Y) MUZL(X AY)

UV@UWl lUV@W
MUV Xy @ MUZT" Vs Y) — MUV svew x Ay

for all based G-spaces X and Y and complex G-modules V' and W. In general, for
a multiplicative cohomology theory, commutativity of a diagram of the form above
is assumed as part of the definition of complex-stability. K is another example
of a multiplicative complex-stable cohomology theory, as is the Borel construction
on any such theory.

The role of MUg in the equivariant world is analogous to that of MU in classical
homotopy theory, for its associated cohomology theory has a privileged position
among those which are multiplicative, complex-stable, and have natural Thom
classes (for complex G-vector bundles). We record the axiomatic definition of

such theories.

DEFINITION 2.2. A G-equivariant multiplicative cohomology theory Ay, is said
to have natural Thom classes for complex GG-vector bundles if for every such bundle
¢ of complex dimension n over a pointed G-space X there exists a class 7z €
RZEH(T(€)), with the following three properties:

(1) Naturality: If f:Y — X is a pointed G-map, then 7p¢ = f*(7¢).

(2) Multiplicativity: If £ and n are complex G-vector bundles over X, then

Tean = Te X Ty € RETNT(E @ n)).
(3) Normalization: If V is a complex G-module, then 7 = oV (1).

The following result, which admits a quite formal proof (given for example by

Okonek) explains the universal role played by MUs;.

ProPosITION 2.3. If A} is a multiplicative, complex-stable, cohomology theory
with natural Thom classes for complex GG-bundles, then there is a unique natu-
ral transformation MU (e) — h},(e) of multiplicative cohomology theories that

takes Thom classes to Thom classes.

Returning to homology, for a complex G-bundle ¢ of complex dimension &, the

Thom class of ¢ gives rise to a Thom isomorphism

7 MUS(T(€)) — MU, (B(€)y),
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and similarly in cohomology. This isomorphism is constructed in the same way as
in the nonequivariant case (see e.g. [LMS]), without using any feature of MUY
other than the existence and formal properties of Thom classes. However, in
this special case, its inverse has a rather pleasant geometric interpretation: if
f: M — B(£) represents an element in mu&(B(€£)), the map f in the pullback

diagram
B(f¢) = B(¢)

|

M B(¢)

!

represents an element in muf, ,, (T(€)). This procedure allows the construction of
a homomorphism which stabilizes to the inverse of the Thom isomorphism. See
Brocker and Hook for the details of a treatment of the Thom isomorphism (in the

unoriented case) that uses this interpretation.

T. Brocker and E.C. Hook. Stable equivariant bordism. Mathematische Zeitschrift 129(1972),
pp- 269-277.

T. tom Dieck. Bordism of G-manifolds and integrality theorems. Topology 9(1970), pp. 345-358.
C. Okonek. Der Conner-Floyd-Isomorphismus fiir Abelsche Gruppen. Mathematische Zeitschrift
179(1982), pp. 201-212.

3. Tangential structures

Unfortunately, both mu® and MUS are rather intractable from the computa-
tional point of view. In order to address this difficulty, we shall introduce a new
bordism theory, much more amenable to calculation, whose stabilization is also
MUE.

Consider the following variant of reduced K-theory: if X is a GG-space, instead
of taking the quotient by the subgroup generated by all trivial complex GG-bundles,
take the quotient by the subgroup generated by those trivial bundles of the form
C" x X, where (G acts trivially on C*. We denote the group so obtained as Kg;

there is an analogous construction in the real case, which we denote KOq¢.

DEFINITION 3.1. A tangentially stably almost complex manifold is a smooth
manifold equipped with a lift of the class [rM] € KOa(M) to Kq(M).

We shall refer to the bordism theory of these manifolds as tangential complex
bordism, denoted QY:<,
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We warn the reader that nowhere in the literature is the distinction between the
e

. made clear. This is not mere pedantry

complex bordism theories QY% and mu
on our part, as our next result will show. It was pointed out to the author by
Costenoble that this result does not hold for normally stably almost complex G-

manifolds.

PrOPOSITION 3.2. If M is a tangentially stably almost complex G-manifold and
H C (@ is a closed normal subgroup, then the G-tubular neighborhood around M*

has a complex structure.

We stress the fact that no stabilization is necessary to get a complex structure
on the tubular neighborhood; this lies at the heart of the calculations we shall

carry out later in the chapter.

PROOF. The first thing to observe is that 7(MHY) = (7 M|y#)" as real vector
bundles. If ¢ is the restriction to M of a complex G-vector bundle over M that
represents its tangential stably almost complex structure, and the underlying real
G-vector bundle of ¢ is 7 M|y u @ epn, then (€7)7 is a complex G-vector bundle.
We have

= a () = (T M|yn)" & epn @ v(MT M),
This gives the desired structure. [

We next explore the relation between mu& and QY. There is a commutative

square

Ka(X) —= KOg(X)

l l

Keo(X)— KOg(X)
that yields a natural transformation of homology theories ¢ : mu& — QU“. Just
G

& we may stabilize QU with respect to suspensions by finite-

as we did with mu
dimensional complex subrepresentations of a complete G-universe, obtaining a new
complex-stable homology theory which we shall provisionally denote MU f The
map ¢ stabilizes to a natural transformation @ : MUS — MUE. The following
result was first proved by the author and Costenoble by a different argument and

is central to the results of this chapter.

