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Abstract. We develop rigorous foundations for parametrized homotopy the-
ory. After preliminaries on point-set topology, base change functors, and

proper actions of non-compact Lie groups, we develop the homotopy theory of

equivariant ex-spaces (spaces over and under a given space) and of equivari-
ant parametrized spectra. We emphasize several issues of independent interest

and include a good deal of new material on the general theory of topologi-

cally enriched model categories. The essential point is to resolve problems in
parametrized homotopy theory that have no nonparametrized counterparts.

In contrast to previously encountered situations, model theoretic techniques
are intrinsically insufficient. Instead, a rather intricate blend of model theory

and classical homotopy theory is required. Stably, we work with equivariant

orthogonal spectra, which are simpler for the purpose than alternative kinds
of spectra that have highly structured smash products.

We give a fiberwise duality theorem that allows fiberwise recognition of

dualizable and invertible parametrized spectra. This allows use of formal du-
ality theory in closed symmetric monoidal categories to construct and analyze

transfer maps. Surprisingly, the notion of duality relevant to the parametrized

analogue of Spanier-Whitehead duality relating homology and cohomology is
entirely different. It was discovered by Costenoble and Waner. We give it

a conceptual treatment based on formal duality theory in “closed symmetric

bicategories”, which is a new theory of independent interest. Parametrized
Atiyah duality is central to the theory and leads to a better conceptual under-

standing of classical Poincaré duality and to a fiberwise version of Costenoble–
Waner duality that gives a fiberwise version of Poincaré duality. Equivari-

antly, the Wirthmüller isomorphism is a very special case of parametrized

Atiyah duality, and the Adams isomorphism is a very special case of fiber-
wise Costenoble–Waner duality. Fiberwise bundles of spectra, first studied

rigorously here, are crucial to both forms of fiberwise duality theory.

We begin the study of parametrized homology and cohomology theories.
We describe such theories both axiomatically and in represented form, show-
ing that parametrized homology and cohomology theories are represented by

parametrized spectra. Theories represented by bundles of spectra are of par-
ticular interest and include twisted K-theory as a very special case. The

parametrized way of thinking sheds light on the construction of Thom spectra

and leads to a plethora of curious new nonparametrized commutative algebra
spectra. These are obtained by an entirely elementary general construction
that uses only ex-spaces, not parametrized spectra. Among other examples, it
gives iterated Thom spectra MqU for q ≥ 1 such that MqU is a commutative
Mq−1U -algebra.
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Prologue

What is this book about and why is it so long? Parametrized homotopy
theory concerns systems of spaces and spectra that are parametrized as fibers over
points of a given base space B. Parametrized spaces, or “ex-spaces”, are just spaces
over and under B, with a projection, often a fibration, and a section. Parametrized
spectra are analogous but considerably more sophisticated objects. They provide
a world in which one can apply the methods of stable homotopy theory without
losing track of fundamental groups and other unstable information. Stable homo-
topy theory has tended to ignore such intrinsically unstable data. This has the
effect of losing contact with more geometric branches of mathematics in which the
fundamental group cannot be ignored.

Parametrized homotopy theory is a natural and important part of homotopy
theory that is implicitly central to all of bundle and fibration theory. Results that
make essential use of it are widely scattered throughout the literature. For classical
examples, the theory of transfer maps is intrinsically about parametrized homotopy
theory, and Eilenberg-Moore type spectral sequences are parametrized Künneth
theorems. Several new and current directions, such as “twisted” cohomology theo-
ries and parametrized fixed point theory cry out for the rigorous foundations that
we shall develop.

On the foundational level, homotopy theory, and especially stable homotopy
theory, has undergone a thorough reanalysis in recent years. Systematic use of
Quillen’s theory of model categories has illuminated the structure of the subject
and has done so in a way that makes the general methodology widely applicable
to other branches of mathematics. The discovery of categories of spectra with
associative and commutative smash products has revolutionized stable homotopy
theory. The systematic study and application of equivariant algebraic topology has
greatly enriched the subject.

There has not been a study of parametrized homotopy theory that takes these
developments into account, and we shall provide one. We shall also give some direct
applications, especially to equivariant stable homotopy theory where the new theory
is particularly essential. However, we shall leave many interesting loose ends, and
we shall end the book with just glimpses of several new directions that are only
beginning to be mapped out.

One reason this study is so lengthy is that, rather unexpectedly, many seem-
ingly trivial nonparametrized results fail to generalize, and many of the conceptual
and technical obstacles to a rigorous treatment have no nonparametrized counter-
parts. Another reason is that new general concepts are required to understand the
full structure present in the parametrized setting and, in particular, to understand
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2 PROLOGUE

parametrized duality theory. For these reasons, the resulting theory is consider-
ably more subtle than its nonparametrized precursors. We indicate some of these
problems and phenomena here.

How to read this book. Before getting to this, we offer some words of advice
on reading this book. There is a lot of technical material that most readers will want
to skip at a first reading. The first three parts comprise the lengthy justification of
results that can be summarized quite briefly. Part I introduces the basic categories
of spaces, spaces over spaces, and ex-spaces in which we shall work, describing the
closed symmetric monoidal category of ex-spaces (in §1.3), the basic triple of base
change functors (in §§2.1 and 2.2), and many other interrelated functors. Part II
explains in careful detail how all structure in sight passes to homotopy categories
unstably. Part III explains how to do all of this stably. Along the way, we also
explain how to do everything equivariantly, at least for actions by compact Lie
groups. In the end, everything works out as well as can be expected, despite the
unexpected technicalities that we encounter. Accepting this, much of Parts IV and
V, which treat duality and homology and cohomology, should make sense without
a careful reading of Parts I–III. We have tried to signpost where things are going
with introductions to each of the five Parts and to each of the twenty-four Chapters.
We urge the reader to peruse these introductions, as well as this Prologue, before
plunging into the details.

Base change functors. A central conceptual subtlety in the theory enters
when we try to prove that structure enjoyed by the point-set level categories of
parametrized spaces descends to their homotopy categories. Many of our basic
functors occur in Quillen adjoint pairs, and such structure descends directly to
homotopy categories. Recall that an adjoint pair of functors (T,U) between model
categories is a Quillen adjoint pair, or a Quillen adjunction, if the left adjoint T
preserves cofibrations and acyclic cofibrations or, equivalently, the right adjoint U
preserves fibrations and acyclic fibrations. It is a Quillen equivalence if, further, the
induced adjunction on homotopy categories is an adjoint equivalence. We originally
hoped to find a model structure on parametrized spaces in which all of the relevant
adjunctions are Quillen adjunctions. It eventually became clear that there can be
no such model structure, for altogether trivial reasons. Therefore, it is intrinsically
impossible to lay down the basic foundations of parametrized homotopy theory
using only the standard methodology of model category theory.

The force of parametrized theory largely comes from base change functors asso-
ciated to maps f : A −→ B. The existing literature on fiberwise homotopy theory
says surprisingly little about such functors. This is especially strange since they
are the most important feature that makes parametrized homotopy theory useful
for the study of ordinary homotopy theory: such functors are used to transport
information from the parametrized context to the nonparametrized context. One
of the goals of our work is to fill this gap.

On the point-set level, there is a pullback functor f∗ from ex-spaces (or spectra)
over B to ex-spaces (or spectra) over A. That functor has a left adjoint f! and a
right adjoint f∗. We would like both of these to be Quillen adjunctions, but that
is not possible unless the model structures lead to trivial homotopy categories. We
mean literally trivial: one object and one morphism. We explain why. It will be
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clear that the explanation is generic and applies equally well to other situations
where one encounters analogous base change functors.

Counterexample 0.0.1. Consider the following diagram.

∅
φ //

φ

��

B

i0

��
B

i1
// B × I

Here ∅ is the empty set and φ is the initial (empty) map into B. This diagram is a
pullback since B×{0}∩B×{1} = ∅. The category of ex-spaces over ∅ is the trivial
category with one object, and it admits a unique model structure. Let ∗B denote
the ex-space B over B, with section and projection the identity map. Both (φ!, φ

∗)
and (φ∗, φ∗) are Quillen adjoint pairs for any model structure on the category of
ex-spaces over B. Indeed, φ! and φ∗ preserve weak equivalences, fibrations, and
cofibrations since both take ∗∅ to ∗B . We have (i0)∗ ◦ (i1)! ∼= φ! ◦ φ∗ since both
composites take any ex-space over B to ∗B . If (i1)! and (i0)∗ were both Quillen left
adjoints, it would follow that this isomorphism descends to homotopy categories.
If, further, the functors (i1)! and (i0)∗ on homotopy categories were equivalences of
categories, this would imply that the homotopy category of ex-spaces over B with
respect to the given model structure is equivalent to the trivial category.

Information in ordinary homotopy theory is derived from results in parametrized
homotopy theory by use of the base change functors r! and r∗ associated to the triv-
ial map r : B −→ ∗, as we shall illustrate shortly. For this and other reasons, we
choose our basic model structure to be one such that (f!, f∗) is a Quillen adjoint
pair for every map f : A −→ B and is a Quillen equivalence when f is a homotopy
equivalence. Then (f∗, f∗) cannot be a Quillen adjoint pair in general. However,
it is essential that we still have the adjunction (f∗, f∗) after passage to homotopy
categories. For example, taking f to be the diagonal map on B, this adjunction
is used to obtain the adjunction on homotopy categories that relates the fiberwise
smash product functor ∧B on ex-spaces over B to the function ex-space functor FB .
To construct the homotopy category level right adjoints f∗, we shall have to revert
to more classical methods, using Brown’s representability theorem. However, it is
not clear how to verify the hypotheses of Brown’s theorem in the model theoretic
framework.

Counterexample 0.0.1 also illustrates the familiar fact that a commutative dia-
gram of functors on the point-set level need not induce a commutative diagram of
functors on homotopy categories. When commuting left and right adjoints, this is a
problem even when all functors in sight are parts of Quillen adjunctions. Therefore,
proving that compatibility relations that hold on the point-set level descend to the
homotopy category level is far from automatic. In fact, proving such “compatibil-
ity relations” is often a highly non-trivial problem, but one which is essential to
the applications. We do not know how to prove the most interesting compatibility
relations working only model theoretically.
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Poincaré duality. Before continuing our discussion of the foundations, we
pause to whet the reader’s appetite by pointing out how the parametrized theory
sheds new light on even the most classical parts of algebraic topology. Nonequivari-
antly, we shall construct a good homotopy category of spectra over B for any space
B. A spectrum kB over B represents (reduced) homology and cohomology theories,
denoted kB∗ and k∗B , on ex-spaces over B and, more generally, on spectra over B.
We shall have a smash product that assigns a spectrum k∧X over B to an ordinary
spectrum k and an ex-space or spectrum X over B. Taking k∗ to mean reduced
homology and implicitly stabilizing by applying suspension spectrum functors, we
shall have the following conceptual variant of the usual homotopical proof of the
Poincaré duality theorem. See §20.5 for details. It illustrates the use of the functor
r! from spectra over B to spectra, which collapses sections to a point, and its proof
features a comparison between r! and r∗; the latter is the “global sections” functor
from spectra over B to spectra.

Example 0.0.2 (Poincaré duality). Let M be a smooth closed n-manifold and
let Sτ denote the spherical fibration obtained from the tangent bundle τ of M by
fiberwise one-point compactification; it is an ex-space over M . Let SnM denote the
ex-space Sn ×M ; it is a trivial spherical fibration, and S0

M = M qM . For any
spectrum k, the “parametrized Atiyah duality theorem” implies an isomorphism

kq(M+) ∼= (k ∧ Sτ )−qM (S0
M ).

Thus the parametrized theory implicitly gives a direct global homotopical con-
struction of a version of “generalized cohomology with local coefficients” that gives
Poincaré duality for any representing spectrum k, without orientation hypotheses.
Now let k be a commutative ring spectrum. The Thom space of τ is Tτ = r!S

τ ,
r : M −→ ∗, while r!SnM = Σn(M+). By definition, a k-orientation of M is a coho-
mology class µ ∈ kn(Tτ) that restricts to a unit of kn(Sn) ∼= k0(S0) on each fiber.
We may view µ as a map

µ : r!Sτ −→ Σnk
with adjoint

µ̃ : Sτ −→ r∗(Σnk) ∼= k ∧ SnM .
Smashing with k and using the product k ∧ k −→ k, we find that µ̃ induces a map

µ̄ : k ∧ Sτ −→ k ∧ SnM
of k-module spectra over M . The unit property of µ is exactly the statement that
µ̄ restricts to an equivalence on each fiber, and this implies that µ̄ is an equivalence
of spectra over M . This is a precise mathematical formulation of the intuition that
the tangent bundle of a k-orientable manifold is stably trivial when viewed through
the eyes of k-theory. The equivalence µ̄ induces an “untwisting” isomorphism

(k ∧ Sτ )−qM (S0
M ) ∼= kn−q(M+).

This completes a proof of the Poincaré duality theorem as a formal implication
of parametrized Atiyah duality and the definition of an orientation. The proof
does not use the Thom isomorphism directly, but the equivalence of spectra r!µ̄
implies the isomorphism kq(Tτ) ∼= kq−n(M+) on passage to homotopy groups, and
similarly for cohomology.

Here is another example of something that should be an old result and is
intuitively very plausible, but seems to be new. Details are given in §18.6.
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Example 0.0.3. As an application of a relative form of parametrized Atiyah
duality, we prove that if M is a smooth closed manifold embedded in Rq and L
is a smooth closed submanifold, then M/L is (q − 1)-dual to the cofiber of the
Pontryagin-Thom map TνM −→ TνL of Thom spaces, where νM and νL are the
normal bundles of M and L.

Model structures. Returning to our discussion of the foundations, we shall
of course use model structures wherever we can. However, even in the part of
the theory in which model theory works, it does not work as expected. There is
an obvious naive model structure on ex-spaces over B in which the weak equiv-
alences, fibrations, and cofibrations are the ex-maps whose maps of total spaces
are weak equivalences, fibrations, and cofibrations of spaces in the usual Quillen
model structure. This “q-model structure” is the natural starting point for the
theory, but it turns out to have severe drawbacks that limit its space level utility
and bar it from serving as the starting point for the development of a useful spec-
trum level stable model structure. In fact, it has two opposite drawbacks. First,
it has too many cofibrations. In particular, the model theoretic cofibrations need
not be cofibrations in the intrinsic homotopical sense. That is, they fail to satisfy
the fiberwise homotopy extension property (HEP) defined in terms of parametrized
mapping cylinders. This already fails for the sections of cofibrant objects and for
the inclusions of cofibrant objects in their cones. Therefore the classical theory of
cofiber sequences fails to mesh with the model category structure.

Second, it also has too many fibrations. The fibrant ex-spaces are Serre fibra-
tions, and Serre fibrations are not preserved by fiberwise colimits. Such colimits
are preserved by a more restrictive class of fibrations, namely the well-sectioned
Hurewicz fibrations, which we call ex-fibrations. Such preservation properties are
crucial to resolving the problems with base change functors that we have indicated.

In model category theory, decreasing the number of cofibrations increases the
number of fibrations, so that these two problems cannot admit a solution in com-
mon. Rather, we require two different equivalent descriptions of our homotopy
categories of ex-spaces. First, we have another model structure, the “qf -model
structure”, which has the same weak equivalences as the q-model structure but has
fewer cofibrations, all of which satisfy the fiberwise HEP. Second, we have a descrip-
tion in terms of the classical theory of ex-fibrations, which does not fit naturally
into a model theoretic framework. The former is vital to the development of the
stable model structure on parametrized spectra. The latter is vital to the solution
of the intrinsic problems with base change functors.

Other foundational issues. Before getting to the issues just discussed, we
shall have to resolve various others that also have no nonparametrized analogues.
Even the point set topology requires care since function ex-spaces take us out of
the category of compactly generated spaces. Equivariance raises further problems,
although most of our new foundational work is already necessary nonequivariantly.
Passage to the spectrum level raises more serious problems. One main source of
difficulty is that the underlying total space functor is too poorly behaved, especially
with respect to smash products and fibrations, to give good control of homotopy
groups as one passes from parametrized spaces to parametrized spectra. Moreover,
since the underlying total space functor does not commute with suspension, it does
not give a forgetful functor from parametrized spectra to nonparametrized spectra.



6 PROLOGUE

The resolution of base change problems requires a different set of details on the
spectrum level than on the space level.

This theory gives perhaps the first worked example in which a model theoretic
approach to derived homotopy categories is intrinsically insufficient and must be
blended with a quite different approach even to establish the essential structural
features of the derived category. Such a blending of techniques seems essential
in analogous sheaf theoretic contexts that have not yet received a modern model
theoretic treatment. Even nonequivariantly, the basic results on base change, smash
products, and function ex-spaces that we obtain do not appear in the literature.
Such results are essential to serious work in parametrized homotopy theory.

Much of our work should have applications beyond the new parametrized the-
ory. The model theory of topological enriched categories has received much less
attention in the literature than the model theory of simplicially enriched categories.
Despite the seemingly equivalent nature of these variants, the topological situation
is actually quite different from the simplicial one, as our applications make clear. In
particular, the interweaving of h-type and q-type model structures that pervades
our work seems to have no simplicial counterpart. Such interweaving does also
appear in algebraic contexts of model categories enriched over chain complexes,
where foundations analogous to ours can be developed. One of our goals is to give
a thorough analysis and axiomatization of how this interweaving works in general
in topologically enriched model categories.

The foundational issues that we have been discussing occupy the first three
parts of this book. Part I gives basic preliminaries, Part II develops unstable
parametrized homotopy theory, and Part III develops stable parametrized homo-
topy theory. The end result of this foundational work may seem intricate, but it
gives a very powerful framework in which to study homotopy theory, as we illustrate
in the last two parts.

Parametrized duality theory. In Part IV, we develop parametrized duality
theory. This has three aspects. First, there is a fiberwise duality theory that
leads to a smooth general treatment of transfer maps. There are two ways of
thinking about transfer maps. For fibrations in general, they are best thought of
as instances of generalized trace maps present in any closed symmetric monoidal
category. For bundles, they are best thought of fiberwise, with transfer maps on
fibers inserted fiberwise into bundles of spectra. It is not obvious that these give
equivalent constructions when both apply, and our fiberwise duality theory makes
that comparison transparent.

Second, there is a new kind of parametrized duality theory that was first discov-
ered by Costenoble and Waner. It, rather than fiberwise duality, is the appropriate
parametrized analogue of Spanier-Whitehead duality, and it is the kind of duality
that is used in the proof of Poincaré duality described in Example 0.0.2. These two
notions of duality are quite different. Parametrized sphere spectra are invertible
and therefore fiberwise dualizable, but they are not Costenoble-Waner dualizable
in general. Parametrized finite cell spectra are Costenoble-Waner dualizable, but
they are not fiberwise dualizable in general. The previous sentence hides another
subtlety. Finite cell objects in topological model categories such as ours are elusive
structures because their fibrant approximations are no longer finite. In our triangu-
lated stable categories, the parametrized finite cell spectra and their retracts do not



PROLOGUE 7

seem to give the objects of a thick subcategory, which is contrary to all previously
encountered situations.

More centrally, conceptual understanding of the new duality theory requires
the new categorical notion of a closed symmmetric bicategory and a formal duality
theory for 1-cells in such a bicategory. Bimodules over varying rings, their derived
and brave new counterparts, and parametrized spectra over varying base spaces all
give examples. Dual pairs of “base change bimodules” and “base change spectra”
encode base change functors in terms of the bicategory operations. These categor-
ical foundations promise to have significant applications in other fields and will be
more fully developed elsewhere. The basic treatment here, in Chapter 16, can be
read independently of everything else in the book.

Third, there is a way to insert parametrized Atiyah duality fiberwise into bun-
dles of spectra to develop a fiberwise Costenoble-Waner duality theory. The basic
change of groups isomorphisms of equivariant stable homotopy theory, namely the
generalized Wirthmüller and Adams isomorphisms, are very special cases of our du-
ality theorems, which are already of considerable interest nonequivariantly. These
applications depend on a clear and precise definition of a bundle of spectra and an
analysis of how such bundles behave homotopically. This notion has appeared spo-
radically in the literature, although without rigorous foundations. It seems certain
to become important.

Parametrized homology and cohomology. The first three parts, and most
of the fourth, give reasonably complete treatments of the topics they cover, but
Part V has a different character. Its main focus is the definition of parametrized
homology and cohomology theories and the beginning of their study. It seems to
us that another book this length could well be written on this topic, which we
believe will come to play an increasingly important role in algebraic topology and
its applications. We just scratch the surface. In Chapters 20 and 21, we show how
to axiomatize and represent parametrized homology and cohomology theories, and
we say a little about duality, base change, coefficient systems, products, and the
Serre and parametrized Atiyah-Hirzebruch spectral sequences. We give separate
treatments of the nonequivariant and equivariant theory for the reader’s conve-
nience. While we describe various calculational tools, we do not turn to explicit
computations here.

We observe in Chapter 22 that twisted K-theory is an example of a partic-
ular kind of parametrized cohomology theory, thereby making its associated ho-
mology theory precise and making all of the standard tools of algebraic topology
readily available. We also explain a Čech local to global (or descent) spectral se-
quence, the twisted Rothenberg-Steenrod spectral sequence, and a construction of
the Eilenberg–Moore spectral sequence, viewed as a parametrized Künneth spectral
sequence in the stable homotopy category of spectra over B.

Generalizations of Thom spectra. Another topic in Part V is the construc-
tion of generalized analogues of Thom spectra. We explain how the parametrized
way of thinking leads directly to the construction of new nonparametrized orthogo-
nal ring spectra and thus E∞ ring spectra. Our iterated Thom spectra are examples.
The construction is entirely elementary and only uses ex-spaces, not parametrized
spectra. We urge the interested reader to turn directly to Chapter 23, since the con-
struction is almost completely independent of everything else in the book. A more
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sophisticated application of parametrized methods constructs the Thom spectrum
associated to a map f : X −→ B, where B is the classifying space for some class
of bundles or fibrations, by pulling back the universal sphere bundle or fibration
spectrum E over B along f and then pushing down along r : X −→ ∗ to obtain
the ordinary spectrum r!f

∗E. We explain the idea briefly, but we do not pursue it
here. It is the starting point of work in progress with Andrew Blumberg.

In fact, we have hardly begun the serious study of any of the topics in Part V.
There are other areas, such as fixed point theory and Goodwillie calculus, where
parametrized theory is expected to play an important role but has not yet been
seriously applied due to the lack of firm foundations. It is time for this book to
appear, but it is only a beginning. There is a great deal more work to be done in
this emerging area of algebraic topology.

History. This project began with unpublished notes of the first author, dating
from the summer of 2000 [111]. He put the project aside and returned to it in
the fall of 2002, when he was joined by the second author. Some of Parts I and
II was originally in a draft of the first author that was submitted and accepted
for publication, but was later withdrawn. That draft was correct, but it did not
include the “qf -model structure”, which comes from the second author’s 2004 PhD
thesis [152]. The first author’s notes [111] claimed to construct the stable model
structure on parametrized spectra starting from the q-model structure on ex-spaces.
Following [111], the monograph [78] of Po Hu also takes that starting point and
makes that claim. The second author realized that, with the obvious definitions,
the axioms for the stable model structure cannot be proven from that starting point
and that any naive variant would be disconnected with cofiber sequences and other
essential needs of a fully worked out theory. His qf -model structure is the crucial
new ingredient that is used to solve this problem.

The new duality theory of Chapters 16, 17, and 18 was inspired by work
of Costenoble and Waner [41]. The applications of Chapter 19 were inspired by
Hu’s work [78]. The implementation of her results as manifestations of fiberwise
Costenoble-Waner duality came as a pleasant surprise.

Thanks. We thank the referee of the partial first version for several helpful
suggestions. We thank Gaunce Lewis and Peter Booth for help with the point set
topology, Mike Cole for sharing his remarkable insights about model categories,
Mike Mandell for much technical help, and Brooke Shipley for an illuminating
discussion of different types of generators. We thank Kathleen Lewis for working
out the counterexample in Theorem 1.7.1, Victor Ginzburg for giving us the striking
Counterexample 11.6.2, Amnon Neeman for giving us the useful Lemma 20.8.4, and
Shmuel Weinberger for pointing out Proposition 21.7.4.

We are especially grateful to Kate Ponto for a meticulously careful reading that
uncovered many obscurities and infelicities. Needless to say, she is not to blame for
those that remain.

Some of the work on this book was done during the second author’s visits to the
University of Chicago and the Institut Mittag-Leffler and he gratefully acknowledges
their hospitality and support. He would also like to thank the members of the
homotopy group at the University of Sheffield for useful conversations and a very
stimulating environment.
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Finally, we would like to thank the Editorial Committee of the Mathematical
Surveys and Monographs series of the AMS for accepting this book for publica-
tion unconditionally, while gently suggesting that we add more motivation and “an
attempt at more examples” and also suggesting a tentative deadline for us not to
meet. The freedom and pressure their decision gave us led directly to our working
out and writing up the new material that begins in Chapter 16, despite the prelim-
inary nature of much of it. Nearly all of this work postdates the acceptance of the
book on April 13, 2005.

Dedication. On May 17, 2006, Gaunce Lewis died after a lengthy bout with
brain cancer. This book is in large part the culmination of a long development
of the foundations of equivariant stable homotopy theory that began with Lewis’s
1978 Chicago PhD thesis and his joint work with the first author that appeared in
1986 [98]. His influence on our work will be evident. With sadness, we dedicate
this book to his memory.

July 11, 2006





Part I

Point-set topology, change
functors, and proper actions





Introduction

The point-set topology of parametrized spaces is surprisingly subtle. Parame-
trized mapping spaces are especially delicate, and to have them one must leave the
most commonly accepted convenient category of topological spaces. Such issues are
dealt with in Chapter 1. Rather than give complete proofs, we shall collate results
from the extensive literature on the subject to arrive at the framework that we find
most convenient.

While in Chapter 1 we focus on single categories, in Chapter 2 we study
“change” functors between categories, focusing on change of base space and change
of groups. There are myriads of such functors, and sorting out all of the relation-
ships among them is a thankless task. In fact, from a categorical point of view,
a full theory of coherence relating them is well beyond current reach. Analogous
compatibility relations in algebraic geometry are well-known to be as important to
the applications as they are tedious to prove. We are interested here in the point-set
level, preparing the way for our later study of these relations in derived homotopy
categories.

Chapter 3 gives foundations for the generalization of parts of our theory from
compact Lie groups to general Lie groups. It was already observed by Palais [136]
that many results in equivariant homotopy theory can be generalized to Lie groups,
or even to locally compact groups, provided that one restricts to proper actions.
In the parametrized world, the homotopy theory is captured on fibers. When we
restrict to proper actions on base spaces, the fibers have actions by the compact
isotropy groups of the base space. So even though our primary interest is in compact
Lie groups of equivariance, proper actions on the base space seem to provide the
right natural level of generality. We set the stage for such a theory by generalizing
various classical results about equivariant homotopy types and equivariant bundles
and fibrations to the setting of proper actions by Lie groups. In Part II, we develop
foundations for space level parametrized homotopy theory in that generality, but
we will not go on to the spectrum level analogue in this book. Little of the material
in Chapter 3 is needed in the nonequivariant specialization of our work.
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CHAPTER 1

The point-set topology of parametrized spaces

Introduction

It is well understood that a convenient category of topological spaces should
be complete and cocomplete and should be closed cartesian monoidal. That is,
it should have all limits and colimits and it should be symmetric monoidal under
cartesian products; “closed” means that it should have mapping spaces related in
the expected way to cartesian products. With cartesian products replaced by smash
products, we have the same criteria for a convenient category of based spaces, but
here not even the associativity of the smash product is clear. The same criteria for
convenience also apply in the parametrized context, but there are additional ones
concerning the relationships between spaces and parametrized spaces. We develop
the basic point-set level properties of the category of ex-spaces over a fixed base
space B in this chapter.

In §1.1, we fix our convenient categories of topological spaces. We defer discus-
sion of our choices to §1.5, and we defer some technical results to §1.6. The usual
category of compactly generated spaces is not adequate for our work, and we shall
see later that the interplay between model structures and the relevant convenient
categories is quite subtle. In §1.2, we give basic facts about based and unbased
topologically bicomplete categories. This gives the language that is needed to de-
scribe the good formal properties of the various categories in which we shall work.
We discuss convenient categories of ex-spaces in §1.3, and we discuss convenient
categories of ex-G-spaces in §1.4.

As a matter of recovery of lost folklore, §1.7 is an appendix, the substance
of which is due to Kathleen Lewis. It is only at her insistence that she is not
named as its author. It documents the nonassociativity of the smash product in
the ordinary category of based spaces, as opposed to the category of based k-spaces.
When writing the historical paper [120], the first author came across several 1950’s
references to this phenomenon, including an explicit, but unproven, counterexample
in a 1958 paper of Puppe [138]. However, we know of no reference that gives details,
and we feel that this should be documented in the modern literature.

