
EQUIVARIANT HOMOTOPY AND COHOMOLOGYTHEORYJ.P. May



The author acknowledges the support of the NSF1980Mathematics Subject Classi�cation (1985 Revision). Primary 19L47, 55M35,55N10, 55N15, 55N20, 55N22, 55N91, 55P42, 55P60, 55P62, 55P91, 55Q91, 55R12,55R91, 55T25, 57R85; Secondary 18E30, 18G15, 18G40, 19A22, 55P20, 55P25,55P47, 55Q10, 55Q55, 55R40, 55R50, 55S10, 55S35, 55S45, 55U20, 55U25, 57R75,57R77, 57S17.Author addresses:University of Chicago, Chicago, Il 60637E-mail address: may@math.uchicago.edu
ii



ContentsIntroduction 1Chapter I. Equivariant Cellular and Homology Theory 131. Some basic de�nitions and adjunctions 132. Analogs for based G-spaces 153. G-CW complexes 164. Ordinary homology and cohomology theories 195. Obstruction theory 226. Universal coe�cient spectral sequences 23Chapter II. Postnikov Systems, Localization, and Completion 251. Eilenberg-MacLane G-spaces and Postnikov systems 252. Summary: localizations of spaces 273. Localizations of G-spaces 284. Summary: completions of spaces 295. Completions of G-spaces 31Chapter III. Equivariant Rational Homotopy Theory 331. Summary: the theory of minimal models 332. Equivariant minimal models 353. Rational equivariant Hopf spaces 38Chapter IV. Smith Theory 411. Smith theory via Bredon cohomology 41iii



iv CONTENTS2. Borel cohomology, localization, and Smith theory 43Chapter V. Categorical Constructions; Equivariant Applications 471. Coends and geometric realization 472. Homotopy colimits and limits 493. Elmendorf's theorem on diagrams of �xed point spaces 524. Eilenberg-MacLane G-spaces and universal F-spaces 54Chapter VI. The Homotopy Theory of Diagrams 571. Elementary homotopy theory of diagrams 572. Homotopy Groups 593. Cellular Theory 604. The homology and cohomology theory of diagrams 635. The closed model structure on UJ 646. Another proof of Elmendorf's theorem 67Chapter VII. Equivariant Bundle theory and Classifying Spaces 711. The de�nition of equivariant bundles 712. The classi�cation of equivariant bundles 723. Some examples of classifying spaces 75Chapter VIII. The Sullivan Conjecture 791. Statements of versions of the Sullivan conjecture 792. Algebraic preliminaries: Lannes' functors T and Fix 823. Lannes' generalization of the Sullivan conjecture 844. Sketch proof of Lannes' theorem 865. Maps between classifying spaces 89Chapter IX. An introduction to equivariant stable homotopy 931. G-spheres in homotopy theory 932. G-Universes and stable G-maps 953. Euler characteristic and transfer G-maps 974. Mackey functors and coMackey functors 995. RO(G)-graded homology and cohomology 102



CONTENTS v6. The Conner conjecture 103Chapter X. G-CW(V ) complexes and RO(G)-graded cohomology 1051. Motivation for cellular theories based on representations 1052. G-CW(V ) complexes 1063. Homotopy theory of G-CW(V ) complexes 1094. Ordinary RO(G)-graded homology and cohomology 111Chapter XI. The equivariant Hurewicz and Suspension Theorems 1151. Background on the classical theorems 1152. Formulation of the problem and counterexamples 1173. An oversimpli�ed description of the results 1204. The statements of the theorems 1225. Sketch proofs of the theorems 126Chapter XII. The Equivariant Stable Homotopy Category 1311. An introductory overview 1312. Prespectra and spectra 1333. Smash products 1364. Function spectra 1395. The equivariant case 1416. Spheres and homotopy groups 1427. G-CW spectra 1458. Stability of the stable category 1489. Getting into the stable category 149Chapter XIII. RO(G)-graded homology and cohomology theories 1531. Axioms for RO(G)-graded cohomology theories 1532. Representing RO(G)-graded theories by G-spectra 1563. Brown's theorem and RO(G)-graded cohomology 1604. Equivariant Eilenberg-MacLane spectra 1625. Ring G-spectra and products 166Chapter XIV. An introduction to equivariant K-theory 171



vi CONTENTS1. The de�nition and basic properties of KG-theory 1712. Bundles over a point: the representation ring 1733. Equivariant Bott periodicity 1754. Equivariant K-theory spectra 1775. The Atiyah-Segal completion theorem 1786. The generalization to families 182Chapter XV. An introduction to equivariant cobordism 1831. A review of nonequivariant cobordism 1832. Equivariant cobordism and Thom spectra 1863. Computations: the use of families 1894. Special cases: odd order groups and Z=2 193Chapter XVI. Spectra and G-spectra; change of groups; duality 1951. Fixed point spectra and orbit spectra 1952. Split G-spectra and free G-spectra 1973. Geometric �xed point spectra 1994. Change of groups and the Wirthm�uller isomorphism 2005. Quotient groups and the Adams isomorphism 2026. The construction of G=N-spectra from G-spectra 2047. Spanier-Whitehead duality 2078. V -duality of G-spaces and Atiyah duality 2099. Poincar�e duality 211Chapter XVII. The Burnside ring 2151. Generalized Euler characteristics and transfer maps 2152. The Burnside ring A(G) and the zero stem �G0 (S) 2193. Prime ideals of the Burnside ring 2204. Idempotent elements of the Burnside ring 2225. Localizations of the Burnside ring 2246. Localization of equivariant homology and cohomology 226Chapter XVIII. Transfer maps in equivariant bundle theory 231



CONTENTS vii1. The transfer and a dimension-shifting variant 2312. Basic properties of transfer maps 2343. Smash products and Euler characteristics 2354. The double coset formula and its applications 2385. Transitivity of the transfer 243Chapter XIX. Stable homotopy and Mackey functors 2451. The splitting of equivariant stable homotopy groups 2452. Generalizations of the splitting theorems 2493. Equivalent de�nitions of Mackey functors 2504. Induction theorems 2525. Splittings of rational G-spectra for �nite groups G 256Chapter XX. The Segal conjecture 2611. The statement in terms of completions of G-spectra 2612. A calculational reformulation 2633. A generalization and the reduction to p-groups 2664. The proof of the Segal conjecture for �nite p-groups 2685. Approximations of singular subspaces of G-spaces 2716. An inverse limit of Adams spectral sequences 2737. Further generalizations; maps between classifying spaces 275Chapter XXI. Generalized Tate cohomology 2791. De�nitions and basic properties 2792. Ordinary theories; Atiyah-Hirzebruch spectral sequences 2833. Cohomotopy, periodicity, and root invariants 2864. The generalization to families 2875. Equivariant K-theory 2906. Further calculations and applications 293Chapter XXII. Brave new algebra 2991. The category of S-modules 2992. Categories of R-modules 302



viii CONTENTS3. The algebraic theory of R-modules 3044. The homotopical theory of R-modules 3065. Categories of R-algebras 3126. Bous�eld localizations of R-modules and algebras 3147. Topological Hochschild homology and cohomology 319Chapter XXIII. Brave new equivariant foundations 3271. Twisted half-smash products 3272. The category of L-spectra 3313. A1 and E1 ring spectra and S-algebras 3334. Alternative perspectives on equivariance 3355. The construction of equivariant algebras and modules 3396. Comparisons of categories of L-G-spectra 343Chapter XXIV. Brave New Equivariant Algebra 3471. Introduction 3472. Local and �Cech cohomology in algebra 3483. Brave new versions of local and �Cech cohomology 3494. Localization theorems in equivariant homology 3515. Completions, completion theorems, and local homology 3546. A proof and generalization of the localization theorem 3577. The application to K-theory 3608. Local Tate cohomology 361Chapter XXV. Localization and completion in complex bordism 3671. The localization theorem for stable complex bordism 3672. An outline of the proof 3683. The norm map and its properties 3714. The idea behind the construction of norm maps 3735. Global I�-functors with smash product 3756. The de�nition of the norm map 3797. The splitting of MUG as an algebra 380



CONTENTS ix8. L�o�er's completion conjecture 381Chapter XXVI. Some calculations in complex equivariant bordism3871. Notations and terminology 3872. Stably almost complex structures and bordism 3883. Tangential structures 3914. Calculational tools 3945. Statements of the main results 3986. Preliminary lemmas and families in G� S1 3997. On the families Fi in G� S1 4008. Passing from G to G � S1 and G �Zk 407Bibliography 411



IntroductionThis volume began with Bob Piacenza's suggestion that I be the principal lecturerat an NSF/CBMS Regional Conference in Fairbanks, Alaska. That event tookplace in August of 1993, and the interim has seen very substantial progress in thisgeneral area of mathematics. The scope of this volume has grown accordingly.The original focus was an introduction to equivariant algebraic topology, to sta-ble homotopy theory, and to equivariant stable homotopy theory that was gearedtowards graduate students with a reasonably good understanding of nonequivari-ant algebraic topology. More recent material is changing the direction of the lasttwo subjects by allowing the introduction of point-set topological algebra into sta-ble homotopy theory, both equivariant and non-equivariant, and the last portionof the book focuses on an introduction to these new developments. There is aprogression, with the later portions of the book on the whole being more di�cultthan the earlier portions.Equivariant algebraic topology concerns the study of algebraic invariants ofspaces with group actions. The �rst two chapters introduce the basic structuralfoundations of the subject: cellular theory, ordinary homology and cohomologytheory, Eilenberg-MacLane G-spaces, Postnikov systems, localizations of G-spacesand completions of G-spaces. In most of this work, G can be any topological group,but we restrict attention to compact Lie groups in the rest of the book.Chapter III, on equivariant rational homotopy theory, was written by GeorgiaTrianta�llou. In it, she shows how to generalize Sullivan's theory of minimalmodels to obtain an algebraization of the homotopy category of (nilpotent) G-spaces for a �nite group G. This chapter contains a �rst surprise: rational HopfG-spaces need not split as products of Eilenberg-MacLane G-spaces. This is a hint1



2 INTRODUCTIONthat the calculational behavior of equivariant algebraic topology is more intricateand di�cult to determine than that of the classical nonequivariant theory.Chapter IV gives two proofs of the �rst main theorem of equivariant algebraictopology, which goes under the name of \Smith theory": any �xed point spaceof an action of a �nite p-group on a mod p homology sphere is again a mod phomology sphere. One proof uses ordinary (or Bredon) equivariant cohomologyand the other uses a general localization theorem in classical (or Borel) equivariantcohomology.Parts of equivariant theory require a good deal of categorical bookkeeping, forexample to keep track of �xed point data and to construct new G-spaces fromdiagrams of potential �xed point spaces. Some of the relevant background, suchas geometric realization of simplicial spaces and the construction of homotopycolimits, is central to all of algebraic topology. These matters are dealt within Chapter V, where Eilenberg-MacLane G-spaces and universal F -spaces forfamilies F of subgroups of a given group G are constructed. Special cases ofsuch universal F -spaces are used in Chapter VII to study the classi�cation ofequivariant bundles.A di�erent perspective on these matters is given in Chapter VI, which was writ-ten by Bob Piacenza. It deals with the general theory of diagrams of topologicalspaces, showing how to mimic classical homotopy and homology theory in cat-egories of diagrams of topological spaces. In particular, Piacenza constructs aQuillen (closed) model category structure on any such category of diagrams andshows how these ideas lead to another way of passing from diagrams of �xed pointspaces to their homotopical realization by G-spaces.Chapter VIII combines equivariant ideas with the use of new tools in nonequiv-ariant algebraic topology, notably Lannes' functor T in the context of unstablemodules and algebras over the Steenrod algebra, to describe one of the most beau-tiful recent developments in algebraic topology, namely the Sullivan conjectureand its applications. While many mathematicians have contributed to this area,the main theorems are due to Haynes Miller, Gunnar Carlsson, and Jean Lannes.Although the set [X;Y ] of homotopy classes of based maps from a space X to aspace Y is trivial to de�ne, it is usually enormously di�cult to compute. The Sulli-van conjecture, in its simplest form, asserts that [BG;X] = 0 if G is a �nite groupand X is a �nite CW complex. It admits substantial generalizations which leadto much more interesting calculations, for example of the set of maps [BG,BH]



INTRODUCTION 3for suitable compact Lie groups G and H. We shall see that an understandingof equivariant classifying spaces sheds light on what these calculations are reallysaying. There is already a large literature in this area, and we can only give an in-troduction. One theme is that the Sullivan conjecture can be viewed conceptuallyas a calculational elaboration of Smith theory. A starting point of this approachlies in work of Bill Dwyer and Clarence Wilkerson, which �rst exploited the studyof modules over the Steenrod algebra in the context of the localization theorem inSmith theory.We begin the study of equivariant stable homotopy theory in Chapter IX, whichgives a brief introduction of some of the main ideas. The chapter culminates witha quick conceptual proof of a conjecture of Conner: if G is a compact Lie groupand X is a �nite dimensional G-CW complex with �nitely many orbit types suchthat ~H(X;Z) = 0, then ~H(X=G;Z) = 0. This concrete statement is a direct con-sequence of the seemingly esoteric assertion that ordinary equivariant cohomologywith coe�cients in a Mackey functor extends to a cohomology theory graded onthe real representation ring RO(G); this means that there are suspension isomor-phisms with respect to the based spheres associated to all representations, not justtrivial ones. In fact, the interplay between homotopy theory and representationtheory pervades equivariant stable homotopy theory.One manifestation of this appears in Chapter X, which was written by StefanWaner. It explains a variant theory of G-CW complexes de�ned in terms of repre-sentations and uses the theory to construct the required ordinary RO(G)-gradedcohomology theories with coe�cients in Mackey functors by means of appropriatecellular cochain complexes.Another manifestation appears in Chapter XI, which was written by GaunceLewis and which explains equivariant versions of the Hurewicz and Freudenthalsuspension theorems. The algebraic transition from unstable to stable phenom-ena is gradual rather than all at once. Nonequivariantly, the homotopy groupsof �rst loop spaces are already Abelian groups, as are stable homotopy groups.Equivariantly, stable homotopy groups are modules over the Burnside ring, butthe homotopy groups of V th loop spaces for a representation V are only mod-ules over a partial Burnside ring determined by V . The precise form of Lewis'sequivariant suspension theorem re
ects this algebraic fact.Serious work in both equivariant and nonequivariant stable homotopy theoryrequires a good category of \stable spaces", called spectra, in which to work.



4 INTRODUCTIONThere is a great deal of literature on this subject. The original construction of thenonequivariant stable homotopy category was due to Mike Boardman. One mustmake a sharp distinction between the stable homotopy category, which is �xedand unique up to equivalence, and any particular point-set level construction ofit. In fact, there are quite a few constructions in the literature. However, only oneof them is known to generalize to the equivariant context, and that is also the onethat is the basis for the new development of point-set topological algebra in stablehomotopy theory. We give an intuitive introduction to this category in ChapterXII, beginning nonequivariantly and focusing on the construction of smash prod-ucts and function spectra since that is the main technical issue. We switch tothe equivariant case to explain homotopy groups, the suspension isomorphism forrepresentation spheres, and the theory of G-CW spectra. We also explain how totransform the spectra that occur \in nature" to the idealized spectra that are theobjects of the stable homotopy category.In Chapters XIII, XIV, and XV, we introduce the most important RO(G)-graded cohomology theories and describe the G-spectra that represent them. Webegin with an axiomatic account of exactly what RO(G)-graded homology andcohomology theories are and a proof that all such theories are representable by G-spectra. We also discuss ring G-spectra and products in homology and cohomologytheories. We show how to construct Eilenberg-MacLane G-spectra by representingthe zeroth term of aZ-graded cohomology theory de�ned by means of G-spectrumlevel cochains. This implies an alternative construction of ordinary RO(G)-gradedcohomology theories with coe�cients in Mackey functors.Chapter XIV, which was written by John Greenlees, gives an introduction toequivariant K-theory. The focus is on equivariant Bott periodicity and its use toprove the Atiyah-Segal completion theorem. That theorem states that, for anycompact Lie group G, the nonequivariant K-theory of the classifying space BG isisomorphic to the completion of the representation ring R(G) at its augmentationideal I. The result is of considerable importance in the applications of K-theory,and it is the prototype for a number of analogous results to be described later.Chapter XV, which was written by Steve Costenoble, gives an introduction toequivariant cobordism. The essential new feature is that transversality fails in gen-eral, so that geometric equivariant bordism is not same as stable (or homotopical)bordism; the latter is the theory represented by the most natural equivariant gen-eralization of the nonequivariant Thom spectrum. Costenoble also explains the



INTRODUCTION 5use of adjacent families of subgroups to reduce the calculation of equivariant bor-dism to suitably related nonequivariant calculations. The equivariant results areconsiderably more intricate than the nonequivariant ones. While the G-spectrathat represent unoriented geometric bordism and its stable analog split as prod-ucts of Eilenberg MacLane G-spectra for �nite groups of odd order, just as in thenonequivariant case, this is false for the cyclic group of order 2.Chapters XVI{XIX describe the basic machinery and results on which all workin equivariant stable homotopy theory depends. Chapter XVI describes �xed pointand orbit spectra, shows how to relate equivariant and nonequivariant homologyand cohomology theories, and, more generally, shows how to relate homology andcohomology theories de�ned for a group G to homology and cohomology theoriesde�ned for subgroups and quotient groups of G. These results about change ofgroups are closely related to duality theory, and we give basic information aboutequivariant Spanier-Whitehead, Atiyah, and Poincar�e duality.In Chapter XVII, we discuss the Burnside ring A(G). When G is �nite, A(G) isthe Grothendieck ring associated to the semi-ring of �nite G-sets. For any compactLie group G, A(G) is isomorphic to the zeroth equivariant stable homotopy groupof spheres. It therefore acts on the equivariant homotopy groups �Gn (X) = �n(XG)of anyG-spectrumX, and this implies that it acts on all homology and cohomologygroups of any G-spectrum. Information about the algebraic structure of A(G)leads to information about the entire stable homotopy category of G-spectra. Itturns out that A(G) has Krull dimension one and an easily analyzed prime idealspectrum, making it quite a tractable ring. Algebraic analysis of localizations ofA(G) leads to analysis of localizations of equivariant homology and cohomologytheories. For example, for a �nite group G, the localization of any theory at aprime p can be calculated in terms of subquotient p-groups of G.In Chapter XVIII, we construct transfer maps, which are basic calculationaltools in equivariant and nonequivariant bundle theory, and describe their basicproperties. Special cases were vital to the earlier discussion of change of groups.The deepest property is the double coset formula, and we say a little about itsapplications to the study of the cohomology of classifying spaces.In Chapter XIX, we discuss several fundamental splitting theorems in equiv-ariant stable homotopy theory. These describe the equivariant stable homotopygroups of G-spaces in terms of nonequivariant homotopy groups of �xed pointspaces. These theorems lead to an analysis of the structure of the subcategory



6 INTRODUCTIONof the stable category whose objects are the suspension spectra of orbit spaces.A Mackey functor is an additive contravariant functor from this subcategory toAbelian groups, and, when G is �nite, the analysis leads to a proof that thistopological de�nition of Mackey functors is equivalent to an earlier and simpler al-gebraic de�nition. Mackey functors describe the algebraic structure that is presenton the system of homotopy groups �Hn (X) = �n(XH) of a G-spectrum X, whereH runs over the subgroups of G. The action of the Burnside ring on �Gn (X) ispart of this structure. It is often more natural to study such systems than to focuson the individual groups. In particular, we describe algebraic induction theoremsthat often allow one to calculate the value of a Mackey functor on the orbit G=Gfrom its values on the orbits G=H for certain subgroups H. Such theorems haveapplications in various branches of mathematics in which �nite group actions ap-pear. Again, algebraic analysis of rational Mackey functors shows that, when G is�nite, rational G-spectra split as products of Eilenberg-MacLane G-spectra. Thisis false for general compact Lie groups G.In Chapter XX, we turn to another of the most beautiful recent developmentsin algebraic topology: the Segal conjecture and its applications. The Segal con-jecture can be viewed either as a stable analogue of the Sullivan conjecture oras the analogue in equivariant stable cohomotopy of the Atiyah-Segal completiontheorem in equivariantK-theory. The original conjecture, which is just a fragmentof the full result, asserts that, for a �nite group G, the zeroth stable cohomotopygroup of the classifying space BG is isomorphic to the completion of A(G) at itsaugmentation ideal I. The key step in the proof of the Segal conjecture is dueto Gunnar Carlsson. We explain the proof and also explain a number of general-izations of the result. One of these leads to a complete algebraic determinationof the group of homotopy classes of stable maps between the classifying spacesof any two �nite groups. This is analogous to the role of the Sullivan conjecturein the study of ordinary homotopy classes of maps between classifying spaces.Use of equivariant classifying spaces is much more essential here. In fact, the Se-gal conjecture is intrinsically a result about the I-adic completion of the sphereG-spectrum, and the application to maps between classifying spaces depends ona generalization in which the sphere G-spectrum is replaced by the suspensionG-spectra of equivariant classifying spaces.Chapter XXI is an exposition of joint work of John Greenlees and myself in whichwe generalize the classical Tate cohomology of �nite groups and the periodic cyclic



INTRODUCTION 7cohomology of the circle group to obtain a Tate cohomology theory associated toany given cohomology theory on G-spectra, for any compact Lie group G. Thiswork has had a variety of applications, most strikingly to the computation of thetopological cyclic homology and thus to the algebraic K-theory of number rings.While we shall not get into that application here, we shall describe the generalAtiyah-Hirzebruch-Tate spectral sequences that are used in that work and we shallgive a number of other applications and calculations. For example, we shall explaina complete calculation of the Tate theory associated to the equivariant K-theoryof any �nite group. This is an active area of research, and some of what we sayat the end of this chapter is rather speculative. The Tate theory provides some ofthe most striking examples of equivariant phenomena illuminating nonequivariantphenomena, and it leads to interrelationships between the stable homotopy groupsof spheres and the Tate cohomology of �nite groups that have only begun to beexplored.Chapters XXII through XXV concern \brave new algebra", the study of point-set level topological algebra in stable homotopy theory. The desirability of sucha theory was advertised by Waldhausen under the rubric of \brave new rings",hence the term \brave new algebra" for the new subject. Its starting point is theconstruction of a new category of spectra, the category of \S-modules", that has asmash product that is symmetric monoidal (associative, commutative, and unitalup to coherent natural isomorphisms) on the point-set level. The construction isjoint work of Tony Elmendorf, Igor Kriz, Mike Mandell, and myself, and it changesthe nature of stable homotopy theory. Ever since its beginnings with Adams' useof stable homotopy theory to solve the Hopf invariant one problem some thirty-�ve years ago, most work in the �eld has been carried out working only \up tohomotopy"; formally, this means that one is working in the stable homotopy cat-egory. For example, classically, the product on a ring spectrum is de�ned only upto homotopy and can be expected to be associative and commutative only up tohomotopy. In the new theory, we have rings with well-de�ned point-set level prod-ucts, and they can be expected to be strictly associative and commutative. In theassociative case, we call these \S-algebras". The new theory permits constructionsthat have long been desired, but that have seemed to be out of reach technically:simple constructions of many of the most basic spectra in current use in algebraictopology; simple constructions of generalized universal coe�cient, K�unneth, andother spectral sequences; a conceptual and structured approach to Bous�eld local-



8 INTRODUCTIONizations of spectra, a generalized construction of topological Hochschild homologyand of spectral sequences for its computation; a simultaneous generalization of thealgebraic K-theory of rings and of spaces; etc. Working nonequivariantly, we shalldescribe the properties of the category of S-modules and shall sketch all but thelast of the cited applications in Chapter XXII.We return to the equivariant world in Chapter XXIII, which was written jointlywith Elmendorf and Lewis, and sketch how the construction of the category ofSG-modules works. Here SG denotes the sphere G-spectrum. The starting pointof the construction is the \twisted half smash product", which is a spectrum levelgeneralization of the half-smash product X n Y = X+ ^ Y of an unbased G-space X and a based G-space Y and is perhaps the most basic construction inequivariant stable homotopy theory. Taking X to be a certain G-space L (j) oflinear isometries, one obtains a fattened version L (j) n E1 ^ � � � ^ Ej of the j-fold smash product of G-spectra. Taking j = 2, insisting that the Ei have extrastructure given by mapsL (1)nEi �! Ei, and quotienting out some of the fat, oneobtains a commutative and associative smash product of G-spectra with actionsby the monoid L (1); a little adjustment adds in the unit condition and gives thecategory of SG-modules. The theory had its origins in the notion of an E1 ringspectrum introduced by Quinn, Ray, and myself over twenty years ago. Such ringswere de�ned in terms of \operad actions" given by maps L (j)nEj �! E, whereEj is the j-fold smash power of E, and it turns out that such rings are virtuallythe same as our new commutative SG-algebras. The new theory makes the earliernotion much more algebraically tractable, while the older theory gives the basicexamples to which the new theory can be applied.In Chapter XXIV, which was written jointly with Greenlees, we give a series ofalgebraic de�nitions, together with their brave new algebra counterparts, and weshow how these notions lead to a general approach to localization and completiontheorems in equivariant stable homotopy theory. We shall see that Grothendieck'slocal cohomology groups are relevant to the study of localization theorems inequivariant homology and that analogs called local homology groups are relevantto the study of completion theorems in equivariant cohomology. We use theseconstructions to prove a general localization theorem for suitable commutativeSG-algebras RG. Taking R to be the underlying S-algebra of RG and takingM to be the underlying R-module of an RG-module MG, the theorem impliesboth a localization theorem for the computation of M�(BG) in terms of MG� (pt)



INTRODUCTION 9and a completion theorem for the computation of M�(BG) in terms of M�G(pt).Of course, this is reminiscent of the Atiyah-Segal completion for equivariant K-theory and the Segal conjecture for equivariant cobordism. The general theoremdoes apply to K-theory, giving a very clean description of K�(BG), but it doesnot apply to cohomotopy: there the completion theorem for cohomology is truebut the localization theorem for homology is false.We are particularly interested in stable equivariant complex bordism, repre-sented by MUG, and modules over it. We explain in Chapter XXII how simple itis to construct all of the usual examples ofMU -module spectra in the homotopicalsense, such as Morava K-theory and Brown-Peterson spectra, as brave new point-set level MU -modules. We show in Chapter XXIII how to construct equivariantversions MG as brave new MUG-modules of all such MU -modules M , where Gis any compact Lie group. We would like to apply the localization theorem ofChapter XXIV to MUG and its module spectra, but its algebraic hypotheses arenot satis�ed. Nevertheless, as Greenlees and I explain in chapter XXV, the lo-calization theorem is in fact true for MUG when G is �nite or a �nite extensionof a torus. The proof involves the construction of a multiplicative norm map inMUG� , together with a double coset formula for its computation. This depends onthe fact that MUG can be constructed in a particularly nice way, codi�ed in thenotion of a \global I�-functor with smash product", as a functor of G.These results refocus attention on stable equivariant complex bordism, whosestudy lapsed in the early 1970's. In fact, some of the most signi�cant calculationalresults obtained then were never fully documented in the literature. In ChapterXXVI, which was written by Gustavo Comezana, new and complete proofs of theseresults are presented, along with results on the relationship between geometricand stable equivariant complex cobordism. In particular, when G is a compactAbelian Lie group, Comezana proves that MUG� is a free MU�-module on evendegree generators.In Chapter XXVI, and in a few places earlier on, complete proofs are giveneither because we feel that the material is inadequately treated in the publishedliterature or because we have added new material. However, most of the materialin the book is known and has been treated in full detail elsewhere. Our goalhas been to present what is known in a form that is more readily accessible andassimilable, with emphasis on the main ideas and the structure of the theory andwith pointers to where full details and further developments can be found.



10 INTRODUCTIONMost sections have their own brief bibliographies at the end; thus, if an author'swork is referred to in a section, the appropriate reference is given at the end of thatsection. There is also a general bibliography but, since it has over 200 items, I feltthat easily found local references would be more helpful. With a few exceptions,the general bibliography is restricted to items actually referred to in the text,and it makes no claim to completeness. A full list of relevant and interestingpapers would easily double the number of entries. I o�er my apologies to authorsnot cited who should have been. Inevitably, the choice of topics and of materialwithin topics has had to be very selective and idiosyncratic.There are some general references that should be cited here (reminders of theirabbreviated names will be given where they are �rst used). Starting with ChapterXII, references to [LMS] (= [133]) are toL.G. Lewis, J.P. May, and M. Steinberger (with contributions by J.E. McClure). Equivariantstable homotopy theory. Springer Lecture Notes in Mathematics Vol. 1213. 1986.Most of the material in Chapter XII and in the �ve chapters XV{XIX is basedon joint work of Gaunce Lewis and myself that is presented in perhaps excruciatingdetail in that rather encyclopedic volume. There are also abbreviated referencesin force in particular chapters: [L1]{[L3] = [128, 129, 130] in Chapter XI and [tD]= [55] in Chapter XVII.The basic reference for the proofs of the claims in Chapters XXII and XXIII is[EKMM] A. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Rings, modules, and algebras instable homotopy theory. Preprint, 1995.We shall also refer to the connected sequence of expository papers [73, 88, 89][EKMM0] A. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Modern foundations for stablehomotopy theory.[GM1] J. P. C. Greenlees and J. P. May. Completions in algebra and topology.[GM2] J. P. C. Greenlees and J. P. May. Equivariant stable homotopy theory.These are all in the \Handbook of Algebraic Topology", edited by Ioan James,that came out in 1995. While these have considerable overlap with Chapters XXIIthrough XXIV, we have varied the perspective and emphasis, and each expositionincludes a good deal of material that is not discussed in the other. In particular,we point to the application of brave new algebra to chromatic periodicity in [GM1]:the ideas there have yet to be fully exploited and are not discussed here.In view of the broad and disparate range of topics, we have tried very hard tomake the chapters, and often even the sections, independent of one another. Wehave also broken the material into short and hopefully manageable chunks; only



INTRODUCTION 11a few sections are as long as �ve pages, and all chapters are less than twenty-�vepages long. Very few readers are likely to wish to read straight through, and thereader should be unafraid to jump directly to what he or she �nds of interest.The reader should also be unintimidated by �nding that he or she has insu�cientbackground to feel comfortable with particular sections or chapters. Unfortunately,the subject of algebraic topology is particularly badly served by its textbooks. Forexample, none of them even mentions localizations and completions of spaces,although those have been standard tools since the early 1970's. We have tried toinclude enough background to give the basic ideas. Modern algebraic topology isa thriving subject, and perhaps jumping right in and having a look at some of itsmore recent directions may give a better perspective than trying to start at thebeginning and work one's way up.As the reader will have gathered, this book is a cooperative enterprise. Perhapsthis is the right place to try to express just how enormously grateful I am to allof my friends, collaborators, and students. This book owes everything to our jointe�orts over many years. When planning the Alaska conference, I invited some ofmy friends and collaborators to give talks that would mesh with mine and helpgive a reasonably coherent overview of the subject. Most of the speakers wrote uptheir talks and gave me license to edit them to �t into the framework of the book.Since TeX is refractory about listing authors inside a Table of Contents, I will herelist those chapters that are written either solely by other authors or jointly with me.Chapter III. Equivariant rational homotopy theoryby Georgia Trianta�llouChapter VI. The homotopy theory of diagramsby Robert PiacenzaChapter X. G-CW(V ) complexes and RO(G)-graded cohomologyby Stefan WanerChapter XI. The equivariant Hurewicz and suspension theoremsby L. G. Lewis Jr.Chapter XIV. An introduction to equivariant K-theoryby J. P. C. GreenleesChapter XV. An introduction to equivariant cobordism



12 INTRODUCTIONby Steven CostenobleChapter XXI. Generalized Tate cohomologyby J. P. C. Greenlees and J. P. MayChapter XXIII. Brave new equivariant foundationsby A. D. Elmendorf, L. G. Lewis Jr., and J. P. MayChapter XXIV. Brave new equivariant algebraby J. P. C. Greenlees and J. P. MayChapter XXV. Localization and completion in complex cobordismby J. P. C. Greenlees and J. P. MayChapter XXVI. Some calculations in complex equivariant bordismby Gustavo CostenobleMy deepest thanks to these people and to Stefan Jackowski and Chun-Nip Lee,who also gave talks; their topics were the subjects of their recent excellent surveypapers [107] and [125] and were therefore not written up for inclusion here. I wouldalso like to thank Jim McClure, whose many insights in this area are re
ectedthroughout the book, and Igor Kriz, whose collaboration over the last six years hasgreatly in
uenced the more recent material. I would also like to thank my currentstudents at Chicago | Maria Basterra, Mike Cole, Dan Isaksen, Mike Mandell,Adam Przezdziecki, Laura Scull, and Jerome Wolbert | who have helped catchmany soft spots of exposition and have already made signi�cant contributions tothis general area of mathematics.It is an especial pleasure to thank Bob Piacenza and his wife Lyric Ozburn fororganizing the Alaska conference and making it a memorably pleasant occasion forall concerned. Thanks to their thoughtful arrangements, the intense all day math-ematical activity took place in a wonderfully convivial and congenial atmosphere.Finally, my thanks to all of those who attended the conference and helped makethe week such a pleasant mathematical occasion: thanks for bearing with me.J. Peter MayDecember 31, 1995



CHAPTER IEquivariant Cellular and Homology Theory1. Some basic de�nitions and adjunctionsThe objects of study in equivariant algebraic topology are spaces equipped withan action by a topological group G. That is, the subject concerns spaces X to-gether with continuous actions G�X �! X such that ex = x and g(g0x) = (gg0)x.Maps f : X �! Y are equivariant if f(gx) = gf(x). We then say that f is a G-map. The usual constructions on spaces apply equally well in the category GU ofG-spaces and G-maps. In particular G acts diagonally on Cartesian products ofspaces and acts by conjugation on the space Map(X;Y ) of maps from X to Y .That is, we de�ne g � f by (g � f)(x) = gf(g�1x).As usual, we take all spaces to be compactly generated (which means thata subspace is closed if its intersection with each compact Hausdor� subspace isclosed) and weak Hausdor� (which means that the diagonal X � X�X is a closedsubset, where the product is given the compactly generated topology). Amongother things, this ensures that we have a G-homeomorphismMap(X � Y;Z) �= Map(X;Map(Y;Z))(1.1)for any G-spaces X, Y , and Z.For us, subgroups of G are assumed to be closed. For H � G, we write XH =fxjhx = x for h 2 Hg. For x 2 X, Gx = fhjhx = xg is called the isotropy groupof x. Thus x 2 XH if H is contained in Gx. A good deal of the formal homotopytheory of G-spaces reduces to the ordinary homotopy theory of �xed point spaces.We let NH be the normalizer of H in G and let WH = NH=H. (We sometimeswrite NGH and WGH.) These \Weyl groups" appear ubiquitously in the theory.Note that XH is a WH-space. In equivariant theory, orbits G=H play the role of13



14 I. EQUIVARIANT CELLULAR AND HOMOLOGY THEORYpoints, and the set of G-maps G=H �! G=H can be identi�ed with the groupWH. We also have the orbit spaces X=H obtained by identifying points of Xin the same orbit, and these too are WH-spaces. For a space K regarded as aG-space with trivial G-action, we haveGU (K;X) �= U (K;XG)(1.2)and GU (X;K) �= U (X=G;K):(1.3)If Y is an H-space, there is an induced G-space G �H Y . It is obtained fromG � Y by identifying (gh; y) with (g; hy) for g 2 G, h 2 H, and y 2 Y . A bitless obviously, we also have the \coinduced" G-space MapH(G;Y ), which is thespace of H-maps G �! Y with left action by G induced by the right action ofG on itself, (g � f)(g0) = f(g0g). For G-spaces X and H-spaces Y , we have theadjunctions GU (G �H Y;X) �= HU (Y;X)(1.4)and HU (X;Y ) �= GU (X;MapH(G;Y )):(1.5)Moreover, for G-spaces X, we have G-homeomorphismsG�H X �= (G=H) �X(1.6)and MapH(G;X) �= Map(G=H;X):(1.7)For the �rst, the unique G-map G �H X �! (G=H) � X that sends x 2 X to(eH; x) has inverse that sends (gH; x) to the equivalence class of (g; g�1x).A homotopy between G-maps X �! Y is a homotopy h : X � I �! Y that isa G-map, where G acts trivially on I. There results a homotopy category hGU .Recall that a map of spaces is a weak equivalence if it induces an isomorphismof all homotopy groups. A G-map f : X �! Y is said to be a weak equivalenceif fH : XH �! Y H is a weak equivalence for all H � G. We let �hGU denotethe category constructed from hGU by adjoining formal inverses to the weakequivalences. We shall be more precise shortly. The algebraic invariants of G-spaces that we shall be interested in will be de�ned on the category �hGU .



2. ANALOGS FOR BASED G-SPACES 15General ReferencesG. E. Bredon. Introduction to compact transformation groups. Academic Press. 1972.T. tom Dieck. Transformation groups. Walter de Gruyter. 1987.(This reference contains an extensive Bibliography.)2. Analogs for based G-spacesIt will often be more convenient to work with based G-spaces. Basepoints areG-�xed and are generically denoted by �. We write X+ for the union of a G-spaceX and a disjoint basepoint. The wedge, or 1-point union, of based G-spaces isdenoted by X _ Y . The smash product is de�ned by X ^ Y = X � Y=X _ Y . Wewrite F (X;Y ) for the based G-space of based maps X �! Y . ThenF (X ^ Y;Z) �= F (X;F (Y;Z)):(2.1)We write GT for the category of based G-spaces, and we haveGT (K;X) �= T (K;XG)(2.2)and GT (X;K) �= T (X=G;K)(2.3)for a based space K and a based G-space X. Similarly, for a based G-space Xand a based H-space Y , we haveGT (G+ ^H Y;X) �= HT (Y;X)(2.4)and HT (X;Y ) �= GT (X;FH(G+; Y ));(2.5)where FH(G+; Y ) = MapH(G;X) with the trivial map as basepoint, and we haveG-homeomorphisms G+ ^H X �= (G=H)+ ^X(2.6)and FH(G+;X) �= F (G=H+;X):(2.7)A based homotopy between based G-maps X �! Y is given by a based G-map X ^ I+ �! Y . Here the based cylinder X ^ I+ is obtained from X � I bycollapsing the line through the basepoint of X to the basepoint. There results ahomotopy category hGT , and we construct �hGT by formally inverting the weak



16 I. EQUIVARIANT CELLULAR AND HOMOLOGY THEORYequivalences. Of course, we have analogous categories hGU , and �hGU in theunbased context.In both the based and unbased context, co�brations and �brations are de�nedexactly as in the nonequivariant context, except that all maps in sight are G-maps.Their theory goes through unchanged. A based G-space X is nondegeneratelybased if the inclusion f�g �! X is a co�bration.3. G-CW complexesA G-CW complex X is the union of sub G-spaces Xn such that X0 is a dis-joint union of orbits G=H and Xn+1 is obtained from Xn by attaching G-cellsG=H � Dn+1 along attaching G-maps G=H � Sn �! Xn. Such an attachingmap is determined by its restriction Sn �! (Xn)H , and this allows the inductiveanalysis of G-CW complexes by reduction to nonequivariant homotopy theory.Subcomplexes and relative G-CW complexes are de�ned in the obvious way. I willreview my preferred way of developing the theory of G-CW complexes since thiswill serve as a model for other versions of cellular theory that we shall encounter.We begin with the Homotopy Extension and Lifting Property. Recall that a mapf : X �! Y is an n-equivalence if �q(f) is a bijection for q < n and a surjectionfor q = n (for any choice of basepoint). Let � be a function from conjugacy classesof subgroups of G to the integers � �1. We say that a map e : Y �! Z isa �-equivalence if eH : Y H �! ZH is a �(H)-equivalence for all H. (We allow�(H) = �1 to allow for empty �xed point spaces.) We say that a G-CW complexX has dimension � if its cells of orbit type G=H all have dimension � �(H).Theorem 3.1 (HELP). Let A be a subcomplex of a G-CW complex X ofdimension � and let e : Y �! Z be a �-equivalence. Suppose given maps g :A �! Y , h : A � I �! Z, and f : X �! Z such that eg = hi1 and fi = hi0 inthe following diagram:A //i0��i A� I��{{ hxxxxxxxxx Ao o i1 ~~ g}}}}}}}} �� iZ Yoo eX ??f ~~~~~~~~ //i0 X � I~hccF F F F F X:oo i1 ~g` `A A A A



3. G-CW COMPLEXES 17Then there exist maps ~g and ~h that make the diagram commute.Proof. We construct ~g and ~h on A [ Xn by induction on n. When we passfrom the n-skeleton to the (n+1)-skeleton, we may work one cell at a time, dealingwith the cells of X not in A. By considering attaching maps, we quickly reducethe proof to the case when (X;A) = (G=H � Dn+1; G=H � Sn). But this casereduces directly to the nonequivariant case of (Dn+1; Sn).Theorem 3.2 (Whitehead). Let e : Y �! Z be a �-equivalence and X be aG-CW complex. Then e� : hGU (X;Y ) �! hGU (X;Z) is a bijection if X hasdimension less than � and a surjection if X has dimension �.Proof. Apply HELP to the pair (X; ;) for the surjectivity. Apply HELP tothe pair (X � I;X � @I) for the injectivity.Corollary 3.3. If e : Y �! Z is a �-equivalence between G-CW complexesof dimension less than �, then e is a G-homotopy equivalence.Proof. A map f : Z �! Y such that e�[f ] = id is a homotopy inverse to e.The cellular approximation theorem works equally simply. A map f : X �! Ybetween G-CW complexes is said to be cellular if f(Xn) � Y n for all n, andsimilarly in the relative case.Theorem 3.4 (Cellular Approximation). Let (X;A) and (Y;B) be rela-tive G-CW complexes, (X 0; A0) be a subcomplex of (X;A), and f : (X;A) �!(Y;B) be a G-map whose restriction to (X 0; A0) is cellular. Then f is homotopicrel X 0 [A to a cellular map g : (X;A) �! (Y;B).Proof. This again reduces to the case of a single nonequivariant cell.Corollary 3.5. Let X and Y be G-CW complexes. Then any G-map f :X �! Y is homotopic to a cellular map, and any two homotopic cellular mapsare cellularly homotopic.Proof. Apply the theorem in the cases (X; ;) and (X � I;X � @I).Theorem 3.6. For any G-space X, there is a G-CW complex �X and a weakequivalence 
 : �X �! X.



18 I. EQUIVARIANT CELLULAR AND HOMOLOGY THEORYProof. We construct an expanding sequence of G-CW complexes fYiji � 0gtogether with maps 
i : Yi �! X such that 
i+1jYi = 
i. Choose a representativemap f : Sq �! XH for each element of �q(XH ; x). Here q runs over the non-negative integers, H runs over the conjugacy classes of subgroups of G, and x runsover the components of XH . Let Y0 be the disjoint union of spaces G=H � Sq,one for each chosen map f , and let 
0 be the G-map induced by the maps f . In-ductively, assume that 
i : Yi �! X has been constructed. Choose representativemaps (f; g) for each pair of elements of �q((Yi)H ; y) that are equalized by �q(
i);here again, q runs over the non-negative integers,H runs over the conjugacy classesof subgroups of G, and y runs over the components of (Yi)H. We may arrange thatf and g have image in the q-skeleton of Yi. Let Yi+1 be the homotopy coequalizerof the disjoint union of these pairs of maps; that is Yi+1 is obtained by attaching atube (G=H+^Sq�I+ via each chosen pair (f; g). De�ne 
i+1 by use of homotopiesh : 
if ' 
ig based at 
i(y). It is easy to triangulate Yi+1 as a G-CW complexthat contains Yi as a subcomplex. Taking �X to be the union of the Yi and 
 tobe the map induced by the 
i, we obtain the desired weak equivalence.The Whitehead theorem implies that the G-CW approximation �X is uniqueup to G-homotopy equivalence. If f : X �! X 0 is a G-map, there is a uniquehomotopy class of G-maps �f : �X �! �X 0 such that 
 0 � �f ' f � 
. Thatis, � becomes a functor hGU �! hGU such that 
 is natural. A constructionof � that is functorial even before passage to homotopy is possible (Seymour). Itfollows that the morphisms of the category �hGU can be speci�ed by�hGU (X;X 0) = hGU (�X;�X 0) = hGC (�X;�X 0);(3.7)where GC is the category of G-CW complexes and cellular maps. From now on,we shall write [X;X 0]G for this set, or for its based variant, depending on thecontext.Almost all of this works just as well in the based context, giving a theory of\G-CW based complexes", which are required to have based attaching maps. Thisnotion is to be distinquished from that of a based G-CW complex, which is justa G-CW complex with a G-�xed base vertex. In detail, a G-CW based complexX is the union of based sub G-spaces Xn such that X0 is a point and Xn+1 is ob-tained from Xn by attaching G-cells G=H+ ^Dn+1 along based attaching G-mapsG=H+ ^ Sn �! Xn. Observe that such G-CW based complexes are G-connectedin the sense that all of their �xed point spaces are non-empty and connected.



4. ORDINARY HOMOLOGY AND COHOMOLOGY THEORIES 19Nonequivariantly, one often starts proofs with the simple remark that it su�cesto consider connected spaces. Equivariantly, this won't do; many important foun-dational parts of homotopy theory have only been worked out for G-connectedG-spaces.I should emphasize that G has been an arbitrary topological group in this dis-cussion. When G is a compact Lie group | and we shall later restrict attention tosuch groups | there are important results saying that reasonable spaces are trian-gulable as G-CW complexes or have the homotopy types of G-CW complexes. Itis fundamental for our later work that smooth compact G-manifolds are triangula-ble as �nite G-CW complexes (Verona, Illman). In contrast to the nonequivariantsituation, this is false for topological G-manifolds, which have the homotopy typesof G-CW complexes but not necessarily �nite ones. Metric G-ANR's have thehomotopy types of G-CW complexes (Kwasik). Milnor's results on spaces of thehomotopy type of CW complexes generalize to G-spaces (Waner). In particular,Map(X;Y ) has the homotopy type of a G-CW complex if X is a compact G-spaceand Y has the homotopy type of a G-CW complex, and similarly for based functionspaces.S. Illman. The equivariant triangulation theorem for actions of compact Lie groups. Math. Ann.262(1983), 487-501.S. Kwasik. On the equivariant homotopy type of G-ANR's. Proc. Amer. Math. Soc. 83(1981),193-194.T. Matumoto. On G-CW complexes and a theorem of J.H.C. Whitehead. J. Fac. Sci. Univ. ofTokyo 18(1971), 363-374.R. M. Seymour. Some functorial constructions on G-spaces. Bull. London Math. Soc. 15(1983),353-359.A. Verona. Triangulation of strati�ed �bre bundles. Manuscripta Math. 30(1980), 425-445.S. Waner. Equivariant homotopy theory and Milnor's theorem. Trans. Amer. Math. Soc.258(1980), 351-368.4. Ordinary homology and cohomology theoriesLet G denote the category of orbit G-spaces G=H; the standard notation is OG.Observe that there is a G-map f : G=H �! G=K if and only if H is subconjugateto K since, if f(eH) = gK, then g�1Hg � K. Let hG be the homotopy category ofG . Both G and hG play important roles and it is essential to keep the distinctionin mind.De�ne a coe�cient system to be a contravariant functor hG �! A b. Oneexample to keep in mind is the system �n(X) of homotopy groups of a based



20 I. EQUIVARIANT CELLULAR AND HOMOLOGY THEORYG-space X : �n(X)(G=H) = �n(XH). Formally, we have an evident �xed pointfunctor X� : G �! T . The map XK �! XH induced by a G-map f : G=H �!G=K such that f(eH) = gK sends x to gx. Any covariant functor hT �! A b,such as �n, can be composed with this functor to give a coe�cient system. Itshould be intuitively clear that obstruction theory must be developed in terms ofordinary cohomology theories with coe�cients in such coe�cient systems. Theappropriate theories were introduced by Bredon.Since the category of coe�cient systems is Abelian, with kernels and cokernelsde�ned termwise, we can do homological algebra in it. Let X be a G-CW complex.We have a coe�cient systemCn(X) = Hn(Xn;Xn�1;Z):(4.1)That is, the value on G=H is Hn((Xn)H ; (Xn�1)H). The connecting homomor-phisms of the triples ((Xn)H ; (Xn�1)H ; (Xn�2)H) specify a mapd : Cn(X) �! Cn�1(X)of coe�cient systems, and d2 = 0. That is, we have a chain complex of coe�cientsystems C�(X). For based G-CW complexes, we de�ne ~C�(X) similarly. WriteHomG (M;M 0) for the Abelian group of maps of coe�cient systems M �! M 0and de�ne CnG(X;M) = HomG (Cn(X);M); with � = HomG (d; id):(4.2)Then C�G(X;M) is a cochain complex of Abelian groups. Its homology is theBredon cohomology of X, denoted H�G(X;M).To de�ne Bredon homology, we must use covariant functors N : hG �! A bas coe�cient systems. If M : hG �! A b is contravariant, we de�ne an Abeliangroup M 
G N =XM(G=H) 
N(G=H)=(�);where the equivalence relation is speci�ed by (mf�; n) � (m; f�n) for a mapf : G=H �! G=K and elements m 2 M(G=K) and n 2 N(G=H). Here wewrite contravariant actions from the right to emphasize the analogy with tensorproducts. Such \coends", or categorical tensor products of functors, occur veryoften in equivariant theory and will be formalized later. We de�ne cellular chainsby CGn (X;N) = Cn(X)
G N; with @ = d
 1:(4.3)



4. ORDINARY HOMOLOGY AND COHOMOLOGY THEORIES 21Then CG� (X;N) is a chain complex of Abelian groups. Its homology is the Bredonhomology of X, denoted HG� (X;N).Clearly Bredon homology and cohomology are functors on the category GC ofG-CW complexes and cellular maps. A cellular homotopy is easily seen to inducea chain homotopy of cellular chain complexes in our Abelian category of coe�cientsystems, so homotopic maps induce the same homomorphism on homology andcohomology with any coe�cients.The development of the properties of these theories is little di�erent from thenonequivariant case. A key point is that C�(X) is a projective object in thecategory of coe�cient systems. To see this, observe that C�(X) is a direct sum ofcoe�cient systems of the form~Hn(G=K+ ^ Sn) �= ~H0(G=K+) �= H0(G=K):(4.4)If F denotes the free Abelian group functor on sets, thenH0(G=K)(G=H) = H0((G=K)H) = F�0((G=K)H) = F [G=H;G=K]G:(4.5)Therefore HomG (H0(G=K);M) �= M(G=K) via � �! �(1G=K) 2 M(G=K). Indetail, for a G-map f : G=H �! G=K, we have f = f�(1G=K),f� : F [G=K;G=K]G �! F [G=H;G=K]G;so that �(1G=K) determines � via �(f) = f��(1G=K). This calculation implies theclaimed projectivity. It also implies the dimension axiom:H�G(G=K;M) = H0G(G=K;M) �=M(G=K)(4.6)and HG� (G=K;N) = HG0 (G=K;N) �= N(G=K);(4.7)these giving isomorphisms of coe�cient systems, of the appropriate variance, asK varies.If A is a subcomplex of X, we obtain the relative chain complex C�(X;A) =~C�(X=A). The projectivity just proven implies the expected long exact sequencesof pairs. For additivity, just note that the disjoint union of G-CW complexes is aG-CW complex. For excision, if X is the union of subcomplexes A and B, thenB=A \ B �= X=A as G-CW complexes. We take the \weak equivalence axiom" asa de�nition. That is, for general G-spaces X, we de�neH�G(X;M) � H�G(�X;M) and HG� (X;N) � HG� (�X;N):



22 I. EQUIVARIANT CELLULAR AND HOMOLOGY THEORYOur results on G-CW approximation of G-spaces and on cellular approximationof G-maps imply that these are well-de�ned functors on the category �hGU . Sim-ilarly, we can approximate any pair (X;A) by a G-CW pair (�X;�A). Less obvi-ously, if (X;A;B) is an excisive triad, so that X is the union of the interiors of Aand B, we can approximate (X;A;B) by a triad (�X; �A;�B), where �X is theunion of its subcomplexes �A and �B.That is all there is to the construction of ordinary equivariant homology andcohomology groups satisfying the evident equivariant versions of the Eilenberg-Steenrod axioms.G. Bredon. Equivariant cohomology theories. Springer Lecture Notes in Mathematics Vol 34.1967.S. Illman. Equivariant singular homology and cohomology. Memoirs Amer. Math. Soc. No.156. 1975.S. J. Willson. Equivariant homology theories on G-complexes. Trans. Amer. Math. Soc.212(1975), 155-271. 5. Obstruction theoryObstruction theory works exactly as it does nonequivariantly, and I'll just givea quick sketch. Fix n � 1. Recall that a connected space X is said to be n-simpleif �1(X) is Abelian and acts trivially on �q(X) for q � n. Let (X;A) be a relativeG-CW complex and let Y be a G-space such that Y H is non-empty, connected,and n-simple if H occurs as an isotropy subgroup of X nA. Let f : Xn [A �! Ybe a G-map. We ask when f can be extended to Xn+1. Composing the attachingmaps G=H � Sn �! X of cells of X nA with f gives elements of �n(Y H). Theseelements specify a well-de�ned cocyclecf 2 Cn+1G (X;A;�n(Y ));and f extends to Xn+1 if and only if cf = 0. If f and f 0 are maps Xn [ A �! Yand h is a homotopy rel A of the restrictions of f and f 0 to Xn�1 [A, then f , f 0,and h together de�ne a maph(f; f 0) : (X � I)n �! Y:Applying ch(f;f 0) to cells j � I, we obtain a deformation cochaindf;f 0;h 2 CnG(X;A;�n(Y ))such that �df;f 0;h = cf � cf 0. Moreover, given f and d, there exists f 0 that coin-cides with f on Xn�1 and satis�es df;f 0 = d, where the constant homotopy h is



6. UNIVERSAL COEFFICIENT SPECTRAL SEQUENCES 23understood. This gives the �rst part of the following result, and the second partis similar.Theorem 5.1. For f : Xn [A �! Y , the restriction of f to Xn�1 [A extendsto a mapXn+1[A �! Y if and only if [cf ] = 0 inHn+1G (X;A;�n(Y )). Given mapsf; f 0 : Xn �! Y and a homotopy rel A of their restrictions to Xn�1 [ A, there isan obstruction in HnG(X;A;�n(Y )) that vanishes if and only if the restriction ofthe given homotopy to Xn�2 [A extends to a homotopy f ' f 0 rel A.G. Bredon. Equivariant cohomology theories. Springer Lecture Notes in Mathematics Vol 34.1967. 6. Universal coe�cient spectral sequencesWhile easy to de�ne, Bredon cohomology is hard to compute. However, we dohave universal coe�cient spectral sequences, which we describe next.Let W0H be the component of the identity element of WH and de�ne a coe�-cient system J�(X) by J�(X)(G=H) = H�(XH=W0H;Z):(6.1)Thus J�(X) coincides with the obvious coe�cient system H�(X) if G is discrete.We claim that, if G is a compact Lie group, then J�(X) is the coe�cient systemthat is obtained by taking the homology of C�(X). The point is that a Lie theoreticargument shows that �0((G=K)H ) �= (G=K)H=W0H:We deduce that the �ltration of XH=W0H induced by the �ltration of X gives riseto the chain complex C�(X)(G=H).We can construct an injective resolution Q� of the coe�cient system M andform HomG (C�(X); Q�). This is a bicomplex with total di�erential the sum of thedi�erentials induced by those of C�(X) and of Q�. It admits two �ltrations. Usingone of them, the di�erential on E0 comes from the di�erential on Q�, and Ep;q1is Extp;qG (C�(X);M). Since C�(X) is projective, the higher Ext groups are zero,and E1 reduces to C�G(X;M). Thus E2 = E1 = H�G(X;M), and our bicomplexcomputes Bredon cohomology. Filtering the other way, the di�erential on E0comes from the di�erential on C�(X), and we can identify E2. Using a projectiveresolution of N , we obtain an analogous homology spectral sequence.



24 I. EQUIVARIANT CELLULAR AND HOMOLOGY THEORYTheorem 6.2. Let G be either discrete or a compact Lie group and let X be aG-CW complex. There are universal coe�cient spectral sequencesEp;q2 = Extp;qG (J�(X);M) =) HnG(X;M)and E2p;q = TorGp;q(J�(X); N) =) HGn (X;N):We should say something about change of groups and about products in coho-mology, but it would take us too far a�eld to go into detail. For the �rst, we simplynote that, for H � G, we can obtain H-coe�cient systems from G-coe�cient sys-tems via the functor H ! G that sends H=K to G=K = G �H H=K. For thesecond, we note that, for groups H and G, projections give a functor from theorbit category of H �G to the product of the orbit categories of H and of G, sothat we can tensor an H-coe�cient system and a G-coe�cient system to obtainan (H �G)-coe�cient system. When H = G, we can then apply change of groupsto the diagonal inclusion G � G�G. The resulting pairings of coe�cient systemsallow us to de�ne cup products exactly as in ordinary cohomology, using cellularapproximations of the diagonal maps of G-CW complexes.G. Bredon. Equivariant cohomology theories. Springer Lecture Notes in Mathematics Vol 34.1967.S. J. Willson. Equivariant homology theories on G-complexes. Trans. Amer. Math. Soc.212(1975), 155-271.



CHAPTER IIPostnikov Systems, Localization, and Completion1. Eilenberg-MacLane G-spaces and Postnikov systemsLet M be a coe�cient system. An Eilenberg-MacLane G-space K(M;n) is aG-space of the homotopy type of a G-CW complex such that�q(K(M;n)) = ( M if q = n,0 if q 6= n.While our interest is in Abelian group-valued coe�cient systems, we can allow Mto be set-valued if n = 0 and group-valued if n = 1. I will give an explicit construc-tion later. Ordinary cohomology theories are characterized by the usual axioms,and, by checking the axioms, it is easily veri�ed that the reduced cohomology ofbased G-spaces X is represented in the form~HnG(X;M) �= [X;K(M;n)]G;(1.1)where homotopy classes of based maps (in �hGT ) are understood.Recall that a connected space X is said to be simple if �1A is Abelian and actstrivially on �n(X) for n � 2. More generally, a connected space X is said tobe nilpotent if �1(X) is nilpotent and acts nilpotently on �n(X) for n � 2. AG-connected G-space X is said to be simple if each XH is simple. A G-connectedG-space X is said to be nilpotent if each XH is nilpotent and, for each n � 1,the orders of nilpotency of the �1(XH)-groups �n(XH) have a common bound.We shall restrict our sketch proofs to simple G-spaces, for simplicity, in the nextfew sections, but everything that we shall say about their Postnikov towers andabout localization and completion generalizes readily to the case of nilpotent G-spaces. The only di�erence is that each homotopy group system must be built up25



26 II. POSTNIKOV SYSTEMS, LOCALIZATION, AND COMPLETIONin �nitely many stages, rather than all at once.A Postnikov system for a based simple G-space X consists of based G-maps�n : X �! Xn and pn+1 : Xn+1 �! Xnfor n � 0 such that X0 is a point, �n induces an isomorphism �q(X) �! �q(Xn)for q � n, pn+1�n+1 = �n, and pn+1 is the G-�bration induced from the path space�bration over a K(�n+1(X); n+2) by a map kn+2 : Xn �! K(�n+1(X); n+2). Itfollows that X1 = K(�1(X); 1) and that �q(Xn) = 0 for q > n. Our requirementthat Eilenberg-MacLane G-spaces have the homotopy types of G-CW complexesensures that each Xn has the homotopy type of a G-CW complex. The maps�n induce a weak equivalence X �! limXn, but the inverse limit generally willnot have the homotopy type of a G-CW complex. Just as nonequivariantly, thek-invariants that specify the tower are to be regarded as cohomology classeskn+2 2 Hn+2G (Xn;�n+1(X)):These classes together with the homotopy group systems �n(X) specify the weakhomotopy type of X. On passage to H-�xed points, a Postnikov system for Xgives a Postnikov system for XH . We outline the proof of the following standardresult since there is no complete published proof and my favorite nonequivariantproof has also not been published. The result generalizes to nilpotent G-spaces.Theorem 1.2. A simple G-space X of the homotopy type of a G-CW complexhas a Postnikov tower.Proof. Assume inductively that �n : X �! Xn has been constructed. By thehomotopy excision theorem applied to �xed point spaces, we see that the co�berC(�n) is (n + 1)-connected and satis�es�n+2(C�n) = �n+1(X):More precisely, the canonical map F (�n) �! 
C(�n) induces an isomorphism on�q for q � n + 1. We constructj : C(�n) �! K(�n+1(X); n + 2)by inductively attaching cells to C(�n) to kill its higher homotopy groups. Wetake the composite of j and the inclusion Xn � C(�n) to be the k-invariant kn+2.By our de�nition of a Postnikov tower, Xn+1 must be the homotopy �ber of kn+2.Its points are pairs (!; x) consisting of a path ! : I �! K(�n+1(X); n + 2) and a



2. SUMMARY: LOCALIZATIONS OF SPACES 27point x 2 Xn such that !(0) = � and !(1) = kn+2(x). The map pn+1 : Xn+1 �!Xn is given by pn+1(!; x) = x, and the map �n+1 : X �! Xn+1 is given by�n+1(x) = (!(x); �n(x)), where !(x)(t) = j(x; 1 � t), (x; 1 � t) being a point onthe cone CX � C(�n). Clearly pn+1�n+1 = �n. It is evident that �n+1 induces anisomorphism on �q for q � n, and a diagram chase shows that this also holds forq = n+ 1. 2. Summary: localizations of spacesNonequivariantly, localization at a prime p or at a set of primes T is a standard�rst step in homotopy theory. We quickly review some of the basic theory. Saythat a map f : X �! Y is a T -cohomology isomorphism iff� : H�(Y ;A) �! H�(X;A)is an isomorphism for all T -local Abelian groups A.Theorem 2.1. The following properties of a nilpotent space Z are equivalent.When they hold, Z is said to be T -local.(a) Each �n(Z) is T -local.(b) If f : X �! Y is a T -cohomology isomorphism, then f� : [Y;Z] �! [X;Z]is a bijection.(c) The integral homology of Z is T -local.Theorem 2.2. Let X be a nilpotent space. The following properties of a map� : X �! XT from X to a T -local space XT are equivalent. There is one and, upto homotopy, only one such map �. It is called the localization of X at T .(a) �� : [XT ; Z] �! [X;Z] is a bijection for all T -local spaces Z.(b) � is a T -cohomology isomorphism.(c) �� : ��(X) �! ��(XT ) is localization at T .(d) �� : H�(X;Z)! H�(XT ;Z) is localization at T .A. K. Bous�eld and D. M. Kan. Homotopy limits, completions, and localizations. SpringerLecture Notes in Mathematics Vol 304. 1972.D. Sullivan. The genetics of homotopy theory and the Adams conjecture. Annals of Math.100(1974), 1-79.



28 II. POSTNIKOV SYSTEMS, LOCALIZATION, AND COMPLETION3. Localizations of G-spacesNow let G be a compact Lie group. Say that a G-map f : X �! Y is aT -cohomology isomorphism iff� : H�G(Y ;M) �! H�G(X;M)is an isomorphism for all T -local coe�cient systems M .Theorem 3.1. The following properties of a nilpotentG-space Z are equivalent.When they hold, Z is said to be T -local.(a) Each ZH is T -local.(b) If f : X �! Y is a T -cohomology isomorphism, thenf� : [Y;Z]G �! [X;Z]Gis a bijection.Theorem 3.2. Let X be a nilpotent G-space. The following properties of amap � : X �! XT from X to a T -local G-space XT are equivalent. There is oneand, up to homotopy, only one such map �. It is called the localization of X at T .(a) �� : [XT ; Z] �! [X;Z] is a bijection for all T -local G-spaces Z.(b) � is a T -cohomology isomorphism.(c) Each �H : XH �! (XT )H is localization at T .Proofs. We restrict attention to simple G-spaces. Assuming (a) in Theo-rem 3.1, we may replace Z by a weakly equivalent Postnikov tower and we mayassume that the G-spaces X and Y given in (b) are G-CW complexes, so thatwe are dealing with actual homotopy classes of maps. Then (a) implies (b) by aword-for-word dualization of our proof of the Whitehead theorem. Conversely, (b)implies (a) since the specialization of (b) to T -cohomology isomorphisms of theform G=H+ ^ f , where f : X �! Y is a nonequivariant T -cohomology isomor-phism, implies (b) of Theorem 2.1. In Theorem 3.2, (a) implies (b) by letting Zrun through K(M;n)'s, and (b) implies (a) by Theorem 3.1. Let ZT be the local-ization ofZat T . One sees that (c) implies (b) by applying the universal coe�cientspectral sequence of I.6.2, taken with homology and coe�cient systems tensoredwith ZT. The maps �H induce isomorphisms on homology with coe�cients inZT,and one can deduce (with some work in the general compact Lie case) that theytherefore induce an isomorphism J�(X;ZT) �! J�(XT ;ZT). Since the universalproperty (a) implies uniqueness, to complete the proof we need only construct a



4. SUMMARY: COMPLETIONS OF SPACES 29map � that satis�es (c). For this, we may assume that X is a Postnikov tower,and we localize its terms inductively by localizing k-invariants and comparing �-bration sequences. The starting point is just the observation that the algebraiclocalizationM �!MT =M 
ZT of coe�cient systems induces localization maps� : K(M;n) �! K(MT ; n). The relevant diagram is:K(�n+1(X); n+ 1)�� // Xn+1�� // Xn�� // K(�n+1(X); n+ 2)��K(�n+1(X)T ; n+ 1) // (Xn+1)T // (Xn+1)T // K(�n+1(X)T ; n+ 2):We construct the right square by localizing the k-invariant, we de�ne (Xn+1)T tobe the �ber of the localized k-invariant, and we obtain Xn+1 �! (Xn+1)T makingthe middle square commute and the left square homotopy commute by standard�ber sequence arguments.J. P. May. The dual Whitehead theorems. London Math. Soc. Lecture Note Series Vol 86, 1983,46-54.J. P. May, J. McClure, and G. V. Trianta�llou. Equivariant localization. Bull. London Math.Soc. 14(1982), 223-230.4. Summary: completions of spacesCompletion at a prime p or at a set of primes T is another standard �rst stepin homotopy theory. Since completion at T is the product of the completions atp for p 2 T , we restrict to the case of a single prime. We �rst review some of thenonequivariant theory. The algebra we begin with is a preview of algebra to comelater in our discussion of completions of G-spectra at ideals of the Burnside ring.The p-adic completion functor, Âp = lim(A=pnA), is neither left nor right exactin general, and it has left derived functors L0 and L1. If0 �! F 0 �! F �! A �! 0is a free resolution of A, then L0A and L1A are the cokernel and kernel of F̂ 0p �!F̂p, and there results a natural map � : A �! L0A. The higher left derivedfunctors are zero, and a short exact sequence0 �! A0 �! A �! A00 �! 0gives rise to a six term exact sequence0 �! L1A0 �! L1A �! L1A00 �! L0A0 �! L0A �! L0A00 �! 0:



30 II. POSTNIKOV SYSTEMS, LOCALIZATION, AND COMPLETIONIf L1A = 0, then we call � : A �! L0A the \p-completion" of A. It must not to beconfused with the p-adic completion. We say thatA is \p-complete" if L1A = 0 and� is an isomorphism. The groups L0A, L1A, and Âp are p-complete for any Abeliangroup A. While derived functors give the best conceptual descriptions of L0A andL1A, there are more easily calculable descriptions. Let Z=p1 be the colimit of thesequence of homomorphisms p : Z=pn �! Z=pn+1. Then Z=p1 �= Z[p�1]=Zandthere are natural isomorphismsL0(A) �= Ext(Z=p1; A) and L1(A) �= Hom(Z=p1; A):There is also a natural short exact sequence0 �! lim1Hom(Z=pn; A) �! L0A �! Âp �! 0:In particular, L1A = 0 and L0A �= Âp if the p-torsion of A is of bounded order.Say that a map f : X �! Y is a p̂-cohomology isomorphism iff� : H�(Y ;A) �! H�(X;A)is an isomorphism for all p-complete Abelian groups A. This holds if and onlyif it holds for all Fp -vector spaces A, and this in turn holds if and only if f� :H�(X;Fp) �! H�(Y ;Fp) is an isomorphism, where Fp is the �eld with p elements.While this homological characterization is essential to our proofs, we prefer toemphasize cohomology.Theorem 4.1. The following properties of a nilpotent space Z are equivalent.When they hold, Z is said to be p-complete.(a) Each �n(Z) is p-complete.(b) If f : X �! Y is a p̂-cohomology isomorphism, then f� : [Y;Z] �! [X;Z]is a bijection.Theorem 4.2. Let X be a nilpotent space. The following properties of a map
 : X �! X̂p from X to a p-complete space X̂p are equivalent. There is one and,up to homotopy, only one such map 
. It is called the completion of X at p.(a) 
� : [X̂p; Z] �! [X;Z] is a bijection for all p-complete spaces Z.(b) 
 is a p̂-cohomology isomorphism.For n � 1, there is a natural and splittable short exact sequence0 �! L0�n(X) �! �n(X̂p) �! L1�n�1(X) �! 0:If L1��(X) = 0, then 
 is also characterized by



5. COMPLETIONS OF G-SPACES 31(c) 
� : ��(X) �! ��(X̂p) is completion at p.A. K. Bous�eld and D. M. Kan. Homotopy limits, completions, and localizations. SpringerLecture Notes in Mathematics, Vol. 304. 1972.D. Sullivan. The genetics of homotopy theory and the Adams conjecture. Annals of Math.100(1974), 1-79. 5. Completions of G-spacesNow let G be a compact Lie group. Say that a G-map f : X �! Y is ap̂-cohomology isomorphism iff� : H�G(Y ;M) �! H�G(X;M)is an isomorphism for all p-complete coe�cient systemsM . This will hold if eachfH : XH �! Y H is a p̂-cohomology isomorphism by another application of theuniversal coe�cients spectral sequence, with a little work in the general compactLie case to handle J�(f).Theorem 5.1. The following properties of a nilpotentG-space Z are equivalent.When they hold, Z is said to be p-complete.(a) Each ZH is p-complete.(b) If f : X �! Y is a p̂-cohomology isomorphism, then f� : [Y;Z]G �![X;Z]G is a bijection.Theorem 5.2. Let X be a nilpotent G-space. The following properties of amap 
 : X �! X̂p from X to a p-complete G-space X̂p are equivalent. There isone and, up to homotopy, only one such map 
. It is called the completion of Xat p.(a) 
� : [X̂p; Z] �! [X;Z] is a bijection for all p-complete G-spaces Z.(b) 
 is a p̂-cohomology isomorphism.(c) Each 
H : XH �! (X̂p)H is completion at p.For n � 1, there is a natural short exact sequence0 �! L0�n(X) �! �n(X̂p) �! L1�n�1(X) �! 0:Proofs. The proofs are the same as those of Theorems 3.1 and 3.2, except thatcompletions of Eilenberg-MacLane G-spaces are not Eilenberg-MacLane G-spacesin general. For a coe�cient system M , � : M �! L0M induces p-completionsK(M;n) �! K(L0M;n) whenever L1M = 0. For the general case, let FM be



32 II. POSTNIKOV SYSTEMS, LOCALIZATION, AND COMPLETIONthe coe�cient system obtained by applying the free Abelian group functor to Mregarded as a set-valued functor. There results a natural epimorphism FM �!Mof coe�cient systems. Let F 0M be its kernel. Since L1 vanishes on free modules,we can construct the completion of K(M;n) at p via the following diagram of�brations:K(FM;n)�� // K(M;n) //�� K(F 0M;n + 1) //�� K(FM;n+ 1)��K(L0FM;n) // K(M;n)p̂ // K(L0F 0M;n + 1) // K(L0FM;n+ 1):That is, K(M;n)p̂ is the �ber of K(L0F 0M;n + 1) �! K(L0FM;n + 1). It iscomplete since its homotopy group systems are complete. The map K(M;n) �!K(M;n)p̂ is a p̂-cohomology isomorphism because its �xed point maps are so, bythe Serre spectral sequence.J. P. May. Equivariant completion. Bull. London Math. Soc. 14(1982), 231-237.



CHAPTER IIIEquivariant Rational Homotopy Theoryby Georgia Trianta�llou1. Summary: the theory of minimal modelsLet G be a �nite group. In this chapter, we summarize our work on the alge-braicization of rational G-homotopy theory.To simplify the statements we assume simply connected spaces throughout thechapter. The theory can be extended to the nilpotent case in a straightforwardmanner. We recall that by rationalizing a space X, we approximate it by a spaceX0 the homotopy groups of which are equal to ��(X)
Q, thus neglecting the tor-sion. The advantage of doing so is that rational homotopy theory is determinedcompletely by algebraic invariants, as was shown by Quillen and later by Sullivan.Our theory is analogous to Sullivan's theory of minimal models, which we now re-view. For our purposes we prefer Sullivan's approach because of its computationaladvantage and its relation to geometry by use of di�erential forms.The algebraic invariants that determine the rational homotopy type are certainalgebras that we call DGA's. By de�nition a DGA is a graded, commutative,associative algebra with unit over the rationals, with di�erential d : An ! An+1for n � 0. We say that A is connected if H0(A) = Q and simply connected if, inaddition, H1(A) = 0. Again we assume that all DGA's in sight are connected andsimply connected. A map of DGA's is said to be a quasi-isomorphism if it inducesan isomorphism on cohomology.Certain DGA's, the so called minimal ones, play a special role to be describedbelow. A DGA M is said to be minimal if it is free and its di�erential is decom-33



34 III. EQUIVARIANT RATIONAL HOMOTOPY THEORYposable. Freeness means that M is the tensor product of a polynomial algebragenerated by elements of even degree and an exterior algebra generated by elementsof odd degree. Decomposability of the di�erential means that d(M) �M+^M+,where M+ is the set of positive degree elements of M.There is an algebraic notion of homotopy between maps of DGA's that mirrorsthe topological notion. Let Q(t; dt) be the free DGA on two generators t and dtof degree 0 and 1 respectively with d(t) = dt.Definition 1.1. Two morphisms f; g : A ! B are homotopic if there is a mapH : A ! B 
 Q(t; dt) such that e0 � H = f and e1 � H = g, where e0 is theprojection t = 0; dt = 0 and e1 the projection t = 1; dt = 0.The basic example of a DGA in the theory is the PL De Rham algebra EX of asimplicial complex X, which is constructed as follows. Let�n = �n = f(t0; t1; : : : ; tn)j0 � ti � 1;�ni=0ti = 1gbe an n-simplex of X canonically embedded in Rn+1. A polynomial form of degreep on �n is an expressionXI fI(t0; : : : ; tn)dti1 ^ � � � ^ dtip;where I = fi1; : : : ; ipg and fI is a polynomial with coe�cients in Q. A globalPL (piecewise linear) form on X is a collection of polynomial forms, one for eachsimplex of X, which coincide on common faces. The set of PL forms of X is theDGA EX . A version of the classical de Rham theorem holds, namely thatH�(EX) = H�(X;Q):We have the following facts.Theorem 1.2. A quasi-isomorphism between minimal DGA's is an isomor-phism.Theorem 1.3. If f : A ! B is a quasi-isomorphism of DGA's and M is aminimal DGA, then f� : [M;A]! [M;B] is an isomorphism.Theorem 1.4. For any simply connected DGA A there is a minimal DGA Mand a quasi-isomorphism � :M!A. MoreoverM is unique up to (non-canonical)isomorphism, namely if �0 :M0 ! A is another quasi- isomorphism then there isan isomorphism e :M!M0 such that �0 � e and � are homotopic.



2. EQUIVARIANT MINIMAL MODELS 35Here M is said to be the minimal model of A. The minimal model MX ofthe PL de Rham algebra EX of a simply connected space X is called the minimalmodel of X.Theorem 1.5. The correspondance X !MX induces a bijection between ra-tional homotopy types of simplicial complexes on the one hand and isomorphismclasses of minimal DGA's on the other.More precisely, assuming X is a rational space, the homotopy groups �n(X) ofX are isomorphic to Q(MX)n, where Q(M) � M+=M+ ^ M+ is the space ofindecomposables ofM. The nth stage Xn of the Postnikov tower of X hasMX(n)as its minimal model, whereM(n) denotes the subalgebra ofM that is generatedby the elements of degree � n. The k-invariant kn+2 2 Hn+2(Xn; �n+1(X)), whichcan be represented as a map �n+1(X)� ! Hn+2(Xn), is determined by the dif-ferential d : Q(MX)n+1 ! Hn+2(MX(n)). These properties enable the inductiveconstruction of a rational space that realizes a given minimal algebra.On the morphism level we haveTheorem 1.6. If Y is a rational space then[X;Y ] � [MY ;MX]:We warn here that the minimal model, though very useful computationally, isnot a functor. In particular a map of spaces induces a map of the correspondingminimal models only up to homotopy.D. Quillen. Rational Homotopy Theory, Ann of Math. 90(1968), 205-295.D. Sullivan. In�nitesimal Computations in Topology, Publ. Math. IHES 47(1978), 269-332.2. Equivariant minimal modelsFor �nite groups G an analogous theory can be developed for G-rational homo-topy types of G-simplicial complexes. For simplicity we assume throughout thatthe spaces X are G-connected and G-simply connected, which means that each�xed point space XH is connected and simply connected; however, the theoryworks just as well for G-nilpotent spaces. In fact, by work of B. Fine, the the-ory can be extended in such a way that no �xed base point and no connectivityassumption on the �xed point sets are required.Let V ecG be the category of rational coe�cient systems and V ec�G the category ofcovariant functors from G to rational vector spaces. Our invariants for determining



36 III. EQUIVARIANT RATIONAL HOMOTOPY THEORYG-rational homotopy types are functors of a special type from G into DGA's, whichwe now describe.Definition 2.1. A system of DGA's is a covariant functor from G to simplyconnected DGA's such that the underlying functor in V ec�G is injective.The injective objects of V ec�G or, equivalently, the projective rational coe�cientsystems can be characterized as follows.Theorem 2.2. (i) ForH � G and aWH-representation V , there is a projectivecoe�cient system V 2 V ecG such thatV (G=K) = Q[(G=H)K ]
Q[WH] V;where the �rst factor is the vector space generated by the set (G=H)K .(ii) Every projective coe�cient system is a direct sum of such V 's.The basic system of DGA's in the theory is the system of de Rham algebras EXHof the �xed point sets XH of a G-simplicial complex X. We denote this systemby EX . It is crucial to realize that EX is injective and that this property is centralto the theory. The injectivity of EX can be shown by utilising the splitting of Xinto its orbit types.We note that EX together with the induced G-action determine a minimal al-gebra equipped with a G-action. However there are in general many G-rationalhomotopy types of G-simplicial complexes that realize this minimal G-algebra. Inorder to have unique spacial realizations we need to take into account the algebraicdata of all �xed point sets, which leads us to systems of DGA's.De�ne the cohomology of a systemA of DGA's with respect to a covariant coe�-cient systemN 2 V ec�G to be the cohomology of the cochain complexHomG(N;A).An equivariant de Rham theorem follows by use of the universal coe�cients spec-tral sequence.Theorem 2.3. For M 2 V ecG with dual M� 2 V ec�G,H�G(X;M) � H�G(EX ;M�):The lack of functoriality of the minimal model of a space complicates the con-struction of equivariant minimal models. We cannot, for instance, de�ne \thesystem of minimal models" MXH of the �xed point sets of a G-complex X. Itturns out that the right de�nition of minimal models in the equivariant context isthe following.



2. EQUIVARIANT MINIMAL MODELS 37Definition 2.4. A systemM of DGA's is said to be minimal if(i) each algebra M(G=H) is free commutative,(ii) the DGA M(G=G) is minimal, and(iii) the di�erential on each M(G=H) is decomposable when restricted to theintersection of the kernels of the maps M(G=H) !M(G=K) induced byproper inclusions H � K.One can think of (ii) as an \initial condition" and of (iii) as the minimalitycondition that guarantees the uniqueness of equivariant minimal models. As inthe nonequivariant case, minimal systems are classi�ed by their cohomology.Theorem 2.5. A quasi-isomorphism between minimal systems of DGA's is anisomorphism.Also, Theorems 1.3, 1.4, 1.5, and 1.6 have equivariant counterparts.Theorem 2.6. If A is a system of DGA's, then there is a quasi-isomorphismf : M! A, where M is a minimal system. Moreover M is unique up to (non-canonical) isomorphism.This result provides the existence of equivariant minimal models. Unlike thenonequivariant case the proof is rather involved and is based on a careful inves-tigation of the universal coe�cients spectral sequence. We de�ne the equivariantminimal model MX of a G-simplicial complex X to be the minimal system ofDGA's that is quasi-isomorphic to the system of de Rham algebras EX .A notion of homotopy can be de�ned for systems of DGA's. If A is a system ofDGA's we denote by A
Q(t; dt) the functorA
Q(t; dt)(G=H) = A(G=H) 
Q(t; dt):It can be shown that this functor is injective and therefore it forms a system ofDGA's. Homotopy of maps of systems of DGA's can now be de�ned in the obviousway suggested by the nonequivariant case. Let [A;B]G denote homotopy classesof maps of systems.Theorem 2.7. If f : A ! B is a quasi-isomorphism of systems of DGA's andM is a minimal system of DGA's, thenf� : [M;A]G ! [M;B]Gis an isomorphism.



38 III. EQUIVARIANT RATIONAL HOMOTOPY THEORYThe equivariant minimal model determines the rational G-homotopy type of aG-space, namelyTheorem 2.8. The correspondence X !MX induces a bijection between ra-tional G-homotopy types of G-simplicial complexes on the one hand and isomor-phism classes of minimal systems of DGA's on the other.More precisely, there is a �ltration of minimal subsystems of DGA's� � � � MX(n) �MX(n+ 1) � � � � � MXsuch that each stage is the equivariant minimal model of the equivariant Postnikovterm Xn of the space X. The system of rational homotopy groups of the �xedpoint sets �n(X) 
 Q and the rational equivariant k-invariants can also be readfrom the model MX. This makes the inductive construction of the Postnikovdecomposition of the rationalization X0 possible if the equivariant minimal modelis given.On the morphism level we haveTheorem 2.9. If Y is a rational G-simplicial complex then there is a bijection[X;Y ] � [MY ;MX]:G. Trianta�llou. �Aquivariante Rationale Homotopietheorie, Bonner Math. Schriften Vol. 110.1978.G. Trianta�llou. Equivariant minimal models. Trans. Amer. Math. Soc. 274(1982), 509-532.3. Rational equivariant Hopf spacesIn spite of the conceptual analogy of the equivariant theory to the nonequivariantone, the calculations in the equivariant case are much more subtle and can yieldsurprising results. We illustrate this by describing our work on rational Hopf G-spaces. It is a basic feature of nonequivariant homotopy theory that the rationalHopf spaces split as products of Eilenberg-Mac Lane spaces. The equivariantanalogue is false. By a Hopf G-space we mean a based G-space X together with aG-map X �X ! X such that the base point is a two-sided unit for the product.Examples include Lie groups K with a G-action such that G is a �nite subgroupof the inner automorphisms of K, and loop spaces 
(X) of G-spaces based at aG-�xed point of X.



3. RATIONAL EQUIVARIANT HOPF SPACES 39Theorem 3.1. Let X be a G-connected rational Hopf G-space of �nite type.If G is cyclic of prime power order, then X splits as a product of Eilenberg-Mac Lane G-spaces. If G = Zp �Zq for distinct primes p and q, then there arecounterexamples to this statement.Outline of proof: In this outline we suppress the technical part of the proofwhich is quite extensive. As in the nonequivariant case, the nth term Xn ofa Postnikov tower of X is a Hopf G-space. Moreover the k-invariant kn+2 2Hn+2(Xn;�n+1(X)) is a primitive element. This means thatm�(kn+2) = (p1)�(kn+2) + (p2)�(kn+2);in Hn+2(Xn�Xn;�n+1(X)), where m is the product and the pi are the projections.The di�erence in the two casesZpk andZp�Zq stems from the fact that rationalcoe�cient systems for these groups have di�erent projective dimensions. Indeed,systems for Zpk have projective dimension at most 1, whereas there are rationalcoe�cient systems for Zp �Zq of projective dimension 2. Using this fact aboutZpk we can compute inductively the equivariant minimal model of each Postnikovterm Xn and its cohomology. In particular we show that all non-zero elements ofHn+2G (Xn;�n+1(X)) are decomposable and therefore non-primitive.In the case ofZp�Zq we construct counterexamples which are 2-stage Postnikovsystems with primitive k-invariant. As in the nonequivariant case, if X has onlytwo non-vanishing homotopy group systems, then the primitivity of the unique k-invariant is a su�cient condition for X to be a Hopf G-space. By construction, thetwo systems of homotopy groups �n(X) and �n+1(X) are as follows. The groups�n(XH) are zero for all proper subgroups H and �n(XZp�Zq ) = Z. The groups�n+1(XH) are zero for all nontrivial subgroups H and �n+1(X) = Z. The �rstcoe�cient system has projective dimension 2. This and the universal coe�cientsspectral sequence yields Hn+2G (Xn;�n+1(X)) =Z. Moreover all non-zero elementsof this group are primitive. This gives an in�nite choice of primitive k-invariantsand therefore an in�nite collection of rationally distinct Hopf G-spaces which donot split rationally into products of Eilenberg-Mac Lane G-spaces.The counterexamples X constructed in the theorem are in�nite loop G-spacesin the sense that there are G-spaces En and homotopy equivalences En ! 
En+1,with X = E0. For the more sophisticated notion of in�nite loop G-spaces whereindexing over the representation ring of G is used, no such pathological behavioris possible.



40 III. EQUIVARIANT RATIONAL HOMOTOPY THEORYAs a �nal comment we mention that the theory of equivariant minimal modelshas been used by my collaborators and myself to obtain aplications of a moregeometric nature, like the classi�cation of a large class of G-manifolds up to �niteambiguity and the equivariant formality of G-K�ahler manifolds.M. Rothenberg and G. Trianta�llou. On the classi�cation of G-manifolds up to �nite ambiguity.Comm. in Pure and Appl. Math. 1991.B. Fine and G. Trianta�llou. Equivariant formality of G-K�ahler manifolds. Canadian J. Math.To appear.G. Trianta�llou. Rationalization of Hopf G-spaces. Math. Zeit. 182(1983), 485-500.



CHAPTER IVSmith Theory1. Smith theory via Bredon cohomologyWe shall explain two approaches to the classical results of P.A. Smith. We beginwith the statement. Let G be a �nite p-group and let X be a �nite dimensionalG-CW complex such that H�(X;Fp) is a �nite dimensional vector space, whereFp denotes the �eld with p elements. All cohomology will have coe�cients in Fphere.Theorem 1.1. If X is a mod p cohomology n-sphere, then XG is empty or is amod p cohomology m-sphere for some m � n. If p is odd, then n�m is even andXG is non-empty if n is even.If H is a non-trivial normal subgroup of G, then XG = (XH)G=H . By inductionon the order of G, Theorem 1.1 will be true in general if it is true when G =Z=p isthe cyclic group of order p. Our �rst proof is an almost trivial exercise in the useof Bredon cohomology. We restrict attention to G = Z=p, but we do not assumethat X is a mod p cohomology sphere until we put things together at the end.Observe that an exact sequence0 �! L �!M �! N �! 0of coe�cient systems give rise to a long exact sequence� � � �! HqG(X;L) �! HqG(X;M) �! HqG(X;N) �! Hq+1G (X;L) �! � � � :(1.2)Let FX = X=XG. The action of G on FX is free away from the basepoint. Thereare coe�cient systems L, M , and N such that41



42 IV. SMITH THEORYHqG(X;L) �= ~Hq(FX=G);HqG(X;M) �= Hq(X);and HqG(X;N) �= Hq(XG):To determine L, M , and N , we need only calculate the right sides when q = 0 andX is an orbit, that is, X = G or X = �. We �nd:L(G) = Fp L(�) = 0M(G) = Fp [G] M(�) = FpN(G) = 0 N(�) = Fp :Let I be the augmentation ideal of the group ring Fp [G], and let In denote boththe nth power of I and the coe�cient system whose value on G is In and whosevalue on � is zero. Then Ip�1 = L. It is easy to check that we have exact sequencesof coe�cient systems 0 �! I �!M �! L�N �! 0and 0 �! L �!M �! I �N �! 0:These exact sequences coincide if p = 2. By (1.2), they give rise to long exactsequences� � � �! HqG(X; I) �! Hq(X) �! ~Hq(FX=G) �Hq(XG) �! Hq+1G (X; I) �! � � �and� � � �! ~Hq(FX=G) �! Hq(X) �! HqG(X; I)�Hq(XG) �! ~Hq+1(FX=G) �! � � � :De�neaq = dim ~Hq(FX=G); �aq = dimHqG(X; I); bq = dimHq(X); cq = dimHq(XG):Note that aq = �aq if p = 2. We read o� the inequalitiesaq + cq � bq + �aq+1 and �aq + cq � bq + aq+1:Iteratively, these imply the following inequality for q � 0 and r � 0.aq + cq + cq+1 + � � �+ cq+r � bq + bq+1 + � � �+ bq+r + aq+r+1;(1.3)



2. BOREL COHOMOLOGY, LOCALIZATION, AND SMITH THEORY 43where r is odd if p > 2. In particular, with q = 0 and r large,X cq �X bq:(1.4)Using the further short exact sequences0 �! In+1 �! In �! L �! 0; 1 � n � p� 1;we can also read o� the the Euler characteristic formula�(X) = �(XG) + p~�(FX=G):(1.5)First proof of Theorem 1.1. Here P bq = 2, hence P cq � 2. The caseP cq = 1 is ruled out by the congruence �(X) � �(XG) mod p; when p > 2, thiscongruence also implies that n�m is even and that XG is non-empty if n is even.Taking q = n+1 and r large in (1.3), we see that m cannot be greater than n.J. P. May. A generalization of Smith theory. Proc. Amer. Math. Soc. 101 (1987), 728-730.P. A. Smith. Transformations of �nite period. Annals of Math. 39 (1938), 127-164.2. Borel cohomology, localization, and Smith theoryLet EG be a free contractible G-space. For a G-space X, the Borel constructionon X is the orbit space EG �G X and the Borel homology and cohomology ofX (with coe�cients in an Abelian group A) are de�ned to be the nonequivarianthomology and cohomology of this space. For reasons to be made clear later, theBorel construction is also called the \homotopy orbit space" and is sometimesdenoted XhG. People not focused on equivariant algebraic topology very oftenrefer to Borel cohomology as \equivariant cohomology." We can relate it to Bredoncohomology in a simple way. Let A denote the constant coe�cient system at A.Since the orbit spaces (G=H)=G are points, we see immediately from the axiomsthat H�G(X;A) is isomorphic toH�(X=G;A), and similarly in homology. ThereforeH�(EG �G X;A) �= HqG(EG �X;A) and H�(EG �G X;A) �= H�G(EG �X;A):Observe that the Borel cohomology of a point is the cohomology of the classifyingspace BG = EG=G. In this section, we shall use the notationH�G(X) = H�(EG �G X);standard in much of the literature.



44 IV. SMITH THEORYHere we �x a prime p and understand mod p coe�cients. IfX is a basedG-space,we let ~H�G(X) be the kernel of H�G(X) �! H�G(�) = H�(BG). Equivalently,~H�G(X) = ~H�(EG+ ^G X):Because G acts freely on EG, it acts freely on EG � X. Therefore, by theWhitehead theorem, if f : X �! Y is a G-map between G-CW complexes that isa nonequivariant homotopy equivalence, then1� f : EG�X �! EG� Yis a G-homotopy equivalence and therefore1�G f : EG �G X �! EG �G Yis a homotopy equivalence. At �rst sight, it seems unreasonable to expect EG�GXto carry much information about XG, but it does.We now assume that G is an elementary Abelian p-group, G = (Z=p)n for somen, and that X is a �nite dimensional G-CW complex. We shall describe how touse Borel cohomology to determine the mod p cohomology of XG as an algebraover the Steenrod algebra, and we shall sketch another proof of Theorem 1.1. Ourstarting point is the localization theorem.Since G = (Z=p)n, H�(BG) is a polynomial algebra on n generators of degreeone if p = 2 and is the tensor product of an exterior algebra on n generators ofdegree one and the polynomial algebra on their Bocksteins if p > 2. Let S be themultiplicative subset of H�(BG) generated by the non-zero elements of degree oneif p = 2 and by the non-zero images of Bocksteins of degree two if p > 2.Theorem 2.1 (Localization). For a �nite dimensional G-CW complex X,the inclusion i : XG �! X induces an isomorphismi� : S�1H�G(X) �! S�1H�G(XG):Proof. Let FX = X=XG. By the co�ber sequence XG+ �! X+ �! FX,it su�ces to show that S�1 ~H�G(FX) = 0. Here FX is a �nite dimensional G-CW complex and (FX)G = �. By induction up skeleta, it su�ces to show thatS�1 ~H�G(Y ) = 0 when Y is a wedge of copies of G=H+ ^ Sq for some H 6= G,and such a wedge can be rewritten as Y = G=H+ ^ K, where K is a wedge ofcopies of Sq. Since EG �G (G=H) = EG=H is a model for BH, we see thatEG+ ^G Y = BH+ ^K. At least one element of S restricts to zero in H�(BH),and this implies that S�1 ~H�G(Y ) = 0.



2. BOREL COHOMOLOGY, LOCALIZATION, AND SMITH THEORY 45Localization theorems of this general sort appear ubiquitously in equivarianttheory. As here, the proofs of such results reduce to the study of orbits by generalnonsense arguments, and the speci�cs of the situation are then used to determinewhat happens on orbits. When n = 1, we can be a little more precise.Lemma 2.2. If G = Z=p and dimX = r, then i� : HqG(X) �! HqG(XG) is anisomorphism for q > r.Proof. It su�ces to show that ~H�G(FX) = 0 for q > r. Since FX is G-free away from its basepoint, the projection EG+ �! S0 induces a G-homotopyequivalence EG+ ^ FX �! FX and therefore a homotopy equivalence EG+ ^GFX �! FX=G. Obviously dim(FX=G) � r.Since G acts trivially on XG, EG �G XG = BG�XG.Second proof of Theorem 1.1. Take G = Z=p and let X be a mod p ho-mology n-sphere. We assume that XG is non-empty. The Serre spectral sequenceof the bundle EG�G X �! BG converges fromH�(G;H�(X)) = H�(BG) 
H�(X)to H�G(X). Since a �xed point of X gives a section, E2 = E1. Therefore ~H�G(X)is a free H�(BG)-module on one generator of degree n and, in high degrees, thismust be isomorphic to~H�G(XG) = H�(BG+ ^XG) = H�(BG)
 ~H�(XG):By a trivial dimension count, this can only happen if XG is a mod p cohomologym-sphere for some m. Naturality arguments from the H�(BG)-module structureshow that m must be less than n and must be congruent to n mod 2 if p > 2.To see that XG is non-empty if p > 2 and n is even, one assumes that XG isempty and deduces from the multiplicative structure of the spectral sequence thatX cannot be �nite dimensional.Returning to the context of the localization theorem, one would like to retrieveH�(XG) algebraically from S�1H�G(X). As a matter of algebra, S�1H�G(X) inheritsa structure of algebra over the mod p Steenrod algebra A from H�G(X). However,it no longer satis�es the instability conditions that are satis�ed in the cohomology



46 IV. SMITH THEORYof spaces. For any A-module M , the subset of elements that do satisfy theseconditions form a submodule Un(M). Obviously the localization mapH�(BG)
H�(XG) �= H�G(XG) �! S�1H�G(XG) �= S�1H�G(X)takes values in Un(S�1H�G(X)). By a purely algebraic analysis, using basic infor-mation about the Steenrod operations, Dwyer and Wilkerson proved the followingremarkable result. (They assume that X is �nite, but the argument still workswhen X is �nite dimensional.)Theorem 2.3. For any elementary Abelian p-group G and any �nite dimen-sional G-CW complex X,H�(BG)
H�(XG) �! Un(S�1H�G(X))is an isomorphism of A-algebras and H�(BG)-modules. ThereforeH�(XG) �= Fp 
H�(BG) Un(S�1H�G(X)):We will come back to this point when we talk about the Sullivan conjecture.A. Borel, et al. Seminar on transformation groups. Annals of Math. Studies 46. Princeton.1960.G.E. Bredon. Introduction to compact transformation groups. Academic Press. 1972.T. tom Dieck. Transformation groups. Walter de Gruyter. 1987.W.G. Dwyer and C.W. Wilkerson. Smith theory revisited. Annals of Math. 127(1988), 191-198.W.-Y. Hsiang. Cohomology theory of topological transformation groups. Springer. 1975.