THEOREM 3.3. ® is an isomorphism of homology theories.
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We shall need the following standard result.

LEMMA 3.4. (Change of groups isomorphism)If H C (i is a closed subgroup of

codimension j, then for all H-spaces X there is an isomorphism

mull (Xy) — muly; (G < X))

induced by application of the functor G xp (e)) to representatives of bordism

classes of maps, and similarly for pairs. The analogous result holds for QY% and

MUS.

SKETCH PROOF. If we apply the functor G xp (e) to a map f: M — X that
represents an element of muf/ (X, ), we obtain an element of muS,_.((G' xy X)4).
Conversely, if ¢ : N — (G xg X represents an element of mug_l_j((G xg X)4)
and if 7: G xg X — X is the evident H-map, we set M = (rg)~'(eH) and see
that M is an H-manifold such that N = G xy M and the restriction of g to M

represents an element of mull (X,). O

ProOF oF THEOREM 3.3. We show first that the theorem is true for G =
SU(2k 4 1) and then extend the result to the general case by a change of groups
argument.

We recall a few standard facts about representations of special unitary groups
(e.g., from Brocker and tom Dieck). Let M be the complex SU(2k 4 1)-module
such that M = C**! with the action of SU(2k+1) given by matrix multiplication
and let A* = A"M. Then R(SU(2k + 1)) is the polynomial algebra over Z on the
representations A%, 1 < ¢ < 2k, all of which are irreducible and of complex type.
Furthermore, A?*~t' = Ai. This implies that any irreducible real representation
of SU(2k + 1) is either trivial or admits a complex structure. To see this, let W
be a non-trivial irreducible real SU(2k + 1)-module. Suppose first that W @ C
is irreducible. Since the restriction to R of an irreducible complex representation
of quaternionic type is irreducible, our assumptions imply that W @g C is of real
type and of the form V @c V, where V is a monomial in the A*, 1 <7 < k. We

have
(VacV)orC=(2W)or C22(VacV)

as complex representations. On the other hand, since 2W = V @¢ V, we have

isomorphisms of complex SU(2k + 1)-modules
CW)@r C=2(VacV)@r C2V @c (V orC)
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and
VacVorC) = (VacV)s (VaeV)
(because VaoprC2V d V) So it follows that

2Vac V)2 (VeacV)a (VacV),
which is absurd in view of the structure of RSU(2k+1). Thus W must be reducible

and so it is either of the form V; @ V1, for an irreducible complex V| of quaternionic
type, or Vi@ V4, for an irreducible complex V; of complex type. The first possibility
is ruled out by the fact that all self-conjugate irreducible complex representations
of SU(2k + 1) are of real type. So we must have

W=V, V, 22V

as real representations, and therefore, using the uniqueness of isotypical decompo-
sitions, we may conclude that W = V' as real representations.

Now let X be a SU(2k+1)-space and consider a map representing an element in
MUE(X). By complex-stability, there is no loss of generality in assuming that our
map is of the form f: M — X, where 7TM & ey = £, V is a real representation,
and £ is a complex SU(2k + 1)-vector bundle. By the remark above, V = W & R”
for a complex representation W. Then X% (M, dM) is a tangentially stably almost
complex manifold and the class of X" f is in the image of ¢. It follows that ® is
surjective. A similar argument applied to bordisms shows that ® is injective.

To obtain the general case, observe that any compact Lie group embeds in
U(2k), and U(2k) embeds in SU(2k 4+ 1) (via the map that sends A € U(2k) to
(det A)™' -1z @ A), and apply Lemma 3.4. O

T. Brocker and T. tom Dieck. representations of compact Lie groups. Springer. 1985.
C. Okonek. Der Conner-Floyd-Isomorphismus fiir Abelsche Gruppen. Mathematische Zeitschrift
179(1982), pp. 201-212.

4. Calculational tools

For the remainder of the chapter, all Lie groups we consider will be Abelian.

There is a long list of names associated to the calculation of QV:%(5°) for dif-
ferent classes of compact Lie groups: Landweber (cyclic groups), Stong (Abelian
p-groups), Ossa (finite Abelian groups), Loffler (Abelian groups), Lazarov (groups
of order pq for distinct primes p and ¢), and Rowlett (extensions of a cyclic group

by a cyclic group of relatively prime order). All of these authors rely on the study of
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fixed point sets by various subgroups, together with their normal bundles, through
the use of bordism theories with suitable restrictions on isotropy subgroups.

The main calculational tool is the use of families of subgroups, which works
in exactly the same fashion as was discussed in the real case in XV§3. Recall

that, for a family .%, an % -space is a G-space all of whose isotropy subgroups

are in .% and that we write F.% for the universal .#-space. Recall too that, for
a G-homology theory AY and a pair of families (%, %'), #' C Z, there is an
associated homology theory h¥[.#, . Z'], defined on pairs of (i-spaces as

WO[F, FNX,A) = hS(X x EZ, (X x F')U (A x EF)).

When .#' = (), we use the notation hS[.#]. The theories hS[.F], hS[.F'], and
hE[.F, F'] fit into a long exact sequence. Of course, there is an analogous con-
struction in cohomology.