We are very grateful to Gaunce Lewis for an extended correspondence and
many details about the material of this chapter, but he is not to be blamed for the
point of view that we have taken. We are also much indebted to Peter Booth. He
is the main pioneer of the theory of fibered mapping spaces and function ex-spaces
(see [16–18]), and he sent us several detailed proofs about them.

1.1. Convenient categories of topological spaces

We recall the following by now standard definitions.
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Definition 1.1.1. Let B be a space and A a subset. Let f : K −→ B run over
all continuous maps from compact Hausdorff spaces K into B.

(i) A is compactly closed if each f−1(A) is closed.
(ii) B is weak Hausdorff if each f(K) is closed.
(iii) B is a k-space if each compactly closed subset is closed.
(iv) B is compactly generated if it is a weak Hausdorff k-space.
Let Top be the category of all topological spaces and let K , wH , and U =
K ∩wH be its full subcategories of k-spaces, weak Hausdorff spaces, and compactly
generated spaces. The k-ification functor k : Top −→ K assigns to a space X the
same set with the finer topology that is obtained by requiring all compactly closed
subsets to be closed. It is right adjoint to the inclusion K −→ T op, and it restricts
to a right adjoint to the inclusion U −→ wH . The weak Hausdorffication functor
w : T op −→ wH assigns to a space X its maximal weak Hausdorff quotient. It is
left adjoint to the inclusion wH −→ Top, and it restricts to a left adjoint to the
inclusion U −→ K .

From now on, we work in K , implicitly k-ifying any space that is not a k-space
to begin with. In particular, products and function spaces are understood to be
k-ified. With this convention, B is weak Hausdorff if and only if the diagonal map
embeds it as a closed subspace of B×B. Like U , the category K is closed cartesian
monoidal. This means that it has function spaces Map(X,Y ) with homeomorphisms

Map(X × Y, Z) ∼= Map(X,Map(Y, Z)).

This was proven by Vogt [166], who uses the term compactly generated for our
k-spaces. See also [174]. (An early unpublished preprint by Clark [33] also showed
this, and an exposition of ex-spaces based on [33] was given by Booth [17]).

We have concomitant categories K∗ and U∗ of based spaces in K and in U .
We generally write T for U∗ to mesh with a number of relevant earlier papers.
Using duplicative notations, we write Map(X,Y ) for the space K (X,Y ) of maps
X −→ Y and F (X,Y ) for the based space K∗(X,Y ) of based maps X −→ Y
between based spaces. Both K∗ and T are closed symmetric monoidal categories
under ∧ and F [94, 166, 174]. This means that the smash product is associative,
commutative, and unital up to coherent natural isomorphism and that ∧ and F are
related by the usual adjunction homeomorphism

F (X ∧ Y,Z) ∼= F (X,F (Y, Z)).

1.2. Topologically bicomplete categories and ex-objects

We need some standard and some not quite so standard categorical language.
All of our categories C will be topologically enriched, with the enrichment given
by a topology on the underlying set of morphisms. We therefore agree to write
C (X,Y ) for the space of morphisms X −→ Y in C . Enriched category theory
would have us distinguish notationally between morphism spaces and morphism
sets, but we shall not do that. A topological category C is said to be topologically
bicomplete if, in addition to being bicomplete in the usual sense of having all limits
and colimits, it is bitensored in the sense that it is tensored and cotensored over
K . We shall denote the tensors and cotensors by X × K and Map(K,X) for a
space K and an object X of C . The defining adjunction homeomorphisms are

(1.2.1) C (X ×K,Y ) ∼= K (K,C (X,Y )) ∼= C (X,Map(K,Y )).
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By the Yoneda lemma, these have many standard implications. For example,

(1.2.2) X × ∗ ∼= X and Map(∗, Y ) ∼= Y,

(1.2.3) X× (K×L) ∼= (X×K)×L and Map(K,Map(L,X)) ∼= Map(K×L,X).

We say that a bicomplete topological category C is based if the unique map
from the initial object ∅ to the terminal object ∗ is an isomorphism. In that case,
C is enriched in the category K∗ of based k-spaces, the basepoint of C (X,Y ) being
the unique map that factors through ∗. We then say that C is based topologically
bicomplete if it is tensored and cotensored over K∗. We denote the tensors and
cotensors by X ∧K and F (K,X) for a based space K and an object X of C . The
defining adjunction homeomorphisms are

(1.2.4) C (X ∧K,Y ) ∼= K∗(K,C (X,Y )) ∼= C (X,F (K,Y )).

The based versions of (1.2.2) and (1.2.3) are

(1.2.5) X ∧ S0 ∼= X and F (S0, Y ) ∼= Y,

(1.2.6) X ∧ (K ∧ L) ∼= (X ∧K) ∧ L and F (K,F (L,X)) ∼= F (K ∧ L,X).

Although not essential to our work, a formal comparison between the based
and unbased notions of bicompleteness is illuminating. The following result allows
us to interpret topologically bicomplete to mean based topologically bicomplete
whenever C is based, a convention that we will follow throughout.

Proposition 1.2.7. Let C be a based and bicomplete topological category. Then
C is topologically bicomplete if and only if it is based topologically bicomplete.

Proof. Suppose given tensors and cotensors for unbased spaces K and write
them as X n K and Map(K,X)∗ as a reminder that they take values in a based
category. We obtain tensors and cotensors X ∧K and F (K,X) for based spaces K
as the pushouts and pullbacks displayed in the respective diagrams

X n ∗ //

��

X nK

��
∗ // X ∧K

and F (K,X) //

��

Map(K,X)∗

��
∗ // Map(∗, X)∗.

Conversely, given tensors and cotensors X ∧K and F (K,X) for based spaces K,
we obtain tensors and cotensors X nK and Map(K,X)∗ for unbased spaces K by
setting

X nK = X ∧K+ and Map(K,X)∗ = F (K+, X),

where K+ is the union of K and a disjoint basepoint. �

As usual, for any category C and object B in C , we let C /B denote the
category of objects over B. An object X = (X, p) of C /B consists of a total object
X together with a projection map p : X −→ B to the base object B. The morphisms
of C /B are the maps of total objects that commute with the projections.

Proposition 1.2.8. If C is a topologically bicomplete category, then so is C /B.
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Proof. The product of objects Yi over B, denoted ×BYi, is constructed by
taking the pullback of the product of the projections Yi −→ B along the diagonal
B −→ ×iB. Pullbacks and arbitrary colimits of objects over B are constructed
by taking pullbacks and colimits on total objects and giving them the induced
projections. General limits are constructed as usual from products and pullbacks.
If X is an object over B and K is a space, then the tensor X ×B K is just the
tensor X ×K in C together with the projection X ×K −→ B ×∗ ∼= B induced by
the projection of X and the projection of K to a point. Note that this makes sense
even though the tensor × in C need have nothing to do with cartesian products in
general; see Remark 1.2.10 below. The cotensor MapB(K,X) is the pullback of the
diagram

B
ι // Map(K,B) Map(K,X)oo

where ι is the adjoint of B ×K −→ B × ∗ ∼= B. �

The terminal object in C /B is (B, id). Let CB denote the category of based
objects in C /B, that is, the category of objects under (B, id) in C /B. An object
X = (X, p, s) in CB , which we call an ex-object over B, consists of on object (X, p)
over B together with a section s : B −→ X. We can therefore think of the ex-objects
as retract diagrams

B
s // X

p // B.

The terminal object in CB is (B, id, id), which we denote by ∗B ; it is also an initial
object. The morphisms in CB are the maps of total objects X that commute with
the projections and sections.

Proposition 1.2.9. If C is a topologically bicomplete category, then the cate-
gory CB is based topologically bicomplete.

Proof. The coproduct of objects Yi ∈ CB , which we shall refer to as the
“wedge over B” of the Yi and denote by ∨BYi, is the coequalizer of the maps
B −→ qYi given by the sections of the Yi, that is, the pushout of the coproduct
qB −→ qYi of the sections along the codiagonal qiB −→ B; it is given the evident
induced projection. Dually, the product of the Yi is constructed in C /B and given
the evident induced section. Pushouts and pullbacks in CB are constructed by
taking pushouts and pullbacks on total objects and giving them the evident induced
sections and projections. The tensor X ∧B K of X = (X, p, s) and a based space
K is the pushout of the diagram

B (X × ∗) ∪B (B ×K) //oo X ×K,

where the right map is induced by the basepoint of K and the section of X. The
cotensor FB(K,X) is the pullback of the diagram

B
s // X MapB(K,X),εoo

where ε is evaluation at the basepoint of K, that is, the adjoint of the evident map
X ×K −→ X over B. �

Remark 1.2.10. Notationally, it may be misleading to write X×K and X∧K
for unbased and based tensors. It conjures up associations that are appropriate
for the examples on hand but that are inappropriate in general. The tensors in a
topologically bicomplete category C may bear very little relationship to cartesian
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products or smash products. The standard uniform notation would be X ⊗ K.
However, we have too many relevant examples to want a uniform notation. In
particular, as in the proofs above, we generally use the notations X ×B K and
X ∧B K for tensors in the parametrized context, and there a notation such as
X ⊗B K would conjure up its own misleading associations. Actually, we shall
later use the notations X × K and X ×B K interchangeably for tensors in C /B,
since X ×B K is just the tensor X × K in C equipped with a projection. The
distinguishing notation X ∧B K for tensors in CB is more essential since it serves
as a useful reminder of the fiberwise nature of the smash product.

1.3. Convenient categories of ex-spaces

We need a convenient topologically bicomplete category of ex-spaces1 over a
space B, where “convenient” requires that we have smash product and function ex-
space functors ∧B and FB under which our category is closed symmetric monoidal.
Denoting the unit B×S0 of ∧B by S0

B , a formal argument shows that we will then
have isomorphisms

(1.3.1) X ∧B K ∼= X ∧B (S0
B ∧B K) and FB(K,Y ) ∼= FB(S0

B ∧B K,Y )

relating tensors and cotensors to the smash product and function ex-space functors.
In particular, S0

B ∧BK is just the product ex-space B×K with section determined
by the basepoint of K.

The point-set topology leading to such a convenient category is delicate, and
there are quite a few papers devoted to this subject. They do not give exactly
what we need, but they come close enough that we shall content ourselves with a
summary. It is based on the papers [16–18,21,22,96] of Booth, Booth and Brown,
and Lewis; see also James [83,84].

We assume once and for all that our base spaces B are in U . We allow the
total spaces X of spaces over B to be in K . We let K /B and U /B denote the
categories of spaces over B with total spaces in K or U . Similarly, we let KB and
UB denote the respective categories of ex-spaces over B.

Both the separation property on B and the lack of a separation property on
X are dictated by consideration of the function spaces MapB(X,Y ) over B that
we shall define shortly. These are only known to exist when B is weak Hausdorff.
However, even when B, X and Y are weak Hausdorff, MapB(X,Y ) is generally not
weak Hausdorff. This motivates us to drop the weak Hausdorff condition on total
spaces and to focus on KB as our preferred convenient category of ex-spaces over B.
The cofibrant ex-spaces in our q-type model structures are weak Hausdorff, hence
this separation property is recovered upon cofibrant approximation. Therefore, use
of K can be viewed as scaffolding in the foundations that can be removed when
doing homotopical work.

We topologize the set of ex-maps X −→ Y as a subspace of the space K (X,Y )
of maps of total spaces. It is based, with basepoint the unique map that factors
through ∗B . Therefore the category KB is enriched over K∗. It is based topo-
logically bicomplete by Proposition 1.2.8. Recall that we write ×BYi and ∨BYi
for products and wedges over B. We also write Y/BX for quotients, which are

1Presumably the prefix “ex” stands for “cross”, as in “cross section”. The unlovely term “ex-
space” has been replaced in some recent literature by “fiberwise pointed space”. Used repetitively,

that is not much of an improvement. The term “retractive space” has also been used.
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understood to be pushouts of diagrams ∗B ←− X −→ Y . We give a more concrete
description of the tensors and cotensors in K /B and KB specified in Propositions
1.2.8 and 1.2.9.

For a space X over B, we let Xb denote the fiber p−1(b). If X is an ex-space,
then Xb has the basepoint s(b).

Definition 1.3.2. Let X be a space over B and K be a space. Define X×BK
to be the space X×K with projection the product of the projections X −→ B and
K −→ ∗. Define MapB(K,X) to be the subspace of Map(K,X) consisting of those
maps f : K −→ X that factor through some fiber Xb; the projection sends such a
map f to b.

Definition 1.3.3. Let X be an ex-space over B and K be a based space.
Define X ∧B K to be the quotient of X ×B K obtained by taking fiberwise smash
products, so that (X∧BK)b = Xb∧K; the basepoints of fibers prescribe the section.
Define FB(K,X) to be the subspace of MapB(K,X) consisting of the based maps
K −→ Xb ⊂ X for some b ∈ B, so that FB(K,X)b = F (K,Xb); the section sends
b to the constant map at s(b).

The category K /B is closed cartesian monoidal under the fiberwise cartesian
product X ×B Y and the function space MapB(X,Y ) over B. The category KB

is closed symmetric monoidal under the fiberwise smash product X ∧B Y and the
function ex-space FB(X,Y ). We recall the relevant definitions.

Definition 1.3.4. For spaces X and Y over B, X ×B Y is the pullback of the
projections p : X −→ B and q : Y −→ B, with the evident projectionX×BY −→ B.
When X and Y have sections s and t, their pushout X∨BY specifies the coproduct,
or wedge, of X and Y in KB , and s and t induce a map X ∨B Y −→ X ×B Y over
B that sends x and y to (x, tp(x)) and (sq(y), y). Then X ∧B Y is the pushout in
K /B displayed in the diagram

X ∨B Y //

��

X ×B Y

��
∗B // X ∧B Y.

This arranges that (X∧BY )b = Xb∧Yb, and the section and projection are evident.

The following result is [22, 8.3].

Proposition 1.3.5. If X and Y are weak Hausdorff ex-spaces over B, then so
is X ∧B Y . That is, UB is closed under ∧B.

Function objects are considerably more subtle, and we need a preliminary def-
inition in order to give the cleanest description.

Definition 1.3.6. For a space Y ∈ K , define the partial map classifier Ỹ to
be the union of Y and a disjoint point ω, with the topology whose closed subspaces
are Ỹ and the closed subspaces of Y . The point ω is not a closed subset, and Ỹ is
not weak Hausdorff. The name “partial map classifier” comes from the observation
that, for any space X, pairs (A, f) consisting of a closed subset A of X and a
continuous map f : A −→ Y are in bijective correspondence with continuous maps
f̃ : X −→ Ỹ . Given (A, f), f̃ restricts to f on A and sends X − A to ω; given f̃ ,
(A, f) is f̃−1(Y ) and the restriction of f̃ .



1.3. CONVENIENT CATEGORIES OF EX-SPACES 21

Definition 1.3.7. Let p : X −→ B and q : Y −→ B be spaces over B. Define
MapB(X,Y ) to be the pullback displayed in the diagram

MapB(X,Y ) //

��

Map(X, Ỹ )

Map(id,q̃)

��
B

λ
// Map(X, B̃).

Here λ is the adjoint of the map X × B −→ B̃ that corresponds to the composite
of the inclusion Graph(p) ⊂ X × B and the projection X × B −→ B to the
second coordinate. The graph of p is the inverse image of the diagonal under
p × id : X × B −→ B × B, and the assumption that B is weak Hausdorff ensures
that it is a closed subset of X × B, as is needed for the definition to make sense.
Explicitly, λ(b) sends Xb to b and sends X −Xb to the point ω ∈ B̃.

This definition gives one reason that we require the base spaces of ex-spaces to
be weak Hausdorff. On fibers, MapB(X,Y )b = Map(Xb, Yb). The space of sections
of MapB(X,Y ) is K /B(X,Y ). We have (categorically equivalent) adjunctions

MapB(X ×B Y, Z) ∼= MapB(X,MapB(Y, Z)),(1.3.8)

K /B (X ×B Y, Z) ∼= K /B (X,MapB(Y, Z)).(1.3.9)

These results are due to Booth [16–18], but we follow [21] and [22]; §7 of the first of
these and §8 of the second explain details in the categories in which we are working;
see also [83, II§9], and [96].

As we have already mentioned, MapB(X,Y ) need not be weak Hausdorff even
when X and Y are. Some examples are given in [21, 5.3] and [96, 1.7]. The question
of when MapB(X,Y ) is Hausdorff or weak Hausdorff was studied in [21, §5] and
later in [83,84], but the definitive criterion was given by Lewis [96, 1.5].

Proposition 1.3.10. Consider a fixed map p : X −→ B and varying maps
q : Y −→ B, where X and the Y are weak Hausdorff. The map p is open if and
only if the space MapB(X,Y ) is weak Hausdorff for all q.

Proposition 1.3.11. If p : X −→ B and q : Y −→ B are Hurewicz fibrations,
then the projections X×BY −→ B and MapB(X,Y ) −→ B are Hurewicz fibrations.
The second statement is false with Hurewicz fibrations replaced by Serre fibrations.

Proof. The statement about X ×B Y is clear. The statements about
MapB(X,Y ) are due to Booth [16, 6.1] or, in the present formulation [17, 3.4];
see also [83, 23.17]. �

Definition 1.3.12. For ex-spaces X and Y over B, define FB(X,Y ) to be the
subspace of MapB(X,Y ) that consists of the points that restrict to based maps
Xb −→ Yb for each b ∈ B; the section sends b to the constant map from Xb to the
basepoint of Yb. Formally, FB(X,Y ) is the pullback displayed in the diagram

FB(X,Y ) //

��

MapB(X,Y )

MapB(s,id)

��
B

t
// Y ∼= MapB(B, Y ),

where s and t are the sections of X and Y .
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The space of maps S0
B −→ FB(X,Y ) is KB(X,Y ), and we have adjunctions

FB(X ∧B Y,Z) ∼= FB(X,FB(Y, Z)),(1.3.13)

KB (X ∧B Y, Z) ∼= KB (X,FB(Y,Z)).(1.3.14)

Proposition 1.3.10 implies the following analogue of Proposition 1.3.5.

Proposition 1.3.15. If X and Y are weak Hausdorff ex-spaces over B and
X −→ B is an open map, then FB(X,Y ) is weak Hausdorff.

We record the following analogue of Proposition 1.3.11. The second part is
again due to Booth, who sent us a detailed write-up. The argument is similar to
his proofs in [16, 6.1(i)] or [17, 3.4], but a little more complicated, and a general
result of the same form is given by Morgan [130].

Proposition 1.3.16. If X and Y are ex-spaces over B whose sections are
Hurewicz cofibrations and whose projections are Hurewicz fibrations, then the pro-
jections of X ∧B Y and FB(X,Y ) are Hurewicz fibrations.

1.4. Convenient categories of ex-G-spaces

The discussion just given generalizes readily to the equivariant context. Let
G be a compactly generated topological group. Subgroups of G are understood to
be closed. Let B be a compactly generated G-space (with G acting from the left).
We consider G-spaces over B and ex-G-spaces (X, p, s). The total space X is a
G-space in K , and the section and projection are G-maps. The fiber Xb is a based
Gb-space with Gb-fixed basepoint s(b), where Gb is the isotropy group of b.

Recall from [105, II§1] the distinction between the category KG of G-spaces and
nonequivariant maps and the category GK of G-spaces and equivariant maps; the
former is enriched over GK , the latter over K . We have a similar dichotomy on the
ex-space level. Here we have a conflict of notation with our notation for categories
of ex-spaces, and we agree to let KG,B denote the category whose objects are the
ex-G-spaces over B and whose morphisms are the maps of underlying ex-spaces over
B, that is, the maps f : X −→ Y such that f ◦ s = t and q ◦ f = p. Henceforward,
we call these maps “arrows” to distinguish them from G-maps, which we often
abbreviate to maps. For g ∈ G, gf is also an arrow of ex-spaces over B, so that
KG,B(X,Y ) is a G-space. Moreover, composition is given by G-maps

KG,B(Y, Z)×KG,B(X,Y ) −→ KG,B(X,Z).

We obtain the category GKB by restricting to G-maps f , and we may view it as
the G-fixed point category of KG,B . Of course, GKB(X,Y ) is a space and not a
G-space. The pair (KG,B , GKB) is an example of a G-category , a structure that
we shall recall formally in §10.2.

Since ∗B is an initial and terminal object in both KG,B and GKB , their mor-
phism spaces are based. Thus KG,B is enriched over the category GK∗ of based
G-spaces and GKB is enriched over K∗. As discussed in [105, II.1.3], if we were
to think exclusively in enriched category terms, we would resolutely ignore the fact
that the G-spaces KG,B(X,Y ) have elements (arrows), thinking of these G-spaces
as enriched hom objects. From that point of view, GKB is the “underlying cate-
gory” of our enriched G-category. While we prefer to think of KG,B as a category, it
must be kept in mind that it is not a very well-behaved one. For example, because
its arrows are not equivariant, it fails to have limits or colimits.
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In contrast, the category GKB is bicomplete. Its limits and colimits are con-
structed in KB and then given induced G-actions. The category KG,B , although
not bicomplete, is tensored and cotensored over KG,∗. The tensors X ∧B K and
cotensors FB(K,X) are constructed in KB and then given induced G-actions. They
satisfy the adjunctions

KG,B(X ∧B K,Y ) ∼= KG,∗(K,KG,B(X,Y )) ∼= KG,B(X,FB(K,Y ))(1.4.1)

and, by passage to fixed points,

GKB(X ∧B K,Y ) ∼= GK∗(K,KG,B(X,Y )) ∼= GKB(X,FB(K,Y )).(1.4.2)

It follows that GKB is tensored and cotensored over GK∗ and, in particular, is
topologically bicomplete.

The category KG,B is closed symmetric monoidal via the fiberwise smash prod-
ucts X ∧B Y and function objects FB(X,Y ). Again, these are defined in KB and
then given induced G-actions. The unit is the ex-G-space S0

B = B × S0. The cat-
egory GKB inherits a structure of closed symmetric monoidal category. We have
homeomorphisms of based G-spaces

KG,B(X ∧B Y, Z) ∼= KG,B(X,FB(Y, Z))(1.4.3)

and, by passage to G-fixed points, homeomorphisms of based spaces

GKB(X ∧B Y, Z) ∼= GKB(X,FB(Y,Z)).(1.4.4)

The first of these implies an associated homeomorphism of ex-G-spaces

FB(X ∧B Y, Z) ∼= FB(X,FB(Y,Z)).(1.4.5)

Remark 1.4.6. There is an alternative parametrized view of equivariance that
is important in torsor theory but that we shall not study. It focuses on “topolog-
ical groups GB over B” and “GB-spaces E over B”, where GB is a space over a
nonequivariant space B with a product GB ×B GB −→ GB that restricts on fibers
to the products of topological groups Gb and E is a space over B with an action
GB ×B E −→ E that restricts on fibers to actions Gb × Eb −→ Eb. That theory
intersects ours in the special case GB = G×B for a topological group G. Since, at
least implicitly, all of our homotopy theory is done fiberwise, our work adapts with-
out essential difficulty to give a development of parametrized equivariant homotopy
theory in that context.

1.5. Philosophical comments on the point-set topology

We would have preferred to work in U rather than K , since there are many
counterexamples which reveal the pitfalls of working without a separation property.
However, as we explained in §1.3, several inescapable facts about ex-spaces forced
us out of that convenient category.

Philosophically, we can justify a preference for K over U by remarking that
the weak Hausdorffication functor w is so poorly behaved that we prefer to minimize
its use. In U , colimits must be constructed by first constructing them in K and
then applying the functor w, which changes the underlying point set and loses
homotopical control. However, this justification would be more persuasive were
it not that colimits in K that are not colimits in U can already be quite badly
behaved topologically. For example, w itself is a colimit construction in K . We
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describe a relevant situation in which colimits behave better in U than in K in
Remark 1.6.4 below.

More persuasively, w is a formal construction that only retains formal control
because both colimits and the functor w are left adjoints. We have encountered
right adjoints constructed in K that do not preserve the weak Hausdorff property
when restricted to U , and in such situations we cannot apply w without losing the
adjunction. In fact, when restricted to U , the relevant left adjoints do not commute
with colimits and so cannot be left adjoints there. An obvious advantage of K is
that U sits inside it, so that we can use K when it is needed, but can restrict to
the better behaved category U whenever possible. Actually, as we have seen, the
situation is more subtle than a simple dichotomy. In order to have parametrized
mapping spaces, it was essential to combine use of the two categories, requiring
base spaces to be in U but allowing total spaces to be in K .

Lewis proposed alternative convenient categories of ex-spaces to those that
we have chosen. As we have seen, the cartesian monoidal category U /B is not
closed cartesian monoidal since mapping spaces over B need not be weak Hausdorff.
Wishing to retain the separation property and motivated by Propositions 1.3.10 and
1.3.15, Lewis [96] defined his preferred categories as follows.

Definition 1.5.1. Let O(B) and O∗(B) be the categories of those compactly
generated spaces and ex-spaces over B whose projection maps are open.

Remark 1.5.2. Bundle projections over B are open maps. Hurewicz fibrations
over B are open maps if the diagonal B −→ B × B is a Hurewicz cofibration
[96, 2.3]; this holds, for example, if B is a CW complex.

Remark 1.5.3. If p is an open map, then so are the projections of X ∧B K
and FB(K,Y ), by [96, p. 85]. Therefore O∗(B) is tensored and cotensored over T .

However, the categories O(B) and O∗(B) are insufficient for our purposes.
Working in these categories, we only have the base change adjunction (f∗, f∗) of
§2.1 for open maps f : A −→ B, which is unduly restrictive. For example, we need
the adjunction (∆∗,∆∗), where ∆: B −→ B × B is the diagonal map. Even more
importantly, the generating cofibrations of our q-type model structures cannot be
restricted to have open projection maps.

We record a comparison between K /B and U /B and between KB and UB .
Since we have little homotopical control of the construction, we rarely use it.

Proposition 1.5.4. Weak Hausdorffication w : K −→ U induces a retraction
of K /B to U /B and of KB to UB.

Proof. The functor w comes with a natural quotient map q : X −→ wX such
that any map X −→ B, B ∈ U , factors uniquely through a map wX −→ B. When
X is in U , q is the identity map. Therefore, for any space X in K /B, we have an
induced space wX in U /B and a natural map q : X −→ wX in K /B. If X has a
section s, so that X ∈ KB , then q ◦ s gives wX a section, so that wX ∈ UB , and
then q : X −→ wX is a map in KB . �

1.6. Technical point-set topological lemmas

We record several technical lemmas and observations that we shall need at
various points in our work.
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Let A×c B denote the classical cartesian product in T op and recall that B is
Hausdorff if and only if the diagonal embeds it as a closed subspace of B×cB. The
following result is proven in [94, App.§2].

Proposition 1.6.1. Let A and B be k-spaces. If one of them is locally compact
or if both of them are first countable, then

A×B = A×c B.
Therefore, if B is either locally compact or first countable, then B is Hausdorff if
and only if it is weak Hausdorff.

We need some observations about inclusions and colimits. Recall that a map
is an inclusion if it is a homeomorphism onto its image. Of course, inclusions
need not have closed image. As noted by Strøm [158], the simplest example of
a non-closed inclusion in K is the inclusion i : {a} ⊂ {a, b}, where {a, b} has
the indiscrete topology. Here i is both the inclusion of a retract and a Hurewicz
cofibration (satisfies the homotopy extension property, or HEP). As is well-known,
such pathology cannot occur in U .

Lemma 1.6.2. Let i : A −→ X be a map in K .
(i) If there is a map r : X −→ A such that r ◦ i = id, then i is an inclusion. If,

further, X is in U , then i is a closed inclusion.
(ii) If i is a Hurewicz cofibration, then i is an inclusion. If, further, X is in U ,

then i is a closed inclusion.

Proof. Inclusions i : A −→ X are characterized by the property that a func-
tion j : Y −→ A is continuous if and only if i◦j is continuous. This implies the first
statement in (i). Alternatively, one can note that a map in K is an inclusion if and
only if it is an equalizer in K , and a map in U is a closed inclusion if and only if it
is an equalizer in U [94, 7.6]. Since i is the equalizer of i◦r and the identity map of
X, this implies both statements in (i). For (ii), let Mi be the mapping cylinder of i.
The canonical map j : Mi −→ X × I has a left inverse r and is thus an inclusion or
closed inclusion in the respective cases. The evident closed inclusions i1 : A −→Mi
and i1 : X −→ X × I satisfy j ◦ i1 = i1 ◦ i, and the conclusions of (ii) follow. �

Remark 1.6.3. The section of an ex-space in UB is closed, by Lemma 1.6.2.
Quite reasonably, references such as [42, 83] make the blanket assumption that
sections of ex-spaces must be closed. We have not done so since we have not
checked that all constructions in sight preserve this property.