CHAPTER VCategorical Constructions; Equivariant Applications1. Coends and geometric realizationWe pause to introduce some categorical and topological constructs that are usedubiquitously in both equivariant and nonequivariant homotopy theory. They willbe needed in a number of later places. We are particularly interested in homotopycolimits. These are examples of geometric realizations of spaces, which in turn areexamples of coends, which in turn are examples of coequalizers.Let � be a small category and let C be a category that has all colimits. Write `for the categorical coproduct in C . The coequalizer C(f; f 0) of maps f; f 0 : X �!Y is a map g : Y �! C(f; f 0) such that gf = gf 0 and g is universal with thisproperty. It can be constructed as the pushout in the following diagram, wherer = 1 + 1 is the folding map:X `X //f+f 0��r Y�� gX // C(f; f 0):Coends are categorical generalizations of tensor products. Given a functor F :�op � � �! C , the coend Z � F (n; n)is de�ned to be the coequalizer of the mapsf; f 0 : a�:m!nF (n;m) �!aF (n; n)47



48 V. CATEGORICAL CONSTRUCTIONS; EQUIVARIANT APPLICATIONSwhose restrictions to the �th summand areF (�; id) : F (n;m) �! F (m;m) and F (Id; �) : F (n;m) �! F (n; n);respectively. It satis�es a universal property like that of tensor products. If theobjects of F (n; n) have points that can be written in the form of \tensors" x
 y,then the coend is obtained from the coproduct of the F (n; n) by identifying x�
ywith x
�y whenever this makes sense. Here � is a map in �, contravariant actionsare written from the right, and covariant actions are written from the left.Dually, if C has limits, a functor F : �op �� �! C has an endZ � F (n; n):It is de�ned to be the equalizer, E(f; f 0), of the mapsf; f 0 :YF (n) �! Y�:m!nF (m;n)whose projections to the �th factor areF (id; �) : F (m;m) �! F (m;n) and F (�; id) : F (n; n) �! F (m;n):Recall that a simplicial object in a category C is a contravariant functor 4 �!C , where4 is the category of sets n = f0; 1; 2; : : : ; ng and monotonic maps. Usingthe usual face and degeneracy maps, we obtain a covariant functor M�: 4 �! Uthat sends n to the standard topological n-simplex 4n. For a simplicial spaceX� : 4 �! U , we have the product functorX�� M�: 4op �4 �! U :De�ne the geometric realization of X� to be the coendjX�j = Z 4Xn �4n:(1.1)If X� is a simplicial based space, so that all its face and degeneracy maps arebasepoint preserving, then all points of each subspace f�g � 4n are identi�ed tothe point (�; 1) 2 X0 �40 in the construction of jX�j, hencejX�j = Z 4Xn ^ (4n)+:(1.2)If X� is a simplicial G-space, then jX�j inherits a G-action such thatjX�jH = jXH� j for all H � G:(1.3)



2. HOMOTOPY COLIMITS AND LIMITS 49S. MacLane. Categories for the Working Mathematician. Springer. 1976.J. P. May. The Geometry of Iterated Loop Spaces (x11). Springer Lecture Notes Vol 271. 1972.2. Homotopy colimits and limitsLet D be any small topological category. We understand D to have a discreteobject set and to have spaces of maps d! d0 such that composition is continuous.Let Bn(D) be the set of n-tuples f = (f1; : : : ; fn) of composable arrows of D ,depicted d0 d1oo f1 � � �oo f2 dn:oo fnHereB0(D) is the set of objects of D and Bn(D) is topologized as a subspace of then-fold product of the total morphism space `D(d; d0). With zeroth and last facegiven by deleting the zeroth or last arrow of n-tuples f (or by taking the source ortarget of f1 if n = 1) and with the remaining face and degeneracy operations givenby composition or by insertion of identity maps in the appropriate position, B�(D)is a simplicial set called the nerve of D . Its geometric realization is the classifyingspace BD . If D has a single object d, then G = D(d; d) is a topological monoid(= associative Hopf space with unit) and BD = BG is its classifying space.We can now de�ne the two-sided categorical bar construction. It will specializeto give homotopy colimits. Let T : D �! U be a continuous contravariantfunctor. This means that each T (d) is a space and each function T : D(d; d0) �!U (T (d0); T (d)) is continuous. Let S : D �! U be a continuous covariant functor.We de�ne B(T;D ; S) = jB�(T;D ; S)j:(2.1)Here B�(T;D ; S) is the simplicial space whose set of n-simplices isf(t; f; s)jt 2 T (d0); f 2 Bn(D); and s 2 S(dn)g;topologized as a subspace of the product (` T (d)) � (`D(d; d0))n � (`S(d));B0(T;D ; S) = ` T (d)� S(d). The zeroth and last face use the evaluation of thefunctors T or S; the remaining faces and the degeneracies are de�ned like those ofB�D .Since the coend of T � S : Dop �D �! U is exactly the coequalizer of d0; d1 :B1(T;D ; S) �! B0(T;D ; S), we obtain a natural map� : B(T;D ; S) �! Z D T (d)� S(d) � T 
D S:(2.2)



50 V. CATEGORICAL CONSTRUCTIONS; EQUIVARIANT APPLICATIONSIt is obtained by using iterated compositions to mapB�(T;D ; S)to the constantsimplicial space at the cited coend, which we denote by T 
D S.Let De be the covariant functor represented by an object e of D , so that De(d) =D(e; d). Then � reduces to a map" : B(T;D ;De) �! T (e);and this map is a homotopy equivalence. In fact, using the identity map of e, weobtain an inclusion � : T (e) �! B(T;D ;De) such that "� = 1 and a simplicialdeformation �" ' id. There is a left{right symmetric analogue.If the functor S takes values in GU , then B�(T;D ; S) is a simplicial G-spaceand B(T;D ; S) is a G-space such thatB(T;D ; S)H = B(T;D ; SH):(2.3)We de�ne the homotopy colimit of our covariant functor S byHocolimS = B(�;D ; S);(2.4)where � : D �! U is the trivial functor to a 1-point space. Here the coend onthe right of (1.5) is exactly the ordinary colimit of S. Thus we have" : hocolimS �! colimS:(2.5)When G is a group regarded as category with a single object and X is a (left) G-space regarded as a covariant functor, the homotopy colimit of X is the \homotopyorbit space" EG �G X = X=hG, and " is the natural map X=hG �! X=G.Our preferred de�nition of homotopy limits is precisely dual. We have a cosim-plicial space C�(T;D ; S), the two-sided cobar construction. Its set of n-cosimplicesis the product over all f 2 Bn(D) of the spaces T (d0) � S(dn), topologized as asubspace of Map(Bn(D);`T (d)� S(d0)). The f th coordinates of the cofaces andcodegeneracies with target Cn(T;D ; S) are obtained by projecting onto the co-ordinate of their source that is indexed by the corresponding face or degeneracyapplied to f , except that, for the zeroth and last coface, we must compose withT (f1)� id : T (d0)� S(dn) �! T (d1)� S(dn)or id�S(fn) : T (d0)� S(dn) �! T (d0)� S(dn�1):



2. HOMOTOPY COLIMITS AND LIMITS 51We de�ne the geometric realization, or totalization, \TotY�" of a cosimplicialspace Y� to be the end TotY� = Z4Map(4n; Yn):(2.6)Here we are using the evident functor 4op � 4 �! U that sends (m;n) toMap(4m; Yn). If Y� takes values in based spaces, we may rewrite this asTotY� = Z4 F ((4n)+; Yn):(2.7)We then de�ne C(T;D ; S) = TotC�(T;D ; S);(2.8)and we have a natural map� : Z D T (d)� S(d) �! C(T;D ; S):(2.9)We de�ne the homotopy limit of our contravariant functor T : D �! U to beHolimT = TotC�(T;D ; �);(2.10)and we see that � specializes to give a natural map� : limT �! holimT:(2.11)When G is a group regarded as a category with a single object and X is a(right) G-space regarded as a contravariant functor, the homotopy limit of X isthe \homotopy �xed point space" of G-maps EG �! X,MapG(EG;X) = Map(EG;X)G = XhG;and � is the natural map XG �! XhG that sends a �xed point to the constantfunction at that point. This map is the object of study of the Sullivan conjecture.A. K. Bous�eld and D. M. Kan. Homotopy limits, completions, and localizations. SpringerLecture Notes in Mathematics Vol 304. 1972.J. P. May. Classifying spaces and �brations (x12). Memoirs Amer. Math. Soc. No. 155, 1975.



52 V. CATEGORICAL CONSTRUCTIONS; EQUIVARIANT APPLICATIONS3. Elmendorf's theorem on diagrams of �xed point spacesRecall that G is the category of orbit spaces. We shall regard G as a topologicalcategory with a discrete set of objects. We write [G=H] for a typical object, toavoid confusing it with the G-space G=H. The space of morphisms [G=H] �![G=K] is the space of G-maps G=H �! G=K, and this space may be identi�edwith (G=K)H . De�ne a G -space to be a continuous contravariant functor G �!U . A map of G -spaces is a natural transformation, and we write GU for thecategory of G-spaces. We shall compare this category with GU . We have alreadyobserved that a G-space X gives a G -space X�, and we write� : GU �! GUfor the functor that sends X to X�. We wish to determine how much informationthe functor � loses.By the de�nition of C�(X), it is clear that the ordinary homology and coho-mology of X depend only on �X. If T : G �! U is a G -space such that eachT (G=H) is a CW-complex and each T (G=K) �! T (G=H) is a cellular map, thenwe can de�ne H�G(T ;M) exactly as we de�ned H�G(X;M). Note, however, thatunless G is discrete, XH will not inherit a structure of a CW-complex from aG-CW complex X. Indeed, for compact Lie groups, we saw that it was not quitethe functor X� that was relevant to ordinary cohomology, but rather the functorthat sends G=H to XH=W0H.There is an obvious way that G -spaces determine G-spaces.Lemma 3.1. De�ne a functor � : GU �! GU by �T = T (G=e), with theG-maps G=e �! G=e inducing the action. Then � is left adjoint to �,GU (T;�X) �= GU (�T;X):Proof. Clearly ��X = X. The quotient map G �! G=H induces a map� : T (G=H) �! T (G=e)H, and these maps together specify a natural map � :T �! ��T . Passage from � : T �! �X to �� : �T �! X is a bijection whoseinverse sends f : �T �! X to �f � �.The following result of Elmendorf shows that G -spaces determine G-spaces in aless obvious way. In fact, up to homotopy, any G -space can be realized as the �xedpoint system of a G-space and, up to homotopy, the functor � has a right adjointas well as a left adjoint. Note that we can form the product T �K of a G -space



3. ELMENDORF'S THEOREM ON DIAGRAMS OF FIXED POINT SPACES 53T and a space K by setting (T �K)(G=H) = T (G=H)�K. In particular, T � Iis de�ned, and we have a notion of homotopy between maps of G -spaces. Write[T; T 0]G for the set of homotopy classes of maps T �! T 0.Theorem 3.2 (Elmendorf). There is a functor 	 : GU �! GU and anatural transformation " : �	 �! id such that each " : (	T )H �! T (G=H) isa homotopy equivalence. If X has the homotopy type of a G-CW complex, thenthere is a natural bijection [X;	T ]G �= [�X;T ]G :Proof. Let S : G �! GU be the covariant functor that sends the object[G=H] to the G-space G=H. On morphisms, it is given by identity mapsG ([G=H]; [G=K]) �! GU (G=H;G=K):For a G -space T , de�ne 	T to be the G-space B(T;G ; S). We haveSH[G=K] = (G=K)H = GU (G=H;G=K) = G ([G=H]; [G=K]);and (2.2) and (2.3) give homotopy equivalences " : (	T )H �! T (G=H) that de�nea natural transformation " : �	 �! id. Clearly�" : 	T = ��	T �! �Tis a weak equivalence of G-spaces for any T . With T = �X, this gives a weakequivalence �" : 	�X �! X. We can check that 	�X has the homotopy typeof a G-CW complex if X does. Therefore �" is an equivalence, and we choose ahomotopy inverse (�")�1. De�ne� : [X;	T ]G �! [�X;T ]G and � : [�X;T ]G �! [X;	T ]Gby �(f) = " � �f and �(�) = 	� � (�")�1. Easy diagram chases show that��(�) ' � and ��(f) ' (	") � (�")�1 � f . Since 	" is a weak equivalence, theWhitehead theorem gives that �� is a bijection. It follows formally that � and �are inverse bijections.A. D. Elmendorf. Systems of �xed point sets. Trans. Amer. Math. Soc. 277(1983), 275-284.



54 V. CATEGORICAL CONSTRUCTIONS; EQUIVARIANT APPLICATIONS4. Eilenberg-MacLane G-spaces and universal F-spacesWe give some important applications of this construction, starting with theconstruction of equivariant Eilenberg-MacLane spaces that we promised earlier.Example 4.1. Let B be the classifying space functor from topological monoidsto spaces. It is product-preserving, and it therefore gives an Abelian topologicalgroup when applied to an Abelian topological group. If � is a discrete Abeliangroup, then the n-fold iterate Bn� is a K(�; n). A coe�cient systemM : hG �!A b may be regarded as a continuous functor G �! U (with discrete values). Wemay compose with Bn to obtain a G -space Bn �M . In view of the equivalences" : 	(Bn �M)H �! K(M(G=H); n), 	(Bn �M) is a K(M;n). Theorem 3.2 givesa homotopical description of ordinary cohomology in terms of maps of G -spaces:~HnG(X;M) �= [X;K(M;n)]G �= [�X;Bn �M ]G :In interpreting this, one must remember that the right side concerns homotopyclasses of genuine natural transformations �X �! BnM , and not just naturaltransformations in the homotopy category. The latter would be directly com-putable in terms of nonequivariant comology.Example 4.2. If M is a contravariant functor from hG to (not necessarilyAbelian) groups, then we can regardB�M as a G -space and so obtain an Eilenberg-MacLane G-space K(M; 1) = 	(B �M).Example 4.3. A set-valued functor M on hG is the same thing as a continu-ous set-valued functor on G . Applying 	 to such an M , we obtain an Eilenberg-MacLane G-space K(M; 0). Its �xed point spaces K(M; 0)H are homotopy equiv-alent to the discrete spaces M(G=H), but the G-space K(M; 0) generally hasnon-trivial cohomology groups in arbitrarily high dimension. For set-valued coef-�cient systemsM and M 0, let NatG (M;M 0) be the set of natural transformationsM �!M 0. Then Theorem 3.2 and the discreteness of M give isomorphisms[X;K(M; 0)]G �= [�X;M ]G �= NatG (�0(X);M):(4.4)This may seem frivolous at �rst sight, but in fact the spaces K(M; 0) are cen-tral to equivariant homotopy theory. For example, we shall see later that theisomorphisms just given specialize to give a classi�cation theorem for equivariantbundles | and to reprove the classical classi�cation of nonequivariant bundles.The relevant K(M; 0)'s are special cases of those in the following basic de�nition.



4. EILENBERG-MACLANE G-SPACES AND UNIVERSAL F-SPACES 55Definition 4.5. A family F in G is a set of subgroups of G that is closedunder subconjugacy: if H 2 F and g�1Kg � H, then K 2 F . An F -space is aG-space all of whose isotropy groups are in F . De�ne a functor F : hG �! Setsby sending G=H to the 1-point set if H 2 F and to the empty set if H 62 F .De�ne the universal F -space EF to be 	F . It is universal in the sense that, foran F -space X of the homotopy type of a G-CW complex, there is one and, up tohomotopy, only one G-map X �! EF . De�ne the classifying space of the familyF to be the orbit space BF = EF=G.In thinking about this example, it should be remembered that there are nomaps from a non-empty set to the empty set. In particular, there are no G-mapsX �! EF if X is not an F -space. This also shows that the functor F onlymakes sense if the given set F of subgroups of G is a family. We augment thede�nition with the following relative version. It will become very important later.Definition 4.6. For a subfamilyF of a familyF 0, de�ne E(F 0;F ) to be theco�ber of the based G-map (unique up to homotopy) EF+ �! EF 0+. Let A ``be the family of all subgroups of G, and let ~EF = E(A ``;F ). Since EA `` isG-contractible, ~EF is equivalent to the unreduced suspension of EF with oneof the cone points as basepoint. The space ( ~EF )H is contractible if H 2 F andis the two-point space S0 if H 62 F . For F � F 0, the G-space E(F 0;F ) isequivalent to EF 0+ ^ ~EF .The following observation will become valuable when we examine the structureof equivariant classifying spaces.Lemma 4.7. Let F be a family in G and H be a subgroup of G.(a) Regarded as an H-space, EF is E(F jH), whereF jH = fKjK 2 F and K � Hg:(b) If H 2 F , then, regarded as a WH-space, (EF )H is E(FH), whereFH = fLjL = K=H for some K 2 F such that H � K � NHg:The classical example is F = feg. An feg-space X is a G-space all of whoseisotropy groups are trivial. That is, X is a free G-space. Then EG � Efeg isexactly the standard example of a free contractible G-space, and the quotient map� : EG �! BG is a principalG-bundle. Given the result that pullbacks of bundlesalong homotopic maps are homotopic, we have already proven that � is universal.



56 V. CATEGORICAL CONSTRUCTIONS; EQUIVARIANT APPLICATIONSIndeed, if p : E �! B is a principal G-bundle, we have a unique homotopy classof G-maps ~f : E �! EG. The map f : B �! BG that is obtained by passage toorbits from ~f is the classifying map of p. Certainly p is equivalent to the bundleobtained by pulling � back along f .When G is discrete, the ordinary homology and cohomology of the G-spacesEF admit descriptions as Ext groups, generalizing the classical identi�cation ofthe homology and cohomology of groups with the homology and cohomology ofK(�; 1)'s. This can be seen from the projectivity of the cellular chains C�(EF )and inspection of de�nitions or by collapse of the universal coe�cients spectralsequences. Write Z[F ] for the free Abelian group functor composed with thefunctor F .Proposition 4.8. Let G be discrete. For a covariant coe�cient system N anda contravariant coe�cient systemM ,HG� (EF ;N) = TorG� (Z[F ];N) and H�G(EF ;M) = Ext�G (Z[F ];M):



CHAPTER VIThe Homotopy Theory of Diagramsby Robert J. Piacenza1. Elementary homotopy theory of diagramsA substantial portion of the homotopy, homology, and cohomology theory ofG-spaces X depends only on the underlying diagram of �xed point spaces �X :G �! U . There is a vast and growing literature in which the homotopy theory ofspaces is generalized to a homotopy theory of diagrams of spaces that are indexedon arbitrary small indexing categories. The purpose of this chapter is to outlinethis theory and to demonstrate the connection between diagrams and equivarianttheory. A very partial list of sources for further reading is given at the end of thissection.Throughout the chapter, we letU be the cartesian category of compactly gener-ated weak Hausdor� spaces and let J be a small topological category over U withdiscrete object space. De�ne U J to be the category of continuous contravariantU -valued functors on J . Its objects are called either diagrams or J -spaces; itsmorphisms, which are natural transformations, are called J -maps. Note that U Jis a topological category: its hom sets are spaces and composition is continuous.Let I be the unit interval in U . If X and Y are diagrams, then a homotopyfrom X to Y is a J -map H : I �X �! Y , where I �X is the diagram de�nedon objects j 2 jJ j by (I �X)(j) = I �X(j) and similarly for morphisms of J . Inthe usual way homotopy de�nes an equivalence relation on the J -maps that givesrise to the quotient homotopy category hU J . We denote the homotopy classes ofJ -maps from X to Y by hU J(X;Y ), abbreviated h(X;Y ). An isomorphism in57



58 VI. THE HOMOTOPY THEORY OF DIAGRAMShU J will be called a homotopy equivalence.A J -map is called a J -co�bration if it has the J homotopy extension property,abbreviated J �HEP . The basic facts about co�brations in U apply readily toJ -co�brations.The following standard results for spaces are inherited by the category U J .Theorem 1.1 (Invariance of pushouts). Suppose given a commutative di-agram: A //f��i ''� PPPPPPPPPPPPPPP B ((� PPPPPPPPPPPPPPPP��X // ''
 PPPPPPPPPPPPPPP Y ((� PPPPPPP PPPPPPPA0�� i0 //f 0 B0��X 0 // Y 0in which i and i0 are J -co�brations, f and f 0 are arbitrary J -maps, �, �, and 
are homotopy equivalences, and the front and back faces are pushouts. Then theinduced map � on pushouts is also a homotopy equivalence.Theorem 1.2 (Invariance of colimits over cofibrations). Supposegiven a homotopy commutative diagramX0��f0 //i0 X1�� f1 //i1 � � � // Xk�� fk //ik � � �Y 0 //j0 Y 1 //j1 � � � // Y k //jk � � �inU J where the ik and jk are J -co�brations and the fk are homotopy equivalences.Then the map colimk fk : colimkXk �! colimk Y k is a homotopy equivalence.The reader will readily accept that other such standard results in the homotopytheory of spaces carry over directly to the homotopy theory of diagrams.W. G. Dwyer and D. M. Kan. An obstruction theory for diagrams of simplicial sets. Proc. Kon.Ned. Akad. van Wetensch A87=Ind. Math. 46(1984), 139-146.W. G. Dwyer and D. M. Kan. Singular functors and realization functors. Proc. Kon. Ned.Akad. van Wetensch A87=Ind. Math. 46(1984), 147-153.W. G. Dwyer, K. M. Kan, and J. H. Smith. Homotopy commutative diagrams and their real-izations. J. Pure and Appl. Alg. 57(1989), 5-24.E. Dror Farjoun. Homotopy and homology of diagrams of spaces. Springer Lecture Notes inMathematics Vol. 1286, 1987, 93-134.



2. HOMOTOPY GROUPS 59E. Dror Farjoun. Homotopy theories for diagrams of spaces. Proc Amer. Math. Soc. 101(1987),181-189.A. Heller. Homotopy in functor categories. Trans. Amer. Math. Soc. 272(1982), 185-202.R. J. Piacenza. Homotopy theory of diagrams and CW-complexes over a category. Canadian J.Math. 43(1991), 814-824.K. Sarnowski. Homology and cohomology of diagrams of topological spaces. Thesis. Universityof Alaska. 1994.Y. Shitanda. Abstract homotopy theory and homotopy theory of functor category. HiroshimaMath. J. 19(1989), 477-497.I. Moerdijk and J. A. Svensson. A Shapiro lemma for diagrams of spaces with appliations toequivariant topology. Compositio Mathematica 96(1995), 249-282.2. Homotopy GroupsLet In be the topological n-cube and @In its boundary. For an object j 2 jJ j,let j 2 U J denote the associated represented functor; its value on an object k isthe space U J (k; j).Definition 2.1. By a pair (X;Y ) in U J , we mean a J -space X together witha sub J -space Y . Morphisms of pairs are de�ned in the obvious way. Similarde�nitions apply to triples, n-ads, etc. Let � : j �! Y be a morphism in U J . Bythe Yoneda lemma, � is completely determined by the point �(idj) = y0 2 Y (j).For each n � 0, de�ne�jn(X;Y; �) = h((In; @In; f0g) � j; (X;Y; Y ))where y0 = �(idj) 2 Y (j) serves as a basepoint, and all homotopies are homotopiesof triples relative to �. The reader may formulate a similar de�nition for theabsolute case �jn(X;�). For n = 0 we adopt the convention that I0 = f0; 1g and@I0 = f0g and proceed as above. These constructions extend to covariant functorson U J . From now on, we shall often drop � from the notation �jn(X;Y; �).The following proposition follows immediately from the Yoneda lemma.Proposition 2.2. There are natural isomorphisms �jn(X) �= �n(X(j)) and�jn(X;Y ) �= �n(X(j); Y (j)) that preserve the group structures when n � 1 (inthe absolute case; the relative case requires n � 2).As a direct consequence of Proposition 2.2 we obtain the usual long exact se-quences.



60 VI. THE HOMOTOPY THEORY OF DIAGRAMSProposition 2.3. For (X;Y ) and j as in De�nition 2.1, there exist naturalboundary maps @ and long exact sequences� � � �! �jn+1(X;Y ) @�!�jn(Y ) �! �jn(X) �! � � � �! �j0(Y ) �! �j0(X)of groups up to �j1(Y ) and pointed sets thereafter.Definition 2.4. A map e : (X;Y ) �! (X 0; Y 0) of pairs in U J is said to bean n-equivalence if e(j) : (X(j); Y (j)) �! (X 0(j); Y 0(j)) is an n-equivalence in Ufor each j 2 jJ j. A map e is said to be a weak equivalence if it is an n-equivalencefor each n � 0. Observe that e is an n-equivalence if for every j 2 jJ j and� : j �! Y , e� : �jp(X;Y; �) �! �jp(X 0; Y 0; e�) is an isomorphism for 0 � p < nand an epimorphism for p = n. The reader may easily formulate similar de�nitionsfor J -maps e : X �! X 0 (the absolute case).3. Cellular TheoryIn this section we adapt May's preferred approach to the classical theory of CWcomplexes to develop a theory of J -CW complexes.Let Dn+1 be the topological (n + 1)-disk and Sn the topological n-sphere. Ofcourse, these spaces are homeomorphic to In+1 and @In+1 respectively. We shallconstruct cell complexes over J by the process of attaching cells of the formDn+1�j by attaching morphisms with domain Sn � j.Definition 3.1. A J -complex is an object X of U J with a decompositionX = colimp�0Xp where X0 = a�2A0Dn� � j�and, inductively, Xp = Xp�1[f ( a�2ApDn� � j�)for some attaching J -map f : `�2Ap Sn��1 � j� �! Xp�1; here, for each p � 0,fj� j � 2 Apg is a set of objects of J . We call X a J -CW complex if X is aJ -complex such that n� = p for all p � 0 and � 2 Ap.Now J -subcomplexes and relative J -complexes are de�ned in the obvious way.We adopt the standard terminology for CW-complexes for J -CW-complexes with-out further comment.The following technical lemma reduces directly to its space level analog.



3. CELLULAR THEORY 61Lemma 3.2. Suppose that e : Y �! Z is an n-equivalence. Then we cancomplete the following diagram in U J :Sn�1 � j //i0�� Sn�1 � I � j��yy hsssssssssss Sn�1 � joo i1 {{ gvvvvvvvvv �� iZ Yoo eDn � j ::f vvvvvvvvv //i0 Dn � I � j~heeL L L L L L Dn � j:oo i1 ~gddH H H H HFrom here, we proceed exactly as in Ix3 to obtain the following results.Theorem 3.3 (J-HELP). If (X;A) is a relative J -CW complex of dimension� n and e : Y �! Z is an n-equivalence, then we can complete the followingdiagram in U J : A //�� A� I��{{xxxxxxxxx Aoo ~~}}}}}}}} ��Z Yoo eX ? ?~~~~~~~~ // X � Ic cF F F F F X:oo ``A A A ATheorem 3.4 (Whitehead). Let e : Y �! Z be an n-equivalence and X bea J -CW complex. Then e� : h(X;Y ) �! h(X;Z) is a bijection if X has dimensionless than n and a surjection if X has dimension n. If e is a weak equivalence, thene� : h(X;Y ) �! h(X;Z) is a bijection for all X.Corollary 3.5. If e : Y �! Z is an n-equivalence between J -CW complexesof dimension less than n, then e is a J -homotopy equivalence. If e is a weakequivalence between J -CW complexes, then e is a J -homotopy equivalence.Theorem 3.6 (Cellular Approximation). Let (X;A) and (Y;B) be rela-tive J -CW complexes, (X 0; A0) be a subcomplex of (X;A), and f : (X;A) �!(Y;B) be a map of pairs in U J whose restriction to (X 0; A0) is cellular. Then f ishomotopic rel X 0 [ A to a cellular map g : (X;A) �! (Y;B).Corollary 3.7. Let X and Y be J -CW complexes. Then any J -map f :X �! Y is homotopic to a cellular J -map, and any two homotopic cellular J -maps are cellularly homotopic.



62 VI. THE HOMOTOPY THEORY OF DIAGRAMSNext we discuss the local properties of J -CW complexes. First we develop somepreliminary concepts. Let X be a J -space and, for each j 2 jJ j, let tj : X(j) �!colimJ X be the natural map of X(j) into the colimit. Observe that, for eachmorphism s : i �! j of J , tj = ti � X(s). For each subspace A � colimJ X,we de�ne �A(j) = t�1j (A); for each morphism s : i �! j of J , we de�ne �A(s) :�A(j) �! �A(i) to be the restriction of X(s). (As usual, we apply the k-i�cationfunctor to ensure that all spaces de�ned above are compactly generated.) Onequickly checks that �A is a J -space, that colimJ �A = A, and that there is a naturalinclusion �A �! X. To simplify notation, we writeX=J = colimJ Xfrom now on.Definition 3.8. A pair (X; �A) is a J -neighborhood retract pair (abbreviatedJ -NR pair) if there exists an open subset U of X=J such that A � U and aretraction r : �U �! �A. A pair (X; �A) is a J -neighborhood deformation retractpair (abbreviated J -NDR pair) if (X; �A) is a J -NR pair and the J -map r is aJ -deformation retraction.Let X be a J -CW complex. The functor colimJ sends the J -space A � j de-termined by a space A and object j to the space A, and it preserves colimits.Therefore the cellular decomposition of X determines a natural structure of a CWcomplex on X=J ; its attaching maps are the images under the functor colimJ ofthe attaching J -maps of X. One may also check that if A is a subcomplex of X=J ,then �A has a natural structure of a subcomplex of X. In particular, if Ap is thep-skeleton of X=J , then �Ap = Xp is the p-skeleton of X.Proposition 3.9 (Local contractibility). LetX be a J -CW complex andA = fag be a point of X=J . Then there is an object j 2 jJ j such that �A �= j, and(X; �A) is a J -NDR pair.Proof. Let a be in the p-skeleton but not in the (p�1)-skeleton of X=J . Thenthere is a unique attaching map f : Sp�1�j �! Xp�1 such that a is in the interiorof Dp. It follows that �A �= j. To construct the required neighborhood U , �rst takean open ball U1 contained in the interior of Bp and centered at a. Then U1 is aneighborhood in (X=J)p that contracts to A. One then extends U1 inductively cellby cell by the usual space level procedure to construct the required neighborhoodU .



4. THE HOMOLOGY AND COHOMOLOGY THEORY OF DIAGRAMS 63Proposition 3.10. Let X be a J -CW complex and A be a subcomplex of X=J .Then (X; �A) is a J -NDR pair.Proof. It follows from J -HELP that �A �! X is a J -co�bration. Just as onthe space level, a J -co�bration is the inclusion of a J -NDR pair.R. J. Piacenza. Homotopy theory of diagrams and CW-complexes over a category. Canadian J.Math. 43(1991), 814-824.4. The homology and cohomology theory of diagramsThe ordinary homology and cohomology theories of Ix3 are special cases of aconstruction that applies to the category U J for any J . The di�erence is thatthe theory in Ix3 started with G-CW complexes and then passed to the associateddiagrams de�ned on the orbit category of G, whereas we here exploit the theory ofJ -CW complexes. There is again a vast literature on the cohomology of diagrams,some relevant references being listed in Section 1.De�ne a J -coe�cient system to be a continuous contravariant functorM : J �!A b. Continuity ensures that M factors through the homotopy category hJ . LetA bhJ be the category of J -coe�cient systems. It is an Abelian category, andwe can do homological algebra in it. As in Ix4, a covariant homotopy invariantfunctor U �! A b induces a functor from J -spaces to J -coe�cient systems bycomposition; we name such functors by underlining the name of the given functor.Of course, we also have the notion of a covariant J -coe�cient system.Let (X;A) be a relative J -CW complex with n skeleton Xn and observe thatXn=Xn�1 = (aj� Dn � j�)=(aj� Sn�1 � j�) �= Sn ^ (j�)+;(4.1)where the + indicates the addition of disjoint basepoints. De�ne a chain complexC�(X;A) in A bJ , called the J -cellular chains of (X;A), by settingCn(X;A) = Hn(Xn;Xn�1;Z):(4.2)The connecting homomorphisms of the triples (Xn;Xn�1;Xn�2) specify the dif-ferential d : Cn(X;A) �! Cn�1(X;A):(4.3)



64 VI. THE HOMOTOPY THEORY OF DIAGRAMSClearly (5.1) implies thatCn(X;A)(j) =Xj� ~H0(J(j; j�)+;Z):(4.4)The construction is functorial with respect to cellular maps (X;A) �! (Y;B).For a covariant J -coe�cient system N , de�ne the cellular chain complex of(X;A) with coe�cients N byC�(X;A;N) = C�(X;A)
J N;(4.5)where the tensor product on the right is interpreted as the coend over J . Passingto homology, we obtain the cellular homology H�(X;A;N).For a contravariant J -coe�cient systemM , de�ne the cellular cochain complexof (X;A) with coe�cients M byC�(X;A;M) = HomJ (C�(X;A);M):(4.6)Passing to cohomology, we obtain the cellular cohomology H�(X;A;M).Theorem 4.7. Cellular homology and cohomology for pairs of J -CW complexessatisfy the standard Eilenberg-Steenrod axioms, suitably reformulated for dia-grams.Remark 4.8. We may extend the cellular theory to arbitrary pairs of diagramsby means of cellular approximations; see Proposition 4.6. That is, we extend ourhomology and cohomology theories to theories that carry weak equivalences toisomorphisms. We may also adapt Ilman's construction of equivariant singulartheory to construct a singular theory for diagrams. Of course, the singular theoryis isomorphic to the cellular theory on the category of J -CW complexes.S. Illman. Equivariant singular homology and cohomology. Memoirs Amer. Math. Soc. No.156. 1975. 5. The closed model structure on U JJust as the category of spaces has a (closed) model structure in the sense ofQuillen, so does the category of G-spaces for any G. This point of view has notbeen taken earlier since the conclusions are obvious to the experts and perhapsnot very helpful to the novice on a �rst reading. However, since the homotopicalproperties of categories of diagrams are likely to be less familiar than those of thecategory of spaces, it is valuable to understand how they inherit model structures



5. THE CLOSED MODEL STRUCTURE ON UJ 65from the standard model structure on U , which is the special case of the trivialcategory J in the de�nitions here. We use the name q-�bration and q-co�brationfor the model structure �brations and co�brations to avoid confusion with otherkinds of �brations and co�brations. The weak equivalences of the model structurewill be the weak equivalences that we have already de�ned; an acyclic q-�brationis one that is a weak equivalence, and similarly for acyclic q-co�brations. Considerdiagrams A //��g X�� fB > >~~~~ // YThe map g has the left lifting property (LLP) with respect to f if one can always�ll in the dotted arrow. The right lifting property (RLP) is de�ned dually.Definition 5.1. A J -map f : X �! Y is a q-�bration if f(j) : Y (j) �! X(j)is a Serre �bration for each object j 2 jJ j. Observe that f is a q-�bration if f hasthe homotopy lifting property for all objects of the form In�j. A map g : A �! Bis a q-co�bration if it has the LLP with respect to all acyclic q-co�brations.Theorem 5.2. With the structure just de�ned, U J is a model category.Proof. Just as as for spaces, one quickly checks Quillen's axioms, using thefactorization lemma below to verify the factorization axiom M2.As for spaces, the proof leads directly to the following characterizations of q-co�brations and of acyclic q-�brations.Corollary 5.3. A J -map g : A �! B is a q-co�bration if and only if it is aretract of the inclusion A0 �! B 0 of a relative J -complex (B 0; A0).Corollary 5.4. A J -map f : X �! Y is an acyclic q-�bration if and only ifit has the RLP with respect to each q-co�bration Sn � j �! Dn+1 � j.Lemma 5.5 (Quillen's factorization lemma). Any J -map f : X �! Ycan be factored as f = p � g, where g is a q-co�bration and p is an acyclic q-�bration.



66 VI. THE HOMOTOPY THEORY OF DIAGRAMSProof. We construct a diagramX //g0   f AAAAAAAA Z0 //g1�� p0 Z1 // � � �Yas follows. Let Z�1 = X and p�1 = f . Having obtained Zn�1, consider the set ofall diagrams of the form Sq� � j��� //t� Zn�1�� pn�1Dq� � j� //s� Y:Forming the coproduct over all of the left vertical arrows, we may de�ne gn :Zn�1 �! Zn by the pushout diagram`Sq� � j��� //` t� Zn�1�� pn�1`Dq� � j� //` s� Zn:We have allowed the zero dimensional pair (D0; S�1) = (fptg; ;) in this construc-tion. De�ne pn : Zn �! Y by pushing out along pn�1 and the coproduct of themaps s�. Then letZ = colimZn; p = colimpn; and g = colimgngn�1 � � � g0:One may check that g has the LLP with respect to each acyclic q-�bration and,by the \small object argument" based on the compactness of the Dn, that p is anacyclic q-�bration.Let �hU J be the localization of hU J obtained by formally inverting the weakequivalences. The model structure implies that �hU J is equivalent to the homotopycategory of J -CW complexes, as we indicate next.Lemma 5.6. LetX = colimXn taken over a sequence of J -co�brations such thateach Xn has the homotopy type of a J -CW complex. Then X has the homotopytype of a J -CW complex.



6. ANOTHER PROOF OF ELMENDORF'S THEOREM 67Proof. Up to homotopy, we may approximate the sequence by a sequence ofJ -CW complexes and cellular inclusions; we then use the homotopy invariance ofcolimits (Theorem 1.2).The following proposition follows easily.Proposition 5.7. Each J -complex is of the homotopy type of a J -CW com-plex.Theorem 5.8 (Approximation theorem). There is a functor � : U J �!U J and a natural transformation 
 : � �! id such that, for each X 2 U J , �X isa J -complex and 
 : �X �! X is an acyclic q-�bration.Proof. Applying Lemma 5.3 to the inclusion of the empty set in X, we obtainan acyclic q-�bration 
 : �X �! X. By the explicit construction, we see that �Xis a J -complex, � is a functor, and 
 is a natural transformation.The following corollary is immediate from the previous two results.Corollary 5.9. The category �hU J is equivalent to the homotopy category ofJ -CW complexes.D. G. Quillen. Homotopical Algebra. Springer Lecture Notes in Mathematics Vol. 43. 1967.W. G. Dwyer and J. Spalinsky. Homotopy theories and model categories. In \Handbook ofAlgebraic Topology", edited by I.M. James. North Holland, 1995, pp 73-126.6. Another proof of Elmendorf's theoremThe theory of diagrams leads to an alternative proof of Elmendorf's theoremV.3.2, one which gives a precise cellular perspective and illustrates the force ofmodel category techniques. We adopt the notations of Vx3.Observe that the �xed point diagram functor � from G-spaces to G -spacescarries X � G=H to X � G=H for a space X regarded as a G-trivial G-space.Thus it preserves cells. It also preserves the pushouts relevant to cellular theory.Lemma 6.1. If A��i // X��B // Y



68 VI. THE HOMOTOPY THEORY OF DIAGRAMSis a pushout of G-spaces in which i is a closed inclusion, then�A���i // �X���B // Yis a pushout of G -spaces.Proof. Stripping away the topology we see that this holds on the set levelsince every G-set is a coproduct of orbits. One may then check that the topologiesagree.Theorem 6.2. Each G -complex (or G -CW complex) Y 2 GU is isomorphic to�X for some G-complex (or G-CW complex) X. Therefore � is an isomorphismbetween the category of G-complexes (or G -CW complexes) and the category ofG -complexes (or G -CW complexes).Proof. The functor � carries G-complexes to G -complexes since it preservescells, the relevant pushouts, and ascending unions. The assertion follows since �is full and faithful: inductively, the attaching maps of Y are in the image of �.This leads to our alternative version of V.3.2.Theorem 6.3 (Elmendorf). There is a functor 	 : GU �! GU and anatural transformation " : �	 �! id such that 	X is a G-complex, �	X is aG -complex, and " : �	X �! X is a weak equivalence of G-spaces for each G -space X. Therefore � and 	 induce an equivalence of categories between �hGUand �hGU .Proof. We construct the functor 	 and transformation " by using the functor� and transformation p given in Theorem 5.7 on the level of diagrams and usingTheorem 6.2 to transport from G -complexes to G-complexes. The result followsfrom the cited results and Corollary 5.8.Corollary 6.4. Let Y be a G-space of the homotopy type of a G-CW complex.Then, for any G -space X,hGU (Y;	X) �= hGU (�Y;X) �= �h(�Y;X):Proof. This follows from Theorem 6.3 and generalities about model cate-gories.



6. ANOTHER PROOF OF ELMENDORF'S THEOREM 69In turn, this implies the following comparison with the original form, V.3.2, ofElmendorf's theorem.Corollary 6.5. Write 	0 and "0 for the constructions given in V.3.2. For aG -space X, there is a weak equivalence of G-spaces � : 	X �! 	0X such that �is natural up to homotopy and the following diagram commutes up to homotopy:�	X ##" GGGGGGGG //�� �	0X{{ "0wwwwwwwwwX:
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CHAPTER VIIEquivariant Bundle theory and Classifying Spaces1. The de�nition of equivariant bundlesEquivariant bundle theory can be developed at various levels of generality. Weassume given a subgroup � of a compact Lie group �. We set G = �=�, and welet q : � �! G be the quotient homomorphism. That is, we consider an extensionof compact Lie groups 1 �! � �! � �! G �! 1:Many sources restrict attention to split extensions, but we see little point in that.By far the most interesting case is � = G��. When � is O(n) or U(n), this casewill lead to real and complex equivariant K-theory.De�ne a principal (�; �)-bundle to be the projection to orbits p : E �! E=� =B of a �-free �-space E. Note that G acts on the base space B. Let F be a�-space. By a G-bundle with structural group �, total group �, and �ber F , wemean the projection E �� F �! B induced by a principal (�; �)-bundle E; E iscalled the associated principal bundle. Although we prefer to think of bundles thisway, it is not hard to give an intrinsic characterization of when a G-map Y �! Bthat is a �-bundle with �ber F is such a (�; �)-bundle.When � = G � �, we shall refer to (G;�)-bundles rather than to (�;G � �)-bundles. Here it is usual to require the �ber F be a �-space. A principal (G;�)-bundle E has actions by G and � that commute with one another; it is usual towrite the action of � on the right and the action of G on the left. Equivariantvector bundles �t into this framework: a (G;O(n))-bundle with �ber Rn is calledan n-plane G-bundle, and similarly in the complex case. The tangent and normal71



72 VII. EQUIVARIANT BUNDLE THEORY AND CLASSIFYING SPACESbundles of a smooth G-manifold give examples.Example 1.1. A �nite G-cover p : Y �! B is a G-map that is also a �nitecover. Such a map is necessarily a (G;�n)-bundle with �ber the �n-set F =f1; : : : ; ng. Its associated principal (G;�n)-bundle E is the subspace of Map(F; Y )consisting of the bijections onto �bers of p.Classical bundle theory readily generalizes to the equivariant context, and wecontent ourselves with a very brief summary of some of the main points. A prin-cipal (�; �)-bundle is said to be trivial if it is equivalent to a bundle of the formq � id : � �� U �! G �H U;where H � G, � � �, � \ � = e, q maps � isomorphically onto H, and Uis an H-space regarded as a �-space by pullback along q. Provided that E andtherefore also B are completely regular, a principal (�; �)-bundle p : E �! B islocally trivial. If, in addition, B is paracompact, then p is numerable. Numerable(�; �)-bundles satisfy the equivariant bundle covering homotopy property, anda numerable bundle E over B � I is equivalent to the bundle (E � f0g) � I.Therefore the pullbacks of a numerable (�; �)-bundle along homotopic G-mapsare equivalent.R. K. Lashof. Equivariant bundles. Ill. J. Math. 26(1982).R. K. Lashof and J. P. May. Generalized equivariant bundles. Bulletin de la Soci�et�e Math�ema-tique de Belgique 38(1986), 265-271.L. G. Lewis, Jr., J. P. May, and M. Steinberger (with contributions by J. E. McClure). Equiv-ariant stable homotopy theory. (IVx1.) Springer Lecture Notes in Mathematics Vol. 1213.1986. 2. The classi�cation of equivariant bundlesLet B(�; �)(X) be the set of equivalence classes of principal (�; �)-bundleswith base G-space X. We assume that X has the homotopy type of a G-CWcomplex, and we check that this implies that any bundle over X has the homotopytype of a �-CW complex. Then Elmendorf's theorem, V.3.2, specializes to give aclassi�cation theorem for principal (�; �)-bundles.Definition 2.1. De�ne F (�; �) to be the family of subgroups � of � suchthat � \� = e and observe that an F (�; �)-space is the same thing as a �-free�-space. Write E(�; �) = EF (�; �) and B(�; �) = E(�; �)=�;



2. THE CLASSIFICATION OF EQUIVARIANT BUNDLES 73and let � : E(�; �) �! B(�; �)be the resulting principal (�; �)-bundle. In the case � = G � �, write FG(�) =F (�;G��); EG(�) = E(�;G��) and BG(�) = B(�;G��):Observe that, since E(�; �) is a contractible space, B(�; �) is a model for B�that carries a particular action by G.Theorem 2.2. The bundle � : E(�; �) �! B(�; �) is universal . That is,pullback of � along G-maps X �! B(�; �) gives a bijection[X;B(�; �)]G �!B(�; �)(X):It is crucial to the utility of this result to understand the �xed point structureof B(�; �). For any principal (�; �)-bundle p : E �! B and any H � G, onecan check that BH is the disjoint union of the spaces p(E�), where � runs overthe �-conjugacy classes of subgroups � � � such that � \ � = e and q(�) = H.De�ne �� � � \N�� = � \ Z��;(2.3)where Z�� is the centralizer of � in �; the equality here is an easy observation.Then E� is a principal (��;W��)-bundle and p(E�) is its base space. We can goon to analyze the structure of BH as a WGH-space. In the case of the universalbundle, we can determine the structure of E� by use of IV.4.7. Putting thingstogether, we arrive at the following conclusion.Theorem 2.4. For a subgroup H of G,B(�; �)H =aB(��);where the union runs over the �-conjugacy classes of subgroups � of � such that� \� = e and q(�) = H; as a WGH-space,B(�; �)H =aWGH �V (�) B(��;W��);where the union runs over the q�1(NGH)-conjugacy classes of such groups � andV (�) = W��=�� is the image of W�� in WGH.



74 VII. EQUIVARIANT BUNDLE THEORY AND CLASSIFYING SPACESHere, by use of Lie group theory, V (�) has �nite index in WGH.Specializing to � = G��, we see that the subgroups � of � such that �\� = eare exactly the twisted diagonal subgroups�(�) = f(h; �(h))jh 2 Hg;(2.5)where H is a subgroup of G and � : H �! � is a homomorphism. Let N(�) =NG���(�) and observe thatN(�) = f(g; �)jg 2 NGH and ��(h)��1 = �(ghg�1) for all h 2 Hg:Therefore � \N(�) coincides with the centralizer�� = f�j��(h) = �(h)� for all h 2 Hg:(2.6)Let W (�) =WG���(�) and V (�) = W (�)=�� � WGH:As usual, let Rep(G;�) denote the set of �-conjugacy classes of homomorphismsG �! �. De�ne an action of the group WGH on the set Rep(H;�) by letting(gH)� be the conjugacy class of g � �, where, for g 2 NGH, g � � : H �! � isthe homomorphism speci�ed by (g � �)(h) = �(g�1hg): Observe that the isotropygroup of (�) is V (�).Theorem 2.7. For a subgroup H of G,(BG�)H =aB(��);where the union runs over (�) 2 Rep(H;�); as a WGH-space,(BG�)H =aWGH �V (�) B(��;W (�));where the union runs over the orbit set Rep(H;�)=WGH.It is important to observe that the group W (�) need not split as a productV (�) � �� in general. Therefore, in order to fully understand the classifying G-spaces for (G;�)-bundles, one is forced to study the classifying spaces for themore general kind of bundles that we have introduced. These are complicatedobjects, and their study is in a primitive state. In particular, rather little isknown about equivariant characteristic classes. Such classes are understood inBorel cohomology, however. By the universal property of E(�; �), there is a�-map E� �! E(�; �), which is unique up to homotopy. The induced G-mapE�=� �! B(�; �) is a nonequivariant equivalence and so induces an isomorphism



3. SOME EXAMPLES OF CLASSIFYING SPACES 75on Borel cohomology. The projection EG � E� �! E� is clearly a �-homotopyequivalence, and it induces an equivalenceEG �G (E�=�) = (EG� E�)=� �! E�=� = B�:This already implies the following calculation. We again denote Borel cohomologyby H�G for the moment.Theorem 2.8. With any coe�cients, H�G(B(�; �)) �= H�(B�). With �eld co-e�cients, H�G(BG�) �= H�(BG)
H�(B�) as an H�(BG)-module.The interpretation is that the Borel cohomology characteristic classes of a prin-cipal (G;�)-bundle E over X are determined by the H�(BG)-module structureon H�G(X) together with the nonequivariant characteristic classes of the �-bundleEG �G E over EG�G X.We shall later see that generalized versions of the Atiyah-Segal completion the-orem and of the Segal conjecture give calculations of the characteristic classes of(G;�)-bundles in equivariant K-theory and in equivariant cohomotopy.R. K. Lashof and J. P. May. Generalized equivariant bundles. Bulletin de la Soci�et�e Math�ema-tique de Belgique 38(1986), 265-271.J. P. May. Characteristic classes in Borel cohomology. J. Pure and Applied Algebra 44(1987),287-289. 3. Some examples of classifying spacesIt is often valuable to have alternative descriptions of universal bundles. Wehave Grassmannian models when � is an orthogonal or unitary group. These leadto good models for the classifying spaces for equivariant K-theory, and, just asnonequivariantly, they are useful for the proof of equivariant versions of the Thomcobordism theorem.Example 3.1. For a real inner product G-space V , letBO(n; V ) be the G-spaceof n-planes in V and let EO(n; V ) be the G-space whose points are pairs consistingof an n-plane � in V and a vector v 2 �. The map EO(n; V ) �! BO(n; V ) thatsends (�; v) to � is a real n-plane G-bundle. Provided that V is large enough, saythe direct sum of in�nitely many copies of each irreducible real representation ofG, p is a universal real n-plane G-bundle. A similar construction works in thecomplex case.



76 VII. EQUIVARIANT BUNDLE THEORY AND CLASSIFYING SPACESClearly a principal (�; �)-bundle E is universal if and only if E� is contractiblefor � 2 F (�; �). Using the fact that the space of G-maps from a free G-CWcomplex to a nonequivariantly contractibleG-space is contractible, one can use thiscriterion to obtain a simple model that has particularly good naturality properties.Regard EG as a �-space via q : � �! G and de�neSec(EG;E�) �Map(EG;E�)to be the sub �-space consisting of those maps f : EG �! E� such that thecomposite of Eq : E� �! EG and f is the identity map. Note thatSec(EG;E(G ��)) = Map(EG;E�)since E(G��) is homeomorphic to EG � E�.Theorem 3.2. The �-space Sec(EG;E�) is a universal principal (�; �)-bundleand therefore the G-space Sec(EG;E�)=� is a model for B(�; �). In particular,the G��-space Map(EG;E�) is a universal principal (G;�)-bundle and thereforethe G-space Map(EG;E�)=� is a model for BG�.Since we are interested in maps from G-CW complexes into classifying spaces,the fact that these models need not have the homotopy types of G-CW complexesneed not concern us.Observe that the map � : E� �! B� induces a natural G-map� : B(�; �) = Sec(EG;E�)=� �! Sec(EG;B�);(3.3)where Sec(EG;B�) is theG-space of maps f : EG �! B� such that the compositeof f and Bq : B� �! BG is � : EG �! BG. With � = G ��, this map is� : BG� �!Map(EG;B�):(3.4)These maps have bundle theoretic interpretations. Restricting for simplicity tothe case � = G��, let BG(�)(X) �= [X;BG�]Gbe the set of equivalence classes of (G;�)-bundles over X and let B(�)(X) bethe set of equivalence classes of nonequivariant �-bundles over X. By adjunction,a G-map X �!Map(EG;B�) is the same as a map EG�GX �! B�. Thus the



3. SOME EXAMPLES OF CLASSIFYING SPACES 77represented equivalent of � is the Borel construction on bundles that was relevantto Theorem 2.8; it givesBG(�)(X) �! B(�)(EG�G X):It is important to know how much information this construction loses, hence it isimportant to know how near � is to being an equivalence. Elementary coveringspace theory gives the following result.Proposition 3.5. If � is discrete, then the G-map � of (3.3) is a homeomor-phism. If �, but not necessarily G, is discrete, then the G-map � of (3.4) is ahomeomorphism.An Abelian compact Lie group is the product of a �nite Abelian group anda torus. Using ordinary cohomology to study the �nite factor and continuouscohomology to handle the torus factor, Lashof, May, and Segal proved anotherresult along these lines.Theorem 3.6. If G is a compact Lie group and � is an Abelian compact Liegroup, then the G-map � : BG� �! Map(EG;B�) is a weak equivalence.Consequences of the Sullivan conjecture will tell us much more about thesemaps. To see this, we will need to know the behavior of the maps � on �xed pointspaces. We have determined the �xed point spaces B(�; �)H, and it is clear thatSec(EG;B�)H = Sec(BH;B�)is the space of maps f : BH �! B� such thatBq � f = Bi : BH �! BG;where i : H �! G is the inclusion and we take Bi to be the quotient mapEG=H �! EG=G. In particular,Sec(BH;BG�B�) = Map(BH;B�):Lemma 3.7. Let � � � satisfy � \ � = e and q(�) = H. De�ne a homomor-phism � : H � �� �! � by �(q(�); �) = �� and observe that q � � = i � �1 :H ��� �! G. The restriction of�H : B(�; �)H �! Sec(BH;B�)



78 VII. EQUIVARIANT BUNDLE THEORY AND CLASSIFYING SPACESto B(��) is the adjoint of the classifying mapB� : BH �B(��) = B(H ���) �! B�:Therefore, if � = G ��, the restriction of�H : (BG�)H �! Map(BH;B�)to B(��), � : H �! �, is the adjoint of the map of classifying spacesB� : BH �B(��) = B(H ���) �! B�;where � : H ��� �! � is de�ned by �(h; �) = �(h)�.Consider what happens on components. In nonequivariant homotopy theory,maps between the classifying spaces of compact Lie groups have been studied formany years. One focus has been the question of when passage to classifying mapsB : Rep(G;�) �! [BG;B�]is a bijection. We now see that, for H � G, a map BH �! B� not in theimage of B corresponds to a principal �-bundle over BH that does not comefrom a principal (G;�)-bundle over an orbit G=H. The equivariant results aboveimply that there are no such exotic maps if � is either �nite or Abelian. TheSullivan conjecture will give information about general compact Lie groups �under restrictions on G.R. K. Lashof, J. P. May, and G. B. Segal. Equivariant bundles with Abelian structural group.Contemporary Math. Vol. 19, 1983, 167-176.J. P. May. Some remarks on equivariant bundles and classifying spaces. Ast�erisque 191(1990),239-253.



CHAPTER VIIIThe Sullivan Conjecture1. Statements of versions of the Sullivan conjectureWe de�ned the homotopy orbit space of a G-space X to beXhG = EG �G X;and we de�ned the homotopy �xed point space of X dually:XhG = Map(EG;X)G = MapG(EG;X)is the space of G-maps EG �! X. The projection EG �! � inducesXG = Map(�;X)G �! Map(EG;X) = XhG:It sends a �xed point to the constant map EG �! X at that �xed point. It is verynatural to ask how close this map is to being a homotopy equivalence. Thinkingequivariantly, it is even more natural to ask how close the G-map� : X = Map(�;X) �!Map(EG;X)is to being a G-homotopy equivalence. Since a G-map f : X �! Y that is anonequivariant equivalence induces a weak equivalence of G-spacesMap(W;Y ) �!Map(W;X)for any free G-CW complexW , such as EG, one cannot expect � to be an equiva-lence in general. Very little is known about this question for general �nite groups.However, for �nite p-groups G, to which we restrict ourselves unless we specifyotherwise, the Sullivan conjecture gives a beautiful answer. We agree to work in79



80 VIII. THE SULLIVAN CONJECTUREthe categories �hU and �hGU , implicitly applying CW approximation. This allowsus to ignore the distinction between weak and genuine equivalences.Theorem 1.1 (Generalized Sullivan conjecture). Let X be a nilpotent�nite G-CW complex. Then the natural G-mapX̂p �!Map(EG; X̂p)is an equivalence.The hypothesis that X be nilpotent can be removed by applying the Bous�eld-Kan simplicial completion on �xed point spaces and then assembling these com-pleted �xed point spaces to a global G-completion by means of Elmendorf's con-struction. This equivariant interpretation of the Sullivan conjecture was noticed byHaeberly, who also gave some information for �nite groups that are not p-groups.Looking at �xed points under H � G and noting that EG is a model for EH, wesee that the result immediately reduces to the �xed point space level.Theorem 1.2 (Miller, Carlsson, Lannes). Let X be a nilpotent �nite G-CW complex, where G is a �nite p-group. Then the natural map(XG)p̂ �= (X̂p)G �!Map(EG; X̂p)G = (X̂p)hGis an equivalence.Again, the nilpotence hypothesis is unnecessary provided that one understandsX̂p to mean the Bous�eld-Kan completion of X, which generalizes the nilpotentcompletion that we de�ned, and takes (XG)p̂ and not (X̂p)G as the source: thereis a natural map (XG)p̂ �! (X̂p)G;but it is not an equivalence in general. When G acts trivially on X, the result was�rst proven by Miller, and he deduced the following powerful consequence.Theorem 1.3 (Miller). Let G be a discrete group such that all of its �nitelygenerated subgroups are �nite and let X be a connected �nite dimensional CWcomplex. Then ��F (BG;X) = 0.To deduce this from Theorem 1.2, one �rst observes that any map BG �! Xinduces the trivial map of fundamental groups and so lifts to the universal cover,while a map �nBG �! X for n > 0 trivially lifts to the universal cover. Thusone can assume that X is simply connected. Note that this reduction depends



1. STATEMENTS OF VERSIONS OF THE SULLIVAN CONJECTURE 81on the fact that we are here working with �nite dimensional and not just �nitecomplexes, and one must generalize Theorem 1.2 accordingly; this seems to requiretrivial action on X. One then applies an inductive argument to reduce to thecase G = Z=p. Here the weak equivalence X̂p �! Map(BG; X̂p) implies that��F (BG; X̂p) = 0, and this implies that ��F (BG;X) = 0.The general case of Theorem 1.2 reduces immediately to the case when G =Z=p,by induction on the order of G. To see this, consider an extension1 �! C �! G �! J �! 1;where C is cyclic of order p. For any G-space Y , (Y hC)hJ is equivalent to Y hG. Infact, by passing to G-�xed points by �rst passing to C-�xed points and then toJ -�xed points, we obtain a homeomorphismMap(EJ � EG;Y )G �= Map(EJ;Map(EG;Y )C)J :Since EJ�EG is a free contractibleG-space and EG is a free contractibleC-space,this gives the stated equivalence of homotopy �xed point spaces. The equivalence(XC)p̂ �! (X̂p)hC is a J -map, hence it induces an equivalence on passage toJ -homotopy �xed point spaces, and the map of Theorem 1.2 coincides with thecomposite equivalence(XG)p̂ = ((XC)J )p̂ �! ((XC)p̂)hJ �! (X̂p)hC)hJ �= (X̂p)hG:When G =Z=p, Theorem 1.2 was proven independently by Lannes and Miller,using nonequivariant techniques, and by Carlsson, using equivariant techniques.Lannes later gave a variant of his original proof that generalizes the result, usesequivariant ideas, and enjoys a pleasant conceptual relationship to Smith theory.We shall sketch that proof in the following three sections.There is a basic principle in equivariant topology to the e�ect that, when workingat a prime p, results that hold for p-groups can be generalized to p-toral groupsG, which are extensions of the form1 �! T �! G �! � �! 1:The point is that the circle group can be approximated by the union �1 of itsp-subgroups �n of (pn)th roots of unity, and an r-torus T can be approximated bythe union �1 of its p-subgroups �n = (�n)r. It is not hard to see that the mapB�1 �! BT induces an isomorphism on mod p homology. Using this basic idea,Notbohm generalized Theorem 1.2 to p-toral groups.



82 VIII. THE SULLIVAN CONJECTURETheorem 1.4 (Notbohm). The generalized Sullivan conjecture, Theorem 1.2,remains true as stated when G is a p-toral group.Technically, this still works using Bous�eld-Kan completion for \p-good" G-spaces X, for which X �! X̂p is a mod p equivalence.A. K. Bous�eld and D. M. Kan. Homotopy limits, completions, and localizations. SpringerLecture Notes in Mathematics Vol. 304. 1972.G. Carlsson. Equivariant stable homotopy theory and Sullivan's conjecture. Invent. Math.(1991), 497-525.W. Dwyer, Haynes Miller, and J. Neisendorfer. Fibrewise completion and unstable Adamsspectral sequences. Israel J. Math. 66(1989), 160-178.J.-P. Haeberly. Some remarks on the Segal and Sullivan conjectures. Amer. J. Math. 110(1988),833-847.J. Lannes. Sur la cohomologie modulo p des p-groupes ab�elien �el�ementaires. in \Homotopytheory, Proc Durham Symp. 1985". London Math. Soc. Lecture Notes, 1987, 97-116.H. R. Miller. The Sullivan conjecture on maps from classifying spaces. Annals of Math.120(1984), 39-87; and corrigendum, Annals of Math. 121(1985), 605-609.H. R. Miller. The Sullivan conjecture and homotopical representation theory. Proc. Int. Cong.of Math. Berkeley, Ca, USA, 1986, 580-589.D. Notbohm. The �xed-point conjecture for p-toral groups. Springer Lecture Notes in Mathe-matics Vol. 1298, 1987, 106-119.L. Schwartz. Unstable modules over the Steenrod algebra and Sullivan's �xed point conjecture.University of Chicago Press. 1994.2. Algebraic preliminaries: Lannes' functors T and FixLet V be an elementary Abelian p-group, �xed throughout this section and thenext. It would su�ce to restrict attention to V = Z=p. The notation V indicatesthat we think of V ambiguously as both a vector space over Fp and a group thatwill act as symmetries of spaces. We refer back to IV.2.3, which gaveH�(XV ) �= Fp 
H�(BV ) Un(S�1H�V (X))(2.1)for a �nite dimensional V -CW complex X.We begin by describing this in more conceptual algebraic terms. In this section,we let U be the category of unstable modules over the mod p Steenrod algebra Aand let K be the category of unstable A-algebras. Thus the mod p cohomologyof any space is in K . We shall abbreviate notation by setting H = H�(BV ).The celebrated functor T : U �! U introduced by Lannes is the left adjoint ofH 
 (�): for unstable A-modules M and N ,U (TM;N) �= U (M;H 
N):(2.2)



2. ALGEBRAIC PRELIMINARIES: LANNES' FUNCTORS T AND FIX 83Observe that the adjoint of the mapM = Fp 
M �! H
M induced by the unitof H gives a natural A-map � : TM �!M . The key properties of the functor Tare as follows.The functor T is exact and commutes with suspension.(2.3) The functor T commutes with tensor products.(2.4)This property implies that if M is an unstable A-algebra, then so is TM . Theresulting functor T : K �! K is also left adjoint to H 
 (�): for unstableA-algebras M and N , K (TM;N) �= K (M;H 
N):(2.5)The Borel cohomology H�V (X) is both an unstable A-algebra and an H-module.The action of H is given by a map of A-modules, and the bundle mapEV �V X �! BVinduces a map H �! H�V (X) of unstable A-algebras. We codify these structuresin algebraic de�nitions. Thus let HU be the category of unstable A-modules Mtogether with an H-module structure given by an A-map H
M �!M . For suchan H-A-moduleM , de�ne an unstable A-module Fix(M) byFix(M) = Fp 
TH TM �= Fp 
H (H 
TH TM):(2.6)The notation \Fix" anticipates a connection with (2.1). Here we have used (2.4)to give that TH is an augmented A-algebra and that TM is a TH-module; THacts on H through the adjoint TH �! H of the coproduct  : H �! H 
H. Wehave another adjunction. For unstable H-A-modules M and unstable A-modulesN , we have U (Fix(M); N) �= HU (M;H 
N):(2.7)Comparing the adjunctions (2.2) and (2.7), we easily �nd that, for an unstableA-module M , Fix(H 
M) �= TM as unstable A-modules.(2.8)Less obviously, one can also construct a natural isomorphismH 
TH TM �= H 
 Fix(M) as unstable H-A-modules.(2.9)



84 VIII. THE SULLIVAN CONJECTUREThe functor Fix has properties just like those of T .Fix : HU �! U is exact and commutes with suspension.(2.10)The appropriate tensor product in HU is M 
H N .There is a natural isomorphism Fix(M 
H N) �= Fix(M) 
 Fix(N):(2.11)De�ne HnK to be the category of unstable A-algebras under H. If M is anunstable A-algebra under H, then its product factors through M 
H M and wededuce from (2.11) that Fix(M) is an unstable A-algebra. If M is an unstable A-algebra, then (2.8) is an isomorphism of unstable A-algebras. If M is an unstableA-algebra underH, then the isomorphism (2.9) is one of unstable A-algebras underH. We now reach the adjunction that we really want. For an unstable A-algebraM under H and an unstable A-algebra N ,K (Fix(M); N) �= (HnK )(M;H 
N):(2.12) 3. Lannes' generalization of the Sullivan conjectureReturning to topology, let X be a V -space. AbbreviateFix�V (X) = Fix(H�V (X)):This is a cohomology theory on V -spaces. The inclusion i : XV �! X induces anatural map j : Fix�V (X) �! Fix�V (XV ) �= TH�(XV ) �! H�(XV ):Here the middle isomorphism is implied by (2.8) and the last map is an instanceof the natural map � : TM �! M . The map j speci�es a transformation ofcohomology theories on X. By a check on V -spaces of the form V=W+ ^K, one�nds that, if X is a �nite dimensional V -CW complex, thenj : Fix�V (X) �! H�(XV ) is an isomorphism.(3.1)An alternative proof using the localization theorem is possible. In fact, this mustbe the case: the only way to reconcile (2.1) and (3.1) is to have an algebraicisomorphism Fix(M) �= Fp 
H Un(S�1M)(3.2)



3. LANNES' GENERALIZATION OF THE SULLIVAN CONJECTURE 85for reasonable M . As a matter of algebra, Dwyer and Wilkerson prove that thereis an isomorphism of H-A-algebrasH 
TH TM �= Un(S�1M)(3.3)for any unstable H-A-algebra M that is �nitely generated as an H-module. Ten-soring over H with Fp , this gives (3.2). Combined with (2.9), this gives an entirelyalgebraic version of the isomorphismH�(BV )
H�(XV ) �= Un(S�1H�V (XhV ))of IV.2.3. Here, ifM = H�V (X) is �nitely generated overH, the isomorphism (3.2)agrees with that obtained by combining (2.1) and (3.1). Thus we may view (3.1)as another reformulation of Smith theory. This reformulation is at the heart ofthe Sullivan conjecture, which is a corollary of the following theorem.Theorem 3.4 (Lannes). Let X be a V -space whose cohomology is of �nitetype and let Z be a space (with trivial V -action) whose cohomology is of �nitetype. Let ! : EV � Z �! X be a V -map. Then the homomorphism of unstableA-algebras !# : Fix�V (X) �! H�(Z)induced by ! is an isomorphism if and only if the map~! : Ẑp �! (X̂p)hVinduced by ! is an equivalence.The map ! determines and is determined by a map!0 : BV � Z �! EV �V X = XhVof bundles over BV . The map !# of the theorem is the adjoint via (2.12) ofthe map under H induced on cohomology by !0. The map ! induces a mapEV � Ẑp �! X̂p, and the map ~! of the theorem is its adjoint.To prove the Sullivan conjecture, we take Z = XV and take ! : EG�XV �! Xto be the adjoint of the canonical map XV �! XhV . Then !# is the isomorphismj of (3.1), and ~! : (XV )p̂ �! (X̂p)hV is the map that Theorem 1.2 claims to bean equivalence. Thus we see the Sullivan conjecture as a natural elaboration ofSmith theory.Theorem 3.4 has other applications. In the Sullivan conjecture, we applied it toobtain homotopical information from cohomological information, but its converse



86 VIII. THE SULLIVAN CONJECTUREimplication is also of interest. Taking Z = XhV and letting ! : EV �XhV �! Xbe the evaluation map, the theorem specializes to give the following result.Theorem 3.5. Let X be a V -space such that the cohomologies of X and ofXhV are of �nite type. Then the canonical mapFix�V (X) �! H�(XhV )is an isomorphism of unstable A-algebras if and only if the canonical map(XhV )p̂ �! (X̂p)hVis an equivalence.When both X and XhV are p-complete, so that (XhV )p̂ �! (X̂p)hV is theidentity, we conclude that H�(XhV ) is calculable as Fix�V (X). This is the startingpoint for remarkable work of Dwyer and Wilkerson in which they redevelop a greatdeal of Lie group theory in a homotopical context of p-complete �nite loop spaces.If we specialize to spaces without actions and use (2.8), we get the followingnonequivariant version of Theorem 3.4.Theorem 3.6. Let Y and Z be spaces with cohomology of �nite type and let! : BV � Z �! Y be a map. Then the homomorphism of unstable A-algebras!# : TH�(Y ) �! H�(Z) induced by ! is an isomorphism if and only if the map~! : Ẑp �! Map(BV; Ŷp) is an equivalence.W. G. Dwyer and C. W. Wilkerson. Smith theory and the functor T . Comment. Math. Helv.66(1991), 1-17.W. G. Dwyer and C. W. Wilkerson. Homotopy �xed point methods for Lie groups and �niteloop spaces. Preprint, 1992.J. Lannes. Sur les espaces fonctionnels dont la source est le classi�ant d'un p-groupe ab�elien�el�ementaire. Publ. Math. I. H. E. S. 75(1992), 135-244.4. Sketch proof of Lannes' theoremWe brie
y sketch the strategy of the proof of Theorem 3.4. The �rst step isto reduce it to the nonequivariant version given in Theorem 3.6. It is easy to seethat, for a group G and G-space Y , we have an identi�cationY hG � MapG(EG;Y ) = Sec(BG;EG �G Y ) � Sec(BG;YhG);(4.1)where the right side is the space of sections of the bundle YhG �! BG. LetMap(BG;BG)1 denote the component of the identity map and Map(BG;YhG)1



4. SKETCH PROOF OF LANNES' THEOREM 87denote the space of maps whose projection to BG is homotopic to the identity.We have a �bration Map(BG;YhG)1 �! Map(BG;BG)1with �ber Y hG over the identity map.Now return to G = V . Here easy inspections of homotopy groups show thatevaluation at a basepoint gives an equivalence" : Map(BV;BV )1 �! BVand that the composition action of Map(BV;BV )1 on Map(BV; YhV )1 induces anequivalence Y hV �Map(BV;BV )1 �!Map(BV; YhV )1:For a V -space X, the natural map EV � X̂p �! (EV �X)p̂ induces a naturalmap (X̂p)hV �! (XhV )p̂, and this map is an equivalence. By (3.7), the map ~! ofTheorem 3.4 may be viewed as a mapẐp �! Sec(BV; (X̂p)hV ):(4.2)The map ! determines a map EV � Ẑp �! X̂p, and this in turn determines andis determined by a map BV � Ẑp �! (X̂p)hV(4.3)of bundles over BG. The map (3.8) is the composite map of �bers in the followingdiagram of �brationsẐp //�� Map(BV; Ẑp) //�� Sec(BV; (X̂p)hV��BV � Ẑp //�� Map(BV;BV � Ẑp)1 //�� Map(BV; (X̂p)hV )1��BV // Map(BV;BV )1 //= Map(BV;BV )1:The left map of �brations is determined by a chosen homotopy inverse to " :Map(BV;BV )1 �! BV and the inclusion of Ẑp in Map(BV; Ẑp) as the subspaceof constant functions. Clearly the middle composite is an equivalence if and onlyif ~! is an equivalence. Applying Theorem 3.6 with Z replaced by BV � Z, Y



88 VIII. THE SULLIVAN CONJECTUREtaken to be XhV and ! replaced by the adjoint � : BV �BV � Z �! XhV of thecomposite mapBV � Z �! Map(BV;BV � Z)1 �! Map(BV;XhV )de�ned as in the middle row, but before applying completions, we �nd thatthe middle composite is an equivalence if and only if the induced map �# :TH�(XhV ) �! H 
H�(Z) is an isomorphism. Now (2.9) gives an isomorphismH 
TH TH�(XhV ) �= H 
 Fix(H�(XhV ))of unstable H-A-algebras. Its explicit construction parallels the topology in sucha way that the map !# : Fix�V (X) �! H�(Z) agrees with H 
H �#. This allowsus to deduce that �# is an isomorphism if and only if !# is an isomorphism.It remains to say something about the proof of Theorem 3.6. Since this isnonequivariant topology of the sort that requires us to join with those who usethe word \space" to mean \simplicial set", we shall say very little. For a map� :M �! N of unstable A-algebras, there are certain algebraic functors that onemay call Exts;tK (M;N ;�); for �xed t, they are the left derived functors of a certainfunctor of derivations DertK (�; N ; �) that is de�ned on the category of unstableA-algebras over N . The relevance of the functor T comes from the fact that itsde�ning adjunction leads to natural isomorphismsExts;tK (TM;N ; ~�) �= Exts;tK (M;H 
N ;�)for a map � :M �! H 
N of unstable A-algebras with adjoint ~�.There is an unstable Adams spectral sequence, due originally to Bous�eld andKan. However, the relevant version is a generalization due to Bous�eld. For amap f : X �! Ŷp, it starts fromEs;t2 = Exts;tK (H�(Y );H�(X); f�);and it converges (in total degree t�s) to ��(Map(X; Ŷp); f). Under the hypothesesof Theorem 3.6, the map ~! : Ẑp �! Map(BV; Ŷp) induces a map of spectralsequences (for any base point of Z) that is given on the E2-level by the mapExts;tK (H�(Z);Fp) �! Exts;tK (TH�(Y );Fp) �= Exts;tK (H�(Y );H)induced by !# : TH�(Y ) �! H�(Z). With due care of detail, the deduction that~! is an equivalence if !# is an isomorphism follows by a comparison of spectral



5. MAPS BETWEEN CLASSIFYING SPACES 89sequences argument. The converse implication is shown by a detailed inductiveanalysis of the spectral sequence.An alternative procedure for processing Lannes' algebra to obtain the topologicalconclusion of Theorem 3.6 has been given by Morel. Using a topological interpre-tation of the functor T in terms of the continuous cohomology of pro-p-spaces,together with a comparison of Sullivan's p-adic completion functor with that ofBous�eld and Kan, he manages to circumvent use of the Bous�eld-Kan unstableAdams spectral sequence and thus to avoid use of heavy simplicial machinery.A. K. Bous�eld. On the homology spectral sequence of a cosimplicial space. Amer. J. Math.109(1987), 361-394.A. K. Bous�eld. Homotopy spectral sequences and obstructions. Israel J. Math. 66(1989),54-104.J. Lannes. Sur les espaces fonctionnels dont la source est le classi�ant d'un p-groupe ab�elien�el�ementaire. Publ. Math. I. H. E. S. 75(1992), 135-244.F. Morel. Quelques remarques sur la cohomologie modulo p continue des pro-p-espaces et lesr�esultats de J. Lannes concernant les espaces fonctionnels hom(BV;X). Ann. scient. Ec. Norm.Sup. 4e s�erie, 26(1993), 309-360.D. Sullivan. The genetics of homotopy theory and the Adams conjecture. Annals of Math.100(1974), 1-79. 5. Maps between classifying spacesWe shall sketch the explanation given by Lannes in a talk at Chicago of how hisTheorem 3.6 applies to give a version of results of Dwyer and Zabrodsky that applythe Sullivan conjecture to the study of maps between classifying spaces. Althoughthese authors apparently were not aware of the connection with equivariant bundletheory, what is at issue is precisely the map�G :aB(��) = BG(�)G �! Map(EG;B�)G = Map(BG;B�)that we described in VII.3.7; here the coproduct runs over (�) 2 Rep(G;�). Therelevant theorem of Lannes is as follows.Theorem 5.1 (Lannes). If G is an elementary Abelian p-group and � is acompact Lie group, then the mapaB(��)p̂ �! Map(BG; (B�)p̂)induced by �G is an equivalence.It should be possible to deduce inductively that the result holds in this formfor any �nite p-group. The original version of Dwyer and Zabrodsky is somewhat



90 VIII. THE SULLIVAN CONJECTUREdi�erent and in some respects a little stronger, although it seems possible to deducemuch of one from the other. We say that a map f : X �! Y is a \mod pequivalence" if it induces an isomorphism on mod p homology. We say that f is a\strong mod p equivalence" if it satis�es the following conditions.(i) f induces an isomorphism �0(X) �! �0(Y );(ii) f induces an isomorphism �1(X;x) �! �1(Y; f(x)) for any x 2 X;(iii) f induces an isomorphismH�( ~Xx;Fp) �! H�( ~Yf(x);Fp)for any x 2 X, where ~Xx and ~Yf(x) are the universal covers of the compo-nents of X and Y that contain x and f(x).Say that a G-map f : X �! Y is a (strong) mod p equivalence if fH : XH �! Y His a (strong) mod p equivalence for each H � G. In view of VII.3.7, the followingstatements are equivariant reinterpretations of nonequivariant results of Dwyerand Zabrodsky and Notbohm. In nonequivariant terms, when � = G � �, theirresults are statements about the map �G above.Theorem 5.2 (Dwyer and Zabrodsky). If � is a normal subgroup of acompact Lie group � and G = �=� is a �nite p-group, then the G-map � :B(�; �) �! Sec(EG;B�) is a strong mod p equivalence.Actually, Dwyer and Zabrodsky give the result in this generality for G = Z=p,and they give an inductive scheme to prove the general case when � = G � �.However, their inductive scheme works just as well to handle the case of generalextensions. Their result was generalized to p-toral groups by Notbohm.Theorem 5.3 (Notbohm). If � is a normal subgroup of a compact Lie group� and G = �=� is a p-toral group, then the G-map � : B(�; �) �! Sec(EG;B�)is a mod p equivalence.However, � need not a strong mod p equivalence in this case: the componentsof �H induce injections but not surjections on the fundamental groups of corre-sponding components.These results are some of the starting points for beautiful work of Jackowski,McClure, and Oliver, and others, on maps between classifying spaces; these authorshave given an excellent survey of the state of the art on this topic.



5. MAPS BETWEEN CLASSIFYING SPACES 91Lannes' deduces Theorem 4.1 from Theorem 3.6 by taking Z = `B�� and Y =B�. The map ! is then the sum of the classifying maps of the homomorphisms� : V ��� �! � speci�ed in VII.3.7. The deduction is based on the case X = �of the following calculation.Theorem 5.4. Let X be a �nite �-CW complex. Then the natural mapTH��(X) �!YH���(X�(V ))is an isomorphism, where the product runs over (�) 2 Rep(V;�).Proof. The proof is an adaptation of methods of Quillen. Embed � in U(n) forsome large n and let F be the G-space U(n)=S, where S is a maximal elementaryAbelian subgroup of U(n). Quillen shows that the evident diagram of projectionsX � F � F //// X � F // Xinduces an equalizer diagramH��(X) // H��(X � F ) //// H��(X � F � F ):Let j�(X) = TH��(X)and k�(X) = Y(�)2Rep(V;�)H���(X�(V )):These are both �-cohomology theories in X. Applied to our original diagram ofprojections, both give equalizers, the �rst because the functor T is exact and thesecond by an elaboration of Quillen's argument. We have an induced map fromthe equalizer diagram for j� to that for k�. The isotropy subgroups of the �nite�-CW complexesX �F and X �F �F are elementary Abelian, and it thereforesu�ces to show that the mapTH�(BW ) �= j�(�=W ) �! k�(�=W ) �= Y(�)2Rep(V;�)H�(E�� ��� (�=W )�(V ))is an isomorphism when W is an elementary Abelian subgroup of �. I learnedthe details of how to see this from Nick Kuhn. He has shown that T enjoys theproperty TH�(BW ) �= Y(�)2Rep(V;W )H�(BW );(5.5)



92 VIII. THE SULLIVAN CONJECTUREand the map in cohomology that we wish to show is an isomorphism is in factinduced by a homeomorphisma(�)2Rep(V;�)E�� ��� (�=W )�(V ) �! a(�)2Rep(V;W )BW:(5.6)To see the homeomorphism, note that � acts on the disjoint union over � 2Hom(V;�) of the spaces (�=W )�(V ); � sends a point �0W �xed by �(V ) to thepoint ��0W �xed by the �-conjugate of �. It is not hard to check that, as �-spaces,a(�)2Rep(V;�)�� ��(�=W )�(V ) �= a�2Hom(V;�)(�=W )�(V ) �= a�2Hom(V;W )�=W:Taking E� as a model for each E��(V ), this implies the required homeomor-phism.W. G. Dwyer and A. Zabrodsky. Maps between classifying spaces. Springer Lecture Notes inMathematics Vol. 1298(1987), 106-119.S. Jackowski, J. McClure, and B. Oliver. Homotopy theory of classifying spaces of Lie groups.In \Algebraic topology and its applications", ed. Carlsson et al, MSRI Publications Vol. 27,Springer Verlag, 1994, pp 81-124.N. J. Kuhn. Generic representation theory and Lannes' T -functor. London Math. Scc. LectureNote Series Vol. 176(1992), 235-262.J. Lannes. Cohomology of groups and function spaces. (Notes from a talk at the University ofChicago.) Preprint, 1986. Ecole Polytechnique.D. Notbohm. Maps between classifying spaces. Math. Zeitschrift. 207(1991), 153-168.D. G. Quillen. The spectrum of an equivariant cohomology ring: I, II. Annals of Math. 94(1971),549-572 and 573-602.



CHAPTER IXAn introduction to equivariant stable homotopyMG(V ) 1. G-spheres in homotopy theoryWhat is a G-sphere? In our work so far, we have only used spheres Sn, whichhave trivial action by G. Clearly this is contrary to the equivariant spirit of ourwork. The full richness of equivariant homotopy and homology theory comes fromthe interplay of homotopy theory and representation theory that arises from theconsideration of spheres with non-trivial actions by G. In principle, it might seemreasonable to allow arbitrary G-actions. However, a closer inspection of the roleof spheres in nonequivariant topology, both in manifold theory and in homotopytheory, gives the intuition that we should restrict to the linear spheres that arisefrom representations. Throughout the rest of the book, we shall generally use theterm \representation of G" or sometimes \G-module" to mean a �nite dimensionalreal inner product space with a given smooth action of G through linear isometries.We may think of V as a homomorphism of Lie groups � : G �! O(V ). Thisconvention contradicts standard usage, in which representations are de�ned to beisomorphism classes.For a representation V , we have the unit sphere S(V ), the unit disk D(V ),and the one-point compacti�cation SV ; G acts trivially on the point at in�nity,which is taken as the basepoint of SV . The based G-spheres SV will be central tovirtually everything that we do from now on. We agree to think of n as standingfor Rn with trivial G-action, so that Sn is a special case of our de�nition. For abased G-space X, we write�VX = X ^ SV and 
VX = F (SV ;X):93



94 IX. AN INTRODUCTION TO EQUIVARIANT STABLE HOMOTOPYOf course, �V is left adjoint to 
V .When do we use trivial spheres and when do we use representation spheres?This is a subtle question, and in some of our work the answer may well seem coun-terintuitive. In de�ning weak equivalences of G-spaces, we only used homotopygroups de�ned in terms of trivial spheres, and that is unquestionably the rightchoice in view of the Whitehead theorem for G-CW complexes. Nevertheless,there are homotopy groups de�ned in terms of representation spheres, and theyoften play an important role, although more often implicit than explicit. We maythink of a G-representation V as an H-representation for any H � G. For a basedG-space X, we de�ne�HV (X) = [SV ;X]H �= [G+ ^H SV ;X]G:(1.1)Here the brackets denote based homotopy classes of based maps, with the ap-propriate equivariance. For a pair (X;A) of based G-spaces, we form the usualhomotopy �ber Fi of the inclusion i : A �! X, and we de�ne�HV+1(X;A) = �HV (Fi):(1.2)It is natural to separate out the trivial and non-trivial parts of representations.Thus we let V (H) denote the orthogonal complement in V of the �xed point spaceV H. We then have the long exact sequence� � � // �HV (H)+n(X) // �HV (H)+n(X;A) // � � � // �HV (H)(A) // �HV (H)(X)(1.3)of groups up to �HV (H)+1(X) and of pointed sets thereafter.Waner will develop a G-CW theory adapted to a given representation V in thenext chapter, and Lewis will use it to study the Freudenthal suspension theoremfor these homotopy groups in the chapter that follows. There is a more elementarystandard form of the Freudenthal suspension theorem, due �rst to Hauschild, thatsu�ces for many purposes. Just as nonequivariantly, it is proven by studyingthe adjoint map � : Y �! 
V�V Y . Here one proceeds by reduction to the non-equivariant case and use of obstruction theory. Recall the notion of a �-equivalencefrom Ix3, where � is a function from conjugacy classes of subgroups of G to theintegers greater than or equal to �1. De�ne the connectivity function c�(Y ) ofa G-space Y by letting cH(Y ) be the connectivity of Y H for H � G; we setcH(Y ) = �1 if Y H is not path connected.



2. G-UNIVERSES AND STABLE G-MAPS 95Theorem 1.4 (Freudenthal suspension). The map � : Y �! 
V�V Y is a�-equivalence if � satis�es the following two conditions:(1) �(H) � 2cH(Y ) + 1 for all subgroups H with V H 6= 0, and(2) �(H) � cK(Y ) for all pairs of subgroups K � H with V K 6= V H.Therefore the suspension map�V : [X;Y ]G �! [�VX;�V Y ]Gis surjective if dim(XH) � �(H) for all H, and bijective if dim(XH) � �(H)� 1.H. Hauschild. �Aquivariante Homotopie I. Arch. Math. 29(1977), 158-165.U. Namboodiri, Equivariant vector �elds on spheres. Trans Amer. Math. Soc. 278(1983),431-460. 2. G-Universes and stable G-mapsWe next explain how to stabilize homotopy groups and, more generally, sets ofhomotopy classes of maps between G-spaces. There are several ways to make thisprecise. The most convenient is that based on the use of universes.Definition 2.1. A G-universe U is a countable direct sum of representationssuch that U contains a trivial representation and contains each of its sub-represen-tations in�nitely often. Thus U can be written as a direct sum of subspaces (Vi)1,where fVig runs over a set of distinct irreducible representations of G. We saythat a universe U is complete if, up to isomorphism, it contains every irreduciblerepresentation of G. If G is �nite, one example is V 1, where V is the regularrepresentation of G. We say that a universe is trivial if it contains only the trivialirreducible representation. One example is UG for a complete universe U . A �nitedimensional sub G-space of a universe U is said to be an indexing space in U .We should emphasize right away that, as soon as we start talking seriously aboutstable objects, or \spectra", the notion of a universe will become important evenin the nonequivariant case.We can now give a �rst de�nition of the set fX;Y gG of stable maps betweenbased G-spaces X and Y .Definition 2.2. Let U be a complete G-universe. For a �nite based G-CWcomplex X and any based G-space Y , de�nefX;Y gG = colimV [�VX;�V Y ]G;



96 IX. AN INTRODUCTION TO EQUIVARIANT STABLE HOMOTOPYwhere V runs through the indexing spaces in U and the colimit is taken over thefunctions [�VX;�V Y ]G �! [�WX;�WY ]G; V �W;that are obtained by sending a map �VX �! �V Y to its smash product with theidentity map of SW�V .When G is �nite and X is �nite dimensional, the Freudenthal suspension the-orem implies that if we suspend by a su�ciently large representation, then allsubsequent suspensions will be isomorphisms.Corollary 2.3. If G is �nite and X is �nite dimensional, there is a represen-tation V0 = V0(X) such that, for any representation V ,�V : [�V0X;�V0Y ]G �=�! [�V0�VX;�V0�V Y ]Gis an isomorphism.Let X and Y be �nite G-CW complexes. If G is �nite, the stable value[�V0X;�V0Y ]G = fX;Y gGis a �nitely generated abelian group. However, if G is a compact Lie group andX has in�nite isotropy groups, there is usually no representation V0 for whichall further suspensions �V are isomorphisms, and fX;Y gG is usually not �nitelygenerated.Remark 2.4. The groups fSV ;XgG are called equivariant stable homotopygroups of X and are sometimes denoted !GV (X). However, it is more usual todenote them by �GV (X), relying on context to resolve the ambiguity between sta-ble and unstable homotopy groups.The de�nition of fX;Y gG just given is not the right de�nition for an in�nitecomplex X. Observe that[�VX;�V Y ]G �= [X;
V�V Y ]G:Definition 2.5. Let U be a complete G-universe. For a based G-space X,de�ne QX = colimV 
V�VX;where V runs over the indexing spaces in U and the colimit is taken over themaps 
V�VX �! 
W�WX; V �W;



3. EULER CHARACTERISTIC AND TRANSFER G-MAPS 97that are obtained by sending a map SV �! X ^SV to its smash product with theidentity map of SW�V . Observe that the maps of the colimit system are inclusions.Lemma 2.6. Fix an indexing space V in U . For based G-spaces X, there is anatural homeomorphism QX �= 
VQ�VX:Proof. Clearly QX is homeomorphic to colimW�V 
W�WX, and similarly forQ�VX. By the compactness of SV and the evident isomorphisms of functors�V�W�V �= �W and 
V
W�V �= 
W for V � W ,colim
W�WX �= colim
V
W�V �W�V�VX �= 
V colim
W�V�W�V�VX;where the colimits are taken over W � V . The conclusion follows.Lemma 2.7. If X is a �nite G-CW complex, thenfX;Y gG �= [X;QY ]G:Proof. This is immediate from the compactness of X, which ensures that[X;QY ]G �= colimV [X;
V�V Y ]G:For in�nite complexesX, it is [X;QY ]G that gives the right notion of the stablemaps from X to Y . We shall return to this point in Chapter XII, where weintroduce the stable homotopy category of spectra.3. Euler characteristic and transfer G-mapsWe here introduce some fundamentally important examples of stable maps thatrequire the use of representations for their de�nitions. The Euler characteristicand transfer maps de�ned here will appear at increasing levels of sophisticationand generality as we go on.Let M be a smooth closed G-manifold. We may embed M in a representationV , say with normal bundle �. We may then embed a copy of � as a tubular neigh-borhood of M in V . Just as for nonequivariant bundles, the Thom complex T� ofa G-vector bundle � is constructed by forming the �berwise one-point compact-i�cation of the bundle, letting G act trivially on the points at in�nity, and thenidentifying all of the points at in�nity to a single G-�xed basepoint �. We thenhave the Pontrjagin-Thom map t : SV �! T�:



98 IX. AN INTRODUCTION TO EQUIVARIANT STABLE HOMOTOPYIt is the based G-map obtained by mapping the tubular neighborhood isomor-phically onto � and mapping all points not in the tubular neighborhood to thebasepoint �. The inclusion of � in �M � �, where �M is the tangent bundle of M ,induces a based G-mape : T� �! T (�M � �) �=M+ ^ SV :The composite of these two maps is the \transfer map"� (M) = e � t : SV �! �VM+(3.1)associated to the projection M �! fptg, which we think of as a trivial G-bundle.Of course, this projection induces a map� : �VM+ �! �V S0 �= SV :We de�ne the Euler characteristic of M to be the based G-map�(M) = � � � (M) : SV �! SV :(3.2)The name comes from the fact that if we ignore the action of G and regard �(M)as a nonequivariant map of spheres, then its degree is just the classical Eulercharacteristic of M . The proof is an interesting exercise in classical algebraictopology, but the fact will become clear from our later more conceptual descriptionof these maps. In fact, from the point of view that we will explain in XVx1, thismap is the Euler characteristic of M , by de�nition.Since V is not well-de�ned | we just chose some V large enough that we couldembedM in it | it is most natural to regard the transfer and Euler characteristicsas stable maps � (M) 2 fS0;M+gG and �(M) 2 fS0; S0gG:(3.3)Observe that, when M = G=H, the map � (G=H) of (3.1) can be written as thecomposite� (G=H) : SV //t G+ ^H SW //e G+ ^H SV �= (G=H)+ ^ SV ;(3.4)where W is the complement of the image in V of the tangent plane L(H) atthe identity coset and e is the extension to a G-map of the H-map obtained bysmashing the inclusion S0 �! SL(H) with SW . The unlabelled isomorphism isgiven by I.2.6.



4. MACKEY FUNCTORS AND COMACKEY FUNCTORS 99More generally, for subgroups K � H of G, there is a stable transfer G-map� (�) : G=K+ �! G=H+ associated to the projection G=H �! G=K. In fact, wemay view � as the extension to a G-mapG�K (K=H) �! G=Kof the projection K=H �! fptg, and we may construct the transfer K-map� (K=H) starting from an embedding of K=H in a G-representation V regarded asa K-representation by restriction. We then de�ne � (�) to be the map� (�) : G=K+ ^ SV �= G+ ^K SV �! G+ ^K (K=H+ ^ SV ) �= G=H+ ^ SV ;(3.5)where the isomorphisms are given by I.2.6 and the arrow is the extension of theK-map � (K=H) to a G-map. Note that any G-map f : G=K+ �! G=H+ isthe composite of a conjugation isomorphism cg : G=K �! G=g�1Kg and theprojection induced by an inclusion g�1Kg � H. We let � (cg) = cg�1. With thesede�nitions, we obtain a contravariantly functorial assignment of stable transfermaps � (f) to G-maps f between orbits. Of course, such G-maps may themselvesbe regarded as stable G-maps between orbits.4. Mackey functors and coMackey functorsWe are headed towards the notions of RO(G)-graded homology and cohomologytheories, but we start by describing what the coe�cients of such theories will looklike in the case of \ordinary" RO(G)-graded theories.Recall that the ordinary homology and the ordinary cohomology of G-spacesare de�ned in terms of covariant and contravariant coe�cient systems, which arefunctors from the homotopy category hG of orbits to the category A b of Abeliangroups. Let AG denote the category that is obtained from hG by applying the freeAbelian group functor to morphisms. Thus AG(G=H;G=K) is the free Abeliangroup generated by hG (G=H;G=K). Then coe�cient systems are the same asadditive functors AG �! A b.Now imagine what the stable analog might be. It is clear that the sets fX;Y gGare already Abelian groups.Definition 4.1. De�ne the Burnside category BG to have objects the orbitspaces G=H and to have morphismsBG(G=H;G=K) = fG=H+; G=K+gG;



100 IX. AN INTRODUCTION TO EQUIVARIANT STABLE HOMOTOPYwith the evident composition. We shall also refer to BG as the stable orbit cate-gory. Observe that it is an \A b-category": its Hom sets are Abelian groups andcomposition is bilinear.We must explain the name \Burnside". The zeroth equivariant stable homotopygroup of spheres or equivariant \zero stem" fS0; S0gG is a ring under composition.We shall denote this ring by BG for the moment. It is a fundamental insight ofSegal that, if G is �nite, then BG is isomorphic to the Burnside ring A(G). HereA(G) is de�ned to be the Grothendieck ring of isomorphism classes of �nite G-setswith addition and multiplication given by disjoint union and Cartesian product.For a compact Lie group G, tom Dieck generalized this description of BG byde�ning the appropriate generalization of the Burnside ring. In this case, A(G)is de�ned to be the ring of equivalence classes of smooth closed G-manifolds,where two such manifolds are said to be equivalent if they have the same Eulercharacteristic in BG; again, addition and multiplication are given by disjoint unionand Cartesian product. An exposition will be given in XVIIx2.Definition 4.2. A covariant or contravariant stable coe�cient system is a co-variant or contravariant additive functor BG �! A b. A contravariant stablecoe�cient system is called a Mackey functor. A covariant stable coe�cient sys-tem is called a coMackey functor.When G is �nite, Dress �rst introduced Mackey functors, using an entirelydi�erent but equivalent de�nition, to study induction theorems in representationtheory. We shall explain the equivalence of de�nitions in XIXx3. The classicalexamples of Mackey functors are the representation ring and Burnside ring Mackeyfunctors, which send G=H to R(H) or A(H). The generalization to compact Liegroups was �rst de�ned and exploited by Lewis, McClure, and myself.Observe that we obtain an additive functor AG �! BG by sending the ho-motopy class of a G-map f : G=H �! G=K to the corresponding stable map.Therefore a (covariant or contravariant) stable coe�cient system has an underly-ing ordinary coe�cient system. Said another way, stable coe�cient systems can beviewed as given by additional structure on underlying ordinary coe�cient systems.What is the additional structure? Viewed as a stable map, � (G=H) is a mor-phism G=G �! G=H in the category BG, and, more generally, so is � (f) for anyG-map f : G=H �! G=K. We shall see in XIXx3 that every morphism of thecategory BG is a composite of stable G-maps of the form f or � (f). That is, theextra structure is given by transfer maps. When G is �nite, we shall explain alge-



4. MACKEY FUNCTORS AND COMACKEY FUNCTORS 101braically how composites of such maps are computed. In the general compact Liecase, such composites are quite hard to describe. For this reason, it is also quitehard to construct Mackey functors algebraically. However, we have the followingconcrete example. It may not seem particularly interesting at �rst sight, but weshall shortly use it to prove an important result called the Conner conjecture.Proposition 4.3. Let G be any compact Lie group. There is a unique Mackeyfunctor Z: BG �! A b such that the underlying coe�cient system of Z is con-stant at Zand the homomorphism Z�! Z induced by the stable transfer mapG=K+ �! G=H+ associated to an inclusion H � K is multiplication by the Eulercharacteristic �(K=H).Proof. In XIXx3, we shall give a complete additive calculation of the mor-phisms of BG, from which the uniqueness will be clear. The problem is to showthat the given speci�cations are compatible with composition. We do this indi-rectly. As already noted, we have the Burnside Mackey functor A. Thought oftopologically, its value on G=H isfG=H+; S0gG �= fS0; S0gH = BH ;and the contravariant functoriality is clear from this description. De�ne anotherMackey functor I by letting I(G=H) be the augmentation ideal of A(H). Thoughtof topologically, its value on G=H is the kernel of the mapfG=H+; S0gG �! fG+; S0gG �=Zinduced by the G-map G �! G=H that sends the identity element e to thecoset eH. Using XIX.3.2 and the de�nition of Burnside rings in terms of Eulercharacteristics, one can check that I is a subfunctor of A. A key point is theidentity �(Y )�(H=K) = �(H �K Y )of nonequivariant Euler classes for H � K and H-spaces Y . One can then de�neZto be the quotient Mackey functor A=I; the desired Euler characteristic formulacan be deduced from the formula just cited.T. tom Dieck. Transformation groups and representation theory. Springer Lecture Notes inMathematics. Vol. 766. 1979.A. Dress. Contributions to the theory of induced representations. Springer Lecture Notes inMathematics Vol. 342, 1973, 183-240.L. G. Lewis, Jr., J. P. May, and M. Steinberger (with contributions by J. E. McClure). Equiv-ariant stable homotopy theory (Vx9). Springer Lecture Notes in Mathematics. Vol. 1213. 1986.