In the special case of QU'% (and similarly for other bordism theories), it is easy
to see that QU'9[.Z,.%"] has an alternative interpretation: it is the bordism theory
of (F, F')- tangentially almost-complex manifolds, that is, compact, tangentially

almost complex .#-manifolds with boundary, whose boundary is an .%#’-manifold.

DEFINITION 4.1. A pair of families (.%, #') of subgroups of (¢ is called a neigh-
boring pair differing by H if there is a subgroup H such that if K € .% —.%’ then
H is a subconjugate of K.

This notion was first used by Loffler, but the terminology is not standard. A
special case is the more usual notion of an adjacent pair of families pair differing

by H, which is a neighboring pair (.#,.%") such that .#% — #' consists of those

:
subgroups conjugate to H.

The next proposition explains the importance of neighboring families. We in-
troduce some terminology and notation to facilitate its discussion.

Given a subgroup H of an Abelian Lie group &, we choose a set 6 p of finite
dimensional complex GG-modules whose restrictions to H form a non-redundant,
complete set of irreducible, nontrivial complex H-modules. If C denotes the trivial
irreducible representation, we let %”C';H = %a.n U {C}. For a nonnegative even
integer k, we shall call an array of nonnegative integers P = (pv)vee, 5 a (G, H)-
partition of k if

k= Z 2pv.

VG(KG,H
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For such a partition P, we let

BU(P,G)= [ BU(pv.G).

Vets,n

We let Z(k,G, H) denote the set of all (G, H)-partitions of k.

ProOPOSITION 4.2. If (#,.F') is a neighboring pair of families of subgroups of
a compact Abelian Lie group G differing by a subgroup H, then
WOE X N D QN FHI(XT,AT) < BUP,G/1)),

0<2k<n
PeZ(2k,G,H)

where % /H denotes the family of subgroups of G/H that is obtained by taking
the quotient of each element of .% — %' by H.

SKETCH OF PROOF. For simplicity, we concentrate on the absolute case. Let
f: M — X represent an element in QU“[.%, Z|(X,) and let T be a (closed)
G-tubular neighborhood of M. We may view T as the total space of the unit disc
bundle of the normal bundle to M*”. We may also view 1" as an n-dimensional
Z-manifold whose boundary is an .%’-manifold. Thus 7T represents an element of
OUC7, Z'(S°), and we see that [f] = [f|r] in QUC[.F, #')(X,). Furthermore,
[f] = 0 if and only if there is an H-trivial G-nullbordism of f|r, equipped with a
complex G-vector bundle whose unit disc bundle restricts to 7' on MH. Observe
that M breaks up into various components of constant even codimension. In
other words, QUY[.Z, Z'|(X,) can be identified with the direct sum, with 2k
ranging between 0 and n, of bordism of H-trivial .#-manifolds of dimension n— 2k
equipped with a complex GG-vector bundle of dimension k, containing no H-trivial
summands. Note the twofold importance of Proposition 3.2: not only are we using
that M¥ is tangentially almost complex, but also that its tubular neighborhood
carries a complex structure.

Consider the bundle-theoretic analog of the isotypical decomposition of a linear
representation. For complex G-vector bundles F and F' over a space X we may
construct the vector bundle Hom ¢(E, F') whose fiber over « € X is Home(E,, Fy);
G acts on Home(F, F') by conjugation. If X is H-trivial, then Homg(FE, F) =
(Homg(E, F))H is an H-trivial G-subbundle; if one regards X as a (G/H)-space,
then Homy (FE, F') becomes a (G/ H)-vector bundle over X.

We apply this to F' =T and K = ey, where V is a complex G-module whose
restriction to H is irreducible, thus obtaining a (G//H)-vector bundle which we
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call the V-multiplicity of . The evaluation map

@ HOIHH(€V, T) ®(C gy — T
VE%E;H

is a G-vector bundle isomorphism, and this decomposition into isotypical sum-
mands is unique. Note that in the special case we are considering, the multiplicity
associated to the trivial representation is 0, so the sum really does run over € p.

T can therefore be identified with a direct sum of (G'/H)-vector bundles over
M*" | each corresponding to an irreducible complex representation of H, and M
breaks into a disjoint union of components on which the dimension of each mul-
tiplicity remains constant; each of these components has therefore an associated
(G, H)-partition, accounting for the summation over Z(2k, G, H) in our formula.

Clearly the bundle on the component associated to a (G, H)-partition P is classi-
fied by BU(P,G//H). O

Similar methods allow us to prove the following standard result.

ProprosITION 4.3. With the notation above, if H is a subgroup of an Abelian
Lie group G, then

BU(n,G) = I[I BU(pv.G/H)

Pe2(n,G,H) Ve%g -

as H-trivial G-spaces.

PrOOF. It suffices to observe that the right hand side classifies n-dimensional

complex G-vector bundles over H-trivial G-spaces. [

P. S. Landweber. Unitary bordism of cyclic group actions. Proceedings of the Amer. Math.
Soc. 31(1972), pp. 564-570.

C. Lazarov. Actions of groups of order pq. Transactions of the Amer. Math. Soc. 173(1972),
pp- 215-230.

P. Loffler. Bordismengruppen unitarer Torusmannigfaltigkeiten. Manuscripta Mathematica
12(1974), 307-327.

E. Ossa, Unitary bordism of Abelian groups. Proceedings of the American Mathematical Society
33(1972), pp. 568-571.

R.J. Rowlett. Bordism of metacyclic group actions. Michigan Mathematical Journal 27(1980),
pp- 223-233.