The following remark, which we learned from Mike Cole [35] and Gaunce Lewis,
compares certain colimits in K and U . It illuminates the difference between these
categories and will be needed in our discussion of h-type model structures.

Remark 1.6.4. Suppose given a sequence of inclusions gn : Xn −→ Xn+1 and
maps fn : Xn −→ Y in K such that fn+1gn = fn. Let X = colimXn and let
f : X −→ Y be obtained by passage to colimits. Fix a map p : Z −→ Y . The maps
Z ×Y Xn −→ Z ×Y X induce a map

α : colim (Z ×Y Xn) −→ Z ×Y X.
Lewis has provided counterexamples showing that α need not be a homeomorphism
in general. However, if Y ∈ U , then a result of his [94, App. 10.3] shows that α
is a homeomorphism for any p and any maps gn. In fact, as in Proposition 2.1.3
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below, if Y ∈ U , then the pullback functor p∗ : K /Y −→ K /Z is a left adjoint
and therefore commutes with all colimits. To see what goes wrong when Y is not
in U , consider the diagram

colim (Z ×Y Xn)
α //

ι

��

Z ×Y X

��
colim (Z ×Xn) // Z ×X.

Products commute with colimits, so the bottom arrow is a homeomorphism, and
the top arrow α is a continuous bijection. The right vertical arrow is an inclusion
by the construction of pullbacks. If the left vertical arrow ι is an inclusion, then the
diagram implies that α is a homeomorphism. The problem is that ι need not be an
inclusion. One point is that the maps Z ×Y Xn −→ Z ×Xn are closed inclusions if
Y is weak Hausdorff, but not in general otherwise. Now assume that all spaces in
sight are in U . Since the gn are inclusions, the relevant colimits, when computed in
K , are weak Hausdorff and thus give colimits in U . Therefore the commutation of
p∗ with colimits (which is a result about colimits in K ) applies to these particular
colimits in U to show that α is a homeomorphism.

The following related observation will be needed for applications of Quillen’s
small object argument to q-type model structures in §4.5 and elsewhere.

Lemma 1.6.5. Let Xn −→ Xn+1, n ≥ 0, be a sequence of inclusions in K with
colimit X. Suppose that X/X0 is in U . Then, for a compact Hausdorff space C,
the natural map

colimK (C,Xn) −→ K (C,X)

is a bijection.

Proof. The point is that X0 need not be in U . Let f : C −→ X be a map.
Then the composite of f with the quotient map X −→ X/X0 takes image in some
Xn/X0, hence f takes image in Xn. The conclusion follows. �

Scholium 1.6.6. One might expect the conclusion to hold for colimits of se-
quences of closed inclusions Xn−1 −→ Xn such that Xn−Xn−1 is a T1 space. This
is stated as [81, 4.2], whose authors got the statement from May. However, Lewis
has shown us a counterexample.

1.7. Appendix: nonassociativity of smash products in T op∗

In a 1958 paper [138], Puppe asserted the following result, but he did not give
a proof. It was the subject of a series of e-mails among Mike Cole, Tony Elmendorf,
Gaunce Lewis and the first author. Since we know of no published source that gives
the details of this or any other counterexample to the associativity of the smash
product in T op∗, we include the following proof. It is due to Kathleen Lewis.

Let Q and N be the rational numbers and the nonnegative integers, topologized
as subspaces of R and given the basepoint zero. Consider smash products as quo-
tient spaces, without applying the k-ification functor. Then we have the following
counterexample to associativity.

Theorem 1.7.1. (Q ∧Q) ∧ N is not homeomorphic to Q ∧ (Q ∧ N).
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Proof. Consider the following diagram.

Q×Q× N
p×id

''OOOOOOOOOOOO
id×p′

wwoooooooooooo

q

��

Q× (Q ∧ N)

s

��

(Q ∧Q)× N

r

��
Q ∧ (Q ∧ N) Q ∧Q ∧ Ntoo ∼= // (Q ∧Q) ∧ N

Here Q ∧Q ∧N denotes the evident quotient space of Q×Q×N. The maps p, p′,
q, r, and s are quotient maps. Since N is locally compact, p× id is also a quotient
map, hence so is r ◦ (p× id). The universal property of quotient spaces then gives
the bottom right homeomorphism. Since Q is not locally compact, id × p′ need
not be a quotient map, and in fact it is not. The map t is a continuous bijection
given by the universal property of the quotient map q, and we claim that t is not
a homeomorphism. To show this, we display an open subset of Q ∧ Q ∧ N whose
image under t is not open.

Let β be an irrational number, 0 < β < 1, and let γ = (1− β)/2. Define V ′(β)
to be the open subset of R× R that is the union of the following four sets.

(1) The open ball of radius β about the origin
(2) The tubes [1,∞)× (−γ, γ), (−∞,−1]× (−γ, γ), (−γ, γ)× [1,∞), and (−γ, γ)×

(−∞,−1] of width 2γ about the axes.
(3) The open balls of radius γ about the four points (±1, 0), (0,±1).
(4) For each n ≥ 1, the open ball of radius γ/2n about the four points (±γn, 0),

(0,±γn), where γn = 1−
∑k=n−1
k=0 γ/2k.

To visualize this set, it is best to draw a picture. It is symmetric with respect
to 90 degree rotation. Consider the part lying along the positive x-axis. A tube
of width 2γ covers the part of the x-axis to the right of (1, 0). A ball of radius β
centers at the origin. A ball of radius γ centers at (1, 0). Its vertical diagonal is
the edge of the tube going off to the right. On the left, by the choice of γ, this ball
reaches halfway from its center (1, 0) to the point (β, 0) at the right edge of the ball
centered at the origin. The point (1− γ, 0) at the left edge of the ball centered at
(1, 0) is the center of another ball, which reaches half the distance from (1−γ, 0) to
(β, 0). And so on: the point where the left edge of the nth ball crosses the x-axis
is the center point of the (n + 1)st ball, which reaches half the distance from its
center to the edge of the ball centered at the origin.

Define V (β) = V ′(β)∩(Q×Q). Note that the only points of the coordinate axes
of R×R that are not in V ′(β) are (±β, 0) and (0,±β). Since β is irrational, V (β)
contains the coordinate axes of Q×Q. Because the radii of the balls in the sequence
are decreasing, for each ε > β, there is no δ > 0 such that ((−ε, ε)×(−δ, δ))∩(Q×Q)
is contained in V (β).

Now let α be an irrational number, 0 < α < 1. Let • be the basepoint of Q∧N
and ∗ be the basepoint of Q ∧ Q ∧ N. Let U be the union of {∗} and the image
under q of ∪n≥1V (α/n)× {n}. This is an open subspace of Q ∧Q ∧ N since

q−1(U) = Q×Q× {0} ∪ (∪n≥1V (α/n)× {n})
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is an open subset of Q × Q × N. We claim that t(U) is not open in Q ∧ (Q ∧ N).
Assume that t(U) is open. Then

s−1(t(U)) = (id× p′)(q−1(U))

is an open subset of Q × (Q ∧ N), hence it contains an open neighborhood V of
(0, •). Now V must contain ((−ε, ε) ∩ Q) × W for some ε > 0 and some open
neighborhood W of • in Q ∧ N. Since Q ∧ N is homeomorphic to the wedge over
n ≥ 1 of the spaces Q × {n}, W must contain the wedge over n ≥ 1 of subsets
((−δn, δn) ∩Q)× {n}, where δn > 0. By the definition of U , this implies that

((−ε, ε)× (−δn, δn)) ∩ (Q×Q) ⊂ V (α/n).

However, for n large enough that ε > α/n, there is no δn for which this holds. �



CHAPTER 2

Change functors and compatibility relations

Introduction

In the previous chapter, we developed the internal properties of the category
GKB of ex-G-spaces over B. As B and G vary, these categories are related by
various functors, such as base change functors, change of groups functors, orbit and
fixed point functors, external smash product and function space functors, and so
forth. We define these functors and discuss various compatibility relations among
them in this chapter.

We particularly emphasize base change functors. We give a general categori-
cal discussion of such functors in §2.1, illustrating the general constructions with
topological examples. In §2.2, we discuss various compatibility relations that relate
these functors to smash products and function objects.

In §2.3 and §2.4 we turn to equivariant phenomena and study restriction of
group actions along homomorphisms. As usual, we break this into the study of
restriction along inclusions and pullback along quotient homomorphisms.

In §2.3, we discuss restrictions of group actions to subgroups, together with
the associated induction and coinduction functors. We also consider their compat-
ibilities with base change functors. In particular, this gives us a convenient way
of thinking about passage to fibers and allows us to reinterpret restriction to sub-
groups in terms of base change and coinduction. That is the starting point of our
generalization of the Wirthmüller isomorphism in §19.1.

In §2.4, we consider pullbacks of group actions from a quotient group G/N to
G, together with the associated quotient and fixed point functors. Again, we also
consider compatibilities with base change functors. For an N -free base space E,
we find a relation between the quotient functor (−)/N and the fixed point functor
(−)N that involves base change along the quotient map E −→ E/N . The good
properties of the bundle construction in §15.4 can be traced back to this relation,
and it is at the heart of the proof of the Adams isomorphism in equivariant stable
homotopy theory given in §19.7.

In §2.5, we describe a different categorical framework, one appropriate to ex-
spaces with varying base spaces. We show that the relevant category of retracts over
varying base spaces is closed symmetric monoidal under external smash product
and function ex-space functors. The internal smash product and function ex-space
functors are obtained from these by use of base change along diagonal maps. The
external smash products are much better behaved homotopically than the internal
ones, and homotopical analysis of base change functors will therefore play a central
role in the homotopical analysis of smash products.

29
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In much of this chapter, we work in a general categorical framework. In some
places where we restrict to spaces, more general categorical formulations are un-
doubtedly possible. When we talk about group actions, all groups are assumed to
be compactly generated spaces but are otherwise unrestricted.

2.1. The base change functors f!, f∗, and f∗

Let f : A −→ B be a map in a bicomplete subcategory B of a bicomplete
category C . We are thinking of U ⊂ K or GU ⊂ GK . We wish to define
functors

f! : CA −→ CB , f∗ : CB −→ CA, f∗ : CA −→ CB ,

such that f! is left adjoint and f∗ is right adjoint to f∗. The definitions of f∗ and
f! are dual and require no further hypotheses. The definition of f∗ does not work
in full generality, but it only requires the further hypothesis that C /B be cartesian
closed. Thus we assume given internal hom objects MapB(Y,Z) in C /B that
satisfy the usual adjunction, as in (1.3.9). One reason to work in this generality
is to emphasize that no further point-set topology is needed to construct these
base change functors in the context of ex-spaces. This point is not clear from the
literature, where the functor f∗ is often given an apparently different, but naturally
isomorphic, description. We work with generic ex-objects

A
s // X

p // A and B
t // Y

q // B

in this section.

Definition 2.1.1. Define f!X and its structure maps q and t by means of the
map of retracts in the following diagram on the left, where the top square is a
pushout and the bottom square is defined by the universal property of pushouts
and the requirement that q ◦ t = id. Define f∗Y and its structure maps p and s by
means of the map of retracts in the following middle diagram, where the bottom
square is a pullback and the top square is defined by the universal property of
pullbacks and the requirement that p ◦ s = id.

A

s

��

f // B

t

��
X

p

��

// f!X

q

��
A

f
// B

A

s

��

f // B

t

��
f∗Y //

p

��

Y

q

��
A

f
// B

B

t

��

ι // MapB(A,A)

Map(id,s)

��
f∗X

q

��

// MapB(A,X)

Map(id,p)

��
B ι

// MapB(A,A)

Thinking of X and A as objects over B via f ◦ p and f and observing that the
adjoint of the identity map of A gives a map ι : B −→ MapB(A,A), define f∗X and
its structure maps q and t by means of the map of retracts in the above diagram
on the right, where the bottom square is a pullback and the top square is defined
by the universal property of pullbacks and the requirement that q ◦ t = id.

Proposition 2.1.2. (f!, f∗) is an adjoint pair of functors:

CB(f!X,Y ) ∼= CA(X, f∗Y ).
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Proof. Maps in both hom sets are specified by maps k : X −→ Y in C such
that q ◦ k = f ◦ p and k ◦ s = t ◦ f . �

Proposition 2.1.3. (f∗, f∗) is an adjoint pair of functors:

CA(f∗Y,X) ∼= CB(Y, f∗X).

Proof. A map k : f∗Y = Y ×B A −→ X such that p ◦ k = p and k ◦ s = s
has adjoint k̃ : Y −→ MapB(A,X) such that Map(id, p) ◦ k̃ = ι ◦ q and k̃ ◦ t =
Map(id, s) ◦ ι. The conclusion follows directly. �

Remark 2.1.4. Writing these proofs diagrammatically, we see that the ad-
junction isomorphisms are given by homeomorphisms in our context of topological
categories.

We specialize to ex-spaces (or ex-G-spaces), in the rest of the section. Observe
that the fiber (f∗X)b is the space of sections Ab −→ Xb of p : Xb −→ Ab.

Remark 2.1.5. If f : A −→ B is an open map and X is in U , then f∗X is in
U and UA(f∗Y,X) ∼= UB(Y, f∗X) for Y ∈ U , by [96, 1.5].

Example 2.1.6. Let f : A −→ B be an inclusion. Then f∗Y is the restriction
of Y to A and f!X = B∪AX is obtained by expanding the section from A to B and
composing the projection X −→ A with f . The ex-space f∗X over B is analogous
to the prolongation by zero of a sheaf over A. The fiber (f∗X)b is Xa if a ∈ A and a
point {b} otherwise. To see this from the definition, recall that Map(∅,K) is a point
for any space K and that MapB(A,X)b = Map(Ab, Xb). As a set, f∗X ∼= B ∪A X,
but the topology is quite different. It is devised so that the map Y −→ f∗f

∗Y that
restricts to the identity on Ya for a ∈ A but sends Yb to {b} for b /∈ A is continuous.

Example 2.1.7. For b ∈ B, let b also denote the map ∗ −→ B that sends ∗ to
B; we may view this as the case A = {b} of the previous example. Then b∗Y is the
fiber Yb, and we write Kb and bK for the spaces b!K and b∗K over B associated to
a based space K. In the equivariant case, we must take the isotropy group Gb into
account. Let b̃ : G/Gb −→ B be the induced map of orbits, so that b̃ maps G/Gb
onto the orbit Gb. We shall reinterpret the functors b̃∗, b̃! and b̃∗ as an equivariant
fiber functor and its left and right adjoints in Example 2.3.12 below.

Example 2.1.8. Let r : B −→ ∗ be the unique map. We shall use the letter
r with this meaning throughout the book. For a based space X and an ex-space
E = (E, p, s) over B, we have

r∗X = B ×X, r!E = E/s(B), and r∗E = Sec(B,E),

where Sec(B,E) is the space of maps t : B −→ E such that p ◦ t = id, with
basepoint the section s. These elementary base change functors are the key to using
parametrized homotopy theory to obtain information in ordinary homotopy theory.
Let ε : r!r∗ −→ id and η : id −→ r∗r! be the counit and unit of the adjunction
(r!, r∗). Then r!r∗X ∼= B+∧X and ε is r+∧id, while r∗r!E = B×E/s(B) and η has
coordinates p and the quotient map E −→ E/s(B). Thus r!r∗r!E ∼= B+ ∧ E/s(B)
and r!η : r!E −→ r!r

∗r!E is the “Thom diagonal” E/s(B) −→ B+ ∧ E/s(B). If
p : E −→ B is a spherical fibration with section, such as the fiberwise one-point
compactification Sν of a vector bundle ν, then r!E is the Thom complex of p.
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Remark 2.1.9. Although our main interest will be in the sectioned theory, we
shall occasionally use the analogous base change functors on categories of parame-
trized objects without sections, especially in Chapter 18. The definitions are similar
but a bit simpler. For a map f : A −→ B, we can always define the first two of the
functors

f! : C /A −→ C /B, f∗ : C /B −→ C /A, f∗ : C /A −→ C /B,

and we can define the third whenever C /B is cartesian closed. The first is given by
composing the projection of an object in C /A with the map f to obtain a projection
to B, and the other two are defined by the same pullbacks as the corresponding
functors in the sectioned case. We again get two pairs of adjoint functors, (f!, f∗)
and (f∗, f∗). The results of the following section go through just as well in this
simpler setting.

2.2. Compatibility relations

The term “compatibility relation” has been used in algebraic geometry in the
context of Grothendieck’s six functor formalism in sheaf theory that relates base
change functors to tensor product and internal hom functors. We describe how the
analogous, but simpler, formalism appears in our categories of ex-objects.

We recall some language. We are especially interested in the behavior of base
change functors with respect to closed symmetric monoidal structures that, in our
topological context, are given by smash products and function objects. Relevant
categorical observations are given in [62]. We say that a functor T : B −→ A
between closed symmetric monoidal categories is closed symmetric monoidal if
(2.2.1)
TSB

∼= SA , T (X ∧B Y ) ∼= TX ∧A TY, and TFB(X,Y ) ∼= FA (TX, TY ),

where SB, ∧B and FB denote the unit object, product, and internal hom of B, and
similarly for A . These isomorphisms must satisfy appropriate coherence conditions
relating to the unit, associativity and commutativity isomorphisms in A and B.
In the language of [62], the following result states that any map f of base spaces
gives rise to a “Wirthmüller context”, which means that the functor f∗ is closed
symmetric monoidal and has both a left adjoint and a right adjoint.

Proposition 2.2.2. If f : A −→ B is a map of base G-spaces, then the functor
f∗ : GKB −→ GKA is closed symmetric monoidal. Therefore, by definition and
implication, f∗S0

B
∼= S0

A and there are natural isomorphisms

f∗(Y ∧B Z) ∼= f∗Y ∧A f∗Z,(2.2.3)

FB(Y, f∗X) ∼= f∗FA(f∗Y,X),(2.2.4)

f∗FB(Y, Z) ∼= FA(f∗Y, f∗Z),(2.2.5)

f!(f∗Y ∧A X) ∼= Y ∧B f!X,(2.2.6)

FB(f!X,Y ) ∼= f∗FA(X, f∗Y ),(2.2.7)

where X is an ex-G-space over A and Y and Z are ex-G-spaces over B.

Proof. The isomorphism f∗S0
B
∼= S0

A is evident since f∗(B×K) ∼= A×K for
based G-spaces K. The isomorphism (2.2.3) is obtained by passage to quotients
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from the evident homeomorphism

(Y ×B A)×A (Z ×B A) ∼= (Y ×B Z)×B A

As explained in [62, §§2, 3], the isomorphism (2.2.3) is equivalent to the isomorphism
(2.2.4), and it determines natural maps from left to right in (2.2.5), (2.2.6), and
(2.2.7) such that all three are isomorphisms if any one is. By a comparison of
definitions, we see that the categorically defined map in (2.2.5), which is denoted
α in [62, 3.3], coincides in the present situation with the map, also denoted α, on
[22, p. 167]. As explained on [22, p. 178], in the point-set topological framework
that we have adopted, that map α is a homeomorphism. �

Remark 2.2.8. Only the very last statement refers to topology. The categor-
ically defined map α should quite generally be an isomorphism in analogous con-
texts, but we have not pursued this question in detail. An alternative self-contained
proof of the previous proposition is given in Remark 2.5.8 below by using Proposi-
tion 2.2.11 to prove (2.2.6) instead of (2.2.5). In that argument, the only non-formal
ingredient is the fact that the functor D ×B (−) commutes with pushouts.

The categorical situation here entails a vast variety of coherence diagrams re-
lating the given data. We shall much later need two examples, and it is convenient
to insert them here. The following observation will play a minor role in §20.3, but
is of independent conceptual interest.

Remark 2.2.9. Applying (2.2.3) and (2.2.6), we obtain isomorphisms

Y ∧B f!f∗Z ∼= f!(f∗Y ∧A f∗Z) ∼= f!f
∗(Y ∧B Z).

The counit f!f∗ −→ id of the adjunction (f!, f∗) induces maps from the left and
right terms to Y ∧B Z, and the evident diagram commutes, so that these induced
maps agree under the isomorphism. Similarly, applying (2.2.4) and (2.2.7), we
obtain isomorphisms

FB(Y, f∗f∗Z) ∼= f∗FA(f∗Y, f∗Z) ∼= FB(f!f∗Y,Z).

The unit id −→ f∗f
∗ and counit f!f∗ −→ id of our adjunctions induce maps from

FB(Y, Z) to the left and right terms, and the evident diagram commutes, so that
these induced maps agree under the isomorphism.

The following more technical observation about the categorically defined iso-
morphism α in (2.2.5) will play a key role in the proof of the fiberwise duality
theorem of §15.1.

Remark 2.2.10. Let f∗ : B −→ A be any symmetric monoidal functor. We
are thinking of a base change functor, but the observation is general. The map

α : f∗FB(X,Y ) −→ FA (f∗X, f∗Y )

is defined to be the adjoint of

f∗FB(X,Y ) ∧A f∗X ∼= f∗(FB(X,Y ) ∧B X)
f∗ev // f∗Y.
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The dual of X is DBX = FB(X,SB), where SB is the unit of B. Taking Y = SB,
the definition of α implies that the top triangle commutes in the diagram

f∗DBX ∧A f∗X
∼= //

α∧A id

��

f∗(DBX ∧B X)
f∗ev // f∗SB

∼=
��

FA (f∗X, f∗SB) ∧A f∗X

ev

22eeeeeeeeeeeeeeeeeeeeeeeeeeeeee

∼=
// DA f

∗X ∧A f∗X
ev
// SA .

The bottom triangle is a naturality diagram. The outer rectangle is [62, 3.7], but
its commutativity in general was not observed there. However, it was observed in
[62, 3.8] that its commutativity implies the commutativity of the diagram

f∗DBX ∧A f∗Y

α∧A f
∗Y

��

∼= // f∗(DBX ∧B Y )
f∗ν // f∗FB(X,Y )

α

��
DA f

∗X ∧A f∗Y
ν

// FA (f∗X, f∗Y ),

where ν : DBX ∧B Y −→ FB(X,Y ) is the adjoint of

DBX ∧B Y ∧B X ∼= DBX ∧B X ∧B Y
ev∧id //SB ∧B Y ∼= Y.

In other contexts, the analogue of (2.2.6) is called the “projection formula”,
and we shall also use that term. The following base change commutation relations
with respect to pullbacks are also familiar from other contexts. We state the result
for spaces but, apart from use of the fact that the functor D×B (−) commutes with
pushouts, the proof is formal.

Proposition 2.2.11. Suppose given a pullback diagram of base spaces

C
g //

i

��

D

j

��
A

f
// B.

Then there are natural isomorphisms of functors

(2.2.12) j∗f! ∼= g!i
∗, f∗j∗ ∼= i∗g

∗, f∗j! ∼= i!g
∗, j∗f∗ ∼= g∗i

∗.

Proof. The first isomorphism is one of left adjoints, and the second is the
corresponding “conjugate” isomorphism of right adjoints. Similarly for the third
and fourth isomorphisms. By symmetry, it suffices to prove the first isomorphism.
The commutativity of the square already implies a canonical map g!i

∗ −→ j∗f!,
namely the composite

g!i
∗ −→ g!i

∗f∗f! ∼= g!g
∗j∗f! −→ j∗f!

given by the unit of the adjunction (f!, f∗) and the counit of the adjunction (g!, g∗).
When the diagram is a pullback, this map is an isomorphism because j∗ = D×B (−)
commutes with pushouts. For a space X over A regarded by composition with f
as a space over B, C ×A X ∼= D ×B X. This gives

j∗f!X = D ×B (B ∪A X) ∼= D ∪C (C ×A X) = g!i
∗X. �
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2.3. Change of group and restriction to fibers

This section begins the study of equivariant phenomena that have no non-
equivariant counterparts. In particular, using a conceptual reinterpretation of the
adjoints of the fiber functors (−)b, we relate restriction to subgroups to restriction to
fibers. Recall that subgroups of G are understood to be closed and fix an inclusion
ι : H ⊂ G throughout this section. Parametrized theory gives a convenient way of
studying restriction along ι without changing the ambient group from G to H.

Proposition 2.3.1. The category GKG/H of ex-G-spaces over G/H is equiv-
alent to the category HK∗ of based H-spaces.

Proof. The equivalence sends an ex-G-space (Y, p, s) over G/H to the H-
space p−1(eH) with basepoint the H-fixed point s(eH). Its inverse sends a based
H-space X to the induced G-space G×H X, with the evident structure maps. �

More formally, recall that there are “induction” and “coinduction” functors ι!
and ι∗ from H-spaces to G-spaces that are left and right adjoint to the forgetful
functor ι∗ that sends a G-space Y to Y regarded as an H-space. Explicitly, for an
H-space X,

(2.3.2) ι!X = G×H X and ι∗X = MapH(G,X).

The latter is the space of maps of (left) H-spaces, with (left) action of G induced
by the right action of G on itself. Similarly, when X is a based H-space, we have
the based analogues

(2.3.3) ι!X = G+ ∧H X and ι∗X = FH(G+, X).

With this notation, some familiar natural isomorphisms take the forms

ι!(ι∗Y ×X) ∼= Y × ι!X and ι∗Map(ι∗Y,X) ∼= Map(Y, ι∗X)(2.3.4)

and, in the based case,

ι!(ι∗Y ∧X) ∼= Y ∧ ι!X and ι∗F (ι∗Y,X) ∼= F (Y, ι∗X).(2.3.5)

By the uniqueness of adjoints, or inspection of definitions, we see that these familiar
change of groups functors are change of base functors along r : G/H −→ ∗.

Corollary 2.3.6. The change of group and change of base functors associated
to ι and r agree under the equivalence of categories between HK∗ and GKG/H :

ι∗ ∼= r∗, ι! ∼= r!, and ι∗ ∼= r∗.

We can generalize this equivalence of categories, using the following definitions.
We have a forgetful functor ι∗ : GKB −→ HKι∗B . It doesn’t have an obvious left
or right adjoint, but we have obvious analogues of induction and coinduction that
involve changes of base spaces. The first will lead to a description of ι∗ as a base
change functor and thus as a functor with a left and right adjoint.

Definition 2.3.7. Let A be an H-space and X be an H-space over A. Define
ι! : HKA −→ GKι!A by letting ι!X be the G-space G ×H X over ι!A = G ×H A.
Define ι∗ : HKA −→ GKι∗A by letting ι∗X be the G-space MapH(G,X) over
ι∗A = MapH(G,A).



36 2. CHANGE FUNCTORS AND COMPATIBILITY RELATIONS

For an H-space A and a G-space B, let

(2.3.8) µ : G×H ι∗B = ι!ι
∗B −→ B and ν : A −→ ι∗ι!A = ι∗(G×H A)

be the counit and unit of the (ι!, ι∗) adjunction. The following result says that
ex-H-spaces over an H-space A are equivalent to ex-G-spaces over the G-space ι!A.

Proposition 2.3.9. The functor ι! : HKA −→ GKι!A is a closed symmetric
monoidal equivalence of categories with inverse the composite

GKι!A
ι∗−→ HKι∗ι!A

ν∗−→ HKA.

Applied to A = ι∗B, this equivalence leads to the promised description of
ι∗ : GKB −→ HKι∗B as a base change functor.

Proposition 2.3.10. The functor ι∗ : GKB −→ HKι∗B is the composite

GKB
µ∗ //GKι!ι∗B

∼= HKι∗B .

Change of base and change of groups are related by various further consistency
relations. The following result gives two of them.

Proposition 2.3.11. Let f : A −→ ι∗B be a map of H-spaces and f̃ : ι!A −→ B
be its adjoint map of G-spaces. Then the following diagrams commute up to natural
isomorphism.

GKι!A
f̃! // GKB

HKA
f!

//

ι!

OO

HKι∗B

µ!◦ι!

OO GKB
f̃∗ //

ι∗

��

GKι!A

ν∗◦ι∗

��
HKι∗B

f∗
// HKA

Proof. Since f̃ = µ ◦ ι!f , we have

f̃! ◦ ι! ∼= (µ ◦ ι!f)! ◦ ι! ∼= µ! ◦ (ι!f)! ◦ ι! ∼= µ! ◦ ι! ◦ f!,

where the last isomorphism holds because G×H (−) commutes with pushouts. Since
f = ι∗f̃ ◦ ν, we have

f∗ ◦ ι∗ ∼= (ι∗f̃ ◦ ν)∗ ◦ ι∗ ∼= ν∗ ◦ (ι∗f̃)∗ ◦ ι∗ ∼= ν∗ ◦ ι∗ ◦ f̃∗,

where the last isomorphism holds because pulling the G action back to an H-action
commutes with pullbacks. �

The reader may find it illuminating to work out these isomorphisms in the
context of Proposition 2.3.1. That result leads to the promised reinterpretations of
the functors b̃∗, b̃! and b̃∗ defined in Example 2.1.7.