102 IX. AN INTRODUCTION TO EQUIVARIANT STABLE HOMOTOPY5. RO(G)-graded homology and cohomologyWe shall be precise about how to de�ne RO(G)-graded homology and cohomol-ogy theories in XIIIx1. Here we give an intuitive description. The basic idea isthat if we understand G-spheres to be representation spheres SV , then we mustunderstand the suspension axiom to allow suspension by such spheres. This forcesus to grade on representations. However, the standard term \RO(G)-grading" isa technical misnomer since the real representation ring RO(G) is de�ned in termsof isomorphism classes of representations, and this is too imprecise to allow thecontrol of \signs" (which must be interpreted as units in the Burnside ring of G).Thus, intuitively, a reduced RO(G)-graded homology theory ~EG� de�ned onbased G-spaces X consists of functors ~EG� : �hGT �! A b for all � 2 RO(G)together with suitably compatible natural suspension isomorphisms~EG� (X) �= ~EG�+V (�VX)for all G-representations V . We require each ~EG� to carry co�bration sequencesA �! X �! X=A of based G-spaces to three term exact sequences and to carrywedges to direct sums. We have combined the homotopy and weak equivalenceaxioms in the statement that the ~EG� are de�ned on �hGT .For each representation V with V G = 0, it follows by use of the suspension iso-morphism for S1 that the groups f ~EGV+njn 2Zg give a reducedZ-graded homologytheory in the sense that the evident equivariant analogs of the Eilenberg-Steenrodaxioms, other than the dimension axiom, are satis�ed. Taking V = 0, this givesthe underlying Z-graded homology theory of the given RO(G)-graded theory. Wecould elaborate by de�ning unreduced theories, showing how to construct unre-duced theories from reduced ones by adjoining disjoint basepoints and de�ningappropriate relative groups, and showing that unreduced theories give rise to re-duced ones in the usual fashion. However, we concentrate on the essential newfeature, which is the suspension axiom for general representations V .Of course, we have a precisely similar de�nition of an RO(G)-graded cohomol-ogy theory. There are two quite di�erent philosophies about these RO(G)-gradedtheories. One may view them as the right context in which to formulate calcula-tions. For example, there are calculations of Lewis that show that the cohomologyof a space may have an elegant algebraic description in RO(G)-graded cohomol-ogy that is completely obscured when one looks only at the Z-graded part of therelevant theory. In contrast, one may view RO(G)-gradability as a tool for thestudy of theZ-graded parts of theories. Our proof of the Conner conjecture in the



6. THE CONNER CONJECTURE 103next section will be a direct application of that philosophy.When can the Z-graded cohomology theory with coe�cients in a coe�cientsystem M be extended to an RO(G)-graded cohomology theory? If we are givensuch an extension, then the transfer maps � (G=H) : SV �! G=H+ ^ SV of (3.4)will induce transfer homomorphisms~HnH (X;M jH) �= ~Hv+nG (�V (G=H+ ^X);M)� �~HnG(X;M) �= ~Hv+nG (�VX;M):(5.1)Taking n = 0 and X = S0, we obtain a transfer homomorphism M(G=H) �!M(G=G). An elaboration of this argument shows that the coe�cient system Mmust extend to a Mackey functor. It is a pleasant fact that this necessary conditionis su�cient.Theorem 5.2. Let G be a compact Lie group and letM and N be a contravari-ant and a covariant coe�cient system The ordinary cohomology theory ~H�G(�;M)extends to an RO(G)-graded cohomology theory if and only if M extends to aMackey functor. The ordinary homology theory ~HG� (�;N) extends to an RO(G)-graded homology theory if and only if N extends to a coMackey functor.We shall later explain two very di�erent proofs. Waner will describe a chain levelconstruction in terms of G-CW(V ) complexes in the next chapter. I will describea spectrum level construction of the representing Eilenberg-MacLane G-spectrain XIIIx4.L. G. Lewis, Jr. The RO(G)-graded equivariant ordinary cohomology of complex projectivespaces with linearZ=p actions. Springer Lecture Notes in Mathematics Vol. 1361, 1988, 53-122.6. The Conner conjectureTo illustrate the force of RO(G)-gradability, we explain how the results statedin the previous two sections directly imply the following conjecture of Conner.Theorem 6.1 (Conner conjecture). Let G be a compact Lie group and letX be a �nite dimensional G-space with �nitely many orbit types. Let A be anyAbelian group. If ~H�(X;A) = 0, then ~H�(X=G;A) = 0.This was �rst proven by Oliver, using �Cech cohomology and wholly di�erenttechniques. It was known early on that the conjecture would hold if one couldconstruct a suitable transfer map.



104 IX. AN INTRODUCTION TO EQUIVARIANT STABLE HOMOTOPYTheorem 6.2. Let X be any G-space and let � : X=H �! X=G be the naturalprojection, where H � G. For n � 0, there is a natural transfer homomorphism� : ~Hn(X=H;A) �! ~Hn(X=G;A)such that � � �� is multiplication by the Euler characteristic �(G=H).Proof. Tensoring the Mackey functorZof Proposition 4.3 with A, we obtain aMackey functor A whose underlying coe�cient system is constant at A. The mapA(G=H) �! A(G=G) associated to the stable transfer map G=G+ �! G=H+ ismultiplication by �(G=H). As we observed in our �rst treatment of Smith theory(IVx1), ordinary G-cohomology with coe�cients in a constant coe�cient systemis the same as ordinary nonequivariant cohomology on orbit spaces:Hn(X=H;A) �= HnH(X;AjH) and Hn(X=G;R) �= HnG(X;A):Taking M = A, (5.1) already displays the required transfer map. The formula for� ��� follows formally, but it can also be derived from the fact that the equivariantEuler characteristic SV �! G=H+ ^ SV �! SV ;regarded as a nonequivariant map, has degree �(G=H).How does the Conner conjecture follow? Conner himself proved it when G is a�nite extension of a torus, the methods being induction and use of Smith theory| one proves that both XG and X=G are A-acyclic. For example, the result for atorus reduces immediately to the result for a circle. Here the \�nitely many orbittypes" hypothesis implies that XG = XC for C cyclic of large enough order, sothat we really are in the realm where Smith theory can be applied. Assuming thatthe result holds when G is a �nite extension of a torus, let N be the normalizer ofa maximal torus in G. Then N is a �nite extension of a torus and �(G=N) = 1.The composite� � �� : ~Hn(X=G;A) �! ~Hn(X=N ;A) �! ~Hn(X=G;A)is the identity, and that's all there is to it.P. Conner. Retraction properties of the orbit space of a compact topological transformationgroup. Duke Math. J. 27(1960), 341-357.G. Lewis, J. P. May, and J. McClure. Ordinary RO(G)-graded cohomology. Bulletin Amer.Math. Soc. 4(1981), 208-212.R. Oliver. A proof of the Conner conjecture. Annals of Math. 103(1976), 637-644.



CHAPTER XG-CW(V ) complexes and RO(G)-graded cohomologyby Stefan Waner1. Motivation for cellular theories based on representationsIf a compact Lie group G acts smoothly on a smooth manifoldM then the actionis locally orthogonal. That is, for each x 2 M there is a Gx-invariant neighborhoodU of x di�eomorphic to the open unit disc in a representation V of Gx. Moreover,writing Gx as H, if L(H) is the tangent representation of H at eH 2 G=H, thenL(H) is a summand of V . (Of course, L(H) = 0 if G is �nite.) It follows thatthe G-orbit of x has a neighborhood di�eomorphic to G�H D(V � L(H)), whereV � L(H) is the orthogonal complement of L(H) in V .The above remarks seem to suggest that one ought to consider G-complexesmodeled by cells of this form. On the other hand, it has been established byBredon and others that ordinary G-CW complexes seem to su�ce for practicalpurposes. These are G-complexes with \cells" of the form G=H � Dn, where Gacts trivially on Dn. Basically, the local neighborhoods G �H D(V � L(H)) canbe G-triangulated into cells of the above form, so it would seem that there is noneed to consider anything more elaborate than G-CW complexes. But there aresome theoretical di�culties:(1) Duality doesn't work. That is, the cellular chains obtained from G-CWstructures on smooth G-manifolds do not exhibit Poincar�e duality. The geometricreason for this is that the dual of an n-dimensional G-cell G=H � Dn is not aG-cell. The dual cell to a zero dimensional cell G=H is de�ned as its star inthe �rst barycentric subdivision, while the duals of higher dimensional cells are105



106 X. G-CW(V ) COMPLEXES AND RO(G)-GRADED COHOMOLOGYintersections of such stars. In general, the dual of a G-cell G=H�Dn has the formG �H D(V � L(H) �Rn), where V is the local representation at eH. This reallyforces our hand.(2) One has the result, due to various authors (Lewis, May, McLure, Waner)that, if M is a Mackey functor, then Bredon cohomology with coe�cients in Mextends to an RO(G)-graded cohomology theory. This will be treated from thestable homotopy category point of view later in the book. The question then is:what is the geometric representation of the cells in dimension V ? In particular,can we write the V th cohomology group in terms of the cohomology of a cellularcochain complex?The purpose of this chapter is to outline the basic theory of cell complexesmodeled on representations of G, and to use them to construct explicit models ofordinary RO(G)-graded cohomology in which Poincar�e duality holds for certainclasses of G-manifolds. For reasons of clarity, only complexes modeled on a singlerepresentation V of G will be discussed. The more elaborate theory in which V isallowed to vary is already completed as joint work with Costenoble and May, andsome of it has appeared in papers of Costenoble and myself. Roughly speaking,whatever works for a single representation generalizes to the more elaborate case.When G is not �nite, there appear to be two theories of G-CW(V ) complexes.The one that I will concentrate on will be the one that is not dual to the usualG-CW theory (on suitable G-manifolds), but that does work as a cellular theoryand gives rise to ordinary RO(G)-graded cohomology. To make amends, we willvery brie
y indicate the present state of the variant that gives the true dual theory.S. R. Costenoble and S. Waner. The equivariant Thom isomorphism theorem. Paci�c J. Math.152(1992), 21-39.S. R. Costenoble and S. Waner. Equivariant Poincar�e duality. Michigan Math. J. 39(1992).2. G-CW(V ) complexesLet V be a �xed given orthogonal representation of G and write dim V = jV j.To understand the de�nitions that follow, it is useful to keep in mind the followingobservation, whose easy inductive proof will be left to the reader.Lemma 2.1. Let Hn � Hn�1 � � � � � H0 = G be a strictly increasing chain ofsubgroups of G such that each Hi occurs as the isotropy subgroup of some pointin V (the point 0 having isotropy group G). Then, as a representation of Hn, Vcontains a trivial representation of dimension n.



2. G-CW(V ) COMPLEXES 107For H � G, we let V (H) denote the orthogonal complement of V H in V . If Wis an H-module, we let D(W ) and S(W ) denote the unit disc and sphere in W .Definition 2.2. A G-CW(V ) complex is a G-space X with a decompositionX = colimnXn such that X0 is a disjoint union of G-orbits of the form G=H,where H acts trivially on V , and Xn is obtained from Xn�1 by attaching \cells"G �H D(V (H) �Rt), where jV (H)j+ t = n, along attaching G-mapsG�H S(V +Rt) �! Xn�1:A map f : X �! Y between G-CW(V ) complexes is cellular if f(Xn) � Y n for alln, and the notions of skeleta, dimension, subcomplex, relativeG-CW(V ) complex,and so on are de�ned as one would expect from the classical case V = 0.Remarks 2.3. (i) Although imprecise, it is convenient to think of V (H) � Rtas V +Rs, where jV j+ s = n and thus jV Hj+ s = t; here s may be negative, butthen the de�nition implies that jV Hj � �s for all subgroups H occurring in thedecomposition.(ii) The stipulation on the dimension implies that the cell G�H D(V (H)�Rt) isan (n+ dimG=H)-dimensional G-manifold.The last observation explains why the de�nition does not give the true dualtheory when G has positive dimension. The following variant recti�es this. How-ever, this theory has not yet been worked out thoroughly or extended to deal withvarying representations, although we suspect that all works well.Variant 2.4. Let G be an in�nite compact Lie group. There is a variant def-inition of a G-CW(V ) complex which di�ers from the de�nition given in that werequire X0 to be a disjoint union of �nite orbits G=H such that H acts trivially onV and we attach cells of the form G�H D((V � L(H)) +Rs), where jV j+ s = n,when constructing Xn from Xn�1. Here L(H) is the tangent representation ofG=H at eH, and the de�nition implies that L(H) is contained in V jH for all sub-groups H occurring in the decomposition. With these stipulations on dimensions,the n-cells that we attach are n-dimensional G-manifolds.Part of our motivation comes from consideration of G-manifolds that are locallymodeled on a single representation.



108 X. G-CW(V ) COMPLEXES AND RO(G)-GRADED COHOMOLOGYDefinition 2.5. A smooth G-manifoldM has dimension V if, for each x 2M ,there is a Gx-invariant neighborhood U of x that is di�eomorphic to the open unitdisc in the restriction of V to Gx. It follows that L(H) embeds in V jH and theorbit Gx has a neighborhood of the form G �H D(V � (L(H)). Any smooth G-manifoldM each of whose �xed point sets is non-empty and connected must havedimension V , where V is the tangent representation at any G-�xed point. Moregenerally,M has dimension V � i for a positive integer i � jV j if, for each x 2M ,Gx acts on V with an i-dimensional trivial summand and there is a Gx-invariantneighborhood U of x that is Gx-di�eomorphic to the open unit disc in V � Ri.Thus, if M has dimension V , then @M has dimension V � 1. For example, D(V )is a V -dimensional manifold and S(V ) is a (V � 1)-dimensional manifold.When G is �nite, G-manifolds of dimension V and their bordism theories were�rst discussed by Pulikowski and Kosniowski; I later carried the study further. Bya theorem of Stong, if G is �nite of odd order, then any G-manifold is cobordantto a sum of G-manifolds of the form G�H N , where N has dimensionW for someH-module W .The classical theory of dual cell decompositions of smooth manifolds (for whichsee Seifert and Threlfall) generalizes to V -manifolds. We shall not go into thede�nitions needed to make this precise. The intuition comes from equivariantSpanier-Whitehead and Atiyah duality, which will be discussed in XVIxx7-8. If aclosed smooth G-manifoldM embeds in V , thenM+ is V -dual to the Thom spaceT� of the normal bundle of the embedding. In the case M = G=H, this normalbundle is T� = G+ ^H SV�L(H).Proposition 2.6. If G is �nite, then we obtain a G-CW(V ) structure on a(V � i)-dimensional manifold M by passage to dual cells from an ordinary G-CW structure. With the variant de�nition of a G-CW(V ) complex, the statementremains true for general compact Lie groups G.From now on, we restrict attention to our �rst de�nition of a G-CW(V ) complex.Lemma 2.7. If X is a G-CW complex, then X �D(V ) has the structure of aG-CW(V ) complex under the usual product structure. Therefore, for any V , anyG-CW complex is G-homotopy equivalent to a G-CW(V ) complex.Proposition 2.8. For any V , a G-space has the G-homotopy type of a G-CWcomplex if and only if it has the G-homotopy type of a G-CW(V ) complex.



3. HOMOTOPY THEORY OF G-CW(V ) COMPLEXES 109The lemma gives the forward implication in the case of �nite G. The casefor general compact Lie groups is harder, and we need to use the equivariantversion of Brown's construction to give a brute force weak G-approximation by aG-CW(V ) complex. That this approximation is in fact a G-homotopy equivalencethen follows from the converse and the G-Whitehead theorem. For the converse,if X is a G-CW(V ) complex, then X is a colimit of spaces of the G-homotopytype of G-CW complexes, and thus X is also such a homotopy type by a telescopeargument and the homotopy invariance of colimits.Proposition 2.9. If X and Y have, respectively, a G-CW(V ) and G-CW(W )structure, then X � Y has a G-CW(V �W ) structure.C. Kosniowski. A note on RO(G)-graded G-bordism. Quart J. Math. Oxford 26(1975), 411-419.W. Pulikowski. RO(G)-graded G-bordism theory. Bull. de L'academie Pol. des Sciences11(1973), 991-999.H. Seifert and W. Threlfall. A Textbook of Topology (translation). Academic Press. 1980.R. E. Stong. Unoriented bordism and actions of �nite groups. Memoirs A.M.S. No. 103. 1970.Equivariant RO(G)-graded bordism theories. Topology and its Applications. 17(1984), 1-26.3. Homotopy theory of G-CW(V ) complexesWe now do a little homotopy theory. Since we are using representations tode�ne attaching maps, it is reasonable to consider the homotopy groups that werede�ned in terms of representations in IX.1.1.Definition 3.1. A G-space X is V -connected ifXH is jV H j-connected for eachclosed subgroup H � G. Let e : X �! Y be a G-map and let n be an integer.Then e is a (V + n)-equivalence if, for each H � G and each choice of basepointin XH , e� : �HV (H)+q(X) �! �HV (H)+q(Y ) is an isomorphism if q � jV Hj+n� 1 andan epimorphism if q � jV Hj+ n.Theorem 3.2 (HELP). Let e : Y �! Z be a (V + n)-equivalence and let(X;A) be a relative G-CW(V ) complex of dimension � jV j + n. Then we can



110 X. G-CW(V ) COMPLEXES AND RO(G)-GRADED COHOMOLOGYcomplete the following homotopy extension and lifting diagram:A //i0��i A� I��{{ hxxxxxxxxx Ao o i1 ~~ g}}}}}}}} �� iZ Yoo eX ??f ~~~~~~~~ //i0 X � I~hccF F F F F X:oo i1 ~g` `A A A ASketch of Proof. We extend the G-maps g and h cell-by-cell and work in-ductively. This reduces the problem to the special case where A = G �H S(W )and X = G�H D(W ). The pair (X;A) then has the structure of a relative G-CWcomplex with G-cells of the form G=K �Dr with r � jWKj � jV Kj + n and Ksubconjugate to H. Since eK is a (jV Kj+ n)-equivalence, this allows us to applythe HELP theorem of ordinary G-homotopy theory to complete the proof.Theorem 3.3 (G-CW(V ) Whitehead). Let e : Y �! Z be a (V + n)-equivalence and let X be a G-CW(V ) complex. Then e� : [X;Y ]G �! [X;Z]G(unbased G-homotopy classes) is an isomorphism if dimX < n + jV j and an epi-morphism if dimX = n+ jV j. Moreover the conclusion remains true if n =1.Proof. As usual, apply HELP to the pair (X; ;) for surjectivity and to thepair (X � I;X � @I) for injectivity.Theorem 3.4 (Cellular Approximation). Every G-map f : X �! Y ofG-CW(V ) complexes is G-homotopic to a cellular map. If f is already cellular ona subcomplex A, then the homotopy can be taken relative to A.Sketch of proof. One easily shows that the inclusion i : Y n �! Y is a(V +n�jV j)-equivalence, and HELP then applies inductively to push Xn into Y nand give the required homotopy.Theorem 3.5. For any G-space X, there is a G-CW(V ) complex �X and aweak equivalence 
 : �X �! X.Sketch of proof. In view of Proposition 2.8, this follows directly from theanalog for ordinary G-CW complexes.



4. ORDINARY RO(G)-GRADED HOMOLOGY AND COHOMOLOGY 1114. Ordinary RO(G)-graded homology and cohomologyRecall the discussion of stable coe�cient systems, alias Mackey and coMackeyfunctors, from IXx4. The algebra of stable coe�cient systems works in the sameway as the algebra of coe�cient systems discussed in Ix3. The categories of Mackeyfunctors and of coMackey functors are Abelian. If M and N are, respectively,Mackey and coMackey functors, we have the coend or tensor product M 
BG N .If M and M 0 are Mackey functors, we have the group of natural transformationsHomBG(M;M 0):Observe that, for any based G-spaces X and Y , we have a Mackey functorfX;Y gG with values fX;Y gG(G=H) = fG=H+ ^X;Y gG:The contravariant functoriality is given by composition in the evident way.Definition 4.1. Let X be a G-CW(V ) complex. De�ne a chain complexCV� (X) in the Abelian category of Mackey functors as follows. LetCVn (X) = nSV�jV j+n;Xn=Xn�1oG:This is the stable H-homotopy group of Xn=Xn�1 in dimension V � jV j+ n. Letdn : CVn (X) �! CVn�1(X)be the stable connecting homomorphism of the triple (Xn;Xn�1;Xn�2).Observe that Xn=Xn�1 is the wedge over the n-cells of X of G-spaces of theform G=H+ ^ SV�jV j+n and that CVn (X) is the direct sum of corresponding freeMackey functors represented by the objects G=H.Definition 4.2. Let X be a G-CW(V ) complex. For a Mackey functor M ,de�ne the ordinary cohomology of X with coe�cients in M to beHV+nG (X;M) = H jV j+nHomBG(CV� (X);M):For a coMackey functor N , de�ne the ordinary homology of X with coe�cients inN to be HGV+n(X;N) = HjV j+n(CV� (X) 
BG N):



112 X. G-CW(V ) COMPLEXES AND RO(G)-GRADED COHOMOLOGYPrecisely similar de�nitions apply to give relative homology and cohomologygroups for relative G-CW(V ) complexes (X;A). In the special case when A is asubcomplex of X, CV� (X;A) is isomorphic to CV� (X)=CV� (A), and we obtain theexpected long exact sequences. If � 2 X is a G-�xed basepoint and (X; �) is arelative G-CW(V ) complex, we de�ne the reduced homology and cohomology ofX by~HV+nG (X;M) = HV+nG (X; �;M) and ~HGV+n(X;N) = HGV+n(X; �;N):Observe, however, that � cannot be a vertex of X unless G acts trivially on V , byour limitation on the orbits G=H that are allowed in the zero skeleta of G-CW(V )complexes.Using cellular approximation, homology and cohomology are seen to be functo-rial on the homotopy category of G-CW(V ) complexes. We extend the de�nitionto arbitrary G-spaces by using approximations by weakly equivalent G-CW(V )complexes. The de�nitions for pairs extend similarly. Finally, we extend thegrading to all of RO(G) by setting~HW�V +nG (X;M) = ~HW+nG (�VX;M)and ~HGW�V+n(X;N) = ~HGW+n(�VX;N):We easily deduce from a relative version of Proposition 2.9 that, for a relativeG-CW(W ) complex (X; �) and any representation V , (�VX; �) inherits a structureof relative G-CW(V � W ) complex such that the W -cellular chain complex of(X; �) is isomorphic to the (V �W )-cellular chain complex of (�VX; �), with anappropriate shift of dimensions. This gives isomorphisms~HW+nG (X;M) �= ~HV�W+nG (�VX)and ~HGW+n(X;M) �= ~HGV�W+n(�VX):It is quite tedious, but not di�cult, to verify the precise axioms for RO(G)-graded homology and cohomology theories from the de�nitions just indicated.The alternative construction by stable homotopy category techniques in XIIIx4 isless tedious, but perhaps less intuitive.



4. ORDINARY RO(G)-GRADED HOMOLOGY AND COHOMOLOGY 113Remarks 4.3. (1) There is a twisted version of the theory, where the twistingis taken over the fundamental groupoid of X.(2) As already indicated, this theory also extends to a theory graded on represen-tations of the fundamental groupoids of G-spaces. Roughly, such a representationassigns a representation to each component of each �xed point set in an appropri-ately coherent fashion. We also have a twisted version of this fancier theory.(3) In the untwisted theory given above, Poincar�e duality and the Thom iso-morphism theorem hold for oriented V -manifolds. These are V -manifolds whosetangent bundles admit orientations in the geometric sense. They possess funda-mental classes in dimension V .(4) There is also a version of the Hurewicz theorem, which Lewis will discuss inthe next chapter.(5) There is an unpublished theory of equivariant Chern classes which live ino�-integral dimensions, but this theory is not yet well-understood.(6) The cohomology of a point is highly nontrivial, since there is no dimensionaxiom away from integer gradings. Indeed, among other applications related toordinary cohomology, I have a curious result to the e�ect that if you localize thecohomology of a point by inverting a Chern class in dimension V � jV j, where Vcontains a free G-orbit, then you get the cohomology of BG.Remark 4.4. The chain level construction just sketched has applications tomanifold theory. Since Poincar�e duality works for this theory (V -manifolds havefundamental classes in the twisted theory), Costenoble and I have been able touse it to obtain a workable de�nition of Poincar�e duality spaces and to prove a��� theorem for such spaces, giving a criterion for a G-CW complex to have theG-homotopy type of a G-manifold in the presence of suitable \gap hypotheses"on the homotopy groups of its �xed point spaces. We have also extended this tothe case of simple G-homotopy theory, since it turns out that Poincar�e duality isgiven by a simple chain equivalence, just as in the nonequivariant case. Thus wecan say when a G-CW complex has the simple G-homotopy type of a G-manifold.S. R. Costenoble and S. Waner. G-transversality revisited. Proc. A.M.S. 116(1992), 535-546.S. R. Costenoble and S. Waner. The equivariant Spivak normal bundle and equivariant surgery.Michigan Math. J. To appear.L. G. Lewis, Jr., Equivariant Eilenberg-MacLane spaces and the equivariant Seifert-van Kampenand suspension theorems. Topology and its Applications 48 (1992), 25-61.S. Waner. A generalization of the cohomology of groups. Proc. Amer. Math. Soc. 85(1982),469-474.



114 X. G-CW(V ) COMPLEXES AND RO(G)-GRADED COHOMOLOGYS. Waner. Equivariant covering spaces and cohomology. Proc. Amer. Math. Soc. 88(1983),351-356.S. Waner. Mackey functors and G-cohomology. Proc. Amer. Math. Soc. 90(1984), 641-648.S. Waner. Periodicity in the cohomology of universal G-spaces. Illinois J. Math. 30(1986),468-478.



CHAPTER XIThe equivariant Hurewicz and Suspension Theoremsby L. Gaunce Lewis, Jr.1. Background on the classical theoremsWe begin by recalling the statements of two basic theorems in nonequivarianthomotopy theory. The �rst of these is the very familiar Hurewicz Theorem.Theorem A. If Y is a simply connected space and n � 2, then the followingare equivalent:(i) Hk(Y ;Z) = 0 for all k < n.(ii) �kY = 0 for all k < n.Moreover, either of these implies that the Hurewicz homomorphismh : �nY ! Hn(Y ;Z)is an isomorphism.There is, of course, an extension of this theorem that describes the relationbetween �1Y and H1(Y ;Z), but we shall here restrict attention to the simply con-nected case, in both nonequivariant and equivariant homotopy theory, to avoidsome unpleasant technicalities that obscure the central issues. The Hurewicz the-orem is important because it describes the basic connection between the two mostcommonly used functors in algebraic topology. It allows us to convert informationabout homology groups, which are relatively easy to compute, into informationabout homotopy groups, which are much harder to compute but also much moreuseful.The second theorem is the Freudenthal suspension theorem.115



116 XI. THE EQUIVARIANT HUREWICZ AND SUSPENSION THEOREMSTheorem B. Let Y be an n-connected space, where n � 1, and let X be a�nite CW complex. Then the suspension map� : [X;Y ] ! [�X;�Y ]is surjective if dimX � 2n + 1 and bijective if dimX � 2n.Historically, this result grew out of Freudenthal's study of the homotopy groupsof spheres. His original version of this result merely gave conditions on m and nunder which the suspension map� : �nSm ! �n+1Sm+1was surjective or bijective. This initial result was rather quickly extended to onegiving conditions under which the suspension map� : �nY ! �n+1�Ywas surjective or bijective. Eventually, the result was generalized to Theorem B.As with the Hurewicz Theorem, this result allows us to compare a well-behavedobject that we have some hope of understanding with an apparently less well-behaved one. The point here is that [�X;�Y ] is a group and, if we suspend itonce more, it becomes an abelian group. On the other hand, [X;Y ] need onlybe a pointed set. As a vague general principle, which will be made more preciselater, the more we suspend a space, the more algebraic tools (like group structures)we gain for the study of the space. The Freudenthal result allows us to convertinformation that we obtain working in the more structured setting of objects thathave been repeatedly suspended into information about the original, unsuspended,objects.These two basic theorems are actually quite closely related. If one constructshomology using Eilenberg-MacLane spaces, then the Hurewicz theorem follows di-rectly from the suspension theorem and the simple observation that the Eilenberg-MacLane space K(Z; n) in dimension n associated to the groupZhas a CW struc-ture in which the bottom cell is a sphere in dimension n and in which there are no(n+1)-cells. The Hurewicz map itself is derived from the inclusion of this bottomcell. If one thinks of homology in terms of the Eilenberg-MacLane spectrum KZassociated to the group Z, then the Hurewicz theorem follows even more directlyfrom the suspension theorem and the observation that KZhas a CW structurein which the bottom cell is a copy of the zero sphere and in which there are no1-cells.



2. FORMULATION OF THE PROBLEM AND COUNTEREXAMPLES 117We shall discuss the equivariant analogues of these two theorems in this chapter.Full details and more general versions of the results are given in the �rst two ofthe following three papers; we shall occasionally refer to these papers by number,and a little guide to them is given in a scholium at the end of the chapter.[L1] L. G. Lewis, Jr., Equivariant Eilenberg-Mac Lane spaces and the equivariant Seifert-vanKampen and suspension theorems. Topology and its Applications 48 (1992), 25-61.[L2] L. G. Lewis, Jr., The equivariant Hurewicz map. Trans. Amer. Math. Soc., 329 (1992),433-472.[L3] L. G. Lewis, Jr., Change of universe functors in equivariant stable homotopy theory. Fund.Math. To appear.2. Formulation of the problem and counterexamplesThroughout the chapter, we assume that G is a compact Lie group and that thespaces considered are leftG-spaces. There are two issues that come up immediatelywhen one starts thinking about generalizing these basic theorems to the equivariantcontext. The �rst is how one should measure the connectivity of G-spaces. Thereare two solutions to this problem. The �rst is the notion of V -connectivity thatStefan Waner introduced in the previous chapter. This notion focuses on a singleG-representation V and measures the connectivity of a G-space Y as seen throughthe \eyes" of that representation. The other notion of equivariant connectivityis less dependent on individual representations and somewhat less exotic in itsde�nition. It too has already been introduced earlier, but we recall the de�nition.Definition 2.1. (a) A dimension function � is a function from the set of con-jugacy classes of subgroups of G to the integers � �1. Write n� for the dimensionfunction that takes the value n at each H. Associated to any G-representationV is the dimension function jV �j whose value at K is the real dimension of theK-�xed subspace V K of V .(b) Let � be a dimension function. Then a G-space Y is G-�-connected if, foreach subgroup K of G, the �xed point space Y K is �(K)-connected. The basedG-space Y is homologically G-�-connected if, for every subgroup K of G and everyinteger m with 0 � m � �(K), the equivariant homology group ~HKmY is zero. AG-space Y is G-connected if it is G-0�-connected. A G-space is simply G-connectedif it is G-1�-connected. The pre�x \G-" will be deleted from the notation wheneverthe omission should not lead to confusion.(c) De�ne the connectivity function c�Y of a G-space Y by letting cKY be theconnectivity of the space Y K for each subgroup K of G. De�ne cKY = �1 if Y Kis not path connected.



118 XI. THE EQUIVARIANT HUREWICZ AND SUSPENSION THEOREMSA basic result of Waner indicates that the two rather di�erent measures ofequivariant connectivity that we have described are intimately related.Lemma 2.2. Let Y be a G-space and V be a G-representation. Then the spaceY is V -connected if and only if it is jV �j-connected.Because of this lemma, we will use the terms V -connected and jV �j-connectedinterchangeably.The second issue that comes up immediately is what sort of suspensions onewishes to allow in the equivariant context and, intimately tied to that, how onegrades equivariant homotopy and homology groups. The point here is that onemay de�ne �Y to be Y ^ S1. Therefore, in the equivariant context, if V is aG-representation and SV is its one-point compacti�cation (with G acting triviallyon the point at in�nity, which is taken to be the basepoint), then it is natural tothink of Y ^ SV as the suspension �V Y of Y by V . With this viewpoint, it isnatural to want an equivariant suspension theorem which describes the map�V : [X;Y ]G ! [�VX;�V Y ]G:Moreover, since, in the nonequivariant context, �nY is just [Sn; Y ], it is naturalto regard [SV ; Y ]G as the V th homotopy group (or set) �GV Y . Thus, we would liketo have a V th homology group HGV Y , an equivariant Hurewicz maph : �GV Y ! HGV Y ;and an equivariant Hurewicz theorem that tells us when this map is an isomor-phism. The previous chapter has already given one construction of HGV Y , andChapter XIII will give another. The precise de�nition of the map h is given in[L2], but it should become apparent from the discussion of the relationship betweenequivariant spectra and equivariant homology to be given later.We must still resolve the issue of what coe�cients should be used for this ho-mology group since it is very important in the nonequivariant Hurewicz Theoremthat integral coe�cients be used. Burnside ring coe�cients turn out to be theappropriate ones, essentially because the equivariant zero stem is the Burnsidering.It should be fairly clear that the sort of equivariant suspension theorem that wewould like to have would be something along the lines of:



2. FORMULATION OF THE PROBLEM AND COUNTEREXAMPLES 119\Theorem". Let Y be a simply G-connected space, X be a �nite G-CW com-plex, and V be a G-representation. Then the suspension map�V : [X;Y ]G ! [�VX;�V Y ]Gis surjective if, for every subgroup K of G, dimXK � 2cKY + 1 and is bijectiveif, for every subgroup K, dimXK � 2cKY .Unfortunately, this result is wildly false. For example, let G = Z=2, n � 3,and V be the real one-dimensional sign representation of G. Then our proposed\Theorem" would require that the maps�V : [Sn; Sn]G ! [Sn+V ; Sn+V ]Gand �V : [Sn+V ;�n+VG+]G ! [Sn+2V ;�n+2VG+]Gbe isomorphisms. However, simple calculations give that[Sn; Sn]G =Z and [Sn+V ; Sn+V ]G =Z2;[Sn+V ;�n+VG+]G =Z2 and [Sn+2V ;�n+2VG+]G =Z:Thus, the �rst of the two maps above can't be surjective and the second can'tbe injective. In fact, calculations for arbitrary groups G and low-dimensionalnontrivial G-representations V and W suggest that the suspension map�W : [SV ; SV ]G ! [SV+W ; SV+W ]Gis almost never an isomorphism. The restriction of \low dimension" is essentialhere because, as we have seen in IX.2.3, if G is �nite and V contains enoughcopies of the regular representation of G, then �W is an isomorphism for anyG-representation W . Similar calculations of equivariant homotopy and homologygroups suggest rather quickly that there is no simple generalization of the Hurewicztheorem to the equivariant context.One way to save the equivariant suspension theorem is to insert additionalhypotheses, as in IX.1.4. The inequalities required there between the dimensionof Y H and the connectivity of Y K when K � H with V K 6= V H tend to be quiterestrictive and hard to verify. Thus, what we intend to discuss is another approachto generalizing the Hurewicz and suspension theorems to the equivariant context.For this alternative approach, we must revert to the earlier form of the suspensiontheorem which deals only with the suspension of homotopy groups.



120 XI. THE EQUIVARIANT HUREWICZ AND SUSPENSION THEOREMS3. An oversimpli�ed description of the resultsHereafter, in discussing the suspension map�W : [X;Y ]G ! [�WX;�WY ]G;we will consider only the case in which X = SV for some G-representation V . As amatter of convenience, we will assume that the representation V contains at leasttwo copies of the one-dimensional trivial G-representation. This ensures that theset �GV Y is an abelian group. The motivation for the alternative approach is that,even though the suspension map�W : [SV ; SV ]G ! [SV+W ; SV+W ]Gis rather badly behaved, we can, at least in theory, compute exactly what it does.Thus, it is reasonable to ask if our understanding of this map can be used to shedsome light on the suspension map�W : �GV Y = [SV ; Y ]G ! [SV+W ;�WY ]G = �GV+W�WYfor any suitably connected G-space Y .A feeling for the sort of result that we should expect is best conveyed by aslight oversimpli�cation of the actual result. The set [SV ; SV ]G is a ring undercomposition. Here the right distributivity law depends on the fact that V containstwo copies of R and uses IX.1.4, which ensures that every element of [SV ; SV ]G isa suspension. Moreover,�W : [SV ; SV ]G ! [SV+W ; SV+W ]Gis a ring homomorphism. For any based G-space Y , the abelian groups �GV Yand �GV+W�WY may be regarded as modules over [SV ; SV ]G and [SV+W ; SV+W ]G,respectively. If �GV+W�WY is regarded as a [SV ; SV ]G-module via the ring homo-morphism [SV ; SV ]G ! [SV+W ; SV+W ]G;then the map �W : �GV Y ! �GV+W�WYis a [SV ; SV ]G-module homomorphism. The usual change of rings functor convertsthe [SV ; SV ]G-module �GV Y into the [SV+W ; SV+W ]G-module�GV Y 
[SV ;SV ]G [SV+W ; SV+W ]G:



3. AN OVERSIMPLIFIED DESCRIPTION OF THE RESULTS 121The homomorphism �W induces an [SV+W ; SV+W ]G-module homomorphismb�W : �GV Y 
[SV ;SV ]G [SV+W ; SV+W ]G ! �GV+W�WY:The alternative suspension theorem should, in this oversimpli�ed form, assert thatthe map b�W , rather than �W , is an isomorphism or epimorphism.We would also like to obtain an equivariant Hurewicz theorem along the samelines. Again, to convey some intuition for what we hope to prove, we begin withan oversimpli�ed version of the desired theorem. If one has a su�ciently slickde�nition of the homology group HGV Y , then it is obvious that this group is amodule over the ring [SV ; SV ]G . Moreover, there is an equivariant Hurewicz maph : �GV Y ! HGV Ythat is a [SV ; SV ]G-module homomorphism. However, the group HGV Y carries a farricher structure than just that of a [SV ; SV ]G-module. For any G-representationW , there is a homology suspension isomorphism HGV Y �= HGV+W�WY . Here, ourassumption that V contains at least two copies of the trivial representation removesthe need to worry about reduced and unreduced homology. This isomorphismindicates that HGV Y actually carries the structure of a [SV+W ; SV+W ]G-module. Abit of �ddling with the de�nitions indicates that the [SV ; SV ]G-module structureon HGV Y is just that obtained by restricting the [SV+W ; SV+W ]G-module structurealong the ring homomorphism�W : [SV ; SV ]G ! [SV+W ; SV+W ]G:Since this is true for everyG-representationW , what we have onHGV Y is a coherentfamily of [SV+W ; SV+W ]G-module structures for all possible representations W .This suggests that we introduce a new ring in which we let W go to in�nity. Thisring ought to be de�ned as some sort of colimit of the rings [SV+W ; SV+W ]G, whereW ranges over all possible �nite-dimensional representations of G.As was explained in IXxx3,4, we use a complete G-universe U to make thiscolimit precise. With the notations there, the ring structure on BG = fS0; S0gG isthat inherited from the ring structures on the [SV ; SV ]G. Since U is complete, itcontains a copy of every representation V . Selecting one of these copies, we obtaina ring homomorphism �1 : [SV ; SV ]G ! BG:It can be shown that �1 is actually independent of the choice of the copy of V in U .It follows from our observation about the module structures on HGV Y that HGV Ycarries the structure of a BG-module. Moreover, its natural [SV ; SV ]G-module



122 XI. THE EQUIVARIANT HUREWICZ AND SUSPENSION THEOREMSstructure is just that obtained by restricting the BG-module structure along �1.The Hurewicz map h : �GV Y ! HGV Yinduces a map bh : �GV Y 
[SV ;SV ]G BG ! HGV Yof BG-modules. In this oversimpli�ed outline form, our equivariant Hurewicz the-orem gives conditions under which the map bh, rather than the map h, is an iso-morphism.The proposed equivariant suspension and Hurewicz theorems may seem morereasonable if one considers the nonequivariant Hurewicz theorem in dimension 1.This result asserts that, if Y is connected, then the map h : �1Y ! H1Y inducesan isomorphism between H1Y and the abelianization of �1Y . We are encounteringthe same sort of phenomenon in the equivariant context|that is, we are tryingto compare two objects which carry rather di�erent structures. The two objectsbecome isomorphic when we modify the less well-structured one to have the samesort of structure as that carried by the nicer object.4. The statements of the theoremsThe oversimpli�cation in the introduction to our two theorems comes from thefact that, in order to understand the maps�W : �GV Y ! �GV+W�WYand h : �GV Y ! HGV Yfully, one must look not only at the group �GV Y , but also at the groups �KV Y forall the subgroups K of G. The maps b�W and bh constructed in the rough sketchof our results do not take into account the in
uence that the groups �KV Y have onthe maps �W and h. In order to take this in
uence into account, we must replacethe ring [SV ; SV ]G with a small Ab-category BG(V ) and replace the module �GV Ywith a contravariant additive functor �GV Y from BG(V ) into the category Ab ofabelian groups. The category BG(V ) and the functor �GV Y should be regardedas bookkeeping devices that allow us to keep track of the in
uence of the groups�KV Y on the maps �W and h.Recall the de�nitions of the Burnside categoryBG and of Mackey functors fromIX.4.1 and IX.4.2.



4. THE STATEMENTS OF THE THEOREMS 123Definition 4.1. (a) Let V be a �nite-dimensional representation of G thatcontains at least two copies of the trivial representation. The V -Burnside categoryBG(V ) has as its objects the orbits G=K. The set of morphisms from G=K toG=J in BG(V ) is [�VG=K+;�VG=J+]G. Note that the morphism sets of BG(V )are abelian groups.(b) If V and W are G-representations of G, then suspension gives a functors : BG(V ) ! BG(V +W )that is the identity on objects. Moreover, any inclusion of V into the G-universeU gives a functor s1 :BG(V ) ! BGthat is also the identity on objects. It can be shown that the functor s1 isindependent of the choice of the copy of V in U .Motivated by the interpretation of contravariant additive functors BG �! A bas Mackey functors, we refer to contravariant additive functors BG(V ) �! A b asV -Mackey functors for any compact Lie group G and G-representation V . The cat-egory of V -Mackey functors and natural transformations between such is denotedMG(V ). The category of Mackey functors is denoted MG.Examples 4.2. (a) If V is a representation of G that contains at least two copiesof the trivial representation and Y is a G-space, then the homotopy group �GV Ycan be extended to a V -Mackey functor �GV Y . For K � G, we de�ne (�GV Y )(G=K)to be the group [�VG=K+; Y ]G �= [SV ; Y ]K = �KV Y:The e�ect of a morphism f in BG(V )(G=K;G=J) = [�VG=K+;�VG=J+]G on(�GV Y )(G=J) is just that of precomposition by f .(b) If V is a G-representation and Y is a G-space, then the homology groupHGV Y can be extended to a Mackey functor HGV Y . If K � G, then(HGV Y )(G=K) = HKV Y:The functoriality of HGV Y on BG will be apparent from the spectrum level con-struction of XIIIx4.Our actual equivariant suspension and Hurewicz theorems describe the relationsamong the functors �GV Y , �GV+W�WY , and HGV Y . In order to state these theorems,we must introduce the change of category functors that replace the change of ringfunctors that were used in the intuitive presentation of our results.



124 XI. THE EQUIVARIANT HUREWICZ AND SUSPENSION THEOREMSDefinition 4.3. (a) Precomposition by the functors s and s1 of De�nition 4.1gives functors s� :MG(V +W ) ! MG(V )and s�1 :MG ! MG(V ):These functors have left adjointss� :MG(V ) ! MG(V +W )and s1� :MG(V ) ! MGthat are given categorically by left Kan extension.(b) The suspension maps�KW : �KV Y ! �KV+W�WY;as K varies over the subgroups of G, �t together to form a natural transformation�W : �GV Y ! s��GV+W�WY:The adjoint of this map under the (s� ; s�)-adjunction is denotede�W : s��GV Y ! �GV+W�WY:(c) The Hurewicz maps hKW : �KV Y ! HKV Y;as K varies over the subgroups of G, �t together to form a natural transformationh : �GV Y ! s�1HGV Y:The adjoint of this map under the (s1� ; s�1)-adjunction is denotedeh : s1� �GV Y ! HGV Y:It is the maps e�W and eh that play the role in the precise statements of ourHurewicz and suspension theorems that was played by the maps b�W and bh in ourintuitive sketch of these results.Theorem 4.4 (Hurewicz). Let Y be a based G-CW complex and let V be arepresentation of G that contains at least two copies of the trivial representation.Then the following two conditions are equivalent.(i) Y is j(V � 1)�j-connected.(ii) Y is simply G-connected and homologically j(V � 1)�j-connected.



4. THE STATEMENTS OF THE THEOREMS 125Moreover, if W is any representation of G such that 2� � jW �j � jV �j, then eitherof these conditions implies that the mapeh : s1� �GWY ! HGWYis an isomorphism and that both �GWY and HGWY are zero if jW �j < jV �j.Theorem 4.5 (Freudenthal suspension). Let V andW be representationsof G and let Y be a based G-CW complex. If V contains at least two copies ofthe trivial representation and Y is j(V � 1)�j-connected, then the suspension mape�W : s��GV Y ! �GV+W�WYis an isomorphism.There are several ways in which these two theorems are a bit disappointing. Oneof the most obvious is that, in our anticipated applications, we expect to be ableto compute HGWY and �GV+W�WY , and we want to derive information about �GV Yfrom these computations. The presence of the functors s1� and s� would seem tomake it di�cult to learn much about �GV Y in this fashion. However, the followinglemma ensures that we can, at least, detect the vanishing of �GV Y with these twotheorems.Lemma 4.6. Let V be a representation of G that contains at least two copies ofthe trivial representation and M be a V -Mackey functor. Then the following areequivalent:(i) M = 0.(ii) s�M = 0 for any representation W of G.(iii) s1� M = 0.Moreover, the explicit descriptions of the functors s� and s1� given in [L1, L2]can be used to extract some information about �GV Y from a knowledge of s��GV Yor s1� �GV Y even in the cases where �GV Y does not vanish.A second disappointment in these two theorems is that they say nothing aboutthe case in which V contains only one copy of the trivial representation. In thiscontext, �GV Y need not be an abelian group, but one would expect generaliza-tions of our two theorems which relate the abelianization of �GV Y to HGWY and�GV+W�WY (or more precisely, to HGWY and �GV+W�WY ). Generalizations of thisform are given in [L1]. They are omitted here because including them wouldrequire introducing some unpleasant technicalities that would only obscure thecentral ideas.



126 XI. THE EQUIVARIANT HUREWICZ AND SUSPENSION THEOREMSA third disappointment is that, in our suspension theorem, Y is required to bej(V � 1)�j-connected, whereas one would expect that connectivity on the order ofjV �j=2 would su�ce. There are counterexamples (see [L1]) which show that thereis no simple way to weaken this connectivity condition on Y . The source of thisproblem is that the functor s� is not exact. It is therefore able to capture thee�ects of suspension only in the lowest dimensions. There is, however, a spectralsequence whose E2-term is formed from the homotopy groups of Y . This spectralsequence converges to the homotopy groups of �WY in the range of dimensionsthat one would expect based on the connectivity restrictions in Theorem B; see[L3].A further disappointing aspect of our suspension theorem is that it applies onlyto the homotopy groups �GV Y and not to the set [X;Y ]G of G-homotopy classes ofG-maps out of an arbitrary space X. This restriction seems to be unavoidable inthe equivariant context.5. Sketch proofs of the theoremsWe turn now to the matter of proving our two theorems. The equivariantHurewicz theorem follows almost trivially from the equivariant suspension theoremif one is willing to use a little equivariant stable homotopy theory. We will devoteour attention to the proof of the suspension theorem. The best way to gaininsight into the proof is to look at a rather nonstandard proof of a special caseof the corresponding nonequivariant result. This nonstandard proof uses nothingmore than two rather simple facts about Eilenberg-MacLane spaces and a simplelemma from category theory.Recall that, if n is a positive integer and M is an abelian group, then theEilenberg-MacLane space K(M;n) is a CW-complex such that �nK(M;n) = Mand �jK(M;n) = 0 for j 6= n. This property characterizes K(M;n) up to ho-motopy. The �rst fact that we need about Eilenberg-MacLane spaces is that, forany positive integer n and any abelian group M , 
Kn+1M ' K(M;n). This factfollows immediately from a computation of the homotopy groups of 
K(M;n+1).If X is any based space, then taking nth homotopy groups gives a map� : [X;K(M;n)] �! hom(�nX;�nK(M;n)) = hom (�nX;M)from the set [X;K(M;n)] of based homotopy classes of maps fromX intoK(M;n)to the set hom(�nX;M) of group homomorphisms from �nX to M . Since theEilenberg-MacLane space K(M;n) represents cohomology in dimension n with



5. SKETCH PROOFS OF THE THEOREMS 127M coe�cients, the set [X;K(M;n)] is just Hn(X;M). It follows easily from thenonequivariant Hurewicz theorem and the universal coe�cient theorem that themap � is an isomorphism if X is an (n � 1)-connected CW-complex. Homotopytheorists use this observation on a regular basis.For our proof of the nonequivariant suspension theorem, we need a categoricalinterpretation of this result. Let Wn be the category of (n � 1)-connected basedspaces that have the homotopy types of CW-complexes, and let hWn be the associ-ated (based) homotopy category. Then the assignment of the Eilenberg-MacLanespace K(M;n) to the abelian group M gives a functor K(�; n) from the categoryAb of abelian groups to the category hWn. On the other hand, taking nth homo-topy groups gives a functor �n from hWn to Ab. Our assertion that the map �above is an isomorphism when X is (n� 1)-connected translates formally into thecategorical assertion that the functor K(�; n) is right adjoint to the functor �n.This adjunction is the second fact about Eilenberg-MacLane spaces that we need.Now consider the diagram of categories and functorsA b�� K(�;n)�������������� � �K(�;n+1)888888888888888hWn DD�n �������������� //� hWn+1\\ �n+1888888888888888oo 
The functor � is left adjoint to the functor 
. Thus, we have two functors,
K(�; n+ 1) and K(�; n), from Ab to hWn with left adjoints �n+1 �� and �n, re-spectively. The homotopy equivalences 
Kn+1M ' K(M;n) �t together to give anatural isomorphism between the functors 
K(�; n+1) and K(�; n). The follow-ing easy lemma from category theory allows us to convert this natural isomorphisminto a nonequivariant suspension theorem.Lemma 5.1. Let C and D be categories, R1; R2 : C ! D be functors from Cto D , and L1; L2 : D ! C be functors from D to C such that Li is left adjointto Ri. Then there is a one-to-one correspondence between natural transformations� : R1 ! R2 and natural transformations e� : L2 ! L1. Moreover, the naturaltranformation � : R1 ! R2 is a natural isomorphism if and only if the associatednatural transformation e� : L2 ! L1 is a natural isomorphism.The lemma gives us a natural isomorphism �nY �! �n+1�Y for (n � 1)-connected spaces Y of the homotopy types of CW-complexes. By examining the



128 XI. THE EQUIVARIANT HUREWICZ AND SUSPENSION THEOREMSproof of the lemma and chasing a few diagrams, it is possible to see that thisisomorphism is, in fact, the usual suspension map � : �nY �! �n+1�Y .This nonequivariant suspension theorem is, of course, substantially weaker thanTheorem B because it requires much more connectivity of Y and because it appliesonly to the homotopy group �nY rather than to an arbitrary set [X;Y ] of homotopyclasses of maps. However, counterexamples exist which show that limitations ofthis sort are an essential part of an equivariant suspension theorem. Thus, ouralternative approach to proving the nonequivariant suspension theorem is an idealapproach to proving the equivariant theorem.Let V be a representation of G that contains at least two copies of the trivialrepresentation. Let WG(V ) be the category of based j(V � 1)�j-connected G-spacesthat have the G-homotopy types of G-CW complexes, and let hWG(V ) be theassociated homotopy category; its morphisms are based G-homotopy classes ofbased G-maps.To prove our equivariant suspension theorem, we must associate an Eilenberg-MacLane space KG(M;V ) to each V -Mackey functor M in such a way that weobtain a functor from MG(V ) to hWG(V ). We must show that this functor isright adjoint to the functor �GV : hWG(V ) ! MG(V ). Then we must demon-strate that, if N is a (V +W )-Mackey functor, there is a G-homotopy equivalence
WKG(N;V +W ) ' KG(s�N;V ). Here, the functor s� enters in a way that noanalogous functor appears in the nonequivariant case because, in the equivariantcase, the functors �GV and �GV+W land in di�erent categories, whereas the func-tors �n and �n+1 both produce abelian groups in the nonequivariant case. Nowconsider the diagram MG(V ) //s��� KG(�;V ) MG(V +W )oo s� �� KG(�;V+W )hWG(V ) //�WOO�GV hWG(V +W )oo 
W OO�GV+Wof categories and functors. The composites 
WKG(�; V +W ) and KG(s��; V )have left adjoints �GV+W�W and s��GV respectively. Thus the natural isomor-phism 
WKG(�; V +W ) �! KG(s��; V ) that is derived from our G-homotopyequivalences 
WKG(N;V +W ) ' KG(s�N;V ) implies a natural isomorphisms��GV �! �GV+W�W . Again, a bit of diagram chasing con�rms that this isomor-



5. SKETCH PROOFS OF THE THEOREMS 129phism is just the standard suspension mape�W : s��GV �! �GV+W�W :It is easy enough to say what a V -Eilenberg-MacLane space ought to be.Definition 5.2. Let V be a representation of G that contains at least twocopies of the trivial representation and M be a V -Mackey functor. A V -Eilenberg-MacLane space KG(M;V ) is a based, j(V � 1)�j-connected G-space KG(M;V )of the G-homotopy type of a G-CW complex such that �GVKG(M;V ) = M and�GV+kKG(M;V ) = 0 for k > 0.The problem is to show that such spaces exist, that the assignment of KG(M;V )to M gives a functor from MG(V ) to hWG(V ), and that this functor is rightadjoint to �GV . In order to �ll in these details, we utilize a variant of the G-CW(V ) complexes that Waner described in the previous chapter. Waner workedwith unbased complexes and adjoined his cells using unbased maps. The variantwith which we must work is that of based complexes formed using based attachingmaps. We take our cells to be the cones on spheres of the form �V+kG=K+, wherek � �1 and K runs over the (closed) subgroups of G. A based G-CW(V ) complexis then a G-space Y together with a sequence fY kgk��1 of closed subspaces suchthat Y �1 is a point, Y k+1 is the co�bre of a based map � : Wj2Jk �V+kG=Kj ! Y kfor some indexing set Jk and some collection fKjgj2Jk of subgroups of G, and Yis the colimit of the Y k.There is a general theory of abstract CW complexes that applies to spaces con-structed in this form. This theory ensures that G-CW(V ) complexes have all thenice properties that one might expect. For us, their most important properties arethat they have the homotopy types of G-CW complexes, that they are j(V � 1)�j-connected, and that they can be used to approximate, up to weak G-equivalence,any G-space that is j(V � 1)�j-connected. Using G-CW(V ) complexes, one canconstruct a V -Eilenberg-MacLane space KG(M;V ) for any V -Mackey functor Mby attaching cells of the form C�V+kG=K+ in exactly the same way that one con-structs ordinary, nonequivariant, Eilenberg-MacLane spaces by attaching ordinarycells.As in the nonequivariant context, there is a map� : [X;KG(M;V )]G �! hom(�GVX;�GVK(M;n)) = hom(�GVX;M)



130 XI. THE EQUIVARIANT HUREWICZ AND SUSPENSION THEOREMSgiven by taking V th homotopy \groups". Here, hom means the set of naturaltransformations between two functors in MG(V ). If X is j(V � 1)�j-connected,then it can be approximated by a G-CW(V ) complex. This approximation canbe used to show that the map � is an isomorphism. We proved the analogousresult in the nonequivariant context using the Hurewicz theorem and the universalcoe�cient theorem. It can, however, be just as easily proved by using a CWapproximation to X and arguing inductively up the skeleton of the approximation.From here, the second approach to the nonequivariant result generalizes withoutany trouble to the equivariant context. The fact that � is an isomorphism when Xis j(V � 1)�j-connected can be used to show that the assignment of KG(M;V ) toM gives a functor and that this functor is right adjoint to �GV . It can also be used toconstruct a G-homotopy equivalence between 
WKG(N;V +W ) ' KG(s�N;V )for any (V +W )-Mackey functor N . This completes the proof of the equivariantsuspension theorem.Scholium 5.3. This presentation has been an overview of the papers [L1] and [L2]. Reference[L1] provides full details on everything that has been said here about the equivariant suspensiontheorem. It includes a careful treatment of based G-CW(V ) complexes and of V -Eilenberg-MacLane spaces. In that paper, V is assumed to have at least one copy, rather than at leasttwo copies, of the trivial representation. Thus the theorems in [L1] are more general in thatthey describe the e�ects of the presence of a nontrivial fundamental group on the suspensionand Hurewicz maps. However, this extra generality necessitates several unpleasant technicalcomplications in the arguments that obscure the basic simplicity of the ideas. Reference [L2]is an older paper and in some respects obsolete. Its most important results, the absolute andrelative unstable Hurewicz theorems (Theorems 1.7 and 1.8), are restated in a better and moregeneral form as Theorems 2.8 and 2.9 of [L1]. The improved versions of these theorems takeinto account the results in [L1] dealing with the case in which V contains only one copy of thetrivial representation. On the positive side, [L2] contains a description of the structure of thecategories BG(V ) and of the functors s� and s1� . It contains the proof of Lemma 2.2 above onthe equivalence of V - and jV �j-connectivity in the case when G is a compact Lie group; Wanerproved this result only for �nite groups. Lemma 4.6 above on the vanishing of s�M and s1� Mis also proved in [L2]. The de�nitions of the absolute and relative stable and unstable Hurewiczmaps are contained in [L2]. The proof of the stable Hurewicz isomorphism theorem in section2 of [L2] is a simple application of some of the basic techniques in equivariant stable homotopytheory that will be covered in later chapters. Going over that argument is a good way to solidifyone's grasp on these basic tricks. Reference [L2] also contains a description of the process forderiving the relative Hurewicz theorem from the absolute Hurewicz theorem. All of the otherarguments in [L2], and especially those in sections 5 and 6, are correct but obsolete. I developedthem before I became aware of the basic connection between equivariant Eilenberg-Mac Lanespaces and the equivariant suspension theorem. The results presented in section 6 of [L2] arepresented in a better and more general form in [L3], which is, essentially, an extension of [L1]from the realm of equivariant unstable homotopy theory to that of equivariant stable homotopytheory.



CHAPTER XIIThe Equivariant Stable Homotopy Category1. An introductory overviewLet us start nonequivariantly. As the home of stable phenomena, the subjectof stable homotopy theory includes all of homology and cohomology theory. Overthirty years ago, it became apparent that very signi�cant bene�ts would accrueif one could work in an additive triangulated category whose objects were \stablespaces", or \spectra", a central point being that the translation from topologyto algebra through such tools as the Adams spectral sequence would become farsmoother and more structured. Here \triangulated" means that one has a sus-pension functor that is an equivalence of categories, together with co�brationsequences that satisfy all of the standard properties.The essential point is to have a smash product that is associative, commutative,and unital up to coherent natural isomorphisms, with unit the sphere spectrumS. A category with such a product is said to be \symmetric monoidal". Thisstructure allows one to transport algebraic notions such as ring and module intostable homotopy theory. Thus, in the stable homotopy category of spectra |which we shall denote by �hS | a ring is just a spectrum R together with aproduct � : R ^ R �! R and unit � : S �! R such that the following diagramscommute in �hS :S ^R //�^1 %%' KKKKKKKKKK R ^R�� � R ^ Soo 1^�yy 'ssssssssss and R ^ R ^ R���^1 //1^� R ^ R�� �R R ^R //� R:The unlabelled isomorphisms are canonical isomorphisms giving the unital prop-131



132 XII. THE EQUIVARIANT STABLE HOMOTOPY CATEGORYerty, and we have suppressed associativity isomorphisms in the second diagram.Similarly, there is a transposition isomorphism � : E ^ F �! F ^ E in �hS , andR is said to be commutative if the following diagram commutes in �hS :R ^R ##� GGGGGGGGG //� R ^R{{ �wwwwwwwwwR:A left R-module is a spectrum M together with a map � : R ^M �! M suchthat the following diagrams commute in �hS :S ^M //�^1 %%' LLLLLLLLLL R ^M�� � and R ^R ^M���^1 //1^� R ^M�� �M R ^M //� M:Over twenty years ago, it became apparent that it would be of great value tohave more precisely structured notions of ring and module, with good propertiesbefore passage to homotopy. For example, when one is working in �hS it is noteven true that the co�ber of a map of R-modules is an R-module, so that onedoes not have a triangulated category of R-modules. More deeply, when R iscommutative, one would like to be able to construct a smash product M ^R Nof R-modules. Quinn, Ray, and I de�ned such structured ring spectra in 1972.Elmendorf and I, and independently Robinson, de�ned such structured modulespectra around 1983. However, the problem just posed was not fully solved untilafter the Alaska conference, in work of Elmendorf, Kriz, Mandell, and myself. Weshall return to this later.For now, let us just say that the technical problems focus on the constructionof an associative and commutative smash product of spectra. Before June of1993, I would have said that it was not possible to construct such a product on acategory that has all colimits and limits and whose associated homotopy categoryis equivalent to the stable homotopy category. We now have such a construction,and it actually gives a point-set level symmetric monoidal category.However, it is not a totally new construction. Rather, it is a natural extensionof the approach to the stable category �hS that Lewis and I developed in theearly 1980's. Even from the viewpoint of classical nonequivariant stable homotopytheory, this approach has very signi�cant advantages over any of its predecessors.



2. PRESPECTRA AND SPECTRA 133What is especially relevant to us is that it is the only approach that extendse�ortlessly to the equivariant context, giving a good stable homotopy categoryof G-spectra for any compact Lie group G. Moreover, for a great deal of thehomotopical theory, the new point-set level construction o�ers no advantages overthe original Lewis-May theory: the latter is by no means rendered obsolete by thenew theory.From an expository point of view this raises a conundrum. The only real defectof the Lewis-May approach is that the only published account is in the generalequivariant context, with emphasis on those details that are special to that setting.Therefore, despite the theme of this book, I will �rst outline some features of thetheory that are nearly identical in the nonequivariant and equivariant contexts,returning later to a discussion of signi�cant equivariant points. I will follow inpart an unpublished exposition of the Lewis-May category due to Jim McClure.A comparison with earlier approaches and full details of de�nitions and proofs maybe found in the encyclopedic �rst reference below. The second reference containsimportant technical re�nements of the theory, as well as the new theory of highlystructured ring and module spectra. The third reference gives a brief generaloverview of the theory that the reader may �nd helpful. We shall often refer tothese as [LMS], [EKMM], and [EKMM0].General References[LMS] L. G. Lewis, Jr., J. P. May, and M. Steinberger (with contributions by J. E. McClure).Equivariant stable homotopy theory. Springer Lecture Notes in Mathematics. Vol. 1213. 1986.[EKMM] A. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Rings, modules, and algebras instable homotopy theory. Preprint, 1995.[EKMM0] A. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Modern foundations for stablehomotopy theory. In \Handbook of Algebraic Topology", edited by I.M. James. North Holland,1995, pp 213-254. 2. Prespectra and spectraThe simplest relevant notion is that of a prespectrum E. The naive version is asequence of based spaces En, n � 0, and based maps�n : �En �! En+1:A map D �! E of prespectra is a sequence of maps Dn �! En that commutewith the structure maps �n. The structure maps have adjoints~�n : En �! 
En+1;



134 XII. THE EQUIVARIANT STABLE HOMOTOPY CATEGORYand it is customary to say that E is an 
-spectrum if these maps are equivalences.While this is the right kind of spectrum for representing cohomology theorieson spaces, we shall make little use of this concept. By a spectrum, we mean aprespectrum for which the adjoints ~�n are homeomorphisms. (The insistence onhomeomorphisms goes back to a 1969 paper of mine that initiated the presentapproach to stable homotopy theory.) In particular, for us, an \
-spectrum" neednot be a spectrum: henceforward, we use the more accurate term 
-prespectrumfor this notion.One advantage of our de�nition of a spectrum is that the obvious forgetfulfunctor from spectra to prespectra | call it ` | has a left adjoint spectri�cationfunctor L such that the canonical map L`E �! E is an isomorphism. Thus thereis a formal analogy between L and the passage from presheaves to sheaves, whichis the reason for the term \prespectrum". The category of spectra has limits,which are formed in the obvious way by taking the limit for each n separately. Italso has colimits. These are formed on the prespectrum level by taking the colimitfor each n separately; the spectrum level colimit is then obtained by applying L.The central technical issue that must be faced in any version of the category ofspectra is how to de�ne the smash product of two prespectra fDng and fEng. Anysuch construction must begin with the naive bi-indexed smash product fDm^Eng.The problem arises of how to convert it back into a singly indexed object insome good way. It is an instructive exercise to attempt to do this directly. Onequickly gets entangled in permutations of suspension coordinates. Let us think ofa circle as the one-point compacti�cation of R and the sphere Sn as the one-pointcompacti�cation of Rn. Then the iterated structure maps �nEm = Em ^ Sn �!Em+n seem to involve Rn as the last n coordinates in Rm+n. This is literally trueif we consider the sphere prespectrum fSng with identity structural maps. Thissuggests that our entanglement really concerns changes of basis. If so, then weall know the solution: do our linear algebra in a coordinate-free setting, choosingbases only when it is convenient and avoiding doing so when it is inconvenient.Let R1 denote the union of the Rn, n � 0. This is a space whose elementsare sequences of real numbers, all but �nitely many of which are zero. We giveit the evident inner product. By a universe U , we mean an inner product spaceisomorphic to R1. If V is a �nite dimensional subspace of U , we refer to V asan indexing space in U , and we write SV for the one-point compacti�cation of V ,which is a based sphere. We write �VX for X ^ SV and 
VX for F (SV ;X).



2. PRESPECTRA AND SPECTRA 135By a prespectrum indexed on U , we mean a family of based spaces EV , one foreach indexing space V in U , together with structure maps�V;W : �W�VEV �! EWwhenever V � W , where W � V denotes the orthogonal complement of V in W .We require �V;V = Id, and we require the evident transitivity diagram to commutefor V �W � Z: �Z�W�W�V EV //���= �Z�WEW���Z�VEV // EZ:We call E a spectrum indexed on U if the adjoints~� : EV �! 
W�VEWof the structural maps are homeomorphisms. As before, the forgetful functor `from spectra to prespectra has a left adjoint spectri�cation functor L that leavesspectra unchanged. We denote the categories of prespectra and spectra indexedon U byPU and SU . When U is �xed and understood, we abbreviate notationto P and S .If U = R1 and E is a spectrum indexed on U , we obtain a spectrum in ouroriginal sense by setting En = ERn. Conversely, if fEng is a spectrum in ouroriginal sense, we obtain a spectrum indexed on U by setting EV = 
Rn�VEn,where n is minimal such that V � Rn. It is easy to work out what the structuralmaps must be. This gives an isomorphism between our new category of spectraindexed on U and our original category of sequentially indexed spectra.More generally, it often happens that a spectrum or prespectrum is naturallyindexed on some other co�nal setA of indexing spaces in U . Here co�nality meansthat every indexing space V is contained in some A 2 A ; it is convenient to alsorequire that f0g 2 A . We write PA and SA for the categories of prespectraand spectra indexed on A . On the spectrum level, all of the categories SA areisomorphic since we can extend a spectrum indexed on A to a spectrum indexedon all indexing spaces V in U by the method that we just described for the caseA = fRng.J. P. May. Categories of spectra and in�nite loop spaces. Springer Lecture Notes in MathematicsVol. 99. 1969, 448{479.



136 XII. THE EQUIVARIANT STABLE HOMOTOPY CATEGORY3. Smash productsWe can now de�ne a smash product. Given prespectra E and E 0 indexed onuniverses U and U 0, we form the collection fEV ^ E 0V 0g, where V and V 0 runthrough the indexing spaces in U and U 0, respectively. With the evident structuremaps, this is a prespectrum indexed on the set of indexing spaces in U � U 0 thatare of the form V � V 0. If we start with spectra E and E 0, we can apply thefunctor L to get to a spectrum indexed on this set, and we can then extend theresult to a spectrum indexed on all indexing spaces in U �U 0. We thereby obtainthe \external smash product" of E and E 0,E ^ E 0 2 S (U � U 0):Thus, if U = U 0, then two-fold smash products are indexed on U2, three-fold smashproducts are indexed on U3, and so on.This external smash product is associative up to isomorphism,(E ^ E 0) ^ E 00 �= E ^ (E 0 ^ E 00):This is evident on the prespectrum level. It follows on the spectrum level by aformal argument of a sort that pervades the theory. One need only show that, forprespectra D and D0,L(`L(D) ^D0) �= L(D ^D0) �= L(D ^ `L(D0)):Conceptually, these are commutation relations between functors that are left ad-joints, and they will hold if and only if the corresponding commutation relationsare valid for the right adjoints. We shall soon write down the right adjoint functionspectra functors. They turn out to be so simple and explicit that it is altogethertrivial to check the required commutation relations relating them and the rightadjoint `.The external smash product is very nearly commutative, but to see this we needanother observation. If f : U �! U 0 is a linear isometric isomorphism, then weobtain an isomorphism of categories f� : S U 0 �! SU via(f�E 0)(V ) = E 0(fV ):Its inverse is f� = (f�1)�. If � : U � U 0 �! U 0 � U is the transposition, then thecommutativity isomorphism of the smash product isE0 ^ E �= ��(E ^ E 0):



3. SMASH PRODUCTS 137Analogously, the associativity isomorphism implicitly used the obvious isomor-phism of universes (U � U 0)� U 00 �= U � (U 0 � U 00).What about unity? We would like E^S to be isomorphic to E, but this doesn'tmake sense on the face of it since these spectra are indexed on di�erent universes.However, for a based space X and a prespectrum E, we have a prespectrum E^Xwith (E ^X)(V ) = EV ^X:If we start with a spectrum E and apply L, we obtain a spectrum E ^ X. It isquite often useful to think of based spaces as spectra indexed on the universe f0g.This makes good sense on the face of our de�nitions, and we have E ^ S0 �= E,where S0 means the space S0.Of course, this is not adequate, and we have still not addressed our originalproblem about bi-indexed smash products: we have only given it a bit more formalstructure. To solve these problems, we go back to our \change of universe functors"f� : S U 0 �! SU . Clearly, to de�ne f�, the map f : U �! U 0 need only be alinear isometry, not necessarily an isomorphism. While a general linear isometry fneed not be an isomorphism, it is a monomorphism. For a prespectrum E 2PU ,we can de�ne a prespectrum f�E 2 U 0 by(f�E)(V 0) = EV ^ SV 0�fV ; where V = f�1(V 0 \ f(U)):(3.1)Its structure maps are induced from those of E via the isomorphismsEV ^ SV 0�fV ^ SW 0�V 0 �= EV ^ SW�V ^ SW 0�fW :(3.2)As usual, we use the functor L to extend to a functor f� : S U �! S U 0. As iseasily veri�ed on the prespectrum level and follows formally on the spectrum level,the inverse isomorphisms that we had in the case of isomorphisms generalize toadjunctions in the case of isometries:S U 0(f�E;E 0) �= SU(E; f�E 0):(3.3)How does this help us? Let I (U;U 0) denote the set of linear isometries U �!U 0. If V is an indexing space in U , then I (V;U 0) has an evident metric topology,and we giveI (U;U 0) the topology of the union. It is vital | and not hard to prove| that I (U;U 0) is in fact a contractible space. As we shall explain later, this canbe used to prove a version of the following result (which is slightly misstated forclarity in this sketch of ideas).



138 XII. THE EQUIVARIANT STABLE HOMOTOPY CATEGORYTheorem 3.4. Any two linear isometries U �! U 0 induce canonically andcoherently weakly equivalent functors SU �! SU 0.We have not yet de�ned weak equivalences, nor have we de�ned the stablecategory. A map f : D �! E of spectra is said to be a weak equivalence if each ofits component maps DV �! EV is a weak equivalence. Since the smash productof a spectrum and a space is de�ned, we have cylinders E ^ I+ and thus a notionof homotopy in SU . We let hS U be the resulting homotopy category, and welet �hS U be the category that is obtained from hS U by adjoining formal inversesto the weak equivalences. We shall be more explicit later.This is our stable category, and we proceed to de�ne its smash product. Wechoose a linear isometry f : U2 �! U . For spectra E and E 0 indexed on U , wede�ne an internal smash product f�(E ^E 0) 2 S U . Up to canonical isomorphismin the stable category �hS U , f�(E ^ E 0) is independent of the choice of f . Forassociativity, we havef�(E^f�(E 0^E 00)) �= (f(1�f))�(E^E 0^E 00) ' (f(f�1))� �= f�(f�(E^E 0)^E 00):Here we write �= for isomorphisms that hold on the point-set level and ' forisomorphisms in the category �hS U . For commutativity,f�(E 0 ^ E) �= f���(E ^ E 0) �= (f� )�(E ^ E 0) ' f�(E ^ E 0):For a space X, we have a suspension prespectrum f�VXg whose structure mapsare identity maps. We let �1X = Lf�VXg. In this case, the construction of L isquite concrete, and we �nd that�1X = fQ�VXg; where QY = [
W
WY:(3.5)This gives the suspension spectrum functor �1 : T �! SU . It has a rightadjoint 
1 which sends a spectrum E to the space E0 = Ef0g:SU(�1X;E) �= T (X;
1E):(3.6)The functor Q is the same as 
1�1. For a linear isometry f : U �! U 0, we havef��1X �= �1X(3.7)since, trivially, 
1f�E 0 = E 00 = 
1E 0. A space equivalent to E0 for some spec-trum E is called an in�nite loop space.



4. FUNCTION SPECTRA 139Remember that we can think of the category T of based spaces as the categoryS f0g of spectra indexed on the universe f0g. With this interpretation, 
1 coin-cides with i�, where i : f0g �! U is the inclusion. Therefore, by the uniquenessof adjoints, �1X is isomorphic to i�X. Let i1 : U �! U2 be the inclusion of Uas the �rst summand in U � U . The unity isomorphism of the smash product isthe case X = S0 of the following isomorphism in �hS U :f�(E ^ �1X) �= f�(i1)�(E ^X) �= (f � i1)�(E ^X) ' 1�(E ^X) = E ^X:(3.8)We conclude that, up to natural isomorphisms that are implied by Theorem 3.4and elementary inspections, the stable category �hS U is symmetric monoidal withrespect to the internal smash product f�(E ^E 0) for any choice of linear isometryf : U2 �! U . It is customary, once this has been proven, to write E ^E 0 to meanthis internal smash product, relying on context to distinguish it from the externalproduct. 4. Function spectraWe must de�ne the function spectra that give the right adjoints of our variouskinds of smash products. For a space X and a spectrum E, the function spectrumF (X;E) is given by F (X;E)(V ) = F (X;EV ):Note that this is a spectrum as it stands, without use of the functor L. We havethe isomorphism F (E ^X;E 0) �= F (E;F (X;E 0))and the adjunctionS U(E ^X;E 0) �= T (X;S U(E;E 0)) �= S U(E;F (X;E 0));(4.1)where the set of maps E �! E 0 is topologized as a subspace of the product overall indexing spaces V of the spaces F (EV;E 0V ). As an example of the use of rightadjoints to obtain information about left adjoints, we have isomorphisms(�1X) ^ Y �= �1(X ^ Y ) �= X ^ (�1Y ):(4.2)For the �rst, the two displayed functors of X both have right adjointF (Y;E)0 = F (Y;E0):



140 XII. THE EQUIVARIANT STABLE HOMOTOPY CATEGORYMore generally, for universes U and U 0 and for spectra E 0 2 SU 0 and E 00 2S (U � U 0), we de�ne an external function spectrumF (E 0; E 00) 2 S Uas follows. For an indexing space V in U , de�ne E 00[V ] 2 S U 0 byE00[V ](V 0) = E 00(V � V 0):The structural homeomorphisms are induced by some of those of E 00, and othersgive a system of isomorphisms E 00[V ] �! 
W�V E 00[W ]. De�neF (E 0; E 00)(V ) = S U 0(E 0; E 00[V ]):We have the adjunctionS (U � U 0)(E ^ E 0; E 00) �= S U(E;F (E 0; E 00)):(4.3)When E 0 = �1Y , S U 0(E 0; E 00[V ]) �= T (Y;E 00(V )). Thus, if i1 : U �! U � U 0 isthe inclusion, then F (�1Y;E 00) �= F (Y; (i1)�E 00):By adjunction, this implies the �rst of the following two isomorphisms:(i1)�((�1X) ^ Y ) �= �1X ^ �1Y �= (i2)�(X ^ (�1Y )):(4.4)When U = U 0 and f : U2 �! U is a linear isometry, we obtain the internalfunction spectrum F (E 0; f�E) 2 S U for spectra E;E 0 2 S U . Up to canonicalisomorphism in �hS U , it is independent of the choice of f . For spectra all indexedon U , we have the composite adjunctionS U(f�(E ^ E 0); E 00) �= S U(E;F (E 0; f�E00)):(4.5)Again, it is customary to abuse notation by also writing F (E 0; E) for the internalfunction spectrum, relying on the context for clarity. By combining the three iso-morphisms (3.7), (4.2), and (4.4) | all of which were proven by trivial inspectionsof right adjoints | we obtain the following non-obvious isomorphism for internalsmash products. �1(X ^ Y ) �= (�1X) ^ (�1Y ):(4.6)Generalized a bit, this will be seen to determine the structure of smash productsof CW spectra.



5. THE EQUIVARIANT CASE 1415. The equivariant caseWe now begin working equivariantly, and we have a punch line: we were ledto the framework above by nonequivariant considerations about smash products,and yet the framework is ideally suited to equivariant considerations. Let G bea compact Lie group and recall the discussion of G-spheres and G-universes fromIXxx1,2. On the understanding that every space in sight is a G-space and everymap in sight is a G-map, the de�nitions and results above apply verbatim to givethe basic de�nitions and properties of the stable category of G-spectra. For a givenG-universe U , we write GS U for the resulting category of G-spectra, hGS U forits homotopy category, and �hGS U for the stable homotopy category that resultsby adjoining inverses to the weak equivalences.The only caveat is that I (U;U 0) is understood to be the G-space of linearisometries, with G acting by conjugation, and not the space of G-linear isometries.If the G-universes U and U 0 are isomorphic | which means that they contain thesame irreducible representations | then I (U;U 0) is G-contractible, and thereforeits subspace I (U;U 0)G of G-linear isometries is contractible.We already see something new in the equivariant context: we have di�erentstable categories ofG-spectra depending on the isomorphism type of the underlyinguniverse. This fact will play a vital role in the theory. Remember that a G-universeU is said to be complete if it contains every irreducible representation and trivialif it contains only the trivial irreducible representation. We sometimes refer toG-spectra indexed on a complete G-universe U as genuine G-spectra. We alwaysrefer to G-spectra indexed on a trivial G-universe, such as UG, as naive G-spectra;they are essentially just spectra fEng of the sort we �rst de�ned, but with eachEn a G-space and each structure map a G-map. We have concomitant notions ofgenuine and naive in�nite loop G-spaces. The inclusion i : UG �! U gives us anadjoint pair of functors relating naive and genuine G-spectra:GS U(i�E;E 0) �= GS UG(E; i�E 0):(5.1)We will see that naive G-spectra representZ-graded cohomology theories, whereasgenuine G-spectra represent cohomology theories graded over the real representa-tion ring RO(G). Before getting to this, however, we must complete our develop-ment of the stable category.



142 XII. THE EQUIVARIANT STABLE HOMOTOPY CATEGORY6. Spheres and homotopy groupsWe have deliberately taken a more or less geodesic route to smash productsand function spectra, and we have left aside a number of other matters that mustbe considered. At the risk of obscuring the true simplicity of the nonequivarianttheory, we work with G-spectra indexed on a �xed G-universe U from now on inthis chapter. We write GS for GS U . Since G will act on everything in sight, weoften omit the pre�x, writing spectra for G-spectra and so on.We shall shortly de�ne G-CW spectra in terms of sphere spectra and their cones,which provide cells. We shall deduce properties of G-CW spectra, such as HELP,by reducing to the case of a single cell and there applying an adjunction to reduceto the G-space level. For this, spheres must be de�ned in terms of suitable leftadjoint functors from spaces to spectra. For n � 0, there is no problem: we takeSn = �1Sn. We shall later write Sn ambiguously for both the sphere space andthe sphere spectrum, relying on context for clarity, but we had better be pedanticat �rst.We also need negative dimensional spheres. We will de�ne them in terms of shiftdesuspension functors, and these functors will also serve to clarify the relationshipbetween spectra and their component spaces. Generalizing 
1, de�ne a functor
1V : GS �! GTby 
1V = EV for an indexing space V in U . The functor 
1V has a left adjointshift desuspension functor �1V : GS �! GT :The spectrum �1V X is Lf�W�VXg. Here the prespectrum f�W�VXg has W thspace �W�V if V � W and a point otherwise; if V � W � Z, then the corre-sponding structure map is the evident identi�cation�Z�W�W�VX �= �Z�VX:The V th space of �1V X is the zeroth space QX of �1X. It is easy to checkthe prespectrum level version of the claimed adjunction, and the spectrum leveladjunction follows: GS (�1V X;E) �= GT (X;
1V E):(6.1)Exactly as in (4.2) and (4.6), we have natural isomorphisms(�1V X) ^ Y �= �1V (X ^ Y ) �= X ^ (�1V Y )(6.2)



6. SPHERES AND HOMOTOPY GROUPS 143and, for the internal smash product,�1V+W (X ^ Y ) �= �1V X ^ �1WY if V \W = f0g:(6.3)Another check of right adjoints gives the relation�1V X �= �1W�W�VX if V � W:(6.4)It is not hard to see that any spectrum E can be written as the colimit of theshift desuspensions of its component spaces. That is,E �= colim�1V EV;(6.5)where the colimit is taken over the maps�1W� : �1V EV �= �1W (�W�V EV ) �! �1WEW:Let us write U in the form U = UG�U 0 and �x an identi�cation of UG with R1.We abbreviate notation by writing 
1n and �1n when V = Rn. Now de�ne S�n =�1n S0 for n > 0. The reader will notice that we can generalize our de�nitionsto obtain sphere spectra SV and S�V for any indexing space V . We can evende�ne spheres SV�W = �1WSV . We shall need such generality later. However, indeveloping G-CW theory, it turns out to be appropriate to restrict attention tothe spheres Sn for integers n. Theorem 6.8 will explain why.In view of our slogan that orbits are the equivariant analogues of points, we alsoconsider all spectra SnH � G=H+ ^ Sn; H � G and n 2Z;(6.6)as spheres. By (6.2), SnH �= �1(G=H+ ^ Sn) if n � 0 and SnH �= �1n G=H+ ifn < 0. We shall be more systematic about change of groups later, but we prefer tominimize such equivariant considerations in this section. We de�ne the homotopygroup systems of G-spectra by setting�Hn (E) = �n(E)(G=H) = hGS (SnH ; E):(6.7)Let BGU be the homotopy category of orbit spectra S0H = �1G=H+; we gen-erally abbreviate the names of its objects to G=H. This is an additive cate-gory, as will become clear shortly, and �n(E) is an additive contravariant functorBGU �! A b. Recall from IXx4 that such functors are called Mackey functorswhen the universe U is complete. They play a fundamentally important role inequivariant theory, both in algebra and topology, and we shall return to them



144 XII. THE EQUIVARIANT STABLE HOMOTOPY CATEGORYlater. For now, however, we shall concentrate on the individual homotopy groups�Hn (E). We shall later reinterpret these as homotopy groups �n(EH) of �xed pointspectra, but that too can wait.The following theorem should be viewed as saying that a weak equivalence ofG-spectra really is a weak equivalence of G-spectra. Recall that we de�ned aweak equivalence f : D �! E to be a G-map such that each space level G-mapfV : DV �! EV is a weak equivalence. In setting up CW-theory, which logicallyshould precede the following theorem, one must mean a weak equivalence to be amap that induces an isomorphism on all of the homotopy groups �Hn of (6.7).Theorem 6.8. Let f : E �! E 0 be a map of G-spectra. Then each componentmap fV : EV �! E 0V is a weak equivalence of G-spaces if and only if f� :�Hn E �! �Hn E0 is an isomorphism for all H � G and all integers n.By our adjunctions, we have�Hn (E) �= �n((E0)H) if n � 0 and �Hn (E) �= �0((ERn)H) if n < 0:(6.9)Therefore, nonequivariantly, the theorem is a tautological triviality. Equivariantly,the forward implication is trivial but the backward implication says that if eachERn �! E 0Rn is a weak equivalence, then each EV �! E 0V is also a weakequivalence. Thus it says that information at the trivial representations in Uis somehow capturing information at all other representations in U . Its validityjusti�es the development of G-CW theory in terms of just the sphere spectra ofintegral dimensions.We sketch the proof, which goes by induction. We want to prove that each mapf� : ��(EV )H �! ��(E 0V )H is an isomorphism. Since G contains no in�nite de-scending chains of (closed) subgroups, we may assume that f� is an isomorphismfor all proper subgroups of H. An auxiliary argument shows that we may assumethat V H = f0g. We then use the co�bration S(V )+ �! D(V )+ �! SV , whereS(V ) and D(V ) are the unit sphere and unit ball in V and thus D(V )+ ' S0. Ap-plying f : F (�; EV )H �! F (�; E 0V )H to this co�bration, we obtain a comparisonof �bration sequences. On one end, this isf0 : (
VEV )H = (E0)H �! (E 00)H = (
VE 0V )H ;which is given to be a weak equivalence. On the other end, we can triangulate S(V )as an H-CW complex with cells of orbit type H=K, where K is a proper subgroupof H. We can then use change of groups and the inductive hypothesis to deduce



7. G-CW SPECTRA 145that f induces a weak equivalence on this end too. Modulo an extra argument tohandle �0, we can conclude that the middle map f : (EV )H �! (E 0V )H is a weakequivalence. 7. G-CW spectraBefore getting to CW theory, we must say something about compactness, whichplays an important role. A compact spectrum is one of the form �1V X for someindexing space V and compact space X. Since a map of spectra with domain�1V X is determined by a map of spaces with domain X, facts about maps out ofcompact spaces imply the corresponding facts about maps out of compact spectra.For example, if E is the union of an expanding sequence of subspectra Ei, thenGS (�1V X;E) �= colimGS (�1V X;Ei):(7.1)The following lemma clari�es the relationship between space level and spectrumlevel maps. Recall the isomorphisms of (6.4).Lemma 7.2. Let f : �1V X �! �1WY be a map of G-spectra, where X is com-pact. Then, for a large enough indexing space Z, there is a map g : �Z�VX �!�Z�WY of G-spaces such that f coincides with�1Z g : �1V X �= �1Z (�Z�VX) �! �1Z (�Z�WY ) �= �1WY:This result shows how to calculate the full subcategory of the stable categoryconsisting of those G-spectra of the form �1V X for some indexing space V and �niteG-CW complex X in space level terms. It can be viewed as giving an equivariantreformulation of the Spanier-Whitehead S-category. In particular, we have thefollowing consistency statement with the de�nitions of IXx2.Proposition 7.3. For a �nite based G-CW complex X and a based G-spaceY , fX;Y gG �= [�1X;�1Y ]G:From here, the development of CW theory is essentially the same equivariantlyas nonequivariantly, and essentially the same on the spectrum level as on the spacelevel. The only novelty is that, because we have homotopy groups in negativedegrees, we must use two �ltrations. Older readers may see more novelty. Incontrast with earlier treatments, our CW theory is developed on the spectrum leveland has nothing whatever to do with any possible cell structures on the component



146 XII. THE EQUIVARIANT STABLE HOMOTOPY CATEGORYspaces of spectra. I view the use of space level cell structures in this context as anobsolete historical detour that serves no useful mathematical purpose.Let CE = E ^ I denote the cone on a G-spectrum E.Definition 7.4. A G-cell spectrum is a spectrum E 2 GS that is the unionof an expanding sequence of subspectra En, n � 0, such that E0 is the trivialspectrum (each of its component spaces is a point) and En+1 is obtained from Enby attachingG-cells CSqH �= G=H+^CSq along attaching G-maps SqH �! En. Cellsubspectra, or \subcomplexes\, are de�ned in the evident way. A G-CW spectrumis a G-cell spectrum each of whose attaching maps SqH �! En factors through asubcomplex that contains only cells of dimension at most q. The n-skeleton En isthen de�ned to be the union of the cells of dimension at most n.Lemma 7.5. Amap from a compact spectrum to a cell spectrum factors througha �nite subcomplex. Any cell spectrum is the union of its �nite subcomplexes.The �ltration fEng is called the sequential �ltration. It records the order inwhich cells are attached, and it can be chosen in many di�erent ways. In fact,using the lemma, we see that by changing the sequential �ltration on the domain,any map between cell spectra can be arranged to preserve the sequential �ltration.Using this �ltration, we �nd that the inductive proofs of the following results thatwe sketched on the space level work in exactly the same way on the spectrum level.We leave it to the reader to formulate their more precise \dimension �" versions.Theorem 7.6 (HELP). Let A be a subcomplex of a G-CW spectrum D andlet e : E �! E 0 be a weak equivalence. Suppose given maps g : A �! E,h : A ^ I+ �! E 0, and f : D �! E 0 such that eg = hi1 and fi = hi0 in thefollowing diagram: A��i //i0 A ^ I+{{ hwwwwwwwww �� Aoo i1 �� g�������� �� iE0 Eoo eD //i0??f ~~~~~~~~ D ^ I+~hccG G G G G D~g_ _? ? ? ?oo i1Then there exist maps ~g and ~h that make the diagram commute.



7. G-CW SPECTRA 147Theorem 7.7 (Whitehead). Let e : E �! E 0 be a weak equivalence and Dbe a G-CW spectrum. Then e� : hGS (D;E) �! hGS (D;E 0) is a bijection.Corollary 7.8. If e : E �! E 0 is a weak equivalence between G-CW spectra,then e is a G-homotopy equivalence.Theorem 7.9 (Cellular Approximation). Let (D;A) and (E;B) be rela-tive G-CW spectra, (D0; A0) be a subcomplex of (D;A), and f : (D;A) �! (E;B)be a G-map whose restriction to (D0; A0) is cellular. Then f is homotopic relD0[Ato a cellular map g : (D;A) �! (E;B).Corollary 7.10. Let D and E be G-CW spectra. Then any G-map f : D �!E is homotopic to a cellular map, and any two homotopic cellular maps are cellu-larly homotopic.Theorem 7.11. For any G-spectrum E, there is a G-CW spectrum �E and aweak equivalence 
 : �E �! E.Exactly as on the space level, it follows from the Whitehead theorem that �extends to a functor hGS �! hGC , where GC is here the category of G-CWspectra and cellular maps, and the morphisms of the stable category �hGS can bespeci�ed by �hGS (E;E 0) = hGS (�E;�E 0) = hGC (�E;�E 0):(7.12)From now on, we shall write [E;E 0]G for this set. Again, � gives an equivalenceof categories �hGS �! hGC .We should say something about the transport of functors F on GS to thecategory �hGS . All of our functors preserve homotopies, but not all of thempreserve weak equivalences. If F does not preserve weak equivalences, then, onthe stable category level, we understand F to mean the functor induced by thecomposite F ��, a functor which preserves weak equivalences by converting themto genuine equivalences.For this and other reasons, it is quite important to understand when functorspreserve CW-homotopy types and when they preserve weak equivalences. Thesequestions are related. In a general categorical context, a left adjoint preservesCW-homotopy types if and only if its right adjoint preserves weak equivalences.When these equivalent conditions hold, the induced functors on the categoriesobtained by inverting the weak equivalences are again adjoint.



148 XII. THE EQUIVARIANT STABLE HOMOTOPY CATEGORYFor example, since 
1V preserves weak equivalences (with the correct logicalorder, by Theorem 6.8), �1V preserves CW homotopy types. Of course, since ourleft adjoints preserve colimits and smash products with spaces, their behavior onCW spectra is determined by their behavior on spheres. Since �1n clearly preservesspheres, it carries G-CW based complexes (with based attaching maps) to G-CWspectra. This focuses attention on a signi�cant di�erence between the equivariantand nonequivariant contexts. In both, a CW spectrum is the colimit of its �nitesubcomplexes. Nonequivariantly, Lemma 7.2 implies that any �nite CW spectrumis isomorphic to �1n X for some n and some �nite CW complex X. Equivariantly,this is only true up to homotopy type. It would be true up to isomorphism ifwe allowed non-trivial representations as the domains of attaching maps in ourde�nitions of G-CW complexes and spectra. We have seen that such a theory of\G-CW(V )-complexes" is convenient and appropriate on the space level, but itseems to serve no useful purpose on the spectrum level.Along these lines, we point out an important consequence of (6.3). It impliesthat the smash product of spheres SmH and SnJ is (G=H �G=J)+ ^Sm+n. When Gis �nite, we can use double cosets to describe G=H � G=J as a disjoint union oforbits G=K. This allows us to deduce that the smash product of G-CW spectra isa G-CW spectrum. For general compact Lie groups G, we can only deduce thatthe smash product of G-CW spectra has the homotopy type of a G-CW spectrum.8. Stability of the stable categoryThe observant reader will object that we have called �hGS the \stable category",but that we haven't given a shred of justi�cation. As usual, we write �VE = E^SVand 
VE = F (SV ; E).Theorem 8.1. For all indexing spaces V in U , the natural maps� : E �! 
V�VE and " : �V
VE �! Eare isomorphisms in �hGS . Therefore 
V and �V are inverse self-equivalences of�hGS .Thus we can desuspend by any representations that are in U . Once this isproven, it is convenient to write ��V for 
V . There are several possible proofs,all of which depend on Theorem 6.8: that is the crux of the matter, and thismeans that the result is trivial in the nonequivariant context. In fact, once we



9. GETTING INTO THE STABLE CATEGORY 149have Theorem 6.8, we have that the functor �1V preserves G-CW homotopy types.Using (6.2), (6.4), and the unit equivalence for the smash product, we obtainE ' E ^ S0 �= E ^ �1V SV �= E ^ (�1V S0 ^ SV ):This proves that the functor �V is an equivalence of categories. By playing withadjoints, we see that 
V must be its inverse. Observe that this proof is indepen-dent of the Freudenthal suspension theorem. This argument and (6.2) give thefollowing important consistency relations, where we now drop the underline fromour notation for sphere spectra:
VE ' E ^ S�V and �1V X �= X ^ S�V ; where S�V � �1V S0:(8.2)Since all universes contain R, all G-spectra are equivalent to suspensions. Thisimplies that �hGS is an additive category, and it is now straightforward to provethat �hGS is triangulated. In fact, it has two triangulations, by co�brations and�brations, that di�er only by signs. We have already seen that it is symmetricmonoidal under the smash product and that it has well-behaved function spectra.We have established a good framework in which to do equivariant stable homotopytheory, and we shall say more about how to exploit it as we go on.9. Getting into the stable categoryThe stable category is an ideal world, and the obvious question that arisesnext is how one gets from the prespectra that occur \in nature" to objects in thiscategory. Of course, our prespectra are all encompassing, since we assumed nothingabout their constituent spaces and structure maps, and we do have the left adjointL : GP �! GS . However, this is a theoretical tool: its good formal propertiescome at the price of losing control over homotopical information. We need analternative way of getting into the stable category, one that retains homotopicalinformation.We �rst need to say a little more about the functor L. If the adjoint structuremaps ~� : EV �! 
W�V EW of a prespectrum E are inclusions, then (LE)(V ) isjust the union over W � V of the spaces 
W�VEW . Taking W = V , we obtainan inclusion � : EV �! (LE)(V ), and these maps specify a map of prespectra.If, further, each ~� is a co�bration and an equivalence, then each map � is anequivalence.Thus we seek to transform given prespectra into spacewise equivalent ones whoseadjoint structural maps are co�brations. The spacewise equivalence property will



150 XII. THE EQUIVARIANT STABLE HOMOTOPY CATEGORYensure that 
-prespectra are transported to 
-prespectra. It is more natural toconsider co�bration conditions on the structure maps � : �W�VEV �! EW , andwe say that a prespectrum E is \�-co�brant" if each � is a co�bration. If E isa �-co�brant prespectrum and if each EV has co�bered diagonal, in the sensethat the diagonal map EV �! EV �EV is a co�bration, then each adjoint map~� : EV �! 
W�V EW is a co�bration, as desired.Observe that no non-trivial spectrum can be �-co�brant as a spectrum sincethe structure maps � of spectra are surjections rather than injections. We saythat a spectrum is \tame" if it is homotopy equivalent to LE for some �-co�brantprespectrum E. The importance of this condition was only recognized during thework of Elmendorf, Kriz, Mandell, and myself on structured ring spectra. Its useleads to key technical improvements of [EKMM] over [LMS]. For example, thesharpest versions of Theorems 3.4 and 8.1 read as follows.Theorem 9.1. Let StU be the full subcategory of tame spectra indexed onU . Then any two linear isometries U �! U 0 induce canonically and coherentlyequivalent functors hStU �! hStU 0. The maps � : E �! 
�E and " : �
E �!E are homotopy equivalences of spectra when E is tame.Moreover, analogously to (6.5), but much more usefully, if E is a �-co�brantprespectrum, then LE �= colim�1V EV;(9.2)where the maps of the colimit system are the co�brations�1W� : �1V EV �= �1W (�W�V EV ) �! �1WEW:Here the prespectrum level colimit is already a spectrum, so that the colimit isconstructed directly, without use of the functor L. Given a G-spectrum E 0, thereresults a valuable lim1 exact sequence0 �! lim1[�EV;E 0V ]G �! [LE;E 0]G �! lim[EV;E 0V ]G �! 0(9.3)for the calculation of maps in �hGS in terms of maps in �hGT .To avoid nuisance about inverting weak equivalences here, we introduce anequivariant version of the classical CW prespectra.Definition 9.4. A G-CW prespectrum is a �-co�brant G-prespectrum E suchthat each EV has co�bered diagonal and is of the homotopy type of a G-CWcomplex.