R. Stong. Complex and oriented equivariant bordism. in Topology of Manifolds (J.C. Cantrell
and C.H. Edwards, editors). Markham, Chicago 1970.
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5. Statements of the main results

We come now to a series of theorems, some old, some new, that are consequences
of the previous results. In all of them, we consider a given compact Abelian Lie

group G.

THEOREM 5.1 (LOFFLER). If V' is a complex G-module, and X is a disjoint

union of pairs of G-spaces of the form

(DV, SV) x ﬁ BU(n;, G),

=1

then QV9(X) is a free MU,-module concentrated in even degrees.
THEOREM 5.2. With the same hypotheses on X, the map
QY BUM,G) x X) — QUV9BUMm +1,G) x X)

induced by Whitney sum with the trivial bundle ¢ is a split monomorphism of
MU, .-modules.

THEOREM 5.3. MUE is a free MU,-module concentrated in even degrees.

THEOREM 5.4. The stabilization map QU — MU is a split monomorphism
of MU,-modules.

Theorem 5.3 is stated in the second paper of LofHler cited below, but there seems
to be no proof in the literature. Ours is a refinement of the ideas in the proof
of Theorem 5.1, which yields Theorem 5.4 as a by-product, and is entirely self-
contained (that is, it does not depend on results on finite Abelian groups). Tom
Dieck has used a completely different method to prove a weaker version of Theorem
5.4, for G cyclic of prime order, but to the best of our knowledge nothing of the
sort has previously been claimed or proved at our level of generality. Theorem 5.2,
which also seems to be new, is required in the course of the proof of Theorem 5.3
and is of independent interest.

In the light of these results, it is natural to conjecture, probably overoptimisti-
cally, that MUY is free over MU, and concentrated in even degrees for any compact
Lie group G. We have succeeded in verifying this for a class of non-Abelian groups
that includes O(2) and the dihedral groups. The statement about the injectivity
of the stabilization map also holds for these groups. We hope to extend these

results to other classes of non-Abelian groups; details will appear elsewhere.
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The results above should be proven in the given order, but, since the proofs
have a large overlap, we shall deal with all of them simultaneously.

We shall proceed by induction on the number of “cyclic factors” of the group,
where, for the purposes of this discussion, S! counts as a cyclic group. The argu-
ment in each case is as follows: the result is either trivial or well-known for the
trivial group. Then, one shows that if the result is true for a compact Lie group
(, it also holds for G x S', and this in turn implies the same for G' x Z,.

T. tom Dieck. Bordism of G-manifolds and integrality theorems. Topology 9(1970), pp. 345-358.
P. Loffler. Bordismengruppen unitarer Torusmannigfaltigkeiten. Manuscripta Mathematica
12(1974), 307-327.

P. Loffler. Equivariant unitary bordism and classifying spaces. Proceedings of the International
Symposium on Topology and its Applications, Budva, Yugoslavia 1973, pp. 158-160.

6. Preliminary lemmas and families in G x S!

For brevity, the subgroups {1} x ' C G x S* and {1} x Z, C G x Z, will be
denoted S! and Z,, respectively.
We shall need to consider the following families of subgroups of G x S*:
= {HCGxS'|HNSY <4}
= {HCGxS'|HNS#£ 5
o/ = {all closed subgroups of G' x S'}

T,
F

These give rise to the neighboring pairs (.%;41,.%;) (differing by Z;41) and
(o7 ,.Z.) (differing by S'). Observe that .., is the union of its subfamilies .%;.

LEMMA 6.1. Let GG be a compact Lie group and X be a pair of (G x S*')-spaces.
Then
QU (X x 51 = ol5(X)
and
QUGS (X x §1)/2,) = 0V E(X),
where (i x S acts on S' and S'/Z, through the projection GG x S — S; the

same statement holds for the theories mu&*5" and MUS*S"

The proofs of these isomorphisms are easy verifications and will be omitted; see
Loffler. We shall also need the following result of Conner and Smith.

LEMMA 6.2. A graded, projective, bounded below MU.-module is free.
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LEMMA 6.3. Consider a diagram of projective modules with exact rows

0 A B C 0

e

0 A’ B C’ 0.

If fi and f5 (resp. fy and f3) are split monomorphisms, so is fy (resp. fi).
PrOOF. Add a third row consisting of the cokernels of the f;, which will be

exact by the Snake Lemma. An easy diagram chase shows that the modules in

the new row are projective, and therefore the conclusion follows. []
Note that we make no assumptions about compatibility of the splittings.

REMARK 6.4. If X is a pair of G-spaces of the kind appearing in the statement
of Theorem 5.1 and H is a subgroup of (¢, then restricting the action to H yields
an H-pair of the same kind. Moreover, by Proposition 4.3, X is a (G/H)-pair of
the same type. This class of pairs of spaces is also closed under cartesian product

with BU(n, ) and with pairs of the form (DW, SW) for a complex G-module W.