Example 2.3.12. Let b ∈ B. We have the Gb-map b : ∗ −→ B and the G-map
b̃ : G/Gb −→ B. Under the equivalence GKG/Gb

∼= GbK∗ of Proposition 2.3.1,
b̃∗ may be interpreted as the fiber functor GKB −→ GbK∗ that sends X to Xb,
b̃! may be interpreted as its left adjoint, which we denote by Kb, and b̃∗ may be
interpreted as its right adjoint, which we denote by bK. With these notations, the
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isomorphisms of Proposition 2.2.2 specialize to the following natural isomorphisms,
where Y and Z are in GKB and K is in GbK∗.

(Y ∧B Z)b ∼= Yb ∧ Zb,

FB(Y, bK) ∼= bF (Yb,K),

FB(Y, Z)b ∼= F (Yb, Zb),

(Yb ∧K)b ∼= Y ∧B Kb,

FB(Kb, Y ) ∼= bF (K,Yb).

Example 2.3.13. Several earlier results come together in the following situa-
tion. Let f : A −→ B be a G-map. For b ∈ B, let b : {∗} −→ B and ib : Ab −→ A
denote the evident inclusions of Gb-spaces. We have the following compatible pull-
back squares, the first of Gb-spaces and the second of G-spaces.

Ab
fb //

ib

��

{∗}

b

��
A

f
// B

G×Gb
Ab

G×Gb
fb//

ı̃b

��

G/Gb

b̃

��
A

f
// B

Applying Proposition 2.2.11 to the right-hand square and interpreting the conclu-
sion in terms of fibers by Definition 2.3.7, we obtain canonical isomorphisms of
Gb-spaces

(f!X)b ∼= fb!i
∗
bX and (f∗X)b ∼= fb∗i

∗
bX,

where X is an ex-G-space over A, regarded on the right-hand sides as an ex-Gb-
space over A by pullback along ι : Gb −→ G.

2.4. Normal subgroups and quotient groups

Observe that any homomorphism θ : G −→ G′ factors as the composite of a
quotient homomorphism ε, an isomorphism, and an inclusion ι. We studied change
of groups along inclusions in the previous section. Here we consider a quotient
homomorphism ε : G −→ J ofG by a normal subgroupN . We still have a restriction
functor

ε∗ : JKA −→ GKε∗A,

and we also have the functors

(−)/N : GKB −→ JKB/N and (−)N : GKB −→ JKBN

obtained by passing to orbits over N and to N -fixed points. When B is a point,
these last two functors are left and right adjoint to ε∗, but in general change of base
must enter in order to obtain such adjunctions. The following observation follows
directly by inspection of the definitions.
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Proposition 2.4.1. Let j : BN −→ B be the inclusion and p : B −→ B/N be
the quotient map. Then the following factorization diagrams commute.

GKB

p!

��

(−)/N // JKB/N

GKB/N

(−)/N

99sssssssss

and GKB

j∗

��

(−)N

// JKBN

GKBN

(−)N

99ttttttttt

It follows that ((−)/N, p∗ε∗) and (j!ε∗, (−)N ) are adjoint pairs.

We have the following analogue of Proposition 2.3.11, but to state its last part
we first recall the following standard definition [79, 4.2.2] and fix a convention to
be used throughout the book.

Definition 2.4.2. A G-space P is principal if the action of G is free and the
translation map τ : Orb(P ) −→ G is continuous, where Orb(P ) = {(x, gx)} ⊂ P×P
and τ(x, gx) = g. A principal G-bundle is a principal G-space P and a projection
p : P −→ B such that B is homeomorphic under P to P/G. Henceforward, we
adopt the convention that all given free actions are understood to be principal. By
Remark 3.1.8 below, this holds automatically if G is compact or, more generally,
the action of G is proper.

Proposition 2.4.3. Let f : A −→ B be a map of G-spaces. Then the following
diagrams commute up to natural isomorphism.

GKA
f! //

(−)/N

��

GKB

(−)/N

��
JKA/N

(f/N)!

// JKB/N

GKB
f∗ //

(−)N

��

GKA

(−)N

��
JKBN

(fN )∗
// JKAN

GKA
f! //

(−)N

��

GKB

(−)N

��
JKAN

(fN )!

// JKBN

If B is an N -free G-space, then the following diagram also commutes.

GKB
f∗ //

(−)/N

��

GKA

(−)/N

��
JKB/N

(f/N)∗
// JKA/N

Proof. For ex-G-spaces X over A and Y over B, the first three isomorphisms
are given by the homeomorphisms

(X ∪A B)/N ∼= X/N ∪A/N B/N,

(Y ×B A)N ∼= Y N ×BN AN ,

and
(X ∪A B)N ∼= XN ∪AN BN .

As a quibble, the third requires A −→ X to be a closed inclusion, but this will hold
for the sections of compactly generated ex-G-spaces over A by Lemma 1.6.2(i). For
the fourth diagram, the evident canonical map (f∗Y )/N −→ Y/N ×B/N A/N is a
homeomorphism. Indeed, the inverse Y/N ×B/N A/N −→ (f∗Y )/N sends (ȳ, ā)
to [ny, a] where n ∈ N is the unique element such that np(y) = f(a). Here n is
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unique since B is N -free, and the continuity of the specified inverse is ensured by
the tacitly assumed continuity of the translation map. �

Specializing to N -free G-spaces, we obtain a factorization result that is anal-
ogous to those in Proposition 2.4.1, but is less obvious. It is a precursor of the
Adams isomorphism, which we will derive in §19.7, and will have other uses.

Proposition 2.4.4. Let E be an N -free G-space, let B = E/N , and let
p : E −→ B be the quotient map. Then the diagram

GKE

(−)/N //

p∗

��

JKB

GKB

(−)N

;;vvvvvvvvv

commutes up to natural isomorphism. Therefore the left adjoint (−)/N of the
functor p∗ε∗ is also its right adjoint.

Proof. Let X be an ex-G-space over E with projection q. Comparing the
pullbacks that are used to define the functors p∗ and MapB in Definitions 2.1.1 and
1.3.7, we find that p∗X fits into a pullback diagram

p∗X //

��

Map(E, X̃)

q̃

��
B ν

// Map(E, Ẽ).

Here ν(b), b = Ne, corresponds as in Definition 1.3.6 to the inclusion of the closed
subset Ne in E. Passing to N -fixed points, we see that it suffices to prove that the
following commutative diagram is a pullback.

X/N
µ //

q/N

��

MapN (E, X̃)

q̃

��
E/N = B

ν
// MapN (E, Ẽ)

Here µ is induced from the adjoint of the map X×E −→ X̃ that sends (x, e) to nx
if e = nq(x) and sends (x, e) to ω otherwise. With this description, µ is well-defined
since E is N -free. It suffices to give a continuous inverse to the induced map

φ : X/N −→ MapN (E, X̃)×MapN (E,Ẽ) E/N.

If (f,Ne) is a point in the pullback, then f corresponds to a map Ne −→ X, and
φ−1(f,Ne) = Nf(e) in X/N . For continuity, note that φ−1 is obtained from the
evaluation map Map(E, X̃)× E −→ X̃ by passage to subquotient spaces. �

Remark 2.4.5. This leads to a useful alternative description of the functor
ι! : HKA −→ GKι!A, where A is an H-space and ι!A = G×H A, as a composite of
right adjoints. We have the projection π : G × A −→ A of (G ×H)-spaces, where
the G×H actions on the source and target are given by

(g, h)(g′, a) = (gg′h−1, ha) and (g, h)a = ha.
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Consider ex-H-spaces X over A as (G×H)-spaces with G acting trivially and let
ε : G×H −→ H be the projection. By inspection of definitions, ι!X = (π∗ε∗X)/H.
Since G×A is an H-free (G×H)-space, we conclude from the previous result that
ι!X ∼= (p∗π∗ε∗X)H , where p : G×A −→ G×H A = ι!A is the quotient map.

2.5. The closed symmetric monoidal category of retracts

Let B be a topologically bicomplete full subcategory of a topologically bicom-
plete category C . We are thinking of U ⊂ K or GU ⊂ GK . We have the
category of retracts CB. The objects of CB are the retractions B s−→ X

p−→ B
with B ∈ B and X ∈ C , abbreviated (X, p, s) or just X. The morphisms of CB are
the evident commutative diagrams. When B = C , this is just a diagram category
for the evident two object domain category.

The importance of the category CB is apparent from its role in Definition 2.1.1:
focus on this category is natural when we consider base change functors. In our
examples, B and C are enriched and topologically bicomplete over the appropriate
category of spaces, U for B and K for C . For a space K ∈ K , the tensors −×K
and cotensors Map(K,−) applied to retractions give retractions, and we have the
adjunction homeomorphisms

(2.5.1) CB(X ×K,Y ) ∼= K (K,CB(X,Y )) ∼= CB(X,Map(K,Y )).

Now restrict attention to GKGU .

Lemma 2.5.2. The category GKGU is topologically bicomplete.

Proof. Since we have tensors and cotensors, by (2.5.1), it suffices to show that
GKGU is bicomplete. As a diagram category, GKGK is certainly bicomplete. Since
limits in GU are constructed in GK , it follows directly that GKGU is complete.
Colimits in GU are obtained by applying the weak Hausdorffication functor w to
colimits in GK . Using Proposition 1.5.4, it follows by direct verification of the
universal property that colimits in GK on total spaces paired with colimits in GU
on base spaces specify colimits in GKGU . �

The category GKGU is closed symmetric monoidal under an external smash
product functor, denoted XZY , and an external function ex-space functor, denoted
F̄ (Y, Z). If X, Y , and Z are ex-spaces over A, B, and A × B, respectively, then
X Z Y is an ex-space over A×B and F̄ (Y, Z) is an ex-space over A. We have

(2.5.3) GKA×B(X Z Y,Z) ∼= GKA(X, F̄ (Y, Z)),

which gives the required adjunction inGKGU . It specializes to parts of (1.4.2) when
A or B is a point. The ex-space X ZY is the evident fiberwise smash product, with
(X Z Y )(a,b) = Xa ∧ Yb. The fiber F̄ (Y, Z)a is FB(Y,Za), where Za is the ex-space
over B whose fiber Za,b over b is the inverse image of (a, b) under the projection
Z −→ A×B. Rather than describe the topology of the ex-space F̄ (Y, Z) directly, we
will shortly give alternative descriptions of X Z Y and F̄ (Y,Z) in terms of internal
smash products and internal function ex-spaces. The commutativity isomorphism
of the external smash product is evident, but it requires comment because it will
play an important and subtle role later on.
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Remark 2.5.4. Consider the following diagram, where X and Y are ex-spaces
over A and B and t : A×B −→ B ×A is the interchange map.

Y ZX

��

γ

%%LLLLLLLLLL
γ // X Z Y

��

t∗(X Z Y )

99rrrrrrrrrr

xxrrrrrrrrrr

B ×A
t

// A×B

The evident interchange map γ is the commutativity isomorphism of the exter-
nal smash product. The lower right square is a pullback, and γ is given by the
universal property. It is a map of ex-spaces over B × A and should be regarded
as a symmetry isomorphism. When we introduce symmetric bicategories of ex-
spaces and ex-spectra in §17.1, γ will lead to the relevant symmetry. When we
discuss products in parametrized homology and cohomology theories in §20.7, the
commutativity isomorphism γ will play a key role.

Let πA and πB be the projections of A × B on A and B and observe that
π∗AX

∼= X × B and π∗BY
∼= A × Y . If one likes, the following results can be taken

as either a definition of the external operations together with a characterization of
the internal operations, or vice versa.

Lemma 2.5.5. The external smash product and function ex-space functors are
determined by the internal functors via natural isomorphisms

X Z Y ∼= π∗AX ∧A×B π∗BY and F̄ (Y,Z) ∼= πA∗FA×B(π∗BY, Z),

where X, Y , and Z are ex-spaces over A, B, and A×B, respectively.

With these isomorphisms taken as definitions, the adjunction (2.5.3) follows
from the adjunctions (π∗A, πA∗), (π∗B , πB∗), and (∧A×B , FA×B).

Lemma 2.5.6. The internal smash product and function ex-space functors are
determined by the external functors via natural isomorphisms

X ∧B Y ∼= ∆∗(X Z Y ) and FB(X,Y ) ∼= F̄ (X,∆∗Y ),

where X and Y are ex-spaces over B and ∆: B −→ B ×B is the diagonal map.

With these isomorphisms taken as definitions, the adjunction (∧B , FB) follows
from the adjunctions (∆∗,∆∗) and (2.5.3). Since ∆∗ is symmetric monoidal and
the composite of either projection πi : B × B −→ B with ∆ is the identity map of
B, we see that, if we have constructed both internal and external smash products,
then they must be related by natural isomorphisms as in Lemmas 2.5.5 and 2.5.6.

Remark 2.5.7. The referee of a preliminary version of this work suggested that
we give a consistency check on fibers. The fiber (∆∗Y )(b,c) is a point if b 6= c and is
Yb if b = c. Therefore the fiber over b of the restriction (∆∗Y )b of ∆∗Y to {b} ×B
is Yb ∪ (B − {b}), suitably topologized, and

F̄ (X,∆∗Y )b = FB(X, (∆∗Y )b)b ∼= F (Xb, Yb) = FB(X,Y )b.
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Remark 2.5.8. The description of the internal smash product in terms of the
external smash product sheds light on the basic compatibility isomorphisms (2.2.3)
and (2.2.6). For maps f : A −→ B and g : A′ −→ B′ and for ex-spaces X over B
and Y over B′, it is easily checked that

(2.5.9) f∗Y Z g∗Z ∼= (f × g)∗(Y Z Z).

Similarly, for ex-spaces W over A and X over A′,

(2.5.10) f!W Z g!X ∼= (f × g)!(W ZX).

Now take A = A′, B = B′ and f = g. For ex-spaces Y and Z over B,

f∗(Y ∧B Z) ∼= f∗∆∗
B(Y Z Z) ∼= (∆B ◦ f)∗(Y Z Z).

On the other hand, using (2.5.9),

f∗Y ∧A f∗Z ∼= ∆∗
A(f × f)∗(Y Z Z) ∼= ((f × f) ◦∆A)∗(Y Z Z).

The right sides are isomorphic since ∆B ◦ f = (f × f) ◦∆A. Similarly,

f!(f∗Y ∧A X) ∼= f!∆∗
A(f × id)∗(Y ZX) ∼= f!((f × id) ◦∆A)∗(Y ZX),

while
Y ∧B f!X ∼= ∆∗

B(id× f)!(Y ZX).
The naturality ∆B ◦ f = (f × f) ◦∆A can be rewritten as the pullback diagram

A

f

��

∆A // A×A
f×id // B ×A

id×f
��

B
∆B

// B ×B,

and the right sides are isomorphic by Proposition 2.2.11.

It is illuminating conceptually to go further and consider group actions from
an external point of view. For groups H and G, an H-space A, and a G-space B,
we have an evident external smash product

(2.5.11) Z : HKA ×GKB → (H ×G)KA×B .
For an ex-H-space X over A and an ex-G-space Y over B, XZY is just the internal
smash product over the (H × G)-space A × B of π∗Hπ

∗
AX and π∗Gπ

∗
BY , where the

π′s are the projections from H×G and A×B to their coordinates. It is easily seen
that this definition leads to another (Z, F̄ ) adjunction.

When H = G, the diagonal ∆: G −→ G × G is a closed inclusion since G
is compactly generated. We can pull back along ∆, and then our earlier external
smash product X Z Y over the G-space ∆∗(A×B) is given in terms of (2.5.11) as
the pullback ∆∗(X Z Y ). Note that, by Proposition 2.3.10, ∆∗ here can be viewed
as a base change functor.



CHAPTER 3

Proper actions, equivariant bundles and fibrations

Introduction

Proper actions by locally compact groups are well-behaved actions whose iso-
tropy groups are compact. All actions by compact Lie groups are proper, and an
action of a discrete group is proper if and only if it is properly discontinuous. We
discuss proper actions of locally compact groups in §3.1.

In §3.2, we describe a class of equivariant bundles that will play an important
role in Parts IV and V. Starting from a principal bundle P −→ B = P/Π (with
appropriate equivariance) and an associated bundle E = P ×Π F −→ B, we show
how to insert ex-spaces over F fiberwise into the functor P ×Π (−) to obtain ex-
spaces over E in §3.3, and we show that this “bundle construction” gives a closed
symmetric monoidal functor that commutes with base change functors. This sets
the stage for the definition and use of a spectrum level analogue, starting in §15.4.

In a different direction, we generalize Waner’s equivariant versions [168] of
Milnor’s results about spaces of the homotopy types of CW complexes in §3.4, and
we generalize classical theorems of Dold and Stasheff about Hurewicz fibrations in
§3.5. We also recall an important but little known result of Steinberger and West
that relates Serre and Hurewicz fibrations. We define equivariant quasifibrations in
§3.6.

3.1. Proper actions of locally compact groups

For appropriate generality and technical convenience, we let G be a locally
compact topological group whose underlying topological space is compactly gen-
erated. Local compactness means that the identity element, hence any point, has
a compact neighborhood. We see from Proposition 1.6.1 that G is Hausdorff and,
since all compact subsets are closed, it follows that each neighborhood of any point
contains a compact neighborhood.

Remark 3.1.1. We comment on the assumptions we make for G. If G is any
topological group whose underlying space is in K , then an action of G on X in
K may not come from an action in T op. The point is that the product G×X in
K is defined by applying the k-ification functor to the product G ×c X in T op,
and not every action G×X −→ X need be continuous when viewed as a function
G ×c X −→ X. However, when G is locally compact, G ×c X is already in K by
Proposition 1.6.1, and k-ification is not needed. There is then no ambiguity about
what we mean by a G-space, and we need not worry about refining the topology
on products with G.

Another reason for restricting to locally compact groups is that many useful
properties of proper actions only hold in that case. In the literature, such results

43
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are usually derived for actions on Hausdorff spaces, but we shall see that weak
Hausdorff generally suffices.

We begin with some standard equivariant terminology.

Definition 3.1.2. Let X be a G-space and let H ⊂ G.
(i) An H-tube U in X is an open G-invariant subset of X together with a G-map

π : U −→ G/H. If x ∈ U and H = Gx, then U is a tube around x. A tube is
contractible if π is a G-homotopy equivalence.

(ii) An H-slice S in X is an H-invariant subset such that the canonical G-map
G ×H S −→ GS ⊂ X is an embedding onto an open subset. Then GS is
an H-tube with S = π−1(eH). Conversely, if (U, π) is an H-tube in X, then
S = π−1(eH) is an H-slice and U = GS. On isotropy subgroups, we then
have Gy = Hy ⊂ H for all y ∈ S, but equality need not hold. If x ∈ S and
H = Gx, then S is a slice through x.

(iii) We say that X has enough slices if every point x ∈ X is contained in an
H-slice for some compact subgroup H. This implies that every point x has
compact isotropy group, but in general it does not imply that there must be
a slice through every point x.

(iv) A G-numerable cover of X is a cover {Uj} by tubes such that there exists a
locally finite partition of unity by G-maps λj : X −→ [0, 1] with support Uj .

The following is the equivariant generalization of [48, 6.7].

Proposition 3.1.3. Any G-CW complex admits a G-numerable cover by con-
tractible tubes.

Proof. The proof given by Dold [48] in the nonequivariant case goes through
with only a minor change in the initial construction, which we sketch. From there,
the technical details are unchanged. Let Xn be the n-th skeletal filtration of a G-
CW complexX. Let Ẋn denote the subspace obtained by deleting the central orbits
(G/H×0 for a cell of orbit type G/H) of all n-cells in Xn and let rn : Ẋn −→ Xn−1

denote the obvious retract. Starting from the interior en = G/H × (Dn − Sn−1) of
a fixed n-cell, define V mn inductively for m ≥ n by setting V nn = en and V m+1

n =
r−1
m+1(V

m
n ). Then the union V∞n =

⋃
m≥n V

m
n is a contractible tube, where the

projection to G/H is induced by the projection of en to G/H. �

We now give the definition of a proper group action in K . We shall see that
the definition could equivalently be made in U . For further details, but in T op,
see for example [24,47]. Recall that a continuous map is proper if it is a closed map
with compact fibers.

Definition 3.1.4. A G-space X in GK is proper (or G-proper) if the map

θ : G×X −→ X ×X
specified by θ(g, x) = (x, gx) is proper.

We warn the reader that this definition is not quite the standard one. We
are working in the category K , and the product X × X on the right hand side
is the k-space obtained by k-ifying the standard product topology on X ×c X. In
T op there are various other notions of a proper group action; see [12] for a careful
discussion. They all agree for actions of locally compact groups on completely
regular spaces. If X is proper, then the isotropy groups Gx are compact since they
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are the fibers θ−1(x, x). Moreover, since points are closed subsets of G, the diagonal
∆X = θ({e} × X) must be a closed subset of X × X and thus X must be weak
Hausdorff. This means that proper G-spaces must be in U . Since G is locally
compact, we have the following useful characterizations.

Proposition 3.1.5. For a G-space X in GK the following are equivalent.
(i) The action of G on X is proper.
(ii) The isotropy groups Gx are compact and for any point (x, y) ∈ X × X and

any neighborhood U of θ−1(x, y) in G×X, there is a neighborhood V of (x, y)
in X ×X such that θ−1(V ) ⊂ U .

(iii) The isotropy groups Gx are compact and for any (x, y) ∈ X × X and any
neighborhood U of {g | gx = y} in G, there is a neighborhood V of (x, y) such
that

{g ∈ G | ga = b for some (a, b) ∈ V } ⊂ U.
(iv) The space X is weak Hausdorff and every point (x, y) ∈ X ×X has a neigh-

borhood V such that

{g ∈ G | ga = b for some (a, b) ∈ V }
has compact closure in G.

Proof. This holds by essentially the same proof as [12, 1.6(b)]. One must
only keep in mind that we are now working in K rather than in T op and adjust
the argument accordingly. �

Corollary 3.1.6. If G is discrete, then a G-space X is proper if and only if
any point (x, y) ∈ X ×X has a neighborhood V such that

{g ∈ G | ga = b for some (a, b) ∈ V }
is finite.

Corollary 3.1.7. If G is compact, then any G-space in GU is proper. More
generally, if Γ = G × Π, where G is compact and Π is locally compact, then any
Π-free Γ-space in ΓU is proper.

Remark 3.1.8. Recall Definition 2.4.2 and let G act freely on X. Since the
fibers of θ are points, the action is proper if and only if θ is a closed map. Since θ
is injective, it is then a homeomorphism onto its image. However, its image is the
domain Orb(X) of the translation map τ , and τ is the composite π ◦ θ−1, where
π : G × X −→ G is the projection. Therefore τ : Orb(X) −→ G is necessarily
continuous, as required by our standing convention on free actions, when G acts
freely and properly on X. This always holds when X is in GU and G is compact.

Remark 3.1.9. There is an alternative description of the set displayed in
Proposition 3.1.5 that may clarify the characterization. Define

φ : G×X ×X −→ X ×X
by φ(g, x, y) = (gx, y). For V ⊂ X × X, let φV be the restriction of φ to G × V
and let π : G× V −→ G be the projection, which is an open map since G× V has
the product topology. Then the displayed set is πφ−1

V (∆X). If X ×X = X ×c X,
then the condition in Proposition 3.1.5 is equivalent to the more familiar one that
any two points x and y in X have neighborhoods Vx and Vy such that

{g ∈ G | gVx ∩ Vy 6= ∅}
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has compact closure in G.

Proposition 3.1.10. Proper actions satisfy the following closure properties.
(i) The restriction of a proper action to a closed subgroup is proper.
(ii) An invariant subspace of a proper G-space is also proper.
(iii) Products of proper G-spaces are proper.
(iv) If X is a proper Hausdorff G-space in GK and C is a compact Hausdorff

G-space, then the G-space Map(C,X) is proper.
(v) An H-space S is H-proper if and only if G×H S is G-proper.

Proof. The first three are standard and elementary; see for example [47,
I.5.10]. The fifth is [12, 2.3]. We prove (iv). We must show that the map

θ : G×Map(C,X) −→ Map(C,X)×Map(C,X)

is proper, which amounts to showing that it is closed and that the isotropy groups
Gf are compact for f ∈ Map(C,X). For the latter, let {gi} be a net in Gf and
fix c ∈ C. Note that f(gic) = gif(c). Since C is compact, we can assume by
passing to a subnet that {gic} converges to some c̄ ∈ C. Let V be a neighborhood
of (f(c), f(c̄)) such that

B = {g ∈ G | ga = b for some (a, b) ∈ V }
has compact closure. Since C is compact, C×C×Map(C,X) has the usual product
topology. Since the map

C × C ×Map(C,X) −→ X ×X
that sends (c, d, f) to (f(c), f(d)) is continuous and the net {c, gic, f} converges to
(c, c̄, f), the net {(f(c), f(gic))} = {(f(c), gif(c))} must converge to (f(c), f(c̄)). It
follows that a subnet of {gi} lies in B and therefore has a converging sub-subnet.

To show that θ is closed, let A be a closed subset of G ×Map(C,X) and let
{(fi, gifi)} be a net in θ(A) that converges to (f, F ). We must show that (f, F ) is
in θ(A). For c ∈ C, the net {g−1

i c} has a subnet that converges to some c̄, by the
compactness of C, so we may as well assume that the original net converges to c̄.
Let V be a neighborhood of (f(c̄), F (c)) such that

B′ = {g ∈ G | ga = b for some (a, b) ∈ V }
has compact closure. By continuity and the compactness of C, there is a compact
neighborhood K1×K2 of (c̄, c) that (f, F ) maps into V . Since {(fi, gifi)} converges
to (f, F ), there is an h such that (fi, gifi)(K1 ×K2) ⊂ V for i ≥ h. It follows that
there is a k ≥ h such that (fi(g−1

i c), gifi(g−1
i c)) ∈ V for all i ≥ k. Then the

subnet {gi}i≥k is contained in B′ and therefore has a sub-subnet that converges
to some g ∈ G. We have now seen that our original net {(gi, fi)} in A has a
subnet {(gij , fij )} that converges to (g, f), and (g, f) ∈ A since A is closed. By the
continuity of θ, {θ(gi, fi)} must converge to (f, F ) = θ(g, f) ∈ θ(A). In this last
statement, we are using the uniqueness of limits, which we ensure by requiring X
and C to be Hausdorff. �

The following theorem of Palais [136], as generalized by Biller [12], is funda-
mental. Those sources work in T op, but the arguments work just as well in U .

Theorem 3.1.11 (Palais). Let X be a G-space in GU .
(i) If X has enough slices, then it is proper.
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(ii) Conversely, if X is completely regular and proper, then it has enough slices.
(iii) If G is a Lie group and X is completely regular and proper, then there is a

slice through each point of X.

Proof. Part (i) is given by [12, 2.4]. Part (iii) is given by [136, 2.3.3]. Part
(ii) is deduced from part (iii) in [12, 2.5]. �

3.2. Proper actions and equivariant bundles

We introduce here the equivariant bundles to which we will apply our basic
foundational results in Part IV. The applications there will focus on compact Lie
groups, but we need greater generality in Part V. As we explain, Theorem 3.1.11 al-
lows us to generalize some basic results about such bundles from actions of compact
Lie groups to proper actions of locally compact groups.

Let Π be a normal subgroup of a locally compact group Γ such that Γ/Π = G
and let q : Γ −→ G be the quotient homomorphism. By a principal (Π; Γ)-bundle
we mean the quotient map p : P −→ P/Π where P is a Π-free Γ-space such that Γ
acts properly on P . It follows that the induced G-action on B = P/Π is proper. If
F is a Γ-space, then we have the associated G-map E = P×ΠF −→ P×Π∗ ∼= P/Π,
which we say is a Γ-bundle with structure group Π and fiber F .

For compact Lie groups, bundles of this form are studied in [92], which gen-
eralizes the study of the classical case Γ = G × Π given in [91]. In view of Corol-
lary 3.1.7, the classical case works equally well when G but not necessarily Π is
compact. A summary and further references are given in [118, Chapter VII]. We
recall an observation about bundles of this sort.

Lemma 3.2.1. For b ∈ B, the action of Γ on F induces an action of the isotropy
group Gb on the fiber Eb through a homomorphism ρb : Gb −→ Γ such that q ◦ ρb is
the inclusion Gb −→ G and Eb is Gb-homeomorphic to ρ∗bF .