9. GETTING INTO THE STABLE CATEGORY 151We can insist on actual G-CW complexes, but it would not be reasonable to askfor cellular structure maps. We have the following reassuring result relating thisnotion to our notion of a G-CW spectrum.Proposition 9.5. If E is a G-CW prespectrum, then LE has the homotopytype of a G-CW spectrum. If E is a G-CW spectrum, then each component spaceEV has the homotopy type of a G-CW complex.Now return to our original question of how to get into the stable category.The kind of maps of prespectra that we are interested in here are \weak maps"D �! E, whose components DV �! EV are only required to be compatible upto homotopy with the structural maps. If D is �-co�brant, then any weak map isspacewise homotopic to a genuine map. The inverse limit term of (9.3) is given byweak maps, which represent maps between cohomology theories on spaces, and itslim1 term measures the di�erence between weak maps and genuine maps, whichrepresent maps between cohomology theories on spectra.Applying G-CW approximation spacewise, using I.3.6, we can replace any G-prespectrum E by a spacewise weakly equivalent G-prespectrum �E whose com-ponent spaces are G-CW complexes and therefore have co�bered diagonal maps.However, the structure maps, which come from the Whitehead theorem and areonly de�ned up to homotopy, need not be co�brations. The following \cylin-der construction" converts a G-prespectrum E whose spaces are of the homotopytypes of G-CW complexes and have co�bered diagonals into a spacewise equivalentG-CW prespectrum KE. Both constructions are functorial on weak maps.The composite K� carries an arbitrary G-prespectrum E to a spacewise equiv-alent G-CW prespectrum. By Proposition 9.5, LK�E has the homotopy typeof a G-CW spectrum. In sum, the composite LK� provides a canonical passagefrom G-prespectra to G-CW spectra that is functorial up to weak homotopy andpreserves all homotopical information in the given G-prespectra.The version of the cylinder construction presented in [LMS] is rather clumsy.The following version is due independently to Elmendorf and Hesselholt. It enjoysmuch more precise properties, details of which are given in [EKMM].Construction 9.6 (Cylinder construction). Let E be a G-prespectrumindexed on U . De�ne KE as follows. For an indexing space V , let V be thecategory of subspaces V 0 � V and inclusions. De�ne a functor EV from V to



152 XII. THE EQUIVARIANT STABLE HOMOTOPY CATEGORYG-spaces by letting EV (V 0) = �V�V 0EV 0. For an inclusion V 00 �! V 0,V � V 00 = (V � V 0)� (V 0 � V 00)and � : �V 0�V 00EV 00 �! EV 0 induces EV (V 00) �! EV (V 0). De�ne(KE)(V ) = hocolimEV :An inclusion i : V �! W induces a functor i : V �! W , the functor �W�V com-mutes with homotopy colimits, and we have an evident isomorphism �W�VEV �=Ei of functors V �! W . Therefore i induces a map� : �W�V hocolimEV �= hocolim�W�VEV �= hocolimEi �! hocolimEW :One can check that this map is a co�bration. Thus, with these structural maps,KE is a �-co�brant prespectrum. The structural maps � : EV V 0 �! EV specifya natural transformation to the constant functor at EV and so induce a mapr : (KE)(V ) �! EV , and these maps r specify a map of prespectra. Regardingthe object V as a trivial subcategory of V , we obtain j : EV �! (KE)(V ). Clearlyrj = Id, and jr ' Id via a canonical homotopy since V is a terminal object of V .The maps j specify a weak map of prespectra, via canonical homotopies. ClearlyK is functorial and homotopy-preserving, and r is natural. If each space EV hasthe homotopy type of a G-CW complex, then so does each (KE)(V ), and similarlyfor the co�bered diagonals condition.A striking property of this construction is that it commutes with smash prod-ucts: if E and E 0 are prespectra indexed on U and U 0, thenKE^KE 0 is isomorphicover E ^ E 0 to K(E ^ E 0).



CHAPTER XIIIRO(G)-graded homology and cohomology theories1. Axioms for RO(G)-graded cohomology theoriesSwitching to a homological point of view, we now consider RO(G)-graded ho-mology and cohomology theories. There are several ways to be precise about this,and there are several ways to be imprecise. The latter are better represented inthe literature than the former. As we have already said, no matter how things areset up, \RO(G)-graded" is technically a misnomer since one cannot think of rep-resentations as isomorphism classes and still keep track of signs. We give a formalaxiomatic de�nition here and connect it up with G-spectra in the next section.From now on, we shall usually restrict attention to reduced homology and co-homology theories and shall write them without a tilde. Of course, a Z-gradedhomology or cohomology theory on G-spaces is required to satisfy the redun-dant axioms: homotopy invariance, suspension isomorphism, exactness on co�bersequences, additivity on wedges, and invariance under weak equivalence. Hereexactness only requires that a co�ber sequence X �! Y �! Z be sent to a threeterm exact sequence in each degree. The homotopy and weak equivalence axiomssay that the theory is de�ned on �hGT . Such theories determine and are deter-mined by unreduced theories that satisfy the Eilenberg-Steenrod axioms, minusthe dimension axiom. Since k�nG (X) �= k0G(�nX);only the non-negative degree parts of a theory need be speci�ed, and a non-negativeinteger n corresponds to Rn. Indexing on Zamounts to either choosing a basis forR1 or, equivalently, choosing a skeleton of a suitable category of trivial represen-tations. 153



154 XIII. RO(G)-GRADED HOMOLOGY AND COHOMOLOGY THEORIESNow assume given a G-universe U , say U = �(Vi)1 for some sequence of distinctirreducible representations Vi with V1 = R. An RO(G;U)-graded theory can bethought of as graded on the free Abelian group on basis elements correspondingto the Vi. It is equivalent to grade on the skeleton of a category of representationsembeddable in U , or to grade on this entire category. The last approach seems tobe preferable when considering change of groups, so we will adopt it.Thus let RO(G;U) be the category whose objects are the representations em-beddable in U and whose morphisms V �! W are the G-linear isometric isomor-phisms. Say that two such maps are homotopic if their associated based G-mapsSV �! SW are stably homotopic, and let hRO(G;U) be the resulting homotopycategory. For each W , we have an evident functor�W : RO(G;U) � �hGT �! RO(G;U) � �hGTthat sends (V;X) to (V �W;�WX).Definition 1.1. An RO(G;U)-graded cohomology theory is a functorE�G : hRO(G;U) � (�hGT )op �! A b;written (V;X) �! EVG (X) on objects and similarly on morphisms, together withnatural isomorphisms �W : E�G �! E�G � �W , written�W : EVG (X) �! EV�WG (�WX);such that the following axioms are satis�ed.(1) For each representation V , the functor EVG is exact on co�ber sequencesand sends wedges to products.(2) If � : W �! W 0 is a map in RO(G;U), then the following diagram com-mutes: EVG (X) //�W���W 0 EV�WG (�WX)�� Eid��G (id)EV�W 0G (�W 0X) //(�� id)� EV�W 0G (�WX):



1. AXIOMS FOR RO(G)-GRADED COHOMOLOGY THEORIES 155(3) �0 = id and the � are transitive in the sense that the following diagramcommutes for each pair of representations (W;Z):EVG (X) //�W((�W�Z QQQQQQQQQQQQ EV�WG (�WX)uu �ZkkkkkkkkkkkkkkEV�W�ZG (�W�ZX):We extend a theory so de�ned to \formal di�erences V 	W" for any pair ofrepresentations (V;W ) by settingEV	WG (X) = EVG (�WX):We use the symbol 	 to avoid confusion with either orthogonal complement ordi�erence in the representation ring. Rigorously, we are thinking of V 	 W asan object of the category hRO(G;U) � hRO(G;U)op, and, for each X, we havede�ned a functor from this category to the category of Abelian groups.The representation group RO(G;U) relative to the given universe U is obtainedby passage to equivalence classes from the set of formal di�erences V 	W , whereV 	W is equivalent to V 0 	W 0 if there is a G-linear isometric isomorphism� : V �W 0 �! V 0 �W ;RO(G;U) is a ring if tensor products of representations embeddable in U areembeddable in U .When interpreting RO(G;U)-graded cohomology theories, we must keep trackof the choice of �, and we see that a given � determines the explicit isomorphismdisplayed as the unlabelled arrow in the diagram of isomorphismsEVG (�WX)�� //�W 0 EV�W 0G (�W�W 0X)�� E�G(�� id)EV 0G (�W 0X) //�W EV 0�WG (�W 0�WX);where � :W �W 0 �!W 0 �W is the transposition isomorphism.If V G = 0, write V � Rn = V + n. Axiom (1) ensures that, for each suchV , the EV+nG and �1 de�ne a Z-graded cohomology theory. Axiom (2), togetherwith some easy category theory, ensures that we obtain complete information ifwe restrict attention to one object in each isomorphism class of representations,



156 XIII. RO(G)-GRADED HOMOLOGY AND COHOMOLOGY THEORIESthat is, if we restrict to any skeleton of the category RO(G;U). One can evenrestrict further to a skeleton of its homotopy category. We shall say more aboutthis in the next section.We can replace the category �hGT of based G-spaces by the category �hGS Uof G-spectra in the de�nition just given and so de�ne an RO(G;U)-graded co-homology theory on G-spectra. Observe that, by our de�nition of the categoryRO(G;U), the isomorphism type of the functor EVG depends only on the stable ho-motopy type of the G-sphere SV . Such stable homotopy types have been classi�edby tom Dieck.We have the evident dual axioms for RO(G;U)-graded homology theories on G-spaces or G-spectra. The only point that needs to be mentioned is that homologytheories must be given by contravariant functors on RO(G;U) in order to makesense of the homological counterpart of Axiom (2).T. tom Dieck. Transformation groups and representation theory. Springer Lecture Notes inMathematics. Vol. 766. 1979.2. Representing RO(G)-graded theories by G-spectraWith our categorical de�nition of RO(G;U)-graded cohomology theories, it isnot obvious that they are represented by G-spectra. We show that they are inthis and the following section, �rst showing how to obtain an RO(G;U)-gradedtheory from a G-spectrum and then showing how to obtain a G-spectrum froman RO(G;U)-graded theory. Since I �nd the equivariant forms of these resultsin the literature to be unsatisfactory, I shall go into some detail. The problem isto pass from indexing spaces to general representations embeddable in our givenuniverse U , and the idea is to make explicit structure that is implicit in the notionof a G-spectrum and then exploit standard categorical techniques. We begin withsome of the latter.Let IO(G;U) and hIO(G;U) be the full subcategories of RO(G;U) andhRO(G;U) whose objects are the indexing spaces in U , let	 : IO(G;U) �! RO(G;U)be the inclusion, and also write 	 for the inclusion hIO(G;U) �! hRO(G;U).For each representation V that is embeddable in U , choose an indexing space �Vin U and a G-linear isomorphism �V : V �! �V . If V is itself an indexing space



2. REPRESENTING RO(G)-GRADED THEORIES BY G-SPECTRA 157in U , choose �V = V and let �V be the identity map. Extend � to a functor� : RO(G;U) �! IO(G;U)by letting ��, � : V �! V 0, be the composite�V //��1V V //� V 0 //�V 0 �V 0:Then � � 	 = Id and the �V de�ne a natural isomorphism Id �! 	 � �. Thisequivalence of categories induces an equivalence of categories between hIO(G;U)and hRO(G;U). A functor F from hIO(G;U) to any category C extends to thefunctor F� from hRO(G;U) to C , and we agree to write F instead of F� forsuch an extended functor.Lemma 2.1. Let E be an 
G-prespectrum. Then E gives the object functionof a functor E : hRO(G;U) �! �hGT .Proof. By the observations above, it su�ces to de�ne E as a functor onhIO(G;U). Suppose given indexing spaces V and V 0 in U and a G-linear iso-morphism � : V �! V 0. Choose an indexing space W large enough that itcontains both V and V 0 and that W � V and W � V 0 both contain copies ofrepresentations isomorphic to V and thus to V 0. Then there is an isomorphism� : W � V �! W 0 � V 0 such that� ^ � : SW �= SW�V ^ SV �! SW�V 0 ^ SV 0 �= SWis stably homotopic to the identity. (For the veri�cation, one relates smash productto composition product in the zero stem �G0 (S0), exactly as in nonequivariant stablehomotopy theory.) Then de�ne E� : EV �! EV 0 to be the compositeEV //~� 
W�V EW //
��1 
W 0�V 0EW //��1 EV 0:It is not hard to check that this construction takes stably homotopic maps � and�0 to homotopic maps E� and E�0 and that the construction is functorial onIO(G;U).Proposition 2.2. An 
-G-prespectrum E indexed on a universe U representsan RO(G;U)-graded cohomology theory E�G on based G-spaces.



158 XIII. RO(G)-GRADED HOMOLOGY AND COHOMOLOGY THEORIESProof. For a representation V that embeds in U , de�neEVG (X) = [X;E�V ]G:For each � : V �! V 0, de�ne E�G(X) = [X;E��]G:This gives us the required functorE�G : hRO(G;U) � (�hGT )op �! A b;and it is obvious that Axiom (1) of De�nition 1.1 is satis�ed.Next, suppose given representations V and W that embed in U . We may write�(V �W ) = V 0 +W 0;where V 0 = �V�W (V ) and W 0 = �V�W (W ). There result isomorphisms�V : �V ��1V�!V �0V�!V 0 and �W : �W ��1W�!W �0W�!W 0;where �0V = �V�W jV and �0W = �V�W jW . De�ne�W : EVG (X) �! EV�WG (�WX)by the commutativity of the following diagram:EVGX = [X;E�V ]G���W //[id;E�V ] [X;EV 0]G�� [id;~�][X;
W 0E(V 0 +W 0)]G�� �=EV�WG (�WX) = [�WX;E�(V �W )]G [�W 0X;E(V 0 �W 0)]G:oo [��0W id;id]Diagram chases from the de�nitions demonstrate that �W is natural, that thediagram of Axiom (2) of De�nition 1.1 commutes, and that the transitivity diagramof Axiom 3 commutes because of the transitivity condition that we gave as partof the de�nition of a G-prespectrum.There is an analog for homology theories.A slight variant of the proof above could be obtained by �rst replacing thegiven 
-G-prespectrum by a spacewise equivalent G-spectrum indexed on U andthen specializing the following result to suspension G-spectra. Recall that, for an



2. REPRESENTING RO(G)-GRADED THEORIES BY G-SPECTRA 159indexing space V , we have the shift desuspension functor �1V from based G-spacesto G-spectra. It is left adjoint to the V th space functor:[�1V X;E]G �= [X;EV ]G:(2.3)Definition 2.4. For a formal di�erence V 	 W of representations of G thatembed in U , de�ne the sphere G-spectrum SV	W bySV	W = �1�WSV ;(2.5)where � : RO(G;U) �! IO(G;U) is the equivalence of categories constructedabove.Proposition 2.6. A G-spectrum E indexed on U determines an RO(G;U)-graded homology theory EG� and an RO(G;U)-graded cohomology theory E�G onG-spectra.Proof. For G-spectra X and formal di�erences V 	W of representations thatembed in U , we de�ne EGV	W (X) = [SV	W ; E ^X]G(2.7)and EV	WG (X) = [SW	V ^X;E]G = [SW	V ; F (X;E)]G:(2.8)Of course, in cohomology, to verify the axioms, we may as well restrict attentionto the case W = 0, and similarly in homology. Obviously, the veri�cation reducesto the study of the properties of the G-spheres �V S0, or of the functors �V . First,we need functoriality on RO(G;U), but this is immediate from (2.3) and thefunctoriality of the EV given by Lemma 2.1. With the notations of the previousproof, we obtain the �W from the composite isomorphism of functors�1�V �= �1V 0 �= �W 0�1V 0+W 0 �= �W�1�(V�W );where the three isomorphisms are given by use of �V , passage to adjoints from thehomeomorphism ~� : EV 0 �! 
W 0E(V 0 + W 0), and use of �0W . From here, theveri�cation of the axioms is straightforward.



160 XIII. RO(G)-GRADED HOMOLOGY AND COHOMOLOGY THEORIES3. Brown's theorem and RO(G)-graded cohomologyWe next show that, conversely, all RO(G)-graded cohomology theories on basedG-spaces are represented by 
-G-prespectra and all theories on G-spectra arerepresented by G-spectra. We then discuss the situation in homology, which isconsiderably more subtle equivariantly than nonequivariantly.We �rst record Brown's representability theorem. Brown's categorical proofapplies just as well equivariantly as nonequivariantly, on both the space and thespectrum level. Recall that homotopy pushouts are double mapping cylindersand that weak pullbacks satisfy the existence but not the uniqueness property ofpullbacks. Recall that a G-space X is said to be G-connected if each of its �xedpoint spaces XH is non-empty and connected.Theorem 3.1 (Brown). A contravariant set-valued functor k on the homo-topy category of G-connected based G-CW complexes is representable in the formkX �= [X;K]G for a based G-CW complexK if and only if k satis�es the wedge andMayer-Vietoris axioms: k takes wedges to products and takes homotopy pushoutsto weak pullbacks. The same statement holds for the homotopy category of G-CWspectra indexed on U for any G-universe U .Corollary 3.2. An RO(G;U)-graded cohomology theory E�G on based G-spaces is represented by an 
-G-prespectrum indexed on U .Proof. Restricting attention to G-connected based G-spaces, which is harmlessin view of the suspension axiom for trivial representations, we see that (1) ofDe�nition 1.1 implies the Mayer-Vietoris and wedge axioms that are needed toapply Brown's representability theorem. This gives that EVG is represented by aG-CW complexEV for each indexing space V in U . If V � W , then the suspensionisomorphism �W�V : EVG (X) �= EWG (�W�VX)is represented by a homotopy equivalence ~� : EV �! 
W�VEW . The transitivityof the given system of suspension isomorphisms only gives that the structural mapsare transitive up to homotopy, whereas the de�nition of a G-prespectrum requiresthat the structural maps be transitive on the point-set level. If we restrict toa co�nal sequence of indexing spaces, then we can use transitivity to de�ne thestructural weak equivalences for non-consecutive terms of the sequence. We can



3. BROWN'S THEOREM AND RO(G)-GRADED COHOMOLOGY 161then interpolate using loop spaces to construct a representing 
-G-prespectrumindexed on all indexing spaces.We emphasize a di�erent point of view of the spectrum level analog. In fact, weshall exploit the following result to construct ordinary RO(G)-graded cohomologytheories in the next section.Corollary 3.3. AZ-graded cohomology theory on G-spectra indexed on U isrepresented by a G-spectrum indexed on U and therefore extends to an RO(G;U)-graded cohomology theory on G-spectra indexed on U .Proof. Since the loop and suspension functors are inverse equivalences on thestable category �hGS U , we can reconstruct the given theory from its zeroth term,and Brown's theorem applies to represent the zeroth term.We showed in the previous chapter that an 
-G-prespectrum determines a space-wise equivalent G-spectrum, so that a cohomology theory on based G-spaces ex-tends to a cohomology theory on G-spectra. The extension is unique up to non-unique isomorphism, where the non-uniqueness is measured by the lim1 term in(XII.9.3).Adams proved a variant of Brown's representability theorem for functors de�nedonly on connected �nite CW complexes, removing a countability hypothesis thatwas present in an earlier version due to Brown. This result also generalizes to theequivariant context, with the same proof as Adams' original one.Theorem 3.4 (Adams). A contravariant group-valued functor k de�ned on thehomotopy category of G-connected �nite based G-CW complexes is representablein the form kX �= [X;K]G for some G-CW spectrum K if and only if k converts�nite wedges to direct products and converts homotopy pushouts to weak pullbacksof underlying sets. The same statement holds for the homotopy category of �niteG-CW spectra.Here the representing G-CW spectrum K is usually in�nite and is unique onlyup to non-canonical equivalence. More precisely, maps g; g0 : Y �! Y 0 are said tobe weakly homotopic if gf is homotopic to g0f for any map f : X ! Y de�ned ona �nite G-CW spectrum X, and K is unique up to isomorphism in the resultingweak homotopy category of G-CW spectra.Nonequivariantly, we pass from here to the representation of homology theoriesby use of Spanier-Whitehead duality. A �nite CW spectrum X has a dual DX



162 XIII. RO(G)-GRADED HOMOLOGY AND COHOMOLOGY THEORIESthat is also a �nite CW spectrum. Given a homology theory E� on based spacesor on spectra, we obtain a dual cohomology theory on �nite X by settingEn(X) = E�n(DX):We then argue as above that this cohomology theory on �nite X is representableby a spectrum E, and we deduce by duality that E also represents the originallygiven homology theory.Equivariantly, this argument works for a complete G-universe U , but it doesnot work for a general universe. The problem is that, as we shall see later, onlythose orbit spectra �1G=H+ such that G=H embeds equivariantly in U havewell-behaved duals. For example, if the universe U is trivial, then inspection ofde�nitions shows that F (G=H+; S) = S for all H � G, where S is the spherespectrum with trivial G-action. Thus X is not equivalent to DDX in general andwe cannot hope to recover E�(X) as E�(DX).Corollary 3.5. If U is a complete G-universe, then an RO(G;U)-graded ho-mology theory on based G-spaces or on G-spectra is representable.From now on, unless explicitly stated otherwise, we take our given universe Uto be complete, and we write RO(G) = RO(G;U): As shown by long experiencein nonequivariant homotopy theory, even if one's primary interest is in spaces, thebest way to study homology and cohomology theories is to work on the spectrumlevel, exploiting the virtues of the stable homotopy category.J. F. Adams. A variant of E. H. Brown's representability theorem. Topology, 10(1971), 185{198.E. H. Brown, Jr. Cohomology theories. Annals of Math. 75(1962), 467{484.E. H. Brown, Jr. Abstract homotopy theory. Trans. Amer. Math. Soc. 119(1965), 79{85.4. Equivariant Eilenberg-MacLane spectraFrom the topological point of view, a coe�cient system is a contravariant addi-tive functor from the stable category of naive orbit spectra to Abelian groups. Infact, it is easy to see that the group of stable maps G=H+ �! G=K+ in the naivesense is the free Abelian group on the set of G-maps G=H �! G=K.Recall from IXx4 that a Mackey functor is de�ned to be an additive contravariantfunctor BG �! A b. Clearly the Burnside category B = BG introduced there isjust the full subcategory of the stable category whose objects are the orbit spectra�1G=H+. The only di�erence is that, when de�ning BG, we abbreviated thenames of objects to G=H.



4. EQUIVARIANT EILENBERG-MACLANE SPECTRA 163From this point of view, the forgetful functor that takes a Mackey functor toa coe�cient system is obtained by pullback along the functor i� from the stablecategory of genuine orbit spectra to the stable category of naive orbit spectra. InXx4, Waner described a space level construction of an RO(G)-graded cohomologytheory with coe�cients in a Mackey functorM that extends the ordinaryZ-gradedcohomology theory determined by its underlying coe�cient system i�M . We shallhere give a more sophisticated, and I think more elegant and conceptual, spectrumlevel construction of such \ordinary" RO(G)-graded cohomology theories, andsimilarly for homology.Our strategy is to construct a genuine Eilenberg-MacLane G-spectrum HM =K(M; 0) to represent our theory. Just as nonequivariantly, an Eilenberg-MacLaneG-spectrum HM is one such that �n(HM) = 0 for n 6= 0. Of course, �0(HM) =M must be a Mackey functor since that is true of �n(E) for any n and any G-spectrum E. We shall explain the following result.Theorem 4.1. For a Mackey functor M , there is an Eilenberg-MacLane G-spectrum HM such that �0(HM) =M . It is unique up to isomorphism in �hGS .For Mackey functors M and M 0, [HM;HM 0]G is the group of maps of Mackeyfunctors M �!M 0.There are several possible proofs. For example, one can exploit projective res-olutions of Mackey functors. The proof that we shall give is the original one ofLewis, McClure, and myself, which I �nd rather amusing.What is amusing is that, motivated by the desire to construct an RO(G)-gradedcohomology theory, we instead construct a Z-graded theory. However, this is aZ-graded theory de�ned on G-spectra. As observed in Corollary 4.3, it can berepresented and therefore extends to an RO(G)-graded theory. The representingG-spectrum is the desired Eilenberg-MacLane G-spectrum HM . What is alsoamusing is that the details that we shall use to construct the desired cohomologytheories are virtually identical to those that we used to construct ordinary theoriesin the �rst place.We start with G-CW spectra X. They have skeletal �ltrations, and we de�neMackey-functor valued cellular chains by settingCn(X) = �n(Xn=Xn�1):(4.2)We used homology groups in Ix4, but, aside from nuisance with the cases n = 0



164 XIII. RO(G)-GRADED HOMOLOGY AND COHOMOLOGY THEORIESand n = 1, we could equally well have used homotopy groups. Of course, Xn=Xn�1is a wedge of n-sphere G-spectra SnH ' G=H+ ^ Sn. We see that the Cn(X) areprojective objects of the Abelian category of Mackey functors by essentially thesame argument that we used in Ix4. As there, the connecting homomorphism ofthe triple (Xn;Xn�1;Xn�2) speci�es a map of Mackey functorsd : Cn(X) �! Cn�1(X);and d2 = 0. Write HomB(M;M 0) for the Abelian group of maps of Mackeyfunctors M �!M 0. For a Mackey functor M , de�neCnG(X;M) = HomB(Cn(X);M); with � = HomB(d; Id):(4.3)Then C�G(X;M) is a cochain complex of Abelian groups. We denote its homologyby H�G(X;M).The evident cellular versions of the homotopy, exactness, wedge, and excisionaxioms admit exactly the same quick derivations as on the space level, and weuse G-CW approximation to extend from G-CW spectra to general G-spectra: wehave a Z-graded cohomology theory on �hGS . It satis�es the dimension axiomH�G(S0H ;M) = H0G(S0H ;M) =M(G=H);(4.4)these giving isomorphisms of Mackey functors. The zeroth term is represented bya G-spectrum HM , and we read o� its homotopy group Mackey functors directlyfrom (4.4): �0(HM) =M and �n(HM) = 0 if n 6= 0:The uniqueness of HM is evident, and the calculation of [HM;HM 0]G followseasily from the functoriality in M of the theories H�G(X;M).We should observe that spectrum level obstruction theory works exactly ason the space level, modulo connectivity assumptions to ensure that one has adimension in which to start inductions.For G-spaces X, we now have two meanings in sight for the notation HnG(X;M):we can regard our Mackey functor as a coe�cient system and take ordinary co-homology as in Ix4, or we can take our newly constructed cohomology. We knowby the axiomatic characterization of ordinary cohomology that these must in factbe isomorphic, but it is instructive to check this directly. At least after a singlesuspension, we can approximate any G-space by a weakly equivalent G-CW based



4. EQUIVARIANT EILENBERG-MACLANE SPECTRA 165complex, with based attaching maps. The functor �1 takes G-CW based com-plexes to G-CW spectra, and we �nd that the two chain complexes in sight areisomorphic. Alternatively, we can check on the represented level:[�1X;�nHM ]G �= [X;
1�nHM ]G �= [X;K(M;n)]G:What about homology? Recall that a coMackey functor is a covariant functorN : B �! A b. Using the usual coend construction, we de�neCGn (X;N) = C�(X) 
B N; with @ = d 
 Id :(4.5)Then CG� (X;N) is a chain complex of Abelian groups. We denote its homology byHG� (X;N). Again, the veri�cation of the axioms for a Z-graded homology theoryon �hGS is immediate. The dimension axiom now readsHG� (S0H ;N) = HG0 (S0H ;N) = N(G=H):(4.6)We de�ne a cohomology theory on �nite G-spectra X byH�G(X;N) = HG��(DX;N):(4.7)Applying Adams' variant of the Brown representability theorem, we obtain aG-spectrum JN that represents this cohomology theory. For �nite X, we obtainHG� (X;N) = H��G (DX;N) �= [DX;JN ]��G �= [S; JN ^X]G� = JNG� (X):Thus JN represents the Z-graded homology theory that we started with and ex-tends it to an RO(G)-graded theory. We again see that, on G-spaces X,HG� (X;N)agrees with the homology of X with coe�cients in the underlying covariant coef-�cient system of N , as de�ned in Ix4.What are the homotopy groups of JN? The answer must be�Hn (JN) = HGn (D(G=H+);N):For �nite G, orbits are self-dual and the resulting isomorphism of the stable orbitcategory with its opposite category induces the evident self-duality of the alge-braically de�ned category of Mackey functors to be discussed in XIXx3. Thisallows us to conclude that JN = H(N�);where N� is the Mackey functor dual to the coMackey functor N .For general compact Lie groups, however, the dual of G=H+ is G nH S�L(H),and it is not easy to calculate the homotopy groups of JN . This G-spectrum is



166 XIII. RO(G)-GRADED HOMOLOGY AND COHOMOLOGY THEORIESbounded below, but it is not connective. We must learn to live with the fact thatwe have two quite di�erent kinds of Eilenberg-MacLane G-spectra, one that issuitable for representing \ordinary" cohomology and the other that is suitable forrepresenting \ordinary" homology.G. Lewis, J. P. May, and J. McClure. Ordinary RO(G)-graded cohomology. Bulletin Amer.Math. Soc. 4(1981), 208-212.5. Ring G-spectra and productsGiven our precise de�nition of RO(G)-graded theories and our understanding oftheir representation by G-spectra, the formal apparatus of products in homologyand cohomology theories can be developed in a straightforward manner and is littledi�erent from the nonequivariant case in classical lectures of Adams. However,in that early work, Adams did not take full advantage of the stable homotopycategory. We here recall brie
y the basic de�nitions from the equivariant treatmentin [LMS, IIIx3].There are four basic products to consider, two external products and two slantproducts. The reader should be warned that the treatment of slant products in theliterature is inconsistent, at best, and often just plain wrong. These four productscome from the following four natural maps in �hGS ; all variables are G-spectra.X ^ E ^X 0 ^ E 0 //id^�^id X ^X 0 ^ E ^ E 0(5.1) F (X;E) ^ F (X 0; E 0) //^ F (X ^X 0; E ^ E 0)(5.2) F (X ^X 0; E) ^X ^ E 0 //=���= F (X 0; E ^ E 0)F (X;F (X 0; E)) ^X ^ E 0 //"^id F (X 0; E) ^ E 0OO �(5.3) X ^X 0 ^ E ^ F (X;E 0) **� VVVVVVVVVVVVVVVVVV //n X 0 ^ E ^ E 0X 0 ^ E ^ F (X;E 0) ^X 55id^ id^" jjjjjjjjjjjjjjjj(5.4)



5. RING G-SPECTRA AND PRODUCTS 167The � are transposition maps and the " are evaluation maps. The map �can be described formally, but it is perhaps best understood by pretending thatF means Hom and ^ means 
 over a commutative ring and writing down theobvious analog. Categorically, such coherence maps are present in any symmetricmonoidal category with an internal hom functor. A categorical coherence theoremasserts that any suitably well formulated diagram involving these transformationswill commute.On passage to homotopy groups, these maps give rise to four products inRO(G)-graded homology and cohomology. With our details on RO(G)-grading, we leaveit as an exercise for the reader to check exactly how the grading behaves.EG� (X) 
 E 0G� (X 0) �! (E ^ E 0)G� (X ^X 0)(5.5) E�G(X)
 E 0�G(X 0) �! (E ^ E 0)�G(X ^X 0)(5.6) = : E�G(X ^X 0)
E 0G� (X) �! (E ^ E 0)�G(X 0)(5.7) n : EG� (X ^X 0)
 E 0�G(X) �! (E ^ E 0)G� (X 0)(5.8)A ring G-spectrum E is one with a product � : E ^ E �! E and a unit map� : S �! E such that the following diagrams commute in �hGS :S ^ E //�^1 %%' KKKKKKKKKK E ^ E�� � E ^ Soo 1^�yy 'ssssssssss and E ^ E ^ E���^1 //1^� E ^ E�� �E E ^ E //� E:The unlabelled equivalences are canonical isomorphisms in �hGS that give theunital property, and we have suppressed such an associativity isomorphism in thesecond diagram. Of course, there is a weaker notion in which associativity is notrequired; E is commutative if the following diagram commutes in �hGS :E ^ E ##� GGGGGGGGG //� E ^ E{{ �wwwwwwwwwE:



168 XIII. RO(G)-GRADED HOMOLOGY AND COHOMOLOGY THEORIESAn E-module is a spectrum M together with a map � : E ^M �! M suchthat the following diagrams commute in �hGS :S ^M //�^1 %%' LLLLLLLLLLL E ^M�� � and E ^ E ^M���^1 //1^� E ^M�� �M E ^M //� M:We obtain various further products by composing the four external productsdisplayed above with the multiplication of a ring spectrum or with its action ona module spectrum. If X = X 0 is a based G-space (or rather its suspensionspectrum), we obtain internal products by composing with the reduced diagonal� : X �! X ^X. Of course, it is more usual to think in terms of unbased spaces,but then we adjoin a disjoint basepoint. In particular, for a ring G-spectrum Eand a based G-space X, we obtain the cup and cap products[ : E�G(X) 
 E�G(X) �! E�G(X)(5.9)and \ : EG� (X) 
 E�G(X) �! EG� (X)(5.10)from the external products ^ and n.It is natural to ask when HM is a ring G-spectrum. In fact, in common withall such categories of additive functors, the category of Mackey functors has aninternal tensor product (see Mitchell). In the present topological context, we cande�ne it simply by settingM 
M 0 = �0(HM ^HM 0):There results a notion of a pairingM
M 0 �!M 00 of Mackey functors. By killingthe higher homotopy groups of HM ^HM 0, we obtain a canonical map� : HM ^HM 0 �! H(M 
M 0);and � induces an isomorphism on H0G(�;M 00) = [�;HM 00]G. It follows that pairingsof G-spectra HM ^HM 0 �! HM 00 are in bijective correspondence with pairingsM 
M 0 �! M 00. From here, it is clear how to de�ne the notion of a ring inthe category of Mackey functors | such objects are called Green functors |and to conclude that a ring structure on the G-spectrum HM determines andis determined by a structure of Green functor on the Mackey functor M . Theseobservations come from work of Greenlees and myself on Tate cohomology.



5. RING G-SPECTRA AND PRODUCTS 169There is a notion of a ring G-prespectrum; modulo lim1 problems, its associatedG-spectrum (here constructed using the cylinder construction since one wishes toretain homotopical information) inherits a structure of ring G-spectrum. A goodnonequivariant exposition that carries over to the equivariant context has beengiven by McClure.J. F. Adams. Lectures on generalized cohomology. in Springer Lecture Notes in Mathematics,Vol. 99, 1-138.J. P. C. Greenlees and J. P. May. Generalized Tate cohomology (x8). Memoirs Amer. Math.Soc. Number 543. 1995.J. E. McClure. H1-ring spectra via space-level homotopy theory (xx1-2). In R. Bruner, etal, H1-ring spectra and their applications. Springer Lecture Notes in Mathematics, Vol. 1176.1986.B. Mitchell. Rings with several objects. Advances in Math 8(1972), 1-16.
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CHAPTER XIVAn introduction to equivariant K-theoryby J. P. C. Greenlees1. The de�nition and basic properties of KG-theoryThe aim of this chapter is to explain the basic facts about equivariant K-theorythrough the Atiyah-Segal completion theorem. Throughout, G is a compact Liegroup and we focus on complex K-theory. Real K-theory works similarly.We brie
y outline the geometric roots of equivariant K-theory. A G-vectorbundle over a G-space X is a G-map � : E �! X which is a vector bundle suchthat G acts linearly on the �bers, in the sense that g : Ex �! Egx is a linear map.Since G is compact, all short exact sequences of G-vector bundles split. If X isa compact space, then KG(X) is de�ned to be the Grothendieck group of �nitedimensional G-vector bundles over X. Tensor product of bundles makes KG(X)into a ring.Many applications arise; for example, the equivariant K-groups are the homesfor indices of G-manifolds and families of elliptic operators.Any complex representation V of G de�nes a trivial bundle over X and, by thePeter-Weyl theorem, any G-vector bundle over a compact base space is a summandof such a trivial bundle. The cokernel of KG(�) �! KG(X) can therefore bedescribed as the group of stable isomorphism classes of bundles over X, wheretwo bundles are stably isomorphic if they become isomorphic upon adding anappropriate trivial bundle to each. When X has a G-�xed basepoint �, we write~KG(X) for the isomorphic group ker(KG(X) �! KG(�)).171



172 XIV. AN INTRODUCTION TO EQUIVARIANT K-THEORYThe de�nition of a G-vector bundle makes it clear that G-bundles over a free G-space correspond to vector bundles over the quotient under pullback. We deducethe basic reduction theorem:KG(X) = K(X=G) if X is G � free:(1.1)This is essentially the statement that K-theory is split in the sense to be discussedin XVIx2. It provides the fundamental link between equivariant and nonequivari-ant K-theory.Restriction and induction are the basic pieces of structure that link di�erentambient groups of equivariance.If i : H �! G is the inclusion of a subgroup it is clear that a G-space or bundlecan be viewed as an H-space or bundle; we thereby obtain a restriction mapi� : KG(X) �! KH(X):There is another way of thinking about this map. For an H-space Y ,KG(G �H Y ) �= KH(Y )(1.2)since a G-bundle over G �H Y is determined by its underlying H-bundle over Y .For a G-space X, G �H X �= G=H �X, and the restriction map coincides withthe map KG(X) �! KG(G=H �X) �= KH(X)induced by the projection G=H �! �.If H is of �nite index in G, an H-bundle over a G-space may be made into aG-bundle by applying the functor HomH(G; �). We thus obtain an induction mapi� : KH(X) �! KG(X). However ifH is of in�nite index this construction gives anin�nite dimensional bundle. There are three other constructions one may hope touse. First, there is smooth induction, which Segal describes for the representationring and which should apply to more general base manifolds than a point.Second, there is the holomorphic transfer, which one only expects to exist whenG=H admits the structure of a projective variety. The most important case is whenH is the maximal torus in the unitary group U(n), in which case a constructionusing elliptic operators is described by Atiyah. Its essential property is that itsatis�es i�i� = 1. It is used in the proof of Bott periodicity.Third, there is a transfer maptr : ~KH(�WX) �= ~KG(G+ ^H �WX) �! ~KG(�VX)



2. BUNDLES OVER A POINT: THE REPRESENTATION RING 173induced by the Pontrjagin-Thom construction t : SV �! G+ ^H SW associatedto an embedding of G=H in a representation V , where W is the complement ofthe image in V of the tangent H-representation L = L(H) at the identity coset ofG=H. Once we use Bott periodicity to set up RO(G)-graded K-theory, this maybe interpreted as a dimension-shifting transfer ~Kq+LH (X) �! ~KqG(X). Clearly thistransfer is not special to K-theory: it is present in any RO(G)-graded theory.M. F.Atiyah. Bott periodicity and the index of elliptic operators. Quart. J. Math. 19(1968),113-140.G. B.Segal. Equivariant K-theory. Pub. IHES 34(1968), 129-151.2. Bundles over a point: the representation ringBundles over a point are representations and hence equivariant K-theory ismodule-valued over the complex representation ring R(G). More generally, anyG-vector bundle over a transitiveG-space G=H is of the formG�HV �! G�H� =G=H for some representation V of H. Hence KG(G=H) = R(H). It follows thatKG(X) takes values in the category of R(G)-modules, and thus it is important tounderstand the algebraic nature of R(G).Before turning to this, we observe that if G acts trivially on X, thenKG(X) �= R(G) 
K(X):Indeed, the map K(X) �! KG(X) obtained by regarding a vector bundle as a G-trivial G-vector bundle extends to a map � : R(G)
K(X) of R(G)-modules, andthis map is the required isomorphism. An explicit inverse can be constructed asfollows. For a representation V , let V denote the trivialG-vector bundleX�V �!X. The functor that sends a G-vector bundle � to the vector bundle HomG(V; �)induces a homomorphism "V : KG(X) �! K(X). Let fVig run through a setconsisting of one representation Vi from each isomorphism class [Vi] of irreduciblerepresentations. Then a G-vector bundle � over X breaks up as the Whitneysum of its subbundles Vi 
 HomG(Vi; �). De�ne � : KG(X) �! R(G) 
 K(X)by �(�) = Pi[Vi] 
 "Vi(�). It is then easy to check that � and � are inverseisomorphisms.To understand the algebra of R(G), one should concentrate on the so called\Cartan subgroups" of G. These are topologically cyclic subgroups H with �niteWeyl groups WG(H) = NG(H)=H. Conjugacy classes of Cartan subgroups arein one-to-one correspondence with conjugacy classes of cyclic subgroups of the



174 XIV. AN INTRODUCTION TO EQUIVARIANT K-THEORYcomponent group �0(G). Every element of G lies in some Cartan subgroup, andtherefore the restriction maps give an injective ring homomorphismR(G) �!Y(C)R(C)(2.1)where the product is over conjugacy classes of Cartan subgroups.The ringR(G) is Noetherian. Indeed, by explicit calculation,R(U(n)) is Noethe-rian and the representation ring of a maximal torus T is �nite over it. Any groupG may be embedded in some U(n), and it is enough to show that R(G) is �nitelygenerated as an R(U(n))-module. Now R(G) is detected on �nitely many topolog-ically cyclic subgroups C, so it is enough to show each R(C) is �nitely generatedover R(U(n)). But each such C is conjugate to a subgroup of T , and R(C) is �niteover R(T ).The map (2.1) makes the codomain a �nitely generated module over the domainand consequently the induced map of prime spectra is surjective and has �nite�bers. By identifying the �bers it can then be shown that for any prime } ofR(G) the set of minimal elements offH � G j } is the restriction of a prime of R(H)gconstitutes a single conjugacy class (H) of subgroups, with H topologically cyclic.We say that (H) is the support of }. If R(G)=} is of characteristic p > 0 then thecomponent group of H has order prime to p.The �rst easy consequence is that the Krull dimension of R(G) is one more thanthe rank of G.A more technical consequence which will become important to us later is thatcompletion is compatible with restriction. Indeed restriction gives a ring homo-morphism res : R(G) �! R(H) by which we may regard an R(H)-module as anR(G)-module. Using supports, we see that if I(G) = kerfdim : R(G) �! Zg isthe augmentation ideal, the ideals I(H) and res(I(G)):R(H) have the same rad-ical. Consequently the I(H)-adic and I(G)-adic completions of an R(H)-modulecoincide.Finally, using supports it is straightforward to understand localizations of equiv-ariant K-theory at primes of R(G). In fact if (H) is the support of } the inclusionX(H) �! X induces an isomorphism of KG( )}, where X(H) is the union of the�xed point spaces XH 0 with H 0 conjugate to H.G. B.Segal. The representation ring of a compact Lie group. Pub. IHES 34(1968), 113-128.



3. EQUIVARIANT BOTT PERIODICITY 1753. Equivariant Bott periodicityEquivariant Bott periodicity is the most important theorem in equivariant K-theory and is even more extraordinary than its nonequivariant counterpart. Itunderlies all of the amazing properties of equivariant K-theory. For a locallycompact G-space X, de�ne KG(X) to be the reduced K-theory of the one-pointcompacti�cation X# of X. That is, writing � for the point at in�nity,KG(X) = ker(KG(X#) �! KG(�):WhenX is compact,X# is the unionX+ ofX and a disjointG-�xed basepoint. Weissue a warning: in general, for in�nite G-CW complexes, KG(X) as just de�nedwill not agree with the represented KG-theory of X that will become availablewhen we construct the K-theory G-spectrum in the next section.Theorem 3.1 (Thom isomorphism). For vector bundles E over locally com-pact base spaces X, there is a natural Thom isomorphism� : KG(X) �=�! KG(E):There is a quick reduction to the case whenX is compact, and in this case we canuse that any G-bundle is a summand of the trivial bundle of some representationV to reduce to the case when E = V �X. Here, with an appropriate descriptionof the Thom isomorphism, one can reinterpret the statement as a convenient andexplicit version of Bott periodicity. To see this, let �(V ) 2 R(G) denote thealternating sum of exterior powers�(V ) = 1 � V + �2V � � � �+ (�1)dimV �dimV V;let eV : S0 �! SV be the based map that sends the non-basepoint to 0, and,taking X to be a point, let bV = �(1) 2 ~K(SV ). Observe that eV inducese�V : ~K(SV ) �! ~K(S0) = R(G):Theorem 3.2 (Bott periodicity). For a compact G-space X and a complexrepresentation V of G, multiplication by bV speci�es an isomorphism� : ~KG(X+) = KG(X) �=�! KG(V �X) = ~K(SV ^X+):Moreover, e(V )�(bV ) = �(V ).



176 XIV. AN INTRODUCTION TO EQUIVARIANT K-THEORYThe Thom isomorphism can be proven for line bundles, trivial or not, by arguingwith clutching functions, as in the nonequivariant case. The essential point is toshow that the K-theory of the projective bundle P (E � C ) is the free KG(X)-module generated by the unit element f1g and the Hopf bundle H. This impliesthe case when E is a sum of trivial line bundles. If G is abelian, every V is a sumof one dimensional representations so the theorem is proved. This deals with thecase of a torus T . The signi�cantly new feature of the equivariant case is the useof holomorphic transfer to deduce the case of U(n). Finally, by change of groups,the result follows for any subgroup of U(n).For real equivariant K-theory KOG, the Bott periodicity theorem is true asstated provided that we restrict V to be a Spin representation of dimension divis-ible by eight. However, the proof is signi�cantly more di�cult, requiring the useof pseudo-di�erential operators.Now we may extend KG(�) to a cohomology theory. Following our usual con-ventions, we shall write K�G for the reduced theory on based G-spaces X. Since weneed compactness, we consider based �nite G-CW complexes, and we then havethe notational conventions that in degree zeroK0G(X+) = KG(X) for �nite G-CW complexes Xand K0G(X) = ~KG(X) for based �nite G-CW complexes X:Of course we could already have made the de�nition K�qG (X) = K0G(�qX) forpositive q, but we now know that these are periodic with period 2 since R2 = C .Thus we may takeK2nG (X) = K0G(X) and K2n+1G (X) = K0G(�1X) for all n:Note in particular that the coe�cient ring is R(G) in even degrees. It is zero inodd degrees because all bundles over S1 are pullbacks of bundles over a point,GLn(C ) being connected. We can extend this to an RO(G)-graded theory thatis R(G)-periodic, but we let the construction of a representing G-spectrum in thenext section take care of this for us.M. F.Atiyah. Bott periodicity and the index of elliptic operators. Quart. J. Math. 19(1968),113-140.M. F.Atiyah and R. Bott. On the periodicity theorem for complex vector bundles. Acta math.112(1964), 229-247.G. B.Segal. Equivariant K-theory. Pub. IHES 34(1968), 129-151.



4. EQUIVARIANT K-THEORY SPECTRA 1774. Equivariant K-theory spectraFollowing the procedures indicated in XIIx9, we run through the construction ofa G-spectrum that represents equivariant K-theory. Recall from VII.3.1 that theGrassmannian G-space BU(n; V ) of complex n-planes in a complex inner productG-space V classi�es complex n-dimensional G-vector bundles if V is su�cientlylarge, for example if V contains a complete complex G-universe.Diverging slightly from our usual notation, �x a complete G-universe U . Foreach indexing space V � U and each q � 0, we have a classifying spaceBU(q; V �U )for q-plane bundles. For V � W , we have an inclusionBU(q; V �U ) �! BU(q + jW � V j;W �U )that sends a plane A to the plane A+ (W � V ). De�neBUG(V ) = aq�0BU(q; V �U ):We take the plane V in BU(jV j; V �U ) as the canonical G-�xed basepoint ofBUG(V ). For V � W , we then have an inclusion BUG(V ) in BUG(W ) of basedG-spaces. De�ne BUG to be the colimit of the BUG(V ).For �nite (unbased) G-CW complexes X, the de�nition of KG(X) as a Groth-endieck group and the classi�cation theorem for complex G-vector bundles lead toan isomorphism [X+; BUG]G �= KG(X) = K0G(X+):The �niteness ensures that our bundles embed in trivial bundles and thus havecomplements. In turn, this ensures that every element of the Grothendieck groupis the di�erence of a bundle and a trivial bundle. For the proof, we may as wellassume that X=G is connected. In this case, a G-map � : X �! BUG factorsthrough a map f : BUG(q; V �U ) for some q and V . If f classi�es the G-bundle�, then the isomorphism sends � to � � V .The spaces BUG(V ) and BUG have the homotopy types of G-CW complexes.If we wish, we can replace them by actual G-CW complexes by use of the functor� from G-spaces to G-CW complexes. For a complex representation V and based�nite G-CW complexes X, Bott periodicity implies a natural isomorphism[X;BUG]G �= K0G(X) �= K0G(�VX) �= [X;
VBUG]G:



178 XIV. AN INTRODUCTION TO EQUIVARIANT K-THEORYBy Adams' variant XIII.3.4 of Brown's representability theorem, this isomorphismis represented by a G-map ~� : BUG �! 
VBUG, which must be an equivalence.However, we must check the vanishing of the appropriate lim1-term to see that thehomotopy class of ~� is well-de�ned. Restricting to a co�nal sequence of represen-tations so as to arrange transitivity (as in XIII.3.2), we have an 
-G-prespectrum.It need not be �-co�brant, but we can apply the cylinder construction K to makeit so. Applying L, we then obtain a G-spectrum KG. It is related to the 
-G-prespectrum that we started with by a spacewise equivalence. Of course, therestriction to complex indexing spaces is no problem since we can extend to allreal indexing spaces, as explained in XIIx2.Using real inner product spaces, we obtain an analogous G-space BOG and ananalogous isomorphism [X;BOG]G �= KOG(X):If we start with Spin representations of dimension 8n, those being the ones forwhich we have real Bott periodicity, the same argument works to construct aG-spectrum KOG that represents real K-theory.5. The Atiyah-Segal completion theoremIt is especially important to understand bundles over the universal space EG,because of their role in the theory of characteristic classes. We have already men-tioned one very simple construction of bundles. In fact for any representation V wemay form the bundle EG�V �! EG�� and hence we obtain the homomorphism� : R(G) �! KG(EG):Evidently � is induced by the projection map � : EG �! �. The Atiyah-Segalcompletion theorem measures how near � is to being an isomorphism.Of course, EG is a free G-CW complex. Any free G-CW complex is constructedfrom the G-spaces G+ ^Sn by means of wedges, co�bers, and passage to colimits.From the change of groups isomorphism K�G(G+ ^ X) �= K�(X) we see that theaugmentation ideal I = I(G) acts as zero on the K-theory of any space G+ ^X.In particular the K-theory of a free sphere is complete as an R(G)-module forthe topology de�ned by powers of I. Completeness is preserved by extensions of�nitely generated modules, so we that K�G(X) is I-complete for any �nite freeG-CW complex X. Completeness is also preserved by inverse limits so, providedlim1 error terms vanish, the K-theory of EG is I-complete.



5. THE ATIYAH-SEGAL COMPLETION THEOREM 179Remarkably the K-theory of EG is fully accounted for by the representationring, in the simplest way allowed for by completeness. The Atiyah-Segal theoremcan be seen as a comparison between the algebraic process of I-adic completionand the geometric process of \completion" by making a space free.The map � has a counterpart in all degrees, and it is useful to allow a parameterspace, which will be a based G-space X. Thus we consider the map�� : K�G(X) �! K�G(EG+ ^X):Note that the target is isomorphic to the non-equivariantK-theoryK�(EG+^GX),and the following theorem may be regarded as a calculation of this in terms of themore approachable group K�G(X).Theorem 5.1 (Atiyah-Segal). Provided that X is a �nite G-CW-complex,the map �� above is completion at the augmentation ideal, so thatK�G(EG+ ^X) �= K�G(X)Î :In particular, K0G(EG+) = R(G)Î and K1G(EG+) = 0:We sketch the simplest proof, which is that of Adams, Haeberly, Jackowski,and May. We skate over two technical points and return to them at the end.For simplicity of notation, we omit the parameter space X. We do not yet knowthat K�G(EG+) is complete since we do not yet know that the relevant lim1-termvanishes. If we did know this, we would be reduced to proving that � : EG+ �! S0induces an isomorphism of I-completed K-theory.If we also knew that \completed K-theory" was a cohomology theory it wouldthen be enough to show that the co�ber of � was acyclic. It is standard to let~EG denote this co�ber, which is easily seen to be the unreduced suspension of EGwith one of the cone points as base point. That is, it would be enough to provethat K�G( ~EG) = 0 after completion.The next simpli�cation is adapted from a step in Carlsson's proof of the Segalconjecture. If we argue by induction on the size of the group (which is possible sincechains of subgroups of compact Lie groups satisfy the descending chain condition),we may suppose the result proved for all proper subgroups H of G. Accordingly,by change of groups, K�G(G=H+^Y ) = 0 after completion for any nonequivariantlycontractible space Y and hence by wedges, co�bers, and colimits K�G(E ^ Y ) = 0



180 XIV. AN INTRODUCTION TO EQUIVARIANT K-THEORYafter completion for any G-CW complex E constructed using cells G=H+ ^Sn forvarious proper subgroups H.Now if G is �nite, let V denote the reduced regular representation and let S1Vbe the union of the representation spheres SkV . For a general compact Lie groupG, we let S1V denote the union of the representation spheres SV as V runs overthe indexing spaces V such that V G = 0 in a complete G-universe U .Evidently S1V H is contractible ifH is a proper subgroup and S1V G = S0. ThusS1V =S0 has no G-�xed points and may be constructed using cells G=H+ ^ Sn forproper subgroups H. Thus, by the inductive hypothesis, K�G(S1V =S0 ^ ~EG) = 0after completion, and henceK�G(S1V ^ ~EG) �= K�G(S0 ^ ~EG) = K�G( ~EG)after completion. But evidently the inclusionS1V = S1V ^ S0 �! S1V ^ ~EGis an equivariant homotopy equivalence (consider the various �xed point sets).This proves a most convenient reduction: it is enough to prove that K�G(S1V ) = 0after completion.In fact, it is easy to see that K�G(S1V ) = 0 after completion. When G is �nite,one just notes that (ignoring lim1 problems again)K�G(S1V ) = limk K�G(SkV ) = limk (K�G(S0); �(V )) = 0because �(V ) 2 I. Indeed the inverse limit has the e�ect of making the element�(V ) invertible, and if IM = M then MÎ = 0. The argument in the generalcompact Lie case is only a little more elaborate.To make this proof honest, we must address the two important properties thatwe used without justi�cation: (a) that completed K-theory takes co�berings toexact sequences and (b) that the K-theories of certain in�nite complexes are theinverse limits of the K-theories of their �nite subcomplexes. In other words thepoints that we skated over were the linked problems of the inexactness of comple-tion and the nonvanishing of lim1 terms.Now, since R(G) is Noetherian, completion is exact on �nitely generated mod-ules, and the K groups of �nite complexes are �nitely generated. Accordingly, oneroute is to arrange the formalities so as to only discuss �nite complexes: this isthe method of pro-groups, as in the original approach of Atiyah. It is elementary



5. THE ATIYAH-SEGAL COMPLETION THEOREM 181and widely useful. Instead of considering the single group K�G(X) we consider theinverse system of groups K�G(X�) as X� runs over the �nite subcomplexes of X.We do not need to know much about pro-groups. A pro-group is just an inversesystem of Abelian groups. There is a natural way to de�ne morphisms, and theresulting category is Abelian. The fundamental technical advantage of workingin the category of pro-groups is that, in this category, the inverse limit functor isexact. For any Abelian group valued functor h on G-CW complexes or spectra, wede�ne the associated pro-group valued functor h by letting h(X) be the inversesystem fh(X�)g, where X� runs over the �nite subcomplexes of X.As long as all K-theory is interpreted as pro-group valued, the argument justgiven is honest. The conclusion of the argument is that, for a �niteG-CW complexX, � : EG+ ^X �! X induces an isomorphism of I-completed pro-group valuedK-theory. Here the I-completion of a pro-R(G)-module M = fM�g is just theinverse system fM�=IrM�g. When M is a constant system, such as K�G(S0), thisis just an inverse system of epimorphisms and has zero lim1. It follows from theisomorphism of pro-groups that lim1 is also zero for the progroup K�G(EG+ ^X),and hence the group K�G(EG+ ^ X) is the inverse limit of the K-theories of theskeleta of EG+ ^ X. We may thus simply pass to inverse limits to obtain theconclusion of Theorem 3.1 as originally stated for ordinary rather than pro-R(G)-modules.There is an alternative way to be honest: we could accept the inexactness andadapt the usual methods for discussing it by derived functors. In fact we shalllater see how to realize the construction of left derived functors of completiongeometrically. This approach leads compellingly to consideration of completions ofKG-module spectra and to the consideration of homology. We invite the interestedreader to turn to Chapter XXIV (especially Section 7).J. F.Adams, J.-P.Haeberly, S.Jackowski and J. P.May A generalization of the Atiyah-Segal com-pletion theorem. Topology 27(1988), 1-6.M. F. Atiyah. Characters and cohomology of �nite groups. Pub. IHES 9(1961), 23-64.M. F. Atiyah and G. B. Segal. Equivariant K-theory and completion. J.Di�. Geom. 3(1969),1-18.G.Carlsson. Equivariant stable homotopy and Segal's Burnside ring conjecture. Annals of Math.120(1984), 189-224.S. Jackowski. Families of subgroups and completions. J. Pure and Applied Algebra 37(1985),167-179.



182 XIV. AN INTRODUCTION TO EQUIVARIANT K-THEORY6. The generalization to familiesThe above statements and proofs for the universal free G-space EG and theaugmentation ideal I carry over with the given proofs to theorems about theuniversal F -free space EF and the idealIF = \H2F kerfresGH : R(G) �! R(H)g:The only di�erence is that for most familiesF there is no reduction of KG(EF )to the nonequivariant K-theory of some other space. Note that, by the injectivityof (2.1), if F includes all cyclic subgroups then IF = 0.Theorem 6.1. For any family F and any �nite G-CW-complex X the projec-tion map EF �! � induces completion, so thatK�G(EF+ ^X) �= K�G(X)ÎF :In particular K0G(EF+) �= R(G)ÎF and K1G(EF+) = 0:Two useful consequences of these generalizations are that K-theory is detectedon �nite subgroups and that isomorphisms are detected by cyclic groups.Theorem 6.2 (McClure). (a) IfX is a �nite G-CW-complex and x 2 KG(X)restricts to zero in KH(X) for all �nite subgroups H of G then x = 0.(b) If f : X �! Y is a map of �niteG-CW-complexes that induces an isomorphismKC(Y ) �! KC(X) for all �nite cyclic subgroups C then f� : KG(Y ) �! KG(X)is also an isomorphism.Thinking about characters, one might be tempted to believe that �nite sub-groups could be replaced by �nite cyclic subgroups in (a), but that is false.J. F.Adams, J.-P.Haeberly, S.Jackowski and J. P.May. A generalization of the Atiyah-Segalcompletion theorem. Topology 27(1988), 1-6.J.E.McClure. Restriction maps in equivariant K-theory. Topology 25(1986) 399-409.



CHAPTER XVAn introduction to equivariant cobordismby S. R. Costenoble1. A review of nonequivariant cobordismWe start with a brief summary of nonequivariant cobordism.We de�ne a sequence of groups N0, N1, N2, : : : as follows: We say that twosmooth closed k-dimensional manifolds M1 and M2 are cobordant if there is asmooth (k+1)-dimensional manifoldW (the cobordism) such that @W �= M1`M2;this is an equivalence relation, and Nk is the set of cobordism classes of k-dimensional manifolds. We make this into an abelian group with addition beingdisjoint union. The 0 element is the class of the empty manifold ;; a manifold iscobordant to ; if it bounds. Every manifold is its own inverse, sinceM `M boundsM � I. We can make the graded group N� into a ring by using cartesian productas multiplication. This ring has been calculated: N� �= Z=2[xk j k 6= 2i � 1]. We'llsay more about how we attack this calculation in a moment. This is the unorientedbordism ring, due to Thom.Thom also considered the variant in which the manifolds are oriented. In thiscase, the cobordism is also required to be oriented, and the boundary @W isoriented so that its orientation, together with the inward normal into W , givesthe restriction of the orientation of W to @W . The e�ect is that, if M is a closedoriented manifold, then @(M � I) = M `(�M) where �M denotes M with itsorientation reversed. This makes �M the negative of M in the resulting orientedbordism ring 
�. This ring is more complicated than N�, having both a torsion-free part (calculated by Thom) and a torsion part, consisting entirely of elementsof order 2 (calculated by Milnor and Wall).183



184 XV. AN INTRODUCTION TO EQUIVARIANT COBORDISMThere are many other variants of these rings, including unitary bordism, U�,which uses \stably almost complex" manifolds; M is such a manifold if there isgiven an embeddingM � Rn and a complex structure on the normal bundle to thisembedding. The calculation is U� �=Z[z2k]. This and other variants are discussedin Stong.These rings are actually coe�cient rings of certain homology theories, the bor-dism theories (there is a nice convention, due to Atiyah, that we use the namebordism for the homology theory, and the name cobordism for the related coho-mology theory). If X is a space, we de�ne the group Nk(X) to be the set ofbordism classes of maps M �! X, where M is a k-dimensional smooth closedmanifold and the map is continuous. Cobordisms must also map into X, and therestriction of the map to the boundary must agree with the given maps on thek-manifolds. De�ning the relative groups N�(X;A) is a little trickier. We considermaps (M;@M) �! (X;A). Such a map is cobordant to (N; @N) �! (X;A) ifthere exists a triple (W;@0W;@1W ), where @W = @0W [ @1W , the intersection@0W \ @1W is the common boundary @(@0W ) = @(@1W ), and @0W �= M `N ,together with a map (W;@1W ) �! (X;A) that restricts to the given maps on@0W . (This makes the most sense if you draw a picture.) It's useful to think ofW as having a \corner" at @0W \ @1W ; otherwise you have to use resmoothingsto get an equivalence relation. It is now a pretty geometric exercise to show thatthere is a long exact sequence� � � �!Nk(A) �! Nk(X) �!Nk(X;A) �! Nk�1(A) �! � � �where the \boundary map" is precisely taking the boundary. There are oriented,unitary, and other variants of this homology theory.Calculation of these groups is possible largely because we know the representingspectra for these theories. Let TO (the Thom prespectrum) be the prespectrumwhose kth space is TO(k), the Thom space of the universal k-plane bundle overBO(k). It is an inclusion prespectrum and, applying the spectri�cation functor Lto it, we obtain the Thom spectrum MO. Its homotopy groups are given by�k(MO) = colimq �q+k(TO(q)):Then N� �= ��(MO), and in fact MO represents unoriented bordism.The proof goes like this: Given a k-dimensional manifoldM , embedM in someRq+k with normal bundle �. The unit disk of this bundle is homeomorphic to atubular neighborhood N ofM in Rq+k, and so there is a collapse map c : Sq+k �!



1. A REVIEW OF NONEQUIVARIANT COBORDISM 185T� given by collapsing everything outside of N to the basepoint. There is also aclassifying map T� �! TO(q), and the compositeSq+k �! T� �! TO(q)represents an element of �k(MO). Applying a similar construction to a cobor-dism gives a homotopy between the two maps obtained from cobordant manifolds.This construction, known as the Pontrjagin-Thom construction, describes the mapNk �! �k(MO).The inverse map is constructed as follows: Given a map f : Sq+k �! TO(q),we may assume that f is transverse to the zero-section. The inverse imageM = f�1(BO(q)) is then a k-dimensional submanifold of Sq+k (provided thatwe use Grassmannian manifold approximations of classifying spaces), and the nor-mal bundle to the embedding ofM in Sq+k is the pullback of the universal bundle.Making a homotopy between two maps transverse provides a cobordism betweenthe two manifolds obtained from the maps. One can now check that these twoconstructions are well-de�ned and inverse isomorphisms. The analysis ofN�(X;A)is almost identical.In fact MO is a ring spectrum, and the Thom isomorphism just constructed isan isomorphism of rings. The product on MO is induced from the mapsTO(j) ^ TO(k) �! TO(j + k)of Thom complexes arising from the classifying map of the external sum of the jthand kth universal bundle. This becomes clearer when one thinks in a coordinate-free way; in fact, it was inspection of Thom spectra that led to the description ofthe stable homotopy category that May gave in Chapter XII.Now MO is a very tractable spectrum. To compute its homotopy we haveavailable such tools as the Thom isomorphism, the Steenrod algebra (mod 2), andthe Adams spectral sequence for the most sophisticated calculation. (Stong givesa calculation not using the spectral sequence.) The point is that we now havesomething concrete to work with, and adequate tools to do the job. For orientedbordism, we replace MO with MSO, which is constructed similarly except thatwe use the universal oriented bundles over the spaces BSO(k). Here we use thefact that an orientation of a manifold is equivalent to an orientation of its normalbundle. Similarly, for unitary bordism we use the spectrumMU , constructed outof the universal unitary bundles.The standard general reference isR. E. Stong. Notes on Cobordism Theory. Princeton University Press. 1968.



186 XV. AN INTRODUCTION TO EQUIVARIANT COBORDISM2. Equivariant cobordism and Thom spectraNow we take a compact Lie group G and try to generalize everything to theG-equivariant context. This generalization of nonequivariant bordism was �rststudied by Conner and Floyd. Using smooth G-manifolds throughout we can cer-tainly copy the de�nition of cobordism to obtain the equivariant bordism groupsN G� and, for pairs of G-spaces (X;A), the groups N G� (X;A). We shall concen-trate on unoriented bordism. To de�ne unitary bordism, we consider a unitarymanifold to be a smooth G-manifoldM together with an embedding ofM in eitherV or V �R, where V is a complex representation of G, and a complex structureon the resulting normal bundle. The notion of an oriented G-manifold is compli-cated and still controversial, although for odd order groups it su�ces to look atoriented manifolds with an action of G; the action of G automatically preservesthe orientation.It is also easy to generalize the Thom spectrum. Let U be a complete G-universe. In view of the description of the K-theory G-spectra in the previouschapter, it seems most natural to start with the universal n-plane bundles�(V ) : EO(jV j; V �U ) �! BO(jV j; V �U )for indexing spaces V inU . Let TOG(V ) be the Thom space of �(V ). For V �W ,the pullback of �(W ) over the inclusionBO(jV j; V �U ) �! BO(jW j;W �U )is the Whitney sum of �(V ) and the trivial bundle with �ber W � V . Its Thomspace is �W�V TOG(V ), and the evident map of bundles induces an inclusion� : �W�V TOG(V ) �! TOG(W ):This construction gives us an inclusion G-prespectrum TOG. We de�ne the realThom G-spectrum to be its spectri�cation MOG = LTOG. Using complex rep-resentations throughout, we obtain the complex analogs TUG and MUG. Thisde�nition is essentially due to tom Dieck.The interesting thing is that MOG does not represent N G� . It is easy to de�nea map N G� �! �G� (MOG) = MOG� using the Pontrjagin-Thom construction,but we cannot de�ne an inverse. The problem is the failure of transversality inthe equivariant context. As a simple example of this failure, consider the groupG = Z=2, let M = � be a one-point G-set (a 0-dimensional manifold), let N = Rwith the nontrivial linear action of G, and let Y = f0g � N . Let f : M �! N



2. EQUIVARIANT COBORDISM AND THOM SPECTRA 187be the only G-map that can be de�ned: it takes M to Y . Clearly f cannot bemade transverse to Y , since it is homotopic only to itself. This simple example isparadigmatic. In general, given manifoldsM and Y � N and a map f :M �! N ,if f fails to be homotopic to a map transverse to Y it is because of the presence inthe normal bundle to Y of a nontrivial representation of G that cannot be mappedonto by the representations available in the tangent bundle of M . Wassermanprovided conditions under which we can get transversality. If G is a product ofa torus and a �nite group, he gives a su�cient condition for transversality thatamounts to saying that, where needed, we will always have in M a nontrivialrepresentation mapping onto the nontrivial representation we see in the normalbundle to Y . Others have given obstruction theories to transversality, for examplePetrie and Waner and myself.Using Wasserman's condition, it is possible (for one of his G) to construct theG-spectrum that does representN G� . Again, let U be a complete G-universe. Wecan construct a G-prespectrum toG with associated G-spectrum moG by lettingV run through the indexing spaces in our complete universe U as before, butreplacing U by its G-�xed point space U G �= R1 in the bundles we start with.That is, we start with the G-bundlesEO(jV j; V �U G) �! BO(jV j; V �U G)for indexing spaces V in U . Again, restricting attention to complex representa-tions, we obtain the complex analogs tuG and muG. The fact that there are sofew nontrivial representations present in the bundle EO(jV j; V �U G) allows usto use Wasserman's transversality results to show that moG represents N G� . Theinclusion U G �! U induces a mapmoG �!MOGthat represents the map N G� �! MOG� that we originally hoped was an isomor-phism.On the other hand, there is also a geometric interpretation of MOG� . Usingeither transversality arguments or a clever argument due to Br�ocker and Hookthat works for all compact Lie groups, one can show thatMOGk (X;A) �= colimV N Gk+jV j((X;A)� (D(V ); S(V ))):Here the maps in the colimit are given by multiplying manifolds by disks of rep-resentations, smoothing corners as necessary. We interpret this in the simplestcase as follows. A class inMOGk �= colimV N Gk+jV j(D(V ); S(V )) is represented by a



188 XV. AN INTRODUCTION TO EQUIVARIANT COBORDISMmanifold (M;@M) together with a map (M;@M) �! (D(V ); S(V )). This map isequivalent in the colimit to (M�D(W ); @(M�D(W ))) �! (D(V �W ); S(V �W ))together with the original map crossed with the identity on D(W ). We call theequivalence class of such a manifold over the disk of a representation a stable man-ifold. Its (virtual) dimension is dimM � dimV . We can then interpret MOGkas the group of cobordism classes of stable manifolds of dimension k. A similarinterpretation works for MOGk (X;A).With this interpretation we can see clearly one of the di�erences between N G�and MOG� . If V is a representation of G with no trivial summands, then there is astable manifold represented by � �! D(V ), the inclusion of the origin. This rep-resents a nontrivial element �(V ) 2MOG�n where n = jV j. This element is calledthe Euler class of V . Tom Dieck showed the nontriviality of these elements andwe'll give a version of the argument below; note that if V had a trivial summand,then � �! D(V ) would be homotopic to a map into S(V ), so that �(V ) = 0.On the other hand, N G� has no nontrivial elements in negative dimensions, byde�nition.Here is another, related di�erence: Stable bordism is periodic in a sense. If V isany representation of G, then, by the de�nition of MOG, MOG(V ) �=MOG(jV j);the point is that MOG(V ) really depends only on jV j. This gives an equivalence�VMOG ' �nMOG if n = jV j, orMOG ' �V�nMOG:One way of de�ning an explicit equivalence is to start by classifying the bundleV �! � and so obtain an associated map of Thom complexes (a Thom class)SV �! TOG(Rn) �MOG(Rn):This is adjoint to a map �(V ) : SV�n = �1n SV �! MOG. Reversing the rolesof V and Rn, we obtain an analogous map Sn�V �! MOG. It is not hard tocheck that these are inverse units in the RO(G)-graded ring MOG� . The requiredequivalence is the evident compositeSV�n ^MOG �!MOG ^MOG �!MOG:In homology, this gives isomorphisms of MOG� -modulesMOG� (�jV jX) �=MOG� (�VX)and MOGk (X) �=MOGk+n(�VX)



3. COMPUTATIONS: THE USE OF FAMILIES 189for all k. This is really a special case of a Thom isomorphism that holds for everybundle. The Thom class of a bundle � is the element in cobordism representedby the map of Thom complexes T� �! TOG(j�j) � MOG(j�j) induced by theclassifying map of �. Another consequence of the isomorphisms above is thatMOGV (X) �= MOGn (X), so that the RO(G)-graded groups that we get are nodi�erent from the groups in integer grading. We can think of this as a periodicitygiven by multiplication by the unit �(V ). It should also be clear that, if jV j = mand jW j = n, then the composite isomorphismMOGk (X) �= MOGk+m(�VX) �= MOGk+m+n(�V�WX)agrees with the isomorphismMOGk (X) �=MOGk+m+n(�V�WX) associated with therepresentation V �W .We record one further consequence of all this. Consider the inclusion e : S0 �!SV , where jV j = n. This induces a mapMOGk+n(X) �!MOGk+n(�VX) �=MOGk (X):It is easy to see geometrically that this is given by multiplication by the stablemanifold � �! D(V ), the inclusion of the origin, which represents �(V ) 2MOG�n.The similar map in cobordism,MOkG(X) �= MOk+nG (�VX) �!MOk+nG (X)is also given by multiplication by �(V ) 2 MOnG, as we can see by representing�(V ) by the stable mapS0 �! SV �! �VMOG ' �nMOG:T. Br�ocker and E. C. Hook. Stable equivariant bordism. Math. Z. 129(1972), 269-277.P. E. Conner and E. E. Floyd. Di�erentiable periodic maps. Academic Press, Inc. 1964.S. Costenoble and S. Waner. G-transversality revisited. Proc. Amer. Math. Soc. 116(1992),535-546.T. tom Dieck. Bordism of G-manifolds and integrality thereoms, Topology 9 (1970), 345-358.T. Petrie. Pseudoequivalences of G-manifolds. Proc. Symp. Pure Math. 32. Amer. Math. Soc.1978, 169-210.A. G. Wasserman. Equivariant di�erential topology. Topology 8(1969), 128-144.3. Computations: the use of familiesFor computations, we start with the fact that N G� (X) is a module overN� (thenonequivariant bordism ring, which we know) by cartesian product. The question



190 XV. AN INTRODUCTION TO EQUIVARIANT COBORDISMis then its structure as a module. We'll take a look at the main computationaltechniques and at some of the simpler known results.The main computational technique was introduced by Conner and Floyd. Recallthat a family of subgroups of G is a collection of subgroups closed under conjugacyand taking of subgroups (in short, under subconjugacy). If F is such a family,we de�ne an F -manifold to be a smooth G-manifold all of whose isotropy groupsare in F . If we restrict our attention to closed F -manifolds and cobordismsthat are also F -manifolds, we get the groups N G� [F ] of cobordism classes ofmanifolds with restricted isotropy. Similarly, we can consider the bordism theoryN G� [F ](X;A). Now there is a relative version of this as well. Suppose thatF 0 � F . An (F ;F 0)-manifold is a manifold (M;@M) whereM is anF -manifoldand @M is an F 0-manifold (possibly empty, of course). To de�ne cobordismof such manifolds, we must resort to manifolds with multipart boundaries, ormanifolds with corners. Precisely, (M;@M) is cobordant to (N; @N) if there is amanifold (W;@0W;@1W ) such that W is an F -manifold, @1W is an F 0-manifold,and @0W = M `N , where as usual @W = @0W [ @1W and @0W \ @1W is thecommon boundary of @0W and @1W . With this de�nition we can form the relativebordism groupsN G� [F ;F 0]. Of course, there is also an associated bordism theory,although to describe the relative groups of that theory requires manifolds with 2-part boundaries, and cobordisms with 3-part boundaries!From a homotopy theoretic point of view it's interesting to notice thatN G� [F ] �=N G� (EF ), since a manifold over EF must be an F -manifold, and any F -manifold has a unique homotopy class of maps into EF . Similarly,N G� [F ](X) �=N G� (X � EF ), and so on. For the purposes of computation, it is usually morefruitful to think in terms of manifolds with restricted isotropy, however. Noticethat this gives us an easy way to de�ne MOG� [F ]: it is MOG� (EF ). We can alsointerpret this in terms of stable manifolds with restricted isotropy.As a �rst illustration of the use of families, we give the promised proof of thenontriviality of Euler classes.Lemma 3.1. Let G be a compact Lie group and V be a representation of Gwithout trivial summands. Then �(V ) 6= 0 in MOG�n, where n = jV j.Proof. Let A be the family of all subgroups, and let P be the family ofproper subgroups. Consider the map MOG� �! MOG� [A ;P]. We claim that theimage of �(V ) is invertible in MOG� [A ;P] (which is nonzero), so that �(V ) 6= 0.Thinking in terms of stable manifolds, �(V ) = [� �! D(V )]. Its inverse is



3. COMPUTATIONS: THE USE OF FAMILIES 191D(V ) �! �, which lives in the group MOG� [A ;P] because @D(V ) = S(V ) hasno �xed points. It's slightly tricky to show that the product, which is representedby D(V ) �! � �! D(V ), is cobordant to the identity D(V ) �! D(V ), as wehave to change the interpretation of the boundary S(V ) of the source from beingthe \P-manifold part" to being the \maps into S(V ) part". However, a littlecleverness with D(V )� I does the trick.Returning to our general discussion of the use of families, note that, for a pairof families (F ;F 0), there is a long exact sequence� � � �!N Gk [F 0] �!N Gk [F ] �! N Gk [F ;F 0] �! N Gk�1[F 0] �! � � � ;where the boundary map is given by taking boundaries. (This is of course thesame as the long exact sequence associated with the pair of spaces (EF ; EF 0).)We would like to use this exact sequence to calculate N G� inductively. To setthis up a little more systematically, suppose that we have a sequence F0 � F1 �F2 � � � � of families of subgroups whose union is the family of all subgroups.If we can calculate N Gk [F0] and each relative term N Gk [Fp;Fp�1], we may beable to calculate every N Gk [Fp] and ultimately N G� . We can also introduce themachinery of spectral sequences here: The long exact sequences give us an exactcouple N G� [Fp�1] // N G� [Fp]wwooooooooooooN G� [Fp;Fp�1]hhPPPPPPPPPPPPand hence a spectral sequence with E1p;q =N Gq [Fp;Fp�1] that converges to N G� .This would all be academic if not for the fact that N G� [Fp;Fp�1] is often com-putable. Let us start o� with the base of the induction: N G� [feg; ;] = N Gk [feg].This is the bordism group of free closed G-manifolds. Now, if M is a free G-manifold, then M=G is also a manifold, of dimension dimM � dimG. There is aunique homotopy class of G-maps M �! EG, which passes to quotients to givea map M=G �! BG. Moreover, given the map M=G �! BG we can recover theoriginal manifold M , since it is the pullback in the following diagram:M�� // EG��M=G // BG:



192 XV. AN INTRODUCTION TO EQUIVARIANT COBORDISMThis applies equally well to manifolds with or without boundary, so it applies tocobordisms as well. This establishes the isomorphismN Gk [feg] �= Nk�dimG(BG):Now the bordism of a classifying space may or may not be easy to compute, butat least this is a nonequivariant problem.The inductive step can also be reduced to a nonequivariant calculation. Sup-pose that G is �nite or Abelian for convenience. We say that F and F 0 areadjacent if F = F 0 [ (H) for a single conjugacy class of subgroups (H), andit su�ces to restrict attention to such an adjacent pair. Suppose that (M;@M)is an (F ;F 0)-manifold. Let M (H) denote the set of points in M with isotropygroups in (H); M (H) lies in the interior of M , since @M is an F 0-manifold, andM (H) = [K2(H)MK is a union of closed submanifolds of M . Moreover, these sub-manifolds are pairwise disjoint, since (H) is maximal in F . Therefore M (H) is aclosed G-invariant submanifold in the interior of M , isomorphic to G �NH MH .(Here is where it is convenient to have G �nite or Abelian.) Thus M (H) has aG-invariant closed tubular neighborhood in M , call it N . Here is the key step:(M;@M) is cobordant to (N; @N) as an (F ;F 0)-manifold. The cobordism is pro-vided by M � I with corners smoothed (this is easiest to see in a picture).As usual, let WH = NH=H. Now (N; @N) is determined by the free WH-manifoldMH and the NH-vector bundle over it which is its normal bundle. SinceWH acts freely on the base, each �ber is a representation of H with no trivialsummands and decomposes into a sum of multiples of irreducible representations.This also decomposes the whole bundle: Suppose that the nontrivial irreduciblerepresentations of H are V1, V2, : : : . Then � = ��i, where each �ber of each �i isa sum of copies of Vi. Clearly �i is completely determined by the free WH-bundleHomG(Vi; �i), which has �bers Fn where F is one of R, C , or H , depending on Vi.Notice, however, that the NH-action on � induces certain isomorphisms amongthe �i: If Vi and Vj are conjugate representations under the action of NH, then �iand �j must be isomorphic.The upshot of all of this is that N Gk [F ;F 0] is isomorphic to the group ob-tained in the following way. Suppose that the dimension of Vi is di and thatHomG(Vi; Vi) = Fi, where Fi = R, C , or H . Consider free WH-manifolds M ,together with a sequence of WH-bundles �1, �2, � � � over M , one for each Vi,the group of �i being O(F i; ni) (i.e., O(ni), U(ni), or Sp(ni)). If Vi and Vj areconjugate under the action of NH, then we insist that �i and �j be isomorphic.



4. SPECIAL CASES: ODD ORDER GROUPS AND Z=2 193The dimension of (M ; �1; �2; � � � ) is dimM +Pnidi; that is, this should equal k.Now de�ne (M ; �1; �2; � � � ) to be cobordant to (N ; �1; �2; � � � ) if there exists some(W ; �1; �2; � � � ) such that @W = M `N and the restriction of �i to @W is �i` �i.It should be reasonably clear from this description that we have an isomorphismN Gk [F ;F 0] �= Xj+Pnidi=kN WHj (EWH � (�iBO(F i; ni)))where WH acts on �iBO(F i; ni) via its permutation of the representations of H.One more step and this becomes a nonequivariant problem: We take the quotientby WH, which we can do because the argument EWH � (�iBO(F i; ni)) is free(this being just like the case N G� [feg] above). This givesN Gk [F ;F 0] �= XdimWH+j+Pnidi=kNj(EWH �WH (�iBO(Fi; ni))):(3.2)Notice that, if G is Abelian or if WH acts trivially on the representations of Hfor some other reason, then the argument is BWH � (�iBO(Fi; ni))).P. E. Conner and E. E. Floyd. Di�erentiable periodic maps. Academic Press, Inc. 1964.4. Special cases: odd order groups and Z=2If G is a �nite group of odd order, then the di�erentials in the spectral sequencefor N G� all vanish, and N G� is the direct sum over (H) of the groups displayed in(3.2). This is actually a consequence of a very general splitting result that will beexplained in XVIIx6. The point is that N G� is a Z=2-vector space and, away fromthe order of the group, the Burnside ring A(G) splits as a direct sum of copies ofZ[1=jGj], one for each conjugacy class of subgroups of G. This induces splittings inall modules over the Burnside ring, including all RO(G)-graded homology theories(that is, those homology theories represented by spectra indexed on completeuniverses). The moral of the story is that, away from the order of the group,equivariant topology generally reduces to nonequivariant topology.This observation can also be used to show that the spectra moG and MOG splitas products of Eilenberg-MacLane spectra, just as in the nonequivariant case.Remember that this depends on G having odd order.Conner and Floyd computed the additive structure of N Z=2� , and Alexandercomputed its multiplicative structure. There is a split short exact sequence0 �! N Z=2k �! �0�n�kNk�n(BO(n)) �! Nk�1(BZ=2) �! 0;



194 XV. AN INTRODUCTION TO EQUIVARIANT COBORDISMwhich is part of the long exact sequence of the pair (fZ=2; eg; feg). The �rst mapis given by restriction to Z=2-�xed points and the normal bundles to these. Thesecond map is given by taking the unit sphere of a bundle, then taking the quotientby the antipodal map (a freeZ=2-action) and classifying the resultingZ=2-bundle.This map is the only nontrivial di�erential in the spectral sequence. Now�0�n�kNk�n(BO(n)) �= N�[x1; x2; � � � ];where xk 2 Nk�1(BO(1)) is the class of the canonical line bundle over RP k�1. Onthe other hand, N�(BZ=2) �= N�fr0; r1; r2; � � � gis the free N�-module generated by frkg, where rk is the class of RP k �! BZ=2.The splitting is the obvious one: it sends rk to xk+1. In fact, the xk all live in thesummandN�(BZ=2) =N�(BO(1)), and the splitting is simply the inclusion of thissummand. It follows that N Z=2� is a free module over N�, and one can write downexplicit generators. Alexander writes down explicit multiplicative generators.A similar calculation can be done for MOZ=2� . The short exact sequence is then0 �!MOZ=2k �! �nNk�n(BO) �! Nk�1(BZ=2) �! 0;where now k and n range over the integers, positive and negative, and the sum inthe middle is in�nite. In fact,�nN��n(BO) �= N�[x�11 ; x1; x2; � � � ];where the xi are the images of the elements of the same name from the geometriccase. Here x�11 is the image of �L, where L is the nontrivial irreducible represen-tation of Z=2.It is natural to ask whether or not moZ=2 and MOZ=2 are products of Eilenberg-MacLaneZ=2-spectra, as in the case of odd order groups. I showed that the answerturns out to be no.J. C. Alexander. The bordism ring of manifolds with involution. Proc. Amer. Math. Soc.31(1972), 536-542.P. E. Conner and E. E. Floyd. Di�erentiable periodic maps. Academic Press, Inc. 1964.S. Costenoble. The structure of some equivariant Thom spectra. Trans. Amer. Math. Soc.315(1989), 231-254.



CHAPTER XVISpectra and G-spectra; change of groups; dualityIn this and the following three chapters, we return to the development of featuresof the equivariant stable homotopy category. The basic reference is [LMS], andspeci�c citations are given at the ends of sections.1. Fixed point spectra and orbit spectraMuch of the most interesting work in equivariant algebraic topology involves theconnection between equivariant constructions and nonequivariant topics of currentinterest. We here explain the basic facts concerning the relationships betweenG-spectra and spectra and between equivariant and nonequivariant cohomologytheories.We restrict attention to a complete G-universe U and we write RO(G) forRO(G;U). Given the details of the previous chapter, we shall be more informalabout the RO(G)-grading from now on. In particular, we shall allow ourselves towrite E�G(X) for � 2 RO(G), ignoring the fact that, for rigor, we must �rst �xa presentation of � as a formal di�erence V 	W . We write S� instead of SV	Wand, for G-spectra X and E, we writeEG� (X) = [S�; E ^X]G(1.1)and E�G(X) = [S�� ^X;E]G = [S��; F (X;E)]G:(1.2)To relate this to nonequivariant theories, let i : UG �! U be the inclusion ofthe �xed point universe. Recall that we have the forgetful functori� : GS U �! GS UG195



196 XVI. SPECTRA AND G-SPECTRA; CHANGE OF GROUPS; DUALITYobtained by forgetting the indexing G-spaces with non-trivial G-action. The \un-derlying nonequivariant spectrum" of E is i�E with its action by G ignored. Recalltoo that i� has a left adjoint i� : GS UG �! GS Uthat builds in non-trivial representations. Explicitly, for a naive G-prespectrumD and an indexing G-space V ,(i�D)(V ) = D(V G) ^ SV�V G:For a naive G-spectrum D, i�D = Li�`D, as usual. These change of universefunctors play a subtle and critical role in relating equivariant and nonequivariantphenomena. Since, with G-actions ignored, the universes are isomorphic, thefollowing result is intuitively obvious.Lemma 1.3. For D 2 GS UG, the unit G-map � : D �! i�i�D of the (i�; i�)adjunction is a nonequivariant equivalence. For E 2 GS U , the counit G-map" : i�i�E �! E is a nonequivariant equivalence.We de�ne the �xed point spectrum DG of a naive G-spectrum D by passingto �xed points spacewise, DG(V ) = (DV )G. This functor is right adjoint to theforgetful functor from naive G-spectra to spectra:GS UG(C;D) �= S UG(C;DG) for C 2 S UG and D 2 GS UG:(1.4)It is essential that G act trivially on the universe to obtain well-de�ned structuralhomeomorphisms on DG. For E 2 GS U , we de�ne EG = (i�E)G. Composingthe (i�; i�)-adjunction with (1.4), we obtainGS U(i�C;E) �= S UG(C;EG) for C 2 S UG and D 2 GS UG:(1.5)The sphere G-spectra G=H+ ^ Sn in GS U are obtained by applying i� to thecorresponding sphere G-spectra in GS UG. When we restrict (1.1) and (1.2) tointeger gradings and take H = G, we see that (1.5) impliesEGn (X) �= �n((E ^X)G)(1.6)and EnG(X) �= ��n(F (X;E)G):(1.7)As in the second isomorphism, naive G-spectra D represent Z-graded cohomol-ogy theories on naive G-spectra or on G-spaces. In contrast, as we have alreadynoted in XIIIx3, we cannot represent interesting homology theories on G-spaces



2. SPLIT G-SPECTRA AND FREE G-SPECTRA 197X in the form ��((D ^ X)G) for a naive G-spectrum D: here smash productscommute with �xed points, hence such theories vanish on X=XG. For genuineG-spectra, there is a well-behaved natural mapEG ^ (E 0)G �! (E ^ E 0)G;(1.8)but, even when E 0 is replaced by a G-space, it is not an equivalence. In Section3, we shall de�ne a di�erent G-�xed point functor that does commute with smashproducts.Orbit spectra D=G of naive G-spectra are constructed by �rst passing to orbitsspacewise on the prespectrum level and then applying the functor L from prespec-tra to spectra. Here (�1X)=G �= �1(X=G). The orbit functor is left adjoint tothe forgetful functor to spectra:S UG(D=G;C) �= GS UG(D;C) for C 2 S UG and D 2 GS UG:(1.9)For a genuine G-spectrum E, it is tempting to de�ne E=G to be L((i�E)=G), butthis appears to be an entirely useless construction. For free actions, we will shortlygive a substitute.[LMS, especially Ix3] 2. Split G-spectra and free G-spectraThe calculation of the equivariant cohomology of free G-spectra in terms of thenonequivariant cohomology of orbit spectra is fundamental to the passage backand forth between equivariant and nonequivariant phenomena. This requires thesubtle and important notion of a \split G-spectrum".Definition 2.1. A naive G-spectrum D is said to be split if there is a nonequi-variant map of spectra � : D �! DG whose composite with the inclusion of DG inD is homotopic to the identity map. A genuine G-spectrum E is said to be splitif i�E is split.The K-theory G-spectra KG and KOG are split. Intuitively, the splitting is ob-tained by giving nonequivariant bundles trivial G-action. The cobordism spectraMOG and MUG are also split. The Eilenberg-MacLane G-spectrum HM associ-ated to a Mackey functorM is split if and only if the canonical mapM(G=G) �!M(G=e) is a split epimorphism; this implies that G acts trivially on M(G=e),which is usually not the case. The suspension G-spectrum �1X of a G-space Xis split if and only if X is stably a retract up to homotopy of XG, which again is



198 XVI. SPECTRA AND G-SPECTRA; CHANGE OF GROUPS; DUALITYusually not the case. In particular, however, the sphere G-spectrum S = �1S0 issplit. The following consequence of Lemma 1.3 gives more examples.Lemma 2.2. If D 2 GS UG is split, then i�D 2 GS U is also split.The notion of a split G-spectrum is de�ned in nonequivariant terms, but itadmits the following equivariant interpretation.Lemma 2.3. If E is a G-spectrum with underlying nonequivariant spectrum D,then E is split if and only if there is a map of G-spectra i�D �! E that is anonequivariant equivalence.Recall that a based G-space is said to be free if it is free away from its G-�xed basepoint. A G-spectrum, either naive or genuine, is said to be free if it isequivalent to a G-CW spectrum built up out of free cells G+ ^CSn. The functors�1 : T �! GS UG and i� : GS UG �! GS U carry free G-spaces to freenaive G-spectra and free naive G-spectra to free G-spectra. In all three categories,X is homotopy equivalent to a free object if and only if the canonical G-mapEG+ ^X �! X is an equivalence. A free G-spectrum E is equivalent to i�D fora free naive G-spectrum D, unique up to equivalence; the orbit spectrum D=G isthe substitute for E=G that we alluded to above. A useful mnemonic slogan isthat \free G-spectra live in the trivial universe". Note, however, that we cannottake D = i*E: this is not a free G-spectrum. For example, �1G+ 2 GS UG clearlysatis�es (�1G+)G = �, but we shall see later that i��1G+, which is the genuinesuspension G-spectrum �1G+ 2 GS U , satis�es (i��1G+)G = S.Theorem 2.4. If E is a split G-spectrum and X is a free naive G-spectrum,then there are natural isomorphismsEGn (i�X) �= En((�Ad(G)X)=G) and EnG(i�X) �= En(X=G);where Ad(G) is the adjoint representation of G and E� and E� denote the theoriesrepresented by the underlying nonequivariant spectrum of E.The cohomology isomorphism holds by inductive reduction to the case X = G+and use of Lemma 2.3. The homology isomorphism is quite subtle and dependson a dimension-shifting transfer isomorphism that we shall say more about later.This result is an essential starting point for the approach to generalized Tatecohomology theory that we shall present later.In analogy with (1.8), there is a well-behaved natural map�1(XG) �! (�1X)G;(2.5)



3. GEOMETRIC FIXED POINT SPECTRA 199but it is not an equivalence.[LMS, especially II.1.8, II.2.8, II.2.12, II.8.4]3. Geometric �xed point spectraThere is a \geometric �xed-point functor"�G : GS U �! S UGthat enjoys the properties �1(XG) ' �G(�1X)(3.1)and �G(E) ^ �G(E 0) ' �G(E ^ E 0):(3.2)To construct it, recall the de�nition of ~EF for a family F from V.2.8 and set�GE = (E ^ ~EP)G;(3.3)whereP is the family of all proper subgroups of G. Here E ^ ~EP is H-trivial forall H 2P.The name \geometric �xed point spectrum" comes from an equivalent descrip-tion of the functor �G. There is an intuitive \spacewise G-�xed point functor"�G from G-prespectra indexed on U to prespectra indexed on UG. To be preciseabout this, we index G-prespectra on an indexing sequence fVig, so that Vi � Vi+1and U = [Vi, and index prespectra on the indexing sequence nV Gi o. Here weuse indexing sequences to avoid ambiguities resulting from the fact that di�erentindexing spaces in U can have the same G-�xed point space. For a G-prespectrumD = fDVig, the prespectrum �GD is given by (�GD)(Vi) = (DVi)G, with struc-tural maps �VGi+1�V Gi (DVi)G �! (DVi+1)G obtained from those of D by passage toG-�xed points. We are interested in homotopical properties of this construction,and when applying it to spectra regarded as prespectra, we must �rst apply thecylinder functor K and CW approximation functor � discussed in XIIx9. The re-lationship between the resulting construction and the spectrum-level construction(3.3) is as follows. Remember that ` denotes the forgetful functor from spectra toprespectra and L denotes its left adjoint.Theorem 3.4. For �-co�brant G-prespectra D, there is a natural weak equiv-alence of spectra �GLD �! L�GD:



200 XVI. SPECTRA AND G-SPECTRA; CHANGE OF GROUPS; DUALITYFor G-CW spectra E, there is a natural weak equivalence of spectra�GE �! L�GK�`E:It is not hard to deduce the isomorphisms (3.1) and (3.2) from this prespectrumlevel description of �G.[LMS, IIx9]4. Change of groups and the Wirthm�uller isomorphismIn the previous sections, we discussed the relationship between G-spectra ande-spectra, where we write e both for the identity element and the trivial subgroupof G. We must consider other subgroups and quotient groups of G. First, considera subgroup H. Since any representation of NH extends to a representation of Gand since a WH-representation is just an H-�xed NH-representation, the H-�xedpoint space UH of our given complete G-universe U is a complete WH-universe.We de�ne EH = (i�E)H ; i : UH � U:(4.1)This gives a functor GS U �! (WH)S UH . Of course, we can also de�ne EH asa spectrum in SUG. The forgetful functor associated to the inclusion UG �! UHcarries the �rst version of EH to the second, and we use the same notation forboth. For D 2 (NH)S UH , the orbit spectrum D=H is also a WH-spectrum.Exactly as on the space level in Ix1, we have induced and coinduced G-spectragenerated by an H-spectrum D 2 HS U . These are denoted byGnH D and FH[G;D):The \twisted" notation n is used because there is a little twist in the de�nitionsto take account of the action of G on indexing spaces. As on the space level, thesefunctors are left and right adjoint to the forgetful functor GS U �! HS U : forD 2 HS U and E 2 GS U , we haveGS U(G nH D;E) �= HS U(D;E)(4.2)and HS U(E;D) �= GS U(E;FH[G;D)):(4.3)Again, as on the space level, for E 2 GS U we haveG nH E �= (G=H)+ ^ E(4.4)



4. CHANGE OF GROUPS AND THE WIRTHM�ULLER ISOMORPHISM 201and FH[G;E) �= F (G=H+; E):(4.5)As promised earlier, we can now deduce as in (1.6) that�Hn (E) � [G=H+ ^ Sn; E]G �= [Sn; E]H �= �n(EH):(4.6)In cohomology, the isomorphism (4.2) givesE�G(GnH D) �= E�H(D):(4.7)We shall not go into detail, but we can interpret this in terms ofRO(G) andRO(H)graded theories via the evident functor RO(G) �! RO(H). The isomorphism(4.3) does not have such a convenient interpretation as it stands. However, thereis a fundamental change of groups result | called the Wirthm�uller isomorphism| which in its most conceptual form is given by a calculation of the functorFH[G;D). It leads to the following homological complement of (4.7). Let L(H)be the tangent H-representation at the identity coset of G=H. ThenEG� (GnH D) �= EH� (�L(H)D):(4.8)Theorem 4.9 (Generalized Wirthm�uller isomorphism). For H-spectraD, there is a natural equivalence of G-spectraFH[G;�L(H)D) �! GnH D:Therefore, for G-spectra E,[E;�L(H)D]H �= [E;GnH D]G:The last isomorphism complements the isomorphism from (4.2):[GnH D;E]G �= [D;E]H:(4.10)We deduce (4.8) by replacing E in (4.9) by a sphere, replacing D by E ^D, andusing the generalization GnH (D ^ E) �= (G nH D) ^ Eof (4.4).[LMS, IIxx2-4]K. Wirthm�uller. Equivariant homology and duality. Manuscripta Math. 11(1974), 373-390.