P. E. Conner, L. Smith, On the complez bordism of finite complezes, Publications Mathématiques
de 'THES, no. 37 (1969), pp. 417-521.
P. Loffler. Bordismengruppen unitarer Torusmannigfaltigkeiten. Manuscripta Mathematica

12(1974), 307-327.

7. On the families .%; in G x S!

In what follows, for a G-pair X and a homology theory h., ©» will designate a
map of the form

Y h(BU(n,G) x X) — h(BU(n+1,G) x X)

that is induced by taking the Whitney sum of the universal complex G-bundle
over BU(n, ) and the trivial G-bundle ec.

Suppose that all four theorems stated above have been proved for G. We shall
deduce the following result in the case GG x S*.

THEOREM 7.1. The following statements hold for each z > 1 and for : = oc.

(1) QUEXS [ Z](X) is a free MU,-module concentrated in odd degrees.

(2) The map

W QUES [ Z)(BU(n, Gx S ) x X) — QU [ Z)(BU (n+1, Gx S')x X)

is a split monomorphism of MU,-modules.
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(3) If W is an irreducible complex (G x S')-module, then
o QU [ Z)(X) — QLT [F)(DW, SW) x X)
is a split monomorphism of MU,-modules.
(4) The map QUGS [ F)(X) — QUGS (X)) is zero.

PrOOF. We first prove this for : = 1, making use of a suitable model for the
space E.7. Let (W;);>1 be a sequence of irreducible complex (G' x S')-modules
such that ST acts freely on their unit circles, and every isomorphism class of such

(G x SY)-modules appears infinitely many times. Let Vi, = @, W; and
SV = colimy SVy;

SV, 1s the required space. Note also that this space embeds into the equivariantly
contractible space

DV, = colim, DV},.

Using Lemma 6.1 and our assumptions about (i, we see that QU:6%5" (SV1 x X)

is a free MU,-module concentrated in odd degrees, and that
o QUGS SV x X) — QU (DWW, SW) x SV; x X)

and

QUGS SV x BU(n, G x §') x X) — QU5 (5V) x BU(n+1,G x §') x X)

are split monomorphisms of MU.-modules.
We calculate QU-GxS' ((SViy1, SVi) x X) using the homotopy equivalence

(S‘/]H_l,s‘/k) ~ (SWk+1 * S‘/k7DWk—|—1 X S‘/k),
and the excisive inclusion
SWk+1 X (D‘/k,s‘/k) — (SWk+1 * S‘/kaDWk—I—l X S‘/k)

The action of G x S on SWyy, determines and is determined by a split group
epimorphism G x S — St with kernel H C G x S, H = (. This implies
that SWyyy is (G x S')-homeomorphic to (G x S')/H. By a change of groups
argument and the inductive hypothesis, we see that Q&Y ((SViyq, SVi) x X) is
free and concentrated in odd degrees and that the maps induced respectively by
suspension by an irreducible complex (G-module and by addition of the bundle e¢

are split monomorphisms of MU.-modules.
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The diagram with exact columns (in which j is odd)

0 0
QU SV, % X) i QUGS ((DW, SW) x SV x X)
QU (§Vin ¢ X) i QUGS (DW, SW) % SVisr x X)
AV (Vi SVi) % X) ———= QUG (DW, SW) x (SVia, SV) x X)

0 0

and the results above show by induction that, for all £ > 1, Qf’GXSl(SVk x X) is
free and concentrated in odd degrees and that ¢" is a split monomorphism. An
analogous diagram shows the same is true for the map  induced by adding ec.

To complete the proofs of (1) — (3) when ¢ = 1, it suffices to observe that
each step in the colimit contributes a direct summand to SV,,. To prove (4), let
f: M — X x SV, represent an element of QU%*5"[.%#,](X). Since S acts freely
on M and all actions on a circle are linear, p : M — M/S" is the unit circle
bundle of a 1-dimensional complex G-bundle F (the complex structure is given
by multiplication by 7 € S'). Obviously, the circle bundle bounds a disc bundle,
whose total space is a complex (G x S')-manifold W. Any point @ € W can be
written as ty, where ¢t € [0,1] and y € M, so [ extends to an equivariant map
F:W — X x DV, defined as F(ty) = tf(y), where the multiplication on the
right hand side is given by the linear structure of DV,.

We prove the case ¢ > 1 of Theorem 7.1 by induction on 2. Observe first that

the case 1 = oo will follow directly from the case of finite ¢ since
FE%, = colim; F.%,.

Indeed, we shall see that each stage in the construction of E.Z. as a colimit
contributes a free direct summand to QU6*5' [ Z_](X) on which ¢" and ¢ are

split monomorphisms of MU,-modules and the map to Qf’GXSl (X) is zero.
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Applying Proposition 4.2 with (G, H) replaced by (G x S',Z;11) and noting that
(G x SY)/Ziy1 = G x S' and that, under this isomorphism, the family .%;11/Z;4
corresponds to the family .%;, we find that
QS [ Fig, F(X) = D QGG AN X < BUP,G x 5Y)).

0<2k<n
Pe P(2k,GX St Tipy1)
Thus the case ¢ = 1, combined with Remark 6.4, shows that the left-hand side is
free and concentrated in odd degrees.