Proof. Choose z ∈ P such that π(z) = b. The isotropy group Γz intersects Π
in the trivial group, and q maps Γz isomorphically onto Gb. Let ρb be the composite
of q−1 : Gb −→ Γz and the inclusion Γz −→ Γ. Since the subspace {z}×F of P ×F
is Γz–invariant and maps homeomorphically onto Eb on passage to orbits over Π,
the conclusion follows. Note that changing the choice of z changes ρb by conjugation
by an element of Π and changes the identification of Eb with F correspondingly. �

Bundles should be locally trivial. When P is completely regular, local triviality
is a consequence of Theorem 3.1.11(iii), just as in the case when Γ is a compact
Lie group [92, Lemma 3], and this justifies our bundle-theoretic terminology. Note
that if P is completely regular, then so is B = P/Π.

Lemma 3.2.2. A completely regular principal (Π; Γ)-bundle P is locally trivial.
That is, for each b ∈ B, there is a slice Sb through b and a homeomorphism

Γ×Λ Sb
∼= //

q×1

��

p−1(GSb)

p

��
G×Gb

Sb
∼= // GSb

where Λ ⊂ Γ only intersects Π in the identity element and is mapped isomorphically
to Gb by q. The Λ-action on Sb is given by pulling back the Gb-action along q.
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3.3. The bundle construction

In §15.4 we will introduce a bundle construction on parametrized spectra that
will play a central role in Parts IV and V. We consider the underlying space level
bundle construction here. We retain the notations of the previous section, so that
P is a proper Π-free Γ-space, E = P ×Π F for a Γ-space F , and B = P/Π.

Applying the functor P ×Π (−) to retracts gives the functor

PF : ΓKF −→ GKE .

Thus, for an ex-Γ-space K over F , the ex-G-space P ×ΠK over P ×ΠF has section
and projection induced by the section and projection of K. Observe that if F
is a smooth manifold and Sτ is the sphere bundle obtained by fiberwise one-point
compactification of the tangent bundle of F , then PFSτ is the G-bundle of spherical
tangents along the fiber associated to p : E −→ B.

The bundle construction has good formal properties. For example, we have the
following observation.

Lemma 3.3.1. The functor PF : ΓKF −→ GKE is both a left and a right ad-
joint.

Proof. Let π : P × F −→ F be the projection. Clearly PF is the composite
of π∗ : ΓKF −→ ΓKP×F and (−)/Π: ΓKP×F −→ GKE . Certainly π∗ is both a
left and a right adjoint and (−)/Π is a left adjoint. By Proposition 2.4.4, (−)/Π
coincides with the right adjoint (−)Π ◦ p∗, where p is the quotient map P × F −→
P ×Π F = E. �

For b ∈ B, we have the fiber Gb-space Eb. The following observation, which is
immediate by inspection from Lemma 3.2.1, shows what happens if we apply the
bundle construction and then restrict it to obtain an ex-Gb-space over Eb.

Lemma 3.3.2. Fix b ∈ B. Let ι : Gb −→ G and ρb : Gb −→ Γ be the inclusion
and the homomorphism of Lemma 3.2.1. Let b : ∗ −→ B and ib : Eb −→ E denote
the evident inclusions of Gb-spaces. Then the following diagram commutes.

ΓKF

PF

��

ρ∗b // GbKEb

GKE
ι∗
// GbKE

i∗b

OO

It is crucial to our applications that the functor PF is (strong) monoidal. A
key point in the proof is the observation that we can factor the diagonal map of
any G-space E over B as the composite

(3.3.3) ∆E : E
δE //E ×B E

ιE //E × E
of the fiberwise diagonal δE and the inclusion ιE . We begin the proof by showing
that the non-sectioned analogue of the functor PF , which we also denote by PF ,
preserves cartesian products.

Lemma 3.3.4. The functor

PF : ΓK /F −→ GK /E

is cartesian.



3.3. THE BUNDLE CONSTRUCTION 49

Proof. Clearly PF (F ) = E. Let K and L be spaces over F . Then

PF (K ×F L) ∼= (π∗F∆∗
F (K × L)) /Π,

where the maps

P × F πF //F
∆F //F × F

are the evident projection and diagonal. The composite ∆FπF agrees with the
following composition of diagonal, inclusion, and projection maps.

P × F
δP×F //(P × F )×P (P × F )

ιP×F //P × F × P × F π //F × F .

Recall from the last square of Proposition 2.4.3 and its proof that pullbacks com-
mute with passage to orbits when the base is Π-free. Using this, we see that, after
passage to orbits over Π, the first two maps become δE and ιE . Now the first
and third of the following isomorphisms are clear, and the second is given by the
unsectioned version of the last square of Proposition 2.4.3.

PF (K ×F L) ∼=
(
δ∗P×F ι

∗
P×F ((P ×K)× (P × L))

)
/Π

∼= δ∗Eι
∗
E (PFK × PFL)

∼= PFK ×E PFL. �

We now consider the behavior of the bundle construction with respect to ex-
ternal smash products and diagonal maps. Taking F = ∗, we obtain a functor P∗,
and δE ∼= P∗∆F under the identification of their targets given by Lemma 3.3.4:

(3.3.5) δE : E = P∗F
id×Π∆F // P∗(F × F ) ∼= E ×B E.

The inclusion δE is a special case of the inclusion ι : E1×B E2 −→ E1×E2 for
G-spaces E1 and E2 over B. We apply this inclusion when the Ei are of the form
P ×Π Fi for Γ-spaces Fi to relate external smash products to the functors PF .

Proposition 3.3.6. For Ki ∈ ΓKFi
,

ι∗(PF1K1 Z PF2K2) ∼= PF1×F2(K1 ZK2).

For K ∈ ΓKF and L ∈ ΓKF×F ,

PF×F (∆!K) ∼= δE !PFK and PF (∆∗L) ∼= δ∗EPF×FL.

Proof. Using that each functor PF is obtained from the functor P ×Π (−) by
remembering extra structure and that P ×Π (−) is cartesian, we see that

PF1×F2(K1×K2) = P×Π (K1×K2) ∼= (P×ΠK1)×B (P×ΠK2) = PF1K1×BPF2K2

as ex-G-spaces over E1×BE2. We can identify the ex-G-space PF1K1 ZPF2K2 over
E1 × E2 with the pushout of the diagram

E1 × E2 (PF1K1 × E2) ∪ (E1 × PF2K2)oo // PF1K1 × PF2K2.

It follows from the pullback diagram

E1 ×B E2
ι //

��

E1 × E2

p1×p2
��

B
∆

// B ×B
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that we can identify the ex-G-space ι∗(PF1K1 Z PF2K2) over E1 ×B E2 with the
pushout of the diagram

E1 ×B E2 (PF1K1 ×B E2) ∪ (E1 ×B PF2K2) //oo PF1K1 ×B PF2K2.

Again using that P∗ is cartesian, we see that this pushout is isomorphic to the
pushout of the diagram

P ×Π (F1 × F2) P ×Π (K1 × F2) ∪ P ×Π (F1 ×K2) //oo P ×Π (K1 ×K2),

which is P ×Π (K1 ZK2) = PF1×F2(K1 ZK2). This gives the first isomorphism.
For the second and third isomorphisms, we factor PF for any F as the composite

π∗F (−)/Π, where πF : P ×F −→ F is the projection. This applies equally well with
F replaced by F × F . Together with our identification of δE in (3.3.5), this gives
the first and fourth of the following isomorphisms. The second follows from an
evident pullback square of base spaces, and the third follows from the first square
in Proposition 2.4.3.

PF×F∆!K ∼= (π∗F×F∆!K)/Π
∼= ((P ×∆)!π∗FK)/Π
∼= (P ×Π ∆)!(π∗FK)/Π
∼= δE !PFK

This gives the second stated isomorphism. The proof of the third is completely
parallel, except that we now use the fourth square in Proposition 2.4.3. �

Putting these isomorphisms together, we obtain that PF is monoidal, and in
fact closed symmetric monoidal in the sense of (2.2.1).

Proposition 3.3.7. The functor

PF : ΓKF −→ GSE

is closed symmetric monoidal

Proof. Clearly S0
E
∼= PF (S0

F ) since P ×F (−) commutes with disjoint unions.
Let K and L be ex-Γ-spaces over F . Applying δ∗E to the first isomorphism in
Proposition 3.3.6 and using the factorization of ∆E from (3.3.3) on the left and the
third isomorphism in Proposition 3.3.6 on the right, we obtain

PFK ∧E PFL ∼= δ∗Eι
∗
E(PFK Z PFL) ∼= δ∗E(PF×F (K Z L)) ∼= PF (K ∧F L).

For the closed part, we must show that the natural map

PFFF (K,L) −→ FE(PFK,PFL)

is an isomorphism. Using Lemma 3.3.2, we see that this map restricts over Eb to
the homeomorphism

ρ∗bFF (K,L) ∼= FEb
(ρ∗bK, ρ

∗
bL).

To see that the map is actually a homeomorphism and not just a continuous bi-
jection, we use the factorization of PF as the composite of (−)/Π and π∗ from
Lemma 3.3.1. We know that π∗ is closed monoidal, and we use the fact that pas-
sage to orbits is (k-ification of) a closed map and the methods of [21, §7] to check
that the map FP×F (π∗K,π∗L)/Π −→ FE(PFK,PFL) is a homeomorphism. �

We have the following relations between PF and base change functors.
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Proposition 3.3.8. Let f : F −→ F ′ be a map of Γ-spaces, let E = P ×Π F
and E′ = P ×Π F

′, and let g = P ×Π f : E −→ E′. For K ∈ ΓKF and L ∈ ΓKF ′ ,
there are natural isomorphisms

g!PFK −→ PF ′f!K, PF f
∗L −→ g∗PF ′L, and PF ′f∗K −→ g∗PFK.

Proof. The first and second isomorphisms are proven in parallel, so we only
give the details for the first. Write PF ∼= (π∗F (−))/Π and similarly for PF ′ . That
gives the first and fourth of the following isomorphisms. The second isomorphism
follows from the evident pullback diagram by Proposition 2.2.11, and the third
follows from Proposition 2.4.3.

PF ′f!K ∼= (π∗F ′f!K)/Π ∼= ((P × f)!π∗FK)/Π ∼= (P ×Π f)!(π∗FK)/Π ∼= g!PAK.

For the third isomorphism in the statement, recall that f∗K is the pullback over
F ′ of MapF ′(F,K) −→ MapF ′(F, F ) along ι : F ′ −→ MapF ′(F, F ). As a closed
monoidal right adjoint, the functor PF ′ (in the unsectioned sense) converts this
pullback to the pullback that defines g∗PFK. �

3.4. Spaces of the homotopy types of G-CW complexes

In this section, we recall and generalize the equivariant version of Milnor’s re-
sults [128] about spaces of the homotopy types of CW complexes. For compact
Lie groups, Waner formulated and proved such results in [168, §4]. With a few ob-
servations, his proofs generalize to deal with proper actions by general Lie groups.
We first note the following immediate consequence of Proposition 3.1.3 and Theo-
rem 3.1.11.

Theorem 3.4.1. For any locally compact group G, a G-CW complex is proper
if and only if it is constructed from cells of the form G/K×Dn, where K is compact.

We also note the following recent “triangulation theorem” of Illman [80, The-
orem II]. It is this result that led us to try to generalize some of our results from
compact Lie groups to general Lie groups, and it is also this result that forces us
to now restrict from general locally compact groups to Lie groups. We recall that
the classical definition of a Lie group [30, p. 129] includes all discrete groups (even
though they need not be second countable).

Theorem 3.4.2 (Illman). If G is a Lie group that acts smoothly and properly
on a smooth manifold M , then M has a G-CW structure.

Many of our applications of this result are based on the following observation.

Lemma 3.4.3. If H and K are closed subgroups of a topological group G and
K is compact, then the diagonal action of G on G/H ×G/K is proper.

Proof. The proof given in [47, I.5.16] that G acts properly on G/K generalizes
directly. Set X = G/H × G. Let G act diagonally from the left and let K act on
the second factor from the right. Note that these actions commute. It suffices to
show that θ : G×X −→ X×X is proper. Indeed, consider the commutative square

G×X

��

θ // X ×X

��
G×X/K θ̄ // X/K ×X/K.
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The right vertical map is proper and the left vertical map is surjective. Therefore,
by [47, VI.2.13], the bottom horizontal map is proper if the top horizontal map is
proper. Since X is a free G-space, θ is proper if and only if the image Im(θ) is a
closed subspace of X ×X and the map φ : Im(θ) −→ G specified by φ(x, gx) = g
is continuous. The diagonal subspace of G/H × G/H is closed, and its preimage
under the map ζ : X ×X −→ G/H ×G/H specified by

ζ((xH, y), (x̄H, ȳ)) = (ȳy−1xH, x̄H)

is precisely Im(θ), which is therefore closed. The function φ is the restriction to
Im(θ) of the continuous map Φ: X ×X −→ G specified by

Φ((xH, y), (x̄H, ȳ)) = ȳy−1

and is therefore continuous. �

We shall also make essential use of the following corollary of Theorem 3.4.2.

Corollary 3.4.4. If X is a proper G-CW complex, then, viewed as an H-space
for any closed subgroup H of G, X has the structure of an H-cell complex.

Proof. Each cell G/K × Dn has K compact. Since G acts smoothly and
properly on the smooth manifold G/K, the closed subgroup H also acts smoothly
and properly. We use the resulting H-CW structure on all of the cells to obtain
an H-cell structure. It is homotopy equivalent to an H-CW complex obtained by
“sliding down” cells that are attached to higher dimensional ones, but we shall not
need to use that. �

Theorem 3.4.5 (Milnor, Waner). Let G be a Lie group and (X;Xi) be an n-ad
of closed sub-G-spaces of a proper G-space X. If (X;Xi) has the homotopy type of
a G-CW n-ad and (C;Ci) is an n-ad of compact G-spaces, then (X;Xi)(C;Ci) has
the homotopy type of a G-CW n-ad.

Proof. We only remark how the proof of Waner for the case of actions by
a compact Lie group generalizes to the case of proper actions by a Lie group.
Define a G-simplicial complex to be a G-CW complex such that X/G with the
induced cell structure is a simplicial complex. In [168, §5], Waner proves that
any G-CW complex is G-homotopy equivalent to a colimit of finite dimensional
G-simplicial complexes and cellular inclusions and that a G-space dominated by
a G-CW complex is G-homotopy equivalent to a G-CW complex. The arguments
apply verbatim to any topological group G.

The rest of the argument requires two key lemmas. In [168, 4.2], Waner defines
the notion of a G-equilocally convex, or G-ELC, G-space. The first lemma says
that every finite dimensional G-simplicial complex is G-ELC. The essential starting
point is that orbits are G-ELC, the proof of which uses the Lie group structure just
as in [168, p.358] in the compact case. From there, Waner’s proof [168, §6] goes
through unchanged. The second says that any completely regular, G-paracompact,
G-ELC, proper G-space is dominated by a G-CW complex. When G is compact
Lie, this is proven in [168, §7]. However, the hypothesis on G is only used to
guarantee the existence of enough slices, hence the proof holds without change for
proper actions of Lie groups, indeed of locally compact groups.

The rest of the proof goes as in [128, Theorem 3]. One only needs to make two
small additional observations. First, if a G-simplicial complex K has the homotopy
type of a proper G-space X, then it is proper. This holds since if f : K −→ X is a
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homotopy equivalence, then Gk ⊂ Gf(k) is compact. Second, for an n-ad (K;Ki)
of G-simplicial complexes and a compact n-ad (C;Ci), (X;Xi)(C;Ci) is proper since
it is a subspace of the proper G-space XC ; see (i) and (iv) of Proposition 3.1.10.
Since it is also completely regular, G-paracompact, and G-ELC, it is dominated by
a G-CW complex, and the result follows from the steps above. �

3.5. Some classical theorems about fibrations

A basic principle of parametrized homotopy theory is that homotopical infor-
mation is given on fibers. We recall two relevant classical theorems about Hurewicz
fibrations and a comparison theorem relating Serre and Hurewicz fibrations. We
begin with Dold’s theorem [48, 6.3]. The nonequivariant proof in [111, 2.6] is gen-
eralized to the equivariant case in Waner [169, 1.11]. Waner assumes throughout
[169] that G is a compact Lie group, but that assumption is not used in the cited
proof.

Theorem 3.5.1 (Dold). Let G be any topological group and let B be a G-space
that has a G-numerable cover by contractible tubes. Let X −→ B and Y −→ B be
Hurewicz fibrations. Then a map X −→ Y over B is a fiberwise G-homotopy equiv-
alence if and only if each fiber restriction Xb −→ Yb is a Gb-homotopy equivalence.

We next recall and generalize a classical result that relates the homotopy types
of fibers to the homotopy types of total spaces. Nonequivariantly, it is due to
Stasheff [155] and, with a much simpler proof, Schön [143]. The generalization to
the equivariant case, for compact Lie groups, is given by Waner [169, 6.1]. With
Theorems 3.5.1, 3.4.5 and 3.4.2 in place, Schön’s argument generalizes directly to
give the following version. Since the result plays an important role in our work and
the argument is so pretty, we can’t resist repeating it in full.

Theorem 3.5.2 (Stasheff, Schön). Let G be a Lie group and B be a proper
G-space that has the homotopy type of a G-CW complex. Let p : X −→ B be a
Hurewicz fibration. Then X has the homotopy type of a G-CW complex if and only
if each fiber Xb has the homotopy type of a Gb-CW complex.

Proof. First assume that X has the homotopy type of a G-CW complex. For
b ∈ B, let ι : Gb −→ G be the inclusion and consider the Gb-map ι∗p : ι∗X −→ ι∗B
of Gb-spaces. It is still a Hurewicz fibration, as we see by using the left adjoint
G ×Gb

(−) of ι∗. By Corollary 3.4.4, ι∗X and ι∗B have the homotopy types of
Gb-CW complexes. Factor ι∗p through the inclusion into its mapping cylinder
i : ι∗X −→ Mι∗p. Since Gb is compact, it follows from Theorem 3.4.5 that the
homotopy fiber Fbi = (Mι∗p; {b}, ι∗X)(I;0,1) has the homotopy type of a Gb-CW
complex. Since Fbi is homotopy equivalent to Fbι

∗p, by the gluing lemma, and
Fbι

∗p is homotopy equivalent to the fiber Xb, this proves the forward implication.
For the converse, assume that each fiber Xb has the homotopy type of a Gb-

CW complex. Let γ : ΓX −→ X be a G-CW approximation of X. The mapping
path fibration of γ gives us a factorization of γ as the composite of a G-homotopy
equivalence ν : ΓX −→ Nγ and a Hurewicz fibration q : Nγ −→ X. We may view
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q as a map of fibrations over B.

Nγ
q //

p◦q
  B

BB
BB

BB
B X

p
��~~

~~
~~

~~

B

The fibers of p ◦ q have the homotopy types of Gb-CW complexes by the first part
of the proof, since ΓX is a G-CW complex, and the fibers of p have the homotopy
types of Gb-CW complexes by hypothesis. Comparison of the long exact sequences
associated to p ◦ q and p gives that q restricts to a Gb-homotopy equivalence on
each fiber. Noting that we can pull back a numerable cover by contractible tubes
along a homotopy equivalence B −→ B′, where B′ is a G-CW complex, it follows
from Theorem 3.5.1 that q is a homotopy equivalence. �

Although it no longer plays a role in our theory, the following little known
result played a central role in our thinking. It shows that the dichotomy between
Serre and Hurewicz fibrations diminishes greatly over CW base spaces. It is due to
Steinberger and West [156], with a correction by Cauty [29].

Theorem 3.5.3 (Steinberger and West; Cauty). A Serre fibration whose base
and total spaces are CW complexes is a Hurewicz fibration.

We believe that this remains true equivariantly for compact Lie groups, and it
certainly remains true for finite groups. Before we understood the limitations of
the q-model structure, we planned to use this result to relate our model theoretic
homotopy category of ex-spaces over a CW complex B to a classical homotopy
category defined in terms of Hurewicz fibrations and thereby overcome the problems
illustrated in Counterexample 0.0.1. Such a comparison is still central to our theory,
and it is this result that convinced us that such a comparison must hold.

3.6. Quasifibrations

For later reference, we recall the definition of quasifibrations. Here G can be
any topological group.

Definition 3.6.1. A map p : E −→ Y in K is a quasifibration if the map of
pairs p : (E,Ey) −→ (Y, y) is a weak equivalence for all y in Y . A map p : E −→ Y
in K /B or KB is a quasifibration if it is a quasifibration on total spaces. A G-map
p : E −→ Y is a quasifibration if each of its fixed point maps pH : EH −→ Y H is a
nonequivariant quasifibration.

The condition that p : (E,Ey) −→ (Y, y) is a weak equivalence means that for
all e ∈ Ey the following two conditions hold.

(i) p∗ : πn(E,Ey, e) −→ πn(Y, y) is an isomorphism for all n ≥ 1.
(ii) For any x ∈ E, p(x) is in the path component of y precisely when the path

component of x in E intersects Ey. In other words, the sequence

π0(Ey, e) −→ π0(E, e) −→ π0(Y, y)

of pointed sets is exact.
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Warning 3.6.2. In contrast to the usual treatments in the literature, we do not
require p to be surjective and therefore π0(E, e) −→ π0(Y, y) need not be surjective.
Hurewicz and, more generally, Serre fibrations are examples of quasifibrations, and
they are not always surjective, as the trivial example {0} −→ {0, 1} illustrates.
Model categorically, one point is that the initial map ∅ −→ Y is always a Serre
fibration since the empty lifting problem always has a solution.

The definition of a quasifibration is arranged so that the long exact sequence
of homotopy groups associated to the triple (E,Ey, e) is isomorphic to a long exact
sequence

· · · −→ πn+1(Y, y) −→ πn(Ey, e) −→ πn(E, e) −→ πn(Y, y) −→ · · · −→ π0(Y, y).

We say that a G-space over B is quasifibrant if its projection is a quasifibration,
and we have the following useful observation.

Lemma 3.6.3. Let in : En −→ En+1 be a sequence of inclusions of quasifibrant
G-spaces over B. Then colimEn is a quasifibrant G-space over B.

Proof. The essential point is that we are dealing with a fixed base space and,
for b ∈ B, the fiber over b of colimEn is homeomorphic to the colimit of the fibers
over b of the En. Since any basepoint of a fiber lies in one of the terms and since
colimits of long exact sequences are exact, the conclusion follows directly from the
definition of a quasifibration. �
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Model categories and parametrized
spaces





Introduction

In Part III, we shall develop foundations for parametrized equivariant stable
homotopy theory. In making that theory rigorous, it became apparent to us that
substantial foundational work was already needed on the level of ex-spaces. That
work is of considerable interest for its own sake, and it involves general points about
the use of model categories that should be of independent interest. Therefore, rather
than rush through the space level theory as just a precursor of the spectrum level
theory, we have separated it out in this more leisurely and discursive exposition.

In Chapter 4, which is entirely independent of our parametrized theory, we give
general model theoretic background, philosophy, and results. In contrast to the
simplicial world, we often have both a classical h-type and a derived q-type model
structure in topologically enriched categories, with respective weak equivalences the
homotopy equivalences and the weak homotopy equivalences. We describe what is
involved in verifying the model axioms for these two types of model structures.

In Chapter 5, we describe how the parametrized world fits into this general
framework. There are several different h-type model structures on our categories
of parametrized G-spaces, with different homotopy equivalences based on different
choices of cylinders. These mesh in unexpected ways. Understanding of this partic-
ular case leads us to a conceptual axiomatic description of how the classical h-type
homotopy theory and the q-type model structure must be related in order to be
able to do homotopy theory satisfactorily in a topologically enriched category.

In Chapter 6, we work nonequivariantly and develop our preferred “q-type”
model category structure, the “qf -model structure”, on the categories K /B and
KB . This chapter is taken directly from the second author’s thesis [152].

In Chapter 7, we give the equivariant generalization of the qf -model struc-
ture and begin the study of the resulting homotopy categories by discussing those
adjunctions that are given by Quillen pairs. There is another new twist here in
that we need to use many Quillen equivalent qf -type model structures. In fact,
this is already needed nonequivariantly in the study of base change along bundles
f : A −→ B.

In Chapter 8, we discuss ex-fibrations and an ex-fibrant approximation func-
tor that better serves our purposes than model theoretic fibrant approximation in
studying those adjunctions that are not given by Quillen pairs. In Chapter 9, we
describe our parametrized homotopy categories in terms of classical homotopy cat-
egories of ex-fibrations and use this description to resolve the issues concerning base
change functors and smash products that are discussed in the Prologue.
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CHAPTER 4

Topologically bicomplete model categories

Introduction

In §4.1, we describe a general philosophy about the role of different model
structures on a given category C . It is natural and important in many contexts,
and it helps to clarify our thinking about topological categories of parametrized
objects. In particular, we advertise a remarkable unpublished insight of Mike Cole.
It is a pleasure to thank him for keeping us informed of his ideas. We describe how
a classical “h-type” model structure and a suitably related Quillen “q-type” model
structure, can be mixed together to give an “m-type” model structure such that
the m-equivalences are the q-equivalences and the m-fibrations are the h-fibrations.
This is a completely general phenomenon, not restricted to topological contexts.

In §§4.2 and 4.3, we describe classical structure that is present in any topo-
logically bicomplete category C . Here we follow up a very illuminating paper of
Schwänzl and Vogt [144]. There are two classes of (Hurewicz) h-fibrations and two
classes of h-cofibrations, ordinary and strong. Taking weak equivalences to be ho-
motopy equivalences, the ordinary h-fibrations pair with the strong h-cofibrations
and the strong h-fibrations pair with the ordinary h-cofibrations to give two in-
terrelated model like structures. For each choice, all of the axioms for a proper
topological model category are satisfied except for the factorization axioms, which
hold in a weakened form. To prove that C is a model category, it suffices to prove
one of the factorization axioms since the other will follow. Again, the theory can
easily be adapted to other contexts than our topological one.

We signal an ambiguity of nomenclature. In the model category literature, the
term “simplicial model structure” is clear and unambiguous, since there is only
one model structure on simplicial sets in common use. In the topological context,
we understand “topological model structures” to refer implicitly to the h-model
structure on spaces for model structures of h-type and to the q-model structure on
spaces for model structures of q-type. The meaning should always be clear from
context.

In §4.4, we give another insight of Cole, which gains power from the work
of Schwänzl and Vogt. Cole provides a simple hypothesis that implies the miss-
ing factorization axioms for an h-model structure of either type on a topologically
bicomplete category C . When we restrict to compactly generated spaces, the hy-
pothesis applies to give an h-model structure on U . In K , this seems to fail, and
we give a streamlined version of Strøm’s original proof [160], together with his proof
that the strong h-cofibrations in K are just the closed ordinary h-cofibrations. This
works in exactly the same way for the categories GK and GU , where G is any
(compactly generated) topological group.
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In §4.5, we describe how to construct compactly generated q-type model struc-
tures, giving a slight variant of standard treatments. In particular, GK and GU
have the usual q-model structures in which the q-equivalences are the weak equiva-
lences and the q-fibrations are the Serre fibrations. Again, G can be any topological
group. However we only know that the model structure is G-topological when G is
a compact Lie group.

4.1. Model theoretic philosophy: h, q, and m-model structures

The point of model categories is to systematize “homotopy theory”. The ho-
motopy theory present in many categories of interest comes in two flavors. There is
a “classical” homotopy theory based on homotopy equivalences, and there is a more
fundamental “derived” homotopy theory based on a weaker notion of equivalence
than that of homotopy equivalence. This dichotomy pervades the applications, re-
gardless of field. It is perhaps well understood that both homotopy theories can be
expressed in terms of model structures on the underlying category, but this aspect
of the classical homotopy theory has usually been ignored in the model theoretical
literature, a tradition that goes back to Quillen’s original paper [139]. The “classi-
cal” model structure on spaces was introduced by Strøm [160], well after Quillen’s
paper, and the “classical” model structure on chain complexes was only introduced
explicitly quite recently, by Cole [34] and Schwänzl and Vogt [144].