202 XVI. SPECTRA AND G-SPECTRA; CHANGE OF GROUPS; DUALITY5. Quotient groups and the Adams isomorphismLet N be a normal subgroup of G with quotient group J . In practice, one isoften thinking of a quotient map NH �! WH rather than G �! J . There is ananalog of the Wirthm�uller isomorphism | called the Adams isomorphism | thatcompares orbit and �xed-point spectra. It involves the change of universe functorsassociated to the inclusion i : UN �! U and requires restriction to N -free G-spectra. We note �rst that the �xed point and orbit functors GS UN �! JS UNare right and left adjoint to the evident pullback functor from J -spectra to G-spectra: for D 2 JSUN and E 2 GS UN ,GS UN (D;E) �= JSUN (D;EN )(5.1)and JSUN (E=N;D) �= GS UN (E;D):(5.2)Here we suppress notation for the pullback functor JS UN �! GS UN . An N -free G-spectrum E indexed on U is equivalent to i�D for an N -free G-spectrumD indexed on UN , and D is unique up to equivalence. Thus our slogan that \freeG-spectra live in the trivial universe" generalizes to the slogan that \N -free G-spectra live in the N -�xed universe". This gives force to the following versionof (5.2). It compares maps of J -spectra indexed on UN with maps of G-spectraindexed on U .Theorem 5.3. Let J = G=N . For N -free G-spectra E indexed on UN andJ -spectra D indexed on UN ,[E=N;D]J �= [i�E; i�D]G:The conjugation action of G on N gives rise to an action of G on the tangentspace of N at e; we call this representation Ad(N), or Ad(N ;G). The followingresult complements the previous one, but is very much deeper. When N = G, it isthe heart of the proof of the homology isomorphism of Theorem 2.4. We shall laterdescribe the dimension-shifting transfer that is the basic ingredient in its proof.Theorem 5.4 (Generalized Adams isomorphism). Let J = G=N . For N -free G-spectra E 2 GS UN , there is a natural equivalence of J -spectraE=N �! (��Ad(N)i�E)N :Therefore, for D 2 JSUN ,[D;E=N ]J �= [i�D;��Ad(N)i�E]G:



5. QUOTIENT GROUPS AND THE ADAMS ISOMORPHISM 203This result is another of the essential starting points for the approach to gener-alized Tate cohomology that we will present later. The last two results cry out forgeneral homological and cohomological interpretations, like those of Theorem 2.4.Looking back at Lemma 2.3, we see that what is needed for this are analogs of theunderlying nonequivariant spectrum and of the characterization of split G-spectrathat make sense for quotient groups J . What is so special about the trivial groupis just that it is naturally both a subgroup and a quotient group of G.The language of families is helpful here. Let F be a family. We say that a G-spectrum E isF -free, or is anF -spectrum, if E is equivalent to a G-CW spectrumall of whose cells are of orbit type in F . Thus free G-spectra are feg-free. We saythat a map f : D �! E is an F -equivalence if fH : DH �! EH is an equivalencefor all H 2 F or, equivalently by the Whitehead theorem, if f is an H-equivalencefor all H 2 F .Returning to our normal subgroup N , let F (N) = F (N ;G) be the family ofsubgroups of G that intersect N in the trivial group. Thus an F (N)-spectrumis an N -free G-spectrum. We have seen these families before, in our study ofequivariant bundles. We can now state precise generalizations of Lemma 2.3 andTheorem 2.4. Fix spectraD 2 JSUN and E 2 GS U:Lemma 5.5. A G-map � : i�D �! E is an F (N)-equivalence if and only if thecomposite of the adjoint D �! (i�E)N of � and the inclusion (i�E)N �! i�E isan F (N)-equivalence.Theorem 5.6. Assume given an F (N)-equivalence i�D �! E. For any N -freeG-spectrum X 2 GS UN ,EG� (��Ad(N)(i�X)) �= DJ� (X=N) and E�G(i�X) �= D�J (X=N):Given E, when do we have an appropriate D? We often have theories that arede�ned on the category of all compact Lie groups, or on a suitable sub-category.When such theories satisfy appropriate naturality axioms, the theory EJ associatedto J will necessarily bear the appropriate relationship to the theory EG associatedto G. We shall not go into detail here. One assumes that the homomorphisms� : H �! G in one's category induce maps of H-spectra �� : ��EG �! EH in afunctorial way, where some bookkeeping with universes is needed to make senseof ��, and one assumes that �� is an H-equivalence if � is an inclusion. For each



204 XVI. SPECTRA AND G-SPECTRA; CHANGE OF GROUPS; DUALITYH 2 F (N), the quotient map q : G �! J restricts to an isomorphism from H toits image K. If the �ve visible maps,H � G; K � J; q : G �! J; q : H �! K; and q�1 : K �! H;are in one's category, one can deduce that �q : q�EJ = i�EJ �! EG is an F (N)-equivalence. This is not too surprising in view of Lemma 2.3, but it is a bit subtle:there are examples where all axioms are satis�ed, except that q�1 is not in the cat-egory, and the conclusion fails because �q is not an H-equivalence. However, thisdoes work for equivariantK-theory and the stable forms of equivariant cobordism,generalizing the arguments used to prove that these theories split. For K-theory,the Bott isomorphisms are suitably natural, by the speci�cation of the Bott el-ements in terms of exterior powers. For cobordism, we shall explain in XXVx5that MOG and MUG arise from functors, called \global I� functors with smashproduct", that are de�ned on all compact Lie groups and their representationsand take values in spaces with group actions. All theories with such a concretegeometric source are de�ned with suitable naturality on all compact Lie groupsG.J. F. Adams. Prerequisites (on equivariant theory) for Carlsson's lecture. Springer Lecture Notesin Mathematics Vol. 1051, 1984, 483-532.[LMS, IIxx8-9]6. The construction of G=N-spectra from G-spectraA di�erent line of thought leads to a construction of J -spectra from G-spectra,J = G=N , that is a direct generalization of the geometric �xed point construction�GE. The appropriate analog of P is the family F [N ] of those subgroups ofG that do not contain N . Note that this is a family since N is normal. For aspectrum E in GS U , we de�ne�NE � (E ^ ~EF [N ])N:(6.1)We have the expected generalizations of (3.1) and (3.2): for a G-space X,�1(XN ) ' �N(�1X)(6.2)and, for G-spectra E and E 0,�N (E) ^ �N (E 0) ' �N (E ^ E 0):(6.3)We can de�ne �HE for a not necessarily normal subgroup H by regardingE as an NH-spectrum. Although the Whitehead theorem appears naturally as a



6. THE CONSTRUCTION OF G=N -SPECTRA FROM G-SPECTRA 205statement about homotopy groups and thus about the genuine �xed point functorscharacterized by the standard adjunctions, it is worth observing that it implies aversion in terms of these �-�xed point spectra.Theorem 6.4. A map f : E �! E 0 of G-spectra is an equivalence if and onlyif each �Hf : �HE �! �HE 0 is a nonequivariant equivalence.Note that, for any family F and any G-spectra E and E',[E ^ EF+; E 0 ^ ~EF ]G = 0since EF only has cells of orbit type G=H and ~EF is H-contractible for such H.Therefore the canonical G-map E �! E ^ ~EF induces an isomorphism[E ^ ~EF ; E 0 ^ ~EF ]G �= [E;E 0 ^ ~EF ]G:(6.5)In the case of F [N ], E �! E ^ ~EF [N ] is an equivalence if and only if E isconcentrated overN , in the sense that E isH-contractible ifH does not containN .Maps into such G-spectra determine and are determined by the J -maps obtainedby passage to �N -�xed point spectra. In fact, the stable category of J -spectra isequivalent to the full subcategory of the stable category of G-spectra consisting ofthe G-spectra concentrated over N .Theorem 6.6. For J -spectra D 2 JSUN and G-spectra E 2 GS U concen-trated over N , there is a natural isomorphism[D;EN ]J �= [i�D ^ ~EF [N ]; E]G:For J -spectra D and D0, the functor i�(�)^ ~EF [N ] induces a natural isomorphism[D;D0]J �= [i�D ^ ~EF [N ]; i�D ^ ~EF [N ]]G:For general G-spectra E and E 0, the functor �N (�) induces a natural isomorphism[�NE;�NE 0]J �= [E;E 0 ^ ~EF [N ]]G:Proof. The �rst isomorphism is a consequence of (5.1) and (6.5). The othertwo isomorphisms follow once one shows that the unitD �! (i�D ^ ~EF [N ])N = �N(i�D)and counit (i�EN) ^ ~EF [N ] �! Eof the adjunction are equivalences. One proves this by use of a spacewise N -�xedpoint functor, also denoted �N , fromG-prespectra to J -prespectra. This functor is



206 XVI. SPECTRA AND G-SPECTRA; CHANGE OF GROUPS; DUALITYde�ned exactly as was the spacewise G-�xed point functor in Section 3. It satis�es�N (i�D) = D, and it commutes with smash products. The following generalizationof Theorem 3.4, which shows that the prespectrum level functor �N induces afunctor equivalent to �N on the spectrum level, leads to the conclusion.Theorem 6.7. For �-co�brant G-prespectra D, there is a natural weak equiv-alence of J -spectra �NLD �! L�ND:For G-CW spectra E, there is a natural weak equivalence of J -spectra�NE �! L�NK�`E:As an illuminating example of the use of RO(G)-grading to allow calculationaldescriptions invisible to the Z-graded part of a theory, we record how to computethe cohomology theory represented by �N (E) in terms of the cohomology theoryrepresented by E. This uses the Euler classes of representations, which appearubiquitously in equivariant theory. For a representation V , we de�ne e(V ) 2EVG (S0) to be the image of 1 2 E0G(S0) �= EVG (SV ) under e�, where e : S0 �! SVsends the basepoint to the point at 1 and the non-basepoint to 0.Proposition 6.8. Let E be a ring G-spectrum. For a �nite J -CW spectrumX, (�NE)�J(X) is the localization of E�G(X) obtained by inverting the Euler classesof all representations V such that V N = f0g.Proof. By (6.3), �N (E) inherits a ring structure from E. In interpreting thegrading, we regard representations of J as representations of G by pullback. Acheck of �xed points, using the co�brations S(V ) �! B(V ) �! SV , shows that weobtain a model for ~EF [N ] by taking the colimit of the spaces SV as V ranges overthe representations of G such that V N �= f0g. This leads to a colimit descriptionof (�NE)�J(X) that coincides algebraically with the cited localization.With motivation from the last few results, the unfortunate alternative notationEJ = �N(EG) was used in [LMS] and elsewhere. This is a red herring from thepoint of view of Theorem 5.6, and it is ambiguous on two accounts. First, theJ -spectrum �N (EG) depends vitally on the extension J = G=N and not just onthe group J . Second, in classical examples, the spectrum \EJ" will generally notagree with the preassigned spectrum with the same notation. For example, thesubquotient J -spectrum \KJ" associated to the K-theory G-spectrum KG is notthe K-theory J -spectrum KJ . However, if SG is the sphere G-spectrum, then the



7. SPANIER-WHITEHEAD DUALITY 207subquotient J -spectrum SJ is the sphere J -spectrum. We shall see that this easyfact plays a key conceptual role in Carlsson's proof of the Segal conjecture.[LMS, IIx9] 7. Spanier-Whitehead dualityWe can develop abstract duality theory in any symmetric monoidal category,such as �hGS for our �xed complete G-universe U . While the elegant approach isto start from the abstract context, we shall specialize to �hGS from the start sincewe wish to emphasize equivariant phenomena. De�ne the dual of a G-spectrumX to be DX = F (X;S). There is a natural map� : F (X;Y ) ^ Z �! F (X;Y ^ Z):(7.1)Using the unit isomorphism, it specializes to� : (DX) ^X �! F (X;X):(7.2)The adjoint of the unit isomorphism S ^X �! X gives a natural map � : S �!F (X;X). We say that X is \strongly dualizable" if there is a coevaluation map� : S �! X ^ (DX) such that the following diagram commutes, where 
 is thecommutativity isomorphism. S //���� X ^ (DX)�� 
F (X;X) (DX) ^Xo o �(7.3)It is a categorical implication of the de�nition that the map � of (7.1) is anisomorphism if either X or Z is strongly dualizable, and there are various othersuch formal consequences, such as X �= DD(X) when X is strongly dualizable. Inparticular, if X is strongly dualizable, then the map � of (3.2) is an isomorphism.Conversely, if the map � of (7.2) is an isomorphism, then X is strongly dualizablesince the coevaluation map � can and must be de�ned to be the composite 
��1�in (7.3). Note that we have an evaluation map " : DX ^X �! S for any X.Theorem 7.4. A G-CW spectrum is strongly dualizable if and only if it isequivalent to a wedge summand of a �nite G-CW spectrum.Proof. The evaluation map of X induces a natural map(�) "# : [Y;Z ^DX]G �! [Y ^X;Z]G



208 XVI. SPECTRA AND G-SPECTRA; CHANGE OF GROUPS; DUALITYvia "#(f) = (Id^")(f ^ Id), and X is strongly dualizable if and only if "# isan isomorphism for all Y and Z. The Wirthm�uller isomorphism implies thatD(�1G=H+) is equivalent to GnH S�L(H), and diagram chases show that it alsoimplies that "# is an isomorphism. Actually, this duality on orbits is the heart ofthe Wirthm�uller isomorphism, and we shall explain it in direct geometric terms inthe next section. If X is strongly dualizable, then so is �X. The co�ber of a mapbetween strongly dualizable G-spectra is strongly dualizable since both sides of (*)turn co�brations in X into long exact sequences. By induction on the number ofcells, a �nite G-CW spectrum is strongly dualizable, and it is formal that a wedgesummand of a strongly dualizable G-spectrum is strongly dualizable. For theconverse, which was conjectured in [LMS] and proven by Greenlees (unpublished),let X be a strongly dualizable G-CW spectrum with coevaluation map �. Then �factors through A^DX for some �nite subcomplex A of X, the following diagramcommutes, and its bottom composite is the identity:A ^ (DX) ^X //Id^"�� A ^ S �= A��X �= S ^X //�^Id 66mmmmmmmmmmmmm X ^ (DX) ^X //Id^" X ^ S �= X:Therefore X is a retract up to homotopy and thus a wedge summand up to ho-motopy of A.In contrast to the nonequivariant case, wedge summands of �nite G-CW spectraneed not be equivalent to �nite G-CW spectra.Corollary 7.5 (Spanier-Whitehead duality). If X is a wedge summandof a �nite G-CW spectrum and E is any G-spectrum, then� : DX ^ E �! F (X;E)is an isomorphism in �hGS . Therefore, for any representation �,EG� (DX) �= E��G (X):So far, we have concentrated on the naturally given dual DX. However, it isimportant to identify the homotopy types of duals concretely, as we did in the caseof orbits. There are a number of equivalent criteria. The most basic one goes asfollows. Suppose given G-spectra X and Y and maps" : Y ^X �! S and � : S �! X ^ Y



8. V -DUALITY OF G-SPACES AND ATIYAH DUALITY 209such that the compositesX �= S ^X //�^Id X ^ Y ^X //Id^" X ^X �= Xand Y �= Y ^ S //Id^� Y ^X ^ Y //"^Id Y ^ S �= Yare the respective identity maps. Then the adjoint ~" : Y �! DX of " is anequivalence and X is strongly dualizable with coevaluation map (Id^~")�. It isimportant to note that the maps � and " that display the duality are not unique| much of the literature on duality is quite sloppy.This criterion admits a homological interpretation, but we will not go into thathere. It entails a reinterpretation in terms of the slant products relating homol-ogy and cohomology that we de�ned in XIIIx5, and it works in the same wayequivariantly as nonequivariantly.[LMS, IIIxx1-3] 8. V -duality of G-spaces and Atiyah dualityThere is a concrete space level version of the duality criterion just given. Todescribe it, let X and Y be G-spaces and let V be a representation of G. Supposegiven G-maps " : Y ^X �! SV and � : SV �! X ^ Ysuch that the following diagrams are stably homotopy commutative, where � :SV �! SV is the sign map, �(v) = �v, and the 
 are transpositions.SV ^X //�^Id ''
 OOOOOOOOOOO X ^ Y ^X�� Id^" and Y ^ SV //Id^���
 Y ^X ^ Y�� "^IdX ^ SV SV ^ Y //�^Id SV ^ Y:On application of the functor �1V , we �nd that �1X and �1V Y are stronglydualizable and dual to one another by our spectrum level criterion.For reasonable X and Y , say �nite G-CW complexes, or, more generally, com-pact G-ENR's (ENR = Euclidean neighborhood retract), we can use the spacelevel equivariant suspension and Whitehead theorems to prove that a pair of G-maps ("; �) displays a V -duality between X and Y , as above, if and only if the�xed point pair ("H; �H) displays an n(H)-duality between XH and Y H for eachH � G, where n(H) = dim(V H).



210 XVI. SPECTRA AND G-SPECTRA; CHANGE OF GROUPS; DUALITYIf X is a compact G-ENR, then X embeds as a retract of an open set of aG-representation V . One can use elementary space level methods to construct anexplicit V -duality betweenX+ and the unreduced mapping cone V [C(V �X). Fora G-co�bration A �! X, there is a relative version that constructs a V -dualitybetween X [ CA and (V � A) [ C(V � X). The argument specializes to givean equivariant version of the Atiyah duality theorem, via precise duality maps.Recall that the Thom complex of a vector bundle is obtained by �berwise one-point compacti�cation followed by identi�cation of the points at in�nity. Whenthe base space is compact, this is just the one-point compacti�cation of the totalspace.Theorem 8.1 (Atiyah duality). If M is a smooth closed G-manifold em-bedded in a representation V with normal bundle �, then M+ is V -dual to theThom complex T�. If M is a smooth compact G-manifold with boundary @M ,V = V 0 �R, and (M;@M) is properly embedded in (V 0 � [0;1); V 0 � f0g) withnormal bundles � 0 of @M in V 0 and � of M in V , then M=@M is V -dual to T�,M+ is V -dual to T�=T� 0, and the co�bration sequenceT� 0 �! T� �! T�=T� 0 �! �T� 0is V -dual to the co�bration sequence�(@M)+  �M=@M  �M+  � (@M)+:We display the duality maps explicitly in the closed case. By the equivarianttubular neighborhood theorem, we may extend the embedding of M in V to anembedding of the normal bundle � and apply the Pontrjagin-Thom constructionto obtain a map t : SV �! T�. The diagonal map of the total space of � inducesthe Thom diagonal � : T� �!M+ ^ T�. The map � is just � � t. The map " isequally explicit but a bit more complicated to describe. Let s : M �! � be thezero section. The composite of � :M �!M �M and s� Id :M �M �! ��Mis an embedding with trivial normal bundle. The Pontrjagin-Thom constructiongives a map t : T� ^M+ �!M+ ^SV . Let � :M+ �! S0 collapse all ofM to thenon-basepoint. The map " is just (� ^ Id) � t. This explicit construction impliesthat the maps � :M+ �! S0 and t : SV �! T� are dual to one another.Let us specialize this discussion to orbits G=H (compare IX.3.4). Recall thatL = L(H) is the tangent H-representation at the identity coset of G=H. We have� = G �H L(H) and T� = G+ ^H SL(H):



9. POINCAR�E DUALITY 211If G=H is embedded in V with normal bundle �, then � � � is the trivial bundleG=H � V . Let W be the orthogonal complement to L(H) in the �ber over theidentity coset, so that V = L �W as an H-space. Since G=H+ is V -dual to T�,�1G=H+ is dual to �1V T�. Since SW ^ S�V ' S�L as H-spectra, we �nd that�1V T� ' GnH S�L.[LMS, IIIxx3-5] 9. Poincar�e dualityReturning to general smooth G-manifolds, we can deduce an equivariant versionof the Poincar�e duality theorem by combining Spanier-Whitehead duality, Atiyahduality, and the Thom isomorphism.Definition 9.1. Let E be a ring G-spectrum and let � be an n-plane G-bundleover a G-space X. An E-orientation of � is an element � 2 E�G(T�) for some� 2 RO(G) of virtual dimension n such that, for each inclusion i : G=H �! X,the restriction of � to the Thom complex of the pullback i�� is a generator of thefree E�H(S0)-module E�G(T i��).Here i�� has the form G �H W for some representation W of H and T i�� =G+ ^ SW has cohomology E�G(T i��) �= E�H(SW ) �= E��wH (S0). Thus the de�nitionmakes sense, but it is limited in scope. If X is G-connected, then there is anobvious preferred choice for �, namely the �ber representation V at any �xedpoint of X: each W will then be isomorphic to V regarded as a representation ofH. In general, however, there is no preferred choice for � and the existence of anorientation implies restrictions on the coe�cients E�H(S0): there must be units indegree ��w 2 RO(H). If � 6= w, this forces a certain amount of periodicity in thetheory. There is a great deal of further work, largely unpublished, by Costenoble,Waner, Kriz, and myself in the area of orientation theory and Poincar�e duality,but the full story is not yet in place. Where it applies, the present de�nition doeshave the expected consequences.Theorem 9.2 (Thom isomorphism). Let � 2 E�G(T�) be an orientation ofthe G-vector bundle � over X. Then[� : E�G(X+) �! E�+�G (T�)is an isomorphism for all �.



212 XVI. SPECTRA AND G-SPECTRA; CHANGE OF GROUPS; DUALITYThere is also a relative version. Specializing to oriented manifolds, we obtainthe Poincar�e duality theorem as an immediate consequence. Observe �rst that,for bundles � and � over X, the diagonal map of X induces a canonical mapT (� � �) �! T (� � �) �= T� ^ T�:There results a pairing(�) E�G(T�)
E�G(T�) �! E�+�G (T (� � �)):We say that a smooth compact G-manifold M is E-oriented if its tangent bundle� is oriented, say via � 2 E�G(T� ). In view of our discussion above, this makesmost sense when M is a V -manifold and we take � to be V . If M has boundary,the smooth boundary collar theorem shows that the normal bundle of @M in Mis trivial, and we deduce that an orientation of M determines an orientation @�of @M in degree �� 1 such that, under the pairing (*), the product of @� and thecanonical orientation � 2 E1G(�(@M)+) of the normal bundle is the restriction of �to T (� j@M). Similarly, if M is embedded in V , then � determines an orientation! of the normal bundle � such that the product of � and ! is the canonicalorientation of the trivial bundle in EvG(�VM+).Definition 9.3 (Poincar�e duality). IfM is a closed E-oriented smooth G-manifold with orientation � 2 E�G(T� ), then the compositeD : E�G(M+) �! EV��+�G (T�) �! EG���(M)of the Thom and Spanier-Whitehead duality isomorphisms is the Poincar�e dualityisomorphism; the element [M ] = D(1) in EG� (M) is called the fundamental classassociated to the orientation. If M is a compact E-oriented smooth G-manifoldwith boundary, then the analogous compositesD : E�G(M+) �! EV��+�G (T�) �! EG���(M;@M)and D : E�G(M;@M) �! EV��+�G (T�; T (�j@M)) �! EG���(M)are called the relative Poincar�e duality isomorphisms. With the Poincar�e dualityisomorphism for @M , they specify an isomorphism from the cohomology long exactsequence to the homology long exact sequence of (M;@M). Here the element[M ] = D(1) in EG� (M;@M) is called the fundamental class associated to theorientation.



9. POINCAR�E DUALITY 213One can check that these isomorphisms are given by capping with the funda-mental class, as one would expect.S. R. Costenoble, J. P. May, and S. Waner. Equivariant orientation theory. Preprint.S. R. Costenoble and S. Waner. Equivariant Poincar�e duality. Michigan Math. J. 39(1992).[LMS, IIIx6]
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CHAPTER XVIIThe Burnside ringThe basic references are tomDieck and [LMS]; some speci�c citations will be given.[tD] T. tom Dieck. Transformation groups and representation theory. Springer Lecture Notes inMathematics. Vol. 766. 1979.1. Generalized Euler characteristics and transfer mapsThere are general categorical notions of Euler characteristic and trace mapsthat encompass a variety of phenomena in both algebra and topology. We againspecialize directly to the stable category �hGS . Let X be a strongly dualizableG-spectrum with coevaluation map � : S �! X ^ DX and de�ne the \Eulercharacteristic" �(X) to be the composite�(X) : S //� X ^DX //
 DX ^X //" S:(1.1)For a G-space X, we write �(X) = �(�1X+); for a based G-space X, we write~�(X) = �(�1X). We shall shortly de�ne the Burnside ring A(G) in terms of theseEuler characteristics, and we shall see that it is isomorphic to �G0 (S), the zerothstable homotopy group of G-spheres. Thus, via the unit isomorphism S ^E ' E,A(G) acts on allG-spectra E and thus on all homotopy, homology, and cohomologygroups of all G-spectra. Its algebraic analysis is central to a variety of calculationsin equivariant stable homotopy theory.Before getting to this, we give a closely related conceptual version of transfermaps. Assume given a diagonal map � : X �! X ^X. We are thinking of X as�1F+ for, say, a compact G-ENR F . We de�ne the \transfer map" � = � (X) :215



216 XVII. THE BURNSIDE RINGS �! X to be the following composite:� : S //� X ^DX //
 DX ^X //Id^� DX ^X ^X //"^Id S ^X ' X:(1.2)We shall later call these \pretransfer maps". When applied �berwise in a suit-able fashion, they will give rise to the transfer maps of bundles, which providea crucial calculational device in both nonequivariant and equivariant cohomologytheory.These simple conceptual de�nitions lead to easy proofs of the basic properties ofthese fundamentally important maps. For example, to specify the relation betweenthem, assume given a map � = �(X) : X �! S such that (Id^�)�� : X �! X^Sis the unit isomophism. We are thinking of �1�, where � : F+ �! S0 is the evidentcollapse map. In the bundle context, the following immediate consequence of thede�nitions will determine the behavior of the composite of projection and transfer.The composite �(X) � � (X) : S �! S is equal to �(X):(1.3)There are many other obvious properties with useful consequences.Before getting to more of these, we assure the reader that ifM is a smooth closedG-manifold embedded in a representation V , then application of the functor �1Vto the explicit geometric transfer map� (M) : SV �! �VM+constructed in IX.3.1 does in fact give the same map as the transfer � : S �!S ^M+ of (1.2). By (1.3), it follows that the Euler characteristic �(M) above isobtained by applying �1V to the Euler characteristic �(M) : SV �! SV of IX.3.2.One way to see this is to work out the description of the transfer map � of (1.2) inthe homotopical context of duality for G-ENR's and then specialize to manifoldsas in XVIx8.We shall return later to transfer maps, but we restrict attention to Euler char-acteristics here. We note �rst that, via a little Lie group theory, (1.5) leads to acalculation of the nonequivariant Euler characteristics �((G=H)K) for subgroupsH and K. The key point is that, since L(H)H is the tangent space at the identityelement of WH, WH is in�nite if and only if L(H) contains a trivial representa-tion, in which case e : S0 �! SL(H) is null homotopic as an H-map.Lemma 1.4. If WH is in�nite, then �(G=H) = 0 and �((G=H)K) = 0 for allK. If WH is �nite and G=H embeds in V , then the degree of fK : SV K �! SVKis the cardinality of the �nite set (G=H)K for each K such that WK is �nite.



1. GENERALIZED EULER CHARACTERISTICS AND TRANSFER MAPS 217This gains force from the next few results, which show how to compute �(X)in terms of the �(G=H) for any strongly dualizable X.Lemma 1.5. Let X and Y be strongly dualizable G-spectra.(i) �(X) = �(Y ) if X is G-equivalent to Y .(ii) �(�) is the trivial map and �(S) is the identity map.(iii) �(X _ Y ) = �(X) + �(Y ) and �(X ^ Y ) = �(X)�(Y ).(iv) �(�nX) = (�1)n�(X).A direct co�bration sequence argument from the de�nition of �(X) gives thefollowing much more substantial additivity relation.Theorem 1.6. For a G-map f : X �! Y , �(Cf) = �(Y )� �(X).By induction on the number of cells, this gives the promised calculation of �(X)in terms of the �(G=H).Theorem 1.7. Let X be a �nite G-CW spectrum, and let �(H;n) be the num-ber of n-cells of orbit type G=H in X. Then�(X) =Xn X(H)(�1)n�(H;n)�(G=H):Taking G to be the trivial group, we see from this formula that the Eulercharacteristic de�ned by (1.1) specializes to the classical nonequivariant Eulercharacteristic. The formula is written in terms of a chosen cell decomposition. Onthe space level, there is a canonical formula for �(X) for any compact G-ENR X,namely �(X) =X(H)�(X(H)=G)�(G=H):(1.8)Here X(H) = fxj(Gx) = (H)g and �(X(H)=G) is the sum of the \internal Eulercharacteristics" �(M) = �( �M) � �(@M) of the path components M of X(H); �Mis the closure of M in X=G and @M = �M �M .De�ne a homomorphism dH : �G0 (S) �!Zby lettingdH(x) = deg(fH ); where f : SV �! SV represents x:(1.9)In view of XVI.6.2, �HS is a nonequivariant sphere spectrum, and we can writethis more conceptually as dH(x) = deg(�H(x)):(1.10)



218 XVII. THE BURNSIDE RINGFor a compact G-ENR X, we can deduce from (1.10) and standard properties ofnonequivariant Euler characteristics thatdH(�(X)) = �(XH):(1.11)Similarly, for a �nite G-CW spectrum X, we can deduce thatdH(�(X)) = �(�HX):(1.12)Note that nothing like this can be true for the genuine �xed points of G-spectra:XH is virtually never a �nite CW-spectrum.Formula (1.11) shows how the equivariant Euler characteristics of compact G-ENR's determine the nonequivariant Euler characteristics of their �xed pointspaces. Conversely, by the following obstruction theoretic observation, the equiv-ariant Euler characteristic is determined by nonequivariant Euler characteristicson �xed point spaces.Proposition 1.13. Let V be a complex representation of G and let f and f 0be G-maps SV �! SV . Then f ' f 0 if and only if deg(fH) = deg(f 0H) for all Hsuch that WH is �nite. Therefore, for compact G-ENR's X and Y , �(X) = �(Y )if and only if �(XH) = �(Y H) for all such H.The integers �(XH) as H varies are restricted by congruences. For example, fora �nite p-group, we saw in our study of Smith theory that �(XG) � �(X) mod p.More general congruences can be derived by use of the Bott isomorphism in equiv-ariant K-theory.Proposition 1.14. Let V be a complex representation of G and let f be aG-map SV �! SV . If WH is �nite, thenX[NH : NH \NK]�(K=H)deg(fK ) � 0 mod jWHj;where the sum runs over the H-conjugacy classes of groups K such that H � K �NH and K=H is cyclic and where �(K=H) is the number of generators of K=H.Therefore, for a compact G-ENR X,X[NH : NH \ NK]�(K=H)�(XK) � 0 mod jWHj:Observe that this is really a result about the WH-maps fH and is thus a resultabout �nite group actions.[tD, 5.1{5.4][LMS, IIIxx7-8 and Vx1]



2. THE BURNSIDE RING A(G) AND THE ZERO STEM �G0 (S) 2192. The Burnside ring A(G) and the zero stem �G0 (S)For a �nite group G, the Burnside ring A(G) is the Grothendieck ring associatedto the set of isomorphism classes of �nite G-sets, with sum and product given bythe disjoint union and Cartesian product ofG-sets. There are ring homomorphisms�H : A(G) �!Zthat send a �nite G-set S to the cardinality of SH. The productover conjugacy classes (H) gives a monomorphism � : A(G) �! C(G), whereC(G) is the product of a copy of Zfor each (H). The image of � is precisely thesubring of tuples (nH) of integers that satisfy the congruencesX[NH : NH \ NK]�(K=H)nK � 0 mod jWHj:It is an insight of Segal that A(G) is isomorphic to �G0 (S).The generalization of this insight to compact Lie groups is due to tom Dieck.We de�ne A(G) to be the set of equivalence classes of compact G-ENR's underthe equivalence relation X � Y if �(X) = �(Y ) in �G0 (S). Disjoint union andCartesian product give a sum and product that make A(G) into a ring; Cartesianproduct with a compact ENR K with trivial action and �(K) = �1 gives additiveinverses. We can de�ne A(G) equally well in terms of �nite G-CW complexes or�nite G-CW spectra. However de�ned, the results of the previous section implythat, additively, A(G) is the free Abelian group with a basis element [G=H] foreach conjugacy class (H) such thatWH is �nite. It is immediate that taking Eulercharacteristics speci�es a monomorphism of rings � : A(G) �! �G0 (S). We de�ne�H = dH � � : A(G) �!Z:Then, by (1.11), �H([X]) = �(XH) for a compact G-ENR X.To de�ne the appropriate version of C(G) for compact Lie groups G we needa little topological algebra. We let CG be the set of closed subgroups of G andFG be the subset of those H such that WH is �nite. Let �G and �G be thesets of conjugacy classes of subgroups in CG and FG, respectively. The set �Gis countable. The set �G is �nite if and only if WT acts trivially on the maximaltorus T . The set of orders of the �nite groups jWG=W0Gj has a �nite bound.There is a Hausdor� metric on CG that measures the distance between sub-groups, and FG is a closed subspace of CG. The conjugation action of G iscontinuous. With the orbit space topology, �G and �G are totally disconnectedcompact metric spaces. Recall that \totally disconnected" means that every sin-gleton set fxg is a component: the non-empty connected subspaces are points. Itfollows that �G has a neighborhood basis consisting of open and closed subsetsS. Such a set is speci�ed by a characteristic map � : �G �! S0 that send points



220 XVII. THE BURNSIDE RINGin S to 1 and points not in S to �1. The proofs of many statements about A(G)combine use of characteristic functions with compactness arguments.Give Zthe discrete topology and de�ne C(G) to be the ring of continuous (=locally constant) functions �G �! Z. Since �G is compact, such a functiontakes �nitely many values. The degree function d(f) : �G �! Z speci�ed byd(f)(H) = deg(fH) for a G-map f : SV �! SV is continuous, hence there results aring homomorphism d : �G0 (S) �! C(G), and we de�ne � = d� : A(G) �! C(G).Thus we have the following commutative diagram of rings:A(G) ##� HHHHHHHHH //� �G0 (S)zz duuuuuuuuuC(G):Theorem 2.1. The homomorphism � is an isomorphism. The homomorphisms� and d are monomorphisms. For H 2 �G, there is a unique element 
H 2 C(G)such that jWHj
H = �([G=H]), and C(G) is the free Abelian group generated bythese elements 
H . A map � : �G �! Z is in the image of � if and only if, foreach H 2 �G, X[NH : NH \NK]�(K=H)�K � 0 mod jWHj:Moreover, there is an integer q such that q(C(G)=A(G)) = 0, and q = jGj if G is�nite.The index of summation is that speci�ed in Proposition 1.14, which shows thatonly maps � that satisfy the congruences can be in the image of �. We knowby Proposition 1.13 that d and therefore � is a monomorphism. It is not hardto prove the rest by inductive integrality arguments starting from rational linearcombinations, provided that one knows a priori that the rationalization of � is anisomorphism; we shall say something about why this is true shortly.[tD, 5.5-5.6][LMS, Vx2] 3. Prime ideals of the Burnside ringCalculational understanding of the equivariant stable category depends on un-derstanding of the algebraic properties of A(G). For example, suppose given anidempotent e 2 A(G). Then eA(G) is the localization of A(G) at the ideal gen-erated by e. For a G-spectrum X, de�ne eX to be the telescope of iterates of



3. PRIME IDEALS OF THE BURNSIDE RING 221e : X �! X. Then ��(eX) = e��(X):Visibly, the canonical map X �! eX _ (1 � e)X induces an isomorphism ofhomotopy groups and is thus an equivalence. Therefore splittings of A(G) interms of sums of orthogonal idempotents determine splittings of the entire stablecategory �hGS .The �rst thing to say about A(G) is that it is Noetherian if and only if the set�G is �nite. For this reason, A(G) is a much less familiar kind of ring for generalcompact Lie groups than it is for �nite groups.To understand the structure of any commutative ring A, one must understandits spectrum Spec(A) of prime ideals. In the case of A(G), it is clear that everyprime ideal pulls back from a prime ideal of C(G). We de�neq(H; p) = f�j�H(�) � 0 mod pg;(3.1)where p is a prime or p = 0. Although these are de�ned for all H, they are redun-dant when WH is in�nite. There are further redundancies. We shall be preciseabout this since the basic sources | [tD] and [LMS] | require supplementationfrom a later note by Bauer and myself. The only proper inclusions of prime idealsare of the form q(H; 0) � q(H; p), hence A(G) has Krull dimension one. For agiven prime ideal q, we wish to describe fHjq = q(H; p)g. This is easy if p = 0.Proposition 3.2. Let q = q(H; 0) for a subgroup H of G.(i) If H C J and J=T is a torus, then q = q(J; 0).(ii) There is a unique conjugacy class (K) in �G such that q = q(K; 0); up toconjugation, H C K and K=H is a torus.(iii) If H 2 �G and J 2 �G, then q(H; 0) = q(J; 0) if and only if (H) = (J).Fix a prime p. We say that a group G is \p-perfect" if it has no non-trivialquotient p-groups. For H � G, let H 0p be the maximal p-perfect subgroup of H;explicitly, H 0p is the inverse image in H of the maximal p-perfect subgroup of the�nite group H=H0. Then de�ne Hp � NH 0p to be the inverse image of a maximaltorus in WH 0p; Hp is again p-perfect, but now WHp is �nite. This last fact iscrucial; it will lead to some interesting new results further on.Theorem 3.3. Let q = q(H; p) for a subgroup H of G and a prime p.(i) If H C J and J=T is an extension of a torus by a �nite p-group, thenq = q(J; p); if H 2 �G and jWHj � 0 mod p, then there exists J 2 �Gsuch that H C J and J=H is a �nite p-group.



222 XVII. THE BURNSIDE RING(ii) There is a unique conjugacy class (K) in �G such that q = q(K; p) andjWKj is prime to p; if H 2 �G and H is p-perfect, then, up to conjugation,H C K and K=H is a �nite p-group.(iii) Kp = K 0p, and Kp is the unique normal p-perfect subgroup of K whosequotient is a �nite p-group.(iv) Kp is maximal in fJ jq(J; p) = q and J is p� perfectg, and this propertycharacterizes Kp up to conjugacy.(v) (Hp) = (Kp), hence q(H; p) = q(J; p) if and only if (Hp) = (Jp).(vi) If H � Kp and H is p-perfect, then HT = Kp, where T is the identitycomponent of the center of Kp.It is natural to let Hp denote the subgroup K of part (ii). If G is �nite, we con-clude that q(J; p) = q if and only if (Hp) � (J) � (Hp). For general compact Liegroups, the situation is more complicated and the following seemingly innocuous,but non-trivial, corollary of the theorem was left as an open question in [LMS].Corollary 3.4. If H � J � K and q(H; p) = q(K; p), then q(J; p) = q(K; p).S. Bauer and J. P. May. Maximal ideals in the Burnside ring of a compact Lie group. Proc.Amer. Math. Soc. 102(1988), 684-686.[tD, 5.7][LMS, Vx3] 4. Idempotent elements of the Burnside ringOne reason that understanding the prime ideal spectrum of a commutativering A is so important is the close relationship that it bears to idempotents. Adecomposition of the identity element of A as a sum of othogonal idempotentsdetermines and is determined by a partition of Spec(A) as a disjoint union ofnon-empty open subsets. In particular, Spec(A) is connected if and only if 0and 1 are the only idempotents of A. This motivates us to compute the set� Spec(A(G)) of components of A(G); we topologize this set as a quotient spaceof Spec(A(G)). However, there is a key subtlety here that was missed in [LMS]:while the components of any space are closed, they need not be open (unless thespace is locally connected). In particular, since � Spec(A(G)) is not discrete, thecomponents of Spec(A(G)) need not be open, and they therefore do not determineidempotents in general.A compact Lie group G is perfect if it is equal to the closure of its commutatorsubgroup. It is solvable if it is an extension of a torus by a �nite solvable group.Let PG denote the subspace of CG consisting of the perfect subgroups and let



4. IDEMPOTENT ELEMENTS OF THE BURNSIDE RING 223�G be its orbit space of conjugacy classes; �G is countable, but it is usually not�nite unless G is �nite.Any compact Lie group G has a minimal normal subgroup Ga such that G=Gais solvable, and Ga is perfect. Passage from G to Ga is a continuous functionCG �! CG,PG is a closed subspace of CG, and �G is a closed subspace of �Gand is thus a totally disconnected compact metric space. There is a �nite normalsequence connecting Ga to G each of whose subquotients is either a torus or acyclic group of prime order. Via the results above, this implies that, for a givenH, all prime ideals q(H; p) are in the same component of Spec(A(G)) as Ha. Thisleads to the following result.Proposition 4.1. De�ne � : �G �! � Spec(A(G)) by letting �(L) be thecomponent that contains q(L; 0). Then � is a homeomorphism.In particular, G is solvable if and only if A(G) contains no non-trivial idempo-tents. For example, the Feit-Thompson theorem that an odd order �nite group Gis solvable is equivalent to the statement that A(G) has no non-trivial idempotents.(Several people have tried to use this fact as the starting point of a topologicalproof of the Feit-Thompson theorem, but without success.)A key point in the proof, and in the proofs of the rest of the results of thissection, is that, for a subring R of Q, the functionq : �G � Spec(R) �! Spec(A(G)
R)is a continuous closed surjection. This is deduced from the fact thatq : �G � Spec(R) �! Spec(C(G)
R)is a homeomorphism. In turn, the latter holds by an argument that depends solelyon the fact that �G is a totally disconnected compact Hausdor� space.If L is a perfect subgroup of G that is not a limit of perfect subgroups, thenthe component of �(L) in Spec(A(G) is open and L determines an idempotent eLin A(G). Even when G is �nite, it is non-trivial to write eL in the standard basisf[G=H]j(H) 2 �Gg, and such a formula has not yet been worked out for generalcompact Lie groups. Nevertheless one can prove the following theorem. Observethat the trivial subgroup of G is perfect; we here denote it by 1.Theorem 4.2. Let L be a perfect subgroup of G that is not a limit of perfectsubgroups. Then there is an idempotent eL = eGL in A(G) that is characterized by�H(eL) = 1 if (Ha) = (L) and �H(eL) = 0 if (Ha) 6= (L):



224 XVII. THE BURNSIDE RINGRestriction from G to NL and passage to L-�xed points induce ring isomorphismseGLA(G) �! eNLL A(NL) �! eWL1 A(WL):[tD, 5.11][LMS, Vx4] 5. Localizations of the Burnside ringLet A(G)p denote the localization of A(G) at a prime p and let A(G)0 denotethe rationalization of A(G). We shall describe these localizations and the local-izations of A(G) at its prime ideals q(H; p). We shall also explain the analysis ofidempotents in A(G)p, which is parallel to the analysis of idempotents in A(G)just given but, in the full generality of compact Lie groups, is less well understood.We begin with A(G)0. Let ZH denote Zregarded as an A(G)-module via �H :A(G) �!Z.Proposition 5.1. Let (H) 2 �G.(i) The localization of A(G) at q(H; 0) is the canonical homomorphismA(G) �! (A(G)=q(H; 0))0 �= Q:(ii) �H : A(G) �!ZH induces an isomorphism of localizations at q(H; 0).(iii) � : A(G) �! C(G) induces an isomorphism of rationalizations.Corollary 5.2. Rationalization A(G) �! A(G)0 �= C(G)0 is the inclusion ofA(G) in its total quotient ring, and � : A(G) �! C(G) is the inclusion of A(G)in its integral closure in C(G)0.Here (i) makes essential use of the compactness of �G, and (i) implies (ii). Toprove (iii) | which we needed to prove Theorem 2.1 | we can now exploit the factthat a map of rings is an isomorphism if it induces a homeomorphism on passageto Spec and an isomorphism upon localization at corresponding prime ideals. If Gis �nite, then A(G)0 is just a �nite product of copies of Q. For general compact Liegroups G, A(G)0 is a type of ring unfamiliar to topologists but familiar in otherbranches of mathematics under the name of an \absolutely 
at" or \von Neumannregular" ring. One characterization of such a commutative ring is that all of itsmodules are 
at; another, obviously satis�ed by A(G)0, is that the localizationof A at any maximal ideal P is A=P . For any such ring A, Spec(A) is a totallydisconnected compact Hausdor� space, and an ideal is �nitely generated if andonly if it is generated by a single idempotent element.Proposition 5.3. Let p be a prime and let (H) 2 �G.



5. LOCALIZATIONS OF THE BURNSIDE RING 225(i) The localization of A(G) at q(H; p) is the canonical homomorphismA(G) �! (A(G)=I(H; p))p;here I(H; p) = \q(J; 0), where the intersection runs over�(G;H; p) � f(J)j(J) 2 �G and q(J; p) = q(H; p)g:(ii) The ring homomorphismY �J : A(G) �!YZJis a monomorphism, where the product runs over (J) 2 �(G;H; p).The following statement only appears in the literature for �nite groups. Thegeneral case relies on the full strength of Theorem 3.3, and the line of proof is thesame as that of Theorem 3.6. The essential point is the analog of Proposition 3.5,and the essential point for this is the following assertion, which is trivially true for�nite groups but has not yet been investigated for general compact Lie groups.Conjecture 5.4. The function CG �! CG that sends H to Hp is continuous.Theorem 5.5. Let L be a p-perfect subgroup of G that is maximal in the setof p-perfect subgroups H such that q(H; p) = q(L; p) and is not a limit of suchp-perfect subgroups. If Conjecture 3.10 holds, then there is an idempotent eL = eGLin A(G)p that is characterized by�H(eL) = 1 if (Hp) = (L) and �H(eL) = 0 if (Hp) 6= (L):Restriction from G to NL and passage to L-�xed points induce ring isomorphismseGLA(G)p �! eNLL A(NL)p �! eWL1 A(WL)p:Moreover, eGLA(G)p is isomorphic to the localization of A(G) at q(L; p). If G is�nite, then A(G)p �=Y(L) eGLA(G)p:Taking L to be any group in �G that is not a limit of groups in �L and takingH0 to be H, we see that the statement is true when p = 0. Of course, in the generalcompact Lie case, A(G)p is no longer the product of the eGLA(G)p. However, itseems possible that, by suitable arguments to handle limit groups L, A(G)p canbe described sheaf theoretically in terms of these localizations. The point is thatA(G)p has the unusual property that it is isomorphic to the ring of global sectionsof its structural sheaf over its maximal ideal spectrum. (Any commutative ring Ais isomorphic to the ring of global sections of its structural sheaf over Spec(A).)



226 XVII. THE BURNSIDE RING[tD, 7.8][LMS, Vx5]6. Localization of equivariant homology and cohomologyThe results of the previous section imply algebraic decomposition and reductiontheorems for the calculation of equivariant homology and cohomology theories.We shall go into some detail since, in the compact Lie case, the results of [LMS]require clari�cation. When G is �nite, we shall obtain a natural reduction of thecomputation of homology and cohomology theories localized at a prime p to theircalculation in terms of appropriate associated theories for subquotient p-groups ofG. It is interesting that although the proof of this reduction makes heavy use ofidempotents of A(G)p, there is no reference to A(G) in the description that one�nally ends up with. We shall use this reduction in our proof of the generalizedSegal conjecture.Recall the geometric �xed point functors �H from XVIxx3, 6. In view of (1.12),it should seem natural that this and not the genuine �xed point functor on G-spectra appears in the following results.Theorem 6.1. Let L be a perfect subgroup of G that is not a limit of perfectsubgroups. For G-spectra X and Y , there are natural isomorphisms[X; eGLY ]G �! [X; eNLL Y ]NL �! [�HX; eWL1 �HY ]WL:We prefer to state the homological consequences in terms of G-spaces, but itapplies just as well to �-�xed points of G-spectra.Corollary 6.2. Let E be a G-spectrum and X be a G-space. For � 2 RO(G),let � = rGNL� 2 RO(NL) and 
 = �L 2 RO(WL). Then there are naturalisomorphisms eGLEG� (X) �! eNLL ENL� (X) �! eWL1 EWL
 (XL)and eGLE�G(X) �! eNLL E�NL(X) �! eWL1 E
WL(XL);where ENL� and E�NL denote the theories that are represented by E regarded asan NL-spectrum and EWL� and E�WL denote the theories that are represented by�LE.WriteXp for the localization of a G-spectrum at a prime p. It can be constructedas the telescope of countably many iterates of p : X �! X, and its properties areas one would expect from the G-space level.



6. LOCALIZATION OF EQUIVARIANT HOMOLOGY AND COHOMOLOGY 227Theorem 6.3. Let L be a p-perfect subgroup of G that is maximal in the set ofp-perfect subgroups H of G such that q(H; p) = q(L; p) and is not a limit of suchp-perfect subgroups. If G is �nite, or if Conjecture 3.10 holds, then, for G-spectraX and Y , there are natural isomorphisms[X; eGLYp]G �! [X; eNLL Yp]NL �! [�HX; eWL1 �HYp]WL:When p = 0, the statement holds for L 2 �G if L is not a limit of groups in �G.Here �H(Yp) ' (�HY )p: We again state the homological version only for G-spaces, although it also applies to G-spectra and �-�xed points. There is a furtherisomorphism here that does not come from Theorem 4.3. We shall discuss it afterstating the corollary.Corollary 6.4. Let E be a G-spectrum and X be a G-space. With L as inTheorem 4.3, let V L be a p-Sylow subgroup of the �nite group WL. For � 2RO(G), let � = rGNL� 2 RO(NL), 
 = �L 2 RO(WL), and � = rWLV L 
 2 RO(V L).Then there are natural isomorphismseGLEG� (X)p �! eNLL ENL� (X)p �! eWL1 EWL
 (XL)p �! EV L� (XL)invpand, assuming that X is a �nite G-CW complex,eGLE�G(X)p �! eNLL E�NL(X)p �! eWL1 E
WL(XL)p �! E�V L(XL)invp ;where ENL� and E�NL denote the theories represented by E regarded as an NL-spectrum, EWL� and E�WL denote the theories represented by �LE, and EV L� andE�V L denote the theories represented by �LE regarded as a V L-spectrum. There-fore, if G is �nite, then EG� (X)p �=Y(L)EV L� (XL)invpand, if X is a �nite G-CW complex,E�G(X)p �=Y(L)E�V L(XL)invp :When p = 0, the statement holds with V L taken as the trivial group.The ideas in XIIIx1 are needed to be precise about the grading. Of course,there is no problem of interpretation for the Z-graded part of the theories. For�nite groups, this gives the promised calculation of the localization of equivarianthomology and cohomology theories at p in terms of homology and cohomologytheories that are associated to subquotient p-groups; in the case of rationalization,a better result will be described later. For general compact Lie groups, such acalculation may follow from the fact that one can reconstruct any module over



228 XVII. THE BURNSIDE RINGA(G)p as the module of global sections of its structural sheaf over the maximalideal spectrum of A(G)p. Intuitively, the idea is that the space of maximal idealsshould carry the relevant Lie group theory; theories associated to subquotientp-groups should carry the algebraic topology.We must still explain the \inv" notation and the �nal isomorphisms that appearin the corollary. These come from a typical application of the general concept ofinduction in the context of Mackey functors. We shall say more about this later,but we prefer to explain the idea without formalism here.Let G be a �nite group with p-Sylow subgroup K. We are thinking of WLand V L. For G-spectra X and Y , we de�ne ([X;Y ]Kp )inv to be the equalizer (=di�erence kernel) of the maps[G=K+ ^X;Y ]Gp �! [G=K+ ^G=K+ ^X;Y ]Gpinduced by the two projections G=K+ ^G=K+ �! G=K+. Here we are using thenotational convention [X;Y ]G = [X;Y ]G:For a G-spectrum E, we de�ne EK� (X)invp by replacing X by sphere spectra andreplacing Y by E ^X. We de�ne E�K(X)invp by replacing X by its smash productwith sphere spectra and replacing Y by E. The �nal isomorphisms of Corollary3.4 are special cases of the following result; there we must restrict to �nite X incohomology because it is only for �niteX that localized spectra represent algebraiclocalizations of cohomology groups.Proposition 6.5. If G is a �nite group with p-Sylow subgroup K, then, forany G-spectra X and Y , the projection G=K+ ^X �! X induces an isomorphism[X;Y ]Gp �! ([X;Y ]Kp )inv:Actually, the relevant induction argument works to prove more generally thatthe analogous map [X;Y ]Gq(K;p) �! ([X;Y ]Kq(K;p))invis an isomorphism, where G is a compact Lie group and (K) 2 �G. The idea isthat we have a complex0 �! [X;Y ]G d0�! [G=K+ ^X;Y ]G d1�! [G=K+ ^G=K+ ^X;Y ]G d2�! � � �;where dn is the alternating sum of the evident projection maps. When localizedat q(K; p), this complex acquires the contracting homotopy that is speci�ed bysn = [G=K]�1� �. Here, for any X, � means� ^ Id : X �= S ^X �! (G=K)+ ^X;



6. LOCALIZATION OF EQUIVARIANT HOMOLOGY AND COHOMOLOGY 229where � : S �! (G=K)+ is the transfer map discussed in Section 1. It is immediatefrom (1.3) that the composite of � and the projection � : G=K+ �! S is the Eulercharacteristic �(G=K) : S �! S. This implies that � ��� is multiplication by[G=K]. The essential point is that [G=K] becomes a unit in A(G)q(K;p). In thecontext of the proposition, the localization of [X;Y ]K at q(K; p) is the same as itslocalization at p.[tD, Ch 7][LMS, Vx6]
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CHAPTER XVIIITransfer maps in equivariant bundle theoryThe basic reference is [LMS]; speci�c citations are given at the ends of sections.1. The transfer and a dimension-shifting variantTransfer maps provide one of the main calculational tools in equivariant stablehomotopy theory. We have given a �rst de�nition in XVIIx1. We shall here referto the \transfer map" there as a pretransfer. It will provide the map of �bersfor the transfer maps of bundles, in a sense that we now make precise. We placeourselves in the context of VIIx1, where we considered equivariant bundle theory.Thus we assume given an extension of compact Lie groups1 �! � �! � �! G �! 1:Fix a complete �-universe U and note that U� is a complete G-universe. LetY be a �-free �-spectrum indexed on U� and let B = Y=�. We are thinking ofY as �1X+ for a �-free �-space X, but it changes nothing to work with spectra.In fact, this has some advantages. For example, relative bundles can be treatedin terms of spectrum level co�bers, obviating complications that would arise if werestricted to spaces. Fix a compact �-ENR F . We could take F to be a spectrumas well, but we desist.We have the orbit spectrum E = Y ^� F+, which we think of as the total G-spectrum of a G-bundle with base G-spectrum B. Write � : E �! B for the mapinduced by the projection F+ �! S0. Since F is a compact G-ENR, we have thestable pretransfer �-map � (F ) : S0 �! F+ of XVIIx1; we have omitted notationfor the suspension �-spectrum functor, and we shall continue to do so, but it isessential to remember that � (F ) is a map of genuine �-spectra indexed on U . As231



232 XVIII. TRANSFER MAPS IN EQUIVARIANT BUNDLE THEORYwe discussed in XVIx5, �-free �-spectra live in the �-trivial �-universe U�. Onmaps, this gives that the inclusion i : U� �! U induces an isomorphismi� : [Y; Y ^ F+]� �! [i�Y; i�(Y ^ F+)]� �= [i�Y; i�Y ^ F+]�:Definition 1.1. Let ~� : Y �! Y ^ F+ be the �-map indexed on U� such thati�(~� ) = Id^� (F ) : i�Y �! i�Y ^ F+:De�ne the transfer � = � (�) : B = Y=� �! Y ^� F+ = Eto be the map of G-spectra indexed on U� that is obtained from ~� by passage toorbits over �.When G = e, this gives the nonequivariant transfer; specialization to this caseresults in no signi�cant simpli�cation. Note that there is no �niteness conditionon the base spectrum B.The de�nition admits many variants. When we describe its properties, we shalloften use implicitly that it does not require a complete �-universe, only a universeinto which F can be embedded, so that duality applies.We can apply the same construction to maps other than � (F ). We illustratethis by constructing the map that gives the generalized Adams isomorphism ofXVI.5.4. Since the construction is a little intricate and will not be used in the restof the chapter, the reader may prefer to skip ahead. The cited Adams isomorphismis a natural equivalence of G=N -spectraE=N �! (��Ad(N)i�E)N ;where N is a normal subgroup of G and E is an N -free G-spectrum indexed on the�xed points of a complete G-universe. By adjunction, such a map is determinedby a \dimension-shifting transfer G-map"i�(E=N) �! ��Ad(N)i�E:We proceed to construct this map.Construction 1.2. Let N be a normal subgroup of G and write � for Nconsidered together with its conjugation action c by G. Let � be the semi-directproduct G �c �. We then have the quotient map " : � �! G. We also havea twisted quotient map � : � �! G, �(g; n) = gn, that restricts to the identity



1. THE TRANSFER AND A DIMENSION-SHIFTING VARIANT 233� �! N . LetX be an N -free G-space and let ��X denoteX regarded as a �-spacevia �; then ��X is �-free. It is easy to check that we have G-homeomorphismsX �= ��X �� N and X=G �= ��X �� pt:This tells us how to view X as a �-free �-space, placing us in the context ofDe�nition 1.1. Here, however, we really need the spectrum level generalization.Let E be an N -free G-spectrum indexed on (U�)N , where U is a complete �-universe. Let i : (U�)N �! U� be the inclusion and let Y = i���E. Then Yis a �-free �-spectrum indexed on U�, and there are natural isomorphisms ofG-spectra i�E �= Y ^� N+ and i�(E=N) �= Y=�:The relevant \pretransfer" in the present context is a mapt : S �! ��Ad(N)N+of �-spectra indexed on U . The tangent bundle of N = �=G is the trivial bun-dle N � Ad(N), where � acts on Ad(N) by pullback along ". Embed N in a�-representation V and let W be the resulting representation V � Ad(N) of �.Embedding a normal tube and taking the Pontrjagin-Thom construction, we ob-tain a �-map SV �! �+ ^G SW �= N+ ^ SW :We obtain the pretransfer t by applying the suspension spectrum functor andthen desuspending by V . We are now in a position to apply the construction ofDe�nition 1.1. Letting j denote the inclusion of U� in U to avoid confusion withi, observe that j�(Y ^ ��Ad(N)N+) �= j�(��Ad(N)(Y ^N+)):Thus, smashing Y with t, pulling back to the universe U�, and passing to orbitsover �, we obtain the desired transfer mapi�(E=N) �= Y=� �! ��Ad(N)(Y ^� N+) �= ��Ad(N)i�E:[LMS, IIx7 and IVx3]



234 XVIII. TRANSFER MAPS IN EQUIVARIANT BUNDLE THEORY2. Basic properties of transfer mapsNow return to the context of De�nition 1.1. While we shall not go into detail, thetransfer can be axiomatized by the basic properties that we list in the followingomnibus theorem. They are all derived from corresponding statements aboutpretransfer maps. By far the most substantial of these properties is (v), which isproven by a fairly elaborate exercise in diagram chasing of co�ber sequences in thecontext of Spanier-Whitehead duality.Theorem 2.1. The transfer satis�es the following properties.(i) Naturality. The transfer is natural with respect to maps f : Y �! Y 0 of�-free �-spectra.(ii) Stability. For a representation V of G regarded by pullback as a represen-tation of �, �V � coincides with the transfer� : �V (Y=�) �= (�V Y )=� �! (�V Y ) ^� F+ �= �V (Y ^� F+):(iii) Normalization. With F = pt, the transfer associated to the identity mapis the identity map.(iv) Fiber invariance. The following diagram commutes for an equivalence � :F �! F 0 of compact �-ENR's: Y=�zz �ttttttttt % %� KKKKKKKKKKY ^� F+ //Id^� Y ^� F 0+:(v) Additivity on �bers. Let F be the pushout of a �-co�bration F0 �! F1and a �-map F0 �! F2, where the Fk are compact �-ENR's. Let �k bethe transfer associated to Y ^� (Fk)+ �! Y=� and let jk : Y ^� (Fk)+ �!Y ^� F+ be induced by the canonical map Fk �! F . Then� = j1�1 + j2�2 � j0�0:(vi) Change of groups. Assume given an inclusion of extensions1 // ��� // ��� // H //�� 11 // � // � // G // 1:



3. SMASH PRODUCTS AND EULER CHARACTERISTICS 235Then the following diagram commutes for a �-free �-spectrum Y indexedon U� regarded as a �-universe:G nH (Y=�)���= //Idn� G nH (Y ^� F+)�� �=(�n� Y )=� //� (�n� Y ) ^� F+ //�= (� n� (Y ^ F+))=�:Modulo a fair amount of extra bookkeeping to make sense of it, part (vi) remainstrue if we require only the homomorphismH �! G in our given map of extensionsto be an inclusion. There is also a change of groups property that holds for amap of extensions in which � �! � is the identity but the other two mapsare unrestricted. Such properties are useful and important, but we shall not gointo more detail here. Rather, we single out a particular example of the kind ofinformation that they imply. Let H � G and consider the bundlesG=H �! pt and BH = EG�H (G=H) �! BGand the collapse maps " : EG+ �! S0 and " : EH+ �! S0.Proposition 2.2. Let E be a split G-spectrum. Then the following diagramcommutes: E�H(S0)���� //"� E�H(EH+)�� �� //�= E�(BH+)�� ��E�G(S0) //"� E�G(EG+) //�= E�(BG+):Here E� is the theory represented by the underlying nonequivariant spectrumof E. For example, if E represents complex equivariant K-theory, then the trans-fer map on the left is induction R(H) �! R(G) and the transfer map on theright is the nonequivariant one. The horizontal maps become isomorphisms uponcompletion at augmentation ideals, by the Atiyah-Segal completion theorem.[LMS, IVxx3{4] 3. Smash products and Euler characteristicsThe transfer commutes with smash products, and a special case of this implies abasic formula in terms of Euler characteristics for the evaluation of the composite



236 XVIII. TRANSFER MAPS IN EQUIVARIANT BUNDLE THEORY� �� for a G-bundle �. The commutation with smash products takes several forms.For an external form, we assume given extensions,1 �! �i �! �i �! Gi �! 1and complete �i-universes Ui for i = 1 and i = 2.Theorem 3.1. The following diagram of (G1�G2)-spectra indexed on the uni-verse (U1)�1 � (U2)�2 commutes for �i-free �i-spectra Yi and �nite �i-spaces Fi:(Y1=�1) ^ (Y2=�2) //�^����= (Y1 ^�1 F1+) ^ (Y2 ^�2 F2+)�� �=(Y1 ^ Y2)=(�1 ��2) //� (Y1 ^ Y2) ^�1��2 (F1 � F2)+:When G = G1 = G2, we can use change of groups to internalize this result.Modulo a certain amount of detail to make sense of things, we see in this casethat the diagram of the previous theorem can be interpreted as a commutativediagram of G-spectra. Either specializing this result or just inspecting de�nitions,we obtain the following useful observation. We revert to the notations of De�nition1.1, so that U is a �-complete universe.Corollary 3.2. Let Y be a �-free �-spectrum indexed on U�, F be a compact�-ENR, and E be a G-spectrum indexed on U�. Then the following diagramcommutes: (Y ^ E)=����= //� (Y ^ E) ^� F+�� �=(Y=�) ^ E //�^id (Y ^� F+) ^ E:In the presence of suitable diagonal maps, this leads to homological formulasinvolving cup and cap products. While more general results are valid and useful,we shall restrict attention to the case of a given space-level bundle. Here theprevious corollary and diagram chases give the following result.Corollary 3.3. Let X be a �-free �-space and F be a compact �-ENR. Thenthe following diagram commutes, where we have written � for various maps in-



3. SMASH PRODUCTS AND EULER CHARACTERISTICS 237duced from the diagonal maps of X and F .(X=�)+ //���� (X �� F )+�� � (X=�)+oo � �� �(X=�)+ ^ (X=�)+���^id (X=�)+ ^ (X=�)+�� id^�(X �� F )+ ^ (X=�)+ (X �� F )+ ^ (X �� F )+ooid^� //�^id (X=�)+ ^ (X �� F )+:Retaining the hypotheses of the corollary and constructing cup and cap productsas in XIIIx5, we easily deduce the following formulas relating the maps inducedon homology and cohomology by the maps �, � , and � displayed in its diagram.Proposition 3.4. The following formulas hold, where E is a ring G-spectrum.(i) � �(w) [ y = � �(w [ ��(y)) for w 2 E�G(X �� F ) and y 2 E�G(Y=�)(ii) x [ � �(z) = � �(��(x) [ z) for x 2 E�G(X=�) and z 2 E�G(Y ^� F+)(iii) y \ � �(x) = ��(��(y) \ w) for y 2 E�G(Y=�) and w 2 E�G(X �� F )(iv) ��(y) \ ��(x) = ��(y \ x) for y 2 E�G(Y=�) and x 2 E�G(X=�)De�ne the Euler characteristic of the bundle � : X �� F �! X to be�(�) = � �(1) 2 E0G(X=�):(3.5)Taking w = 1 in the �rst equation above, we obtain the following conclusion.Corollary 3.6. The compositeE�G(X=�+) //�� E�G(X �� F )+ //�� E�G(X=�+)is multiplication by �(�).In many applications of the transfer, one wants to use this by proving that �(�)is a unit and deducing that E�G(X=�+) is a direct summand of E�G(X �� F )+.When �(�) is or is not a unit is not thoroughly understood. The strategy forstudying the problem is to relate �(�) to the Euler characteristic�(F ) = ��(� (F )) 2 �0�(S):We need a bit of language in order to state the basic result along these lines.If X=� = G=H, then X = �=� for some � such that �\� = e. The composite� � � �! G maps � isomorphically onto H. Inverting this isomorphism, we



238 XVIII. TRANSFER MAPS IN EQUIVARIANT BUNDLE THEORYobtain a homomorphism � : H �= � � �. For a general �-free �-space X and anorbit G=H � X=�, the pullback bundle over G=H gives rise to such a homomor-phism � : H �! �, which we call the �ber representation of X at G=H. Write��F for F regarded as an H-space by pullback along �.Theorem 3.7. Let X be a �-free �-space and F be a �-space. Let B = X=�and consider the bundle � : X �� F �! B. For a ring G-spectrum E, the Eulercharacteristic �(�) 2 E0G(B+) is a unit if any of the following conditions hold.(i) �(��F ) 2 E0H(S) is a unit for each �ber representation � : H �! � of X.(ii) B is G-connected with basepoint � and �(��F ) 2 E0G(S) is a unit, where� : G �! F is the �ber representation of X at �.(iii) B is G-free and the nonequivariant Euler characteristic �(F ) 2 E0e (S) is aunit.Nonequivariantly, with G = e, the connectivity hypothesis of (ii) is inconsequen-tial, but it is a serious limitation in the equivariant case and one must in generalfall back on (i). The following implication is frequently used.Theorem 3.8. If G is a �nite p-group and � : Y �! B is a �nite G-cover whose�ber F has cardinality prime to p, then the composite map�1B+ //� �1Y+ //� �1B+become an equivalence upon localization at p.[LMS, IVx5] 4. The double coset formula and its applicationsThis section summarizes results of Feshback that are generalized and given sim-pler proofs in [LMS]. Basically, they are consequences of the additivity on �bers oftransfer maps. That result leads to decomposition theorems for the computationof the transfer associated to any stable bundle � : Y ^� F+ �! Y=�, and we statethese �rst. Since we must keep track of varying orbits, we write�(�;�) : Y ^� (�=�)+ �! Y=�for the stable bundle associated to a �-free �-spectrum Y and the �-space �=�,and we write � (�;�) for the associated transfer map.



4. THE DOUBLE COSET FORMULA AND ITS APPLICATIONS 239Theorem 4.1. Let F be a �nite �-CW complex and letji : �=�i � �=�i �Dni �! Fbe the composite of the inclusion of an orbit and the ith characteristic map forsome enumeration of the cells of F . Then, for any �-free �-spectrum Y ,� =Xi (�1)niji� (�i;�) : Y=� �! Y ^� F+:There is a more invariant decomposition that applies to a general compact �-ENR F . For � � �, we let F (�) be the subspace of points whose isotropy groups areconjugate to �. A path component M of the orbit space F (�)=� is called an orbittype component of F=�. If �M is the closure of M in F=� and @M = �M �M , wede�ned the (nonequivariant) internal Euler characteristic �(M) to be the reducedEuler characteristic of the based space �M=@M .Theorem 4.2. Let F be a compact �-ENR and letjM : �=� �M � Fbe the inclusion of an orbit in the orbit type component M . Then, for any �-free�-spectrum Y , � =XM �(M)jM� (�;�) : Y=� �! Y ^� F+:While it is possible to deduce a double coset formula in something close to ourfull generality, we shall simplify the bookkeeping by restricting to the case when� = G��, which is the case of greatest importance in the applications. Recall thata principal (G;�)-bundle is the same thing as a �-free (G��)-space and let Y bea �-free (G��)-spectrum indexed on U�, where U is a complete (G��)-universe.For a subgroup � of �, we have the stable (G;�)-bundle�(�;�) : Y=� �= Y ^� (�=�)+ �! Y=�with associated transfer map � (�;�).Theorem 4.3 (Double coset formula). Let � and � be subgroups of �and let �n�=� be the double coset space regarded as the space of orbits under �of �=�. Let fmg be a set of representatives in � for the orbit type component



240 XVIII. TRANSFER MAPS IN EQUIVARIANT BUNDLE THEORYmanifolds M of �n�=� and let �(M) be the internal Euler characteristic of M in�n�=�. Then, for any �-free (G ��)-spectrum Y , the compositeY=� //� Y=� //� Y=�is the sum over M of �(M) times the compositeY=� //� Y=�m \ � //� Y=�m //cm Y=�:Here �m = m�m�1 and cm is induced by the left �-map �=�m �! �=� givenby right multiplication by m. In symbols,� (�;�)�(�;�) =XM �(M) cm � �(�m \ �;�M) � � (�m \ �;�):Proof. The composite�=�m \ � //� �=�m //cm �=�is a homeomorphism onto the double coset �m�. Modulo a little diagram chasingand the use of change of groups, the conclusion follows directly from the previoustheorem applied to �(�;�).If � has �nite index in �, then M is the point �m� and �(M) = 1. Here theformula is of the same form as the classical double coset formula in the cohomologyof groups. Observe that the formula depends only on the structure of the �bersand has the same form equivariantly as in the nonequivariant case G = e (whichis the case originally proven by Feshback, at least over compact base spaces).The theorem is most commonly used for the study of classifying spaces, withY = �1E(G;�)+. Here E(G;�)=� is a classifying G-space for principal (G;�)-bundles and the result takes the following form.Corollary 4.4. The composite�1B(G;�)+ //� �1B(G;�)+ //� �1B(G;�)+is the sum over M of �(M) times the composite�1B(G;�)+ //� �1B(G;�m \ �)+ //� �1B(G;�m)+ //cm �1B(G;�)+:



4. THE DOUBLE COSET FORMULA AND ITS APPLICATIONS 241Of course, the formula is very complicated in general. However, many termssimplify or disappear in special cases. For example, if the group W� = N�=� isin�nite, then the transfer � (�;�) is trivial. This observation and a little book-keeping, lead to the following examples where the formula reduces to somethingmanageable.Corollary 4.5. Let Y be any �-free (G��)-spectrum.(i) If N is the normalizer of a maximal torus T in �, then� (N;�)�(T;�) = �(T;N) : Y=T �! Y=N:(ii) If T is a maximal torus in �, then� (T;�)�(T;�) =X cm : Y=T �! Y=T;where the sum ranges over a set of coset representatives for the Weyl groupW = WT of �.(iii) If � is normal and of �nite index in �, then� (�;�)�(�;�) =X cm : Y=� �! Y=�;where the sum runs over a set of coset representatives for �=�.Typically, the double coset formula is applied to the computation of E�G(Y=�)in terms of E�G(Y=�) for a subgroup �. Here it is used in combination with theEuler characteristic formula of Corollary 3.6 and the unit criteria of Theorem 3.7.We need a de�nition to state the conclusions.Definition 4.6. An element x 2 E�G(Y=�) is said to be stable if�(� \ �m;�)�(x) = �(� \ �m;�m)�c�m(x)for all m 2 �. Let E�G(Y=�)S denote the set of stable elements and observe thatIm �(�;�)� � E�G(Y=�)S since �(�;�) � cm = �(�m;�).The double coset and Euler characteristic formulas have the following directimplication.Theorem 4.7. LetX be a �-free (G��)-space and let E be a ring G-spectrum.Let � � � and consider � = �(�;�). If �(�) 2 E0G(X=�+) is a unit, then�� : E�G(X=�+) �! E�G(X=�+)Sis an isomorphism.



242 XVIII. TRANSFER MAPS IN EQUIVARIANT BUNDLE THEORYUnfortunately, only the �rst criterion of Theorem 3.7 applies to equivariantclassifying spaces, and more work needs to be done on this. However, we have thefollowing application of its last two criteria, and the nonequivariant case G = egives considerable information about nonequivariant characteristic classes.Theorem 4.8. LetX be a �-free (G��)-space and let E be a ring G-spectrum.Assume further that X=� is either G-connected with trivial �ber representationG �! � at any �xed point or G-free.(i) If N is the normalizer of a maximal torus in �, then�� : E�G(X=�+) �! E�G(X=N+)Sis an isomorphism.(ii) If N(p) is the inverse image in the normalizer of a maximal torus T of ap-Sylow subgroup of the Weyl group W =WT and E is p-local, then�� : E�G(X=�+) �! E�G(X=N(p)+)Sis an isomorphism.(iii) If T is a maximal torus in � and E is local away from the order of the Weylgroup W =WT , then�� : E�G(X=�+) �! E�G(X=T+)Wis an isomorphism.(iv) If � is normal and of �nite index in � and E is local away from j�=�j, then�� : E�G(X=�+) �! E�G(X=�+)�=�is an isomorphism.It is essential here that we are looking at theories represented by local spectraand not at theories obtained by algebraically localizing theories represented bygeneral spectra. The point is that if F is the localization of a spectrum E at aset of primes T , then F �G(X) is usually not isomorphic to E�G(X) 
ZT unless Xis a �nite G-CW complex. The proof of the unit criteria makes use of the wedgeaxiom, which is not satis�ed by the algebraically localized theories.M. Feshbach. The transfer and compact Lie groups. Trans. Amer. Math. Soc. 251(1979),139-169.[LMS, IVx6]



5. TRANSITIVITY OF THE TRANSFER 2435. Transitivity of the transferWhile a transitivity relation can be formulated and proven in our original generalcontext of extensions of compact Lie groups, we shall content ourselves with itsstatement in the classical context of products G��. We suppose given compactLie groups G, �, and � and a complete (G����)-universe U 0. Then U = (U 0)�is a complete (G��)-universe and U� = (U 0)��� is a complete G-universe.We shall consider transitivity for stable bundles that are built up from bundlesof �bers. Let P be a �-free �nite (���)-CW complex with orbit space K = P=�and let J be any �nite �-CW complex. Let F = P �� J . The resulting bundle� : F �! K is to be our bundle of �bers. Here F and K are �nite �-CWcomplexes and � is a (�;�)-bundle with �ber J . By pullback, we may regard �as a (G��;�)-bundle. With these hypotheses, we have a transitivity relation forpretransfers that leads to a transitivity relation for stable G-bundles. It is provenby using additivity and naturality to reduce to the case when P is an orbit andthen using a change of groups argument.Theorem 5.1. The following diagram of (G ��� �)-spectra commutes:S{{�(K)xxxxxxxxx ##�(F )FFFFFFFFF�1K+ //�(�) �1F+:Theorem 5.2. Let Y be a �-free (G � �)-spectrum indexed on U�. Observethat the G-map id^�� : D^� F+ �! D^�K+ is a stable (G;���)-bundle with�ber J and consider the following commutative diagram of stable G-bundles:Y ^� F+ %%� JJJJJJJJJ //id^�� Y ^� K+yy �0sssssssssY=�:The following diagram of G-spectra commutes:Y=�yy �(�0)ttttttttt %%�(�)JJJJJJJJJY ^� K+ //�(id^��) Y ^� F+:



244 XVIII. TRANSFER MAPS IN EQUIVARIANT BUNDLE THEORYThe special case P = � is of particular interest. It gives transitivity for thediagram of transfers associated to the commutative diagramY ^� (��� J)+�� //�= Y ^� J+��Y=� Y=�:oo �(�;�)[LMS, IVx7]



CHAPTER XIXStable homotopy and Mackey functors1. The splitting of equivariant stable homotopy groupsOne can reprove the isomorphism A(G) �= �G0 (S) by means of the followingimportant splitting theorem for the stable homotopy groups of G-spaces in termsof nonequivariant stable homotopy groups. When G is �nite, we shall see that thisresult provides a bridge connecting the equivariant and non-equivariant versionsof the Segal conjecture. Recall that Ad(G) denotes the adjoint representation ofG. Remember that our homology theories, including ��, are understood to bereduced.Theorem 1.1. For based G-spaces Y , there is a natural isomorphism�G� (Y ) �= X(H)2�G��(EWH+ ^WH �Ad(WH)Y H):Observe that the sum ranges over all conjugacy classes, not just the conjugacyclasses (H) 2 �G. However, WH is �nite if and only if Ad(WH) = 0, andEWH+ ^WH �Ad(WH)Y H is connected if Ad(WH) 6= 0.Corollary 1.2. For based G-spaces Y , there is a natural isomorphism�G0 (Y ) �= X(H)2�GH0(WH;�0(Y H)):With Y = S0, this is consistent with the statement that A(G) is Z-free on thebasis f[G=H] j (H) 2 �Gg. We shall come back to this point in the discussion ofMackey functors in Section 3. Theorem 1.1 implies a description of the G-�xedpoint spectra of equivariant suspension spectra.245



246 XIX. STABLE HOMOTOPY AND MACKEY FUNCTORSTheorem 1.3. For based G-spaces Y, there is a natural equivalence(�1Y )G ' _(H)2�G�1(EWH+ ^WH �Ad(WH)Y H):Here the suspension spectrum functors are �1 : GT �! GS U on the left and�1 : T �! SUG on the right, where U is a �xed complete G-universe. Actually,the most e�cient proof seems to be to �rst write down an explicit map� =X �H :X��(EWH+ ^WH �Ad(WH)Y H) �! �G� (Y )of homology theories in Y and use it to prove Theorem 1.1 and then write downan explicit map� =X �H :_�1(EWH+ ^W H�Ad(WH)Y H) �! (�1Y )Gof spectra and prove by a diagram chase that the map induced on homotopy groupsby the wedge summand �H is the same as the map induced by the summand �H.We shall �rst write down these maps and then say a little about the proofs.Since the de�nitions of our maps proceed one H at a time, we abbreviate nota-tion by writing:N = NH; W = WH; E = EWH; and A = Ad(WH):We let L be the tangent N -representation at the identity coset of G=N . A Lietheoretic argument shows that (G=N)H is a single point, and this implies thatLH = f0g. Now �H is de�ned by the following commutative diagram:��(E+ ^W �AY H) //����H �W� (E+ ^ Y H) //� �N� (�L(E+ ^ Y ))�� !�G� (Y ) �G� ((G�N E)+ ^ Y ))oo (�^Id)� �G� (G+ ^N (E+ ^ Y )):oo ��Here � is an instance of the Adams isomorphism of XVI.5.4, ! is an instance of theWirthm�uller isomorphism of XVI.4.9, �� is induced by a canonical isomorphism ofG-spectra, � : (G �N E)+ �! S0 is the collapse map, and � is the composite ofthe map �W� �! �N� obtained by regarding W -maps as H-�xed N -maps and themap induced by the inclusion of �xed point spacesE+ ^ Y H = (�L(E + ^Y ))H �! �L(E+ ^ Y ):Why is the sum � of the �H an isomorphism? Clearly � is a map of homologytheories in Y . Recall the spaces E(F 0;F ) de�ned in V.4.6 for inclusions of families



1. THE SPLITTING OF EQUIVARIANT STABLE HOMOTOPY GROUPS 247F � F 0. For a homology theory E� on G-spaces (or G-spectra), we de�ne theassociated homology theory concentrated between F and F 0 byE[F 0;F ]�(X) = E�(X ^ E(F 0;F )):We say that (F 0;F ) is an adjacent pair if F 0 �F consists of a single conjugacyclass of subgroups. One can check, using an easy trans�nite induction argumentin the compact Lie case, that a map of homology theories is an isomorphism if theassociated maps of homology theories concentrated between adjacent families areall isomorphisms.Returning to �, consider an adjacent pair of families withF 0�F = (H). We �ndeasily that EWJ+ ^ E(F 0;F ) is WJ -contractible unless (H) = (J). Therefore,when we concentrate our theories between F and F 0, all of the summands of thedomain of � vanish except the domain of �H. It remains to prove that �H is anisomorphism when Y is replaced by Y ^E(F 0;F ). We claim that each of the mapsin the diagram de�ning �H is then an isomorphism, and three of the �ve are alwaysisomorphisms. It is easy to see that (G �N E)H = EH , which is a contractiblespace. Since E(F 0;F )J is contractible unless (J) = (H), the Whitehead theoremimplies that � ^ Id is a G-homotopy equivalence.It only remains to consider �. Passage to H-�xed points on representative mapsgives a homomorphism� : �N� (�L(E+ ^ Y ^ E(F 0;F )) �! �W� (E+ ^ Y H ^ E(F 0;F )H)such that ��� = Id. It su�ces to show that � is an isomorphism. As an N -space,E(F 0;F ) is E(F 0jN;F jN). While (F 0jN;F jN) need not be an adjacent pair,F 0jN �F jN is the disjoint union of N -conjugacy classes (K), where the K areG-conjugate to H. It follows that E(F 0jN;F jN) is N -equivalent to a wedge ofspaces E(E 0;E ), where each (E 0;E ) is an adjacent pair with E 0�E = (K) for somesuch K. However, it is easy to see that E+ ^ E(E 0;E ) is N -contractible unlessthe N -conjugacy classes (H) and (K) are equal. Thus only the wedge summandE(E 0;E ) with E 0 � E = (H) contributes to the source and target of �. Here(H) = fHg since H is normal in N . A check of �xed points shows that E(E 0;E )His W -equivalent to E+.We now claim more generally that� : �N� (Y ^ E(E 0;E )) �! �W� (Y H ^ E(E 0;E )H) = �W� (Y H ^ E+)



248 XIX. STABLE HOMOTOPY AND MACKEY FUNCTORSis an isomorphism for any N -CW complex Y . Writing out both sides as colimitsof space level homotopy classes of maps, we see that it su�ces to check that� : [X;Y ^ E(E 0;E )]N �! [XH ; Y H ^ E+]Wis a bijection for any N -CW complexX. By easy co�bration sequence arguments,we may assume that all isotropy groups of X (except at its basepoint) are inE 0 � E = fHg. This uses the fact that the set XE of points of X with isotropygroup not in E is a subcomplex: we �rst show that X can be replaced by X=XE 0,which has isotropy groups in E 0, and we then show that this new X can be replacedby XE , which has isotropy groups in E 0 � E . Under this assumption, X = XHand the conclusion is obvious.Retaining our abbreviated notations, we next describe the map�H : �1(E+ ^W �AY H) �! (�1Y )G:This is a map of spectra indexed on UG, and it su�ces to describe its adjoint mapof G-spectra indexed on U :~�H : �1(E+ ^W �AY H) �! �1Y:Here we regard E+ ^W �AY H as a G-trivial G-space, and the relevant suspensionspectrum functor is �1 : GT �! GS U on both left and right. Suppressingnotation for �1, implicitly using certain commutation relations between �1 andother functors, and abbreviating notation by setting Z = E+ ^W �AY H , we de�ne~�H to be the composite displayed in the following commutative diagram:Z //�^Id���H G=N+ ^ Z //�= G+ ^N Z�� Id^�Y (G�NE)+ ^ Yoo �^Id G+ ^N (E+ ^ Y )oo � G+ ^N (E+ ^ Y H)oo �On the top line, � is the transfer stable G-map S0 �! G=N+ of IX.3.4 (orXVII.1.2). At the right, � : E+ ^W �AY H �! E+ ^ Y H is the stable N -mapobtained by applying i� : WSUH �! NS U , i : UH �! U , to the dimension-shifting transfer W -map of XVIII.1.2 that is at the heart of the Adams isomor-phism that appears in the de�nition of �H. A diagram chase shows that the mapon homotopy groups induced by �H coincides with �H , and the wedge sum of the�H is therefore an equivalence.T. tom Dieck. Orbittypen und �aquivariante Homologie. I. Arch. Math. 23(1972), 307-317.



2. GENERALIZATIONS OF THE SPLITTING THEOREMS 249T. tom Dieck. Orbittypen und �aquivariante Homologie. II. Arch. Math. 26(1975), 650-662.[LMS, Vxx10-11] 2. Generalizations of the splitting theoremsWe here formulate generalizations of Theorems 1.1 and 1.3 that are importantin the study of generalized versions of the Segal conjecture. The essential ideasare the same as those just sketched, but transfer maps of bundles enter into thepicture and the bookkeeping needed to de�ne the relevant maps and prove thatthe relevant diagrams commute is quite complicated. We place ourselves in thecontext in which we studied generalized equivariant bundles in VIIx1. Thus let� be a normal subgroup of a compact Lie group � with quotient group G. LetE(�; �) be the universal (�; �)-bundle of VII.2.1. Let Ad(�; �) denote the adjointrepresentation of � derived from �; it is the tangent space of � at e with the actionof � induced by the conjugation action of � on �. We regard G-spaces as �-spacesby pullback. For based �-spaces X and Y , we writefX;Y g�n = [�n�1X;�1Y ]�for integers n. With these notations, we have the following results.Theorem 2.1. Let X be a based G-space and Y be a based �-space. Assumeeither that X is a �nite G-CW complex or that � is �nite. Then fX;Y g�� isnaturally isomorphic to the direct sum over the �-conjugacy classes of subgroups� of � of the groupsfX;E(W��;W��)+ ^W�� �Ad(W��;W��)Y �gW��=W��� :Here the quotient homomorphism � �! G induces an inclusion of W��=W��in G and so �xes an action of this group on X. Of course, when G is �nite, theadjoint representations in the theorem are all zero. If we set � = � (and rename itG), then the theorem reduces to a mild generalization of Theorem 1.1. When � is�nite, the speci�ed sum satis�es the wedge axiom. In general, the sum is in�niteand we must restrict to �nite G-CW complexes X.Theorem 2.2. For based �-spaces Y , there is a natural equivalence of G-spectrafrom (�1Y )� to the wedge over the �-conjugacy classes of subgroups � of � ofthe suspension spectra of the G-spacesG+ ^W��=W�� (E(W��;W��)+ ^W�� �Ad(W��;W��)Y �):



250 XIX. STABLE HOMOTOPY AND MACKEY FUNCTORSHere the suspension spectrum functor applied to Y is �1 : �T �! �S U andthat applied to the wedge summands is �1 : GT �! GS U� , where U is acomplete �-universe.[LMS, Vxx10-11] 3. Equivalent de�nitions of Mackey functorsIn IXx4, we de�ned a Mackey functor to be an additive contravariant functorBG �! A b, and we have observed that the Burnside category BG is just the fullsubcategory of the stable category whose objects are the orbit spectra �1G=H+,but with objects denoted G=H. This is the appropriate de�nition of a Mackeyfunctor for general compact Lie groups, but we show here that it is equivalent toan older, and purely algebraic, de�nition when G is �nite. We �rst describe themaps inBG. As observed in IXx4, their composition is hard to describe in general.However, for �nite groups G, there is a conceptual algebraic description. In fact,in this case there is an extensive literature on the algebraic theory of Mackeyfunctors, and we shall say just enough to be able to explain the important idea ofinduction theorems in the next section.When we specialize the diagram-chasing needed for the proofs in Section 1 tothe calculation of �G0 (Y ), we arrive at the following simple conclusion. RecallCorollary 1.2.Proposition 3.1. For any based G-space Y , �G0 (Y ) is the free Abelian groupgenerated by the following composites, where (H) runs over �G and y runs overa representative point in Y H of each non-basepoint component of Y H=WH:S //� �1G=H+ //�1~y �1Y ;here � is the transfer and ~y : G=H+ �! Y is the based G-map such that ~y(eH) = y.There is a useful conceptual reformulation of this calculation. Since we areinterested in orbits G=H, we switch to unbased G-spaces.Corollary 3.2. Let X be an unbased G-space. For H � G, the group�H0 (X+) = [�1G=H+;�1X+]Gis isomorphic to the free Abelian group generated by the equivalence classes ofdiagrams of space level G-mapsG=H G=Koo � //� X;



3. EQUIVALENT DEFINITIONS OF MACKEY FUNCTORS 251where K � H and WHK is �nite. Here (�; �) is equivalent to (�0; �0) if thereis a G-homeomorphism � : G=K �! G=K 0 such that the following diagram isG-homotopy commutative: G=K{{ �wwwwwwwww �� � !!� DDDDDDDDDG=H XG=K 0c c �0GGGGGGGGG ==�0 zzzzzzzzzWe are thinking of � as the corresponding transfer map �1G=H+ �! �1G=K+,namely GnH (� ), where � : S0 �! �1H=K+ is the transfer H-map.This result specializes to give a good description of the maps ofBG. In principle,their composition can be described in terms of a double coset formula, but this isquite hard to compute with in general. However, when G is �nite, it admits anattractive conceptual reformulation.To see this, let B̂G be the category whose objects are the �nite G-sets andwhose morphisms are the stable G-mapsX+ �! Y+. That is, up to an abbreviatednotation for objects, B̂G is the full subcategory of the stable category whose objectsare the �1X+ for �niteG-sets X. ClearlyBG embeds as a full subcategory of B̂G,and every object of B̂G is a disjoint union of objects of BG. We easily �nd thatmaps in B̂G can be described as equivalence classes [�; �] of pairs (�; �), exactlyas in the previous corollary, but now the composite of mapsV Woo � //� X and X Yoo  //! Zcan be speci�ed as the equivalence class of the diagramP~ ~||||||||   @@@@@@@@W~~ �~~~~~~~~   � AAAAAAAA Y� �  ~~~~~~~~ ��!@@@@@@@V X Z;where the top square is a pullback. This gives a complete description of B̂Gin purely algebraic terms, with disjoint unions thought of as direct sums. It is



252 XIX. STABLE HOMOTOPY AND MACKEY FUNCTORSimportant, and obvious, that this category is abstractly self-dual. Moreover, theduality isomorphism is given topologically by Spanier-Whitehead duality on orbits.Since an additive functor necessarily preserves any �nite direct sums in its do-main, it is clear that an additive contravariant functor BG �! A b determinesand is determined by an additive contravariant functor B̂G �! A b. In turn, asa matter of algebra, an additive contravariant functor B̂G �! A b determinesand is determined by a Mackey functor in the classical algebraic sense. Precisely,such a Mackey functor M consists of a contravariant functor M� and a covariantfunctor M� from �nite G-sets to Abelian groups. These functors have the sameobject function, denotedM , and M converts disjoint unions to direct sums. Writ-ing M�� = �� and M�� = ��, it is required that �� � �� = �� � 
� for pullbackdiagrams of �nite G-sets P //���
 X�� �Y //� Z:For an additive contravariant functor M : B̂G �! A b, the maps M [�; 1] andM [1; �] specify the covariant and contravariant parts �� and �� of the correspond-ing algebraic Mackey functor, and conversely.[LMS, Vx9] 4. Induction theoremsAssuming that G is �nite, and working with the algebraic notion of a Mackeyfunctor just de�ned, we now consider the problem of computing M(�), where� = G=G, in terms of the M(G=H) for proper subgroups H. For a �nite G-set X,let Xn be the product of n copies of X and let �i : Xn+1 �! Xn be the projectionthat omits the ith variable. We then have the chain complex(�) 0 �!M(�) �!M(X) �!M(X2) �! � � �;where the di�erential dn : M(Xn) �! M(Xn+1) is the alternating sum of themaps (�i)�, 0 � i � n. Let M(X)inv be the kernel of d1, namely the equalizerof (�0)� and (�1)�. We are interested in determining when the resulting mapM(�) �! M(X)inv is an isomorphism. Of course, this will surely hold if thesequence (*) is exact. We have already seen an instance of this kind of argumentin XVIIx6.



4. INDUCTION THEOREMS 253When is (*) exact? Let MX be the Mackey functor that sends a �nite G-set Yto M(X � Y ), and similarly for maps. The projections � : X � Y �! Y inducea map of Mackey functors �X :M �!MX . We say that M is \X-injective" if �Xis a split monomorphism. If �X is split by  : MX �! M , so that  � �X = Id,then the homomorphisms (Xn) :M(X �Xn) �!M(Xn+1)specify a contracting homotopy for (*). Therefore (*) is exact if M is X-injective.When is M X-injective? To obtain a good criterion, we must �rst specifythe notion of a pairing � : L �M �! N of Mackey functors. This consists ofmaps � : L(X) 
 M(X) �! N(X) for �nite G-sets X such that the evidentcovariant and contravariant functoriality diagrams and the following Frobeniusdiagram commute for a G-map f : X �! Y .L(X)
M(Y ) //f�
Id��Id
f� L(Y )
M(Y )�� �L(X) 
M(X) //� N(X) //f� N(Y ):A Green functor is a Mackey functor R together with a pairing � that makes eachR(X) a commutative and associative unital ring, the maps f� being required topreserve units and thus to be ring homomorphisms. The notion of a module Mover a Green functor R is de�ned in the evident way. With these notions, one canprove the following very useful general fact.Proposition 4.1. If R is a Green functor and the projection X �! � inducesan epimorphismR(X) �! R(�), then everyR-moduleM isX-injective. ThereforeM(�) �=M(X)inv for every R-module M .For a Green functor R, there is a unique minimal set f(H)g of conjugacy classesof subgroups of G such that R(`G=H) �! R(�) is an epimorphism; this setis called the \defect set" of R. By an \induction theorem", we understand anidenti�cation of the defect set of a Green functor. For example, the complexrepresentation rings R(H) are the values on G=H of a Green functor R, and the\Brauer induction theorem" states that the set of products P �C of a p-group Pand a cyclic group C in G contains a defect set of R. We will shortly give anotherexample, one that we will use later to reduce the generalized Segal conjecture tothe case of �nite p-groups.