One then concludes, by using the long exact sequences of the pairs [.%;41, %],
that for all i, QU:G*S"[#](X) is concentrated in odd degrees.

The diagrams with exact columns (in which j is odd)

0 0

QV9LE](BU(n, G x SY) x X) QPF)(BU(n +1,G % §1) x X)

J

O (BU(n, G x SY) x X) ——= QP9 Z0](BU(n 4+ 1,G x SY) x X)

J

O T, F)(BU(n, G x SY) x X) = Q9 Fipy, F(BU(n +1,G x 8Y) x X)

J

0 0

show that, for all 7, QV“[.Z](X) is a free MU,-module and the map induced by
addition of ¢ is a split monomorphism of MU,-modules.

The study of the suspension map ¢" must be broken into two cases. Since W
is an irreducible representation of GG x S, its fixed point space W5 is either W
or {0} and therefore either

(1) W%+ = W or

(2) W2+ = {0}.

In the first case, the map

(7.2) o™ QT [, FUX) — QLT [Fo, (DWW, SW) x X)),



404 XXVI. SOME CALCULATIONS IN COMPLEX EQUIVARIANT BORDISM
can be regarded via Proposition 4.2 as a direct sum of suspension maps
U,Gix 51 U,Gix 51
Qi 7 [ANY) — Qs [AI(DW,SW) < Y),

where Y = XZi+1 x BU(P,G x S') for some partition P of 2(j — ) and we think
of W as a representation of G' x (S'/Z;41) = G x S*. Thus it follows from the
case ¢ = | that (7.2) is a split monomorphism of MU,-modules in this case.

For the second case consider a (G x S, Z;y1)-partition P = (pv)Ve<,gGX5172i+1 of
an even integer k. Let P’ = (py)vew, ., denote the (G x St Ziy1)-partition of
k + 2 defined by

Py otherwise.

) {pv—l—l vV =w
Pv =

Since WZi+1 = {0}, Proposition 4.2 implies that the map (7.2) can be interpreted
as a direct sum of maps of the form

b ORI LR(XT x BU(P,G)) — QG [R)(XP x BU(P',G))

induced by addition of e¢ to the multiplicity bundle corresponding to the V in the
decomposition. We know already that maps of this kind are split monomorphisms
of MU.-modules, and we conclude that (7.2) is always a split monomorphism of
MU, .-modules.

Now the following diagram with exact columns implies inductively that, for all
i, " is a split monomorphism of MU,-modules on QUS> [.Z](X).

0 0
L [F)(X) T QUGS [F(DW, SW) x X)
O [ Fia)(X) T QUG [F ) ((DW, SW) x X)
LG [Fir, FUX) ——— 5 [Fo, FU(DW, SW) x X)
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Finally, to prove (4) of Theorem 7.1, let f : M — X represent an element of
QUGS Z,)(X), i > 1, and suppose that we have already proved that

QU [F)(X) — QU (X)

is zero for all j < ¢. We shall construct a bordism with no isotropy restrictions
from f to amap f': M' — X where M’ is an .%#;_;-manifold. By the induction
hypothesis, this will complete the proof.

Let us pause for a moment to explain informally how the bordism will be con-
structed. The idea is based on a standard technique in geometric topology known
as “attaching handles”. Any sphere S* is the boundary of a disc D! if §%¥ ¢ N
is embedded with trivial normal bundle in a manifold N and has a tubular neigh-
borhood T', we can obtain a bordism of N to a new manifold by crossing N with
the unit interval and pasting D¥+! x D"=*=! (a handle with core D*) to N x [
by identifying 7' x {1} with S* x D"=*=1. Our construction will be basically “at-
taching a generalized handle” to our manifold M. Instead of an embedded sphere,
we shall use M%:, which bounds a manifold W; this will be the “core” of our
“handle”. The “handle” itself will be the total space of a disc bundle over W.
The total space of its restriction to M% will be equivariantly diffeomorphic to a
tubular neighborhood of M% in M, so we may take M x I and glue the “handle”
in the obvious way, thus obtaining the desired bordism. Of course, all the required
properties of the bordism have to be checked, and an extension of f to the bordism
has to be constructed. We give the details next.

Consider a tubular neighborhood T' of M%:, regarded as the total space of a disc
bundle over M%:, We shall use the notation ST for the corresponding unit circle
bundle, and T° for T'— ST. We remark that M —T° and ST are .%;_;-manifolds.
When there is no danger of confusion, we shall make no notational distinction
between a bundle and its total space.

Let A denote a generator of Z; C S' C C, and let V;, 0 < k < 1, be 1-
dimensional representations of Z; such that A acts by multiplication by A\*. These
form a complete, non-redundant set of nontrivial irreducible representations, and
each of the V}’s obviously extends to G x S' (an element (g,s) € G x S! acts by
multiplication by s¥). We use these to obtain an isotypical decomposition of T
Let T} denote the bundle Homy, (ev,, T).

Since M%iis (S1/Z;)-free, our proof in the case i = 1 shows that f|,;z bounds

amap [ : W — X, where W is the total space of a Z;-trivial 1-dimensional
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(G x SY)-disc bundle over Z = M?%:/(S1/Z;) whose unit circle bundle is MZi.