Perhaps for this historical reason, it may not be widely understood that these
two model structures can profitably be used in tandem, with the h-model structure
used as a tool for proving things about the q-model structure. This point of view is
implicit in [61,105,106], and a variant of this point of view will be essential to our
work. In the cited papers, the terms “q-fibration” and “q-cofibration” were used
for the fibrations and cofibrations in the Quillen model structures, and the term
“h-cofibration” was used for the classical notion of a Hurewicz cofibration specified
in terms of the homotopy extension property (HEP). The corresponding notion
of an “h-fibration” defined in terms of the covering homotopy property (CHP) is
fortuitously appropriate1. Just as the “q” is meant to suggest Quillen, the “h”
is meant to suggest Hurewicz, as well as homotopy. It is logical to follow this
idea further (as was not done in [61, 105, 106]) by writing q-fibrant, q-cofibrant,
h-fibrant, and h-cofibrant for clarity. Following this still further, we should also
write “h-equivalence” for homotopy equivalence and “q-equivalence” for (Quillen)
weak equivalence. The relations among these notions are as follows in all of the
relevant categories C :

h-equivalence =⇒ q-equivalence
h-cofibration ⇐= q-cofibration
h-cofibrant ⇐= q-cofibrant
h-fibration =⇒ q-fibration
h-fibrant =⇒ q-fibrant

Therefore, the identity functor is the right adjoint of a Quillen adjoint pair
from C with its h-model structure to C with its q-model structure. It follows that
we have an adjoint pair relating the classical homotopy category, hC say, to the

1However, the notation conflicts with the notation often used for Dold’s notion of a weak or
“halb”-fibration. We shall make no use of that notion, despite its real importance in the theory
of fibrations. We do not know whether or not it has a model theoretic role to play.
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derived homotopy category qC = HoC . This formulation packages standard in-
formation. For example, the Whitehead theorem that a weak equivalence between
cell complexes is a homotopy equivalence, or its analogue that a quasi-isomorphism
between projective complexes is a homotopy equivalence, is a formal consequence
of this adjunction between homotopy categories.

Recently, Cole [36] discovered a profound new way of thinking about the di-
chotomy between the kinds of model structures that we have been discussing. He
proved the following formal model theoretic result.

Theorem 4.1.1 (Cole). Let (Wh,Fibh,Cofh) and (Wq,Fibq,Cofq) be two mo-
del structures on the same category C . Suppose that Wh ⊂ Wq and Fibh ⊂ Fibq.
Then there is a mixed model structure (Wq,Fibh,Cofm) on C . The mixed cofi-
brations Cofm are the maps in Cofh that factor as the composite of a map in Wh

and a map in Cofq. An object is m-cofibrant if and only it is h-cofibrant and of the
h-homotopy type of a q-cofibrant object. If the h and q-model structures are left or
right proper, then so is the m-model structure.

By duality, the analogue with the inclusion Fibh ⊂ Fibq replaced by an inclu-
sion Cofh ⊂ Cofq also holds. In the category of spaces with the h and q-model
structures discussed above, the theorem gives a mixed model structure whose m-
cofibrant spaces are the spaces of the homotopy types of CW-complexes. This
m-model structure combines weak equivalences with Hurewicz fibrations, and it
might conceivably turn out to be as important and convenient as the Quillen model
structure. It is startling that this model structure was not discovered earlier.

The pragmatic point is two-fold. On the one-hand, there are many basic results
that apply to h-cofibrations and not just q-cofibrations. Use of h-cofibrations limits
the need for q-cofibrant approximation and often clarifies proofs by focusing atten-
tion on what is relevant. Many examples appear in [61, 105,106], where properties
of h-cofibrations serve as scaffolding in the proof that q-model structures are in fact
model structures. We shall formalize and generalize this idea in the next chapter.

On the other hand, there are many vital results that apply only to h-fibrations
(Hurewicz fibrations), not to q-fibrations (Serre fibrations). For example, a local
Hurewicz fibration is a Hurewicz fibration, but that is not true for Serre fibrations.
The mixed model structure provides a natural framework in which to make use of
Hurewicz fibrations in conjunction with weak equivalences. While we shall make no
formal use of this model structure, it has provided a helpful guide to our thinking.
The philosophy here applies in algebraic as well as topological contexts, but we
shall focus on the latter.

4.2. Strong Hurewicz cofibrations and fibrations

Fix a topologically bicomplete category C throughout this section and the next.
With no further hypotheses on C , we show that it satisfies most of the axioms for
not one but two generally different proper topological h-type model structures. We
alert the reader to the fact that we are here using the term “h-model structure”
in a generic sense. When we restrict attention to parametrized spaces, we will
use the term in a different specific sense derived from the h-model structure on
underlying total spaces. The material of these sections follows and extends material
in Schwänzl and Vogt [144].

We have cylinders X × I and cocylinders Map(I,X). When C is based, we
focus on the based cylinders X ∧ I+ and cocylinders F (I+, X). In either case, these
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define equivalent notions of homotopy, which we shall sometimes call h-homotopy.
We will later use these and cognate notations, but, for the moment, it is convenient
to introduce the common notations Cyl(X) and Cocyl(X) for these objects. There
are obvious classes of maps that one might hope would specify a model structure.

Definition 4.2.1. Let f be a map in C .
(i) f is an h-equivalence if it is a homotopy equivalence in C .
(ii) f is a Hurewicz fibration, abbreviated h-fibration, if it satisfies the CHP in

C , that is, if it has the right lifting property (RLP) with respect to the maps
i0 : X −→ Cyl(X) for X ∈ C .

(iii) f is a Hurewicz cofibration, abbreviated h-cofibration, if it satisfies the HEP
in C , that is, if it has the left lifting property (LLP) with respect to the maps
p0 : Cocyl(X) −→ X.

These sometimes do give a model structure, but then the h-cofibrations must
be exactly the maps that satisfy the LLP with respect to the h-acyclic h-fibrations,
and dually. In general, that does not hold. We shall characterize the maps in C
that do satisfy the LLP with respect to the h-acyclic h-fibrations and, dually, the
maps that satify the RLP with respect to the h-acyclic h-fibrations. For this, we
need the following relative version of the above notions.

Definition 4.2.2. We define strong Hurewicz fibrations and cofibrations.
(i) A map p : E −→ Y is a strong Hurewicz fibration, abbreviated h̄-fibration, if

it satisfies the relative CHP with respect to all h-cofibrations i : A −→ X, in
the sense that a lift exists in any diagram

A
i //

i0
��

X //

��

E

p

��
Cyl(A) //

jjjjjjjjj

44jjjjjjjjj

Cyl(X) //

;;w
w

w
w

w
Y.

(ii) A map i : A→ X is a strong Hurewicz cofibration, abbreviated h̄-cofibration,
if it satisfies the relative HEP with respect to all h-fibrations p : E → Y , in
the sense that a lift exists in any diagram

A //

i

��

Cocyl(E) //

��

Cocyl(Y )

p0

��
X //

::u
u

u
u

u
iiiiiiiiii

44iiiiiiiiii

E p
// Y.

We recall the standard criteria for maps to be h-fibrations or h-cofibrations.
Define the mapping cylinder Mf and mapping path fibration Nf by the usual
pushout and pullback diagrams

X

i0
��

f // Y

��
Cyl(X) // Mf

and Nf

��

// Cocyl(Y )

p0

��
X

f
// Y.

Lemma 4.2.3. Let f be a map in C .
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(i) f is an h-fibration if and only if it has the RLP with respect to the map
i0 : Nf −→ Cyl(Nf).

(ii) f is an h-cofibration if and only if it has the LLP with respect to the map
p0 : Cocyl(Mf) −→Mf .

The h̄-fibrations and h̄-cofibrations admit similar characterizations. These were
taken as definitions in [144, 2.4].

Lemma 4.2.4. Consider maps i : A −→ X and p : E −→ Y .

(i) The map p : E −→ Y is an h̄-fibration if and only if it has the RLP with
respect to the canonical map Mi −→ Cyl(X) for any h-cofibration i : A→ X;
this holds if and only if the canonical map Cocyl(E)→ Np has the RLP with
respect to all h-cofibrations.

(ii) The map i : A → X is an h̄-cofibration if and only if it has the LLP with
respect to the canonical map Cocyl(E) −→ Np for any h-fibration p : E → Y ;
this holds if and only if the canonical map Mi → Cyl(X) has the LLP with
respect to all h-fibrations.

Observe that the map i0 : X −→ Cyl(X) is an h̄-cofibration and the map p0 :
Cocyl(X) −→ X is an h̄-fibration. Since the cylinder objects associated to initial
objects are initial objects, h̄-fibrations are in particular h-fibrations. Similarly, h̄-
cofibrations are h-cofibrations. Observe too that every object is both h̄-cofibrant
and h̄-fibrant, hence both h-cofibrant and h-fibrant.

We shall see in §4.4 that these distinctions are necessary in K but disappear
in U , where the h and h̄ notions coincide. Even there, however, the conceptual
distinction sheds light on classical arguments.

The results of this section and the next are quite formal. Amusingly, the
main non-formal ingredient is just the use in the following proof of the fact that
{0, 1} → I has the LLP with respect to all h-acyclic h-fibrations, which follows
easily from Proposition 4.3.5(ii) below.

Lemma 4.2.5. Let i : A −→ X and p : E −→ B be maps in C .

(i) If i is an h-acyclic h-cofibration, then i is the inclusion of a strong deformation
retraction r : X −→ A.

(ii) If i is the inclusion of a strong deformation retraction r : X → A, then i is a
retract of Mi→ Cyl(X).

(iii) If p is an h-acyclic h-fibration, then p is a strong deformation retraction.
(iv) If p is a strong deformation retraction, then p is a retract of Cocyl(E) −→ Np.

Proof. The last two statements are dual to the first two. For (i), since the
h-equivalence i is an h-cofibration, application of the HEP shows that i has a
homotopy inverse r : X → A such that ri = idA. Since {0, 1} −→ I has the LLP
with respect to h-acyclic h-fibrations, an adjunction argument shows that p(0,1) has
the RLP with respect to h-cofibrations. Thus a lift exists in the diagram on the
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left, which means that r is a strong deformation retraction with inclusion i.

A

i

��

c // Cocyl(A)
Cocyl(i)// Cocyl(X)

p(0,1)

��
X

β

44iiiiiiiiii
(i◦r,idX)

// X ×X

A

i0
��

i // X

i0
r

##G
GG

GG
GG

GG
G

A
i1 //

i

��

Cyl(A)

Cyl(i) %%JJJJJJJJJ
pr //

��

A

i

��
X

i1
// Cyl(X)

β
// X

For (ii), we are given β in the diagram on the left displaying r as a strong de-
formation retraction with inclusion i. Then the diagram on the right commutes,
where the composites displayed in the lower two rows are identity maps. Using the
universal property of Mi to factor the crossing arrows i0 and pr through Mi, we
see that i is a retract of the canonical map Mi→ Cyl(X). �

4.3. Towards classical model structures in topological categories

We now have two candidates for a classical model structure on C based on
the h-equivalences. We can either take the h-fibrations and the h̄-cofibrations or
the h-cofibrations and the h̄-fibrations. The following result shows that all of the
axioms for a proper topological model category are satisfied except that, in general,
only a weakened form of the factorization axioms holds.

Theorem 4.3.1. The following versions of the axioms for a proper topological
model category hold.

(i) The classes of h-cofibrations, h̄-cofibrations, h-fibrations and h̄-fibrations are
closed under retracts.

(ii) Let i be an h-cofibration and p be an h-fibration. The pair (i, p) has the lifting
property if i is strong and p is h-acyclic or if p is strong and i is h-acyclic.

(iii) Any map f : X → Y factors as

X
i // Mf

r // Y

where i is an h̄-cofibration and r has a section that is an h-acyclic h̄-cofibration
and as

X
s // Nf

p // Y

where p is an h̄-fibration and s has a retraction that is an h-acyclic h̄-fibration.
(iv) Let i : A → X be an h-cofibration and p : E → B be an h-fibration, where i

or p is strong. Then the map

C �(i, p) : C (X,E)→ C (A,E)×C (A,B) C (X,B)

induced by i and p is an h-fibration of spaces. It is h-acyclic if i or p is acyclic
and it is an h̄-fibration if both i and p are strong.

(v) The h-equivalences are preserved under pushouts along h-cofibrations and pull-
backs along h-fibrations.

Proof. Part (i) is clear since all classes are defined in terms of lifting prop-
erties. Part (ii) follows directly from Lemma 4.2.4 and Lemma 4.2.5. The factor-
izations of part (iii) are the standard ones. We consider the first. The evident
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section j : Y −→ Mf is an h-acyclic h̄-cofibration since it is the pushout of one.
Consider the lifting problem in the left diagram below, in which the middle vertical
composite is i. Here p is an h-acyclic h-fibration, and we choose a section s of p.

X

i1
��

α

##F
FF

FF
FF

FF
F

X
i0 //

f

��

Cyl(X) λ′ //___

��

E

p

��
Y

j
//

sβj

55lllllllllllllllllll
Mf

λ

<<x
x

x
x

x

β
// B

X qX
s◦β◦j◦fqα //

i(0,1)

��

E

p

��
Cyl(X) //

λ′

55llllllll
Mf

β
// B

We have a lift λ′ in the diagram on the right that makes the diagram on the left
commute, and the universal property of Mf then gives us the lift λ. Part (iv) is a
consequence of the “pairing theorem” [144], which we will state below. Finally we
prove the first half of (v). The second half follows by duality. Assume that i is an
h-cofibration and f is an h-equivalence in the pushout diagram on the left.

A
f //

i

��

B

j

��
X g

// Y

B
s //

is

��

A
f //

��
i

��0
00

00
00

00
00

00
0 B

��
j

��0
00

00
00

00
00

00
0

X
s′ //

PPPPPPPPPPPPPP

PPPPPPPPPPPPPP P
f ′ //

p
@@

  @
@@

@

X
q

@@

  @
@@

@@

X
g // Y

We must prove that g is an h-equivalence. By (ii), we can factor f as a composite
of an h-acyclic h-cofibration and a map that has a section which is an h-acyclic h-
cofibration. Since pushouts preserve h-acyclic h-cofibrations, we may assume that
f has a section s : B −→ A that is an h-acyclic h-cofibration. We then obtain the
diagram on the right. Its left back rectangle is a pushout, as is the outer back
rectangle, and therefore the right back rectangle is also a pushout. This implies
that the bottom square is a pushout. The map s′ is an h-acyclic h-cofibration since
s is one, and therefore p is an h-equivalence. The map f ′ is also h-acyclic since it
has the h-acyclic section s′. Just as we could assume that f has a section that is
an h-acyclic h-cofibration, we find that we may assume that p has a section t that
is an h-acyclic h-cofibration and is a map under A. Chasing pushout diagrams, we
find that g is a retract of f ′ and is therefore an h-equivalence. �

The following result is the pairing theorem of [144, 2.7 and 3.6]. We shall not
repeat the proof, which consists of careful but formal adjunction arguments. Its
general statement is framed so as to apply to cartesian products in the unbased
situation, smash products in the based situation, and tensors in either situation.

Theorem 4.3.2 (Schwänzl and Vogt). Let A , B, and C be topologically bi-
complete categories and let

T : A ×B −→ C , U : A op × C −→ B, and V : Bop × C −→ A

be continuous functors that satisfy adjunctions

C (T (A,B), C) ∼= B(B,U(A,C)) ∼= A (A, V (B,C)).
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Let i : A −→ X be an h-cofibration in A , j : B −→ Y be an h-cofibration in B,
and p : E −→ Z be an h-fibration in C .

(i) Assume that i or j is strong. Then the map

T (A, Y ) ∪T (A,B) T (X,B) −→ T (X,Y )

induced by i and j is an h-cofibration in C . It is h-acyclic if i or j is h-acyclic
and it is strong if both i and j are strong.

(ii) Assume that j or p is strong. Then the map

V (Y,E) −→ V (B,E)×V (B,Z) V (Y,Z)

induced by j and p is an h-fibration in A . It is h-acyclic if j or p is h-acyclic
and it is strong if both j and p are strong.

As Schwänzl and Vogt observe, these results imply that the canonical map
Mi −→ Cyl(X) is an h-acyclic h̄-cofibration for any h-cofibration i : A −→ X
and, dually, the canonical map Cocyl(X) −→ Np is an h-acyclic h̄-fibration for
any h-fibration p : E −→ Y . Together with Lemma 4.2.5 and the retract and
factorization axioms of Theorem 4.3.1, this implies that all of the various classes of
maps are characterized by the expected lifting properties, just as if we had actual
model categories.

Proposition 4.3.3. The following characterizations hold.

(i) The h-fibrations are the maps that have the RLP with respect to the h-acyclic
h̄-cofibrations and the h-acyclic h̄-cofibrations are the maps that have the LLP
with respect to the h-fibrations.

(ii) The h-cofibrations are the maps that have the LLP with respect to the h-acyclic
h̄-fibrations and the h-acyclic h̄-fibrations are the maps that have the RLP with
respect to the h-cofibrations.

(iii) The h̄-fibrations are the maps that have the RLP with respect to the h-acyclic
h-cofibrations and the h-acyclic h-cofibrations are the maps that have the LLP
with respect to the h̄-fibrations.

(iv) The h̄-cofibrations are the maps that have the LLP with respect to the h-acyclic
h-fibrations and the h-acyclic h-fibrations are the maps that have the RLP with
respect to the h̄-cofibrations.

To show that C has an h-type model structure, it suffices to prove the factor-
ization axioms, and it is unnecessary to prove them both.

Lemma 4.3.4. For either proposed h-model structure, if one of the factorization
axioms holds, then so does the other.

Proof. For definiteness, consider the case of h-fibrations and h̄-cofibrations.
By Theorem 4.3.1(ii), we can factor any map f : X −→ Y as the composite of an
h̄-cofibration i : X −→ Mf and an h-equivalence r : Mf −→ Y . Suppose that we
can factor r as the composite of an h-acyclic h̄-cofibration j : Mf −→ Z and an
h-fibration q : Z −→ Y . Then q must be h-acyclic, hence f = q ◦ (j ◦ i) factors f as
the composite of an h̄-cofibration and an h-acyclic h-fibration. �

A homotopy X −→ Y in C can be specified by a path h : I −→ C (X,Y ). If
i : A −→ X and p : Y −→ B are maps in C , then we say that h is a homotopy
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relative to i or corelative to p if the composite

I
h // C (X,Y )

C (i,Y ) // C (A, Y ) or I
h // C (X,Y )

C (X,p)// C (X,B)

is constant. When i or p is understood, we also refer to these as homotopies under A
or over B. The following result is well known and holds in any (based) topologically
bicomplete category.

Proposition 4.3.5. Let f : X −→ Y be an h-equivalence.
(i) If i : A −→ X and j : A −→ Y are h-cofibrations such that j = f ◦ i, then f

is an h-equivalence under A.
(ii) If p : Y −→ B and q : X −→ B are h-fibrations such that q = p ◦ f , then f is

an h-equivalence over B.

Proof. For (i), see for example [121, p.44]. The proof there, although written
for spaces, goes through without change. Part (ii) follows by a dual proof. �

Remark 4.3.6. The current section, as well as the previous and the follow-
ing one, applies verbatim to the G-topologically bicomplete G-categories of §10.2,
where G is any topological group. Of course, (KG,B , GKB) is an example. The
only changes occur in Theorem 4.3.1(iv), where one must take the arrow G-spaces
CG(−,−) rather than the non-equivariant spaces GC (−,−), and in Theorem 4.3.2,
where the adjunction hypothesis requires a similar equivariant interpretation. See
§10.3 for a discussion of G-topological model G-categories.

4.4. Classical model structures in general and in K and U

Again, fix a topologically bicomplete category C . Independent of the work
of Schwänzl and Vogt [144], Cole [35] proved a general result concerning when
C has an h-type model structure. As we now see is inevitable, the core of his
argument concerns the verification of one of the factorization axioms. That requires
a hypothesis.

Hypothesis 4.4.1. Let jn : Zn −→ Zn+1 and qn : Zn −→ Y be maps in C
such that qn+1 ◦ jn = qn and the jn are h-acyclic h-cofibrations. Let Z = colimZn
and let q : Z −→ Y be obtained by passage to colimits. Then the canonical map
colimNqn −→ Nq is an isomorphism in C .

Theorem 4.4.2 (Cole). If C is a topologically bicomplete category which satis-
fies Hypothesis 4.4.1, then the h-equivalences, h-fibrations, and h̄-cofibrations spec-
ify a proper topological h-model structure on C .

Proof. It suffices to show that a map f : X −→ Y factors as the composite of
an h-acyclic h̄-cofibration j : X −→ Z and an h-fibration q : Z −→ Y . Let Z0 = X
and q0 = f . Inductively, given qn : Zn −→ Y , construct the following diagram, in
which Zn+1 is the displayed pushout.

Nqn

i0

��

// Zn

qn

��>
>>

>>
>>

>>
>>

>>
>>

>>
>

jn

��
Cyl(Nqn)

λn //

++VVVVVVVVVVVVVVVVVVVVVVV Zn+1 qn+1

''O
OOOOOO

Y
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The map Cyl(Nqn) −→ Y is the adjoint of the projection Nqn −→ Cocyl(Y ) given
by the definition of Nqn, and qn+1 is the induced map. The maps jn are h-acyclic
h̄-cofibrations since they are pushouts of such maps. Let Z be the colimit of the
Zn and j and q be the colimits of the jn and qn. Certainly f = q ◦ j and j is an h-
acyclic h̄-cofibration. By Hypothesis 4.4.1, Nq is the colimit of the Nqn. Since the
cylinder functor preserves colimits, we see by Lemma 4.2.3 that q is an h-fibration
since the λn give a lift Cyl(Nq) −→ Z by passage to colimits. �

The dual version of Theorem 4.4.2 admits a dual proof.

Theorem 4.4.3. If C is a topologically bicomplete category which satisfies the
dual of Hypothesis 4.4.1, then the h-equivalences, h̄-fibrations, and h-cofibrations
specify a proper topological h-model structure on C .

From now on, we break the symmetry by focusing on h-fibrations and h̄-
cofibrations. These give model structures in K and U . Everything in the rest
of the section works equally in GK and GU . The following theorem combines
several results of Strøm [158–160].

Theorem 4.4.4 (Strøm). The following statements hold.
(i) The h-equivalences, h-fibrations, and h̄-cofibrations give K a proper topolog-

ical h-model structure. Moreover, a map in K is an h̄-cofibration if and only
if it is a closed h-cofibration.

(ii) The h-equivalences, h-fibrations, and h̄-cofibrations give U a proper topologi-
cal h-model structure. Moreover, a map in U is an h̄-cofibration if and only
if it is an h-cofibration.

Proof. Theorem 4.4.2 applies to prove the first statement in (ii), but it does
not seem to apply to prove the first statement in (i). The reasons are explained in
Remark 1.6.4. Taking Z = Y I and p = p0 there, the comparison map α specializes
to the map colimNfn −→ Nf of Hypothesis 4.4.1. It may be that α is a homeo-
morphism in this special case, but we do not have a proof. It is a homeomorphism
when we work in U . The characterization of the h̄-cofibrations in U follows from
Lemma 1.6.2 and their characterization in K .

For (i), we give a streamlined version of Strøm’s original arguments that uses
the material of the previous section to prove both statements together. We proceed
in four steps. The first step is Strøm’s key observation, the second and third steps
give the second statement, and the fourth step proves the needed factorization
axiom. Consider an inclusion i : A −→ X.

Step 1. By Strøm’s [158, Thm. 3], if i is the inclusion of a strong deformation
retract and there is a map ψ : X −→ I such that ψ−1(0) = A, then i has the LLP
with respect to all h-fibrations. By Proposition 4.3.3(i), this means that i is an
h-acyclic h̄-cofibration.

Step 2. If i is an h-cofibration, then the canonical map j : Mi −→ X × I is
an h-acyclic h-cofibration and therefore, by Lemma 4.2.5, the inclusion of a strong
deformation retract. If i is closed, then (X,A) is an NDR-pair and there exists
φ : X −→ I such that φ−1(0) = A. Define ψ : X× I −→ I by ψ(x, t) = tφ(x). Then
ψ−1(0) = Mi. Applying Step 1, we conclude that j has the LLP with respect to
all h-fibrations. By Lemma 4.2.4, this means that i is an h̄-cofibration.

Step 3. We can factor any inclusion i as the composite

A
i0 //E

π //X,
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where E is the subspace X × (0, 1] ∪A× I of X × I and π is the projection. Note
that A = ψ−1(0), where ψ : E −→ I is the projection on the second coordinate.
By direct verification of the CHP [160, p. 436], π is an h-fibration. If i is an h̄-
cofibration, then it has the LLP with respect to π, hence we can lift the identity
map of X to a map λ : X −→ E such that λ ◦ i = i0. It follows that i(A) is closed
in X since i0(A) is closed in E.

Step 4. Let f : X −→ Y be a map. Use Theorem 4.3.1(ii) to factor f as p ◦ s,
where s : X −→ Nf is the inclusion of a strong deformation retract and p is an
h̄-fibration. Use Step 3 to factor s as

X
i0 //Nf × (0, 1] ∪X × I π //Nf.

Here i0 is the inclusion of a strong deformation retract and X = ψ−1(0), as in Step
3. By Step 1, i0 is an h-acyclic h̄-cofibration. By Step 3, p ◦π is an h-fibration. �

There are several further results of Strøm about h-cofibrations that deserve to
be highlighted. In order, the following results are [159, Theorem 12], [160, Lemma
5], and [159, Corollary 5].

Proposition 4.4.5. If p : E −→ Y is an h-fibration and the inclusion X ⊂ Y
is an h̄-cofibration, then the induced map p−1(X) −→ E is an h̄-cofibration.

Proposition 4.4.6. If i : A −→ B and j : B −→ X are maps in K such that
j and j ◦ i are h-cofibrations, then i is an h-cofibration.

Proposition 4.4.7. If an inclusion A ⊂ X is an h-cofibration, then so is the
induced inclusion Ā ⊂ X.

In view of the characterization of h̄-cofibrations in Theorem 4.4.4, it is natural
to ask if there is an analogous characterization of h̄-fibrations. Only the following
sufficient condition is known. It is stated without proof in [144, 4.1.1], and it gives
another reason for requiring the base spaces of ex-spaces to be in U .

Proposition 4.4.8. An h-fibration p : E −→ Y with Y ∈ U is an h̄-fibration.

Proof. Let k : A −→ X be an h-acyclic h-cofibration and let j : A −→ X
be the induced inclusion. By Propositions 4.4.7 and 4.4.6, j and the inclusion
i : A ⊂ A are h-cofibrations. By Lemma 4.2.5(i), k is the inclusion of a deformation
retraction r : X −→ A and the deformation restricts to a homotopy from (i ◦ r) ◦ j
to the identity on A. It follows that j and hence also i are h-acyclic. Since j is
an h-acyclic h̄-cofibration, it has the LLP with respect to p, and we see by a little
diagram chase that it suffices to verify that i has the LLP with respect to p. Factor
p as the composite of s : E −→ Np and q : Np : −→ Y , as usual. Since q is an
h̄-fibration, (i, q) has the lifting property, and it suffices to show that (i, s) has the
lifting property. Suppose given a lifting problem f : A −→ E and g : A −→ Np
such that s ◦ f = g ◦ i. Note that s(e) = (e, cp(e)) for e ∈ E, where cy denotes the
constant path at y. Since Y is weak Hausdorff, the constant paths give a closed
subset of Y I and Np = Y I ×Y E is a closed subset of Y I × E. Therefore s(E) is
closed in Np. We conclude that

g(A) ⊂ g(A) = s(f(A) ⊂ s(E) = s(E),

which means that there is a lift A −→ E. �



72 4. TOPOLOGICALLY BICOMPLETE MODEL CATEGORIES

4.5. Compactly generated q-type model structures

We give a variant of the standard procedure for constructing q-type model
structures. The exposition prepares the way for a new variant that we will explain
in §5.4 and which is crucial to our work. Although our discussion is adapted to
topological examples, C need not be topological until otherwise specified. We
first recall the small object argument in settings where compactness allows use of
sequential colimits.

Definition 4.5.1. Let I be a set of maps in C .

(i) A relative I-cell complex is a map Z0 −→ Z, where Z is the colimit of a
sequence of maps Zn −→ Zn+1 such that Zn+1 is the pushout Y ∪X Zn of a
coproduct X −→ Y of maps in I along a map X −→ Zn.

(ii) I is compact if for every domain object X of a map in I and every relative
I-complex Z0 −→ Z, the map colim C (X,Zn) −→ C (X,Z) is a bijection.

(iii) An I-cofibration is a map that satisfies the LLP with respect to any map that
satisfies the RLP with respect to I.

Lemma 4.5.2 (Small object argument). Let I be a compact set of maps in C ,
where C is cocomplete. Then any map f : X −→ Y in C factors functorially as a
composite

X
i // W

p // Y

such that p satisfies the RLP with respect to I and i is a relative I-cell complex and
therefore an I-cofibration.

Definition 4.5.3. A model structure on C is compactly generated if there are
compact sets I and J of maps in C such that the following characterizations hold.

(i) The fibrations are the maps that satisfy the RLP with respect to J , or equiv-
alently, with respect to retracts of relative J-cell complexes.

(ii) The acyclic fibrations are the maps that satisfy the RLP with respect to I, or
equivalently, with respect to retracts of relative I-cell complexes.

(iii) The cofibrations are the retracts of relative I-cell complexes.
(iv) The acyclic cofibrations are the retracts of relative J-cell complexes.