254 XIX. STABLE HOMOTOPY AND MACKEY FUNCTORSWe must �rst explain the relationship of Burnside rings to Mackey functors.For a �nite G-set X, we have a Grothendieck ring A(X) of isomorphism classesof G-sets over X. The multiplication is obtained by pulling Cartesian productsback along the diagonal of the base G-set X. When X = �, this is the Burnsidering A(G). More generally, a G-set � : T �! G=H over G=H determines andis determined by the H-set ��1(eH), and it follows that A(G=H) �= A(H). AG-map f : X �! Y determines f� : A(Y ) �! A(X) by pullback along f , and itdetermines f� : A(X) �! A(Y ) by composition with f . In more down to earthterms, if f : G=H �! G=K is the G-map induced by an inclusion H � K, thenf� : A(K) �! A(H) sends a K-set to the same set regarded as an H-set andf� : A(H) �! A(K) sends an H-set X to the K-set K�HX; we call f� induction.This gives the Burnside Green functor A.Any Mackey functor M is an A-module via the pairingsA(X)
M(X) �!M(X)that send � 
 m, � : Y �! X, to ����(m). Therefore, by pullback along thering map A(G) = A(�) �! A(X), each M(X) is an A(G)-module. Any Greenfunctor R has a unit map of Green functors � : A �! R that sends � : Y �! Xto ����(1). Thus we see that the Burnside Green functor plays a universal role.Observe that we can localize Mackey functors termwise at any multiplicativesubset S of A(G). We can complete Mackey functors that are termwise �nitelyA(G)-generated at any ideal I � A(G). We wish to establish an induction theoremapplicable to such localized and completed Mackey functors. This amounts todetermination of the defect set of S�1AÎ .It is useful to use a little commutative algebra. The following observation isstandard algebra, but its relevance to the present question was noticed in work ofAdams, Haeberly, Jackowski, and myself and its extension by Haeberly. We shallstate it for pro-modules | which are just inverse systems of modules | but onlyactual modules need be considered at the moment. Its pro-module version will beused in the proof of the generalized Segal conjecture in XXxx2, 3. Localizations ofcompletions of pro-modules M = fM�g are understood to be inverse systemsS�1MÎ = fS�1M�=IrM�g:Lemma 4.2. LetM be a pro-�nitely generated module over a commutative ringA, let S be a multiplicative subset of A, and let I be an ideal of A. Then S�1MÎ



4. INDUCTION THEOREMS 255is pro-zero if and only if (SP )�1MP̂ is pro-zero for every prime ideal P such thatP \ S = ; and P � I, where SP is the multiplicative subset A� P .For a prime ideal P ofA(G), we letK(P ) be a maximal element of the setfHjP =q(H; p)g. We have discussed these subgroups in XVIIx3.Lemma 4.3. f(K(P ))g is the defect set of the Green functor (SP )�1A.Proof. Essentially this result was observed, in less fancy language, at the endof XVIIx6. The subgroup K = K(P ) is characterized by P = q(K; p) and jWKj 6�0 mod p. (We allow p = 0.) The compositeA(G) �! A(K) �! A(G)of restriction and induction is multiplication by [G=K]. Since this element of A(G)maps to a unit in A(G)q(K;p), the displayed composite becomes an isomorphismupon localization at q(K; p).Proposition 4.4. Let S be a multiplicative subset of A(G) and let I be anideal of A(G). Then the defect set of the Green functor S�1AÎ isf(K(P ))jP \ S = ; and P � Ig:Proof. The statement means that the sum of transfer mapsXS�1A(K(P ))Î �! S�1A(G)Îis an epimorphism, and Lemmas 4.2 and 4.3 imply that its cokernel is zero.The starting point for arguments like this was the following result of McClureand myself, which is the special case when S = f1g and I is the augmentationideal (alias q(e; 0)). If P = q(e; p), then K(P ) is a p-Sylow subgroup of G.Corollary 4.5. If I is the augmentation ideal of A(G), then the defect set ofthe Green functor AÎ is the set of p-Sylow subgroups of G.This will be applied in conjunction with the following observation.Lemma 4.6. Let M be a Mackey functor over a �nite p-group G and let �� :M(�) �! M(G) be induced by the projection G �! �. Then the p-adic andI-adic topologies coincide on Ker(��).



256 XIX. STABLE HOMOTOPY AND MACKEY FUNCTORSProof. Since multiplication by [G] is the composite ����, [G] Ker(��) = 0.Since [G]� jGj 2 I, jGjKer(��) � I Ker(��). If H 6= e, then �H([G=K]� jG=Kj)is divisible by p because G=K�(G=K)H is a disjoint union of non-trivialH-orbits.Therefore �(I) � pC(G). Let jGj = pn. Since jGjC(G) � �(A(G)), we see that�(In+1) � p�(I) and thus In+1 � pI. The conclusion follows.A. Dress. Induction and structure theorems for orthogonal representations of �nite groups.Annals of Math. 102(1975), 291-325.J.-P. Haeberly. Some remarks on the Segal and Sullivan conjectures. Amer. J. Math. 110(1988),833-847.J. P. May and J. E. McClure. A reduction of the Segal conjecture. Canadian Math. Soc.Conference Proceedings Vol. 2, part 2, 1982, 209-222.5. Splittings of rational G-spectra for �nite groups GWe here analyze the rational equivariant stable category for �nite groups G. Theessential point is that any rational G-spectrum splits as a product of Eilenberg-MacLane G-spectra K(M;n) = �nHM .Theorem 5.1. Let G be �nite. Then, for rational G-spectra X, there is anatural equivalence X �! QK(�n(X); n).There is something to prove here since the counterexamples of Trianta�llou dis-cussed in IIIx3 show that, unless G is cyclic of prime power order, the conclusion isfalse for naive G-spectra. A counterexample of Haeberly shows that the conclusionis also false for genuine G-spectra when G is the circle group, the rationalizationof KUG furnishing a counterexample. Greenlees has recently studied what doeshappen for general compact Lie groups.The proof of Theorem 5.1 depends on two facts, one algebraic and one topolog-ical. We assume that G is �nite in the rest of this section.Proposition 5.2. In the Abelian category of rational Mackey functors, all ob-jects are projective and injective.The analog for coe�cient systems is false, and so is the analog for compact Liegroups. The following result is easy for �nite groups and false for compact Liegroups.Proposition 5.3. For H � G and n 6= 0, �n(G=H+)
Q = 0.



5. SPLITTINGS OF RATIONAL G-SPECTRA FOR FINITE GROUPS G 257Let M = MG denote the Abelian category of Mackey functors over G. ForG-spectra X and Y , there is an evident natural map� : [X;Y ]G �!YHomM (�n(X); �n(Y )):Let Y be rational. By the previous result and the Yoneda lemma, � is an isomor-phism when X = �1G=H+ for any H. Throwing in suspensions, we can extend �to a graded map� : Y qG(X) = [X;Y ]qG = [��qX;Y ]G �!YHomM (�n(��qX); �n(Y )):It is still an isomorphismwhen X is an orbit. Of course, we obtain the same groupsif we replaceX and the Mackey functors �n(��qX) by their rationalizations. Sincethe Mackey functors �n(Y ) are injective, the right hand side is a cohomology theoryon G-spectra X. Clearly � is a map of cohomology theories and this alreadyproves the following result. With Y = QK(�n(X); n), Theorem 5.1 is an easyconsequence.Theorem 5.4. If Y is rational, then � is a natural isomorphism.This classi�es rational G-spectra, and we next classify maps between them.Recall that �
Q : A(G)
Q �! C(G)
Q is an isomorphism and that C(G)
Qis the product of a copy ofQ for each conjugacy class (H). There results a completeset of orthogonal idempotents eH = eGH in A(G) 
 Q. Multiplication by the eHinduces splittings of A(G) 
 Q-modules, rational Mackey functors, and rationalG-spectra, and we have the commutation relation�n(eHX) �= eH�n(X):In all three settings, there are no non-zero maps eHX �! eJY unless H is conju-gate to J . This gives re�nements of Theorems 5.1 and 5.4.Theorem 5.5. For rational G-spectra X, there are natural equivalencesX '_ eHX 'YK(eH�n(X); n):Theorem 5.6. For rational G-spectraX and Y , there are natural isomorphisms[X;Y ]G �=X[eHX; eHY ]G �=XYHomM (eH�n(X); eH�n(Y )):Moreover, if Vn;H(X) = (eH�n(X))(G=H) � �n(XH), thenHomM (eH�n(X); eH�n(Y )) �= HomWH(Vn;H (X); Vn;H(Y )):



258 XIX. STABLE HOMOTOPY AND MACKEY FUNCTORSThus the computation of maps between rational G-spectra reduces to the com-putation of maps between functorially associated modules over subquotient groups.The last statement of the theorem is a special case of the following algebraic result.Theorem 5.7. For rational Mackey functors M and N , there are natural iso-morphisms HomM (eHM;eHN) �= HomWH(VH(M); VH (N));where VH(M) is the Q[WH]-module (eHM)(G=H) �M(G=H).The proof of Proposition 5.2 is based on the following consequence of the factthat VH(N) is a projective and injective Q[WH]-module.Lemma 5.8. If the conclusion of Theorem 5.7 holds for all N and for a givenMand H, then eHM is projective; if the conclusion holds for all M and for a givenN and H, then eHN is injective.Now letMQ be the category of rational Mackey functors over G. Let Q[G] bethe category of Q[G]-modules. Fix H � G. Then there are functorsUH :MQ�!Q[WH] and FH :Q[WH] �!MQ:Explicitly,UHM =M(G=H) and (FHV )(G=K) = (Q[(G=K)H ]
 V )WH :These functors are both left and right adjoint to each other if we replaceMQ by itsfull subcategoryMQ=H of those Mackey functorsM such thatM(G=J) = 0 for allproper subconjugates J of H. Since (FHV )(G=K) = 0 unless H is subconjugateto K, FHV is inMQ=H.Proofs of Proposition 5.2 and Theorem 5.7. One easily proves both ofthese results whenM = FHV by use of the adjunctions and idempotents. Even in-tegrally, every Mackey functorM is built up by successive extensions from Mackeyfunctors of the form FHV . Rationally, the extensions split by the projectivity ofthe FHV . Therefore any rational Mackey functor M is a direct sum of Mackeyfunctors of the form FHV for varying H and V .J. P. C. Greenlees. Some remarks on projective Mackey functors. Journal Pure and AppliedAlgebra 81(1992), 17-38.J. P. C. Greenlees. Rational Mackey functors for compact Lie groups. Preprint, 1993.J. P. C. Greenlees and J. P. May. Some remarks on the structure of Mackey functors. Proc.Amer. Math. Soc. 115(1992), 237-243.



5. SPLITTINGS OF RATIONAL G-SPECTRA FOR FINITE GROUPS G 259J. P. C. Greenlees and J. P. May. Generalized Tate cohomology, Appendix A. Memoirs Amer.Math. Soc. No 543. 1995.J.-P. Haeberly. For G = S1 there is no Chern character. Contemp. Math. 36 (1985), 113-118.



260 XIX. STABLE HOMOTOPY AND MACKEY FUNCTORS



CHAPTER XXThe Segal conjecture1. The statement in terms of completions of G-spectraThere are many ways to think about the Segal conjecture and its generalizations.Historically, the original source of the conjecture was just the obvious analogy be-tweenK-theory and stable cohomotopy. According to the Atiyah-Segal completiontheorem, the K-theory of the classifying space of a compact Lie group G is isomor-phic to the completion of the representation ring R(G) at its augmentation ideal.Here R(G) is K0G(S0), and K1G(S0) = K1(BG+) = 0. The Burnside ring A(G) is�0G(S0), and it is natural to guess that the stable cohomotopy of BG is isomorphicto the completion of ��G(S0) at the augmentation ideal I of A(G). This guess isthe Segal conjecture. It is not true for compact Lie groups in general, but it turnsout to be correct for �nite groups G. We shall restrict ourselves to �nite groupsthroughout our discussion. A survey of what is known about the Segal conjecturefor compact Lie groups has been given by Lee and Minami.Here we are thinking about Z-graded theories, and that is the right way tothink about the proof. However, one can also think about the result in purelyequivariant terms, and the conclusion then improves to a result about G-spectraand thus about RO(G)-graded cohomology theories. To see this, let's at �rstgeneralize and consider any G-spectrum kG. We have the projection EG+ �! S0,and it induces a G-map" : kG = F (S0; kG) �! F (EG+; kG):(1.1)We think of " as a kind of geometric completion of kG.It is natural to think about such completions more generally. Let F be a familyof subgroups of G. We have the projection EF+ �! S0, and we have the induced261



262 XX. THE SEGAL CONJECTUREG-map " : kG = F (S0; kG) �! F (EF+; kG):(1.2)We think of " as the geometric completion of kG at F .We want to compare this with an algebraic completion. The family F deter-mines an ideal IF of A(G), namelyIF = \H2F Ker(A(G) �! A(H)):(1.3)Just as I = Ifeg = q(e; 0), by de�nition, it turns out algebraically thatIF = \H2F q(H; 0):(1.4)Since A(G) plays the same role in equivariant theory that Zplays in nonequiv-ariant theory, it is natural to introduce completions of G-spectra at ideals of theBurnside ring. This is quite easy to do. For an element � of A(G), de�ne SG[��1],the localization of the sphere G-spectrum SG at �, to be the telescope of countablymany iterates of � : SG �! SG. Then let K(�) be the �ber of the canonical mapSG �! SG[��1]. For an ideal I generated by a set f�1; � � � ; �ng, de�neK(I) = K(�1) ^ � � � ^K(�n):(1.5)It turns out that, up to equivalence, K(I) is independent of the choice of gener-ators of I. Now de�ne (kG)Î = F (K(I); kG):(1.6)By construction, K(I) comes with a canonical map � : K(I) �! SG, and thereresults a map 
 : kG �! (kG)Î :(1.7)We call 
 the completion of kG at the ideal I. For those who know about suchthings, we remark that completion at I is just Bous�eld localization at K(I). Weshall later use \brave new algebra" to generalize this construction.Now specialize to I = IF for a family F . For � 2 IF , � : SG �! SG is nullhomotopic as an H-map for any H 2 F . Therefore SG[��1] is H-contractible,K(IF ) is H-equivalent to SG, and the co�ber of � is H-contractible. This impliesthat there is a unique G-map� : �1EF+ �! K(IF )(1.8)



2. A CALCULATIONAL REFORMULATION 263over SG. There results a canonical map of G-spectra�� : F (K(IF ); kG) �! F (EF+; kG):(1.9)We view this as a comparison map relating the algebraic to the geometric comple-tion of kG at F .One can ask for which G-spectra kG the map �� is an equivalence. We can nowstate what I �nd to be the most beautiful version of the Segal conjecture. Recallthat D(E) = F (E;SG).Theorem 1.10. For every family F , the map�� : (SG)ÎF = D(K(IF )) �! D(EF+)is an equivalence of G-spectra.Parenthetically, one can also pass to smash products rather than function spec-tra from the map �, obtaining�� : kG ^ EF+ �! kG ^K(IF+):(1.11)One can ask for which G-spectra kG this map is an equivalence. A standardargument shows that �� is an equivalence if kG is a ring spectrum and �� is anequivalence. Once we introduce Tate theory, we will be able to give a remarkablepartial converse. The point to make here is that �� is an equivalence for KG, as weshall explain in XXIVx7, but is certainly not an equivalence for SG. That wouldbe incompatible with the splitting of (SG)G in XIXx1. Our original analogy willonly take us so far.J. F. Adams, J.-P. Haeberly, S. Jackowski, and J. P. May. A generalization of the Segal conjec-ture. Topology 27(1988), 7-21.J. P. C. Greenlees and J. P. May. Completions of G-spectra at ideals of the Burnside ring.Adams memorial symposium on algebraic topology, Vol. 2. London Math. Soc. Lecture NoteSeries 176, 1992, 145-178.C.-N. Lee and N. Minami. Segal's Burnside ring conjecture for compact Lie groups. in Algebraictopology and its applications. MSRI Publications # 27. Springer-Verlag. 1994, 133-161.2. A calculational reformulationWhat does Theorem 1.10 say calculationally? To give an answer, we go backto our algebraic completions. The I-adic completion functor is neither left norright exact in general, and it has left derived functors LIi . Because A(G) has Krulldimension one, these vanish for i > 1. In precise analogy with the calculation



264 XX. THE SEGAL CONJECTUREof the homotopy groups of p-adic completions of spaces, we �nd that, for anyG-spectrum X, there is a natural short exact sequence0 �! LI1(�q�1(X)) �! �q(X Î) �! LI0(�q(X)) �! 0;(2.1)where we apply our derived functors to Mackey functors termwise. Thinking co-homologically, for any G-spectra X and kG, there are natural short exact seqences0 �! LI1((k�+1G (X)) �! ((kG)Î)�G(X) �! LI0(k�G(X)) �! 0:(2.2)As a matter of algebra, the LIi admit the following descriptions, which closelyparallels the algebra we summarized when we discussed completions at p in IIx4.Abbreviate A = A(G) and consider an A-module M . Then we have the followingnatural short exact sequences.0 �! lim1TorA1 (A=Ir;M) �! LI0(M) �!M Î �! 0:(2.3) 0 �! lim1TorA2 (A=Ir;M) �! LI1(M) �! limTorA1 (A=Ir;M) �! 0:(2.4)There is interesting algebra in the passage from the topological de�nition ofcompletion to the algebraic interpretation (2.1). Brie
y, there are \local homol-ogy groups" HIi (M) analogous to Grothendieck's local cohomology groups. Ourtopological construction mimics the algebraic de�nition of the HIi (M), and, asa matter of algebra, LIi (M) �= HIi (M). This leads to alternative procedures forcalculation, but begins to take us far from the Segal conjecture. We shall returnto the relevant algebra in Chapter XXIV.The last two formulas show that, if M is �nitely generated, then LI0(M) �=M Îand LI1(M) = 0. When a G-spectrum kG is bounded below and of �nite type, inthe sense that each of its homotopy groups is �nitely generated, we can constructa model for (kG)Î and study its properties by induction up a Postnikov tower,exactly as we studied p-completion in IIx5. As there, we �nd that a map fromkG to an \I-complete spectrum" that induces I-adic completion on all homotopygroups is equivalent to the I-completion of kG. Moreover, a su�cient conditionfor a bounded below spectrum to be I-complete is that its homotopy groups are�nitely generated modules over A(G)Î .We deduce from XIX.1.1 that SG is of �nite type. Thus the I-adic completionsof its homotopy groups are bounded below and of �nite type over A(G)Î . A littlediagram chase now shows that the following theorem will imply Theorem 1.10.



2. A CALCULATIONAL REFORMULATION 265Theorem 2.5. The map " : SG �! D(EF+) induces an isomorphism��(SG)ÎF �! ��(D(EF+)):There is an immediate problem here. A priori, we do not know anything aboutthe homotopy groups ofD(EF+), which, on the face of it, need be neither boundedbelow nor of �nite type. There is a lim1 exact sequence for their calculation interms of the duals of the skeleta of EF+. To prove that the lim1 terms vanish, andto make sure that we are always working with �nitely generated A(G)-modules, wework with pro-groups and only pass to actual inverse limits at the very end. Wehave already said nearly all that we need to say about this in XIVx5. Recall that,for any Abelian group valued functor h on G-CW complexes or spectra, we de�nethe associated pro-group valued functor h by letting h(X) be the inverse systemfh(X�)g, where X� runs over the �nite subcomplexes of X. Our functors takevalues in �nitely generated A(G)-modules. For an ideal I in A(G) and such a pro-module M = fM�g, MÎ is the inverse system fM�=IrM�g. For a multiplicativesubset S, S�1M = fS�1M�g.We de�ne pro-Mackey functors just as we de�ned Mackey functors, but changingthe target category from groups to pro-groups. Now Theorem 2.5 will follow fromits pro-Mackey functor version.Theorem 2.6. The map " : SG �! D(EF+) induces an isomorphism��(SG)ÎF �! ��(D(EF+)):The point is that the pro-groups on the left certainly satisfy the Mittag-Le�ercondition guaranteeing the vanishing of lim1 terms, hence the lim1 terms for thecalculation of ��(D(EF+)) vanish and we obtain the isomorphism of Theorem 2.5on passage to limits. We now go back to something we omitted: making senseof the induced map in Theorem 2.6. For a �nite G-CW complex X such thatXH is empty for H 62 F , we �nd by induction on the number of cells and thevery de�nition of IF that ��(D(X+)) is annihilated by some power of IF . Thisimplies that the canonical pro-map��(D(X+)) �! ��(D(X+))ÎFis an isomorphism. Applying this to the �nite subcomplexes of EF , we see thatthe right side in Theorem 2.6 is IF -adically complete. Thus the displayed mapmakes sense.



266 XX. THE SEGAL CONJECTUREJ. F. Adams, J.-P. Haeberly, S. Jackowski, and J. P. May. A generalization of the Segal conjec-ture. Topology 27(1988), 7-21.J. P. C. Greenlees and J. P. May. Derived functors of I-adic completion and local homology. J.Algebra 149(1992), 438-453.3. A generalization and the reduction to p-groupsNow we change our point of view once more, thinking about individual pro-homotopy groups rather than Mackey functors. Using a little algebra to checkthat the ideal in A(H) generated by the image of IF under restriction has thesame radical as I(F jH), we see that the Hth term of the map in Theorem 2.6 is��H(S0)Î (F jH) �! ��H(E(F jH)+):We may as well proceed by induction on the order of G, so that we may assumethis map to be an isomorphism for all proper subgroups. In any case, Theorem2.6 can be restated as follows.Theorem 3.1. The map EF �! � induces an isomorphism��G(S0)ÎF �! ��G(EF+):Now EF �! � is obviously an example of an F -equivalence, that is, a mapthat induces an equivalence on H-�xed points for H 2 F . We are really provingan invariance theorem:An F -equivalence f : X �! Y induces an isomorphism ��G(f)ÎF :We can place this in a more general framework. Given a set H of subgroupsof G, closed under conjugacy, we say that a cohomology theory is H -invariantif it carries H -equivalences to isomorphisms. We say that a G-space X is H -contractible if XH is contractible for H 2 H . By an immediate co�ber sequenceargument, a theory is H -invariant if and only if it vanishes on H -contractiblespaces. It is not di�cult to show that, for any cohomology theory h�, there is aunique minimal class H such that h� is H -invariant: determination of this classgives a best possible invariance theorem for h�. Given an ideal I and a collectionH , we can try to obtain such a theorem for the theory ��G(�)Î .Answers to such questions in the context of localizations rather than completionshave a long history and demonstrated value, but there one usually assumes thatH is closed under passage to larger rather than smaller subgroups. For such a\cofamily" H , we have the H -�xed point subcomplex XH = fxjGx 2 H g;



3. A GENERALIZATION AND THE REDUCTION TO p-GROUPS 267the inclusion i : XH �! X is an H -equivalence. A cohomology theory is H -invariant if and only it carries all such inclusions i to isomorphisms.It seems eminently reasonable to ask about localizations and completions to-gether. We can now state the following generalization of Theorem 3.1. De�ne thesupport of a prime ideal P in A(G) to be the conjugacy class (L) such that P is inthe image of Spec(A(L)) but is not in the image of Spec(A(K)) for any subgroupK of L. We know what the supports are: (H) for q(H; 0) and (Hp) for q(H; p).Theorem 3.2. For any multiplicative subset S and ideal I, the cohomologytheory S�1��G(�)Î is H -invariant, whereH = [fSupp(P )jP \ S = ; and P � Ig:With S = ; and I = IF , Theorem 3.1 follows once one checks that the resultingH is contained in F . In fact it equals F since the primes that contain IF areall of the q(H; p) with H 2 F , and this allows p = 0. It looks as if we have madeour work harder with this generalization but in fact, precisely because we haveintroduced localization, which we have already studied in some detail, the generaltheorem quickly reduces to a very special case.In fact, by XIX.4.2, it is enough to show that (SP )�1��G(X)P̂ = 0 if XL iscontractible for L 2 Supp(P ), where SP = A � P . By XVII.5.5, there is anidempotent eGL 2 A(G)p such that (SP )�1A(G) = eGLA(G)p. Remembering thatthe �-�xed point functor satis�es �HSG = SH , we see that, for any �nite G-CWcomplex X, XVII.6.4 specializes to give the chain of isomorphismseGL�nG(X)p �! eNLL �nNL(X)p �! eWL1 �nWL(XL)p �! �nV L(XL)invpwhere V L is a p-Sylow subgroup of WL. The transfer argument used to prove thelast isomorphism gives further that �nV L(XL)invp is naturally a direct summand in�nV L(XL)p. Passing to pro-modules, we conclude that (SP )�1��G(X)P̂ is a directsummand in ��V L(XL)p̂. Therefore Theorem 3.2 is implied by the following specialcase.Theorem 3.3. The theory ��G(�)p̂ is e-invariant for any �nite p-group G. Thatis, it vanishes on nonequivariantly contractible G-spaces.This is Carlsson's theorem, and we will discuss its proof in the next section. Inthe case of the augmentation ideal there is a shortcut to the reduction to p-groupsand p-adic completion: it is immediate from XIX.4.5 and XIX.4.6. Let us say a



268 XX. THE SEGAL CONJECTUREword about the nonequivariant interpretation of the Segal conjecture in this case.Since SG is a split G-spectrum, we can conclude that��G(S0)Î �= ��G(EG+) �= ��(BG+):(3.4)Of course, the cohomotopy groups on the left lie in non-positive degrees and arejust the homotopy groups reindexed. By XIX.1.1,�G� (S0) =X(H)��(BWH+):(3.5)The left side is a ring, but virtually nothing seems to be known about the mul-tiplicative structure on the right. Nor is much known about the A(G)-modulestructure. Of course, the last problem disappears upon completion in the case ofp-groups, by XIX.4.6.J. F. Adams, J.-P. Haeberly, S. Jackowski, and J. P. May. A generalization of the Segal conjec-ture. Topology 27(1988), 7-21.4. The proof of the Segal conjecture for �nite p-groupsThere are two basic strategies. One is to use (3.5) and a nonequivariant in-terpretation of the completion map to reduce to a nonequivariant problem. Forelementary p-groups, the ideas that we discussed in the context of the Sullivanconjecture can equally well be used to prove the Segal conjecture, and Lannes hasan unpublished nonequivariant argument that handles general p-groups.The other is to use equivariant techniques, which is the method used by Carls-son. Historically, Lin �rst proved the Segal conjecture for Z=2, Gunawardena forZ=p, p odd, and Adams, Gunawardena, and Miller for general elementary Abelianp-groups, all using nonequivariant techniques and the Adams spectral sequence.Carlsson's theorem reduced the case of general �nite p-groups to the case of ele-mentary Abelian p-groups. His ideas also led to a substantial simpli�cation of theproof in the elementary Abelian case, as was �rst observed by Caruso, Priddy, andmyself. For this reason, the full original proof of Adams, Gunawardena, and Millerwas never published. Since I have nothing to add to the exposition that Caruso,Priddy, and I gave, which includes complete details of a variant of Carlsson's proofof the reduction to elementary Abelian p-groups, I will give an outline that maygain clarity by the subtraction of most of the technical details.



4. THE PROOF OF THE SEGAL CONJECTURE FOR FINITE p-GROUPS 269We assume throughout that G is a �nite p-group. We begin with a generalG-spectrum kG, and we will work with the bitheorykqG(X;Y ) = kG�q(X;Y )on spaces X and Y . It can be de�ned as the cohomology of X with coe�cients inthe spectrum Y ^ kG. The following easy �rst reduction of Carlsson is a key step.It holds for both represented and pro-group valued theories. LetP be the familyof proper subgroups of G.Lemma 4.1. Assume that k�H is e-invariant for all H 2 P. Then k�G is e-invariant if and only if k�G( ~EP) = 0.Proof. Let X be e-contractible. We must show that k�G(X) = 0 if k�G( ~EP) =0. Write Y = ~EP. Then Y G = S0 and Y is H-contractible for H 2 P. LetZ = Y=S0. We have the co�ber sequenceX �! X ^ Y �! X ^ Z:We claim that k�G(W ^Y ) = 0 for any G-CW complexW and that k�G(X ^Z) = 0for any G-CW complex Z such that ZG = �. The �rst claim holds by hypothesison orbit types G=G and holds trivially on orbit types G=H with H 2 P. Thesecond claim holds on orbits by the induction hypothesis. The general cases ofboth claims follow.The co�ber sequence EG+ �! S0 �! ~EG gives rise to a long exact sequence�! kqG(Y ;EG+) �! kqG(Y ) �! kqG(Y ; ~EG) ��! kq+1G (Y ;EG+) �! :(4.2)The ~EG terms carry the singular part of the problem; the EG+ terms carry thefree part.Let us agree once and for all that all of our theories are to be understood aspro-group valued and completed at p, since that is the form of the theorem weneed to prove. We must show that ��G(Y ) = 0. However, studying more generaltheories allows a punch line in the elementary Abelian case: there the map � in(4.2) is proven to be an isomorphism by comparison with a theory for which theanalogue of the Segal conjecture holds trivially.For a normal subgroup K of H with quotient group J write k�H=K = k�J for thetheory represented by �K(kH), where kH denotes kG regarded as an H-spectrum.We pointed out the ambiguity of the notation k�J at the end of XVIx6, but wealso observed there that the notation ��J is correct and unambiguous. As we shall



270 XX. THE SEGAL CONJECTUREexplain in the next section, we can analyze the singular terms in (4.2) in terms ofthese subquotient theories.Theorem 4.3. Assume that k�J is e-invariant for every proper subquotient J ofG and let Y = ~EP.(i) If G is not elementary Abelian, then k�G(Y ; ~EG) = 0.(ii) If G = (Z=p)r, then k�G(Y ; ~EG) is the direct sum of pr(r�1)=2 copies of�r�1k�G=G(S0).Warning: the nonequivariant theory k�G=G is usually quite di�erent from theunderlying nonequivariant theory k� = k�e .As we shall explain in Section 6, we can use Adams spectral sequences to analyzethe free terms in (4.2).Theorem 4.4. Assume that kG is split and k is bounded below and let Y =~EP.(i) If G is not elementary Abelian, then k�G(Y ;EG+) = 0.(ii) If G = (Z=p)r and H�(k) is �nite dimensional, then k�G(Y ;EG+) is thedirect sum of pr(r�1)=2 copies of �rk�(S0).The hypothesis that H�(k) be �nite dimensional in (ii) is extremely restrictive,although it is satis�ed trivially when k is the sphere spectrum. The hypothesisis actually necessary. We shall see in Section 7 that the theories ��G(�;BG�+) aree-invariant for �nite groups �. They satisfy all other hypotheses of our theorems,but here k� and k�G=G are di�erent. In such cases, the calculation of k�G(Y ;EG+)falls out from the e-invariance, which must be proven di�erently, and (4.2).Carlsson's reduction is now the case �G of the following immediate inductiveconsequence of the �rst parts of Theorems 4.3 and 4.4.Theorem 4.5. Suppose that G is not elementary Abelian. Assume(i) k�J is e-invariant for all elementary Abelian subquotients J ;(ii) kJ is split and kK=K is bounded below for all non-elementary Abelian sub-quotients J = H=K.Then k�J is e-invariant for all subquotients J , including J = G.Returning to cohomotopy and the proof of the Segal conjecture, it only remainsto prove that the map � in (4.2) is an isomorphism when G = (Z=p)r. We assumethat the result has been proven for 1 � q < r. Comparing Theorems 4.3 and 4.4,we see that the map � in (4.2) is a map between free ��-modules on the same



5. APPROXIMATIONS OF SINGULAR SUBSPACES OF G-SPACES 271number of generators. It su�ces to show that � is a bijection on generators, whichmeans that it is an isomorphism in degree r � 1. Here � is a map between freemodules on the same number of generators over the p-adic integers Ẑp , so that itwill be an isomorphism if it is a monomorphism when reduced mod p.To prove this, let kG = F (EG+;HFp), where HFp is the Eilenberg-MacLane G-spectrum associated to the \constant Mackey functor" at Fp that we obtain fromIX.4.3. This theory, like any other theory represented by a function spectrumF (EG+; �), is e-invariant. Since �G0 (HFp) = Fp, we have a unit map SG �! HFp,and we compose with " : HFp �! kG to obtain � : SG �! kG. There is aninduced map S = SG=G �! kG=G, and a little calculation shows that it sends theunit in �0(S) to an element that is non-zero mod p. We can also check that thesubquotient theories k�J are all e-invariant. By the naturality of (4.2), we have thecommutative diagram �r�1G (Y ; ~EG) / /����� �rG(Y ;EG+)�� ��kr�1G (Y ; ~EG) //� krG(Y ;EG+):The bottom map � is an isomorphism since k�G(Y ) = 0. The left map �� isthe sum of pr(r�1)=2 copies of �r�1��, �� : �0(S) �! �0(kG=G), and is therefore amonomorphism mod p. Thus the top map � is a monomorphism mod p, and thisconcludes the proof.J. F. Adams, J. H. Gunawardena, and H. Miller. The Segal conjecture for elementary Abelianp-groups-I. Topology 24(1985), 435-460.G. Carlsson. Equivariant stable homotopy and Segal's Burnside ring conjecture. Annals Math.120(1984), 189-224.J. Caruso, J. P. May, and S. B. Priddy. The Segal conjecture for elementary Abelian p-groups-II.Topology 26(1987), 413-433.5. Approximations of singular subspaces of G-spacesLet SX denote the singular set of a G-space X, namely the set of points withnon-trivial isotropy group. The starting point of the proof of Theorem 4.3 is thespace level observation that the inclusionsSX �! X and S0 �! ~EG



272 XX. THE SEGAL CONJECTUREinduce bijections[X; ~EG ^X 0]G �! [SX; ~EG ^X 0]G  � [SX;X 0]G:We may represent theories on �nite G-CW complexes via colimits of space levelhomotopy classes of maps. The precise formula is not so important. What isimportant is that, when calculating k�G(X; ~EG), we get a colimit of terms of thegeneral form [SW;Z]G. We can replace S here by other functors T on spaces thatsatisfy appropriate axioms and still get a cohomology theory inX, called k�G(X;T ).Such functors are called \S-functors". Natural transformations T �! T 0 inducemaps of theories, contravariantly. We have a notion of a co�bration of S-functors,and co�brations give rise to long exact sequences. In sum, we have something likea cohomology theory on S-functors T .We construct a �ltered S-functor A that approximates the singular functor S.Let A = A (G) be the partially ordered set of non-trivial elementary Abeliansubgroups of G, thought of as a G-category with a map A �! B when B � A,withG acting by conjugation. IfG 6= e, the classifying spaceBA isG-contractible.In fact, if C is a central subgroup of order p, then the diagram A � AC �! Cdisplays the values on an object A of three G-equivariant functors on A togetherwith two equivariant natural transformations between them; these induce a G-homotopy from the identity to the constant G-map at the vertex C.We can parametrize A by points of SX. Precisely, we construct a topologicalG-category A [X] whose objects are pairs (A;x) such that x 2 XA; there is a mor-phism (A;x) �! (B; y) if B � A and y = x, and G acts by g(A;x) = (gAg�1; gx).Projection on theX-coordinate gives a functorA [X] �! SX, where SX is a cate-gory in the trivial way, and BA [X] �! BSX = SX is a G-homotopy equivalence.The subspace BA [�] of BA [X] is G-contractible. Let AX = BA [X]=BA [�]. Westill have a G-homotopy equivalence AX �! SX, but now A is an S-functor andour equivalences give a map of S-functors. For any space Y , we havek�G(Y ; ~EG) �= k�G(Y ;S) �= k�G(Y ;A):The functor A arises from geometric realizations of simplicial spaces and carriesthe simplicial �ltration FqA; here F�1A = � and Fr�1A = A, where r = rank (G).Inspection of de�nitions shows that the successive subquotients satisfy(FqA=Fq�1A)(X) = _�q(G+ ^H(!) XA(!)):



6. AN INVERSE LIMIT OF ADAMS SPECTRAL SEQUENCES 273Here ! runs over the G-conjugacy classes of strictly ascending chains (A0; � � � ; Aq)of non-trivial elementary Abelian subgroups of G, H(!) is the isotropy group of !,namely fgjgAig�1 = Ai; 0 � i � qg, and A(!) = Aq. For each normal subgroupK of a subgroup H of G, there is an S-functor C(K;H) whose value on X isG+ ^H XK , and, as S-functors,(FqA=Fq�1A) = _�qC(A(!);H(!)):(5.1)By direct inspection of de�nitions, we �nd that, for any space Y ,k�G(Y ;C(K;H)) �= k�H=K(Y K):(5.2)This is why the �-�xed point functors enter into the picture.To prove Theorem 4.3, we restrict attention to Y = ~EP. If G is not elementaryAbelian, then Y K is contractible and the subquotients H=K are proper for allpairs (K;H) that appear in (5.1). If G = (Z=p)r, and q � r � 2, this is still true.All these terms vanish by hypothesis. If G = (Z=p)r, we are left with the caseq = r � 1. Here A(!) = H(!) = G for all chains !, there are p(p� 1)=2 chains !,and Y G = S0. Using (5.2), Theorem 4.3 follows.G. Carlsson. Equivariant stable homotopy and Segal's Burnside ring conjecture. Annals Math.120(1984), 189-224.J. Caruso, J. P. May, and S. B. Priddy. The Segal conjecture for elementary Abelian p-groups-II.Topology 26(1987), 413-433.6. An inverse limit of Adams spectral sequencesWe turn to the proof of Theorem 4.4. Its hypothesis that kG is split allowsus to reduce the problem to a nonequivariant one, and the hypothesis that theunderlying nonequivariant spectrum k is bounded below ensures the convergenceof the relevant Adams spectral sequences. We prove Theorem 4.4 by use of aparticularly convenient model Y for ~EP , namely the union of the G-spheresSnV , where V is the reduced regular complex representation of G. It is a modelsince V G = f0g and V H 6= 0 for H 2P.In general, for any representation V , there is a Thom spectrum BG�V . Here wemay think of �V as the negative of the representation bundle EG�G V �! BG,regarded as a map �V : BG �! BO �Z. If V is suitably oriented, for exampleif V is complex, there is a Thom isomorphism showing that H�(BG�V ) is a freeH�(BG)-module on one generator �v of degree �n, where n is the (real) dimensionof V . We take cohomology with mod p coe�cients. For V � W , there is amap f : BG�W �! BG�V such that f� : H�(BG�V ) �! H�(BG�W ) carries



274 XX. THE SEGAL CONJECTURE�v to �(W � V )�w. Here �(V ) 2 H�(BG) is the Euler class of V , which is theEuler class of its representation bundle. For a split G-spectrum kG we have anisomorphism kG� (SV ;EG+) �= k�(BG�V ):For V � W , the map f� : k�(BG�W ) �! k�(BG�V ) corresponds under theisomorphisms to the map induced by e : SV �! SW . (The paper of mine cited atthe end gives details on all of this.) With our model Y for ~EP, we now see thatk�qG (Y ;EG+) = kGq (Y ;EG+) �= limkq(BG�nV ):Remember that we are working p-adically; we complete spectra at p withoutchange of notation. The inverse limitEr of Adams spectral sequences of an inversesequence fXng of bounded below spectra of �nite type over the p-adic integersZpconverges from E2 = ExtA(colimH�(Xn);Fp)to lim��(Xn). WithXn = k^BG�nV , this gives an inverse limit of Adams spectralsequences that converges fromE2 = ExtA(H�(k)
 colimH�(BG�nV );Fp)to k�G(Y ;EG+). The colimit is taken with respect to the maps�(V ) : H�(BG�nV ) �! H�(BG�(n+1)V ):Since V H 6= f0g, �(V ) restricts to zero in H�(BH) for all H 2P. A theorem ofQuillen implies that �(V ) must be nilpotent if G is not elementary Abelian, andthis implies that E2 = 0. This proves part (i) of Theorem 4.4.Now assume that G = (Z=p)r. Let L = �(V ) 2 H2(pr�1)(BG). ThencolimH�(BG�nV ) = H�(BG)[L�1]:It is easy to write L down explicitly, and the heart of part (ii) is the followingpurely algebraic calculation of Adams, Gunawardena, and Miller, which gives theE2 term of our spectral sequence.Theorem 6.1. Let St = H�(BG)[L�1] 
A Fp, and regard St as a trivial A-module. Then St is concentrated in degree �r and has dimension pr(r�1)=2. Thequotient homomorphism " : H�(BG)[L�1] �! St induces an isomorphismExtA(K 
 St;Fp) �! ExtA(K 
H�(BG)[L�1];Fp)for any �nite dimensional A-module K.



7. FURTHER GENERALIZATIONS; MAPS BETWEEN CLASSIFYING SPACES 275The notation \St" stands for Steinberg: GL(r;Fp) acts naturally on everythingin sight, and St is the classical Steinberg representation.Let W be the wedge of pr(r�1)=2 copies of S�r. It follows by convergence thatthere is a compatible system of maps W �! BG�nV that induces an isomorphismk�(W ) = ��(k ^W ) �! lim��(k ^BG�nV ) �= k��G (Y ;EG+):This gives Theorem 4.4(ii). It also implies the following remarkable corollary,which has had many applications.Corollary 6.2. The wedge of spheres W is equivalent to the homotopy limit,BG�1V , of the Thom spectra BG�nV . In particular, with G = Z=2, S�1 isequivalent to the spectrum holimRP1�i .J. F. Adams, J. H. Gunawardena, and H. Miller. The Segal conjecture for elementary Abelianp-groups-I. Topology 24(1985), 435-460.J. Caruso, J. P. May, and S. B. Priddy. The Segal conjecture for elementary Abelian p-groups-II.Topology 26(1987), 413-433.J. P. May. Equivariant constructions of nonequivariant spectra. Algebraic Topology and Alge-braic K-theory. Princeton Univ. Press. 1987, 345-364.D. Quillen and B. Venkov. Cohomology of �nite groups and elementary Abelian subgroups.Topology 11(1972), 317-318.7. Further generalizations; maps between classifying spacesEven before the Segal conjecture was proven, Lewis, McClure, and I showedthat it would have the following implication. Let G and � be �nite groups andlet A(G;�) be the Grothendieck group of �-free �nite (G��)-sets. Observe thatA(G;�) is an A(G)-module and let I be the augmentation ideal of A(G).Theorem 7.1. There is a canonical isomorphism�Î : A(G;�)Î �! [�1BG+;�1B�+]:The map � : A(G;�) �! [�1BG+;�1B�+] can be described explicitly interms of transfer maps and classifying maps (and the paper of mine cited at theend gives more about the relationship between the algebra on the left and thetopology on the right). A �-free (G ��)-set T determines a principal �-bundleEG �G T �! EG �G T=�;



276 XX. THE SEGAL CONJECTUREwhich is classi�ed by a map �(T ) : EG�G T=� �! B�. It also determines a (notnecessarily connected) �nite coverEG�G T=� �! EG �G f�g = BG;which has a stable transfer map � (T ) : BG+ �! (EG �G T=�)+. Both � and �are additive in T , and � is the unique homomorphism such that�(T ) = �(T ) � � (T ):In principle, this reduces to pure algebra the problem of computing stable mapsbetween the classifying spaces of �nite groups. Many authors have studied therelevant algebra | Nishida, Martino and Priddy, Harris and Kuhn, Benson andFeshback, and Webb, among others | and have obtained a rather good under-standing of such maps. We shall not go into these calculations. Rather, we shallplace the result in a larger context and describe some substantial generalizations.Recall that we interpreted the consequences of the Sullivan conjecture for mapsbetween classifying spaces as statements about equivariant classifying spaces. Anal-ogously, Theorem 7.1 is a consequence of a result about the suspension G-spectraof equivariant classifying spaces.Theorem 7.2. The cohomology theory ��G(�; �1(BG�)+)Î is e-invariant. There-fore the map EG �! � induces an isomorphism��G(S0; �1(BG�)+)Î �! ��G(EG+; �1(BG�)+) �= ��(BG+; �1B�+):The isomorphism on the right comes from XVI.2.4. In degree zero, this isTheorem 7.1. The description of the map � of that result is obtained by describingthe map of Theorem 7.2 in nonequivariant terms, using the splitting theorem for(BG�)G of VII.2.7, the splitting theorem for the homotopy groups of suspensionspectra of XIX.1.2, and some diagram chasing.We next point out a related consequence of the generalization of the Segalconjecture to families. In it, we let � be a normal subgroup of a �nite group �.Theorem 7.3. The projection E(�; �) �! � induces an isomorphismA(�)ÎF(�;�) �! �0�(E(�; �)+) �= �0G(B(�; �)+):This is just the degree zero part of Theorem 2.5 for the family F (�; �) in thegroup �; the last isomorphism is a consequence of XVI.5.4. With the Burnsidering replaced by the representation ring, a precisely analogous result holds inK-theory, but in that context the result generalizes to an arbitrary extension of



7. FURTHER GENERALIZATIONS; MAPS BETWEEN CLASSIFYING SPACES 277compact Lie groups. Of course, these may be viewed as calculations of equivariantcharacteristic classes. It is natural to ask if Theorems 7.1 and 7.3 admit a commongeneralization or, better, if the completion theorems of which they are special casesadmit a common generalization.A result along these lines was proven by Snaith, Zelewski, and myself. Here, forthe �rst time in our discussion, we let compact Lie groups enter into the picture.We consider �nite groups G and J and a compact Lie group �. Let A(G � J;�)be the Grothendieck group of principal (G�J;�)-bundles over �nite (G�J)-sets.This is an A(G � J)-module, and we can complete it at the ideal IFG(J). As inVIIx1, FG(J) is the family of subgroups H of G � J such that H \ J = e.Theorem 7.4. There is a canonical isomorphism�ÎFG(J) : A(G� J;�)ÎFG(J) �! [�1BGJ+;�1BG�+]G:Again, the map � : A(G�J;�) �! [�1BGJ+;�1BG�+]G is given on principal(G � J;�)-bundles as composites of equivariant classifying maps and equivarianttransfer maps. Although the derivation is not quite immediate, this result is aconsequence of an invariance result exactly analogous to the version of the Segalconjecture given in Theorem 3.2.Theorem 7.5. Let � be a normal subgroup of a compact Lie group � with�nite quotient group G. Let S be a multiplicatively closed subset of A(G) andlet I be an ideal in A(G). Then the cohomology theory S�1��G(�;B(�; �)+)Î isH -invariant, whereH = [fSupp(P )jP \ S = ; and P � Ig:The statement is identical with that of Theorem 3.2, except that we have substi-tuted B(�; �)+ for S0 as the second variable of our bitheory. We could generalizea bit further by substituting E(�; �)+^�X for any �nite �-CW complexX. Whatother G-spaces can be substituted? The elementary p-group case of the proof of theSegal conjecture makes it clear that one cannot substitute an arbitrary G-space.In fact, very little more than what we have already stated is known.Theorem 7.5 specializes to give the analog of Theorem 3.1.Theorem 7.6. Let F be a family in G, where G = �=�. The map EF �! �induces an isomorphism��G(S0;B(�; �)+)ÎF �! ��G(EF+; �1B(�; �)+):



278 XX. THE SEGAL CONJECTUREWe can restate this in Mackey functor form, as in Theorem 2.5, and then deducea conceptual formulation generalizing Theorem 1.10.Theorem 7.7. For every family F in G, the map�� : F (K(IF );�1B(�; �)+) �! F (EF+;�1B(�; �)+)is an equivalence of G-spectra.This extends the calculational consequences to the RO(G)-graded representedtheories. Exactly as in Sections 1{3, all of these theorems reduce to the followingspecial case.Theorem 7.8. Let � be a normal subgroup of a compact Lie group � suchthat the quotient group G is a �nite p-group. Then the theory ��G(�;B(�; �)+)p̂is e-invariant.The proof is a bootstrap argument starting from the Segal conjecture. When� is �nite, the result can be deduced from the generalized splitting theorem ofXIX.2.1 and the case of the Segal conjecture for � that deals with the family ofsubgroups of � that are contained in �. When � is a �nite extension of a torus,the result is then deduced by approximating � by an expanding sequence of �nitegroups; this part of the argument entails rather rather elaborate duality and colimitarguments, together with several uses of the generalized Adams isomorphismsXVI.5.4. Finally, the general case is deduced by a transfer argument.As is discussed in my paper with Snaith and Zelewski, and more extensively inthe survey of Lee and Minami, these results connect up with and expands what isknown about the Segal conjecture for compact Lie groups.D. J. Benson and M. Feshbach. Stable splittings of classifying spaces of �nite groups. Topology31(1992), 157-176.J. Harris and N. Kuhn. Stable decompositions of classifying spaces of �nite Abelian p-groups.Math. Proc. Camb. Phil. Soc. 103(1988), 427-449.C.-N. Lee and N. Minami. Segal's Burnside ring conjecture for compact Lie groups. in Algebraictopology and its applications. MSRI Publications # 27. Springer-Verlag. 1994, 133-161.L. G. Lewis, J. P. May, and J. E. McClure. Classifying G-spaces and the Segal conjecture.Canadian Math. Soc. Conf. Proc Vol. 2, Part 2, 1982, 165-179.J. Martino and Stewart Priddy. The complete stable splitting for the classifying space of a �nitegroup. Topology 31(1992), 143-156.J. P. May. Stable maps between classifying spaces. Cont. Math. Vol. 37, 1985, 121-129.J. P. May, V. P. Snaith, and P. Zelewski. A further generalization of the Segal conjecture. Quart.J. Math. Oxford (2), 40(1989), 457-473G. Nishida. Stable homotopy type of classifying spaces of �nite groups. Algebraic and Topolog-ical Theories | to the memory of T. Miyata (1985), 391-404.



CHAPTER XXIGeneralized Tate cohomologyby J. P. C. Greenlees and J. P. MayIn this chapter, we will describe some joint work on the generalization of theTate cohomology of a �nite group G with coe�cients in a G-module V to the Tatecohomology of a compact Lie group G with coe�cients in a G-spectrum kG. Therehas been a great deal of more recent work in this area, with many calculations andapplications. We shall brie
y indicate some of the main directions.J. P. C. Greenlees. Representing Tate cohomology of G-spaces. Proc. Edinburgh Math. Soc.30(1987), 435-443.J. P. C. Greenlees and J. P. May. Generalized Tate cohomology. Memoirs Amer. Math. Soc.No 543. 1995. 1. De�nitions and basic propertiesTate cohomology has long played a prominent role in �nite group theory andits applications. For a �nite group G and a G-module V , the Tate cohomologyĤ�G(V ) is obtained as follows. One starts with a free resolution� � � �! P1 �! P0 �!Z�! 0of Zby �nitely generated free Z[G]-modules, dualizes it to obtain a resolution0 �!Z�! P �0 �! P �1 �! � � � ;renames P �i = P�i�1, and splices the two sequences together to obtain a Z-gradedexact complex P of �nitely generated free Z[G]-modules with a factorizationP0 �! Z�! P�1 of d0. The complex P is called a \complete resolution of Z",and Ĥ�G(V ) is de�ned to be the cohomology of the cochain complex HomG(P; V ).There results a \norm exact sequence" that relates Ĥ�G(V ), HG� (V ), and H�G(V ).279



280 XXI. GENERALIZED TATE COHOMOLOGYIn connection with Smith theory, Swan generalized this algebraic theory to acohomology theory Ĥ�G(X;V ) on G-spaces X, using Hom(P 
 C�(X); V ). (Swantook X to be a G-simplicial complex, but singular chains could be used.) WhenG = S1 or G = S3 and X is a CW-complex with a cellular action by G, there isa closely analogous theory that is obtained by replacing P by Z[u; u�1], where uhas degree �2 or �4. Here Hom(P 
 C�(X); V ) has di�erentiald(p 
 x) = p 
 d(x) + pu
 i � x;where i 2 C1(S1) or i 2 C3(S3) is the fundamental class. For S1, this is periodiccyclic cohomology theory.We shall give a very simple de�nition of a common generalization of these vari-ants of Tate theory. In fact, as part of a general \norm co�bration sequence", weshall associate a Tate G-spectrum t(kG) to any G-spectrum kG, where G is anycompact Lie group. The construction is closely related to the \stable homotopylimit problem" and to nonequivariant stable homotopy theory.We have the co�ber sequenceEG+ �! S0 �! ~EG;(1.1)and the projection EG+ �! S0 induces the canonical map of G-spectra" : kG = F (S0; kG) �! F (EG+; kG):(1.2)Taking the smash product of the co�bering (1.1) with the map (1.2), we obtainthe following map of co�berings of G-spectra:kG ^ EG+ //��"^id kG //�� " kG ^ ~EG�� "^idF (EG+; kG) ^ EG+ // F (EG+; kG) // F (EG+; kG) ^ ~EG:(1.3)We have seen most of the ingredients of this diagram in our discussion of the Segalconjecture. We introduce abbreviated notations for these spectra. De�nef(kG) = kG ^ EG+:(1.4)We call f(kG) the free G-spectrum associated to kG. It represents the appropri-ate generalized version of the Borel homology theory H�(EG�G X). Precisely, if



1. DEFINITIONS AND BASIC PROPERTIES 281kG is split with underlying nonequivariant spectrum k, then, by XVI.2.4,f(kG)�(X) �= k�(EG+ ^G �Ad(G)X):(1.5)We refer to the homology theories represented by G-spectra of the form f(kG) asBorel homology theories. We refer to the cohomology theories represented by thef(kG) simply as f -cohomology theories. De�nef 0(kG) = F (EG+; kG) ^ EG+:(1.6)It is clear that the map "^ Id : f(kG) �! f 0(kG) is always an equivalence, so thatthe G-spectra f(kG) and f 0(kG) can be used interchangeably. We usually drop thenotation f 0, preferring to just use f . De�nef?(kG) = kG ^ ~EG:(1.7)We call f?(kG) the singular G-spectrum associated to kG.De�ne c(kG) = F (EG+; kG):(1.8)We call c(kG) the geometric completion of kG. The problem of determining thebehavior of " : kG �! c(kG) on G-�xed point spectra is the \stable homotopy limitproblem". We have already discussed this problem in several cases, and we haveseen that it is best viewed as the equivariant problem of comparing the geometriccompletion c(kG) with the algebraic completion (kG)Î of kG at the augmentationideal of the Burnside ring or of some other ring more closely related to kG. Asone would expect, c(kG) represents the appropriate generalized version of Borelcohomology H�(EG�GX). Precisely, if kG is a split G-spectrum with underlyingnonequivariant spectrum k, then, by XVI.2.4,c(kG)�(X) �= k�(EG+ ^G X):(1.9)We therefore refer to the cohomology theories represented by G-spectra c(kG) asBorel cohomology theories. We refer to the homology theories represented by thec(kG) as c-homology theories.Finally, de�ne t(kG) = F (EG+; kG) ^ ~EG = f?c(kG):(1.10)We call t(kG) the Tate G-spectrum associated to kG. It is the singular part of thegeometric completion of kG. Our primary focus will be on the theories representedby the t(kG). These are our generalized Tate homology and cohomology theories.



282 XXI. GENERALIZED TATE COHOMOLOGYWith this cast of characters, and with the abbreviation of "^id to ", the diagram(1.3) can be rewritten in the formf(kG) //��" ' kG //�� " f?(kG)�� "f 0(kG) // c(kG) // t(kG):(1.11)The bottom row is the promised \norm co�bration sequence". The theories rep-resented by the spectra on this row are all e-invariant.The de�nition implies that if X is a free G-spectrum, thent(kG)�(X) = 0 and t(kG)�(X) = 0:Similarly, if X is a nonequivariantly contractible G-spectrum, thenc(kG)�(X) = 0 and f(kG)�(X) = 0:By de�nition, Tate homology is a special case of c-homology,t(kG)n(X) = c(kG)n( ~EG ^X):(1.12)The two vanishing statements imply that Tate cohomology is a special case off -cohomology, t(kG)n(X) �= f(kG)n+1( ~EG ^X):(1.13)In fact, on the spectrum level, the vanishing statements imply the remarkableequivalencet(kG) � F (EG+; kG) ^ ~EG ' F ( ~EG;�EG+ ^ kG) � F ( ~EG;�f(kG)):(1.14)It is a consequence of the de�nition that t(kG) is a ring G-spectrum if kG is aring G-spectrum, and then t(kG)G is a ring spectrum.Much of the force of our de�nitional framework comes from the fact that (1.11)is a diagram of genuine and conveniently explicitG-spectra indexed on representa-tions, so that all of theZ-graded cohomology theories in sight are RO(G)-gradable.The RO(G)-grading is essential to the proofs of many of the results discussed be-low. Nevertheless, it is interesting to give a naive reinterpretation of the �xedpoint co�bration sequence associated to the norm sequence.With our de�nitions, the Tate homology of X ist(kG)�(X) = ��((t(kG) ^X)G):



2. ORDINARY THEORIES; ATIYAH-HIRZEBRUCH SPECTRAL SEQUENCES 283Since any kG is e-equivalent to jG for a naive G-spectrum jG and Tate theory ise-invariant, we may as well assume that kG = i�jG. Provided that X is a �niteG-CW complex, the spectrum (t(kG)^X)G is then equivalent to the co�ber of anappropriate transfer map(jG ^ �Ad(G)X)hG � (jG ^ EG+ ^ �Ad(G)X)=G��(jG ^X)hG � F (EG+; jG ^X)G:A description like this was �rst written down by Adem, Cohen, and Dwyer. WhenG is �nite, X = S0, and jG is a nonequivariant spectrum k given trivial action byG, this reduces to k ^BG+ �! F (BG+; k):The interpretation of Tate theory as the third term in a long sequence whose otherterms are Borel k-homology and Borel k-cohomology is then transparent.A. Adem, R. L. Cohen, and W. G. Dwyer. Generalized Tate homology, homotopy �xed points,and the transfer. Contemporary Math. Volume 96(1989), 1-13.J. D. S. Jones. Cyclic homology and equivariant homology. Inv. Math. 87(1987), 403-423.R. G. Swan. A new method in �xed point theory. Comm. Math. Helv. 34(1960), 1-16.2. Ordinary theories; Atiyah-Hirzebruch spectral sequencesLet M be a Mackey functor and V be the �0(G)-module M(G=e). The normsequence of HM depends only on V : if M and M 0 are Mackey functors for whichM(G=e) �= M 0(G=e) as �0(G)-modules, then the norm co�bration sequences ofHM and HM 0 are equivalent. We therefore writeĤG� (X;V ) = t(HM)�(X) and Ĥ�G(X;V ) = t(HM)�(X):(2.1)For �nite groups G, this recovers the Tate-Swan cohomology groups, as the nota-tion anticipates. We sketch the proof. The simple objects to the eyes of ordinarycohomology are cells, and the calculation depends on an analogue of the skeletal�ltration of a CW complex that mimics the construction of a complete resolution.The idea is to splice the skeletal �ltration of EG+ with its Spanier-Whiteheaddual. More precisely, we de�ne an integer graded �ltration on ~EG, or rather on



284 XXI. GENERALIZED TATE COHOMOLOGYits suspension spectrum, by lettingF i ~EG = 8><>: ~EG(i) = S0 [ C(EG(i�1)+ ) for i � 1S0 for i = 0D( ~EG(�i)) for i � �1:The ith subquotient of this �ltration is a �nite wedge of spectra Si ^G+, and theE1 term of the spectral sequence that is obtained by applying ordinary nonequiv-ariant integral homology is a complete resolution of Z. Therefore, if one takes thesmash product of this �ltration with the skeletal �ltration of X and applies anequivariant cohomology theory k�G(�), one obtains the \Atiyah-Hirzebruch-Tate"spectral sequence Ep;q2 = ĤpG(X; kq) =) t(k)p+qG (X):(2.2)Here k is the underlying nonequivariant spectrum of kG, and kq = ��q(k) regardedas a G-module. To see that the target is Tate cohomology as claimed, note thatthe \cohomological" description (1.14) of the Tate spectrum givest(k)�G(X) = [ ~EG ^X; k ^ �EG+]�G:There are compensating shifts of grading in the identi�cations of the E2 terms andof the target, so that the grading works out as indicated in (2.2).When kG = HM , the spectral sequence collapses at the E2-term by the dimen-sion axiom, and this proves that t(HM)�G(X) is the Tate-Swan cohomology of X.In general, we have a whole plane spectral sequence, but it converges stronglyto t(kG)�(X) provided that there are not too many non-zero higher di�erentials.When kG is a ring spectrum, it is a spectral sequence of di�erential algebras.With a little care about the splice point and the model of EG used, we canapply part of this construction to compact Lie groups G of dimension d > 0. Inthis case, there is a \gap" in the appropriate �ltration of ~EG:F i ~EG = 8><>: ~EG(i) = S0 [ C(EG(i�1)+ ) for i � 1S0 for � d � i � 0D( ~EG(�i)) for i < �d:The gap is dictated by the fact that the Spanier-Whitehead dual of G+ is G+^S�d.In the case of Eilenberg-MacLane spectra, this gives an explicit chain levelcalculation of the coe�cient groups ĤG� (V ) � ĤG� (S0;V ) in terms of the ordinary



2. ORDINARY THEORIES; ATIYAH-HIRZEBRUCH SPECTRAL SEQUENCES 285(unreduced) homology and cohomology groups of the classifying space BG:ĤnG(V ) = t(HM)n �= 8>><>>:Hn(BG;V ) if 0 � n0 if �d � n < 0H�n�1�d(BG;V ) if n � �d� 1:(2.3)However, we would really like a chain complex for calculating the ordinary Tatecohomology of G-CW complexes X, and for groups of positive dimension it is notobvious how to make one. At present, we only have such descriptions for G = S1and G = S3. In these cases, we can exploit the obvious cell structure on G and thestandard models S(C 1) and S(H1) for EG to put a cunning G-CW structure onEG+ ^X and to derive an appropriate �ltration of ~EG^X when G acts cellularlyon X. In the case of S1, the resulting chain complex is a cellular version of Jones'complex for cyclic cohomology, and this proves that t(HZ)�S1(X) is the periodiccyclic cohomology Ĥ�S1(X), as de�ned by Jones in terms of the singular complexof X. There is a precisely analogous identi�cation in the case of S3. In general,the problem of giving ~EG^X an appropriate �ltration appears to be intractable,although a few other small groups are under investigation.Despite this di�culty, we still have spectral sequences of the form (2.2) forgeneral compact Lie groups G, where kq = ��q(k) is now regarded as a �0(G)-module. However, in the absence of a good �ltration of ~EG ^ X, we constructthe spectral sequences by using a Postnikov �ltration of kG. In this generality, theordinary Tate groups Ĥ�G(X;V ) used to describe the E2 terms are not familiar ones,and systematic techniques for their calculation do not appear in the literature. Oneapproach to their calculation is to use the skeletal �ltration of X together with(2.3) and change of groups. More systematic approaches involve the constructionof spectral sequences that converge to Ĥ�G(X;V ), and there are several sensiblecandidates. This is an area that needs further investigation, and we shall say nomore about it here.We have similar and compatible spectral sequences for Borel and f -cohomology,and in these cases too the E2-terms depend only on the graded �0(G)-module k�,as one would expect from the e-invariance of the bottom row of Diagram (1.11).This very weak dependence on kG makes the bottom row muchmore calculationallyaccessible than the top row.



286 XXI. GENERALIZED TATE COHOMOLOGY3. Cohomotopy, periodicity, and root invariantsFor �nite groups G, the Segal conjecture directly implies the determination ofthe Tate spectrum associated to the sphere spectrum SG. Indeed, we havet(SG) = F (EG+; S0) ^ ~EG ' (SG)Î ^ ~EG ' (�1 ~EG)Î :(3.1)For instance, if G is a p-group, thent(SG) ' (�1 ~EG)p̂ ;(3.2)and we may calculate from the splitting theorem XIX.1.1 that, after completion,t(SG)G� (X) = M(H)6=(1)��(EWG(H)+ ^WG(H) XH):(3.3)With X = S0, the summand for H = G is ��(S0), and it follows that, for eachG, the Atiyah-Hirzebruch-Tate spectral sequence de�nes a \root invariant" on thestable stems. Its values are cosets in the Tate cohomology group Ĥ�(G;��(S0)).Essentially, the root invariant assigns to an element � 2 ��(S0) all elements of E2of the appropriate �ltration that project to the image of � in the E1 term of thespectral sequence.These invariants have not been much investigated beyond the classical case ofG = Cp, the cyclic group of order p. In this case, our construction agrees withearlier constructions of the root invariant. Indeed, this is a consequence of theobservations that, if G = C2 and kG = i�k is the G-spectrum associated to anon-equivariant spectrum k, thent(kG)G ' holim(RP1�i ^ �k)(3.4)and, if G = Cp for an odd prime p and kG = i�k, thent(kG)G ' holim(L1�i ^ �k);(3.5)where L1�i is the lens space analog of RP1�i . Taking k = S, there results a spectralsequence that agrees with our Atiyah-Hirzebruch-Tate spectral sequence and wasused in the classical de�nition of the root invariant.Similarly, if G is the circle group and kG = i�k, thent(kG)G ' holim(C P1�i ^ �2k):(3.6)These are all special cases of a phenomenon that occurs whenever G acts freely onthe unit sphere of a representation V , and this phenomenon is the source of periodicbehavior in Tate theory. The point is that the union of the SnV is then a model



4. THE GENERALIZATION TO FAMILIES 287for ~EG, and we can use this model to evaluate the right side as a homotopy limitin the equivalence (1.14). This immediately gives (3.4){(3.6). These equivalencesallow us to apply nonequivariant calculations of Davis, Mahowald, and others ofspectra on the right sides to study equivariant theories. We will say a little moreabout this in Section 6. It also gives new insight into the nonequivariant theories.In particular, if k is a ring spectrum, then t(kG)G is a ring spectrum. Lookingnonequivariantly at the right sides, this is far from clear.D. M. Davis and M. Mahowald. The spectrum (P^bo)�1. Proc. Cambridge Phil. Soc. 96(1984)85-93.D. M. Davis, D. C. Johnson, J. Klippenstein, M. Mahowald and S. Wegmann. The spectrum(P ^BP h2i)�1. Trans. American Math. Soc. 296(1986) 95-110.4. The generalization to familiesThe theory described above is only part of the story: it admits a generalizationin which the universal free G-space EG is replaced by the universal F -space EFfor any family F of subgroups of G. The de�nitions above deal with the caseF = feg, and there is a precisely analogous sequence of de�nitions for any otherfamily. We have the co�beringEF+ �! S0 �! ~EF ;(4.1)and the projection EF+ �! S0 induces a G-map" : kG = F (S0; kG) �! F (EF+; kG):(4.2)Taking the smash product of the co�bering (4.1) with the map (4.2), we obtainthe following map of co�berings of G-spectra:kG ^ EF+ //��"^id kG //�� " kG ^ ~E�� "^idF (EF+; kG) ^ EF+ // F (EF+; kG) // F (EF+; kG) ^ ~EF :(4.3)De�ne the F -free G-spectrum associated to kG to befF (kG) = kG ^ EF+:(4.4)We refer to the homology theories represented by G-spectra fF (kG) as F -Borelhomology theories. De�nef 0F (kG) = F (EF+; kG) ^ EF+:(4.5)



288 XXI. GENERALIZED TATE COHOMOLOGYAgain, " ^ Id : fF (kG) �! f 0F (kG) is an equivalence, hence we usually use thenotation fF . De�ne the F -singular G-spectrum associated to kG to bef?F (kG) = kG ^ ~EF :(4.6)De�ne the geometric F -completion of kG to becF (kG) = F (EF+; kG):(4.7)We refer to the cohomology theories represented by G-spectra cF (kG) as F -Borel cohomology theories. The map " : kG �! cF (kG) of (4.2) is the objectof study of such results as the generalized Atiyah-Segal completion theorem andthe generalized Segal conjecture of Adams-Haeberly-Jackowski-May. As in theseresults, one version of the F -homotopy limit problem is the equivariant problemof comparing the geometric F -completion cF (kG) with the algebraic completion(kG)ÎF of kG at the ideal IF of the Burnside ring or at an analogous ideal in aring more closely related to kG. Observe that we usually do not have analogs of(1.5) and (1.9) for general families F ; the Adams isomorphism XVI.5.4 and thediscussion around it are relevant at this point.De�ne tF (kG) = F (EF+; kG) ^ ~EF = f?F cF (kG):(4.8)We call tF (kG) the F -Tate G-spectrum associated to kG. These G-spectra rep-resent F -Tate homology and cohomology theories. With this cast, and with theabbreviation of " ^ id to ", the diagram (4.3) can be rewritten in the formfF (kG) //��" ' kG //�� " f?F (kG)�� "f 0F (kG) // cF (kG) // tF (kG):(4.9)We call the bottom row the \F -norm co�bration sequence". The theories repre-sented by the spectra on this row are all F -invariant.The diagram leads to a remarkable and illuminating relationship between theTate theories and the F -homotopy limit problem. Recall that IF � A(G) is theintersection of the kernels of the restrictions A(G) �! A(H) for H 2 F .Theorem 4.10. The spectra cF (kG) are IF -complete. The spectra fF (kG)and tF (kG) are IF -complete if kG is bounded below.



4. THE GENERALIZATION TO FAMILIES 289We promised in XXx1 to relate the questions of when�� : (kG) ^IF = F (K(IF ); kG) �! F (EF+; kG) = cF (kG)and �� : kG ^ EF+ �! kG ^K(IF )are equivalences. The answer is rather surprising.Theorem 4.11. Let kG be a ring G-spectrum, where G is �nite. Then �� is anequivalence if and only if �� is an equivalence and tF (kG) is rational.The proof is due to the �rst author and will be discussed in XXIVx8. We shallturn to relevant examples in the next section.When G is �nite and kG is an Eilenberg-MacLane G-spectrum HM , theF -TateG-spectrum tF (HM) represents the generalization to homology and cohomologytheories on G-spaces and G-spectra of certain \Amitsur-Dress-Tate cohomologytheories" Ĥ�F (M) that �gure prominently in induction theory. We again obtaingeneralized Atiyah-Hirzebruch-Tate spectral sequences in the context of families.These vastly extend the web of symmetry relations relating equivariant theorywith the stable homotopy groups of spheres. In particular, for a �nite p-group G,if we use the familyP of all proper subgroups of G, we obtain a spectral sequencewhose E2-term is ĤP� (�G� ) and which converges to (��)p̂. We have moved thegroups ��(BWH+) from the target to ingredients in the calculation of E2. In thisspectral sequence the \root invariant" of an element � 2 �q lies in degree at leastq(jGj � 1). The root invariant measures where elements are detected in E2 of thespectral sequence, and the dependence on the order of G indicates an increasingdependence of lower degree homotopy groups of spheres on higher degree homotopygroups of classifying spaces.More generally, if G is any �nite group, we use the familyP to obtain two re-lated spectral sequences, both of which converge to the completion of the nonequiv-ariant stable homotopy groups of spheres at n(P), where n(P) is the product ofthose primes p such thatZ=pZis a quotient of G. For example, ifG is a nonabeliangroup of order pq, p < q, then n(P) = p and the spectral sequences provide amechanism for the prime q to a�ect stable homotopy groups at the prime p. Oneof the spectral sequences is the Atiyah-Hirzebruch-Tate spectral sequence whoseE2-term is the Amitsur-Dress-Tate homology ĤP� (�G� ). The other comes from a�ltration of ~EG in terms of the regular representation of G. These spectral se-quences lead to new equivariant root invariants, and the basic Bredon-Jones-Miller



290 XXI. GENERALIZED TATE COHOMOLOGYroot invariant theorem generalizes to the spectral sequence constructed by use ofthe regular representation.A. W. M. Dress. Contributions to the theory of induced representations. Springer Lecture Notesin Mathematics Vol. 342, 1973, 183-240.J. P. C. Greenlees. Tate cohomology in commutative algebra. J. Pure and Applied Algebra.94(1994), 59-83.J. D. S. Jones. Root invariants, cup-r-products and the Kahn-Priddy theorem. Bull. LondonMath. Soc. 17(1985), 479-483.H. R. Miller. On Jones's Kahn-Priddy theorem. Springer Lecture Notes in Mathematics Vol.1418, 1990, 210-218. 5. Equivariant K-theoryOur most interesting calculation shows that, for any �nite group G, t(KG) is arational G-spectrum, namelyt(KG) ' _K(Ĵ 
Q; 2i);(5.1)where Ĵ is the Mackey functor of completed augmentation ideals of representationrings and i ranges over the integers. In this case, the relevant Atiyah-Hirzebruch-Tate spectral sequence is rather amazing. Its E2-term is torsion, being annihilatedby multiplication by the order of G. If G is cyclic, then E2 = E1 and the spectralsequence certainly converges strongly. In general, the E2-term depends solelyon the classical Tate cohomology of G and not at all on its representation ring,whereas t(KG)� depends solely on the representation ring and not at all on theTate cohomology. Needless to say, the proof of (5.1) is not based on use of thespectral sequence.In fact, and the generalization is easier to prove than the special case, tF (KG)turns out to be rational for every family F . Again, there results an explicitcalculation of tF (KG) as a wedge of Eilenberg-MacLane spectra. Let JF be theintersection of the kernels of the restrictions R(G) �! R(H) for H 2 F . It isclear by character theory thatJF = f�j�(g) = 0 if the group generated by g is in Fg;and we de�ne a rationally complementary ideal J 0F byJ 0F = f�j�(g) = 0 if the group generated by g is not in Fg:Then (5.1) generalizes totF (KG) '_K((R=J 0F ) ^JF 
Q; 2i);(5.2)



5. EQUIVARIANT K-THEORY 291where (R=J 0F ) ^JF denotes the Mackey functor whose value at G=H is the com-pletion at the ideal J(F jH) of the quotient R(H)=J 0(F jH). This is consistentwith (5.1) since, when F = feg, J 0(F jH) is a copy of Zgenerated by the regularrepresentation of H and JH maps isomorphically onto R(H)=Z. It follows in allcases that the completions tF (KG) ^IF are contractible.The following folklore result is proven in our paper on completions at ideals of theBurnside ring. On passage to �G0 , the unit SG �! KG induces the homomorphismA(G) �! R(G) that sends a �nite set X to the permutation representation C [X].We regard R(G)-modules as A(G)-modules by pullback.Theorem 5.3. The completion of an R(G)-moduleM at the ideal JF of R(G)is isomorphic to the completion of M at the ideal IF of the Burnside ring A(G).In fact, the proof shows that the ideals IFR(G) and JF of R(G) have thesame radical. Therefore the generalized completion theorem of Adams-Haeberly-Jackowski-May discussed in XIV.6.1 implies that�� : (KG) ^IF �! F (EF+;KG)is an equivalence. By (5.2) and Theorem 4.11, this in turn implies that�� : kG ^ EF+ �! kG ^K(IF )is an equivalence. In fact, the latter result was proven by the �rst author beforethe implication was known; we shall explain his argument and discuss the algebrabehind it in Chapter XXIV.As a corollary of the calculation of t(KG), we obtain a surprisingly explicitcalculation of the nonequivariant K-homology of the classifying space BG:K0(BG) �= Z and K1(BG) �= J(G)Ĵ (G) 
 (Q=Z):(5.4)In fact, (5.1) and (5.4) both follow easily once we know that t(KG) is rational.Given that, we have the exact sequence� � � ! KG� (EG+)
Q! K�G(EG+)
Q! t(K)�G ! � � � ;which turns out to be short exact. The Atiyah-Segal theorem shows thatK�G(EG+)
Q �= R(G)Ĵ [�; ��1]
Q;



292 XXI. GENERALIZED TATE COHOMOLOGYwhere � is the Bott element. Rationally, the K-homology of EG+ is a summandof KG� , and in fact KG� (EG+)
Q �= Q[�; ��1]. It is not hard to identify the mapsand conclude that t(K)�G = fR(G)=ZgĴ [�; ��1]
Q:Since, as explained in XIXx5, all rational G-spectra split, this gives the exactequivariant homotopy type claimed in (5.1). Now we can deduce (5.4) by analy-sis of the integral norm sequence, using the Atiyah-Segal completion theorem toidentify K�G(EG+).We must still say something about why t(KG) and all other tF (KG) are rational.An inductive scheme reduces the proof to showing that tF (KG)^ ~EP is rational,where P is the family of proper subgroups of G. If V is the reduced regularcomplex representation of V , then S1V is a model for ~EP. It follows that, for anyKG-module spectrumM and any spectrumX, (M^ ~EP)G� (X) is the localization ofMG� (X) away from the Euler class (which is the total exterior power) �(V ) 2 R(G).Since �(V ) is in JP, it restricts to zero in all proper subgroups. Since the productover the cyclic subgroups C of G of the restrictions R(G) �! R(C) is an injection,�(V ) = 0 and the conclusion holds trivially unless G is cyclic. In that case, theAtiyah-Hirzebruch-Tate spectral sequence for tP(KG)�(X) gives that primes thatdo not divide the order n of G act invertibly since n annihilates the E2-term. Aneasy calculational argument in representation rings handles the remaining primes.The evident analogs of all of these statements for real K-theory are also valid.In the case of connectiveK-theory, we do not have the same degree of periodicityto help, and the calculations are harder. Results of Davis and Mahowald give thefollowing result.Theorem 5.5. If G = Cp for a prime p, thent(kuG) ' Yn2Z�2nH(Ĵ);and similarly for connective real K-theory.This result led us to the overoptimistic conjecture that its conclusion wouldgeneralize to arbitrary �nite groups. However, Bayen and Bruner have shown thatthe conjecture fails for both real and complex connective K-theory.Finally, we must point out that the restriction to �nite groups in the discussionabove is essential; even for G = S1 something more complicated happens sincein that case t(KG)G is a homotopy inverse limit of wedges of even suspensions of



6. FURTHER CALCULATIONS AND APPLICATIONS 293K and each even degree homotopy group of t(KG)G is isomorphic to Z[[�]][��1],where 1 � � is the canonical irreducible one-dimensional representation of G. Inparticular, t(KG) is certainly not rational. Similarly, still taking G = S1, eacheven degree homotopy group of t(kG)G is isomorphic to Z[[�]]. In this case, wecan identify the homotopy type of the �xed point spectrum:t(kuS1)S1 ' Yn2Z�2nkuS1 :(5.6)J. F. Adams, J.-P. Haeberly, S. Jackowski, and J. P. May. A generalization of the Atiyah-Segalcompletion theorem. Topology 27(1988), 1-6.D. Bayen and R. R. Bruner. Real connective K-theory and the quaternion group. Preprint,1995.J. P. C. Greenlees. K-homology of universal spaces and local cohomology of the representationring. Topology 32(1993), 295-308.J. P. C. Greenlees and J. P. May. Completions of G-spectra at ideals of the Burnside ring.Adams Memorial Symposium on Algebraic Topology, Vol. 2, London Math. Soc. Lecture NotesVol. 176, 1992, 145-178.6. Further calculations and applicationsPhilosophically, one of the main di�erences between the calculation of the TateK-theory for �nite groups and for the circle group is that the Krull dimension ofR(G) is one in the case of �nite groups and two in the case of the circle group. Quitegenerally, the complexity of the calculations increases with the Krull dimension ofthe coe�cient ring. It is relevant that the Krull dimension of R(G) for a compactconnected Lie group G is one greater than its rank.For �nite groups, most calculations that have been carried out to date con-cern ring G-spectra kG, like those that represent K-theory, that are so related tocobordism as to have Thom isomorphisms of the general formkG� (�VX) �= kG� (�jV jX)(6.1)for all complex representations V . Let e(V ) : S0 �! SV be the inclusion. Ap-plying e(V )� to the element 1 2 k0G(S0) �= kVG (SV ), we obtain an element ofkVG (S0) = kG�V (S0). The Thom isomorphism yields an isomorphism between thisgroup and the integer coe�cient group kG�jV j, and there results an Euler class�(V ) 2 kG�jV j. As in our indication of the rationality of t(KG), localizations andother algebraic constructions in terms of such Euler classes can often lead to ex-plicit calculations.



294 XXI. GENERALIZED TATE COHOMOLOGYThis works particularly well in cases, such as p-groups, where G acts freely ona product of unit spheres S(V1)� � � ��S(Vn) for some representations V1; : : : ; Vn.This implies that the smash product S(1V1)+ ^ � � � ^ S(1Vn)+ is a model forEG+, and there results a �ltration of ~EG that has subquotients given by wedgesof smash products of spheres. This gives rise to a di�erent spectral sequence forthe computation of t(kG)�G(X). When X = S0, the E2-term can be identi�ed asthe \�Cech cohomology �H�J 0(k�(BG)) of the k�G-module k�(BG+) with respect tothe ideal J 0 = (�(V1); � � � ; �(Vn)) � k�G". The relevant algebraic de�nitions will begiven in Chapter XXIV. These groups depend only on the radical of J 0, and, whenk�G is Noetherian, it turns out that J 0 has the same radical as the augmentationideal J = Ker(k�G �! k�).The interesting mathematics begins with the calculation of the E2-term, wherethe nature of the Euler classes for the particular theory becomes important. Infact, this spectral sequence collapses unusually often because the complexity iscontrolled by the Krull dimension of the coe�cients. In cases where one cancalculate the coe�cients t(k)�G, one can often also deduce the homotopy type ofthe �xed point spectrum t(kG)G because t(kG)G is a module spectrum over k.However, the periodic and connective cases have rather di�erent 
avors. In theperiodic case the algebra of the coe�cients has a �eld-like appearance and ismore often enough to determine the homotopy type of the �xed point spectrumt(kG)G. In the connective case the algebra of the coe�cients in the answer hasthe appearance of a complete local ring and some sort of Adams spectral sequenceargument seems to be necessary to deduce the topology from the algebra. In veryexceptional circumstances, such as the use of rationality in the case of KG, onecan go on to deduce the equivariant homotopy type of t(kG).In the discussion that follows, we consider equivariant forms kG of some familiarnonequivariant theories k. We may take kG to be i�k, but any split G-spectrumwith underlying nonequivariant spectrum k could be used instead. Technically,it is often best to use F (EG+; i�k). This has the advantage that its coe�cientscan often be calculated, and it can be thought of as a geometric completion ofany other candidate (and an algebraic completion of any candidate for which acompletion theorem holds).The most visible feature of the calculations to date is that the Tate constructiontends to decrease chromatic periodicity. We saw this in the case of KG, where theperiodicity reduced from one to zero. This appears in especially simple form in atheorem of Greenlees and Sadofsky: ifK(n) is the nth MoravaK-theory spectrum,



6. FURTHER CALCULATIONS AND APPLICATIONS 295whose coe�cient ring is the graded �eldK(n)� = Fp[vn; v�1n ]; deg vn = 2pn � 2;then t(K(n)G) ' �:(6.2)In fact, this is a quite easy consequence of Ravenel's result that K(n)�(BG+) is�nitely generated over K(n)�. Another example of this nature is a calculation ofFajstrup, which shows that if the spectrum KR that represents K-theory withreality is regarded as a C2-spectrum, then the associated Tate spectrum is trivial.These calculations illustrate another phenomenon that appears to be general: itseems that the Tate construction reduces the Krull dimension of periodic theories.More precisely, the Krull dimension of t(kG)0G is usually less than that of k0G. In thecase of Morava K-theory, one deduces from Ravenel's result that K(n)0G is �niteover K(n)0 and thus has dimension 0. The contractibility of t(K(n)G) can then bethought of as a degenerate form of dimension reduction. More convincingly, workof Greenlees and Sadofsky shows that for many periodic theories for which k0G isone dimensional, t(kG)0G is �nite dimensional over a �eld. The higher dimensionalcase is under consideration by Greenlees and Strickland.This reduction of Krull dimension is re
ected in the E2-term of the spectralsequence cited above. When k is vn-periodic for some n, one typically �rst provesthat some vi, i < n is invertible on t(kG) and then uses the localisation of thenorm sequence� � � ! kG� (EG+) hv�1i i! k�G(EG+) hv�1i i! t(kG)�G ! � � �to assist calculations. For example, consider the spectra E(n) with coe�cient ringsE(n)� =Z(p)[v1; v2; � � � ; vn; v�1n ]:Since there is a co�ber sequence E(2)=p v1! E(2)=p! K(2), we deduce from (6.2)that v1 is invertible on t((E(2)=p)G). More generally vn�1 is invertible on a suitablecompletion of t(E(n)G).The intuition that the Tate construction lowers Krull dimension is re
ected inthe following conjecture about the spectra BP hni with coe�cient ringsBP hni� =Z(p)[v1; v2; � � � ; vn]:



296 XXI. GENERALIZED TATE COHOMOLOGYConjecture 6.3 (Davis-Johnson-Klippenstein-Mahowald-Wegmann).t(BP hniCp)Cp ' Yn2Z�2nBP hn� 1ip̂ :The cited authors proved the case n = 2; the case n = 1 was due to Davis andMahowald. Since BP hni� has Krull dimension n+ 1, the depth of the conjectureincreases with n.We end by pointing the reader to what is by far the most striking application ofgeneralized Tate cohomology. In a series of papers, Madsen, B�okstedt, Hesselholt,and Tsalidis have used the case of S1 and its subgroups to carry out fundamentallyimportant calculations of the topological cyclic homology and thus of the algebraicK-theory of number rings. It would take us too far a�eld to say much about this.Madsen has given two excellent surveys. In another direction, Hesselholt andMadsen have calculated the coe�cient groups of the S1-tate spectrum associatedto the periodic J -theory spectrum at an odd prime. The calculation is consistentwith the following conjecture.Conjecture 6.4 (Hesselholt-Madsen).t(JG)S1 ' K 0(1) _ �K 0(1) _ (Yn2Z�2n+1K)=(_n2Z�2n+1K);whereK 0(1) is the Adams summand of p-completeK-theory with homotopy groupsconcentrated in degrees � 0mod 2(p � 1).M. B�okstedt and I. Madsen. Topological cyclic homology of the integers. Ast�erisque 226(1994),57-145.M. B�okstedt and I. Madsen. Algebraic K-theory of local number �elds: the unrami�ed case.Aarhus University Preprint No. 20, 1994.D. M. Davis and M. Mahowald. The spectrum (P^bo)�1. Proc. Cambridge Phil. Soc. 96(1984)85-93.D. M. Davis, D. C. Johnson, J. Klippenstein, M. Mahowald and S. Wegmann. The spectrum(P ^BP h2i)�1. Trans. American Math. Soc. 296(1986) 95-110.L. Fajstrup. Tate cohomology of periodic Real K-theory is trivial. Proc. American Math. Soc.1995, to appear.J. P. C. Greenlees and H. Sadofsky. The Tate spectrum of vn periodic, complex oriented theories.Math. Zeitschrift. To appear.J. P. C. Greenlees and H. Sadofsky. The Tate spectrum of theories with one dimensional coe�-cient ring. Preprint, 1995.J. P. C. Greenlees and N. P. Strickland. Varieties for chromatic group cohomology rings. Inpreparation.L. Hesselholt and I. Madsen. The S1 Tate spectrum for J. Bol. Soc. Math. Mex, 37(1992),215-240.



6. FURTHER CALCULATIONS AND APPLICATIONS 297L.Hesselholt and I. Madsen. Topological cyclic homology of �nite �elds and their dual numbers.Preprints, 1993-1995.I. Madsen. The cyclotomic trace in algebraic K-theory. Proceedings of the ECM, Paris, 1992.Progress in Mathematics, Vol. 120. Birkhauser. 1994.I. Madsen. Algebraic K-theory and traces. Aarhus University Preprint No. 26. 1995.D. C. Ravenel. Morava K-theories and �nite groups. Cont. Mathematics 12(1982), 289-292.S. Tsalidis. Topological Hochschild homology and the homotopy limit problem. Preprint, 1995.S. Tsalidis. On the topological cyclic homology of the integers. Preprint, 1995.
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CHAPTER XXIIBrave new algebra1. The category of S-modulesLet us return to the introductory overview of the stable homotopy category givenin XIIx1. As said there, Elmendorf, Kriz, Mandell, and I have gone beyond thefoundations of Chapter XII to the construction of a new category of spectra, thecategory of \S-modules", that has a smash product that is symmetric monoidal(associative, commutative, and unital up to coherent natural isomorphisms) on thepoint-set level. The complete treatment is given in [EKMM], and an expositionhas been given in [EKMM0]. The latter emphasizes the logical development of thefoundations. Here, instead, we will focus more on the structure and applicationsof the theory. Working nonequivariantly in this chapter, we will describe thenew categories of rings, modules, and algebras and summarize some of their moreimportant applications. All of the basic theory generalizes to the equivariantcontext and, working equivariantly, we will return to the foundations and outlinethe construction of the category of S-modules in the next chapter. We begin workhere by summarizing its properties.An S-module is a spectrum (indexed on some �xed universe U) with additionalstructure, and a map of S-modules is a map of spectra that preserves the additionalstructure. The sphere spectrum S and, more generally, any suspension spectrum�1X has a canonical structure of S-module. The category of S-modules is denotedMS. It is symmetric monoidal with unit object S under a suitable smash product,which is denoted ^S , and it also has a function S-module functor, which is denotedFS. The expected adjunction holds:MS(M ^S N;P ) �=MS(M;FS(N;P )):299



300 XXII. BRAVE NEW ALGEBRAMoreover, for based spaces X and Y , there is a natural isomorphism of S-modules�1X ^S �1Y �= �1(X ^ Y ):When regarded as a functor from spaces to S-modules, rather than as a functorfrom spaces to spectra, �1 is not left adjoint to the zeroth space functor 
1;rather, we have an adjunctionMS(�1X;M) �= T (X;MS(S;M)):Here the space of mapsMS(S;M) is not even equivalent to 
1M . As observed byHastings and Lewis, this is intrinsic to the mathematics: since MS is symmetricmonoidal,MS(S; S) is a commutative topological monoid, and it therefore cannotbe equivalent to the space QS0 = 
1S.For an S-module M and a based space X, the smash product M ^ X is anS-module and M ^X �=M ^S �1X:Cylinders, cones, and suspensions of S-modules are de�ned by smashing withI+, I, and S1. A homotopy between maps f; g : M �! N of S-modules is amap M ^ I+ �! N that restricts to f and g on the ends of the cylinder. Thefunction spectrum F (X;M) is not an S-module; FS(��tyX;M) is the appropriatesubstitute and must be used when de�ning cocylinder, path, and loop S-modules.The category MS is cocomplete (has all colimits), its colimits being created inS . That is, the colimit in S of a diagram of S-modules is an S-module that isthe colimit of the given diagram in MS . It is also complete (has all limits). Thelimit in S of a diagram of S-modules is not quite an S-module, but it takes valuesin a category S [L] of \L-spectra" that lies intermediate between spectra and S-modules. Limits inS [L] are created inS , and the forgetful functorMS �! S [L]has a right adjoint that creates the limits inMS. We shall explain this sca�oldingin XXIIIx2. For pragmatic purposes, what matters is that limits exist and havethe same weak homotopy types as if they were created in S .There is a \free S-module functor" FS : S �!MS. It is not quite free in theusual sense since its right adjoint US :MS �! S is not quite the evident forgetfulfunctor. This technicality re
ects the fact that the forgetful functorMS �! S [L]is a left rather than a right adjoint. Again, for pragmatic purposes, what mattersis that US is naturally weakly equivalent to the evident forgetful functor.We de�ne sphere S-modules by SnS = FSSn:



1. THE CATEGORY OF S-MODULES 301We de�ne the homotopy groups of an S-module to be the homotopy groups of theunderlying spectrum and �nd by the adjunction cited in the previous paragraphthat they can be computed as�n(M) = hMS(SnS ;M):From here, we develop the theory of cell and CW S-modules precisely as wedeveloped the theory of cell and CW spectra, taking the spheres SnS as the domainsof attaching maps of cells CSnS . We construct the \derived category of S-modules",denoted DS, by adjoining formal inverses to the weak equivalences and �nd thatDS is equivalent to the homotopy category of CW S-modules. The followingfundamental theorem then shows that no homotopical information is lost if wereplace the stable homotopy category �hS by the derived category DS.Theorem 1.1. The following conclusions hold.(i) The free functor FS : S �!MS carries CW spectra to CW S-modules.(ii) The forgetful functorMS �! S carries S-modules of the homotopy typesof CW S-modules to spectra of the homotopy types of CW spectra.(iii) Every CW S-module M is homotopy equivalent as an S-module to FSEfor some CW spectrum E.The free functor and forgetful functors establish an adjoint equivalence betweenthe stable homotopy category �hS and the derived category DS. This equivalenceof categories preserves smash products and function objects. ThusDS(FSE;M) �= �hS (E;M);FS : �hS (E;E 0) �=�!DS(FSE;FSE 0);FS(E ^ E 0) ' (FSE) ^S (FSE 0);and FS(F (E;E 0)) ' FS(FSE;FSE 0):We can describe the equivalence in the language of (closed) model categoriesin the sense of Quillen, but we shall say little about this. Both S and MS aremodel categories whose weak equivalences are the maps that induce isomorphismsof homotopy groups. The q-co�brations (or Quillen co�brations) are the retractsof inclusions of relative cell complexes (that is, cell spectra or cell S-modules).The q-�brations in S are the Serre �brations, namely the maps that satisfy thecovering homotopy property with respect to maps de�ned on the cone spectra



302 XXII. BRAVE NEW ALGEBRA�1q CSn, where q � 0 and n � 0. The q-�brations inMS are the maps M �! Nof S-modules whose induced maps USM �! USN are Serre �brations of spectra.[EKMM] A. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Rings, modules, and algebras instable homotopy theory. Preprint, 1995.[EKMM0] A. Elmendorf, I. Kriz, M. A. Mandell, and J. P. May. Modern foundations for stablehomotopy theory. In \Handbook of Algebraic Topology", edited by I.M. James. North Holland,1995, pp 213-254.H. Hastings. Stabilizing tensor products. Proc. Amer. Math. Soc. 49(1975), 1-7.L. G. Lewis, Jr. Is there a convenient category of spectra? J. Pure and Applied Algebra 73(1991),233-246.J. P. May (with contributions by F. Quinn, N. Ray, and J. Tornehave). E1 ring spaces andE1 ring spectra. Springer Lecture Notes in Mathematics Volume 577. 1977.2. Categories of R-modulesLet us think about S-modules algebraically. There is a perhaps silly analogythat I �nd illuminating. Algebraically, it is of course a triviality that Abeliangroups are essentially the same things as Z-modules. Nevertheless, these notionsare conceptually di�erent. Thinking of brave new algebra in stable homotopytheory as analogous to classical algebra, I like to think of spectra as analogues ofAbelian groups and S-modules as analogues ofZ-modules. While it required somethought and work to �gure out how to pass from spectra to S-modules, now thatwe have done so we can follow our noses and mimic algebraic de�nitions word forword in the category of S-modules, thinking of ^S as analogous to 
Zand FS asanalogous to HomZ.We think of rings as Z-algebras, and we de�ne an S-algebra R by requiring aunit S �! R and product R ^S R �! R such that the evident unit and asso-ciativity diagrams commute. We say that R is a commutative S-algebra if theevident commutativity diagram also commutes. We de�ne a left R-module simi-larly, requiring a map R^SM �!M such that the evident unit and associativitydiagrams commute.For a right R-moduleM and left R-module N , we de�ne an S-moduleM ^RNby the coequalizer diagramM ^S R ^S N //�^SId //Id^S� M ^S N // M ^R N;where � and � are the given actions of R onM and N . Similarly, for leftR-modulesM and N , we de�ne an S-module FR(M;N) by an appropriate equalizer diagram.We then have adjunctions exactly like those relating 
R and HomR in algebra.



2. CATEGORIES OF R-MODULES 303If R is commutative, then M ^R N and FR(M;N) are R-modules, the categoryMR of R-modules is symmetric monoidal with unit R, and we have the expectedadjunction relating ^R and FR. We can go on to de�ne (R;R0)-bimodules and toderive a host of formal relations involving smash products and function modulesover varying rings, all of which are exactly like their algebraic counterparts.For a left R-module M and a based space X, M ^ X �= M ^S �1X andFS(�1X;M) are left R-modules. If K is an S-module, then M ^S K is a left andFS(M;K) is a right R-module. We have theories of co�ber and �ber sequencesof R-modules exactly as for spectra. We de�ne the free R-module generated by aspectrum X to be FRX = R ^S FSX:Again the right adjoint UR of this functor is naturally weakly equivalent to theforgetful functor from R-modules to spectra. We de�ne sphere R-modules bySnR = FRSn = R ^S SnSand �nd that �n(M) = hMR(SnR;M):There is also a natural weak equivalence of R-modules FRS �! R.We develop the theory of cell and CW R-modules exactly as we developed thetheory of cell and CW spectra, using the spheres SnR as the domains of attachingmaps. However, the CW theory is only of interest when R is connective (�n(R) = 0for n < 0) since otherwise the cellular approximation theorem fails. We constructthe derived category DR from the categoryMR of R-modules by adjoining formalinverses to the weak equivalences and �nd that DR is equivalent to the homotopycategory of cell R-modules.Brown's representability theorem holds in the category DR: a contravariantset-valued functor k on DR is representable in the form kM �= DR(M;N) if andonly if k converts wedges to products and converts homotopy pushouts to weakpullbacks. However, as recently observed by Neeman in an algebraic context,Adams' variant for functors de�ned on �nite cell R-modules only holds under acountability hypothesis on ��(R).The categoryMR is a model category. The weak equivalences and q-�brationsare the maps of R-modules that are weak equivalences and q-�brations when re-garded as maps of S-modules. The q-co�brations are the retracts of relative cellR-modules. It is also a tensored and cotensored topological category. That is, its



304 XXII. BRAVE NEW ALGEBRAHom sets are based topological spaces, composition is continuous, and we haveadjunction homeomorphismsMR(M ^X;N) �= T (X;MR(M;N)) �=MR(M;FS(�1X;N)):Recently, Hovey, Palmieri, and Strickland have axiomatized the formal prop-erties that a category ought to have in order to be called a \stable homotopycategory". The idea is to abstract those properties that are independent of anyunderlying point-set level foundations and see what can be derived from thatstarting point. Our derived categories DR provide a wealth of examples.M. Hovey, J. H. Palmieri, and N. P. Strickland. Axiomatic stable homotopy theory. Preprint.1995.A. Neeman. On a theorem of Brown and Adams. Preprint, 1995.3. The algebraic theory of R-modulesThe categories DR are both tools for the the study of classical algebraic topol-ogy, and interesting new subjects of study in their own right. In particular, theysubsume much of classical algebra. The Eilenberg-MacLane spectrum HR asso-ciated to a (commutative) discrete ring R is a (commutative) S-algebra, and theEilenberg-MacLane spectrum HM associated to an R-module is an HR-module.Moreover, the derived category DHR is equivalent to the algebraic derived cate-gory DR of chain complexes over R, and the equivalence converts derived smashproducts and function modules in topology to derived tensor products and Homfunctors in algebra. In algebra, the homotopy groups of derived tensor productand Hom functors compute Tor and Ext, and we have natural isomorphisms�n(HM ^HR HN) �= TorRn (M;N)for a right R-module M and left R-module N and��n(FHR(HM;HN)) �= ExtnR(M;N)for left R-modules M and N , where HM is taken to be a CW HR-module.Now return to the convention that R is an S-algebra. By the equivalence of �hSand DS, we see that homology and cohomology theories on spectra are subsumedas homotopy groups of smash products and function modules over S. Precisely,for a CW S-module M and an S-module N ,�n(M ^S N) =Mn(N)and ��n(FS(M;N)) = Nn(M):



3. THE ALGEBRAIC THEORY OF R-MODULES 305These facts suggest that we should think of the homotopy groups of smashproduct and function R-modules ambiguously as generalizations of both Tor andExt groups and homology and cohomology groups. Thus, for a right cellR-moduleM and a left R-module N , we de�neTorRn (M;N) = �n(M ^R N) =MRn (N)(3.1)and, for a left cell R-module M and a left R-module N , we de�neExtnR(M;N) = ��n(FR(M;N)) = NnR(M):(3.2)We assume that M is a cell module to ensure that these are well-de�ned derivedcategory invariants.These functors enjoy many properties familiar from both the algebraic and topo-logical settings. For example, assuming that R is commutative, we have a natural,associative, and unital system of pairings of R�-modules (Rn = ��n(R))Ext�R(M;N) 
R� Ext�R(L;M) �! Ext�R(L;N):Similarly, setting DRM = FR(M;R), a formal argument in duality theory impliesa natural isomorphism TorRn (DRM;N) �= Ext�nR (M;N)for �nite cellR-modulesM and arbitraryR-modules N . Thought of homologically,this isomorphism can be interpreted as Spanier-Whitehead duality: for a �nite cellR-module M and any R-module N ,NRn (DRM) �= N�nR (M):There are spectral sequences for the computation of these invariants. As usual,for a spectrum E, we write En = �n(E) = E�n.Theorem 3.3. For right and left R-modules M and N , there is a spectral se-quence E2p;q = TorR�p;q(M�; N�) =) TorRp+q(M;N);For left R-modules M and N , there is a spectral sequenceEp;q2 = Extp;qR�(M�; N�) =) Extp+qR (M;N):If R is commutative, these are spectral sequences of di�erential R�-modules, andthe second admits pairings converging from the evident Yoneda pairings on the E2terms to the natural pairings on the limit terms.