Passage to orbits gives a pull-back diagram

T, — Ty /(S Z;)

.

N — N/(5'/Zi),

for each k, where the right vertical arrow is a G-disc bundle, which may also be
thought of as a (G x (S'/Z;))-bundle with trivial (S'/Z;)-action. This makes the
diagram above a pull-back of (G x (S'/Z;))-vector bundles. Since the zero-section
of this bundle can be identified with Z = SW/(S'/Z;), we have a diagram of
(G x (Sl/Zi))—bundles

T/ (") )

I~

v (T (SYZ:))

Clearly the bundle 7' = &, p (T /(S Z;)) @ ey, extends T to W; we claim that

its unit sphere bundle is an .%;_;-manifold. To prove this, observe that
W — 7= M% x[0,1),

where [0,1) has trivial action, and so ST|W_Z is equivariantly homeomorphic to
ST|W_Z % [0,1). Therefore, S'-stabilizers of points in ST — ST not already present
in ST can only appear in ST|Z, but since there is no component associated to the
trivial representation (recall our remark in the course of the proof of Proposition
4.2) all these are proper subgroups of Z;, so the claim follows.
Let
M' = (M —T°) Ugp ST}

by construction, this is an .%;_;-manifold. Since T'U W is a (G x S')-deformation
retract of 1", there is a map f : W — X with f|T = f|r and f|W — f. We obtain
a bordism by crossing M with the closed unit interval, pasting T to M x {1} along
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T x {1}, and extending f in the obvious way to a map F' from the bordism into
X. The maps f' = F|yr and f represent the same element in the bordism of X

with no isotropy restrictions, as required. [

8. Passing from G to GG x S' and G x Z,

To complete the proofs of our theorems, it suffices to prove the following result,

in which we again assume that we have proven all of our theorems for G.

THEOREM 8.1. Let C' = S' or C = Z;. The following statements hold.

(1) QUEX9(X) is a free MU,-module concentrated in even degrees.
2) The ma
(2) p

W QU BU(n, G x SY) x X) — QUEC(BU(n +1,G x S') x X)

is a split monomorphism of MU,-modules.

(3) If W is an irreducible complex (G' x C')-module, then
o QUIC(X) — QLT (DW, SW) x X)
is a split monomorphism of MU,-modules.

We first show that QU6*5' [ Z.](X) is a free MU,-module concentrated in
even degrees and that ¢" and v here are split monomorphisms of MU,-modules.
By Proposition 4.2, we have

WO, FNX) 2 D QXY < BUPG)).

0<2k<n
Pe2(2k,GxSt,S1)

Thus, by the induction hypothesis, QU&*5" [/, Fool(X) is free over MU, and
concentrated in even degrees, and the maps ¢ induced by addition of ¢¢ are split
monomorphisms of MU.-modules.

Theorem 7.1(4) implies that the long exact sequence of the pair (&7, %) breaks

into short exact sequences. In particular, the map
Q?stl (X) N Q*U’stl [%7 ngoo](X)

is a monomorphism, hence QU-6%5! (X)) is concentrated in even degrees.

In order to study the effect of o on QUE*5" (o7, Fo](X), it is necessary to
distinguish two cases:

(1) W =W and

(2) W= = {0}.
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The analysis is similar to the one carried out in the previous section and will

be omitted; it yields the expected conclusion: o

MU,-modules on QUG*5" (o7 . Z_](X).

The diagram with exact columns

is a split monomorphism of

0 0
0 (x) T QU (DW,SW) x X)
O of | F)(X) ——= Q5 [ Z)(DW.SW) x X)
LS 2] () e QUGS ZL(DW, SW) x X)
0 0

together with Lemmas 6.2 and 6.3 shows that QHGXSl (X)) is projective, and there-
fore free, and that ¢ is a split monomorphism of MU,-modules on QHGXSl (X).
A similar diagram gives the corresponding conclusion for .

This completes the proof of Theorem 8.1 for C' = S!, and it remains to deal with
the case C' = Zj,. Let V denote the 1-dimensional complex representation of G x St

on which G acts trivially and an element ¢?™ € St acts by multiplication by e?7¥,

Since S1 acts without fixed points on SV x X, QUG*S" o7, Fo](SV x X) = 0.
Therefore, by the long exact sequence of the pair (DV, SV),

OV o T (X)) — QU Lo Z)((DV, SV) x X))
is an isomorphism, and, by the long exact sequence of the pair (<7, .Z..),
QUEST [ Z 1SV x X) — QU (Y x X)

is an isomorphism.

By Theorem 7.1, we conclude that QE’GXSI(SV x X) is a free MU,-module
concentrated in odd degrees. This being so, the long exact sequence of the pair
(DV, SV) breaks up into short exact sequences

0 — QL (X) 5 QU (DV, SV) x X) — Q5DF(SV x X) — 0.
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Since SV can be identified with S'/Zj., we conclude from Lemma 3.4 that
QUEIr( X)) = coker a.

Now apply the Snake Lemma to the diagram with exact columns

0 0
05 (X) - OSSN (DV, SV) x X)
QLGS o/ F.)(X) —— QS o Z)(DV, SV) x X)
L [ F.0) (X) e QLTS [ ZL(DV.SV) x X)

0 0.