The maps in I are called the generating cofibrations and the maps in J are called
the generating acyclic cofibrations.

Remark 4.5.4. The term “compactly generated” is non-standard. Compactly
generated model categories whose cofibrations are effective monomorphisms [73,
10.9.1] are examples of cellular model categories, which are themselves examples of
cofibrantly generated model categories. In our topological context, it is immediate
that all cofibrations f : A −→ B that we encounter are effective monomorphisms,
since the condition asserts in effect that A is the intersection of the two copies of B in
B∪AB. Cellular model categories are specified in terms of a more general notion of
compactness that encodes the cardinality conditions required to carry out the small
object argument [73, 11.4.1] in contexts, such as Bousfield localization, where the
sequential small object argument does not apply. Everything that we say about
compactly generated topological model categories applies equally well to cellular
topological model categories. We have restricted to the compactly generated case
for simplicity and because the examples that we consider here are of this type.
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We find it convenient to separate out properties of classes of maps in a model
category, starting with the weak equivalences.

Definition 4.5.5. A subcategory of C is a subcategory of weak equivalences if
it satisfies the following closure properties.

(i) All isomorphisms in C are weak equivalences.
(ii) A retract of a weak equivalence is a weak equivalence.
(iii) If two out of three maps f , g, g ◦ f are weak equivalences, so is the third.

Theorem 4.5.6. Let C be a bicomplete category with a subcategory of weak
equivalences. Let I and J be compact sets of maps in C . Then C is a compactly
generated model category with generating cofibrations I and generating acyclic cofi-
brations J if the following two conditions hold:

(i) (Acyclicity condition) Every relative J-cell complex is a weak equivalence.
(ii) (Compatibility condition) A map has the RLP with respect to I if and only if

it is a weak equivalence and has the RLP with respect to J .

Proof. This is the formal part of Quillen’s original proof of the q-model struc-
ture on topological spaces and is a variant of [75, 2.1.19] or [73, 11.3.1]. The fi-
brations are defined to be the maps that satisfy the RLP with respect to J . The
cofibrations are defined to be the I-cofibrations and turn out to be the retracts of
relative I-cell complexes. The retract axioms clearly hold and, by (ii), the cofibra-
tions are the maps that satisfy the LLP with respect to the acyclic fibrations, which
gives one of the lifting axioms. The maps in J satisfy the LLP with respect to the
fibrations and are therefore cofibrations, which verifies something that is taken as
a hypothesis in the versions in the cited sources. Applying the small object argu-
ment to I, we factor a map f as a composite of an I-cofibration followed by a map
that satisfies the RLP with respect to I; by (ii), the latter is an acyclic fibration.
Applying the small object argument to J , we factor f as a composite of a relative
J-cell complex that is a J-cofibration followed by a fibration. By (i), the first map
is acyclic, and it is a cofibration because it satisfies the LLP with respect to all
fibrations, in particular the acyclic ones. Finally, for the second lifting axiom, if we
are given a lifting problem with an acyclic cofibration f and a fibration p, then a
standard retract argument shows that f is a retract of an acyclic cofibration that
satisfies the LLP with respect to all fibrations. �

Using the following companion to Definition 4.5.5, we codify the usual pattern
for verifying the acyclicity condition.

Definition 4.5.7. A subcategory of a cocomplete category C is a subcategory
of cofibrations if it satisfies the following closure properties.

(i) All isomorphisms in C are cofibrations.
(ii) All coproducts of cofibrations are cofibrations.
(iii) If i : X −→ Y is a cofibration and f : X −→ Z is any map, then the pushout

j : Z −→ Y ∪X Z of i along f is a cofibration.
(iv) If X is the colimit of a sequence of cofibrations in : Xn −→ Xn+1, then the

induced map i : X0 −→ X is a cofibration.
(v) A retract of a cofibration is a cofibration.

In more general contexts, (iv) should be given a transfinite generalization, but
we shall not have need of that. Note that if a subcategory of cofibrations is defined
in terms of a left lifting property, then all of the conditions hold automatically.
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Lemma 4.5.8. Let C be a cocomplete category together with a subcategory of
cofibrations, denoted g-cofibrations, and a subcategory of weak equivalences, satis-
fying the following properties.

(i) A coproduct of weak equivalences is a weak equivalence.
(ii) If i : X −→ Y is an acyclic g-cofibration and f : X −→ Z is any map, then

the pushout j : Z −→ Y ∪X Z of i along f is a weak equivalence.
(iii) If X is the colimit of a sequence of acyclic g-cofibrations in : Xn −→ Xn+1,

then the induced map i : X0 −→ X is a weak equivalence.

If every map in a set J is an acyclic g-cofibration, then every relative J-cell complex
is a weak equivalence.

We emphasize that, in practice, the g-cofibrations need not be the model
category cofibrations and may or may not be the intrinsic h-cofibrations or h̄-
cofibrations. They serve as convenient scaffolding for proving the model axioms.

Remark 4.5.9. The properties listed in Lemma 4.5.8 include some of the ax-
ioms for a “cofibration category” given by Baues [8, pp 6, 182]. However, our
purpose is to describe features of categories that are more richly structured than
model categories, often with several relevant subcategories of cofibrations, rather
than to describe deductions from axiom systems for less richly structured categories,
which is his focus. The g-cofibrations in Lemma 4.5.8 need not be the cofibrations
of any cofibration category or model category.

The q-model structures on K and U are obtained by Theorem 4.5.6, taking
the q-equivalences to be the weak equivalences, that is, the maps that induce iso-
morphisms on all homotopy groups, and the q-fibrations to be the Serre fibrations.
Similarly, in K∗ and T , a based map is a q-equivalence or q-fibration if its underly-
ing unbased map is so. We also have the equivariant generalization, which applies
to any topological group G. We introduce the following notations, which will be
used throughout.

Definition 4.5.10. Nonequivariantly, let I and J denote the set of inclusions
i : Sn−1 −→ Dn (where S−1 is empty) and the set of maps i0 : Dn −→ Dn × I.
Equivariantly, let I and J denote the set of all maps of the form G/H × i, where
H is a (closed) subgroup of G and i runs through the maps in the nonequivariant
sets I and J . In the based categories K∗ and GK∗ we continue to write I and J
for the sets obtained by adjoining disjoint base points to the specified maps.

A map f : X −→ Y of G-spaces is said to be a weak equivalence or Serre fibra-
tion if all fixed point maps fH : XH −→ Y H are weak equivalences or Serre fibra-
tions. Just as nonequivariantly, we also call these q-equivalences and q-fibrations.
Observe that q-equivalences are defined in terms of the equivariant homotopy groups
πHn (X,x) = πn(XH , x) for H ⊂ G and x ∈ XH and that q-fibrations are defined in
terms of the RLP with respect to the cells in J .

If X0 −→ X is a relative I or J-cell complex, then X/X0 is in GU and
Lemma 1.6.5 gives all that is needed to verify the compactness hypothesis in Def-
inition 4.5.1(ii). Taking the g-cofibrations to be the h-cofibrations, Lemma 4.5.8
applies to verify the acyclicity condition of Theorem 4.5.6. With considerable sim-
plification, our verification of the compatibility condition for the qf -model structure
in Chapter 6 specializes to verify it here.
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Nonequivariantly, the q-model structure is discussed in [56, §8] and, with some-
what different details, in [75, 2.4]. Equivariantly, a detailed proof of the following
result is given in [105, III§1]. The argument there is given for based G-spaces, in
GT , but it works equally well for unbased G-spaces, in GK .

Theorem 4.5.11. For any G, GK is a compactly generated proper model cate-
gory whose q-equivalences, q-fibrations, and q-cofibrations are the weak equivalences,
the Serre fibrations, and the retracts of relative G-cell complexes. The sets I and
J are the generating q-cofibrations and the generating acyclic q-cofibrations, and
all q-cofibrations are h̄-cofibrations. If G is a compact Lie group, then the model
structure is G-topological.

The notion of a G-topological model category is defined in the same way as
the notion of a simplicial or topological model category and is discussed formally in
§10.3 below. The point of the last statement is that if H and K are subgroups of a
compact Lie group G, then G/H×G/K has the structure of a G-CW complex. By
Theorem 3.4.2, this remains true when G is a Lie group and H and K are compact
subgroups. We shall see how to use this fact model theoretically in Chapter 7.

Remark 4.5.12. In Theorem 4.5.11, the generating acyclic cofibrations are
actually h̄-cofibrations that are inclusions of deformation retracts. A pushout of a
coproduct of such maps is again such a map, the inclusion of the initial term in a
sequential colimit of such maps is another such, and so is a retract of such a map.
We conclude that every acyclic q-cofibration is an h̄-cofibration that is an inclusion
of a deformation retract. Thus, implicitly, the classical q-type model structures
are built directly from the underlying h-type model structures. As soon as we
work in the parametrized context, this structure will disappear. Our generating
acyclic cofibrations over B will be given by deformation retracts on total spaces,
but the retractions will not be maps over B. Therefore direct arguments with weak
equivalences that are wholly unnecessary in the classical case will be essential to
our work, especially when we turn to the stable theory.





CHAPTER 5

Well-grounded topological model categories

Introduction

It is essential to our theory to understand the interrelationships among the
various model structures that appear naturally in the parametrized context, both
in topology and in general. This understanding leads us more generally to an
axiomatization of the properties that are required of a good q-type model structure
in order that it relate well to the classical homotopy theory on a topological category.
The obvious q-model structure on ex-spaces over B does not satisfy the axioms, and
in the next chapter we will introduce a new model structure, the qf -model structure,
that does satisfy the axioms.

As we recall in §5.1, any model structure on a category C induces a model
structure on the category of objects over, under, or over and under a given object
B. When C is topologically bicomplete, so are these over and under categories.
They therefore have their own intrinsic h-type model structures, which differ from
the one inherited from C . This leads to quite a few different model structures on
the category CB of objects over and under B, each with its own advantages and
disadvantages. Letting B vary, we also obtain a model structure on the category
of retracts. We shall only be using most of these structures informally, but the
plethora of model structures is eye opening.

In §5.2, we focus on spaces and compare the various classical notions of fibra-
tions and cofibrations that are present in our over and under categories. Although
elementary, this material is subtle, and it is nowhere presented accurately in the
literature. In particular, we discuss h-type, f -type and fp-type model structures,
where f and fp stand for “fiberwise” and “fiberwise pointed”. For simplicity, we
discuss this material nonequivariantly, but it applies verbatim equivariantly.

The comparisons among the q, h, f , and fp classes of maps and model struc-
tures guide our development of parametrized homotopy theory. We think of the
f -notions as playing a transitional role, connecting the fp and h-notions. In the
rest of the chapter, we work in a general topologically bicomplete category C , and
we sort out this structure and its relationship to a desired q-type model structure
axiomatically.

Here we shift our point of view. We focus on three basic types of cofibrations
that are in play in the general context, namely the Hurewicz cofibrations determined
by the cylinders in C , the ground cofibrations that come in practice from a given
forgetful functor to underlying spaces, and the q-type model cofibrations. The first
two are intrinsic, but we think of the q-type cofibrations as subject to negotiation. In
KB , the Hurewicz cofibrations are the fp-cofibrations and the ground cofibrations
are the h-cofibrations, which is in notational conflict with the point of view taken
in the previous chapter.

77
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In §§5.3 and 5.4, we ignore model theoretic considerations entirely. We describe
how the two intrinsic types of cofibrations relate to each other and to colimits and
tensors, and we explain how this structure relates to weak equivalences. These
ideas are made precise by the notions of “well-grounded objects” and of a “ground
structure” in a topologically bicomplete category and of a subcategory of “well-
grounded weak equivalences” in a category with a ground structure.

We define the notion of a “well-grounded model structure” in §5.5. We believe
that this notion captures exactly the right blend of classical and model categorical
homotopical structure in topological situations. It describes what is needed for a q-
type model structure in a topologically bicomplete category to be compatible with
its intrinsic h-type model structure and its ground structure. Crucially, the q-type
cofibrations should be “bicofibrations”, meaning that they are both Hurewicz cofi-
brations and ground cofibrations. We illustrate the usefulness of the axiomatization
in §5.6. We show that the elementary classical theory of long exact sequences as-
sociated to cofiber sequences, homotopy colimits, and lim1 exact sequences applies
in any well-grounded model category.

A clear understanding of the desiderata for a good q-type model structure
reveals that the obvious over and under q-model structure is essentially worthless
for serious work in parametrized homotopy theory. This will lead us to introduce
the new qf -model structure, with better behaved q-type cofibrations, in the next
chapter. The formalization given in §§5.3–5.6 might seem overly pedantic were it
only to serve as motivation for the definition of the qf -model structure. However, we
will encounter exactly the same structure in Part III when we construct the level and
stable model structures on parametrized spectra. We hope that the formalization
will help guide the reader through the rougher terrain there.

We note parenthetically that there is still another interesting model structure
on the category of ex-spaces over B, one based on local considerations. It is due
to Michelle Intermont and Mark Johnson [81]. We shall not discuss their model
structure here, but we are indebted to them for illuminating discussions. It is
conceivable that their model structure could be used in an alternative development
of the stable theory, but that has not been worked out. Their structure suffers the
defects that it is not known to be left proper and that, with their definition of weak
equivalences, homotopy equivalences of base spaces need not induce equivalences of
homotopy categories.

We focus mainly on the nonequivariant context in this chapter, but G can be
any topological group in all places where equivariance is considered.

5.1. Over and under model structures

Recall from §1.2 that, for any category C and object B in C , we let C /B and
CB denote the categories of objects over B and of ex-objects over B. We also have
the category B\C of objects under B. If C is bicomplete, then so are C /B, B\C
and CB . We begin with some general observations about over and under model
categories before returning to topological categories.

We have forgetful functors U : C /B −→ C and V : CB −→ C /B. The first is
left adjoint to the functor that sends an object Y to the object B × Y over B:

(5.1.1) C (UX, Y ) ∼= C /B (X,B × Y ).
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The second is right adjoint to the functor that sends an object X over B to the
object X qB over and under B:

(5.1.2) CB(X qB, Y ) ∼= C /B (X,V Y ).

We interpolate some discussion of notation. It has been the custom since the
beginnings of topology to use the same letter for a bundle and for its underlying
total space. In line with this, the literature of parametrized homotopy theory
systematically uses the notation X+ for the union X q B of a space X over B
with a disjoint section. It seems to us that these standard abuses of notation hide
structure and seriously obscure the literature of the subject. For example, they
force one to the identity “r!X+ = X+”, where X is a space over B with disjoint
section on the left and its total space with a disjoint basepoint on the right. In line
with this, we adopt the following notational convention throughout this book.

Notation 5.1.3. For a space (X, p) over B, we use the notation X q B and
(X, p)+ interchangeably for the space over and under B obtained by adjoining a
disjoint section to (X, p). We shall reserve the notation X+ for the union of a space
X and a disjoint basepoint, so that r!(X, p)+ = X+.

Returning to our general discussion, we observe that, as a composite of a left
and a right adjoint, the total object functor UV : CB −→ C does not enjoy good
formal properties. This obvious fact plays a significant role in our work. For
example, it limits the value of the model structures on CB that are given by the
following result.

Proposition 5.1.4. Let C be a model category. Then C /B, B\C , and CB
are model categories in which the weak equivalences, cofibrations, and fibrations
are the maps over B, under B, or over and under B which are weak equivalences,
fibrations, or cofibrations in C . If C is left or right proper, then so are C /B, B\C ,
and CB.

Proof. As observed in [75, p. 5] and [56, 3.10], the statement about C /B
is a direct verification from the definition of a model category. By the self-dual
nature of the axioms, the statement about B\C is equivalent. The statement
about CB follows since it is the category of objects under (B, id) in C /B. The last
statement holds since pushouts and pullbacks in these over and under categories
are constructed in C . �

When considering q-type model structures, we start with a compactly generated
model category C . Using the adjunctions (5.1.1) and (5.1.2), we then obtain the
following addendum to Proposition 5.1.4.

Proposition 5.1.5. If C is a compactly generated model category, then C /B
and CB are compactly generated. The generating (acyclic) cofibrations in C /B are
the maps i such that Ui is a generating (acyclic) cofibration in C . The generating
(acyclic) cofibrations in CB are the maps i q B where i is a generating (acyclic)
cofibration in C /B.

We now return to the case when C is topologically bicomplete. Then it has the
resulting “classical”, or h-type, structure that was discussed in §4.3 and §4.4. If our
philosophy in §4.1 applies to C , then it also has q and m-structures and the cate-
gories C /B and CB both inherit over and under model structures that are related
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as we discussed there. However, since C is topologically bicomplete, so is C /B by
Proposition 1.2.8, and CB is based topologically bicomplete by Proposition 1.2.9.
These categories therefore have classical h-type structures when they are regarded
in their own right as topologically bicomplete categories. To fix notation and avoid
confusion we give an overview of all of these structures.

We start with the h-classes of maps in C that are given in Definition 4.2.1 and
Lemma 4.2.4. As in our discussion of spaces, we work assymmetrically, ignoring the
h̄-fibrations and focusing on the candidates for h-type model structures given by
the h-fibrations and h̄-cofibrations. We agree to use the letter h for the inherited
classes of maps in C /B and CB , although that contradicts our previous use of h
for the classical classes of maps in an arbitrary topologically bicomplete category,
such as C /B or CB . We shall resolve that ambiguity shortly by introducing new
names for the classes of “classical” maps in those categories.

Definition 5.1.6. A map g in C /B is an h-equivalence, h-fibration, h-co-
fibration, or h̄-cofibration if Ug is such a map in C . A map g in CB is an h-
equivalence, h-fibration, h-cofibration, or h̄-cofibration if V g is such a map in C /B
or, equivalently, UV g is such a map in C .

The h̄-cofibrations are h-cofibrations, but not conversely in general. Since the
object ∗B = (B, id, id) is initial and terminal in CB , an object of CB is h-cofibrant
(or h̄-cofibrant) if its section is an h-cofibration (or h̄-cofibration) in C . It is h-
fibrant if its projection is an h-fibration in C .

In C /B, we have the notion of a homotopy over B, defined in terms of X ×B I
or, equivalently, MapB(I,X). The adjective “fiberwise” is generally used in the
literature to describe these homotopies. See, for example, the books [42, 83] on
fiberwise homotopy theory. To distinguish from the h-model structure, we agree
to write f rather than h for the fiberwise specializations of Definition 4.2.1 and
Lemma 4.2.4. To avoid any possible confusion, we formalize this, making use of
Proposition 4.3.3.

Definition 5.1.7. Let g be a map in C /B.
(i) g is an f-equivalence if it is a fiberwise homotopy equivalence.
(ii) g is an f-fibration if it satisfies the fiberwise CHP, that is, if it has the RLP

with respect to the maps i0 : X −→ X ×B I for X ∈ C /B.
(iii) g is an f-cofibration if it satisfies the fiberwise HEP, that is, if it has the LLP

with respect to the maps p0 : MapB(I,X) −→ X.
(iv) g is an f̄-cofibration if it has the LLP with respect to the f -acyclic f -fibrations.
A map g in CB is an f -equivalence, f -fibration, f -cofibration, or f̄ -cofibration if
V g is one in C /B.

Again, f̄ -cofibrations are f -cofibrations, but not conversely in general. The-
orem 4.4.2 often applies to show that the f -fibrations and f̄ -cofibrations define
an f -model structure on C /B and therefore, by Proposition 5.1.4, on CB . As is
always the case for an intrinsic classical model structure, every object of C /B is
both f -cofibrant and f̄ -cofibrant as well as f -fibrant. While this is obvious from
the definitions, it may seem counterintuitive. It does not follow that every object
of CB is f -cofibrant since the two categories have different initial objects.

In CB , we also have the notion of a homotopy over and under B, defined in
terms of X ∧B I+ or, equivalently, FB(I+, X). The adjective “fiberwise pointed” is
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used in [42,83] to describe these homotopies. Again, for notational clarity, we agree
to write fp rather than h for the fiberwise pointed specializations of Definition 4.2.1
and Lemma 4.2.4, and we formalize this to avoid any possible confusion.

Definition 5.1.8. Let g be a map in CB .
(i) g is an fp-equivalence if it is a fiberwise pointed homotopy equivalence.
(ii) g is an fp-fibration if it satisfies the fiberwise pointed CHP, that is, if it has

the RLP with respect to the maps i0 : X −→ X ∧B I+.
(iii) g is a fp-cofibration if it satisfies the fiberwise pointed HEP, that is, if it has

the LLP with respect to the maps p0 : FB(I+, X) −→ X.
(iv) g is an fp-cofibration if it has the LLP with respect to the fp-acyclic fp-

fibrations.

Again, fp-cofibrations are fp-cofibrations, but not conversely in general, and
Theorem 4.4.2 often applies to show that the fp-fibrations and fp-cofibrations de-
fine an fp-model structure on CB . We summarize some general formal implications
relating our classes of maps.

Proposition 5.1.9. Let C , C /B and CB be topologically bicomplete categories
with h, f , and fp-classes of maps defined as above. Then the following implications
hold for maps in CB.

fp-equivalence =⇒ f-equivalence =⇒ h-equivalence
fp-cofibration ⇐= f-cofibration =⇒ h-cofibration

⇑ ⇑ ⇑
fp-cofibration ⇐= f̄-cofibration =⇒ h̄-cofibration
fp-fibration =⇒ f-fibration ⇐= h-fibration

Moreover, every object of CB is both fp-fibrant and fp-cofibrant.

Proof. Trivial inspections of lifting diagrams show that an h-fibration is an
f -fibration, an f -cofibration is an fp-cofibration, and an f̄ -cofibration is an fp-
cofibration. Use of the adjunctions (5.1.1) and (5.1.2) shows that an f -cofibration
is an h-cofibration, an f̄ -cofibration is an h̄-cofibration, and an fp-fibration is an f -
fibration. The last statement holds since fiberwise pointed homotopies with domain
or target B are constant at the section or projection of the target or source. �

Remark 5.1.10. Assume that these classes of maps define model structures.
Then the implications in Proposition 5.1.9 lead via Theorem 4.1.1 and its dual
version to two new mixed model structures on CB , one with weak equivalences the
f -equivalences and fibrations the fp-fibrations and one with weak equivalences the
h-equivalences and cofibrations the f̄ -cofibrations.

The category CB of retracts introduced in §2.5 suggests an alternative model
theoretic point of view. We give the basic definitions, but we shall not pursue this
idea in any detail. Again, Theorem 4.4.2 often applies to verify the model category
axioms. Note that the intrinsic homotopies are given by homotopies of total objects
over and under homotopies of base objects.

Definition 5.1.11. Assume that CB is topologically bicomplete and let g be
a map in CB.

(i) g is an r-equivalence if it is a homotopy equivalence of retractions.
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(ii) g is an r-fibration if it satisfies the retraction CHP, that is, if it has the RLP
with respect to the maps i0 : X −→ X × I for X ∈ CB.

(iii) g is an r-cofibration if it satisfies the retraction HEP, that is, if it has the LLP
with respect to the maps p0 : Map(I,X) −→ X.

(iv) g is an r̄-cofibration if it has the LLP with respect to the r-acyclic r-fibrations.

Remark 5.1.12. The initial and terminal object of CB are the identity retrac-
tions of the initial and terminal objects of B and every object is both r-cofibrant
and r-fibrant. It might be of interest to characterize the retractions for which
the map ∗B −→ (X, p, s) induced by s is an r-cofibration or for which the map
(X, p, s) −→ ∗B induced by p is an r-fibration. By specialization of the lifting prop-
erties, an ex-map over B that is an r-cofibration or r-fibration is an fp-cofibration
or fp-fibration in CB , but we have not pursued this question further.

5.2. The specialization to over and under categories of spaces

Now we take C to be K or U . We discuss the relationships among our various
classes of fibrations and cofibrations in this special case, and we consider when the
f and fp classes of maps give model structures. Everything in this section applies
equally well equivariantly.

We first say a bit about based spaces, which are ex-spaces over B = {∗}.
Here the fact that ∗ is a terminal object greatly simplifies matters. All of the
f -notions coincide with the corresponding h-notions, and our trichotomy reduces
to the familiar dichotomy between free (or h) notions and based (or fp) notions.
Recall that a based space is well-based, or nondegenerately based, if the inclusion
of the basepoint is an h-cofibration. Every based space is fp-cofibrant, and an
fp-cofibration between well-based spaces is an h-cofibration [160, Prop. 9]. Every
based space is fp-fibrant, and an h-fibration of based spaces satisfies the based CHP
with respect to well-based source spaces. Of course, the over and under h-model
structure differs from the intrinsic fp-model structure.

None of the reverse implications in Proposition 5.1.9 holds in general. We gave
details of that result since it is easy to get confused and think that more is true
than we stated.

Scholium 5.2.1. On [42, p. 66], it is stated that a fiberwise pointed cofibration
which is a closed inclusion is a fiberwise cofibration. That is false even when B
is a point, since it would imply that every point of a T1-space is a nondegenerate
basepoint. On [42, p. 69], it is stated that a fiberwise pointed map (= ex-map) is
a fiberwise pointed fibration if and only if it is a fiberwise fibration. That is also
false when B is a point, since the unbased CHP does not imply the based CHP.

However, as for based spaces, the reverse implications in parts of Proposi-
tion 5.1.9 often do hold under appropriate additional hypotheses.

Proposition 5.2.2. The following implications hold for an arbitrary topologi-
cally bicomplete category C .

(i) A map in C /B between h-fibrant objects over B is an h-equivalence if and
only if it is an f-equivalence.

(ii) An ex-map between f-cofibrant ex-objects over B is an f-equivalence if and
only if it is an fp-equivalence.
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Proof. The first part follows from Proposition 4.3.5(ii) since an f -equivalence
in C /B is the same as an h-equivalence over B in C . The second part follows
similarly from Proposition 4.3.5(i) since an fp-equivalence in CB is the same as an
f -equivalence under B in C /B. �

The following results hold for spaces. We are doubtful that they hold in general.

Proposition 5.2.3. The following implications hold in both GK and GU .
(i) An ex-map between f̄-cofibrant ex-spaces is an f-cofibration if and only if it

is an fp-cofibration.
(ii) An ex-map whose source is f̄-cofibrant is an f-fibration if and only if it is an

fp-fibration.

Proof. Part (ii) is [42, 16.3]. Part (i) is stated on [160, p. 441] and the proof
given there for based spaces generalizes using the following lemma. �

It is easy to detect f -cofibrations by means of the following result, whose proof
is the same as that of the standard characterization of Hurewicz cofibrations (e.g.
[121, p. 43]; see also [158, Thm. 2], [159, Lem. 4] and [42, 4.3]).

Lemma 5.2.4. An inclusion i : X −→ Y in K /B is an f-cofibration if and
only if (Y,X) is a fiberwise NDR-pair in the sense that there is a map u : Y −→ I
such that X ⊂ u−1(0) and a homotopy h : Y ×B I −→ Y over B such that h0 = id,
ht = id on X for 0 ≤ t ≤ 1, and h1(y) ∈ X if u(y) < 1. A closed inclusion
i : X −→ Y in K /B is an f̄-cofibration if and only if the map u above can be
chosen so that X = u−1(0).

We introduce the following names here, but we defer a full discussion to §8.1.

Definition 5.2.5. An ex-space is said to be well-sectioned if it is f̄ -cofibrant.
An ex-space is said to be ex-fibrant or, synonomously, to be an ex-fibration if it is
both f̄ -cofibrant and h-fibrant. Thus an ex-fibration is a well-sectioned ex-space
whose projection is an h-fibration.

The term ex-fibrant is more logical than ex-fibration, since we are defining a
type of object rather than a type of morphism of KB , but the term ex-fibration
goes better with Serre and Hurewicz fibration and is standard in the literature. We
have the following implication of Propositions 5.1.9 and 5.2.2. It helps explain the
usefulness of ex-fibrations.

Corollary 5.2.6. Let g be an ex-map between ex-fibrations over B.
(i) g is an h-equivalence if and only if g is an f-equivalence, and this hold if and

only if g is an fp-equivalence.
(ii) g is an f-cofibration if and only if g is an fp-cofibration, and then g is an

h-cofibration.
(iii) g is an f-fibration if and only if g is an fp-fibration, and this holds if g is an

h-fibration.

Remark 5.2.7. The model theoretic significance of ex-fibrations over B is un-
clear. They are fibrant and cofibrant objects in the mixed model structure on
ex-spaces over B whose weak equivalences are the h-equivalences and whose cofi-
brations are the f̄ -cofibrations. However, the converse fails since there are well-
sectioned f -fibrant ex-spaces that are f -equivalent to h-fibrant ex-spaces, hence
are mixed fibrant, but are not themselves h-fibrant.
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The previous remark anticipated the following result on over and under model
structures in the categories of spaces and ex-spaces over B. Note that Lemma 1.6.2
applies to K /B and KB as well as to K to show that both f -cofibrations and
fp-cofibrations are inclusions which are closed when the total spaces are in U .