306 XXII. BRAVE NEW ALGEBRASetting M = FRX in these two spectral sequences, we obtain universal coe�-cient spectral sequences.Theorem 3.4 (Universal coefficient). For an R-module N and any spec-trum X, there are spectral sequences of the formTorR��;�(R�(X); N�) =) N�(X)and Ext�;�R�(R��(X); N�) =) N�(X):Replacing R and N by Eilenberg-MacLane spectra HR and HN for a discretering R and R-module N , we obtain the classical universal coe�cient theorems.Replacing N by FRY and by FR(FRY;R) in the two universal coe�cient spectralsequences, we obtain K�unneth spectral sequences.Theorem 3.5 (K�unneth). For any spectra X and Y , there are spectral se-quences of the form TorR��;�(R�(X); R�(Y )) =) R�(X ^ Y )and Ext�;�R�(R��(X); R�(Y )) =) R�(X ^ Y ):Under varying hypotheses, the K�unneth theorem in homology generalizes to anEilenberg-Moore type spectral sequence. Here is one example.Theorem 3.6. Let E and R be commutative S-algebras and M and N be R-modules. Then there is a spectral sequence of di�erential E�(R)-modules of theform TorE�(R)p;q (E�(M); E�(N)) =) Ep+q(M ^R N):4. The homotopical theory of R-modulesThinking of the derived category of R-modules as an analog of the stable ho-motopy category, we have the notion of an R-ring spectrum, which is just like theclassical notion of a ring spectrum in the stable homotopy category.



4. THE HOMOTOPICAL THEORY OF R-MODULES 307Definition 4.1. An R-ring spectrum A is an R-module A with unit � : R �!A and product � : A^RA �! A in DR such that the following left and right unitdiagram commutes in DR:R ^R A //�^id &&� LLLLLLLLLLL A ^R A�� � A ^R Ro o id^�xx ��rrrrrrrrrrrA:A is associative or commutative if the appropriate diagram commutes in DR. If Ais associative, then an A-module spectrum M is an R-module M with an action� : A^RM �!M such that the evident unit and associativity diagrams commutein DR.Lemma 4.2. If A and B are R-ring spectra, then so is A ^R B. If A and B areassociative or commutative, then so is A ^R B.When R = S, S-ring spectra and their module spectra are equivalent to classicalring spectra and their module spectra. By neglect of structure, an R-ring spectrumA is an S-ring spectrum and thus a ring spectrum in the classical sense; its unit isthe composite of the unit of R and the unit of A and its product is the compositeof the product of A and the canonical mapA ^A ' A ^S A �! A ^R A:If A is commutative or associative as an R-ring spectrum, then it is commutativeand associative as an S-ring spectrum and thus as a classical ring spectrum. TheR-ring spectra and their module spectra play a role in the study of DR analogousto the role played by ring and module spectra in classical stable homotopy theory.Moreover, the new theory of R-ring and module spectra provides a powerful con-structive tool for the study of the classical notions. The point is that, in DR, wehave all of the internal structure, such as co�ber sequences, that we have in thestable homotopy category.This can make it easy to construct R-ring spectra and modules in cases whena direct proof that they are merely classical ring spectra and modules is far moredi�cult, if it can be done at all. We assume that R is a commutative S-algebraand illustrate by indicating how to constructM=IM andM [Y �1] for an R-moduleM , where I is the ideal generated by a sequence fxig of elements of R� and Y isa countable multiplicatively closed set of elements of R�. We shall also state some



308 XXII. BRAVE NEW ALGEBRAresults about when these modules haveR-ring structures and when such structuresare commutative or associative.We have isomorphisms Mn �= hMR(SnR;M):The suspension �nM is equivalent to SnR ^R M and, for x 2 Rn, the compositemap of R-modules SnR ^R M //x^id R ^RM //� M(4.3)is a module theoretic version of the map x� : �nM �!M .Definition 4.4. De�ne M=xM to be the co�ber of the map (4.3) and let� : M �! M=xM be the canonical map. Inductively, for a �nite sequencefx1; : : : ; xng of elements of R�, de�neM=(x1; : : : ; xn)M = N=xnN; where N =M=(x1; : : : ; xn�1)M:For a sequence X = fxig, de�ne M=XM = tel M=(x1; : : : ; xn)M , where thetelescope is taken with respect to the successive canonical maps �.Clearly we have a long exact sequence� � � �! �q�n(M) x��!�q(M) ���!�q(M=xM) �! �q�n�1(M) �! � � � :If x is regular for ��(M) (xm = 0 impliesm = 0), then �� induces an isomorphismof R�-modules ��(M)=x � ��(M) �= ��(M=xM):If fx1; : : : ; xng is a regular sequence for ��(M), in the sense that xi is regular for��(M)=(x1; : : : ; xi�1)��(M) for 1 � i � n, then��(M)=(x1; : : : ; xn)��(M) �= ��(M=(x1; : : : ; xn)M);and similarly for a possibly in�nite regular sequence X = fxig. The followingresult implies that M=XM is independent of the ordering of the elements of theset X. We write R=X instead of R=XR.Lemma 4.5. For a set X of elements of R�, there is a natural weak equivalence(R=X) ^RM �!M=XM:In particular, for a �nite set X = fx1; : : : ; xng,R=(x1; : : : ; xn) ' (R=x1) ^R � � � ^R (R=xn):



4. THE HOMOTOPICAL THEORY OF R-MODULES 309If I denotes the ideal generated by X, then it is reasonable to de�neM=IM =M=XM:However, this notation must be used with caution since, if we fail to restrictattention to regular sequences X, the homotopy type of M=XM will depend onthe set X and not just on the ideal it generates. For example, quite di�erentmodules are obtained if we repeat a generator xi of I in our construction.To construct localizations, let fyig be any sequence of elements of Y that isco�nal in the sense that every y 2 Y divides some yi. If yi 2 Rni , we mayrepresent yi by an R-map S0R �! S�niR , which we also denote by yi. Let q0 = 0and, inductively, qi = qi�1 + ni. Then the R-mapyi ^ id : S0R ^RM �! S�niR ^RMrepresents multiplication by yi. Smashing overR with S�qi�1R , we obtain a sequenceof R-maps S�qi�1R ^RM �! S�qiR ^RM:(4.6)Definition 4.7. De�ne the localization of M at Y , denoted M [Y �1], to be thetelescope of the sequence of maps (4.6). Since M �= S0R ^R M in DR, we mayregard the inclusion of the initial stage S0R^RM of the telescope as a natural map� :M �!M [Y �1].Since homotopy groups commute with localization, we see immediately that �induces an isomorphism of R�-modules��(M [Y �1]) �= ��(M)[Y �1]:As in Lemma 4.5, the localization of M is the smash product of M with thelocalization of R.Lemma 4.8. For a multiplicatively closed set Y of elements of R�, there is anatural equivalence R[Y �1] ^RM �!M [Y �1]:Moreover, R[Y �1] is independent of the ordering of the elements of Y . For sets Xand Y , R[(X [ Y )�1] is equivalent to the composite localization R[X�1][Y �1].The behavior of localizations with respect toR-ring structures is now immediate.



310 XXII. BRAVE NEW ALGEBRAProposition 4.9. Let Y be a multiplicatively closed set of elements of R�. IfA is an R-ring spectrum, then so is A[Y �1]. If A is associative or commutative,then so is A[Y �1].Proof. It su�ces to observe that R[Y �1] is an associative and commutativeR-ring spectrum with unit � and product the equivalenceR[Y �1] ^R R[Y �1] ' R[Y �1][Y �1] ' R[Y �1]:This doesn't work for quotients since (R=X)=X is not equivalent to R=X. How-ever, we can analyze the problem by analyzing the deviation, and, by Lemma 4.5,we may as well work one element at a time. We have a necessary condition for R=xto be an R-ring spectrum that is familiar from classical stable homotopy theory.Lemma 4.10. Let A be an R-ring spectrum. If A=xA admits a structure ofR-ring spectrum such that � : A �! A=xA is a map of R-ring spectra, thenx : A=xA �! A=xA is null homotopic as a map of R-modules.Thus, for example, the Moore spectrum S=2 is not an S-ring spectrum sincethe map 2 : S=2 �! S=2 is not null homotopic. We have the following su�cientcondition for when R=x does have an R-ring spectrum structure.Theorem 4.11. Let x 2 Rm, where �m+1(R=x) = 0 and �2m+1(R=x) = 0. ThenR=x admits a structure of R-ring spectrum with unit � : R �! R=x. Therefore,for every R-ring spectrum A and every sequence X of elements of R� such that�m+1(R=x) = 0 and �2m+1(R=x) = 0 if x 2 X has degree m, A=XA admitsa structure of R-ring spectrum such that � : A �! A=XA is a map of R-ringspectra.For an R-ring spectrum A and an element x as in the theorem, we give A=xA '(R=x) ^R A the product induced by one of our constructed products on R=x andthe given product on A. We refer to any such product as a \canonical" producton A=xA. We also have su�cient conditions for when the canonical product isunique and when a canonical product is commutative or associative.Theorem 4.12. Let x 2 Rm, where �m+1(R=x) = 0 and �2m+1(R=x) = 0.Let A be an R-ring spectrum and assume that �2m+2(A=xA) = 0. Then thereis a unique canonical product on A=xA. If A is commutative, then A=xA iscommutative. If A is associative and �3m+3(A=xA) = 0, then A=xA is associative.This leads to the following conclusion.



4. THE HOMOTOPICAL THEORY OF R-MODULES 311Theorem 4.13. Assume that Ri = 0 if i is odd. Let X be a sequence of nonzero divisors in R� such that ��(R=X) is concentrated in degrees congruent to zeromod 4. Then R=X has a unique canonical structure of R-ring spectrum, and it iscommutative and associative.This is particularly valuable when applied with R = MU . The classical Thomspectra arise in nature as E1 ring spectra and give rise to equivalent commutativeS-algebras. In fact, inspection of the prespectrum level de�nition of Thom spectrain terms of Grassmannians �rst led to the theory of E1 ring spectra and thereforeof S-algebras. Of course, MU� =Z[xijdeg xi = 2i]Thus the results above have the following immediate corollary.Theorem 4.14. Let X be a regular sequence in MU�, let I be the ideal gen-erated by X, and let Y be any sequence in MU�. Then there is an MU -ringspectrum (MU=X)[Y �1] and a natural map of MU -ring spectra (the unit map)� :MU �! (MU=X)[Y �1]such that �� :MU� �! ��((MU=X)[Y �1])realizes the natural homomorphism of MU�-algebrasMU� �! (MU�=I)[Y �1]:If MU�=I is concentrated in degrees congruent to zero mod 4, then there is aunique canonical product on (MU=X)[Y �1], and this product is commutative andassociative.In comparison with earlier constructions of this sort based on the Baas-Sullivantheory of manifolds with singularities or on Landweber's exact functor theorem(where it applies), we have obtained a simpler proof of a substantially strongerresult since an MU -ring spectrum is a much richer structure than just a ringspectrum and commutativity and associativity in the MU -ring spectrum senseare much more stringent conditions than mere commutativity and associativity ofthe underlying ring spectrum.



312 XXII. BRAVE NEW ALGEBRA5. Categories of R-algebrasIn the previous section, we considered R-ring spectra, which are homotopicalversions of R-algebras. We also have a pointwise de�nition of R-algebras that isjust like the de�nition of S-algebras. That is, R-algebras and commutative R-algebras A are de�ned via unit and product maps R �! A and A ^R A �! Asuch that the appropriate diagrams commute in the symmetric monoidal categoryMR. All of the standard formal properties of algebras in classical algebra carryover directly to these brave new algebras. For example, a commutative R-algebraA is the same thing as a commutative S-algebra together with a map of S-algebrasR �! A (the unit map), and the smash productA^RA0 of commutativeR-algebrasA and A0 is their coproduct in the category of commutative R-algebras.Some of the most subtantive work in [EKMM] concerns the understanding of thecategories AR and CAR of R-algebras and commutative R-algebras. The crucialpoint is to be able to compute the homotopical behavior of formal constructions inthese categories. Technically, what is involved is the homotopical understandingof the forgetful functors from AR and CAR toMR. Although not in itself enoughto answer these questions, the context of enriched model categories is essentialto give a framework in which they can be addressed. We shall indicate some ofthe main features here, but this material is addressed to the relatively sophisti-cated reader who has some familiarity with enriched category and model categorytheory. It provides the essential technical underpinning for the applications toBous�eld localization and topological Hochschild homology that are summarizedin the following two sections.Both AR and CAR are tensored and cotensored topological categories. In fact,they are topologically complete and cocomplete, which means that they have notonly the usual limits and colimits but also \indexed" limits and colimits. Limits arecreated in the category of R-modules, but colimits are less obvious constructions.In the absence of basepoints in their Hom sets, these categories are enriched overthe category U of unbased spaces. The cotensors in both cases are the functionS-algebras FS(�1X+; A) with the R-algebra structure induced from the diagonalon X and the product on A. The tensors are less familiar. They are denotedA
AR X and A
CAR X. These are di�erent constructions in the two cases, butwe write A
X when the context is understood. We have adjunctionsAR(A
X;B) �= U (X;AR(A;B)) �= AR(A;FS(�1X+; B));(5.1)and similarly in the commutative case. Some idea of the structure and meaning of



5. CATEGORIES OF R-ALGEBRAS 313tensors is given by the following result. For R-algebras A and B and a space X, wesay that a map f : A ^X+ �! B of R-modules is a pointwise map of R-algebrasif each composite f � ix : A �! B is a map of R-algebras, where, for x 2 X,ix : A �! A ^X+ is the map induced by the evident inclusion fxg+ �! X+.Proposition 5.2. For R-algebras A and spaces X there is a natural map ofR-modules ! : A ^X+ �! A
Xsuch that a pointwise map f : A ^ X+ �! B of R-algebras uniquely determinesa map ~f : A
X �! B of R-algebras such that f = ~f � !. The same statementholds for commutative R-algebras.More substantial results tell how to compute tensors when X is the geometricrealization of a simplicial set or simplicial space. These results are at the heart ofthe development and understanding of model category structures on the categoriesAR and CAR. In both categories, the weak equivalences and q-�brations are themaps of R-algebras that are weak equivalences or q-�brations of underlying R-modules. It follows that the q-co�brations are the maps of R-algebras that satisfythe left lifting property with respect to the acyclic q-�brations. (The LLP isrecalled in VIx5.) However, the q-co�brations admit a more explicit descriptionas retracts of relative \cell R-algebras" or \cell commutative R-algebras". Suchcell algebras are constructed by using free algebras generated by sphere spectra asthe domains of attaching maps and mimicking the construction of cell R-modules,using coproducts, pushouts, and colimits in the relevant category of R-algebras.The question of understanding the homotopical behavior of the forgetful functorsfrom AR and CAR to MR now takes the form of understanding the homotopicalbehavior of q-co�brant algebras (retracts of cell algebras) with respect to theseforgetful functors. However, the formal properties of model categories have nothingto say about this homotopical question.In what follows, let R be a �xed q-co�brant commutative R-algebra. Since Ris the initial object of AR and of CAR, it is q-co�brant both as an R-algebraand as a commutative R-algebra. However, it is not q-co�brant as an R-module.Therefore the most that one could hope of the underlyingR-module of a q-co�brantR-algebra is the conclusion of the following result.Theorem 5.3. If A is a q-co�brant R-algebra, then A is a retract of a cell R-module relative to R. That is, the unit R �! A is a q-co�bration of R-modules.



314 XXII. BRAVE NEW ALGEBRAThe conclusion fails in the deeper commutive case. The essential reason is thatthe free commutative R-algebra generated by an R-module M is the wedge of thesymmetric powers M j=�j , and passage to orbits obscures the homotopy type ofthe underlying R-module. The following technically important result at least givesthe homotopy type of the underlying spectrum.Theorem 5.4. Let R be a q-co�brant commutative S-algebra. If M is a cellR-module, then the projection� : (E�j)+ ^�j M j �!M j=�jis a homotopy equivalence of spectra.The following theorem provides a workable substitute for Theorem 5.3. It showsthat the derived smash product is represented by the point-set level smash producton a large class �ER of R-modules, one that in particular includes the underlyingR-modules of all q-co�brant R-algebras and commutative R-algebras.Theorem 5.5. There is a collection �ER of R-modules of the underlying ho-motopy types of CW spectra that is closed under wedges, pushouts, colimits ofcountable sequences of co�brations, homotopy equivalences, and �nite smash prod-ucts over R and that contains all q-co�brant R-modules and the underlying R-modules of all q-co�brant R-algebras and all q-co�brant commutative R-algebras.Moreover, if M1; � � � ; Mn are R-modules in �ER and 
i : Ni �! Mi are weakequivalences, where the Ni are cell R-modules, then
1 ^R � � � ^R 
n : N1 ^R � � � ^R Nn �!M1 ^R � � � ^RMnis a weak equivalence. Therefore the cell R-module N1 ^R � � � ^R Nn representsM1 ^R � � � ^RMn in the derived category DR.W. G. Dwyer and J. Spalinski. Homotopy theories and model categories. In \A handbook ofalgebraic topology", edited by I.M. James. North-Holland, 1995, pp 73-126.G. M. Kelly. Basic concepts of enriched category theory. London Math. Soc. Lecture NoteSeries Vol. 64. Cambridge University Press. 1982.D. G. Quillen. Homotopical algebra. Springer Lecture Notes in Mathematics Volume 43. 1967.6. Bous�eld localizations of R-modules and algebrasBous�eld localization is a basic tool in the study of classical stable homotopytheory, and the construction generalizes readily to the context of brave new alge-bra. In fact, using our model category structures, this context leads to a smoother



6. BOUSFIELD LOCALIZATIONS OF R-MODULES AND ALGEBRAS 315treatment than can be found in the classical literature. More important, as we shallsketch, any brave new algebraic structure is preserved by Bous�eld localization.Let R be an S-algebra and E be a cell R-module. A map f : M �! N ofR-modules is said to be an E-equivalence ifid^Rf : E ^R M �! E ^R Nis a weak equivalence. An R-module W is said to be E-acyclic if E ^RW ' �, anda map f is an E-equivalence if and only if its co�ber is E-acyclic. We say thatan R-module L is E-local if f� : DR(N;L) �! DR(M;L) is an isomorphism forany E-equivalence f or, equivalently, if DR(W;L) = 0 for any E-acyclic R-moduleW . Since this is a derived category criterion, it su�ces to test it when W is acell R-module. A localization of M at E is a map � : M �! ME such that � isan E-equivalence and ME is E-local. The formal properties of such localizationsdiscussed by Bous�eld carry over verbatim to the present context. There is a modelstructure on MR that implies the existence of E-localizations of R-modules.Theorem 6.1. The categoryMR admits a new structure as a topological modelcategory in which the weak equivalences are the E-equivalences and the co�bra-tions are the q-co�brations in the standard model structure, that is, the retractsof the inclusions of relative cell R-modules.We call the �brations in the new model structure E-�brations. They are deter-mined formally as maps that satisfy the right lifting property with respect to theE-acyclic q-co�brations, namely the q-co�brations that are E-equivalences. (TheRLP is recalled in VIx5.) One can characterize the E-�brations more explicitly,but the following result gives all the relevant information. Say that an R-moduleL is E-�brant if the trivial map L �! � is an E-�bration.Theorem 6.2. An R-module is E-�brant if and only if it is E-local. Any R-module M admits a localization � :M �!ME at E.In fact, one of the standard properties of a model category shows that we canfactor the trivial map M �! � as the composite of an E-acyclic q-co�bration� : M �! ME and an E-�bration ME �! �, so that the �rst statement impliesthe second. The following complement shows that the localization of an R-moduleat a spectrum (not necessarily an R-module) can be constructed as a map ofR-modules.



316 XXII. BRAVE NEW ALGEBRAProposition 6.3. Let K be a CW-spectrum and let E be the R-module FRK.Regarded as a map of spectra, a localization � :M �!ME of an R-module M atE is a localization of M at K.The result generalizes to show that, for an R-algebra A, the localization of anA-module at an R-module E can be constructed as a map of A-modules.Proposition 6.4. Let A be a q-co�brant R-algebra, let E be a cell R-module,and let F be theA-moduleA^RE. Regarded as a map of R-modules, a localization� :M �!MF of an A-module M at F is a localization of M at E.Restrict R to be a q-co�brant commutative S-algebra in the rest of this section.We then have the following fundamental theorem about localizations of R-algebras.Theorem 6.5. For a cell R-algebra A, the localization � : A �! AE can beconstructed as the inclusion of a subcomplex in a cell R-algebra AE. Moreover, iff : A �! B is a map of R-algebras into an E-local R-algebra B, then f lifts to amap of R-algebras ~f : AE �! B such that ~f �� = f ; if f is an E-equivalence, then~f is a weak equivalence. The same statements hold for commutative R-algebras.The idea is to replace the category MR by either the category AR or the cat-egory CAR in the development just sketched. That is, we attempt to constructnew model category structures on AR and CAR in such a fashion that a factor-ization of the trivial map A �! � as the composite of an E-acyclic q-co�brationand a q-�bration in the appropriate category of R-algebras gives a localization ofthe underlying R-module of A. The argument doesn't quite work to give a modelstructure because the module level argument uses vitally that a pushout of anE-acyclic q-co�bration of R-modules is an E-equivalence. There is no reason tobelieve that this holds for q-co�brations of R-algebras. However, we can use Theo-rems 5.3{5.5 to prove that it does hold for pushouts of inclusions of subcomplexesin cell R-algebras along maps to cell R-algebras. This gives enough informationto prove the theorem.The theorem implies in particular that we can construct the localization of R atE as the unit R �! RE of a q-co�brant commutative R-algebra. This leads to anew perspective on localizations in classical stable homotopy theory. To see this,we compare the derived category DRE to the stable homotopy category DR[E�1]associated to the model structure onMR that is determined by E. Thus DR[E�1]is obtained from DR by inverting the E-equivalences and is equivalent to the full



6. BOUSFIELD LOCALIZATIONS OF R-MODULES AND ALGEBRAS 317subcategory of DR whose objects are the E-local R-modules. Observe that, for acell R-module M , we have the canonical E-equivalence� = � ^ id :M �= R ^RM �! RE ^R M:The following observation is the same as in the classical case.Lemma 6.6. IfM is a �nite cell R-module, then RE ^RM is E-local and there-fore � is the localization of M at E.We say that localization at E is smashing if, for all cell R-modulesM , RE ^RMis E-local and therefore � is the localization of M at E. The following observationis due to Wolbert.Proposition 6.7 (Wolbert). If localization at E is smashing, then the cat-egories DR[E�1] and DRE are equivalent.These categories are closely related even when localization at E is not smash-ing, as the following elaboration of Wolbert's result shows. Remember that R isassumed to be commutative.Theorem 6.8. The following three categories are equivalent.(i) The category DR[E�1] of E-local R-modules.(ii) The full subcategory DRE [E�1] of DRE whose objects are the RE-modulesthat are E-local as R-modules.(iii) The category DRE [F�1] of F -local RE-modules, where F = RE ^R E.This implies that the question of whether or not localization at E is smashingis a question about the category of RE-modules, and it leads to the followingfactorization of the localization functor. In the case R = S, this shows that thecommutative S-algebras SE and their categories of modules are intrinsic to theclassical theory of Bous�eld localization.Theorem 6.9. Let F = RE ^R E. The E-localization functor(�)E : DR �! DR[E�1]is equivalent to the composite of the extension of scalars functorRE ^R (�) : DR �! DREand the F -localization functor(�)F : DRE �! DRE [F�1]:



318 XXII. BRAVE NEW ALGEBRACorollary 6.10. Localization at E is smashing if and only if all RE-modulesare E-local as R-modules, so thatDR[E�1] � DRE � DRE [F�1]:We illustrate the constructive power of Theorem 6.5 by showing that the alge-braic localizations of R considered in Section 4 actually take R to commutativeR-algebras on the point set level and not just on the homotopical level (as givenby Proposition 4.9). Thus let Y be a countable multiplicatively closed set of ele-ments of R�. Using Lemma 4.8, we see that localization of R-modules at R[Y �1]is smashing and is given by the canonical maps� = � ^R id :M �= R ^RM �! R[Y �1] ^RM:Theorem 6.11. The localization R �! R[Y �1] can be constructed as the unitof a cell R-algebra.By multiplicative in�nite loop space theory and our model category structure onthe category of S-algebras, the spectra ko and ku that represent real and complexconnective K-theory can be taken to be q-co�brant commutative S-algebras. Thespectra that represent periodic K-theory can be reconstructed up to homotopy byinverting the Bott element �O 2 �8(ko) or �U 2 �2(ku). That is,KO ' ko[��1O ] and KU ' ku[��1U ]:We are entitled to the following result as a special case of the previous one.Theorem 6.12. The spectra KO and KU can be constructed as commutativeko and ku-algebras.In particular, KO and KU are commutative S-algebras, but it seems very hardto prove this directly. Wolbert has studied the algebraic structure of the derivedcategories of modules over the connective and periodic versions of the real andcomplex K-theory S-algebras.Remark 6.13. For �nite groups G, Theorem 6.12 applies with the same proofto construct the periodic spectra KOG and KUG of equivariant K-theory as com-mutative koG and kuG-algebras. As we shall discuss in Chapter XXIV, this leadsto an elegant proof of the Atiyah-Segal completion theorem in equivariant K-cohomology and of its analogue for equivariant K-homology.



7. TOPOLOGICAL HOCHSCHILD HOMOLOGY AND COHOMOLOGY 319A. K. Bous�eld. The localization of spectra with respect to homology. Topology 18(1979),257{281.J. P. May. Multiplicative in�nite loop space theory. J. Pure and Applied Algebra 26(1982), 1-69.J. Wolbert. Toward an algebraic classi�cation of module spectra. Preprint, 1995. University ofChicago. (Part of 1996 PhD thesis in preparation.)7. Topological Hochschild homology and cohomologyAs another application of brave new algebra, we describe the topological Hoch-schild homology of R-algebras with coe�cients in bimodules. We assume familiar-ity with the classical Hochschild homology of algebras (as in Cartan and Eilenberg,for example). The study of this topic and of topological cyclic homology, whichtakes topological Hochschild homology as its starting point and involves equivari-ant considerations, is under active investigation by many people. We shall justgive a brief introduction.We assume given a q-co�brant commutative S-algebra R and a q-co�brant R-algebra A. If A is commutative, we require it to be q-co�brant as a commutativeR-algebra. We de�ne the enveloping R-algebra of A byAe = A ^R Aop;where Aop is de�ned by twisting the product on A, as in algebra. If A is commu-tative, then AE �= A ^R A and the product Ae �! A is a map of R-algebras. Wealso assume given an (A;A)-bimodule M ; it can be viewed as either a left or aright Ae-module.Definition 7.1. Working in derived categories, de�ne topological Hochschildhomology and cohomology with values in DR byTHHR(A;M) =M ^Ae A and THHR(A;M) = FAe(A;M):If A is commutative, then these functors take values in the derived category DAe.On passage to homotopy groups, de�neTHHR� (A;M) = TorAe� (M;A) and THH�R(A;M) = Ext�Ae(A;M):When M = A, we delete it from the notations.Since we are working in derived categories, we are implicitly taking M to bea cell Ae-module in the de�nition of THHR(A;M) and approximating A by aweakly equivalent cell Ae-module in the de�nition of THHR(A;M).Proposition 7.2. If A is a commutativeR-algebra, then THHR(A) is isomor-phic in DAe to a commutative Ae-algebra.



320 XXII. BRAVE NEW ALGEBRAThe module structures on THHR(A;M) have the following implication.Proposition 7.3. If either R or A is the Eilenberg-MacLane spectrum of acommutative ring, then THHR(A;M) is a product of Eilenberg-MacLane spectra.We have spectral sequences that relate algebraic and topological Hochschildhomology. For a commutative graded ring R�, a graded R�-algebra A� that is 
atas an R�-module, and a graded (A�; A�)-bimodule M�, we de�neHHR�p;q (A�;M�) = Tor(A�)ep;q (M�; A�) and HHp;qR� (A�;M�) = Extp;q(A�)e(A�;M�);where p is the homological degree and q is the internal degree. (This algebraicde�nition would not be correct in the absence of the 
atness hypothesis.) WhenM� = A�, we delete it from the notation. If A� is commutative, then HHR��;� (A�)is a graded A�-algebra. Observe that (Aop)� = (A�)op.In view of Theorem 5.5, the spectral sequence of Theorem 3.2 specializes togive the following spectral sequences relating algebraic and topological Hochschildhomology.Theorem 7.4. There are spectral sequences of the formE2p;q = TorR�p;q(A�; Aop� ) =) (Ae)p+q;E2p;q = Tor(Ae)�p;q (M�; A�) =) THHRp+q(A;M);and Ep;q2 = Extp;q(Ae)�(A�;M�) =) THHp+qR (A;M):If A� is a 
at R�-module, so that the �rst spectral sequence collapses, then theinitial terms of the second and third spectral sequences are, respectively,HHR��;�(A�;M�) and HH�;�R� (A�;M�):This is of negligible use in the absolute case R = S, where the 
atness hypoth-esis on A� is unrealistic. However, in the relative case, it implies that algebraicHochschild homology and cohomology are special cases of topological Hochschildhomology and cohomology.Theorem 7.5. Let R be a (discrete, ungraded) commutative ring, let A be anR-
at R-algebra, and let M be an (A;A)-bimodule. ThenHHR� (A;M) �= THHHR� (HA;HM)and HH�R(A;M) �= THH�HR(HA;HM):



7. TOPOLOGICAL HOCHSCHILD HOMOLOGY AND COHOMOLOGY 321If A is commutative, then HHR� (A) �= THHHR� (HA) as A-algebras.We concentrate on homology henceforward. In the absolute case R = S, it isnatural to approach THHS� (A;M) by �rst determining the ordinary homology ofTHHS(A;M), using the case E = HFp of the following spectral sequence, andthen using the Adams spectral sequence. A spectral sequence like the followingone was �rst obtained by B�okstedt. Under 
atness hypotheses, there are variantsin which E need only be a commutative ring spectrum, e.g. Theorem 7.12 below.Theorem 7.6. Let E be a commutativeS-algebra. There are spectral sequenceof di�erential E�(R)-modules of the formsE2p;q = TorE�Rp;q (E�A;E�(Aop)) =) Ep+q(Ae)and E2p;q = TorE�(Ae)p;q (E�(M); E�(A)) =) Ep+q(THHR(A;M)):There is an alternative description of topological Hochschild homology in termsof the brave new algebra version of the standard complex for the computation ofHochshild homology. Write Ap for the p-fold ^R-power of A, and let� : A ^R A �! A and � : R �! Abe the product and unit of A. Let�` : A ^RM �!M and �r :M ^R A �!Mbe the left and right action of A on M . We have cyclic permutation isomorphisms� :M ^R Ap ^R A �! A ^RM ^R Ap:The topological analogue of passage from a simplicial k-module to a chain com-plex of k-modules is passage from a simplicial spectrum E� to its spectrum levelgeometric realization jE�j; this construction is studied in [EKMM].Definition 7.7. De�ne a simplicial R-module thhR(A;M)� as follows. Its R-module of p-simplices is M ^R Ap. Its face and degeneracy operators aredi = 8>><>>:�r ^ (id)p�1 if i = 0id^(id)i�1 ^ � ^ (id)p�i�1 if 1 � i < p(�` ^ (id)p�1) � � if i = pand si = id^(id)i ^ � ^ (id)p�i. De�nethhR(A;M) = jthhR(A;M)�j;



322 XXII. BRAVE NEW ALGEBRAWhen M = A, we delete it from the notation, writing thhR(A)� and jthhR(A)�j.Proposition 7.8. Let A be a commutative R-algebra. Then thhR(A) is acommutative A-algebra and thhR(A;M) is a thhR(A)-module.As in algebra, the starting point for a comparison of de�nitions is the relativetwo-sided bar construction BR(M;A;N). It is de�ned for a commutativeS-algebraR, an R-algebra A, and right and left A-modules M and N . Its R-module of p-simplices is M ^R Ap ^N . There is a natural map : BR(A;A;N) �! Nof A-modules that is a homotopy equivalence of R-modules. More generally, thereis a natural map of R-modules : BR(M;A;N) �!M ^A Nthat is a weak equivalence of R-modules whenM is a cellA-module. The relevanceof the bar construction to thh is shown by the following observation, which is thesame as in algebra. We writeBR(A) = BR(A;A;A);BR(A) is an (A;A)-bimodule; on the simplicial level, BR0 (A) = Ae.Proposition 7.9. For (A;A)-bimodulesM , there is a natural isomorphismthhR(A;M) �=M ^Ae BR(A):Therefore, for cell Ae-modules M , the natural mapthhR(A;M) �=M ^Ae BR(A)id^ �!M ^Ae A = THHR(A;M)is a weak equivalences of R-modules, or of Ae-modules if A is commutative.While we assumed that M is a cell Ae-module in our derived category levelde�nition of THH, we are mainly interested in the case M = A of our point-setlevel construction thh, and A is not of the Ae-homotopy type of a cell Ae-moduleexcept in trivial cases. However, Theorem 5.5 leads to the following result.Theorem 7.10. Let 
 :M �! A be a weak equivalence of Ae-modules, whereM is a cell Ae-module. Then the mapthhR(id; 
) : thhR(A;M) �! thhR(A;A) = thhR(A)is a weak equivalence of R-modules, or of Ae-modules if A is commutative. There-fore THHR(A;M) is weakly equivalent to thhR(A).



7. TOPOLOGICAL HOCHSCHILD HOMOLOGY AND COHOMOLOGY 323Corollary 7.11. In the derived category DR, THHR(A) �= thhR(A).Use of the standard simplicial �ltration of the standard complex gives us thepromised variant of the spectral sequence of Theorem 7.6. For simplicity, werestrict attention to the absolute case R = S.Theorem 7.12. Let E be a commutative ring spectrum, A be an S-algebra,and M be a cell Ae-module. If E�(A) is E�-
at, there is a spectral sequence of theform E2p;q = HHE�p;q (E�(A);E�(M)) =) Ep+q(thhS(A;M)):If A is commutative and M = A, this is a spectral sequence of di�erential E�(A)-algebras, the product on E2 being the standard product on Hochschild homology.McClure, Schw�anzl, and Vogt observed that, when A is commutative, as weassume in the rest of the section, there is an attractive conceptual reinterpreta-tion of the de�nition of thhR(A). Recall that the category CAR of commutativeR-algebras is tensored over the category of unbased spaces. By writing out thestandard simplicial set S1� whose realization is the circle and comparing faces anddegeneracies, it is easy to check that there is an identi�cation of simplicial com-mutative R-algebras thhR(A)� �= A
 S1� :(7.13)Passing to geometric realization and identifyingS1 with the unit complex numbers,we obtain the following consequence.Theorem 7.14 (McClure, Schw�anzl, Vogt). For commutativeR-algebrasA, there is a natural isomorphism of commutative R-algebrasthhR(A) �= A
 S1:The product of thhR(A) is induced by the codiagonal S1` S1 �! S1. The unit� : A �! thhR(A) is induced by the inclusion f1g ! S1.The adjunction (5.1) that de�nes tensors implies that the functor thhR(A) pre-serves colimits in A, something that is not at all obvious from the original def-inition. The theorem and the adjunction (5.1) imply much further structure onthhR(A).



324 XXII. BRAVE NEW ALGEBRACorollary 7.15. The pinch map S1 �! S1 _ S1 and trivial map S1 �! �induce a (homotopy) coassociative and counital coproduct and counit : thhR(A) �! thhR(A) ^A thhR(A) and " : thhR(A) �! Athat make thhR(A) a homotopical Hopf A-algebra.The product on S1 gives rise to a map� : (A
 S1)
 S1 �= A
 (S1 � S1) �! A
 S1:Corollary 7.16. For an integer r, de�ne �r : S1 �! S1 by �r(e2�it) = e2�irt.The �r induce power operations�r : thhR(A) �! thhR(A):These are maps of R-algebras such that�0 = �"; �1 = id; �r � �s = �rs;and the following diagrams commute:thhR(A)
 S1 //����r
�s thhR(A)�� �r+sthhR(A)
 S1 //� thhR(A):Consider naive S1-spectra and let S1 act trivially on R and A. Via the adjunc-tion (5.1), the map � gives rise to an action of S1 on thhR(A).Corollary 7.17. thhR(A) is a naive commutative S1-R-algebra. If B is anaive commutative S1-R-algebra and f : A �! B is a map of commutative R-algebras, then there is a unique map ~f : thhR(A) �! B of naive commutativeS1-R-algebras such that ~f � � = f .Finally, the description of tensors in Proposition 5.2 leads to the following result.Corollary 7.18. There is a natural S1-equivariant map of R-modules! : A ^ S1+ �! thhR(A)such that if B is a commutative R-algebra and f : A ^ S1+ �! B is a map ofR-modules that is a pointwise map of R-algebras, then f uniquely determines amap of R-algebras ~f : thhR(A) �! B such that f = ~f � !.



7. TOPOLOGICAL HOCHSCHILD HOMOLOGY AND COHOMOLOGY 325M. B�okstedt. Topological Hochschild homology. Preprint, 1990.M. B�okstedt. The topological Hochschild homology of Zand Z=p. Preprint, 1990.H. Cartan and S. Eilenberg. Homological Algebra. Princeton Univ. Press. 1956.J. E. McClure, R. Schw�anzl, and R. Vogt. THH(R) �= R
 S1 for E1 ring spectra. J. Pure andApplied Algebra. To appear.



326 XXII. BRAVE NEW ALGEBRA



CHAPTER XXIIIBrave new equivariant foundationsby A. D. Elmendorf, L. G. Lewis, Jr., and J. P. May1. Twisted half-smash productsWe here give a quick sketch of the basic constructions behind the work of thelast chapter. Although the basic source, [EKMM], is written nonequivariantly, itapplies verbatim to the equivariant context in which we shall work in this chapter.We shall take the opportunity to describe some unpublished perspectives on therole of equivariance in the new theory.The essential starting point is the twisted half-smash product construction from[LMS]. Although we have come this far without mentioning this construction, it isin fact central to equivariant stable homotopy theory. Before describing it, we shallmotivate it in terms of the main theme of this chapter, which is the construction ofthe category of L-spectra. As we shall see, this is the main step in the constructionof the category of S-modules.Fix a compact Lie group G and a G-universe U and consider the category GS Uof G-spectra indexed on U . Write U j for the direct sum of j copies of U . Recallthat we have an external smash product ^ : GS U � GS U �! GS U2 and aninternal smash product f� � ^ : GS U2 �! GS U for each G-linear isometryf : U2 �! U . The external smash product is suitably associative, commutative,and unital on the point set level, hence we may iterate and form an external smashproduct ^ : (GS U)j �! GS U j for each j � 1, the �rst external smash powerbeing the identity functor. For each G-linear isometry f : U j �! U , we have anassociated internal smash product f� � ^ : GS U j �! GS U . We allow the casej = 0; here GS f0g = GT , the only linear isometry f0g �! U is the inclusion i,and i� is the suspension G-spectrum functor. At least if we restrict attention to327



328 XXIII. BRAVE NEW EQUIVARIANT FOUNDATIONStame G-spectra, the functors induced by varying f are all equivalent (see Theorem1.5 below). Thus varying G-linear isometries f : U j �! U parametrize equivalentinternal smash products.There is a language for the discussion of such parametrized products in variousmathematical contexts, namely the language of \operads" that was introducedfor the study of iterated loop space theory in 1972. Let L (j) denote the spaceI (U j ; U) of linear isometries U j �! U . Here we allow all linear isometries, notjust the G-linear ones, and G acts on L (j) by conjugation. Thus the �xed pointspace L (j)G is the space of G-linear isometries U j �! U . The symmetric group�j acts freely from the right on L (j), and the actions of G and �j commute. Theequivariant homotopy type of L (j) depends on U . If U is complete, then, for� � G� �j , L (j)� is empty unless � \ �j = e and contractible otherwise. Thatis, L (j) is a universal (G;�j)-bundle. We have maps
 :L (k)�L (j1)� � � � �L (jk) �!L (j1 + � � � + jk)de�ned by 
(g; f1; : : : ; fk) = g � (f1 � � � � � fk):These data are interrelated in a manner codi�ed in the de�nition of an operad,and L is called the \linear isometries G-operad" of the universe U . When U iscomplete, L is an E1 G-operad.There is a \twisted half-smash product"L (j)n (E1 ^ � � � ^ Ej)(1.1)into which we can map each of the j-fold internal smash products f�(E1^� � �^Ej).Moreover, if we restrict attention to tame G-spectra, then each of these maps intothe twisted half-smash product (1.1) is an equivalence. The twisted half-smashproducts L (1)nE and L (2)nE^E 0 are the starting points for the constructionof the category of L-spectra and the de�nition of its smash product. We shallreturn to this point in the next section, after saying a little more about twistedsmash products of G-spectra.Suppose given G-universes U and U 0, and let I (U;U 0) be the G-space of linearisometries U �! U 0, with G acting by conjugation. Let A be an (unbased) G-space together with a given G-map � : A �! I (U;U 0). We then have a twistedhalf-smash product functor� n (�) : GS U �! GS U 0:When A has the homotopy type of a G-CW complex and E 2 GS U is tame,di�erent choices of � give homotopy equivalent G-spectra �nE. For this reason,



1. TWISTED HALF-SMASH PRODUCTS 329and because we often have a canonical choice of � in mind, we usually abusenotation by writing An E instead of �n E. Thus we think of A as a space overI (U;U 0).When A is a point, � is a choice of a G-linear isometry f : U �! U 0. Inthis case, the twisted half-smash functor is just the change of universe functorf� : GS U �! GS U 0 (see XII.3.1{3.2). Intuitively, one may think of � n Eas obtained by suitably topologizing and giving a G-action to the union of thenonequivariant spectra �(a)�(E) as a runs through A. Another intuition is thatthe twisted half-smash product is a generalization to spectra of the \untwisted"functor A+ ^ X on based G-spaces X. This intuition is made precise by thefollowing \untwisting formula" that relates twisted half-smash products and shiftdesuspensions.Proposition 1.2. For a G-space A over I (U;U 0) and an isomorphism V �= V 0of indexing G-spaces, where V � U and V 0 � U 0, there is an isomorphism ofG-spectra An �1V X �= A+ ^ �1V 0Xthat is natural in G-spaces A over I (U;U 0) and based G-spaces X.The twisted-half smash product functor enjoys essentially the same formal prop-erties as the space level functor A+ ^ X. For example, we have the followingproperties, whose space level analogues are trivial to verify.Proposition 1.3. The following statements hold.(i) There is a canonical isomorphism fidUgnE �= E.(ii) Let A ! I (U;U 0) and B ! I (U 0; U 00) be given and give B � A thecomposite structure mapB �A // I (U 0; U 00)�I (U;U 0) //� I (U;U 00):Then there is a canonical isomorphism(B �A)n E �= B n (An E):(iii) Let A ! I (U1; U 01) and B ! I (U2; U 02) be given and give A � B thecomposite structure mapA�B // I (U1; U 01)�I (U2; U 02) //� I (U1 � U2; U 01 � U 02):



330 XXIII. BRAVE NEW EQUIVARIANT FOUNDATIONSLet E1 and E2 be G-spectra indexed on U1 and U2 respectively. Then thereis a canonical isomorphism(A�B)n (E1 ^ E2) �= (An E1) ^ (B n E2):(iv) For A! I (U;U 0), E 2 GS U , and a based G-space X, there is a canonicalisomorphism An (E ^X) �= (AnE) ^X:The functor An (�) has a right adjoint twisted function spectrum functorF [A; �) : GS U 0 �! GS U;which is the spectrum level analog of the function G-space F (A+;X). ThusGS U 0(AnE;E 0) �= GS U(E;F [A;E 0)):(1.4)The functor A n E is homotopy-preserving in E, and it therefore preserveshomotopy equivalences in the variable E. However, it only preserves homotopiesover I (U;U 0) in A. Nevertheless, it very often preserves homotopy equivalencesin the variable A. The following central technical result is an easy consequenceof Proposition 1.2 and XII.9.2. It explains why all j-fold internal smash productsare equivalent to the twisted half-smash product (1.1).Theorem 1.5. Let E 2 GS U be tame and letA be a G-space overI (U;U 0). If� : A0 �! A is a homotopy equivalence of G-spaces, then �nid : A0nE �! AnEis a homotopy equivalence of G-spectra.Since A n E is a G-CW spectrum if A is a G-CW complex and E is a G-CWspectrum, this has the following consequence.Corollary 1.6. Let E 2 GS U have the homotopy type of a G-CW spectrumand let A be a G-space over I (U;U 0) that has the homotopy type of a G-CWcomplex. Then An E has the homotopy type of a G-CW spectrum.[LMS, Chapter VI]J. P. May. The Geometry of Iterated Loop Spaces. Springer Lecture Notes in MathematicsVolume 271. 1972.



2. THE CATEGORY OF L-SPECTRA 3312. The category of L-spectraReturn to the twisted half-smash product of (1.1). We think of it as a canonicalj-fold internal smash product. However, if we are to take this point of viewseriously, we must take note of the di�erence between E and its \1-fold smashproduct" L (1) n E. The space L (1) is a monoid under composition, and theformal properties of twisted half-smash products imply a natural isomorphismL (1)n (L (1)n E) �= (L (1) �L (1))n E;where, on the right, L (1) � L (1) is regarded as a G-space over L (1) via thecomposition product. This product induces a map� : (L (1) �L (1)) n E �! L (1)n E;and the inclusion f1g �! L (1) induces a map � : E �!L (1)nE. The functorL given by LE = L (1) n E is a monad under the product � and unit �. Wetherefore have the notion of a G-spectrum E with an action � : LE �! E of L;the evident associativity and unit diagrams are required to commute.Definition 2.1. An L-spectrum is a G-spectrumM together with an action ofthe monad L. Let GS [L] denote the category of L-spectra.The formal properties of GS [L] are virtually the same as those of GS ; sinceL (1) is a contractible G-space, so are the homotopical properties. For tame G-spectra E, we have a natural equivalence E = id�E �! LE. For L-spectraM thatare tame as G-spectra, the action � : LM �! M is a weak equivalence. Takingthe LSn as sphere L-modules, we obtain a theory of G-CW L-spectra exactly likethe theory of G-CW spectra. The functor L preserves G-CW spectra. We let�hGS [L] be the category that is obtained from the homotopy category hGS [L]by formally inverting the weak equivalences and �nd that it is equivalent to thehomotopy category of G-CW L-spectra. The functor L : GS �! GS [L] andthe forgetful functor GS [L] �! GS induce an adjoint equivalence between thestable homotopy category �hGS and the category �hGS [L].Via the untwisting isomorphismL (1)n�1X �= L (1)+^�1X and the obviousprojection L (1)+ �! S0, we obtain a natural action of L on suspension spectra.However, even when X is a G-CW complex, �1X is not of the homotopy type ofa G-CW L-spectrum, and it is the functor L ��1 and not the functor �1 that isleft adjoint to the zeroth space functor GS [L] �! T .The reason for introducing the category of L-spectra is that it has a well-behaved\operadic smash product", which we de�ne next. Via instances of the structuralmaps 
 of the operad L , we have both a left action of the monoid L (1) and a



332 XXIII. BRAVE NEW EQUIVARIANT FOUNDATIONSright action of the monoid L (1) �L (1) on L (2). These actions commute witheach other. If M and N are L-spectra, then L (1) �L (1) acts from the left onthe external smash product M ^N via the map� : (L (1)�L (1))n (M ^N) �= (L (1)nM) ^ (L (1) nN) //�^� M ^N:To form the twisted half smash product on the left, we think of L (1) �L (1) asmapping toI (U2; U2) via direct sum of linear isometries. The smash product overL of M and N is simply the balanced product of the two L (1) �L (1)-actions.Definition 2.2. Let M and N be L-spectra. De�ne the operadic smash prod-uct M ^L N to be the coequalizer displayed in the diagram(L (2)�L (1) �L (1))n (M ^ N) //
nid //idn� L (2) n (M ^N) // M ^L N:Here we have implicitly used the isomorphism(L (2)�L (1)�L (1))n (M ^N) �= L (2)n [(L (1)�L (1))n (M ^ N)]given by Proposition 1.4(ii). The left action of L (1) on L (2) induces a left actionof L (1) on M ^L N that gives it a structure of L-spectrum.We may mimic tensor product notation and writeM ^L N = L (2)nL (1)�L (1) (M ^N):This smash product is commutative, and a special property of the linear isome-tries operad, �rst noticed by Hopkins, implies that it is also associative. Thereis a function L-spectrum functor FL to go with ^L ; it is constructed from theexternal and twisted function spectra functors, and we have the adjunctionGS [L](M ^L M 0;M 00) �= GS [L](M;FL (M;M 0)):(2.3)The smash product ^L is not unital. However, there is a natural map� : S ^L M �!Mof L-spectra that is always a weak equivalence of spectra. It is not usually anisomorphism, but another special property of the linear isometries operad impliesthat it is an isomorphism ifM = S or ifM = S^L N for any L-spectrumN . Thusany L-spectrum is weakly equivalent to one whose unit map is an isomorphism.This makes sense of the following de�nition, in which we understand S to meanthe sphere G-spectrum indexed on our �xed chosen G-universe U .



3. A1 AND E1 RING SPECTRA AND S-ALGEBRAS 333Definition 2.4. An S-module is an L-spectrumM such that � : S ^L M �!M is an isomorphism. The category GMS of S-modules is the full subcategory ofGS [L] whose objects are the S-modules. For S-modules M and M 0, de�neM ^S M 0 =M ^L M 0 and FS(M;M 0) = S ^L FL (M;M 0):Although easy to prove, one surprising formal feature of the theory is that thefunctor S ^L (�) : GS [L] �! GMS is right and not left adjoint to the forgetfulfunctor; it is left adjoint to the functor FL (S; �). This categorical situation dictatesour de�nition of function S-modules. It also dictates that we construct limits ofS-modules by constructing limits of their underlying L-spectra and then applyingthe functor S ^L (�), as indicated in XXIIx1. The free S-module functor FS :GS �! GMS is de�ned by FS(E) = S ^L LE:It is left adjoint to the functor FL (S; �) : GMS �! GS , and this is the functorthat we denoted by US in XXIIx1. From this point, the properties of the categoryof S-modules that we described in XXIIx1 are inherited directly from the goodproperties of the category of L-spectra.3. A1 and E1 ring spectra and S-algebrasWe de�ned S-algebras and their modules in terms of structure maps that makethe evident diagrams commute in the symmetric monoidal category of S-modules.There are older notions of A1 and E1 ring spectra and their modules that May,Quinn, and Ray introduced nonequivariantly in 1972; the equivariant generaliza-tion was given in [LMS].Working equivariantly, anA1 ring spectrum is a spectrumR together with an action by the linear isometries G-operad L . Such an actionis given by G-maps �j :L (j)nRj �! R; j � 0;such that appropriate associativity and unity diagrams commute. If the �j are�j -equivariant, then R is said to be an E1 ring spectrum. Similarly a left moduleM over an A1 ring spectrum R is de�ned in terms of maps�j :L (j)nRj�1 ^M �!M; j � 1;in the E1 case, we require these maps to be �j�1-equivariant. It turns out thatthe higher �j and �j are determined by the �j and �j for j � 2. That is, we havethe following result, which might instead be taken as a de�nition.



334 XXIII. BRAVE NEW EQUIVARIANT FOUNDATIONSTheorem 3.1. An A1 ring spectrum is an L-spectrum R with a unit map� : S �! R and a product � : R ^L R ! R such that the following diagramscommute: S ^L R //�^id &&� MMMMMMMMMMMM R ^L R�� � R ^L Soo id^�xx ��qqqqqqqqqqqqRand R ^L R ^L R���^id //id^� R ^L R�� �R ^L R //� R;R is an E1 ring spectrum if the following diagram also commutes:R ^L R $$� IIIIIIIII //� R ^L Rzz �uuuuuuuuuR:A module over an A1 or E1 ring spectrum R is an L-spectrum M with a map� : R ^L M !M such that the following diagrams commute:S ^L M //�^id &&� NNNNNNNNNNNN R ^L M�� � and R ^L R ^L M���^id //id^� R ^L M�� �M R ^L M //� M:This leads to the following description of S-algebras.Corollary 3.2. An S-algebra or commutative S-algebra is an A1 or E1 ringspectrum that is also an S-module. A module over an S-algebra or commutativeS-algebra R is a module over the underlying A1 or E1 ring spectrum that is alsoan S-module.In particular, we have a functorial way to replace A1 and E1 ring spectra andtheir modules by weakly equivalent S-algebras and commutative S-algebras andtheir modules.Corollary 3.3. For an A1 ring spectrum R, S ^L R is an S-algebra and� : S ^L R �! R is a weak equivalence of A1 ring spectra, and similarly inthe E1 case. If M is an R-module, then S ^L M is an S ^L R-module and



4. ALTERNATIVE PERSPECTIVES ON EQUIVARIANCE 335� : S ^L M �! M is a weak equivalence of R-modules and of modules overS ^L R regarded as an A1 ring spectrum.Thus the earlier de�nitions are essentially equivalent to the new ones, and earlierwork gives a plenitude of examples. Thom G-spectra occur in nature as E1 ringG-spectra. For �nite groups G, multiplicative in�nite loop space theory worksas it does nonequivariantly; however, the details have yet to be fully worked outand written up: that is planned for a later work. This theory gives that theEilenberg-MacLane G-spectra of Green functors, the G-spectra of connective realand complex K-theory, and the G-spectra of equivariant algebraic K-theory areE1 ring spectra. As observed in XXII.6.13, it follows that the G-spectra of pe-riodic real and complex K-theory are also E1 ring G-spectra. Nonequivariantly,many more examples are known due to recent work, mostly unpublished, of suchpeople as Hopkins, Miller, and Kriz.J. P. May (with contributions by F. Quinn, N. Ray, and J. Tornehave). E1 ring spaces andE1 ring spectra. Springer Lecture Notes in Mathematics Volume 577. 1977.J. P. May. Multiplicative in�nite loop space theory. J. Pure and Applied Algebra, 26(1982),1{69. 4. Alternative perspectives on equivarianceWe have developed the theory of L-spectra and S-modules starting from a �xedgiven G-universe U . However, there are alternative perspectives on the role of theuniverse and of equivariance that shed considerable light on the theory. Much ofthis material does not appear in the literature, and we give proofs in Section 6after explaining the ideas here. Let SU denote the sphere G-spectrum indexed on aG-universe U . The essential point is that while the categories GS U of G-spectraindexed on U vary as U varies, the categories GMSU of SU -modules do not: allsuch categories are actually isomorphic. These isomorphisms preserve homotopiesand thus pass to ordinary homotopy categories. However, they do not preserveweak equivalences and therefore do not pass to derived categories, which do varywith U . This observation �rst appeared in a paper of Elmendorf and May, but weshall begin with a di�erent explanation than the one we gave there.We shall explain matters by describing the categories of G-spectra and of L-G-spectra indexed on varying universes U in terms of algebras over monads de�nedon the ground category S = SR1 of nonequivariant spectra indexed on R1.Abbreviate notation by writing L for the monoid L (1) = I (R1;R1). Any G-universe U is isomorphic to R1 with an action by G through linear isometries. Theaction may be written in the form gx = f(g)(x) for x 2 R1, where f : G �! L is



336 XXIII. BRAVE NEW EQUIVARIANT FOUNDATIONSa homomorphism of monoids. To �x ideas, we shall write R1f for the G-universedetermined by such a homomorphism f . For a spectrum E, we then de�neG fE = G nE;where the twisted half-smash product is determined by the map f . The multi-plication and unit of G determine maps � : G fG fE �! G fE and � : E �! G fEthat give G f a structure of monad in S . As was observed in [LMS], the categoryGSR1f of G-spectra indexed on R1f is canonically isomorphic to the categoryS [G f ] of algebras over the monad G f . Of course, we also have the monad L in Swith LE = L n E; by de�nition, a nonequivariant L-spectrum is an algebra overthis monad.Proposition 4.1. The following statements about the monads L and G f holdfor any homomorphism of monoids f : G �! L = I (R1;R1).(i) L restricts to a monad in the category S [G f ] of G-spectra indexed on R1f .(ii) G f restricts to a monad in the category S [L] of L-spectra indexed on R1.(iii) The composite monads LG f and G fL in S are isomorphic.Moreover, up to isomorphism, the composite monad LG f is independent of f .Corollary 4.2. The category GSR1f [L] = S [Gf ][L] of L-G-spectra indexedon R1f is isomorphic to the category S [L][G f ] of G-L-spectra indexed on R1f . Upto isomorphism, this category is independent of f .The isomorphisms that we shall obtain preserve spheres and operadic smashproducts and so restrict to give isomorphisms between categories of S-modules.Corollary 4.3. Up to isomorphism, the category GMSU of SU -modules isindependent of the G-universe U .Thus a structure of SR1 -module on a naive G-spectrum is so rich that it en-compasses an SU -action on a G-spectrum indexed on U for any universe U . Thisrichness is possible because the action of G on U can itself be expressed in termsof the monoid L.There is another way to think about these isomorphisms, which is given inElmendorf and May and which we now summarize. It is motivated by the de�nitionof the operadic smash product.



4. ALTERNATIVE PERSPECTIVES ON EQUIVARIANCE 337Definition 4.4. Fix universes U and U 0, write L and L0 for the respectivemonads in GS U and GS U 0 and write L and L 0 for the respective G-operads.For an L-spectrum M , de�ne an L0-spectrum IU 0U M byIU 0U M = I (U;U 0)nI (U;U)M:That is, IU 0U M is the coequalizer displayed in the diagramI (U;U 0)n (I (U;U)nM) //
nid //idn� I (U;U 0)nM // IU 0U M:Here � : I (U;U) nM �! M is the given action of L on M . We regard theproduct I (U;U 0)�I (U;U) as a space over I (U;U 0) via the composition map
 : I (U;U 0)�I (U;U) �! I (U;U 0);Proposition 1.3(ii) gives a natural isomorphismI (U;U 0)n (I (U;U)nM) �= (I (U;U 0)�I (U;U))nM:This makes sense of the map 
 n id in the diagram. The required left action ofI (U 0; U 0) on IU 0U M is induced by the composition product
 : I (U 0; U 0)�I (U;U 0) �! I (U;U 0);which induces a natural map of coequalizer diagrams on passage to twisted half-smash products.Proposition 4.5. Let U , U 0, and U 00 be G-universes. Consider the functorsIU 0U : GS U [L] �! GS U 0[L0] and �1U : GT �! GS U [L]:(i) IU 0U � �1U is naturally isomorphic to �1U 0.(ii) IU 00U 0 � IU 0U is naturally isomorphic to IU 00U .(iii) IUU is naturally isomorphic to the identity functor.Therefore the functor IU 0U is an equivalence of categories with inverse IUU 0. Moreover,the functor IU 0U is continuous and satis�es IU 0U (M ^X) �= (IU 0U M)^X for L-spectraM and based G-spaces X. In particular, it is homotopy preserving, and IU 0U andIUU 0 induce inverse equivalences of homotopy categories.Now suppose that U = R1f and U 0 = R1f 0 . Since the coequalizer de�ningIU 0U is the underlying nonequivariant coequalizer with a suitable action of G, wesee that, with all group actions ignored, the functor IU 0U is naturally isomorphicto the identity functor on S [L]. In this case, the equivalences of categories of



338 XXIII. BRAVE NEW EQUIVARIANT FOUNDATIONSthe previous result are natural isomorphisms and, tracing through the de�nitions,one can check that they agree with the equivalences given by the last statement ofCorollary 4.2. Therefore the following result, which applies to any pair of universesU and U 0, is an elaboration of Corollary 4.3.Proposition 4.6. The following statements hold.(i) IU 0U SU is canonically isomorphic to SU 0.(ii) For L-spectra M and N , there is a natural isomorphism! : IU 0U (M ^L N) �= (IU 0U M) ^L 0 (IU 0U N):(iii) The following diagram commutes for all L-spectra M :IU 0U (SU ^L M) //!''IU 0U � NNNNNNNNNNN SU 0 ^L 0 (IU 0U M)ww �oooooooooooIU 0U M:(iv) M is an SU -module if and only if IU 0U M is an SU 0-module.Therefore the functors IU 0U and IUU 0 restrict to inverse equivalences of categoriesbetween GMSU and GMSU 0 that induce inverse equivalences of categories betweenhGMSU and hGMSU 0 .This has the following consequence, which shows that, on the point-set level,our brave new equivariant algebraic structures are independent of the universe inwhich they are de�ned.Theorem 4.7. The functor IU 0U : GMSU �! GMSU 0 is monoidal. If R is anSU -algebra and M is an R-module, then IU 0U R is an SU 0-algebra and IU 0U M is anIU 0U R-module.The ideas of this section are illuminated by thinking model theoretically. Wefocus attention on the category GMR1 , where G acts trivially on R1. We canreinterpret our results as saying that the model categories of SU -modules for vary-ing universes U are all isomorphic to the category GMR1, but given a modelstructure that depends on U . Indeed, for any U = R1f , we have the isomorphismof categories IR1U : GMU �! GMR1 , and we can transport the model categorystructure of GMU to a new model category structure on GMR1 , which we callthe U -model structure on GMR1.The essential point is that IR1U does not carry the co�brant sphere SU -modulesSnSU = SU ^L LSn to the corresponding co�brant sphere SR1-modules. The weak



5. THE CONSTRUCTION OF EQUIVARIANT ALGEBRAS AND MODULES 339equivalences in the U -model structure are the maps that induce isomorphisms onhomotopy classes of SR1-module maps out of the \U -spheres" G=H+ ^ IR1U SnSU .We de�ne U -cell and relative U -cell SR1-modules by using these U -spheres as thedomains of their attaching maps. The U -co�brations are the retracts of the relativeU -cell SR1-modules, and the U -�brations are then determined as the maps thatsatisfy the right lifting property with respect to the acyclic U -co�brations.A. D. Elmendorf and J. P. May. Algebras over equivariant sphere spectra. Preprint, 1995.5. The construction of equivariant algebras and modulesThe results of the previous section are not mere esoterica. They lead to homo-topically well-behaved constructions of brave new equivariant algebraic structuresfrom brave new nonequivariant algebraic structures. The essential point is to un-derstand the homotopical behavior of point-set level constructions that have de-sirable formal properties. We shall explain the solutions to two natural problemsin this direction.First, suppose given a nonequivariant S-algebra R and an R-module M ; forde�niteness, we suppose that these spectra are indexed on the �xed point universeUG of a completeG-universe U . Is there an SG-algebra RG and an RG-moduleMGwhose underlying nonequivariant spectra are equivalent to R and M in a way thatpreserves the brave new algebraic structures? In this generality, the only obviouscandidates for RG and MG are i�R and i�M , where i : UG �! U is the inclusion.In any case, we want RG and MG to be equivalent to i�R and i�M . However, thechange of universe functor i� does not preserve brave new algebraic structures.Thus the problem is to �nd a functor that does preserve such structures and yet isequivalent to i�. A very special case of the solution of this problem has been usedby Benson and Greenlees to obtain calculational information about the ordinarycohomology of classifying spaces of compact Lie groups.Second, suppose given an SG-algebra RG with underlying nonequivariant S-algebra R and suppose given an R-module M . Can we construct an RG-moduleMG whose underlying nonequivariant R-module is M? Note in particular thatthe problem presupposes that, up to equivalence, the underlying nonequivariantspectrum of RG is an S-algebra, and similarly for modules. We are thinking ofMUG and MU , and the solution of this problem gives equivariant versions asMUG-modules of all of the spectra, such as the Brown-Peterson and Morava K-theory spectra, that can be constructed from MU by killing some generators andinverting others.The following homotopical result of Elmendorf and May combines with Theo-



340 XXIII. BRAVE NEW EQUIVARIANT FOUNDATIONSrem 4.7 to solve the �rst problem. In fact, it shows more generally that, up toisomorphism in derived categories, any change of universe functor preserves bravenew algebraic structures. Observe that, for a linear isometry f : U �! U 0 andSU -modules M 2 GMSU , we have a composite natural map� : f�M �! I (U;U 0)nM �! IUU 0Mof G-spectra indexed on U 0, where the �rst arrow is induced by the inclusionffg �! I (U;U 0) and the second is the evident quotient map.Theorem 5.1. Let f : U �! U 0 be a G-linear isometry. Then for su�cientlywell-behaved SU -modulesM 2 GMSU (those in the collection �ESU of XXII.5.5), thenatural map � : f�M �! IU 0U M is a homotopy equivalence of G-spectra indexedon U 0Remember that �ESU includes the q-co�brant objects in all of our categoriesof brave new algebras and modules. We are entitled to conclude that, up toequivalence, the change of universe functor f� preserves brave new algebras andmodules. The most important case is the inclusion i : UG �! U . If we startfrom any nonequivariant q-co�brant brave new algebraic structure, then, up toequivalence, the change of universe functor i� constructs from it a correspondingequivariant brave new algebraic structure.Turning to the second problem that we posed, we give a result (due to May)that interrelates brave new algebraic structures in GMU and MUG. Its startingpoint is the idea of combining the operadic smash product with the functors IUU 0.We think of U as the basic universe of interest in what follows.Definition 5.2. Let U , U 0, and U 00 be G-universes. For an L0-spectrumM andan L00-spectrum N , de�ne an L-spectrum M ^L N byM ^L N = IUU 0M ^L IUU 00N:The formal properties of this product can be deduced from those of the functorsIUU 0 together with those of the operadic smash product for the �xed universe U . Inparticular, since the functor IUU 0 takes SU 0-modules to SU -modules and the smashproduct over SU is the restriction to SU -modules of the smash product over L ,we have the following observation.Lemma 5.3. The functor ^L : GS U 0[L0] � GS U 00[L00] �! GS U [L] restrictsto a functor ^SU : GMSU 0 �GMSU 00 �! GMSU :



5. THE CONSTRUCTION OF EQUIVARIANT ALGEBRAS AND MODULES 341This allows us to de�ne modules indexed on one universe over algebras indexedon another.Definition 5.4. Let R 2 GMSU 00 be an SU 00-algebra and let M 2 GMSU 0 . Saythat M is a right R-module if it is a right IU 0U 00R-module, and similarly for leftmodules.To de�ne smash products over R in this context, we use the functors IUU 0 toindex everything on our preferred universe U and then take smash products there.Definition 5.5. Let R 2 GMSU 00 be an SU 00 -algebra, let M 2 GMSU 0 be aright R-module and let N 2 GMU 000 be a left R-module. De�neM ^R N = IUU 0M ^IUU 00R IUU 000N:These smash products inherit good formal properties from those of the smashproducts of R-modules, and their homotopical properties can be deduced from thehomotopical properties of the smash product of R-modules and the homotopicalproperties of the functors IUU 0, as given by Theorem 5.1.Now specialize to consideration of UG � U . Write SG for the sphere G-spectrumindexed on U and S for the nonequivariant sphere spectrum indexed on UG. Wetake SG-modules to be in GMU and S-modules to be inMUG in what follows.Theorem 5.6. Let RG be a commutative SG-algebra and assume that RG issplit as an algebra with underlying nonequivariant S-algebra R . Then there isa monoidal functor RG ^R (�) : MR �! GMRG. If M is a cell R-module, thenRG ^RM is split as a module with underlying nonequivariant R-module M . Thefunctor RG^R (�) induces a derived monoidal functor DR �! GDRG. Therefore, ifM is an R-ring spectrum (in the homotopical sense), then RG ^RM is an RG-ringG-spectrum.The terms \split as an algebra" and \split as a module" are a bit technical,and we will explain them in a moment. However, we have the following importantexample; see XVx2 for the de�nition of MUG.Proposition 5.7. TheG-spectrumMUG that represents stable complex cobor-dism is a commutative SG-algebra, and it is split as an algebra with underlyingnonequivariant S-algebra MU .We shall return to this point and say something about the proof of the propo-sition in XXVx7. We conclude that, for any compact Lie group G and any MU -moduleM , we have a corresponding splitMUG-moduleMG �MUG^MUM . This



342 XXIII. BRAVE NEW EQUIVARIANT FOUNDATIONSallows us to transport the nonequivariant constructions of XXIIx4 into the equiv-ariant world. For example, taking M = BP or M = K(n), we obtain equivariantBrown-Peterson and MoravaK-theoryMUG-modules BPG and K(n)G. Moreover,if M is an MU -ring spectrum, then MG is an MUG-ring G-spectrum, and MG isassociative or commutative if M is so.We must still explain our terms and sketch the proof of Theorem 5.6. The notionof a split G-spectrum was a homotopical one involving the change of universefunctor i�, and neither that functor nor its right adjoint i� preserves brave newalgebraic structures. We are led to the following de�nitions.Definition 5.8. A commutative SG-algebra RG is split as an algebra if there isa commutativeS-algebra R and a map � : IUUGR �! RG of SG-algebras such that �is a (nonequivariant) equivalence of spectra and the natural map � : i�R �! IUUGRis an (equivariant) equivalence of G-spectra. We call R the (or, more accurately,an) underlying nonequivariant S-algebra of RG.Since the composite � � � is a nonequivariant equivalence and the natural mapR �! i�i�R is a weak equivalence (provided that R is tame), R is weakly equiva-lent to i�RG with G-action ignored. Thus R is a highly structured version of theunderlying nonequivariant spectrum of RG. Clearly RG is split as a G-spectrumwith splitting map � � �.We have a parallel de�nition for modules.Definition 5.9. LetRG be a commutativeSG-algebra that is split as an algebrawith underlying S-algebra R and let MG be an RG-module. Regard MG as anIUUGR-module by pullback along �. Then MG is split as a module if there is anR-module M and a map � : IUUGM �! MG of IUUGR-modules such that � is a(nonequivariant) equivalence of spectra and the natural map � : i�M �! IUUGMis an (equivariant) equivalence of G-spectra. We call M the (or, more accurately,an) underlying nonequivariant R-module of MG.Again, M is a highly structured version of the underlying nonequivariant spec-trum of MG, and MG is split as a G-spectrum with splitting map � � �. Theambiguity that we allow in the notion of an underlying object is quite useful: itallows us to use Theorem 5.1 and q-co�brant approximation (of S-algebras and ofR-modules) to arrange the condition on � in the de�nitions if we have succeededin arranging the other conditions.For the proof of Theorem 5.6, De�nition 5.5 specializes to give the requiredfunctor RG ^R (�), and it is clearly monoidal. We may as well assume that ourgiven underlying nonequivariant S-algebra R is q-co�brant as an S-algebra. Let



6. COMPARISONS OF CATEGORIES OF L-G-SPECTRA 343M be a cell R-module. By Theorem 5.1, the condition on � in the de�nition of anunderlying R-module is satis�ed. De�ne� = � ^ id : IUUGM �= IUUGR ^IUUGR IUUGM �! RG ^IUUGR IUUGM =MG:Clearly � is a map of IUUGR-modules, and it is not hard to prove that it is an equiv-alence of spectra. Thus MG is split as a module with underlying nonequivariantR-module M . That is the main point, and the rest follows without di�culty.D. J. Benson and J. P. C. Greenlees. Commutative algebra for cohomology rings of classifyingspaces of compact Lie groups. Preprint. 1995.A. D. Elmendorf and J. P. May. Algebras over equivariant sphere spectra. Preprint, 1995.J. P. May. Equivariant and nonequivariant module spectra. Preprint, 1995.6. Comparisons of categories of L-G-spectraWe prove Proposition 4.1 and Corollary 4.2 here. The proof of Proposition 4.1is based on the comparison of certain monoids constructed from the monoids Gand L and the homomorphism f : G �! L. Thus let G nf L and L of G be theleft and right semidirect products of G and L determined by f . As spaces,Gnf L = G � L and Lof G = L �G;and their multiplications are speci�ed by(g;m)(g0;m0) = (gg0; f(g0�1)mf(g0)m0)and (m; g)(m0; g0) = (mf(g)m0f(g�1); gg0):There is an isomorphism of monoids� : Gnf L �! Lof Gspeci�ed by � (g;m) = (f(g)mf(g�1); g);there is also an isomorphism of monoids� : G nf L �! G � Lspeci�ed by �(g;m) = (g; f(g)m);its inverse takes (g;m) to (g; f(g�1)m). Let� : G� L �! L



344 XXIII. BRAVE NEW EQUIVARIANT FOUNDATIONSbe the projection. We regard G � L as a monoid over L via � and we regardG nf L and L �f G as monoids over L via the composites � � � and � � � � ��1,so that � and � are isomorphisms over L. Using Proposition 1.3, we see that, forspectra E 2 S , the map � induces a natural isomorphism� : G fLE �= (Gnf L)n E �! (Lof G)n E �= LG fE(6.1)and the map � induces a natural isomorphism� : G fLE �= (Gnf L)n E �! (G� L)n E �= G+ ^ LE:(6.2)In the domains and targets here, the units and products of the given monoidsdetermine natural transformations � and � that give the speci�ed composite monadstructures to the displayed functors S �! S . Elementary diagram chases on thelevel of monoids imply that the displayed natural transformations are well-de�nedisomorphisms of monads. If f is the trivial homomorphism that sends all of G to1 2 L, then G nf L = G � L. Thus in (6.2) we are comparing the monad for theG-universe R1f to the monad determined by R1 regarded as a trivial G-universe.The conclusions of Proposition 4.1 follow, and Corollary 4.2 follows as a matter ofcategory theory.The following two lemmas in category theory may or may not illuminate what isgoing on. The �rst is proven in [EKMM] and shows why Corollary 4.2 follows fromProposition 4.1. The second dictates exactly what \elementary diagram chases"are needed to complete the proof of Proposition 4.1.Lemma 6.3. Let Sbe a monad in a category C and let T be a monad in thecategory C [S] of S-algebras. Then the category C [S][T] of T-algebras in C [S] isisomorphic to the category C [TS] of algebras over the composite monad TSin C .Here the unit of TS is the composite id �! S�! TSgiven by the units of Sand T and the product on TSis the composite TSTS�! TTS�! TS, where thesecond map is given by the product of T and the �rst is obtained by applying Tto the action STS�! TSgiven by the fact that T is a monad in C [S]. In ourapplications, we are taking T to be the restriction to C [S] of a monad in C . Thisrequires us to start with monads Sand T that commute with one another.Lemma 6.4. Let Sand T be monads in C . Suppose there is a natural isomor-



6. COMPARISONS OF CATEGORIES OF L-G-SPECTRA 345phism � : ST�! TSsuch that the following diagrams commute:SST //���S� ST�� � and T~~ �}}}}}}}} ! !T�BBBBBBBBSTS //� TSS //T� TS ST //� TS:Then Trestricts to a monad in C [S] to which the previous lemma applies. Supposefurther that these diagrams with the roles of Sand T reversed also commute, asdo the following diagrams:STST����ST� //S��1 SSTT //SS� SST //� ST�� � and id //� T //� ST�� �TSTS //T� TTSS //TT� TTS //� TS id //� S //� TS:Then � : ST �! TS is an isomorphism of monads. Therefore the categoriesC [S][T] and C [T][S] are both isomorphic to the category C [ST] �= C [TS]:Here, for the �rst statement, ifX is anS-algebra with action �, then the requiredaction of Son TX is the composite STX ��!TSX T��!TX:



346 XXIII. BRAVE NEW EQUIVARIANT FOUNDATIONS



CHAPTER XXIVBrave New Equivariant Algebraby J. P. C. Greenlees and J. P. May1. IntroductionWe shall explain how useful it is to be able to mimic commutative algebrain equivariant topology. Actually, the nonequivariant specializations of the con-structions that we shall describe are also of considerable interest, especially inconnection with the chromatic �ltration of stable homotopy theory. We have dis-cussed this in an expository paper [GM1], and that paper also says more about therelevant algebraic constructions than we shall say here. We shall give a connectedsequence of examples of brave new analogues of constructions in commutative al-gebra. The general pattern of how the theory works is this. We �rst give analgebraic de�nition. We next give its brave new analogue. The homotopy groupsof the brave new analogue will be computable in terms of a spectral sequence thatstarts with the relevant algebraic construction computed on coe�cient rings andmodules. The usefulness of the constructions is that they are often related by anatural map to or from an analogous geometric construction that one wishes tocompute. Localization and completion theorems say when such maps are equiva-lences.The Atiyah-Segal completion theorem and the Segal conjecture are examples ofthis paradigm that we have already discussed. However, very special features ofthose cases allowed them to be handled without explicit use of brave new alge-bra: the force of Bott periodicity in the case of K-theory and the fact that thesphere G-spectrum acts naturally on the stable homotopy category in the case ofcohomotopy. We shall explain how brave new algebra gives a coherent general347



348 XXIV. BRAVE NEW EQUIVARIANT ALGEBRAframework for the study of such completion phenomena in cohomology and anal-ogous localization phenomena in homology. We have given another exposition ofthese matters in [GM2], which says more about the basic philosophy. We shalldescribe the results in a little greater generality here and so clarify the applicationto K-theory. We shall also explain the relationship between localization theoremsand Tate theory, which we �nd quite illuminating.[GM1] J. P. C. Greenlees and J. P. May. Completions in algebra and topology. In \Handbookof Algebraic Topology", edited by I.M. James. North Holland, 1995, pp 255-276.[GM2] J. P. C. Greenlees and J. P. May. Equivariant stable homotopy theory. In \Handbook ofAlgebraic Topology", edited by I.M. James. North Holland, 1995, pp 277-324.2. Local and �Cech cohomology in algebraSuppose given a ring R, which may be graded and which need not be Noetherian,and suppose given a �nitely generated ideal I = (�1; �2; : : : ; �n). If R is gradedthe �i are required to be homogeneous.For any element �, we may consider the stable Koszul cochain complexK�(�) = �R! R[��1]�concentrated in codegrees 0 and 1. Notice that we have a �ber sequenceK�(�)�!R �! R[��1]of cochain complexes.We may now form the tensor productK�(�1; : : : ; �n) = K�(�1)
 : : :
K�(�n):It is clear that this complex is unchanged if we replace some �i by a power, andit is not hard to check the following result.Lemma 2.1. If � 2 I, then K�(�1; : : : ; �n)[��1] is exact. Up to quasi-isomor-phism, the complex K�(�1; : : : ; �n) depends only on the ideal I.Therefore, up to quasi-isomorphism,K�(�1; : : : ; �n) depends only on the radicalof the ideal I, and we henceforth write K�(I) for it.Following Grothendieck, we de�ne the local cohomology groups of an R-moduleM by H�I (R;M) = H�(K�(I)
M):(2.2)



3. BRAVE NEW VERSIONS OF LOCAL AND �CECH COHOMOLOGY 349It is easy to see that H0I (R;M) is the submodule�I (M) = fm 2M jIkm = 0 for some positive integer kgof I-power torsion elements of M . If R is Noetherian it is not hard to provethat H�I (R; �) is e�aceable and hence that local cohomology calculates the rightderived functors of �I(�). It is clear that the local cohomology groups vanish abovecodegree n; in the Noetherian case Grothendieck's vanishing theorem shows thatthey are actually zero above the Krull dimension of R. Observe that if � 2 I thenH�I (R;M)[��1] = 0; this is a restatement of the exactness of K�(I)[��1].The Koszul complex K�(�) comes with a natural map " : K�(�) �! R; thetensor product of such maps gives an augmentation " : K�(I) �! R. De�nethe �Cech complex �C�(I) to be �(Ker "). (The name is justi�ed in [GM1].) Byinspection, or as an alternative de�nition, we then have the �ber sequence ofcochain complexes K�(I) �! R �! �C�(I):(2.3)We de�ne the �Cech cohomology groups of an R-module M by�CH�I (R;M) = H�( �C�(I)
M):(2.4)We often delete R from the notation for these functors. The �ber sequence (2.3)gives rise to long exact sequences relating local and �Cech cohomology, and thesereduce to exact sequences0 �! H0I (M) �!M �! �CH0I (M) �! H1I (M) �! 0together with isomorphisms H iI(M) �= �CH i�1I (M):A. Grothendieck (notes by R.Hartshorne). Local cohomology. Springer Lecture notes in mathe-matics, Vol. 42. 1967.3. Brave new versions of local and �Cech cohomologyTurning to topology, we �x a compact Lie group G and consider G-spectraindexed on a complete G-universe U . We let SG be the sphere G-spectrum, andwe work in the category of SG-modules. Fix a commutative SG-algebra R andconsider R-modules M . We writeMGn = �Gn (M) =M�nG :



350 XXIV. BRAVE NEW EQUIVARIANT ALGEBRAThus RG� is a ring and MG� is an RG� -module.Mimicking the algebra, for � 2 RG� we de�ne the Koszul spectrum K(�) by the�ber sequence K(�) �! R �! R[��1]:Here, suppressing notation for suspensions, R[��1] = hocolim(R ��! R ��! : : : );it is an R-module and the inclusion of R is a module map; therefore K(�) is anR-module. Analogous to the �ltration at the chain level, we obtain a �ltration ofK(�) by viewing it as ��1(R[1=�] [ CR).Next we de�ne the Koszul spectrum of a sequence �1; : : : ; �n byK(�1; : : : ; �n) = K(�1) ^R : : : ^R K(�n):Using the same proof as in the algebraic case we conclude that, up to equivalence,K(�1; : : : ; �n) depends only on the radical of I = (�1; : : : ; �n); we therefore denoteit K(I). We then de�ne the homotopy I-power torsion (or local cohomology)module of an R-module M by�I(M) = K(I) ^RM:(3.1)In particular, �I(R) = K(I).To calculate the homotopy groups of �I (M) we use the product of the �ltrationsof the K(�i) given above. Since the �ltration models the algebra precisely, thereresults a spectral sequence of the formE2s;t = H�sI (RG� ;MG� )t ) �Gs+t(�I(M))(3.2)with di�erentials dr : Ers;t �! Ers�r;t+r�1:Remark 3.3. In practice it is often useful to use the fact that the algebraic localcohomologyH�I (R;M) is essentially independent of R. Indeed if the generators of Icome from a ring R0 (in which they generate an ideal I0) via a ring homomorphism� : R0 ! R, then H�I0(R0;M) = H�I (R;M). In practice we often use this if theideal I of RG� may be radically generated by elements of degree 0. This holds forany ideal of SG� since the elements of positive degree in SG� are nilpotent.Similarly, we de�ne the �Cech spectrum of I by the co�ber sequence of R-modulesK(I) �! R �! �C(I):(3.4)



4. LOCALIZATION THEOREMS IN EQUIVARIANT HOMOLOGY 351We think of �C(I) as analogous to ~EG. We then de�ne the homotopical localization(or �Cech cohomology) module associated to an R-module M byM [I�1] = �C(I) ^RM:(3.5)In particular, R[I�1] = �C(I). Again, we have a spectral sequence of the formE2s;t = �CH�sI (RG� ;MG� )t) �Gs+t(M [I�1])(3.6)with di�erentials dr : Ers;t �! Ers�r;t+r�1:The \localization" M [I�1] is generally not a localization of M at a multiplica-tively closed subset of R�. However, the term is justi�ed by the following theoremfrom [GM1, x5]. Recall the discussion of Bous�eld localization from XXIIx6.Theorem 3.7. For any �nitely generated ideal I = (�1; : : : ; �n) of RG� , themap M �!M [I�1] is Bous�eld localization with respect to the R-module R[I�1]or, equivalently, with respect to the wedge of the R-modules R[��1i ].Observe that we have a natural co�ber sequence�I (M) �!M �!M [I�1](3.8)relating our I-power torsion and localization functors.4. Localization theorems in equivariant homologyFor an R-module M , we have the fundamental co�ber sequence of R-modulesEG+ ^M �!M �! ~EG ^M:(4.1)Such sequences played a central role in our study of the Segal conjecture andTate cohomology, for example, and we would like to understand their homotopicalbehavior. In favorable cases, the co�ber sequence (3.8) models this sequence andso allows computations via the spectral sequences of the previous section. Therelevant ideal is the augmentation idealI = Ker(resG1 : RG� ! R�):In order to apply the constructions of the previous section, we need an assumption.It will be satis�ed automatically when RG� is Noetherian.Assumption 4.2. Up to taking radicals, the ideal I is �nitely generated. Thatis, there are elements �1; : : : ; �n 2 I such thatq(�1; : : : ; �n) = pI:



352 XXIV. BRAVE NEW EQUIVARIANT ALGEBRAUnder Assumption (4.2), it is reasonable to letK(I) denoteK(�1; : : : ; �n). Thecanonical map " : K(I) �! R is then a nonequivariant equivalence. Indeed, this isa special case of the following observation, which is evident from our constructions.Lemma 4.3. Let H � G, let �i 2 RG� , and let 
i = resGH(�i) 2 RH� . Then,regarded as a module over the SH-algebra RjH ,K(�1; � � � ; �n)jH = K(
1; � � � ; 
n):Therefore, if �i 2 Ker resGH , then the natural map K(�1; � � � ; �n) �! R is anH-equivalence.Here the last statement holds since K(0) = R. If we take the smash productof " with the identity map of EG+, we obtain a G-equivalence of R-modulesEG+ ^K(I) �! EG+ ^R. Working in the derived category GDR, we may invertthis map and compose with the mapEG+ ^K(I) �! S0 ^K(I) = K(I)induced by the projection EG+ �! S0 to obtain a map of R-modules over R� : EG+ ^R �! K(I):(4.4)Passing to co�bers we obtain a compatible map~� : ~EG ^ R �! �C(I):(4.5)Finally, taking the smash product over R with an R-module M , there results anatural map of co�ber sequencesEG+ ^M //��� M // ~EG ^M�� ~��I (M) // M // M [I�1]:(4.6)Clearly � is an equivalence if and only if ~� is an equivalence. When the latterholds, it should be interpreted as stating that the `topological' localization of Maway from its free part is equivalent to the `algebraic' localization of M awayfrom I. We adopt this idea in a de�nition. Recall the homotopical notions ofan R-ring spectrum A and of an A-module spectrum from XXII.4.1; we tacitlyassume throughout the chapter that all given R-ring spectra are associative andcommutative.



4. LOCALIZATION THEOREMS IN EQUIVARIANT HOMOLOGY 353Definition 4.7. The `localization theorem' holds for an R-ring spectrum A if~�A = ~� ^ id : ~EG ^A = ~EG ^R ^R A �! �C(I) ^R Ais a weak equivalence of R-modules, that is, if it is an isomorphism in GDR. It isequivalent that�A = � ^ id : EG+ ^A = EG+ ^R ^R A �! K(I) ^R Abe an isomorphism in GDR.In our equivariant context, we de�ne the A-homology of an R-module M byAG;Rn (M) = �Gn (M ^R A);(4.8)compare XXII.3.1. This must not be confused with AGn (X) = �Gn (X ^ A), whichis de�ned on all G-spectra X. When A = R, AG;R� is the restriction of AG� toR-modules. When R = SG, AG;SG� is AG� thought of as a theory de�ned on SG-modules. In general, for G-spectra X, we have the relationAG� (X) �= AG;R� (FRX);(4.9)where the free R-module FRX is weakly equivalent to the spectrum X ^ R. Thelocalization theorem asserts that � is an AH;R� -isomorphism for all subgroups Hof G and thus that the co�ber C� is AH;R� -acyclic for all H. Observe that thede�nition of � implies that C� is equivalent to ~EG^K(I). We are mainly interestedin the caseA = R, but we shall see in the next section that the localization theoremholds for KG regarded as an SG-ring spectrum, although it fails for SG itself. Theconclusion of the localization theorem is inherited by arbitrary A-modules.Lemma 4.10. If the localization theorem holds for the R-ring spectrum A, thenthe maps EG+ ^M �! �I(M) and ~EG ^M �!M [I�1]of (4.6) are isomorphisms in GDR for all A-modules M .Proof. C� ^RM is trivial since it is a retract in GDR of C� ^R A ^RM .When this holds, we obtain the isomorphismMG� (EG+) = �G� (EG+ ^M) �= �G� (�I (M))on passage to homotopy groups. Here, in favorable cases, the homotopy groups onthe right can be calculated by the spectral sequence (3.2). When M is split andG is �nite, the homology groups on the left are the (reduced) homology groups



354 XXIV. BRAVE NEW EQUIVARIANT ALGEBRAM�(BG+) de�ned with respect to the underlying nonequivariant spectrum of M ;see XVIx2. We also obtain the isomorphismMG� ( ~EG) = �G� ( ~EG ^M) �= �G� (M [I�1]);the homotopy groups on the right can be calculated by the spectral sequence (3.5).More generally, it is valuable to obtain a localization theorem about EG+ ^GXfor a general based G-space X, obtaining the result about BG+ by taking X tobe S0. To obtain this, we simply replace M by M ^X in the �rst equivalence ofthe previous lemma. If M is split, we conclude from XVIx2 that�G� (��Ad(G)(EG+ ^X ^M)) �=M�(EG+ ^G X);where Ad(G) is the adjoint representation of G. Thus we have the followingimplication.Corollary 4.11. If the localization theorem holds for A andM is an A-modulespectrum that is split as a G-spectrum, then�I(��Ad(G)M ^X)G� �=M�(EG+ ^G X)for any based G-space X. Therefore there is a spectral sequence of the formE2s;t = H�sI (RG� ;MG� (��Ad(G)�1X))t )Ms+t(EG+ ^G X):5. Completions, completion theorems, and local homologyThe localization theorem also implies a completion theorem. In fact, applyingthe functor FR(�;M) to the map �, we obtain a cohomological analogue of Lemma4.10. To give the appropriate context, we de�ne the completion of an R-moduleM at a �nitely generated ideal I byMÎ = FR(K(I);M):(5.1)We shall shortly return to algebra and de�ne certain \local homology groups"H�I (R;M) that are closely related to the I-adic completion functor. In the topo-logical context, it will follow from the de�nitions that the �ltration of K(I) givesrise to a spectral sequence of the formEs;t2 = HI�s(R�G;M�G)t) �G�s�t(MÎ )(5.2)with di�erentials dr : Es;tr ! Es+r;t�r+1r . Here, if R�G is Noetherian and M�G is�nitely generated, then �G��(MÎ ) = (M�G)Î :



5. COMPLETIONS, COMPLETION THEOREMS, AND LOCAL HOMOLOGY 355Again, a theorem from [GM1, x5] gives an interpretation of the completionfunctor as a Bous�eld localization.Theorem 5.3. For any �nitely generated ideal I = (�1; : : : ; �n) of RG� , the mapM �!MÎ is Bous�eld localization in the category of R-modules with respect tothe R-module K(I) or, equivalently, with respect to the smash product of theR-modules R=�i.Returning to the augmentation ideal I, we have the promised cohomologicalimplication of the localization theorem; the case M = A is called the `completiontheorem' for A.Lemma 5.4. If the localization theorem holds for the R-ring spectrum A, thenthe map MÎ = FR(K(I);M) �! FR(EG+ ^R;M) �= F (EG+;M)is an isomorphism in GDR for all A-module spectra M .Proof. FR(C�;M) is trivial since any map C� �!M factors as a compositeC� �! C� ^R A �!M ^R A �!M;and similarly for suspensions of C�.When this holds, we obtain the isomorphism�G��(MÎ ) �=M�G(EG+)on passage to homotopy groups. If M is split, the cohomology groups on theright are the (reduced) cohomology groups M�(BG+) de�ned with respect to theunderlying nonequivariant spectrum of M ; see XVIx2.To obtain a completion theorem about EG+ ^G X for a based G-space X, wereplace M by F (X;M) in the previous lemma. If M is split, then�G� (F (EG+ ^X;M)) �=M�(EG+ ^G X):Corollary 5.5. If the localization theorem holds for A andM is an A-modulespectrum that is split as a G-spectrum, then(F (X;M)Î )�G �=M�(EG+ ^G X)for any based G-space X. Therefore there is a spectral sequence of the formEs;t2 = HI�s(R�G;M�G(X))t )M s+t(EG+ ^G X):



356 XXIV. BRAVE NEW EQUIVARIANT ALGEBRAThus, when it holds, the localization theorem for A implies a calculation ofboth M�(EG+ ^GX) and M�(EG+ ^GX) for all split A-modulesM and all basedG-spaces X.We must still de�ne the algebraic construction whose brave new counterpart isgiven by our completion functors. Returning to the algebraic context of Section1, we want to de�ne a suitable dual to local cohomology. Since local cohomologyis obtained as H�(K 
M) for a suitable complex K, we expect to have to takeH�(Hom(K;M)). However this will be badly behaved unless we �rst replace K bya complex of projective R-modules. Thus we choose an R-free complex PK�(I)and a homology isomorphism PK�(I) �! K�(I). Since both complexes consistof 
at modules we could equally well have used PK�(I) in the de�nition of localcohomology. For �nitely generated ideals I = (�1; � � � ; �n), we take tensor prod-ucts and de�ne PK�(I) = PK�(�1)
 : : :
PK�(�n); independence of generatorsfollows from that of K�(I).We may then de�ne local homology byHI� (R;M) = H�(Hom(PK�(I);M)):(5.6)We often omit R from the notation. Because we chose a projective complex weobtain a third quadrant univeral coe�cient spectral sequenceEs;t2 = Exts(H�tI (R);M)) HI�t�s(R;M)with di�erentials dr : Es;tr ! Es+t;t�r+1r that relates local cohomology to localhomology.It is not hard to check from the de�nition that if R is Noetherian and M iseither free or �nitely generated, then HI0 (R;M) �= MÎ , and one may also provethat in these cases the higher local homology groups are zero. It follows thatHI� (R;M) calculates the left derived functors of the (not necessarily right exact)I-adic completion functor. In fact, this holds under weaker hypotheses on R thanthat it be Noetherian.Returning to our topological context, it is now clear that if R is a commutativeSG-algebra and I is a �nitely generated ideal in RG� , then the completion functorMÎ on R-modules is the brave new analogue of local homology: we have thespectral sequence (5.2).J.P.C. Greenlees and J.P. May. Derived functors of I-adic completion and local homology. J.Algebra 149 (1992), 438-453.