Since « is a monomorphism and /3 is an epimorphism, we see that coker a = ker /3.
Since ker 3 is a free MU,-module concentrated in odd degrees, QU:“*Zx( X) is free
and concentrated in even degrees.

To show that " is a split monomorphism, let Y = (DW, SW) x X and consider
the maps

o s QTEET(Y) — VST (DY, SV) x Y)
and
B QT ZY) — 5T [ ZL(DV,SV) x V)

that fit into the diagram obtained from the previous one by raising all degrees by
two and replacing X by Y. Then ¢" induces a map from the original diagram to
the new diagram, and there results a commutative square

CTW
coker o« — coker o

g E

ker f ——— ker f'.

By Lemma 6.2, the bottom arrow is a split monomorphism of M U,-modules, hence

so 1s the top arrow. The proof that ¢ is a split monomorphism is similar.
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normy, 354
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obstruction theory, 22
operad, 314
operadic smash product, 318
orbit category, 19, 52
orbit spectrum, 193
ordinary RO(G)-graded cohomology, 109, 162
ordinary RO(G)-graded homology, 109, 163
orientation
of a G-bundle, 207
of a G-manifold, 208

perfect compact Lie group, 216
Poincaré duality, 111, 208
Poincaré duality space, 111
Pontrjagin-Thom construction, 181, 182
Pontrjagin-Thom map, 95
Postnikov system, 26
p-perfect group, 215
prespectrum, 131

G-CW, 148

Y-cofibrant, 148

9.7,-, 360

Z, 361

coordinate free, 133

indexed on U, 133
Q-prespectrum, 132
pretransfer map, 210
principal (G;I)-bundle, 69
principal (IT; 7 )-bundle, 69
pro-group, 177
p-toral group, 79

quasi-isomorphism, 33

R-algebra, 300

commutative; 300

enveloping, 307
rationality theorem, 346
restriction

in Kg-theory, 168, 178
RLP, 65
R-module, 290

free, 291

quotient by an ideal, 296

sphere, 291

underlying nonequivariant, 328

RO(G)-graded cohomology, 100
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RO(G; U)-graded cohomology, 152
RO(G)-graded homology, 100
RO(G; U)-graded homology, 154
root invariant, 276, 279

R-ring spectrum, 295

S-algebra, 290
commutative, 290
underlying nonequivariant, 327
Sec(BH, B?), 75
Sec(EG,E?), 74
Segal conjecture, 253
sequential filtration, 144
simple G-space, 25
simple space, 22, 25
simplicial object, 48
simply G-connected, 115
singular set, 261
slant products, 164
small object argument, 66
smash product
external, 134
internal, 136, 137
operadic, 318
Smith theory, 41
S-module, 287, 318
free, 288
sphere, 288
solvable compact Lie group, 216
Spanier-Whitehead S-category, 143
Spanier-Whitehead duality, 204, 293
spectrification functor, 132, 133
spectrum, 132
G-CW, 144
G-cell, 144
coordinate free, 133
fixed point, 192
geometric fixed point, 195
indexed on {0}, 135
indexed on U, 133
orbit, 193
tame, 148
underlying nonequivariant, 192
Q-spectrum, 132
split G-spectrum, 193
split as a module, 328
split as an algebra, 327
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stable coefficient system, 98 twisted half-smash product, 314
stable element, 233
stable homotopy limit problem, 271 Un(M), 46
stable isomorphism of bundles; 167 universal .Z-space, bb
stable manifold, 184 universal coefficient spectral sequence, 23,
stable map, 93 294
stable orbit category, 98 universal (II;?)-bundle, 71
stably almost complex manifold, 370 universe, 93

tangentially, 373 complete, 93
strongly dualizable, 203 trivial, 93
sufficiently large ideal, 351 untwisting formula, 315
Sullivan conjecture, 78
support Vecg, 35

of a prime in A(G), 257 von Neumann regular ring, 218

of a prime in R(G), 170
suspension map, 122 weak equivalence, 14
suspension prespectrum, 136 of G-spaces, 14
suspension spectrum, 136 of G-spectra, 142

of diagrams, 60

tangential complex bordism, 373 of spectra, 136
Tate G-spectrum, 271 weak Hausdorff, 13
Tate cohomology, 269, 271 weak map of spectra, 149
Tate-Swan cohomology, 273 Weyl group, 13
tensored and cotensored category Whitehead theorem

of R-modules; 291 for G-spaces, 17, 108

of R-algebras, 300 for G-spectra, 145

of commutative R-algebras, 300 for diagrams, 61
Thom G-prespectrum, 182 via geometric fixed point spectra, 201
Thom G-spectrum, 182 Wirthmuller isomorphism, 197
Thom class, 184, 185, 372 wreath product, 355

Thom complex, 95
Thom isomorphism, 207, 341, 372

in Kg-theory, 171

in bordism, 185
Thom prespectrum, 180
Thom spectrum, 180, 263, 299
topological cyclic homology, 286
topological Hochschild cohomology, 307
topological Hochschild homology, 307
Tor, 292, 293
toral group, 352
totalization, 51
totally disconnected, 213
transfer map, 96, 209, 224

dimension shifting, 224
transversality

failure of, 182
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