6. A PROOF AND GENERALIZATION OF THE LOCALIZATION THEOREM 3576. A proof and generalization of the localization theoremTo prove systematically that the map �A of (4.7) is a weak equivalence weneed to know that when we restrict the map � of (4.4) to a subgroup H, weobtain an analogous map of H-spectra. Write IH for the augmentation idealKer(resH1 � RH� ). Even for cohomotopy it is not true that res(IG) = IH, but inthat case they do have the same radical. To give a general result, we must assumethat this holds.Assumption 6.1. For all subgroups H � Gqres(IG) = qIH :For theories such as cohomotopy and K-theory, where we understand all of theprimes of RG� , this is easy to verify. Note that both (4.2) and (6.1) are assumptionson R that have nothing to do with A. We need an assumption that relates RG�to AG� . Let J = JG be the augmentation ideal in AG� . The unit R �! A inducesa homomorphism of rings RG� �! AG� that is compatible with restrictions tosubgroups, hence we have an inclusion of ideals I �AG� � J .Assumption 6.2. The augmentation ideals of R�G and A�G are related byqI �AG� = pJ:Recall from (4.8) that AG;R� (M) = �G� (M ^R A). The �nal ingredient of ourproof will be the existence of Thom isomorphismsAG;R� (SV ^M) �= AG;R� (S jV j ^M)(6.3)of AG;R� -modules for all complex representations V and R-modules M . For exam-ple, with A = R, homotopical bordism and K-theory have such Thom isomor-phisms. Cohomotopy does not, and that is why our proof (and the theorem) failin that case.Theorem 6.4 (Localization). If A is an R-ring spectrum such that, for allsubgroups H of G, the theories AH;R� (�) admit Thom isomorphisms and if as-sumptions (4.2), (6.1), and (6.2) hold for G and for all of its subgroups, then thelocalization theorem holds for A.Proof. We have observed that the co�ber of � is equivalent to ~EG^K(I). Wemust prove that ~EG^K(I)^RA ' �. We proceed by induction on the size of the



358 XXIV. BRAVE NEW EQUIVARIANT ALGEBRAgroup. By Assumption (6.1) and Lemma 4.3, we see that( ~EG ^K(IG))jH ' ~EH ^K(IH):Thus our inductive assumption implies thatG=H+ ^ ~EG ^K(I) ^R A ' �for all proper subgroups H � G. Arguing exactly as in Carlsson's �rst reduction,XX.4.1, of the Segal conjecture for �nite p-groups, we �nd that it su�ces to provethat ~EP ^K(I)^RA ' �. Indeed, ( ~EP)G = S0 and ~EP=S0 can be constructedfrom cells G=H+ ^ Sn with H proper. Therefore( ~EP=S0) ^ ~EG ^K(I) ^R A ' �and thus ~EG ^K(I) ^R A ' ~EP ^ ~EG ^K(I) ^R A:However, the map ~EP �! ~EP ^ ~EG induced by the map S0 �! ~EG is aG-equivalence by a check of �xed point spaces.Now, if G is �nite, consider the reduced regular representation V . As we ob-served in the proof of the Segal conjecture, S1V = colim SkV is a model for ~EPsince V H 6= 0 if H is proper and V G = 0. For a general compact Lie group G, wewrite S1V for the colimit of the spheres SV , where V runs over a suitably largeset of representations V such that V G = f0g, for example all such V that arecontained in a complete G-universe U . Again, S1V is a model for ~EP.At this point we must recall how Thom isomorphisms give rise to Euler classes�(V ) 2 AG;R�jV j. Indeed the inclusion e : S0 �! SV and the Thom isomorphismgive a natural map of AG;R� -modulesAG;R� (X) e��!AG;R� (SV ^X) �= AG;R� (S jV j ^X) �= AG;R��jV j(X);and this map is given by multiplication by �(V ). Thus, for �nite G,AG;R� (S1V ^K(I)) = colimk AG;R� (SkV ^K(I))= colimk(AG;R� (K(I)); �(V ))= AG;R� (K(I))[�(V )�1]:Here �(V ) is in J since e is nonequivariantly null homotopic. Therefore, usingAssumption 6.2 and Remark 3.3, we see thatH�I (RG� ;N)[�(V )�1] �= H�J (AG� ;N) h�(V )�1i = 0



6. A PROOF AND GENERALIZATION OF THE LOCALIZATION THEOREM 359for any AG� -module N . From the spectral sequence (3.2), we deduce thatAG;R� (S1V ^K(I)) = 0:A little elaboration of the argument gives the same conclusion when G is a gen-eral compact Lie group. Since S1V is H-equivariantly contractible for all propersubgroups H, this shows that S1V ^K(I) ^R A ' �, as required.There is a substantial generalization of the theorem that admits virtually thesame proof. Recall from V.4.6 that, for a family F , we have the co�ber sequenceEF+ �! S0 �! ~EF :We discussed family versions of the Atiyah-Segal completion theorem in XIVx6and of the Segal conjecture in XXxx1-3. As in those cases, we de�neIF = \H2F Ker(resGH : RG� �! RH� ):Arguing exactly as above, we obtain a map� : EF+ ^R �! K(IF ):(6.5)Definition 6.6. The `F -localization theorem' holds for an R-ring spectrum Aif �A = � ^ id : EF+ ^A = EF+ ^R ^R A �! K(IF ) ^R Ais a weak equivalence of R-modules, that is, if it is an isomorphism in GDR.We combine and record the evident analogs of Lemmas 4.10 and 5.4.Lemma 6.7. If the F -localization theorem holds for the R-ring spectrum A,then the mapsEF+ ^M �! �IF (M); ~EF ^M �!M [IF�1];and MÎF = FR(K(IF );M) �! FR(EF+ ^R;M) �= F (EF+;M)are isomorphisms in GDR for all A-modules M .A family F in G restricts to a family F jH = fKjK 2 F and K � Hg, andAssumptions 4.2, 6.1, and 6.2 admit evident analogs for IF .Theorem 6.8 (F-Localization). If A is an R-ring spectrum such that, forall subgroups H of G, the theories ARjH� (�) admit Thom isomorphisms and if, fora given family F , the F versions of assumptions (4.2), (6.1), and (6.2) hold forG and for all of its subgroups, then the F -localization theorem holds for A.



360 XXIV. BRAVE NEW EQUIVARIANT ALGEBRAProof. Here we must prove that ~EF ^ K(IF ) ^R A ' �, and we assumethat G 62 F since otherwise ~EF ' �. As in the proof of the localization theorem,since the evident map ~EP �! ~EP^ ~EF is a G-equivalence, the problem reducesinductively to showing that ~EP ^K(IF )^R A ' �. We take S1V as our modelfor ~EP and see that, since V H = fOg for all H 6= G, �(V ) 2 JF . The rest isthe same as in the proof of the localization theorem.Remark 6.9. It is perhaps of philosophical interest to note that the localizationtheorem is true for all R that satisfy (4.2) and (6.1) provided that we work withRO(G)-graded rings. Indeed the proof is the same except that instead of usingthe integer graded element �(V ) 2 RG�jV j we must use e(V ) = e�(1) 2 RG�V . Theconclusion is only that there are spectral sequencesH�I (RG� )) RG� (EG+)and so forth, where RO(G)-grading of RG� is understood. In practice this theoremis not useful because the RO(G)-graded coe�cient ring is hard to compute and isusually of even greater Krull dimension than the integer graded coe�cent ring RG� .The Thom isomorphisms allow us to translate the RO(G)-graded augmentationideal into its integer graded counterpart.7. The application to K-theoryWe can apply the F -localization theorem to complex and real periodic equiv-ariant K-theory in two quite di�erent ways. The essential point is that Bottperiodicity clearly gives the Thom isomorphisms necessary for both applications(see XIVx3). Unfortunately, for entirely di�erent reasons, both applications are atpresent limited to �nite groups.First, we recall from XXII.6.13 that, for �nite groups G, complex and realequivariant K-theory are known to be represented by commutative SG-algebras.In view of Bott periodicity, we may restrict attention to the (complex or real)representation ring of G regarded as the subring of degree zero elements of KG� orKOG� (compare Remark 3.3), and our complete understanding of these rings makesveri�cation of the F versions of (4.2) and (6.1) straightforward. In fact, these ver-i�cations work for arbitrary compact Lie groups G. The following theorem wouldhold in that generality if only we knew that KG and KOG were represented bycommutativeSG-algebras in general. For this reason, although the completion the-orem is known for all compact Lie groups, the localization theorem is only known



8. LOCAL TATE COHOMOLOGY 361for �nite groups. The problem is that, at this writing, equivariant in�nite loopspace theory has not yet been developed for compact Lie groups of equivariance.Theorem 7.1. Let G be �nite. Then, for every family F , the F -localizationtheorem holds for KG regarded as a KG-algebra, and similarly for KOG.Second, we have the �rst author's original version of theF -localization theoremfor K-theory. For that version, we regard KG and KOG as SG-ring spectra. Herewe may restrict attention to the Burnside ring of G regarded as the subring of de-gree zero elements of �G� (SG). Again, when G is �nite, our complete understandingof A(G) makes veri�cation of the F versions of (4.2) and (6.1) straightforward,and we observed in and after XXI.5.3 that the F version of (6.2) holds. Note,however, that A(G) is not Noetherian for general compact Lie groups, so that (4.2)and (6.1) are not available to us in that generality. Moreover, A(G) and R(G) arenot closely enough related for (6.2) to hold. For example, the augmentation idealof A(G) is zero when G is a torus.Theorem 7.2. Let G be �nite. Then, for every family F , the F -localizationtheorem holds for KG regarded as an SG-ring spectrum, and similarly for KOG.In the standard case F = feg, we explained in XXIx5 how Tate theory allowsus to process the conclusions of the theorems to give an explicit computationof K�(BG); see XXI.5.4. The following references give further computationalinformation. A comment on the relative generality of the two theorems is inorder. The �rst only gives information about KG-modules of the brave new sort,whereas the second gives information about KG-module spectra of the classicalsort. However, a remarkable result of Wolbert shows that the nonequivariantimplications are the same: every classicalK-module spectrum is weakly equivalentto the underlying spectrum of a brave new K-module.J. P. C. Greenlees. K homology of universal spaces and local cohomology of the representationring. Topology 32(1993), 295-308.J. P. C. Greenlees and J. P. May. Generalized Tate cohomology. Memoir American Math. Soc.No. 543. 1995.J. Wolbert. Toward an algebraic classi�cation of module spectra. Preprint, 1995. University ofChicago. (Part of 1996 PhD thesis in preparation.)8. Local Tate cohomologyWhen the F -localization theorem holds, it implies good algebraic behaviour ofthe F -Tate spectrum. We here explain what such good behaviour is by de�ning



362 XXIV. BRAVE NEW EQUIVARIANT ALGEBRAthe algebraic ideal to which the Tate spectrum aspires: the local Tate cohomologygroups of a module. We proceed by strict analogy with the construction of thetopological F -Tate spectrum,tF (k) = F (EF+; k) ^ ~EF :Thus, again working in the algebraic context of Section 1, we de�ne the localTate cohomology groups to beĤ�I (R;M) = H�(Hom(PK�(I);M)
 P �C�(I)):(8.1)Here P �C�(I) is the projective �Cech complex, which is de�ned by the algebraic�ber sequence PK�(I) �! R �! P �C�(I)(8.2)of chain complexes. There results a local Tate spectral sequence of the formE�;�2 = �H�I (HI� (R;M))) Ĥ�I (R;M):In favorable cases this starts with the �Cech cohomology of the derived functors ofI-adic completion.The usefulness of the de�nition becomes apparent from the form that periodicitytakes in this manifestation of Tate theory. It turns out that unexpectedly manyelements of R induce isomorphisms of the R-module Ĥ�I (R;M). It is simplest tostate this formally when R has Krull dimension 1.Theorem 8.3 (Rationality). If R is Noetherian and of Krull dimension 1,then multiplication by any non-zero divisor of R is an isomorphism on Ĥ�I (R;M).The Burnside ring A(G) and the representation ring R(G) of a �nite group Gare one dimensional Noetherian rings of particular topological interest.Corollary 8.4. Let G be �nite. For any ideal I of A(G) and any A(G)-moduleM , Ĥ�I (A(G);M) is a rational vector space.Corollary 8.5. Let G be �nite. For any ideal I of R(G) and any R(G)-moduleM , Ĥ�I (R(G);M) is a rational vector space.Returning to our SG-algebra R and its modules M , we de�ne the `I-local Tatespectrum' of M for a �nitely generated ideal I � RG� bytI(M) = FR(K(I);M) ^R �C(I):(8.6)



8. LOCAL TATE COHOMOLOGY 363It is then immediate that there is a spectral sequenceEs;t2 = ĤsI (R�G;M�G)t ) �G�s�t(tI(M)):(8.7)In particular, we may draw topological corollaries from Corollaries 8.4 and 8.5.Corollary 8.8. Let G be �nite. For any ideal I in A(G) = �G0 (SG) and anyG-spectrum E, tI(E) is a rational G-spectrum.Corollary 8.9. Let G be �nite. For any ideal I in R(G) = �G0 (KG) and anyKG-module M , tI(M) is a rational G-spectrum.Now assume the F version of (4.2). Let A be an R-ring spectrum and considerthe diagram EF+ ^A //���A S0 ^A // ~EF ^ A�� ~�AK(IF ) ^R A // A // �C(IF ) ^R A:If the F -localization theorem holds for A, then �A and ~�A are weak equivalencesof R-modules. We may read o� remarkable implications for the Tate spectrumtF (M) of any A-module spectrum M . If �A is a weak equivalence, this F -Tatespectrum is equivalent to the IF -local Tate spectrum: a manipulation of isotropygroups is equivalent to a manipulation of ideals in brave new commutative algebra.Theorem 8.10. If the F -localization theorem holds for the R-ring spectrumA, then the F -Tate and IF -local Tate spectra of any A-module spectrumM areequivalent: tF (M) ' tIF (M):Proof. Since FR(X;M) is an A-module for any R-module X, Lemma 6.7 im-plies that all maps in the following diagram are weak equivalences of R-modules:



364 XXIV. BRAVE NEW EQUIVARIANT ALGEBRAtF (M)FR(K(IF );M) ^R R ^ ~EF //�� FR(EF+ ^ R;M) ^R R ^ ~EF��FR(K(IF );M) ^R �C(IF ) // FR(EF+ ^R;M) ^R �C(IF ):tIF (M)Theorem 8.3 gives a striking consequence.Corollary 8.11. Assume that RG� is Noetherian of dimension 1 and Z-torsionfree. If the F -localization theorem holds for an R-ring spectrum A, then theF -Tate spectrum tF (M) is rational for any A-module M .Remark 8.12. Upon restriction to the Burnside ring A(G) = �G0 (SG), the corol-lary applies to R = SG. In this case it has a converse: if the completion theoremholds for A and tF (A) is rational, then the localization theorem holds for A. Theproof (which is in our memoir on Tate cohomology) uses easy formal argumentsand the fact that � : EF+ ^ SG �! K(IF ) is a rational equivalence.We should comment on analogues of Corollary 8.11 in the higher dimensionalcase. The essence of Theorem 8.10 is that if the localization theorem holds forA, then the Tate spectrum of an A-module M is algebraic and is therefore domi-nated by the behaviour of the local Tate cohomology groups Ĥ�I (R�G;M�G) via thespectral sequence (8.7). Now these groups are modules over the ring Ĥ�I (R�G), soan understanding of the prime ideal spectrum of this ring is fundamental. Forexample, the �rst author's proof of the Rationality Theorem shows that analoguesof it hold under appropriate hypotheses on spec(R�G).These comments are relevant to the discussion of XXIx6. As noted there, weknow that applying the Tate construction to spectra of type E(n), on which vnis invertible, forces vn�1 to be invertible (in a suitable completion). One guessesthat this can be explained in terms of the subvariety of Spec(E(n)�G) de�ned byvn�1 and its intersection with that of I. Unfortunately our ignorance of E(n)�Gprevents us from justifying this intuition.J. P. C. Greenlees. Tate cohomology in commutative algebra. J. Pure and Applied Algebra94(1994), 59-83.



8. LOCAL TATE COHOMOLOGY 365J. P. C. Greenlees and J. P. May. Generalized Tate cohomology. Memoir American Math. Soc.No. 543. 1995.



366 XXIV. BRAVE NEW EQUIVARIANT ALGEBRA



CHAPTER XXVLocalization and completion in complex bordismby J. P. C. Greenlees and J. P. May1. The localization theorem for stable complex bordismThere is a large literature that is concerned with the calculation of homologyand cohomology groups M�(BG) and M�(BG) for MU -module spectra M , suchas MU itself, K, BP , K(n), E(n), and so forth. Here G is a compact Lie group,in practice a �nite group or a �nite extension of a torus. The results do not appearto fall into a common pattern.Nevertheless, there is a localization and completion theorem for stable complexbordism, and this shows that all such calculations must �t into a single generalpattern dominated by the structure of the equivariant bordism ringMUG� . Indeed,as we showed in XXIIIx5, there is a general procedure for constructing an equiv-ariant version MG of any nonequivariant MU -module M . Since MG is split withunderlying nonequivariant MU -moduleM , the theorem applies to the calculationof M�(BG+) and M�(BG+) for all such M . This is not, at present, calculation-ally useful since rather little is known about MUG� . Nevertheless, the theoremgives an intriguing new relation between equivariant and nonequivariant algebraictopology.While the basic philosophy behind the theorem is the same as for the local-ization theorem XXIV.6.4, that result does not apply because its basic algebraicassumptions, XXIV.4.2 and 6.1, do not hold. In particular, since the augmenta-tion ideal ofMUG� is certainly not �nitely generated and presumably not radically�nitely generated, it is not even clear what we mean by the localization theorem,367



368 XXV. LOCALIZATION AND COMPLETION IN COMPLEX BORDISMand di�erent techniques are needed for its proof. Let J = JG denote the aug-mentation ideal ofMUG� (with integer grading understood). For �nitely generatedsubideals I of J , we can perform all of the topological constructions discussed inthe previous chapter.Theorem 1.1. Let G be �nite or a �nite extension of a torus. Then, for anysu�ciently large �nitely generated ideal I � J , � : EG+ ^MUG ! K(I) is anequivalence.It is reasonable to de�ne K(J) to be K(I) for any su�ciently large I andto de�ne �J (MG) and (MG)Ĵ similarly. The theorem implies that these MUG-modules are independent of the choice of I.Consequences are drawn exactly as they were for the localization theorem inSections 4 and 5 of the previous chapter. In particular,EG+ ^MG ! �J (MG) and (MG)Ĵ ! F (EG+;MG)are equivalences for any MUG-module MG.The fact that the theorem holds for a �nite extension of a torus and thus for thenormalizer of a maximal torus in an arbitrary compact Lie group strongly suggeststhat the following generalization should be true, but we have not succeeded in�nding a proof.Conjecture 1.2. The theorem remains true for any compact Lie group G.Most of this chapter is taken from the following paper, which gives full details.The last section discusses an earlier completion \theorem" for MUG� when G isa compact Abelian Lie group. While it may be true, we have only been able toobtain a complete proof in special cases.J. P. C. Greenlees and J. P. May. Localization and completion theorems forMU -module spectra.Preprint, 1995. 2. An outline of the proofWe shall emphasize the general strategy. Let G be a compact Lie group and letSG be the sphere G-spectrum. We assume given a commutative SG-algebra RGwith underlying nonequivariant commutative S-algebra R. As in the localizationtheorem, we shall assume that the theory RG� has Thom isomorphismsRG� (SV ^X) �= RG� (S jV j ^X)(2.1)



2. AN OUTLINE OF THE PROOF 369for complex representations V and G-spectra X. More precisely, we shall assumethis for all subgroups H � G, and we shall later impose a certain naturalitycondition on these Thom isomorphisms. We have already seen in XVx2 that MUGhas such Thom isomorphisms. As in the proof of XXIV.6.4, the Thom isomorphismgives rise to an Euler class �(V ) 2 RGj�V j. Let JH be the augmentation idealKer(resH1 : RH� �! R�); remember that J = JG.Definition 2.2. Assume that RH� has Thom isomorphisms for all H � G. LetI be a �nitely generated subideal of J and, for H � G, let rGH(I) denote theresulting subideal resGH(I) � RH� of JH . We say that I is su�ciently large at H ifthere is a non-zero complex representation V of H such that V H = 0 and the Eulerclass �(V ) 2 RH� is in the radical qrGH(I). We say that the ideal I is su�cientlylarge if it is su�ciently large at all H � G.We have the canonical map of RG-modules� : EG+ ^ RG �! K(I);and our goal is to prove that it is an equivalence. The essential point of ourstrategy is the following result, which reduces the problem to the construction ofa su�ciently large �nitely generated subideal I of J .Theorem 2.3. Assume that RH� has Thom isomorphisms for all H � G. If Iis a su�ciently large �nitely generated subideal of J , then� : EG+ ^RG �! K(I)is an equivalence.Proof. The co�ber of � is equivalent to ~EG ^K(I), and we must prove thatthis is contractible. Using the transitivity of restriction maps to see that rGH(I)is a large enough subideal of RH� , we see that the hypotheses of the theorem areinherited by any subgroup. Therefore we may assume inductively that the theoremholds for H 2P. Observing that( ~EG ^K(I))jH = ~EH ^K(rGH(I))for H � G, we see that our de�nition of a su�ciently large ideal provides exactlywhat is needed to allow us to obtain the conclusion by parroting the proof thelocalization theorem XXIV.6.4.



370 XXV. LOCALIZATION AND COMPLETION IN COMPLEX BORDISMThus our problem is to prove that there is a large enough �nitely generatedideal I. One's �rst instinct is to take I to be generated by �nitely many wellchosen Euler classes. While that does work in some cases, we usually need toadd in other elements, and we shall do so by exploiting norm, or \multiplicativetransfer", maps. We explain the strategy before stating what it means for a theoryto have such norm maps.We assume from now on that G is a toral group, namely an extension1 �! T �! G �! F �! 1;where T is a torus and F is a �nite group.Theorem 2.4. If G is toral and the RH� forH � G admit norm maps and Thomisomorphisms, then J contains a su�ciently large �nitely generated subideal.The proof of the theorem depends on two lemmas. As usual, we writeresGH : R(G) �! R(H)for the restriction homomorphism. When H has �nite index in G, we writeindGH : R(H) �! R(G)for the induction homomorphism. Recall that indGH V = C [G]
C [H] V .Lemma 2.5. There are �nitely many non-zero complex representations V1; � � � ; Vsof T such that T acts freely on the product of the unit spheres of the representa-tions resGT indGT Vi:While this is not obvious, its proof requires only elementary Lie theory and doesnot depend on the use of norm maps. We shall say no more about it since it isirrelevant when G is �nite.Lemma 2.6. Let F 0 be a subgroup of F with inverse image G0 in G. There isan element �(F 0) of J such thatresGG0(�(F 0)) = �(V 0)w0 ;where V 0 is the reduced regular complex representation of F 0 regarded by pullbackas a representation of G0 and w0 is the order of WG0 = NG0=G0.We shall turn to the proof of this in the next section, but we �rst show howthese lemmas imply Theorem 2.4.



3. THE NORM MAP AND ITS PROPERTIES 371Proof of Theorem 2.4. We claim that the idealI = (�(indGT V1); � � � ; �(indGT Vs)) + (�(F 0)jF 0 � F )is su�ciently large.If H is a subgroup of G that intersects T non-trivially, then, by Lemma 2.5,(resGT indGT Vi)H\T = f0g for some i and therefore (indGT Vi)H = f0g. Since�(resGH indGT Vi) = resGH(�(indGT Vi)) 2 rGH(I);this shows that I is su�ciently large at H in this case.IfH is a subgroup of G that intersects T trivially, as is always the case when G is�nite, then H maps isomorphically to its image F 0 in F . If G0 is the inverse imageof F 0 in G and V 0 is the reduced regular complex representation of F 0 regarded as arepresentation of G0, then resG0H (V 0) is the reduced regular complex representationof H and (resG0H (V 0))H = 0. By Lemma 2.6, we have resGG0(�(F 0)) = �(V 0)w0 andtherefore�(resG0H (V 0))w0 = resG0H (�(V 0)w0) = resG0H resGG0(�(F 0)) = resGH(�(F 0)) 2 rGH(I):This shows that I is su�ciently large at H in this case.3. The norm map and its propertiesWe must still explain the proof of Lemma 2.6, and to do so we must explainour hypothesis that RG� has norm maps. We shall give a rather crude de�nitionthat prescribes exactly what we shall use in the proof. The crux of the matteris a double coset formula, and we need some notations in order to state it. Forg 2 G and H � G, let gH = gHg�1 and let cg : gH �! H be the conjugationisomorphism. For a based H-space X, we have a natural isomorphismcg : RH� (X) �! RgH� (gX);where gX denotes X regarded as a gH -space by pullback along cg. We also have anatural restriction homomorphismresGH : RG� (X) �! RH� (X):Definition 3.1. We say that RG� has norm maps if, for a subgroup H of �niteindex n in G and an element y 2 RH�r, where r � 0 is even, there is an elementnormGH(1 + y) 2 nXi=0RG�ri



372 XXV. LOCALIZATION AND COMPLETION IN COMPLEX BORDISMthat satis�es the following properties; here 1 = 1H 2 RH0 denotes the identityelement.(i) normGG(1 + y) = 1 + y.(ii) normGH(1) = 1.(iii) [The double coset formula]resGK normGH (1 + y) =Yg normKgH\K resgHgH\K cg(1 + y);where K is any subgroup of G and fgg runs through a set of double cosetrepresentatives for KnG=H.Proof of Lemma 2.6. Since the restriction of the reduced regular representa-tion of F 0 to any proper subgroup contains a trivial representation, the restrictionof �(V 0) 2 RG0� to a subgroup that maps to a proper subgroup of F 0 is zero. InRG0� , the double coset formula givesresGG0 normGG0 (1 + �(V 0)) =Yg normG0gG0\G0 resgG0gG0\G0 cg(1 + �(V 0));(3.2)where g runs through a set of double coset representatives for G0nG=G0. We requirethat our Thom isomorphisms be natural with respect to conjugation in the sensethat their Euler classes satisfy cg(�(V )) = �(gV ), where gV is the pullback of Valong cg. In particular, this gives thatcg(1 + �(V 0)) = 1 + �(gV 0):Here gV 0 is the reduced regular representation of gG0. Clearly gG0\G0 is the inverseimage in G of gF 0 \ F 0. If gF 0 \ F 0 is a proper subgroup of F 0, then the restrictionof �(V 0) to gG0 \G0 is zero. Therefore all terms in the product on the right side of(3.2) are 1 except for those that are indexed on elements g 2 NG0. There is onesuch g for each element of WG0 = NG0=G0, and the term in the product that isindexed by each such g is just 1 + �(V 0). Therefore (3.2) reduces toresGG0 normGG0(1 + �(V 0)) = (1 + �(V 0))w0:(3.3)If V 0 has real dimension r, then the summand of (1 + �(V 0))w0 in degree rw0 is�(V 0)w0. Since resGG0 preserves the grading, we may take �(F 0) to be the summandof degree rw0 in normGG0(1 + �(V 0)).



4. THE IDEA BEHIND THE CONSTRUCTION OF NORM MAPS 3734. The idea behind the construction of norm mapsWe give an intuitive idea of the construction here, but we need some preliminar-ies to establish the context. Let H be a subgroup of �nite index n in a compactLie group G. The norm map is intimately related to indGH : RO(H) �! RO(G),and we begin with a description of induction that suggests an action of G on thenth smash power Xn of any based H-space X. Recall that the wreath product�n R H is the set �n �Hn with the product(�; h1; : : : ; hn)(�; h01; : : : ; h0n) = (��; h�1h01; � � � ; h�nh0n):Choose coset representatives t1; : : : ; tn for H in G and de�ne the \monomial rep-resentation" � : G �! �nRHby the formula �(
) = (�(
); h1(
); : : : ; hn(
));where �(
) and hi(
) are de�ned implicitly by the formula
ti = t�(
)(i)hi(
):Lemma 4.1. The map � is a homomorphism of groups. If �0 is de�ned withrespect to a second choice of coset representatives ft0ig, then � and �0 di�er by aconjugation in �n R H.The homomorphism � is implicitly central to induction as the following lemmaexplains. Write ��W for a representationW of �n R H regarded as a representationof G by pullback along �.Lemma 4.2. Let V be a representation of H. Then the sum nV of n copies ofV is a representation of �n R H with action given by(�; h1; : : : ; hn)(v1; : : : ; vn) = (h��1(1)v��1(1); : : : ; h��1(n)v��1(n));and ��(nV ) is isomorphic to the induced representation indGH V = R[G]
R[H] V .Lemma 4.3. If X is a based H-space, then the smash power Xn is a (�n R H)-space with action given by(�; h1; : : : ; hn)(x1 ^ : : : ^ xn) = h��1(1)x��1(1) ^ : : : ^ h��1(n)x��1(n):



374 XXV. LOCALIZATION AND COMPLETION IN COMPLEX BORDISMFor a based �n R H-space Y , such as Y = Xn for a based H-space X, write��Y for Y regarded as a G-space by pullback along �. Note in particular that��((SV )n) �= SindGH V for an H-representation V .To begin the construction of normGH, one constructs a natural functionnormGH : RH0 (X) �! RG0 (��Xn):(4.4)The norm map normGH of De�nition 3.1 is then obtained by taking X to be thewedge S0 _ Sr, studying the decomposition of Xn into wedge summands of G-spaces described in terms of smash powers of spheres and thus of representations,and using Thom isomorphisms to translate the result to integer gradings. We shallsay no more about this step here. The properties of normGH are deduced from thefollowing properties of normGH .normGG is the identity function.(4.5) normGH(1H) = 1G; where 1H 2 RH0 (S0) is the identity element.(4.6) normGH(xy) = normGH(x) normGH(y) if x 2 RH0 (X) and y 2 RH0 (Y ).(4.7)Here the product xy on the left is de�ned by use of the evident mapRH0 (X)
RH0 (Y ) �! RH0 (X ^ Y )(4.8)and similarly on the right, where we must also use the isomorphismRG0 (Xn ^ Y n) �= RG0 ((X ^ Y )n):The most important property is the double coset formularesGK normGH(x) =Yg normKgH\K resgHgH\K cg(x);(4.9)where K is any subgroup of G and fgg runs through a set of double coset repre-sentatives for KnG=H. Here, if gH \ K has index n(g) in gH, then n = P n(g)and the product on the right is de�ned by use of the evident mapOg RK0 (Xn(g)) �! RK0 (Xn):(4.10)An element of RH0 (X) is represented by an H-map x : SG �! RG ^X. Thereis no di�culty in using the product on RG to produce an H-mapSG �= (SG)n xn�!(RG ^X)n �= (RG)n ^Xn �! RG ^Xn:(4.11)



5. GLOBAL I�-FUNCTORS WITH SMASH PRODUCT 375The essential point of the construction is to do this in such a way as to producea G-map: this will be normGH(x). This is the basic idea, but carrying it outentails several di�culties. Of course, since our group actions involve permutationsof smash powers, we must be working in the brave new world of associative andcommutative smash products, with an associative and commutative multiplicationon RG. Our �rst instinct is to interpret the smash powers in (4.11) in terms of ^S.Certainly the maps in (4.11) are then both H-maps and �n-maps. However, theH-action on (RG)n does not come by pullback along the diagonal of an Hn-action,so that �n R H need not act on (RG)n. This is only to be expected since (RG)n isindexed on the original complete G-universe U on which RG is indexed, not on acomplete �n R H-universe. Since our G-actions come by restriction of actions ofwreath products �n R H, it is essential to bring (�n R H)-spectra into the picture.External smash products seem more reasonable than ^S for this purpose since theexternal smash power (RG)n is indexed on the complete �n R H-universe Un.5. Global I�-functors with smash productThe solution to the di�culties that we have indicated is to work with a re-stricted kind of commutative SG-algebra, namely one that arises from a globalI�-functor with smash product, abbreviated GI�-FSP. Unlike general commuta-tive SG-algebras, these have structure given directly in terms of external smashproducts, as is needed to make sense of (4.11).The notion of an I�-FSP was introduced by May, Quinn, and Ray around1973, under the ugly name of an I�-prefunctor. (The name \functor with smashproduct" was introduced much later by B�okstedt, who rediscovered essentiallythe same concept.) While I�-FSP's were originally de�ned nonequivariantly, thede�nition transcribes directly to one in which a given compact Lie group G actson everything in sight. The adjective \global" means that we allow G to rangethrough all compact Lie groups G, functorially with respect to homomorphismsof compact Lie groups. We let G denote the category of compact Lie groups andtheir homomorphisms.Definition 5.1. De�ne the global category GT of equivariant based spaces tohave objects (G;X), where G is a compact Lie group and X is a based G-space.The morphisms are the pairs(�; f) : (G;X) �! (G0;X 0)



376 XXV. LOCALIZATION AND COMPLETION IN COMPLEX BORDISMwhere � : G �! G0 is a homomorphism of Lie groups and f : X �! X 0 isan �-equivariant map, in the sense that f(gx) = �(g)f(x) for all x 2 X andg 2 G. Topologize the set of maps (G;X) �! (G0;X 0) as a subspace of theevident product of mapping spaces and observe that composition is continuous.Definition 5.2. De�ne the global category GI� of �nite dimensional equivari-ant complex inner product spaces to have objects (G;V ), where G is a compactLie group and V is a �nite dimensional inner product space with an action of Gthrough linear isometries. The morphisms are the pairs(�; f) : (G;V ) �! (G0; V 0)where � : G �! G0 is a homomorphism and f : V �! V 0 is an �-equivariantlinear isomorphism.The de�nitions work equally well with real inner product spaces; we restrict at-tention to complex inner product spaces for convenience in our present application.Each morphism (�; f) in GI� factors as a composite(G;V )(id;f)�!(G;W )(�;id)�!(H;W );where G acts through � on W . We have a similar factorization of morphismsin GT . We also have forgetful functors GI� �! G and GT �! G . We shallbe interested in functors GI� �! GT over G , that is, functors that preserve thegroup coordinate. For example, one-point compacti�cation of inner product spacesgives such a functor, which we shall denote by S�. As in this example, the spacecoordinate of our functors will be the identity on morphisms of the form (�; id).Definition 5.3. A GI�-functor is a continuous functor T : GI� �! GT overG , written (G;TV ) on objects (G;V ), such thatT (�; id) = (�; id) : (G;TW ) �! (H;TW )for a representation W of H and a homomorphism � : G �! H.The following observation is the germ of the de�nition of the norm map.Lemma 5.4. Let A = Aut(G;V ) be the group of automorphisms of (G;V ) inthe category GI�. For any GI�-functor T , the group AnG acts on the space TV .



5. GLOBAL I�-FUNCTORS WITH SMASH PRODUCT 377De�ne the direct sum functor � : GI� � GI� �! GI� by(G;V )� (H;W ) = (G �H;V �W ):De�ne the smash product functor ^ : GT � GT �! GT by(G;X) ^ (H;Y ) = (G �H;X ^ Y ):These functors lie over the functor � : G � G �! G .Definition 5.5. A GI�-FSP is a GI�-functor together with a continuous nat-ural unit transformation � : S� �! T of functors GI� �! GT and a continuousnatural product transformation ! : T^T �! T �� of functors GI��GI� �! GTsuch that the compositeTV �= TV ^ S0id^��!TV ^ T (0) !�!T (V � 0) �= TVis the identity map and the following unity, associativity, and commutativity dia-grams commute: SV ^ SW���= //�^� TV ^ TW�� !SV�W //� T (V �W );TV ^ TW ^ TZ��id^! //!^id T (V �W ) ^ TZ�� !TV ^ T (W � Z) //! T (V �W � Z);and TV ^ TW //!��� T (V �W )�� T (�)TW ^ TV //! T (W � V ):Actually, this is the notion of a commutative GI�-FSP; for the more generalnon-commutative notion, the commutativitydiagrammust be replaced by a weakercentrality of unit diagram. Observe that the space coordinate of each map T (�; f)is necessarily a homeomorphism since (�; f) = (�; id) � (id; f) and f is an isomor-phism. Spheres and Thom complexes give naturally occurring examples.



378 XXV. LOCALIZATION AND COMPLETION IN COMPLEX BORDISMExample 5.6. The sphere functor S� is a GI�-FSP with unit given by theidentity maps of the SV and product given by the isomorphisms SV ^SW �= SV�W .For any GI�-FSP T , the unit � : S� �! T is a map of GI�-FSP's.Example 5.7. Let dimV = n and, as in XVx2, de�ne TV to be the one-pointcompacti�cation of the canonical n-plane bundle EV over the Grassmann manifoldGrn(V � V ). An action of G on V induces an action of G that makes EV a G-bundle and TV a based G-space. Take V = V � f0g as a canonical basepointin Grn(V � V ). The inclusion of the �ber over the basepoint induces a map� : SV �! TV . The canonical bundle map EV � EW �! E(V �W ) induces amap ! : TV ^TW �! T (V �W ). With the evident de�nition of T on morphisms,T is a GI�-functor.It is useful to regard a GI�-FSP as a GI�-prespectrumwith additional structure.Definition 5.8. A GI�-prespectrum is a GI�-functor T : GI� �! GT to-gether with a continuous natural transformation � : T ^ S� �! T � � of functorsGI� � GI� �! T such that the compositesTV �= TV ^ S0 ��!T (V � 0) �= TVare identity maps and each of the following diagrams commutes:TV ^ SW ^ SZ���= //�^id T (V �W ) ^ SZ�� �TV ^ SW�Z //� T (V �W � Z):Lemma 5.9. If T is a GI�-FSP, then T is a GI�-prespectrum with respect tothe composite maps� : TV ^ SW id^��!TV ^ TW !�!T (V �W ):It is evident that a GI�-prespectrum restricts to a G-prespectrum indexed onU for every G and U .Notations 5.10. Let TG;U denote the G-prespectrum indexed on U associatedto a GI�-FSP T . Write RG;U for the spectrum LTG;U associated to TG;U .



6. THE DEFINITION OF THE NORM MAP 379There is a notion of an L -prespectrum, due to May, Quinn, and Ray, and TG;Uis an example. The essential point is that if f : U j �! U is a linear isometry andVi are indexing spaces in U , then we have maps�j(f) : TV1 ^ � � �TVj !�!T (V1 � � � � � Vj) Tf�!Tf(V1 � � � � � Vj):(5.11)The notion of an L -prespectrum was �rst de�ned in terms of just such maps. Itwas later rede�ned more conceptually in [LMS] in terms of maps�j : L (j)n Ej �! E(5.12)induced by the �j(f). It was shown in the cited sources that the spectri�cationfunctor L converts L -prespectra to L -spectra. We conclude that, for every Gand every G-universe U , RG;U is an L -spectrum and thus an E1 ring G-spectrumwhen U is complete. Of course, the L -spectrum RG;U determines the weaklyequivalent commutative SG;U -algebra SG;U nL RG;U .M. B�okstedt. Topological Hochschild homology. Preprint, 1990.J. P. May (with contributions by F. Quinn, N. Ray, and J. Tornehave). E1 ring spaces andE1 ring spectra. Springer Lecture Notes in Mathematics Volume 577. 1977.6. The de�nition of the norm mapWe have the following crucial observation about GI�-FSP's.Proposition 6.1. Let T be a GI�-FSP. For an H-representation V , (TV )nand T (V n) are �n R H-spaces and the map! : (TV )n �! T (V n)is (�n R H)-equivariant. If U is an H-universe, then Un is a (�n R H)-universe andthe maps ! de�ne a map of (�n R H)-prespectra indexed on Un! : (TH;U)n �! T�n R H;Un;where (TH;U)n is the nth external smash power of TH;U . If T = S�, then ! is anisomorphism of prespectra.This allows us to de�ne the norm maps we require. Recall Notations 5.10.Definition 6.2. Let T be a GI�-FSP, let X be a based H-space, and let U bea complete H-universe. An element x 2 RH0 (X) is given by a map of H-spectrax : SH;U �! RH;U ^X. Let G act on Un through � : G �! �n R H, observe thatthe G-universe Un is then complete, and de�ne the norm of x to be the element



380 XXV. LOCALIZATION AND COMPLETION IN COMPLEX BORDISMof RG0 (��Xn) given by the composite map of G-spectra indexed on Un displayedin the commutative diagram:SG;Un //!�1��normGH(x) (SH;U)n //xn (RH;U ^X)n�� �=RG;Un ^Xn (RH;U)n ^Xn:oo !^id(6.3)Strictly speaking, if we start with H-spectra de�ned in �xed complete H-universes UH for all H, then we must choose an isomorphism UG �= UnH to transferthe norm to a map of spectra indexed on UG, but it is more convenient to de-rive formulas from the de�nition as given. From here, all of the properties of thenorm except the double coset formula are easy consequences of the de�nition. Theproof of the double coset formula is in principle straightforward diagram chasingfrom the de�nitions, but it requires precise combinatorial understanding of doublecosets and some fairly elaborate bookkeeping. It is noteworthy that the formula isactually derived from a precise equality of the point set level maps that representthe two sides of the formula.7. The splitting of MUG as an algebraIn the context of GI�-FSP's, we can complete an un�nished piece of business,namely an indication of the proof that MUG is split as an algebra in the sense ofXXIII.5.8. This was at the heart of our assertion that MU -modules M naturallygive rise to split MUG-modules MG. In fact, the result we need applies to theSG-algebra associated to any GI�-FSP T , and we adopt Notations 5.10.We need a preliminary observation. If f : U �! U 0 is a linear isometry, wehave maps Tf : TV �! T (fV ) for indexing spaces V � U . These specify amap of prespectra TG;U �! f�TG;U 0 indexed on U and thus, by adjunction, a mapf�TG;U �! TG;U 0 of prespectra indexed on U 0. On passage to spectra, these gluetogether to de�ne a map � : I (U;U 0)nRG;U �! RG;U 0:(7.1)Moreover, this map factors over coequalizers to give a map of L0-spectra� : IU 0U RG;U = I (U;U 0)nI (U;U)RG;U �! RG;U 0:(7.2)



8. L�OFFLER'S COMPLETION CONJECTURE 381Proposition 7.3. ConsiderR0 = Se;UG ^L Re;UG and RG = SG;U ^L RG;U(where the subscripts L refer respectively to UG and to U) and let 
 : R �!R0 be a q-co�brant approximation of the commutative S-algebra R0. Then thecommutative SG-algebra RG is split as an algebra with underlying nonequivariantS-algebra R.Proof. It su�ces to to construct a map �0 : IUUGR0 �! RG of SG-algebras thatis a nonequivariant equivalence of spectra, since we can then precompose it withIUUG
 to obtain a map � : IUUGR �! RG of SG-algebras that is a nonequivariantequivalence. In fact, we shall construct a map �0 that is actually an isomorphism.Replace U and U 0 by UG and U in (7.2). It is not hard to check from the de�nitionof a GI�-FSP that Re;UG = RG;UG and R#G;U = Re;U#;(7.4)where the superscript # denotes that we are forgetting actions by G. That is,RG;UG is Re;UG regarded as a G-trivial G-spectrum indexed on the G-trivial uni-verse UG, and RG;U regarded as a nonequivariant spectrum indexed on U# isRe;U#. The �rst equality in (7.4) allows us to specialize the map � to obtain amap of E1 ring spectra� : IUUGRe;UG = I (UG; U)nI(UG;UG) RG;UG �! RG;U :(7.5)The second equality allows us to identify the target of the underlying map �# ofnonequivariant spectra with Re;U#, and it is not hard to check that �# is actuallyan isomorphism of spectra. We obtain the required map �0 on passage to SG-algebras, using from XXIII.4.5 that we have an isomorphism of SG-algebrasIUUGR0 �= SG ^L IUUGRe;UG:J. P. May. Equivariant and nonequivariant module spectra. Preprint, 1995.8. L�o�er's completion conjectureWhile computations ofMUG� are in general out of reach, they are more manage-able for compact Abelian Lie groups. Moreover, in this case MU�(BG+) is wellunderstood due to work of Landweber and others. Early on in the study of stable



382 XXV. LOCALIZATION AND COMPLETION IN COMPLEX BORDISMcomplex cobordism, L�o�er stated the following assertion as a theorem, althoughdetails of proof never appeared.Conjecture 8.1 (L�offler). If G is a compact Abelian Lie group, then(MU�G)Ĵ �=MU�(BG+):When this holds, it combines with our topological result to force the followingalgebraic conclusion. A direct proof would be out of reach.Corollary 8.2. If G is a compact Abelian Lie group such that the conjectureholds and I is a su�ciently large ideal in MUG� , thenHI0 (MU�G) �= ((MUG)Î)�G �= (MU�G)Îand HIp (MU�G) = 0 if p 6= 0:We do not know whether or not the conjecture holds in general, but it does holdin many cases, as we shall explain in the rest of this section. We also indicatethe 
aw in the argument sketched by L�o�er. We are indebted to Comeza~na fordetails, and our proofs rely on results that he will prove in the next chapter. Inparticular, the following result is XXVI.5.3; it is stated by L�o�er, but no proofappears in the literature.Theorem 8.3. For a compact Abelian Lie group G,MUG� is a freeMU�-moduleon even degree generators.Since MUG is a split G-spectrum, the projection EG �! � induces a naturalmap � :MU�G(X) �!MU�G(EG+ ^X) �=MU�(EG+ ^G X):We shall mainly concern ourselves with the case X = S0 relevant to Conjecture8.1. We may take EG to be a G-CW complex with �nite skeleta, and there resultsa model for BG as a CW complex with �nite skeleta BGn. We shall need thefollowing result of Landweber.Proposition 8.4 (Landweber). For a compact Lie group G and a �nite G-CW complex X, the natural map MU�(EG+ ^G X) �! limMU�(EGn+ ^G X) isan isomorphism.



8. L�OFFLER'S COMPLETION CONJECTURE 383The vanishing of lim1 terms here is analogous to part of the Atiyah-Segal com-pletion theorem. In fact, in view of the Conner-Floyd isomorphismK�(X) �=MU�(X)
MU� K�for �nite X, the result for MU can be deduced from its counterpart for K. Somepower J q of the augmentation ideal of MUG� annihilates MU�G(X) for any �nitefree G-CW complex X, by the usual induction on the number of cells, and weconclude that MU�G(EG+) �= MU�(BG+) is J -adically complete. Therefore �gives rise to a natural mapMU�G(X)Ĵ �!MU�(EG+ ^G X)on �nite G-CW complexes X.A basic tool in the study of this map is the Gysin sequence� � � �!MU q�2dG (X)�(V )�!MU qG(X) �!MU qG(X ^ SV+)!MU q�2d+1G (X) �! � � � ;(8.5)where V is a complex G-module of complex dimension d and we write SV andDV for the unit sphere and unit disc of V . Noting that DV is G-contractibleand DV=SV is equivalent to SV , we can obtain this directly from the long exactsequence of the pair (DV;SV ) by use of the Thom isomorphismMU q�2dG (X) �!MU q(X ^ SV ):Lemma 8.6. Conjecture 8.1 holds when G = S1.Proof. Let V = C with the standard action of S1. Since SV = S1, we haveMU�S1(SV+) �= MU�, which of course is concentrated in even degrees. Thereforethe Gysin sequence for V , with X = S0, breaks up into short exact sequences andmultiplication by �(V ) is a monomorphism on MU�S1 . By the multiplicativity ofEuler classes, �(nV ) = �(V )n. Thus multiplication by �(nV ) is also a monomor-phism and the Gysin sequence of nV breaks up into short exact sequences0 �!MU2q�2ndS1 �(V )n�!MU2qS1 �!MU2qS1 (S(nV )+) �! 0:Since S1 acts freely on SV , the union S(1V ) of the S(nV ) is a model for ES1.On passage to limits, there results an isomorphism(MU�S1)(̂�(V )) �=MU�S1 (S(1V )+) �=MU�(BS1+):



384 XXV. LOCALIZATION AND COMPLETION IN COMPLEX BORDISMIt is immediate from the Gysin sequence that JS1 = (�(V )), and the result fol-lows.Clearly the proof implies the standard calculation MU�(BS1) �= MU�[[c]],where c 2MU2(BS1) is the image of the Euler class.The steps of the argument generalize to give the following two results.Lemma 8.7. For any compact Abelian Lie group G,(MU�G�S1 )(̂�(V )) �=MU�G(BS1+) �=MU�G[[c]]:Proof. Here we regard V = C as a representation of G � S1, with G actingtrivially, and we note that S(V ) �= (G�S1)=G, so that MU�G�S1 (S(V )+) �=MU�G.The rest of the proof is as in Lemma 8.6.Lemma 8.8. Let T = T r be a torus, let Vq = C with T acting through itsprojection to the qth factor, and let �q = �(Vq). Then JT = (�1; � � � ; �r).Proof. Clearly JT annihilates MU�T (S(V1)+ ^ � � � ^ S(Vr)+) �= MU�. By aneasy inductive use of Gysin sequences, we �nd that, for 1 � q � r,MU�T (S(V1)+ ^ � � � ^ S(Vq)+) �=MU�T=(�1; � � � ; �q)MU�T :The rest of the proof is as in Lemma 8.6.We put the previous two lemmas together to obtain Conjecture 8.1 for tori.Proposition 8.9. Conjecture 8.1 holds when G is a torus.Proof. Write G = T � S1 and assume inductively that the conclusion holdsfor T . Letting cq be the image of �q, we �nd that(MU�G)ĴG �= (MU�G)ĴT ĴS1 �= (MU�G)ĴS1 ĴT �= (MU�T [[cr]])ĴT�= (MU�T )ĴT [[cr]] �= MU�[[c1; � � � ; cr]] �=MU�(BG+);the �rst equality being an evident identi�cation of a double limit with a singleone.We would like to deduce the general case of Conjecture 8.1 from the case of atorus. Thus, for the rest of the section, we consider a group G = C1 � � � � � Cr,where each Cq is either S1 or a subgroup of S1. This �xes an embedding of G inthe torus T = T r, and of course every compact Abelian Lie group can be writtenin this form. We have the following pair of lemmas, the �rst of which follows



8. L�OFFLER'S COMPLETION CONJECTURE 385from the known calculation of MU�(BG+); see for example the second paper ofLandweber below.Lemma 8.10. The restriction map MU�(BT+) �! MU�(BG+) is an epimor-phism. In particular, MU�(BG+) is concentrated in even degrees.Lemma 8.11. The restriction map MU�T �!MU�G is an epimorphism. In par-ticular, JT maps epimorphically onto JG and the completion of an MUG� -moduleat JG is isomorphic to its completion at JT .Proof. It su�ces to prove that each restriction mapMU�T q�Cq+1�����Cr �!MU�T q�1�Cq�Cq+1�����Cris an epimorphism. Let Cq be cyclic of order k(q). Let Vq = C regarded as aT -module with all factors of S1 acting trivially except the qth, which acts via itsk(q)th power map. Restricting Vq to a representation of T q �Cq+1 � � � � �Cr, wesee that its unit sphere can be identi�ed with the quotient group(T q �Cq+1 � � � � � Cr)=(T q�1 � Cq � Cq+1 � � � � �Cr):With X = S0 and G = T q � Cq+1 � � � � � Cr, the Gysin sequence of �(Vq) breaksup into short exact sequences that give the conclusion.Now consider the following commutative diagram:(MU�T )ĴT�� // MU�(BT+)��(MU�G)ĴG // MU�(BG+):(8.12)The top horizontal arrow is an isomorphism and both vertical arrows are epimor-phisms. Thus Conjecture 8.1 will hold if the following conjecture holds.Conjecture 8.13. The map (MU�G)ĴG �!MU�(BG) is a monomorphism.Lemma 8.14. Conjecture 8.1 holds if G is a �nite cyclic group.Proof. We embed G in S1 and consider the standard representation V = C ofS1 as a representation of G. Again, S(1V ) is a model for EG. With X = S0, theGysin sequence (8.5) breaks up into four term exact sequences. Here we cannotconclude that multiplication by �(V ) is a monomorphism: its kernel is the image



386 XXV. LOCALIZATION AND COMPLETION IN COMPLEX BORDISMin MU�G of the odd degree elements of MU�G(S(V )+). However, in even degrees,the Gysin sequences of the representations nV give isomorphismsMU�G=�(V )nMU�G �=MU2�G (S(nV )+):Therefore (MU�G)(̂�(V )) maps isomorphically onto MU2�(BG+). This proves Con-jecture 8.13; indeed, since MU�(BG+) is concentrated in even degrees, it provesConjecture 8.1 directly.L�o�er asserts without proof that the general case of Conjecture 8.13 followsby the methods above. However, although MU�(BG+) is concentrated in evendegrees, the intended inductive proof may founder over the presence of odd degreeelements in Gysin sequences, and we do not know whether or not the conjectureis true in general.P. E. Conner and E. E. Floyd. The relation of corbordism to K-theories. Springer Lecture Notesin Mathematics Vol. 28. 1966.P. S. Landweber. Elements of in�nite �ltration in complex cobordism. Math. Scand. 30(1972),223-226.P. S. Landweber. Cobordism and classifying spaces. Proc. Symp. Pure Math. Vol. 22., 1971,pp125-129.P. L�o�er. Equivariant unitary bordism and classifying spaces. Proceedings of the InternationalSymposium on Topology and its Applications, Budva, Yugoslavia 1973, pp. 158-160.



CHAPTER XXVISome calculations in complex equivariant bordismby G. Comeza~naIn this chapter we shall explain some basic results about the homology and co-homology theories represented by the spectrum MUG. These theories arise fromstabilized bordism groups of G-manifolds carrying a certain \complex structure";exactly what this means is something we feel is not adequately discussed in theliterature. Since the chapter includes a substantial amount of well-known infor-mation, as well as some new material and proofs of results claimed without proofelsewhere, we make no claims to originality except where noted. The author wouldlike to thank Steven Costenoble for discussions and insights that have thrown agreat deal of light on the subject matter.1. Notations and terminologyG will stand throughout for a compact (and, in most cases, Abelian) Lie group,and subgroups of a such a group will be assumed to be closed. All manifoldsconsidered will be compact and smooth, and all group actions smooth. If (X;A)and (Y;B) are pairs of G-spaces, we will use the notation (X;A) � (Y;B) for thepair (X �Y; (X�B)[ (Y �A)). Homology and cohomology theories on G-spaceswill be reduced.G-vector bundles over a G-space will be assumed to carry an inner product(which will be hermitian if the bundle is complex). Unless explicit mention to thecontrary is made, representations will be understood to be �nite-dimensional andR-linear. Depending on the context, we shall sometimes think of V as a G-vectorbundle over a point. If � is a G-bundle, j�j will stand for its real dimension, S(�)387



388 XXVI. SOME CALCULATIONS IN COMPLEX EQUIVARIANT BORDISMfor its unit sphere, D(�) for its unit disk, and T (�) for its Thom space. If V isa representation of G, SV will denote its one-point compacti�cation. The trivialG-vector bundle over a G-space X with �ber V will be denoted "V .We de�ne the V -suspension �VX of a based G-spaceX to beX^SV ; thus if "V isthe trivialG-vector bundle overX with �ber V , then T ("V ) = �VX. We de�ne theV -suspension �V (X;A) of a pair of spaces to be (X;A)�(DV;SV ). In both cases,�V is a functor; if V is a subrepresentation of W with orthogonal complementW � V , the inclusion induces a natural transformation �W�V : �V �! �W .2. Stably almost complex structures and bordismWhen G is the trivial group, a stably almost complex structure on a compactsmooth manifold M is an element [�] 2 ~K(M), which goes to the class [�M ] ofthe stable normal bundle under the map~K(M) �! gKO(M):It is, of course, essentially equivalent to de�ne this with [�M ] replacing [�M ], sincethese classes are additive inverses in gKO(M).The following de�nition gives the obvious equivariant generalization of this.Definition 2.1. If [�] 2 ~KG(M) is a lift of [�M ] 2 gKOG(M) under the naturalmap, we call the pair (M; [�]) a normally almost complex G-manifold.We will use the notation M[�] when necessary, but we will drop [�] wheneverthere is no risk of confusion.The bordism theory of these objects, denoted muG� , is the \complex analog"of the unoriented theory moG� discussed in Chapter XV. If V is a complex G-module and (M;@M)[�] is a G-manifold with a stably almost complex structure,then its V -suspension becomes a G-manifold after \straightening the angles", and[�] � ["V ] is a complex structure on �V (M;@M). This gives rise to a suspensionhomomorphism �V : muG� (X;A) �! muG�+jV j(�V (X;A));which sends the class of a map (M;@M) �! (X;A) to the class of its suspension.Due to the failure of G-transversality, both the suspension homomorphisms andthe Pontrjagin-Thom map are generally not bijective.We construct a stabilized version of this theory as follows. Let U be an in�nite-dimensional complex G-module equipped with a hermitian inner product whose



2. STABLY ALMOST COMPLEX STRUCTURES AND BORDISM 389underlying R-linear structure is that of a complete G-universe. De�neMUG� (X;A) = colimV muG� (�V (X;A));where V ranges over all �nite-dimensional complex G-subspaces of U and the col-imit is taken over all suspension maps induced by inclusions. We should perhapspoint out that MUG� is not a connective theory unless G is trivial. The advantageof this new theory over muG� is that the bad behavior of the Pontrjagin-Thommap is corrected, and the maps induced by suspension by complex G-modules areisomorphisms by construction. This should be interpreted as a form of periodic-ity. Homology or cohomology theories with this property are often referred to inthe literature as complex-stable. Other examples of such theories include equivari-ant complex K-theory, its associated Borel construction, etc. Complex-stabilityisomorphisms should not be confused with suspension isomorphisms of the form�V : hG� (X;A) �! hG�+[V ](�V (X;A));which are part of the structure of all RO(G)-graded homology theories.MUG� or, more precisely, its dual cohomology theory was �rst constructed bytom Dieck in terms of a G-prespectrum TUG, bearing the same relationship tocomplex Grassmanians as the G-prespectrum TOG discussed in XVx2, does toreal ones. An argument of Br�ocker and Hook for unoriented bordism readilyadapts to the complex case to show the equivalence of the two approaches. Inwhat follows, we shall focus on the spectri�cation MUG of TUG. As with anyrepresentable equivariant homology theory, MUG� can be extended to an RO(G)-graded homology theory, but we shall concern ourselves only with integer gradings.We point out, however, that complex-stable theories are always RO(G)-gradable.A key feature ofMUG, proven in XXVx7, is the fact that it is a splitG-spectrum;this may be seen geometrically as a consequence of the fact that the augmentationmapMUG� �!MU�, given on representatives by neglect of structure, can be splitby regarding non-equivariant stably almost complexmanifolds as G-manifolds withtrivial action. The splitting makesMUG� =MUG� (S0) a module over the ringMU�.The multiplicative structure of the ring G-spectrum MUG can be interpretedgeometrically as coming from the fact that the class of normally stably almost com-plex manifolds is closed under �nite products. The complex-stability isomorphismsare well-behaved with respect to the multiplicative structure: in cohomology, we



390 XXVI. SOME CALCULATIONS IN COMPLEX EQUIVARIANT BORDISMhave a commutative diagramMU�G(X) 
MU�G(Y ) //���V 
�W MU�G(X ^ Y )�� �V�WMU�+jV jG (�VX)
MU�+jW jG (�WY ) // MU�+jV j+jW jG (�V�WX ^ Y )for all based G-spaces X and Y and complex G-modules V and W . In general, fora multiplicative cohomology theory, commutativity of a diagram of the form aboveis assumed as part of the de�nition of complex-stability. K�G is another exampleof a multiplicative complex-stable cohomology theory, as is the Borel constructionon any such theory.The role ofMUG in the equivariant world is analogous to that ofMU in classicalhomotopy theory, for its associated cohomology theory has a privileged positionamong those which are multiplicative, complex-stable, and have natural Thomclasses (for complex G-vector bundles). We record the axiomatic de�nition ofsuch theories.Definition 2.2. A G-equivariant multiplicative cohomology theory h�G is saidto have natural Thom classes for complexG-vector bundles if for every such bundle� of complex dimension n over a pointed G-space X there exists a class �� 2h2nG (T (�)), with the following three properties:(1) Naturality: If f : Y �! X is a pointed G-map, then �f�� = f�(��).(2) Multiplicativity: If � and � are complex G-vector bundles over X, then���� = �� � �� 2 hj�j+j�jG (T (� � �)):(3) Normalization: If V is a complex G-module, then �V = �V (1).The following result, which admits a quite formal proof (given for example byOkonek) explains the universal role played by MUG.Proposition 2.3. If h�G is a multiplicative, complex-stable, cohomology theorywith natural Thom classes for complex G-bundles, then there is a unique natu-ral transformation MU�G(�) �! h�G(�) of multiplicative cohomology theories thattakes Thom classes to Thom classes.Returning to homology, for a complex G-bundle � of complex dimension k, theThom class of � gives rise to a Thom isomorphism� :MUG� (T (�)) �!MUG��2k(B(�)+);



3. TANGENTIAL STRUCTURES 391and similarly in cohomology. This isomorphism is constructed in the same way asin the nonequivariant case (see e.g. [LMS]), without using any feature of MUG�other than the existence and formal properties of Thom classes. However, inthis special case, its inverse has a rather pleasant geometric interpretation: iff :M �! B(�) represents an element in muGn (B(�)+), the map f in the pullbackdiagram E(f��) //f��f�� E(�)���M //f B(�)represents an element in muGn+2k(T (�)). This procedure allows the construction ofa homomorphism which stabilizes to the inverse of the Thom isomorphism. SeeBr�ocker and Hook for the details of a treatment of the Thom isomorphism (in theunoriented case) that uses this interpretation.T. Br�ocker and E.C. Hook. Stable equivariant bordism. Mathematische Zeitschrift 129(1972),pp. 269{277.T. tom Dieck. Bordism ofG-manifolds and integrality theorems. Topology 9(1970), pp. 345{358.C. Okonek. Der Conner-Floyd-Isomorphismus f�ur Abelsche Gruppen. Mathematische Zeitschrift179(1982), pp. 201{212. 3. Tangential structuresUnfortunately, both muG� and MUG� are rather intractable from the computa-tional point of view. In order to address this di�culty, we shall introduce a newbordism theory, much more amenable to calculation, whose stabilization is alsoMU�G.Consider the following variant of reduced K-theory: if X is a G-space, insteadof taking the quotient by the subgroup generated by all trivial complexG-bundles,take the quotient by the subgroup generated by those trivial bundles of the formC n �X, where G acts trivially on C n. We denote the group so obtained as �KG;there is an analogous construction in the real case, which we denote �KOG.Definition 3.1. A tangentially stably almost complex manifold is a smoothmanifold equipped with a lift of the class [�M ] 2 �KOG(M) to �KG(M).We shall refer to the bordism theory of these manifolds as tangential complexbordism, denoted 
U;G� .



392 XXVI. SOME CALCULATIONS IN COMPLEX EQUIVARIANT BORDISMWe warn the reader that nowhere in the literature is the distinction between thecomplex bordism theories 
U;G� and muG� made clear. This is not mere pedantryon our part, as our next result will show. It was pointed out to the author byCostenoble that this result does not hold for normally stably almost complex G-manifolds.Proposition 3.2. IfM is a tangentially stably almost complexG-manifold andH � G is a closed normal subgroup, then the G-tubular neighborhood aroundMHhas a complex structure.We stress the fact that no stabilization is necessary to get a complex structureon the tubular neighborhood; this lies at the heart of the calculations we shallcarry out later in the chapter.Proof. The �rst thing to observe is that � (MH) = (�M jMH )H as real vectorbundles. If � is the restriction to MH of a complex G-vector bundle over M thatrepresents its tangential stably almost complex structure, and the underlying realG-vector bundle of � is �M jMH � "Rn, then (�H )? is a complex G-vector bundle.We have � = �H � (�H)? = (�M jMH)H � "Rn � �(MH ;M):This gives the desired structure.We next explore the relation between muG� and 
U;G� . There is a commutativesquare �KG(X) //�� �KOG(X)��fKG(X) // gKOG(X)that yields a natural transformation of homology theories � : muG� �! 
U;G� . Justas we did with muG� , we may stabilize 
U;G� with respect to suspensions by �nite-dimensional complex subrepresentations of a completeG-universe, obtaining a newcomplex-stable homology theory which we shall provisionally denote �MUG� . Themap � stabilizes to a natural transformation � : �MUG� �! MUG� . The followingresult was �rst proved by the author and Costenoble by a di�erent argument andis central to the results of this chapter.Theorem 3.3. � is an isomorphism of homology theories.



3. TANGENTIAL STRUCTURES 393We shall need the following standard result.Lemma 3.4. (Change of groups isomorphism) If H � G is a closed subgroup ofcodimension j, then for all H-spaces X there is an isomorphismmuH� (X+) �=�! muG�+j((G �H X)+)induced by application of the functor G �H (�)) to representatives of bordismclasses of maps, and similarly for pairs. The analogous result holds for 
U;G� andMUG� .Sketch proof. If we apply the functor G�H (�) to a map f :M �! X thatrepresents an element of muHn (X+), we obtain an element of muGn+j((G�H X)+).Conversely, if g : N �! G �H X represents an element of muGn+j((G �H X)+)and if � : G �H X �! X is the evident H-map, we set M = (�g)�1(eH) and seethat M is an H-manifold such that N = G �H M and the restriction of g to Mrepresents an element of muHn (X+).Proof of Theorem 3.3. We show �rst that the theorem is true for G =SU(2k + 1) and then extend the result to the general case by a change of groupsargument.We recall a few standard facts about representations of special unitary groups(e.g., from Br�ocker and tom Dieck). Let M be the complex SU(2k + 1)-modulesuch thatM = C 2k+1 with the action of SU(2k+1) given by matrix multiplicationand let �i = �iM . Then R(SU(2k + 1)) is the polynomial algebra over Zon therepresentations �i, 1 � i � 2k, all of which are irreducible and of complex type.Furthermore, �2k�i+1 = �i. This implies that any irreducible real representationof SU(2k + 1) is either trivial or admits a complex structure. To see this, let Wbe a non-trivial irreducible real SU(2k + 1)-module. Suppose �rst that W 
RCis irreducible. Since the restriction to R of an irreducible complex representationof quaternionic type is irreducible, our assumptions imply that W 
RC is of realtype and of the form V 
C V , where V is a monomial in the �i, 1 � i � k. Wehave (V 
C V )
RC �= (2W )
RC �= 2(V 
C V )as complex representations. On the other hand, since 2W �= V 
C V , we haveisomorphisms of complex SU(2k + 1)-modules(2W )
RC �= (V 
C V )
RC �= V 
C (V 
RC )



394 XXVI. SOME CALCULATIONS IN COMPLEX EQUIVARIANT BORDISMand V 
C (V 
RC ) �= (V 
C V )� (V 
C V )(because V 
RC �= V � V ). So it follows that2(V 
C V ) �= (V 
C V )� (V 
C V );which is absurd in view of the structure of RSU(2k+1). ThusW must be reducibleand so it is either of the form V1�V1, for an irreducible complex V1 of quaternionictype, or V1�V1, for an irreducible complex V1 of complex type. The �rst possibilityis ruled out by the fact that all self-conjugate irreducible complex representationsof SU(2k + 1) are of real type. So we must have2W �= V1 � V 1 �= 2Vas real representations, and therefore, using the uniqueness of isotypical decompo-sitions, we may conclude that W �= V as real representations.Now letX be a SU(2k+1)-space and consider a map representing an element inMUG� (X). By complex-stability, there is no loss of generality in assuming that ourmap is of the form f :M �! X, where �M � �V �= �, V is a real representation,and � is a complex SU(2k+1)-vector bundle. By the remark above, V = W �Rkfor a complex representationW . Then �W (M;@M) is a tangentially stably almostcomplex manifold and the class of �W f is in the image of �. It follows that � issurjective. A similar argument applied to bordisms shows that � is injective.To obtain the general case, observe that any compact Lie group embeds inU(2k), and U(2k) embeds in SU(2k + 1) (via the map that sends A 2 U(2k) to(det A)�1 � 1R�A), and apply Lemma 3.4.T. Br�ocker and T. tom Dieck. representations of compact Lie groups. Springer. 1985.C. Okonek. Der Conner-Floyd-Isomorphismus f�ur Abelsche Gruppen. Mathematische Zeitschrift179(1982), pp. 201{212. 4. Calculational toolsFor the remainder of the chapter, all Lie groups we consider will be Abelian.There is a long list of names associated to the calculation of 
U;G� (S0) for dif-ferent classes of compact Lie groups: Landweber (cyclic groups), Stong (Abelianp-groups), Ossa (�nite Abelian groups), L�o�er (Abelian groups), Lazarov (groupsof order pq for distinct primes p and q), and Rowlett (extensions of a cyclic groupby a cyclic group of relatively prime order). All of these authors rely on the study of



4. CALCULATIONAL TOOLS 395�xed point sets by various subgroups, together with their normal bundles, throughthe use of bordism theories with suitable restrictions on isotropy subgroups.The main calculational tool is the use of families of subgroups, which worksin exactly the same fashion as was discussed in the real case in XVx3. Recallthat, for a family F , an F -space is a G-space all of whose isotropy subgroupsare in F and that we write EF for the universal F -space. Recall too that, fora G-homology theory hG� and a pair of families (F ;F 0), F 0 � F , there is anassociated homology theory hG� [F ;F 0], de�ned on pairs of G-spaces ashG� [F ;F 0](X;A) = hG� (X � EF ; (X �F 0) [ (A�EF )):When F 0 = ;, we use the notation hG� [F ]. The theories hG� [F ], hG� [F 0], andhG� [F ;F 0] �t into a long exact sequence. Of course, there is an analogous con-struction in cohomology.In the special case of 
U;G� (and similarly for other bordism theories), it is easyto see that 
U;G� [F ;F 0] has an alternative interpretation: it is the bordism theoryof (F ;F 0)- tangentially almost-complex manifolds, that is, compact, tangentiallyalmost complex F -manifolds with boundary, whose boundary is an F 0-manifold.Definition 4.1. A pair of families (F ;F 0) of subgroups of G is called a neigh-boring pair di�ering by H if there is a subgroup H such that if K 2 F �F 0, thenH is a subconjugate of K.This notion was �rst used by L�o�er, but the terminology is not standard. Aspecial case is the more usual notion of an adjacent pair of families pair di�eringby H, which is a neighboring pair (F ;F 0) such that F �F 0 consists of thosesubgroups conjugate to H.The next proposition explains the importance of neighboring families. We in-troduce some terminology and notation to facilitate its discussion.Given a subgroup H of an Abelian Lie group G, we choose a set CG;H of �nitedimensional complex G-modules whose restrictions to H form a non-redundant,complete set of irreducible, nontrivial complexH-modules. If C denotes the trivialirreducible representation, we let C+G;H = CG;H [ fC g. For a nonnegative eveninteger k, we shall call an array of nonnegative integers P = (pV )V2CG;H a (G;H)-partition of k if k = XV2CG;H 2pV :



396 XXVI. SOME CALCULATIONS IN COMPLEX EQUIVARIANT BORDISMFor such a partition P , we letBU(P;G) = YV2CG;H BU(pV ; G):We let P(k;G;H) denote the set of all (G;H)-partitions of k.Proposition 4.2. If (F ;F 0) is a neighboring pair of families of subgroups ofa compact Abelian Lie group G di�ering by a subgroup H, then
U;Gn [F ;F 0](X;A) �= M0�2k�nP2P(2k;G;H)
U;G=Hn�2k [F=H]((XH; AH)�BU(P;G=H));where F=H denotes the family of subgroups of G=H that is obtained by takingthe quotient of each element of F �F 0 by H.Sketch of proof. For simplicity, we concentrate on the absolute case. Letf : M �! X represent an element in 
U;Gn [F ;F 0](X+) and let T be a (closed)G-tubular neighborhood ofMH . We may view T as the total space of the unit discbundle of the normal bundle to MH . We may also view T as an n-dimensionalF -manifold whose boundary is an F 0-manifold. Thus T represents an element of
U;Gn [F ;F 0](S0), and we see that [f ] = [f jT ] in 
U;Gn [F ;F 0](X+). Furthermore,[f ] = 0 if and only if there is an H-trivial G-nullbordism of f jT , equipped with acomplex G-vector bundle whose unit disc bundle restricts to T on MH . Observethat MH breaks up into various components of constant even codimension. Inother words, 
U;Gn [F ;F 0](X+) can be identi�ed with the direct sum, with 2kranging between 0 and n, of bordism of H-trivialF -manifolds of dimension n�2kequipped with a complex G-vector bundle of dimension k, containing no H-trivialsummands. Note the twofold importance of Proposition 3.2: not only are we usingthat MH is tangentially almost complex, but also that its tubular neighborhoodcarries a complex structure.Consider the bundle-theoretic analog of the isotypical decomposition of a linearrepresentation. For complex G-vector bundles E and F over a space X we mayconstruct the vector bundle Hom C (E;F ) whose �ber over x 2 X is HomC (Ex; Fx);G acts on HomC (E;F ) by conjugation. If X is H-trivial, then HomH(E;F ) =(HomC (E;F ))H is an H-trivial G-subbundle; if one regards X as a (G=H)-space,then HomH(E;F ) becomes a (G=H)-vector bundle over X.We apply this to F = T and E = "V , where V is a complex G-module whoserestriction to H is irreducible, thus obtaining a (G=H)-vector bundle which we



4. CALCULATIONAL TOOLS 397call the V -multiplicity of E. The evaluation mapMV 2C+G;H HomH("V ; T )
C "V �! Tis a G-vector bundle isomorphism, and this decomposition into isotypical sum-mands is unique. Note that in the special case we are considering, the multiplicityassociated to the trivial representation is 0, so the sum really does run over CG;H .T can therefore be identi�ed with a direct sum of (G=H)-vector bundles overMH , each corresponding to an irreducible complex representation of H, and MHbreaks into a disjoint union of components on which the dimension of each mul-tiplicity remains constant; each of these components has therefore an associated(G;H)-partition, accounting for the summation overP(2k;G;H) in our formula.Clearly the bundle on the component associated to a (G;H)-partition P is classi-�ed by BU(P;G=H).Similar methods allow us to prove the following standard result.Proposition 4.3. With the notation above, if H is a subgroup of an AbelianLie group G, thenBU(n;G)H �= aP2P(n;G;H) YV2C+G;H BU(pV ; G=H)as H-trivial G-spaces.Proof. It su�ces to observe that the right hand side classi�es n-dimensionalcomplex G-vector bundles over H-trivial G-spaces.P. S. Landweber. Unitary bordism of cyclic group actions. Proceedings of the Amer. Math.Soc. 31(1972), pp. 564{570.C. Lazarov. Actions of groups of order pq. Transactions of the Amer. Math. Soc. 173(1972),pp. 215{230.P. L�o�er. Bordismengruppen unit�arer Torusmannigfaltigkeiten. Manuscripta Mathematica12(1974), 307{327.E. Ossa, Unitary bordism of Abelian groups. Proceedings of the American Mathematical Society33(1972), pp. 568{571.R.J. Rowlett. Bordism of metacyclic group actions. Michigan Mathematical Journal 27(1980),pp. 223{233.R. Stong. Complex and oriented equivariant bordism. in Topology of Manifolds (J.C. Cantrelland C.H. Edwards, editors). Markham, Chicago 1970.



398 XXVI. SOME CALCULATIONS IN COMPLEX EQUIVARIANT BORDISM5. Statements of the main resultsWe come now to a series of theorems, some old, some new, that are consequencesof the previous results. In all of them, we consider a given compact Abelian Liegroup G.Theorem 5.1 (L�offler). If V is a complex G-module, and X is a disjointunion of pairs of G-spaces of the form(DV;SV )� kYi=1BU(ni; G);then 
U;G� (X) is a free MU�-module concentrated in even degrees.Theorem 5.2. With the same hypotheses on X, the map
U;G� (BU(n;G) �X) �! 
U;G� (BU(n+ 1; G) �X)induced by Whitney sum with the trivial bundle "C is a split monomorphism ofMU�-modules.Theorem 5.3. MUG� is a free MU�-module concentrated in even degrees.Theorem 5.4. The stabilization map 
U;G� �!MUG� is a split monomorphismof MU�-modules.Theorem 5.3 is stated in the second paper of L�o�er cited below, but there seemsto be no proof in the literature. Ours is a re�nement of the ideas in the proofof Theorem 5.1, which yields Theorem 5.4 as a by-product, and is entirely self-contained (that is, it does not depend on results on �nite Abelian groups). TomDieck has used a completely di�erent method to prove a weaker version of Theorem5.4, for G cyclic of prime order, but to the best of our knowledge nothing of thesort has previously been claimed or proved at our level of generality. Theorem 5.2,which also seems to be new, is required in the course of the proof of Theorem 5.3and is of independent interest.In the light of these results, it is natural to conjecture, probably overoptimisti-cally, thatMUG� is free overMU� and concentrated in even degrees for any compactLie group G. We have succeeded in verifying this for a class of non-Abelian groupsthat includes O(2) and the dihedral groups. The statement about the injectivityof the stabilization map also holds for these groups. We hope to extend theseresults to other classes of non-Abelian groups; details will appear elsewhere.



6. PRELIMINARY LEMMAS AND FAMILIES IN G� S1 399The results above should be proven in the given order, but, since the proofshave a large overlap, we shall deal with all of them simultaneously.We shall proceed by induction on the number of \cyclic factors" of the group,where, for the purposes of this discussion, S1 counts as a cyclic group. The argu-ment in each case is as follows: the result is either trivial or well-known for thetrivial group. Then, one shows that if the result is true for a compact Lie groupG, it also holds for G � S1, and this in turn implies the same for G�Zn.T. tom Dieck. Bordism ofG-manifolds and integrality theorems. Topology 9(1970), pp. 345{358.P. L�o�er. Bordismengruppen unit�arer Torusmannigfaltigkeiten. Manuscripta Mathematica12(1974), 307{327.P. L�o�er. Equivariant unitary bordism and classifying spaces. Proceedings of the InternationalSymposium on Topology and its Applications, Budva, Yugoslavia 1973, pp. 158{160.6. Preliminary lemmas and families in G� S1For brevity, the subgroups f1g � S1 � G � S1 and f1g �Zn � G �Zn will bedenoted S1 and Zn, respectively.We shall need to consider the following families of subgroups of G � S1:Fi = fH � G � S1 j jH \ S1j � igF1 = fH � G � S1 j H \ S1 6= S1gA = fall closed subgroups of G � S1gThese give rise to the neighboring pairs (Fi+1;Fi) (di�ering by Zi+1) and(A ;F1) (di�ering by S1). Observe that F1 is the union of its subfamilies Fi.Lemma 6.1. Let G be a compact Lie group and X be a pair of (G�S1)-spaces.Then 
U;G�S1� (X � S1) �= 
U;G��1(X)and 
U;G�S1� ((X � S1)=Zn) �= 
U;G�Zn��1 (X);where G � S1 acts on S1 and S1=Zn through the projection G � S1 �! S1; thesame statement holds for the theories muG�S1� and MUG�S1� .The proofs of these isomorphisms are easy veri�cations and will be omitted; seeL�o�er. We shall also need the following result of Conner and Smith.Lemma 6.2. A graded, projective, bounded below MU�-module is free.



400 XXVI. SOME CALCULATIONS IN COMPLEX EQUIVARIANT BORDISMLemma 6.3. Consider a diagram of projective modules with exact rows0 // A //��f1 B //��f2 C //��f3 00 // A0 // B0 // C 0 // 0:If f1 and f3 (resp. f2 and f3) are split monomorphisms, so is f2 (resp. f1).Proof. Add a third row consisting of the cokernels of the fi, which will beexact by the Snake Lemma. An easy diagram chase shows that the modules inthe new row are projective, and therefore the conclusion follows.Note that we make no assumptions about compatibility of the splittings.Remark 6.4. If X is a pair of G-spaces of the kind appearing in the statementof Theorem 5.1 and H is a subgroup of G, then restricting the action to H yieldsan H-pair of the same kind. Moreover, by Proposition 4.3, XH is a (G=H)-pair ofthe same type. This class of pairs of spaces is also closed under cartesian productwith BU(n;G) and with pairs of the form (DW;SW ) for a complex G-moduleW .P. E. Conner, L. Smith,On the complex bordism of �nite complexes, Publications Math�ematiquesde l'IHES, no. 37 (1969), pp. 417{521.P. L�o�er. Bordismengruppen unit�arer Torusmannigfaltigkeiten. Manuscripta Mathematica12(1974), 307{327. 7. On the families Fi in G� S1In what follows, for a G-pair X and a homology theory h�,  will designate amap of the form : h�(BU(n;G)�X) �! h�(BU(n+ 1; G) �X)that is induced by taking the Whitney sum of the universal complex G-bundleover BU(n;G) and the trivial G-bundle "C .Suppose that all four theorems stated above have been proved for G. We shalldeduce the following result in the case G� S1.Theorem 7.1. The following statements hold for each i � 1 and for i =1.(1) 
U;G�S1� [Fi](X) is a free MU�-module concentrated in odd degrees.(2) The map : 
U;G�S1� [Fi](BU(n;G�S1)�X) �! 
U;G�S1� [Fi](BU(n+1; G�S1)�X)is a split monomorphism of MU�-modules.



7. ON THE FAMILIES Fi IN G� S1 401(3) If W is an irreducible complex (G� S1)-module, then�W : 
U;G�S1� [Fi](X) �! 
U;G�S1�+2 [Fi]((DW;SW )�X)is a split monomorphism of MU�-modules.(4) The map 
U;G�S1� [Fi](X) �! 
U;G�S1� (X) is zero.Proof. We �rst prove this for i = 1, making use of a suitable model for thespace EF1. Let (Wi)i�1 be a sequence of irreducible complex (G � S1)-modulessuch that S1 acts freely on their unit circles, and every isomorphism class of such(G � S1)-modules appears in�nitely many times. Let Vk = Lki=1Wi andSV1 = colimkSVk;SV1 is the required space. Note also that this space embeds into the equivariantlycontractible space DV1 = colimkDVk:Using Lemma 6.1 and our assumptions about G, we see that 
U;G�S1� (SV1�X)is a free MU�-module concentrated in odd degrees, and that�W : 
U;G�S1� (SV1 �X) �! 
U;G�S1� ((DW;SW )� SV1 �X)and
U;G�S1� (SV1 �BU(n;G� S1)�X) �! 
U;G�S1� (SV1 �BU(n+ 1; G � S1)�X)are split monomorphisms of MU�-modules.We calculate 
U;G�S1� ((SVk+1; SVk)�X) using the homotopy equivalence(SVk+1; SVk) ' (SWk+1 � SVk;DWk+1 � SVk);and the excisive inclusionSWk+1 � (DVk ; SVk) �! (SWk+1 � SVk;DWk+1 � SVk):The action of G � S1 on SWk+1 determines and is determined by a split groupepimorphism G � S1 �! S1 with kernel H � G � S1, H �= G. This impliesthat SWk+1 is (G � S1)-homeomorphic to (G � S1)=H. By a change of groupsargument and the inductive hypothesis, we see that 
G;U� ((SVk+1; SVk) � X) isfree and concentrated in odd degrees and that the maps induced respectively bysuspension by an irreducible complex G-module and by addition of the bundle "Care split monomorphisms of MU�-modules.



402 XXVI. SOME CALCULATIONS IN COMPLEX EQUIVARIANT BORDISMThe diagram with exact columns (in which j is odd)0�� 0��
U;G�S1j (SVk �X)�� //�W 
U;G�S1j+2 ((DW;SW )� SVk �X)��
U;G�S1j (SVk+1 �X)�� //�W 
U;G�S1j+2 ((DW;SW )� SVk+1 �X)��
U;G�S1j ((SVk+1; SVk)�X)�� //�W 
U;G�S1j+2 ((DW;SW )� (SVk+1; SVk)�X)��0 0and the results above show by induction that, for all k � 1, 
U;G�S1� (SVk �X) isfree and concentrated in odd degrees and that �W is a split monomorphism. Ananalogous diagram shows the same is true for the map  induced by adding "C .To complete the proofs of (1) { (3) when i = 1, it su�ces to observe thateach step in the colimit contributes a direct summand to SV1. To prove (4), letf :M �! X � SV1 represent an element of 
U;G�S1� [F1](X). Since S1 acts freelyon M and all actions on a circle are linear, p : M �! M=S1 is the unit circlebundle of a 1-dimensional complex G-bundle E (the complex structure is givenby multiplication by i 2 S1). Obviously, the circle bundle bounds a disc bundle,whose total space is a complex (G � S1)-manifold W . Any point x 2 W can bewritten as ty, where t 2 [0; 1] and y 2 M , so f extends to an equivariant mapF : W �! X �DV1 de�ned as F (ty) = tf(y), where the multiplication on theright hand side is given by the linear structure of DV1.We prove the case i � 1 of Theorem 7.1 by induction on i. Observe �rst thatthe case i =1 will follow directly from the case of �nite i sinceEF1 = colimiEFi:Indeed, we shall see that each stage in the construction of EF1 as a colimitcontributes a free direct summand to 
U;G�S1� [F1](X) on which �W and  aresplit monomorphisms of MU�-modules and the map to 
U;G�S1� (X) is zero.



7. ON THE FAMILIES Fi IN G� S1 403Applying Proposition 4.2 with (G;H) replaced by (G�S1;Zi+1) and noting that(G� S1)=Zi+1 �= G� S1 and that, under this isomorphism, the familyFi+1=Zi+1corresponds to the family F1, we �nd that
U;G�S1n [Fi+1;Fi](X) �= M0�2k�nP2P(2k;G�S1;Zn+1)
U;G�S1n�2k [F1](XZn+1 �BU(P;G � S1)):Thus the case i = 1, combined with Remark 6.4, shows that the left-hand side isfree and concentrated in odd degrees.One then concludes, by using the long exact sequences of the pairs [Fi+1;Fi],that for all i, 
U;G�S1� [Fi](X) is concentrated in odd degrees.The diagrams with exact columns (in which j is odd)0�� 0��
U;Gj [Fi](BU(n;G� S1)�X) //�� 
U;Gj [Fi](BU(n+ 1; G � S1)�X)��
U;Gj [Fi+1](BU(n;G� S1)�X) //�� 
U;Gj [Fi+1](BU(n+ 1; G� S1)�X)��
U;Gj [Fi+1;Fi](BU(n;G� S1) �X) //�� 
U;Gj [Fi+1;Fi](BU(n+ 1; G � S1)�X)��0 0show that, for all i, 
U;G� [Fi](X) is a free MU�-module and the map induced byaddition of "C is a split monomorphism of MU�-modules.The study of the suspension map �W must be broken into two cases. Since Wis an irreducible representation of G � S1, its �xed point space W S1 is either Wor f0g and therefore either(1) WZi+1 = W or(2) WZi+1 = f0g.In the �rst case, the map�W : 
U;G�S12j+1 [Fi+1;Fi](X) �! 
U;G�S12j+3 [Fi+1;Fi]((DW;SW )�X);(7.2)



404 XXVI. SOME CALCULATIONS IN COMPLEX EQUIVARIANT BORDISMcan be regarded via Proposition 4.2 as a direct sum of suspension maps
U;G�S12l+1 [F1](Y ) �! 
U;G�S12l+3 [F1]((DW;SW )� Y );where Y = XZi+1 �BU(P;G � S1) for some partition P of 2(j � l) and we thinkof W as a representation of G � (S1=Zi+1) �= G � S1. Thus it follows from thecase i = 1 that (7.2) is a split monomorphism of MU�-modules in this case.For the second case consider a (G� S1;Zi+1)-partition P = (pV )V2CG�S1;Zi+1 ofan even integer k. Let P 0 = (p0V )V2CG�S1 denote the (G � S1;Zi+1)-partition ofk + 2 de�ned by p0V = ( pV + 1 if V = WpV otherwise.Since WZi+1 = f0g, Proposition 4.2 implies that the map (7.2) can be interpretedas a direct sum of maps of the form : 
U;G�S12l+1 [F1](XZi+1 �BU(P;G)) �! 
U;G�S12l+3 [F1](XZi+1 �BU(P 0; G))induced by addition of "C to the multiplicity bundle corresponding to the V in thedecomposition. We know already that maps of this kind are split monomorphismsof MU�-modules, and we conclude that (7.2) is always a split monomorphism ofMU�-modules.Now the following diagram with exact columns implies inductively that, for alli, �W is a split monomorphism of MU�-modules on 
U;G�S1� [Fi](X).0�� 0��
U;G�S12j+1 [Fi](X) //�W�� 
U;G�S12j+3 [Fi]((DW;SW )�X)��
U;G�S12j+1 [Fi+1](X) //�W�� 
U;G�S12j+3 [Fi+1]((DW;SW )�X)��
U;G�S12j+1 [Fi+1;Fi](X) //�W�� 
U;G�S12j+3 [Fi+1;Fi]((DW;SW )�X)��0 0



7. ON THE FAMILIES Fi IN G� S1 405Finally, to prove (4) of Theorem 7.1, let f : M �! X represent an element of
U;G�S1� [Fi](X), i > 1, and suppose that we have already proved that
U;G�S1� [Fj](X) �! 
U;G�S1� (X)is zero for all j < i. We shall construct a bordism with no isotropy restrictionsfrom f to a map f 0 :M 0 �! X where M 0 is an Fi�1-manifold. By the inductionhypothesis, this will complete the proof.Let us pause for a moment to explain informally how the bordism will be con-structed. The idea is based on a standard technique in geometric topology knownas \attaching handles". Any sphere Sk is the boundary of a disc Dk+1; if Sk � Nnis embedded with trivial normal bundle in a manifold N and has a tubular neigh-borhood T , we can obtain a bordism of N to a new manifold by crossing N withthe unit interval and pasting Dk+1 � Dn�k�1 (a handle with core Dk) to N � Iby identifying T � f1g with Sk �Dn�k�1. Our construction will be basically \at-taching a generalized handle" to our manifoldM . Instead of an embedded sphere,we shall use MZi, which bounds a manifold W ; this will be the \core" of our\handle". The \handle" itself will be the total space of a disc bundle over W .The total space of its restriction to MZi will be equivariantly di�eomorphic to atubular neighborhood of MZi in M , so we may take M � I and glue the \handle"in the obvious way, thus obtaining the desired bordism. Of course, all the requiredproperties of the bordism have to be checked, and an extension of f to the bordismhas to be constructed. We give the details next.Consider a tubular neighborhood T ofMZi, regarded as the total space of a discbundle over MZi. We shall use the notation ST for the corresponding unit circlebundle, and T � for T �ST . We remark that M � T � and ST are Fi�1-manifolds.When there is no danger of confusion, we shall make no notational distinctionbetween a bundle and its total space.Let � denote a generator of Zi � S1 � C , and let Vk, 0 < k < i, be 1-dimensional representations of Zi such that � acts by multiplication by �k. Theseform a complete, non-redundant set of nontrivial irreducible representations, andeach of the Vk's obviously extends to G� S1 (an element (g; s) 2 G � S1 acts bymultiplication by sk). We use these to obtain an isotypical decomposition of T .Let Tk denote the bundle HomZi("Vk; T ).Since MZi is (S1=Zi)-free, our proof in the case i = 1 shows that f jMZi boundsa map ~f : W �! X; where W is the total space of a Zi-trivial 1-dimensional



406 XXVI. SOME CALCULATIONS IN COMPLEX EQUIVARIANT BORDISM(G � S1)-disc bundle over Z =MZi=(S1=Zi) whose unit circle bundle is MZi.Passage to orbits gives a pull-back diagramTk�� // Tk=(S1=Zi)��N // N=(S1=Zi);for each k, where the right vertical arrow is a G-disc bundle, which may also bethought of as a (G� (S1=Zi))-bundle with trivial (S1=Zi)-action. This makes thediagram above a pull-back of (G� (S1=Zi))-vector bundles. Since the zero-sectionof this bundle can be identi�ed with Z = SW=(S1=Zi), we have a diagram of(G � (S1=Zi))-bundlesTk�� &&MMMMMMMMMMMM // Tk=(S1=Zi)��p�(Tk=(S1=Zi)) 66mmmmmmmmmmmm��N &&i MMMMMMMMMMMMMM // N=(S1=Zi):W 66p mmmmmmmmmmmmmmmClearly the bundle T̂ = Lk p�(Tk=(S1=Zi)) 
 "Vk extends T to W ; we claim thatits unit sphere bundle is an Fi�1-manifold. To prove this, observe thatW � Z �=MZi � [0; 1);where [0; 1) has trivial action, and so ST̂ jW�Z is equivariantly homeomorphic toST̂ jW�Z�[0; 1). Therefore, S1-stabilizers of points in ST̂�ST not already presentin ST can only appear in ST̂ jZ, but since there is no component associated to thetrivial representation (recall our remark in the course of the proof of Proposition4.2) all these are proper subgroups of Zi, so the claim follows.Let M 0 �= (M � T �) [ST ST̂ ;by construction, this is an Fi�1-manifold. Since T [W is a (G�S1)-deformationretract of T̂ , there is a map f̂ : W �! X with f̂ jT = f jT and f̂ jW = ~f . We obtaina bordism by crossingM with the closed unit interval, pasting T̂ toM�f1g along



8. PASSING FROM G TO G� S1 AND G�Zk 407T � f1g, and extending f in the obvious way to a map F from the bordism intoX. The maps f 0 = F jM 0 and f represent the same element in the bordism of Xwith no isotropy restrictions, as required.8. Passing from G to G� S1 and G�ZkTo complete the proofs of our theorems, it su�ces to prove the following result,in which we again assume that we have proven all of our theorems for G.Theorem 8.1. Let C = S1 or C =Zk. The following statements hold.(1) 
U;G�C� (X) is a free MU�-module concentrated in even degrees.(2) The map : 
U;G�C� (BU(n;G � S1)�X) �! 
U;G�C� (BU(n+ 1; G � S1)�X)is a split monomorphism of MU�-modules.(3) If W is an irreducible complex (G� C)-module, then�W : 
U;G�C� (X) �! 
U;G�C�+2 ((DW;SW )�X)is a split monomorphism of MU�-modules.We �rst show that 
U;G�S1� [A ;F1](X) is a free MU�-module concentrated ineven degrees and that �W and  here are split monomorphisms of MU�-modules.By Proposition 4.2, we have
U;G�S1n [A ;F1](X) �= M0�2k�nP2P(2k;G�S1;S1)
U;Gn�2k(XS1 �BU(P;G)):Thus, by the induction hypothesis, 
U;G�S1n [A ;F1](X) is free over MU� andconcentrated in even degrees, and the maps  induced by addition of "C are splitmonomorphisms of MU�-modules.Theorem 7.1(4) implies that the long exact sequence of the pair (A ;F1) breaksinto short exact sequences. In particular, the map
U;G�S1� (X) �! 
U;G�S1� [A ;F1](X)is a monomorphism, hence 
U;G�S1� (X) is concentrated in even degrees.In order to study the e�ect of �W on 
U;G�S1n [A ;F1](X), it is necessary todistinguish two cases:(1) W S1 = W and(2) W S1 = f0g.



408 XXVI. SOME CALCULATIONS IN COMPLEX EQUIVARIANT BORDISMThe analysis is similar to the one carried out in the previous section and willbe omitted; it yields the expected conclusion: �W is a split monomorphism ofMU�-modules on 
U;G�S1n [A ;F1](X).The diagram with exact columns0�� 0��
U;G�S12j (X) //�W�� 
U;G�S12j+2 ((DW;SW )�X)��
U;G�S12j [A ;F1](X) //�W�� 
U;G�S12j+2 [A ;F1]((DW;SW )�X)��
U;G�S12j�1 [F1](X) //�W�� 
U;G�S12j+1 [F1]((DW;SW )�X)��0 0together with Lemmas 6.2 and 6.3 shows that 
U;G�S1� (X) is projective, and there-fore free, and that �W is a split monomorphism of MU�-modules on 
U;G�S1� (X).A similar diagram gives the corresponding conclusion for  .This completes the proof of Theorem 8.1 for C = S1, and it remains to deal withthe case C =Zk. Let V denote the 1-dimensional complex representation of G�S1on which G acts trivially and an element e2�it 2 S1 acts by multiplication by e2�itk.Since S1 acts without �xed points on SV � X, 
U;G�S1� [A ;F1](SV � X) = 0.Therefore, by the long exact sequence of the pair (DV;SV ),
U;G�S1� [A ;F1](X) �! 
U;G�S1� [A ;F1]((DV;SV )�X)is an isomorphism, and, by the long exact sequence of the pair (A ;F1),
U;G�S1� [F1](SV �X) �! 
U;G�S1� (SV �X)is an isomorphism.By Theorem 7.1, we conclude that 
U;G�S1� (SV � X) is a free MU�-moduleconcentrated in odd degrees. This being so, the long exact sequence of the pair(DV;SV ) breaks up into short exact sequences0 �! 
U;G�S12j (X) ��! 
U;G�S12j ((DV;SV )�X) �! 
U;G�S12j�1 (SV �X) �! 0:



8. PASSING FROM G TO G� S1 AND G�Zk 409Since SV can be identi�ed with S1=Zk, we conclude from Lemma 3.4 that
U;G�Zk� (X) �= coker �:Now apply the Snake Lemma to the diagram with exact columns0�� 0��
U;G�S12j (X)�� //� 
U;G�S12j ((DV;SV )�X)��
U;G�S12j [A ;F1](X)�� //�= 
U;G�S12j [A ;F1]((DV;SV )�X)��
U;G�S12j�1 [F1](X)�� //� // 
U;G�S12j�1 [F1]((DV;SV )�X)��0 0:Since � is a monomorphism and � is an epimorphism, we see that coker � �= ker �.Since ker � is a freeMU�-module concentrated in odd degrees, 
U;G�Zk� (X) is freeand concentrated in even degrees.To show that �W is a split monomorphism, let Y = (DW;SW )�X and considerthe maps �0 : 
U;G�S12j+2 (Y ) �! 
U;G�S12j+2 ((DV;SV )� Y )and �0 : 
U;G�S12j+1 [F1](Y ) �! 
U;G�S12j+1 [F1]((DV;SV )� Y )that �t into the diagram obtained from the previous one by raising all degrees bytwo and replacing X by Y . Then �W induces a map from the original diagram tothe new diagram, and there results a commutative squarecoker ����= //�W coker �0�� �=ker � //�W ker � 0:By Lemma 6.2, the bottom arrow is a split monomorphism ofMU�-modules, henceso is the top arrow. The proof that  is a split monomorphism is similar.
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