Theorem 5.2.8. The following statements hold.
(i) The f-equivalences, f-fibrations, and f̄-cofibrations give K /B a proper topo-

logical model structure. Moreover, a map in K /B is an f̄-cofibration if and
only if it is a closed f-cofibration.

(ii) The f-equivalences, f-fibrations, and f̄-cofibrations give U /B a proper topo-
logical model structure. Moreover, a map in U /B is an f̄-cofibration if and
only if it is an f-cofibration.

(iii) The fp-equivalences, fp-fibrations, and fp-cofibrations give UB an fp-model
structure.

(iv) The r-classes of maps give the category UU of retracts a proper topological
r-model structure.

Proof. Apart from the factorization axioms, the model structures follow from
the discussion in 4.3. In particular, the lifting axioms, the properness, and the
topological property of all of these model structures are given by Theorem 4.3.1.
In (ii), (iii), and (iv), the factorization axioms follow from Theorem 4.4.2 since
the argument in Remark 1.6.4 verifies Hypothesis 4.4.1. The rest of (i) can be
proven by direct mimicry of the proof of Theorem 4.4.4, using Lemma 5.2.4, and
the characterization of the f̄ -cofibrations in (ii) follows. �

Remark 5.2.9. We do not know whether or not KB is an fp-model category or
whether the fp-cofibrations in KB are characterized as the closed fp-cofibrations.
We also do not know whether or not KU is an r-model category. The problem here
is related to the fact that, while the sections of ex-spaces are always inclusions,
they need not be closed inclusions unless the total spaces are in U . Steps 1 and 3
of the proof of Theorem 4.4.4 fail in KB , and we also do not see how to carry over
Strøm’s original proofs in [159,160]. Theorem 4.3.1 still applies, giving much of the
information carried by a model structure. Observe too that if i : A −→ X is a map
of well-sectioned ex-spaces over B, then i is an fp-cofibration if and only if it is an
f -cofibration, by Proposition 5.2.2(iii). For ex-spaces that are not well-sectioned,
we have little understanding of fp-cofibrations, even when B is a point. We also
have little understanding of fp-cofibrations that are not f -cofibrations.

There is a certain tension between the fp and h-notions, with the f -notions
serving as a bridge between the two. Fiberwise pointed homotopy is the intrinsically
right notion of homotopy in KB , hence the fp-structure is the philosopically right
classical h-type model structure on KB , or at least on UB . It is the one that is
naturally related to fiber and cofiber sequences, the theory of which works formally
in any based topologically bicomplete category in exactly the same way as for based
spaces, as we will recall in §5.6. A detailed exposition in the case of ex-spaces is
given in [42,83,84].

However, with h replaced by fp, we do not have the implications that we
emphasized in the general philosophy of §4.1. In particular, with the over and under
q-model structure, q-cofibrations need not be fp-cofibrations and fp-fibrations need
not be q-fibrations, let alone h-fibrations. The q-model structure is still related to
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the h-model structure as in §4.1, but this does not serve to relate the q-model
structure to parametrized fiber and cofiber sequences in the way familiar from the
nonparametrized context. This already suggests that the q-model structure might
not be appropriate in parametrized homotopy theory. In the following four sections,
we explore conceptually what is required of a q-type model structure to connect it
up with the intrinsic homotopy theory in a topologically bicomplete category.

5.3. Well-grounded topologically bicomplete categories

Let C be a topologically bicomplete category in either the based or the unbased
sense; we use the notations of the based context. In our work here, and in other
topological contexts, C is topologically concrete in the sense that there is a faithful
and continuous forgetful functor from C to spaces. In practice, appropriate “ground
cofibrations” can then be specified in terms of underlying spaces. These cofibrations
should be thought of as helpful background structure in our category C .

To avoid ambiguity, we use the term “Hurewicz cofibration”, abbreviated no-
tationally to cyl-cofibration, for the maps that satisfy the HEP with respect to the
cylinders in C . We also have the notion of a strong Hurewicz cofibration, which we
abbreviate notationally to cyl-cofibration. For example, the cyl-cofibrations in K ,
K /B, and KB are the h-cofibrations, the f -cofibrations, and the fp-cofibrations,
respectively, and similarly for cyl-cofibrations. As we have seen, it often happens
that cyl-cofibrations between suitably nice objects of C , which we shall call “well-
grounded”, are also ground cofibrations. We introduce language to describe this
situation. The following definitions codify the behavior of the well-grounded objects
with respect to the cyl-cofibrations, colimits, and tensors in C . It is convenient to
build in the appropriate equivariant generalizations of our notions, although we
defer a formal discussion of G-topologically bicomplete G-categories to §10.2; see
Definition 10.2.1. The examples in §1.4 give the idea.

Definition 5.3.1. An unbased space is well-grounded if it is compactly gener-
ated. A based space is well-grounded if it is compactly generated and well-based.
The same definitions apply to G-spaces for a topological group G.

Let C be a topologically bicomplete category.

Definition 5.3.2. A full subcategory of C is said to be a subcategory of well-
grounded objects if the following properties hold.

(i) The initial object of C is well-grounded.
(ii) All coproducts of well-grounded objects are well-grounded.
(iii) If i : X −→ Y is a cyl-cofibration and f : X −→ Z is any map, where X, Y ,

and Z are well-grounded, then the pushout Y ∪X Z is well-grounded.
(iv) The colimit of a sequence of cyl-cofibrations between well-grounded objects is

well-grounded.
(v) A retract of a well-grounded object is well-grounded.
(vi) If X is a well-grounded object and K is a well-grounded space, then X ∧K

(X ×K in the unbased context) is well-grounded.
When C is G-topologically bicomplete, we replace spaces by G-spaces in (vi).

Definition 5.3.3. A ground structure on C is a (full) subcategory of well-
grounded objects together with a subcategory of cofibrations, called the ground
cofibrations and denoted g-cofibrations, such that every cyl-cofibration between
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well-grounded objects is a g-cofibration. A map that is both a g-cofibration and a
cyl-cofibration is called a bicofibration.

Thus a cyl-cofibration between well-grounded objects is a bicofibration. The
need for focusing on bicofibrations and the force of the definition come from the
following fact.

Warning 5.3.4. In practice, (iii) often fails if i is a g-cofibration between well-
grounded objects that is not a cyl-cofibration, as we shall illustrate in §6.1. In
particular, in GKB with the canonical ground structure described below, it can
already fail for an inclusion i of I-cell complexes, where I is the standard set of
generators for the q-cofibrations.

In the next chapter, we will construct a q-type model structure for GKB with a
set of generating cofibrations to which the following implication of Definitions 4.5.7
and 5.3.2 applies.

Lemma 5.3.5. Let I be a set of cyl-cofibrations between well-grounded objects
and let f : X −→ Y be a retract of a relative I-cell complex W −→ Z. Then f is a
bicofibration. If W is well-grounded, then so are X, Y , and Z.

Our categories of equivariant parametrized spaces have canonical ground struc-
tures. Recall that the classes of f and f̄ -cofibrations in GU /B and GUB coincide.

Definition 5.3.6. A space over B is well-grounded if its total space is com-
pactly generated. An ex-space over B is well-grounded if it is well-sectioned and
its total space is compactly generated. In both GK /B and GKB , define the g-
cofibrations to be the h-cofibrations.

Note that the only distinction between well-sectioned and well-grounded ex-
spaces is the condition on total spaces. The distinction is relevant when we consider
relative I-cell complexes X0 −→ X in GKB . If X0 is well-sectioned, then so is X,
whereas X/X0 is an I-cell complex and is therefore well-grounded for any X0.

Proposition 5.3.7. These definitions specify ground structures on GK /B and
on GKB.

Proof. For GK /B, the Hurewicz cofibrations are the f -cofibrations, and
these are h-cofibrations. It is standard that GU /B has the closure properties
specified in Definition 5.3.2. For GKB , the Hurewicz cofibrations are the fp-
cofibrations. Between well-sectioned ex-spaces, these are f -cofibrations and there-
fore h-cofibrations by Proposition 5.2.3(i). Parts (i)–(v) of Definition 5.3.2 are
clear since well-sectioned means f̄ -cofibrant, which is a lifting property. Finally we
consider part (vi). Recall that X ∧B K can be constructed as the pushout of the
diagram of spaces

B (X × ∗) ∪ (B ×K)oo // X ×K ,

which also gives the pushout in the category of spaces over B. By the equivariant
version of the NDR-pair characterization of f -cofibrations in Lemma 5.2.4, these
spaces are f -cofibrant and the inclusion on the right is an f -cofibration. This
implies that X ∧B K is f -cofibrant. �
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5.4. Well-grounded categories of weak equivalences

The following definition describes how the weak equivalences and the ground
structure are related in practice.

Definition 5.4.1. Let C be a topologically bicomplete category with a given
ground structure. A subcategory of weak equivalences in C is well-grounded if the
following properties hold (where acyclicity refers to the weak equivalences).

(i) A homotopy equivalence is a weak equivalence.
(ii) A coproduct of weak equivalences between well-grounded objects is a weak

equivalence.
(iii) (Gluing lemma) Assume that the maps i and i′ are bicofibrations and the

vertical arrows are weak equivalences in the following diagram.

Y

��

X

��

ioo f // Z

��
Y ′ X ′

i′
oo

f ′
// Z ′

Then the induced map of pushouts is a weak equivalence. In particular,
pushouts of weak equivalences along bicofibrations are weak equivalences.

(iv) (Ladder lemma) Let X and Y be the colimits of sequences of bicofibrations
in : Xn −→ Xn+1 and jn : Yn −→ Yn+1 such that both X/X0 and Y/Y0 are
well-grounded. If f : X −→ Y is the colimit of a sequence of compatible weak
equivalences fn : Xn −→ Yn, then f is a weak equivalence. In particular, if
each in is a weak equivalence, then the induced map i : X0 −→ X is a weak
equivalence.

(v) For a map i : X −→ Y of well-grounded objects in C and a map j : K −→ L
of well-grounded spaces, i�j is a weak equivalence if i is a weak equivalence
or j is a weak equivalence (that is, a q-equivalence of spaces).

Here, in the based context, i�j is the evident induced map

(X ∧ L) ∪X∧K (Y ∧K) −→ Y ∧ L.

In practice, the conditions that we have specified are stronger than consideration
of left proper q-type model category structures might lead one to expect. However,
(v) is both stronger and weaker than one might expect.

Remark 5.4.2. Condition (v) holds as stated for most of the examples we
consider, but in Theorem 24.3.1 we shall encounter an example where K and L
must be restricted to be CW complexes. Note that condition (v) does not involve
cofibrations at all, and its verification depends on the particular nature of the
tensor functor ∧. This condition describes what actually holds, but, unfortunately,
it is not well related to the question of whether or not a model structure on C
is topological. The problem is that the model theoretic cofibrations to which we
would like to apply the axiom need not have well-grounded source objects, and it is
unclear whether or not (v) holds with unrestricted source objects even when i and j
are bicofibrations. (This is already unclear to us when C = T ). It is crucial to the
usefulness of (iii) and (iv) to the study of model structures that the bicofibrations
that appear in them are not required to have well-grounded source objects.
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The gluing lemma implies that acyclic bicofibrations are preserved under push-
outs, as of course holds for pushouts of acyclic cofibrations in model categories.
The special case mentioned in (iii) corresponds to the left proper axiom in model
categories. As there, it can be used to prove the general case of the gluing lemma
provided that we have suitable factorizations.

Lemma 5.4.3. Assume the following hypotheses.
(i) Weak equivalences are preserved under pushouts along bicofibrations.
(ii) Every map factors as the composite of a bicofibration and a weak equivalence.

Then the gluing lemma holds.

Proof. We use the notations of Definition 5.4.1(iii) and proceed in three cases.
If f and f ′ are both weak equivalences, then, by (i), so are the horizontal arrows

in the commutative diagram

Y

��

// Y ∪X Z

��
Y ′ // Y ′ ∪X′ Z ′.

Since Y −→ Y ′ is a weak equivalence, the right arrow is a weak equivalence by the
two out of three property of weak equivalences.

If f and f ′ are both bicofibrations, consider the commutative diagram

X
i //

f

xxpppppppppp Y

�� ��9
99

99
99

99
99

99

wwnnnnnnnnnn

Z //

��

��

Y ∪X Z

�� ��?
??

??
??

??
??

??
??

X ′
f ′

xxqqqqqqqqqq
// Y ∪X X ′

wwoooooo

// Y ′

yyssssssss

Z ′ // Y ∪X Z ′ // Y ′ ∪X′ Z ′.
The back, front, top, and two bottom squares are pushouts, and the middle com-
posite X ′ −→ Y ′ is i′. Since f and f ′ are bicofibrations, so are the remaining
three arrows from the back to the front. Similarly, i and its pushouts are bicofi-
brations. Since X −→ X ′, Y −→ Y ′, and Z −→ Z ′ are weak equivalences, (i)
and the two out of three property imply that Y −→ Y ∪X X ′, Y ∪X X ′ −→ Y ′,
Y ∪XZ −→ Y ∪XZ ′, and Y ∪XZ ′ −→ Y ′∪X′Z ′ are weak equivalences. Composing
the last two, Y ∪X Z −→ Y ′ ∪X′ Z ′ is a weak equivalence.

To prove the general case, construct the following commutative diagram.

Y

��

X

��

ioo f //

%%LLLLLLLL Z

��

W
f̄

99ssssssss

��

Y ′ X ′i′oo f ′

%%KKKKKKK
// Z ′

X ′ ∪X W
f̄ ′

99ttttttt
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Here we first factor f as the composite of a bicofibration and a weak equivalence
f̄ and then define a map f̄ ′ by the universal property of pushouts. By hypothesis
(i), W −→ X ′ ∪X W is a weak equivalence, and by the two out of three property,
so is f̄ ′. By the second case,

Y ∪X W −→ Y ′ ∪X′ (X ′ ∪X W ) ∼= Y ′ ∪X W

is a weak equivalence and by the first case, so is

Y ∪X Z ∼= (Y ∪X W ) ∪W Z −→ (Y ′ ∪X W ) ∪(X′∪XW ) Z
′ ∼= Y ′ ∪X′ Z ′. �

Remark 5.4.4. Clearly the previous result applies to any categories of weak
equivalences and cofibrations that satisfy (i) and (ii). The essential point is that,
in practice, we often need bicofibrations in order to verify (i).

Similarly, but more simply, the following observation reduces the verification
of Definition 5.4.1(v) to special cases. Here we assume that C is based.

Lemma 5.4.5. Let i : X −→ Y be a map in C and j : K −→ L be a map of
based spaces. Display i�j in the diagram

X ∧K
id∧j //

i∧id

��

X ∧ L

i∧id

��

k

uujjjjjjjjjjj

(X ∧ L) ∪X∧K (Y ∧K)

i�j ))TTTTTTTTTTT

Y ∧K
id∧j

//

55jjjjjjjjjjj
Y ∧ L.

If the maps i ∧ id and the pushout k of i ∧ id along id ∧ j are weak equivalences,
then so is i�j, and similarly with the roles of i and j reversed.

Together with Lemma 5.3.5, the notion of a well-grounded category of weak
equivalences encodes a variant of Lemma 4.5.8 that often applies when the latter
does not.

Lemma 5.4.6. If J is a set of acyclic cyl-cofibrations between well-grounded
objects, then all relative J-cell complexes are weak equivalences.

Proof. This follows from (ii), (iii), and (iv) of Definition 5.4.1, together with
the observation that if X0 −→ X is a relative J-cell complex, then X/X0 is a J-cell
complex and is therefore well-grounded, so that (iv) applies. �

There is an analogous reduction of the problem of determining when a functor
preserves weak equivalences.

Lemma 5.4.7. Let F : C −→ D be a functor between topologically bicomplete
categories that come equipped with subcategories of well-grounded weak equivalences
with respect to given ground structures. Let J be a set of acyclic cyl-cofibrations
between well-grounded objects in C . Assume that F has a continuous right adjoint
and that F takes maps in J to weak equivalences between well-grounded objects.
Then F takes a retract of a relative J-cell complex to an acyclic map in D .

Proof. The functor F preserves cyl-cofibrations since it has a continuous right
adjoint and hence FJ consists of acyclic cyl-cofibrations between well-grounded ob-
jects. The conclusion follows from Lemma 5.4.6, the fact that left adjoints commute
with colimits, and (ii)–(iv) of Definition 5.4.1. �
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The following classical example is implicit in the literature.

Proposition 5.4.8. The q-equivalences in GK are well-grounded with respect
to the ground structure whose well-grounded objects are the compactly generated
spaces and whose g-cofibrations are the h-cofibrations.

Proof. Parts (i), (ii), and, here in the unbased case, (v) of Definition 5.4.1
are clear, and (iv) follows easily from Lemma 1.6.5. The essential point is the
gluing lemma of (iii). By passage to fixed point spaces, it suffices to prove this
nonequivariantly. Using the gluing lemma for the proper h-model structure on K ,
we see that f and f ′ can be replaced by their mapping cylinders. Then the induced
map of pushouts is the map of double mapping cylinders induced by the original
diagram. This map is equivalent to a map of excisive triads, and in that case the
result is [117, 1.3], whose proof is corrected in [173]. �

Proposition 5.4.9. The q-equivalences in GK /B and GKB are well-grounded
with respect to the ground structures of Proposition 5.3.7. In these cases, one need
only assume that the relevant maps in the gluing and colimit lemmas are ground
cofibrations (= h-cofibrations), not both ground and Cyl-cofibrations.

Proof. We verify this for GKB . Part (i) of Definition 5.4.1 holds since any fp-
equivalence is a q-equivalence and part (iii) follows directly from the gluing lemma
in GK . For part (ii), the total space of ∨BXi is the pushout in GK of

B qBoo // qXi.

Since the Xi are well-grounded, the map on the right is an h-cofibration, hence
(ii) also follows from the gluing lemma in GK . In part (iv), the relevant quotient
in GKB is given by the pushout, X/BX0, of the diagram ∗B ←− X0 −→ X.
Since X/BX0 is well-grounded, the quotient total space is in U and one can apply
Lemma 1.6.5 just as on the space level. Finally consider (v). As in the proof of
Proposition 5.3.7(vi), X ∧B K can be constructed as the pushout of the following
diagram of f -cofibrant spaces over B.

B (X × ∗) ∪ (B ×K)oo // X ×K

The inclusion on the right is an f -cofibration. By the gluing lemma in GK , the
functor X ∧BK preserves q-equivalences in both variables since the functor X ×K
evidently does so. �

5.5. Well-grounded compactly generated model structures

Let C be a topologically bicomplete category or, equivariantly, aG-topologically
bicomplete G-category. In the notion of a “well-grounded model structure”, we for-
mulate the properties that a compactly generated model structure on C should
have in order to mesh well with the intrinsic Cyl-structure on C described in §4.3.
When C has such a model structure, and when the classical Cyl-structure actually
is a model structure, the identity functor on C is a Quillen left adjoint from the
well-grounded model structure to the Cyl-model structure. Thus this notion gives
a precise axiomatization for the implementaton of the philosophy that we adver-
tised in §4.1. We begin with a variant of Theorem 4.5.6. Recall the definitions
of a ground structure from Definitions 5.3.2 and 5.3.3, of a subcategory of well-
grounded weak equivalences from Definition 5.4.1, and of a compact set of maps
from Definition 4.5.1.
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Theorem 5.5.1. Let C be a topologically bicomplete category with a ground
structure, a subcategory of well-grounded weak equivalences, and compact sets I
and J of maps that satisfy the following conditions.

(i) (Acyclicity condition) Every map in J is a weak equivalence.
(ii) (Compatibility condition) A map has the RLP with respect to I if and only if

it is a weak equivalence and has the RLP with respect to J .
(iii) Every map in I and J is a cyl-cofibration between well-grounded objects.
Then C is a compactly generated model category with generating sets I and J of
cofibrations and acyclic cofibrations. Every cofibration is a bicofibration and every
cofibrant object is well-grounded. A pushout of a weak equivalence along a bicofi-
bration is a weak equivalence and, in particular, the model structure is left proper.
The model structure is topological or, equivariantly, G-topological if the following
condition holds.
(iv) i�j is a relative I-cell complex if i : X −→ Y is a map in I and j : K −→ L

is a map in J (that is, in the set I of generating cofibrations of spaces or
G-spaces), and i�j is a relative J-cell complex if i is in I and j is in J or if
i is in J and j is in I.

Proof. By Lemma 5.4.6, Theorem 4.5.6 applies to verify the model axioms.
Condition (iii) implies the statements about cofibrations and cofibrant objects by
Lemma 5.3.5, and the gluing lemma implies the statement about pushouts of weak
equivalences. In the last statement, j is in the set I of generating cofibrations
or the set J of generating acyclic cofibrations in the relevant category of (based
or unbased) spaces, as specified in Definition 4.5.10. By passage to coproducts,
pushouts, sequential colimits, and retracts, (iv) implies that i�j is a cofibration if
i : X −→ Y is a cofibration in C and j : K −→ L is a q-cofibration of spaces (or
G-spaces) and is acyclic if either i or j is so, which means that the model structure
is topological. �

Remark 5.5.2. We emphasize the fundamental difference between the acyclic-
ity conditions stated in Theorem 4.5.6 and in Theorem 5.5.1. In the applications
of the former, it is the verification of the acyclicity of J-cell complexes that is
problemmatic, but in the latter our axiomatization has built in that verification.

Remark 5.5.3. The conclusions of Theorem 5.5.1 still hold if in (iii) we only re-
quire cyl-cofibrations, rather than cyl cofibrations. The stronger assumption holds
in all examples we know, and it is needed to implement our philosophy comparing
h-type and q-type model structures via a Quillen adjunction. Note, however, that
the theorem holds whether or not the homotopy equivalences, ¯cyl-cofibrations, and
cyl-fibrations actually specify an h-type model structure.

Definition 5.5.4. A compactly generated model structure on C is said to be
well-grounded if it is right proper and satisfies all of the hypotheses of the preceding
theorem. It follows that C is proper and topological or, equivariantly, G-topological.

5.6. Properties of well-grounded model categories

Assume that C is a well-grounded model category throughout this section. To
derive properties of its homotopy category HoC , we must sort out the relationship
between homotopies defined in terms of cylinders and homotopies in the model
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theoretic sense, which we call “model homotopies”. We adopt the following slightly
non-standard definition of [56, 4.2].

Definition 5.6.1. A cylinder object for X is an object Y together with maps
i0 : X −→ Y , i1 : X −→ Y and p : Y −→ X such that pi0 = id = pi1 and p is a
weak equivalence; Y is a good cylinder object if the map i : X qX −→ Y given by
i0 and i1 is a cofibration; Y is a very good cylinder object if, further, p is a fibration.

Of course, the cylinder objects Cyl(X) in C have maps i0, i1 : X −→ Cyl(X)
and p : Cyl(X) −→ X. Since tensors with spaces preserve homotopies in the space
variable, i0 (or i1) and p are inverse homotopy equivalences. Definition 5.4.1(i)
ensures that p is therefore a weak equivalence. Thus Cyl(X) is a model theoretic
cylinder object in C . It need not be a good cylinder object. As pointed out in [56, p.
90], this already fails for spaces, where the inclusion X qX −→ X × I need not be
a q-cofibration unless X is q-cofibrant. Note however that i : X qX −→ Cyl(X) is
a Cyl-cofibration for any X, by Theorem 4.3.2.

Remark 5.6.2. The standard definition of cylinder objects in [73, 75, 139] re-
quires i to be a cofibration. An alternative definition of “good cylinders” that
includes all standard cylinders in the category of spaces is given in [144].

We record the following observations.

Lemma 5.6.3. Consider maps f, g : X −→ Y in C .
(i) If f is homotopic to g, then f is left model homotopic to g.
(ii) If X is cofibrant, then Cyl(X) is a good cylinder object.
(iii) If X is cofibrant and Y is fibrant, then f is homotopic to g if and only if f is

left and right model homotopic to g.

Proof. Part (i) is [56, 4.6], part (ii) follows from Definition 5.3.2(iii), and part
(iii) follows from [56, 4.23]. �

Let [X,Y ] denote the set of morphisms X −→ Y in HoC and let π(X,Y )
denote the set of homotopy classes of maps X −→ Y . Recall the following fact,
which holds in any model category [75, I.2.10(ii)].

Lemma 5.6.4. The natural map π(X,Y ) −→ [X,Y ] is a bijection if X is cofi-
brant and Y is fibrant.

We use this to obtain homotopy category conclusions from elementary classical
arguments with homotopy classes of maps. In all of the following results, we trans-
port conclusions obtained by standard arguments with morphism sets π(X,Y ) in
the classical homotopy category hC to conclusions in the homotopy category HoC
by assuming that Y is fibrant and applying cofibrant approximation to the variable
X. The essential point is to check that cofibrant approximation preserves the con-
structions we consider. The well-groundedness of C gives exactly what is needed
for these verifications. We assume that C is based in the rest of the section.

Lemma 5.6.5 (Cofiber sequence lemma). Consider the cofiber sequence

X −→ Y −→ Cf −→ ΣX −→ ΣY −→ ΣCf −→ Σ2X −→ · · ·
of a map f : X −→ Y between well-grounded objects. For any object Z, the induced
sequence

· · · −→ [Σn+1X,Z] −→ [ΣnCf,Z] −→ [ΣnY, Z] −→ [ΣnX,Z] −→ · · · −→ [X,Z]
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of pointed sets (groups left of [ΣX,Z], Abelian groups left of [Σ2X,Z]) is exact.

Proof. As usual, giving I the basepoint 1, we define

CX = X ∧ I, ΣX = X ∧ S1, and Cf = Y ∪f CX.
If X is cofibrant, then X is well-grounded and X −→ CX is a cofibration and
therefore a bicofibration. If X and Y are cofibrant, then so is Cf , as one sees by
solving the relevant lifting problem by first using that Y is cofibrant, then using
that X −→ CX is a cofibration, and finally using that Cf is a pushout. Thus,
taking Z to be fibrant, the conclusion follows in this case from the sequence of
homotopy classes of maps

· · · −→ π(ΣX,Z) −→ π(Cf,Z) −→ π(Y, Z) −→ π(X,Z),

which is proven to be exact in the same way as on the space level. If X and
Y are not cofibrant, let Qf : QX −→ QY be a cofibrant approximation to f .
The gluing lemma applies to give that the canonical map CQf −→ Cf is a weak
equivalence. Therefore the conclusion follows in general from the special case of
cofibrant objects. �

Warning 5.6.6. While the proof just given is very simple, it hides substantial
subtleties. It is crucial that cofibrant objects X be well-grounded, so that the
cyl-cofibration X −→ CX is a bicofibration and the gluing lemma applies.

Of course, the group structures are defined just as classically. The pinch maps

S1 ∼= I/{0, 1} −→ I/{0, 1
2 , 1} ∼= S1 ∨ S1 and I −→ I/{ 1

2 , 1} ∼= I ∨ S1

induce pinch maps

ΣX −→ ΣX ∨ ΣX and Cf −→ Cf ∨ ΣX

that give ΣX the structure of a cogroup object in HoC and Cf a coaction by
ΣX; Σ2X is an abelian cogroup object for the same reason that higher homotopy
groups are abelian. Therefore [ΣX,Z] is a group, [Cf,Z] is a [ΣX,Z]-set, and
[ΣX,Z] −→ [Cf,Z] is a [ΣX,Z]-map.

Lemma 5.6.7 (Wedge lemma). For well-grounded objects Xi and any object Z
in C , [qXi, Z] ∼= Π[Xi, Z].

Proof. Since a coproduct of weak equivalences between well-grounded objects
is a weak equivalence, we see that a coproduct of cofibrant approximations of well-
grounded objects is a cofibrant approximation. �

Similarly, we can develop the elementary theory of classical homotopy colimits.
It would take us too far afield to go into full details of what should be standard
arguments, but we give a sketch since we cannot find our preferred development in
the literature.

Definition 5.6.8. The classical homotopy pushout, or double mapping cylinder,
of a diagram

X W
foo g // Y

is the ordinary pushout M(f, g) of the diagram

Cyl(W ) W qWioo fqg // X q Y.
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It fits into a cofiber sequence

X q Y −→M(f, g) −→ ΣW.

Lemma 5.6.9 (Double mapping cylinder lemma). For maps f : W −→ X and
g : W −→ Y between well-grounded objects and any object Z, there is a natural
surjection from [M(f, g), Z] to the pullback of the diagram

[X,Z]
f∗ // [W,Z] [Y, Z].

g∗oo

The kernel is the set of orbits of the right action of [ΣX,Z] × [ΣY,Z] on [ΣW,Z]
specified by

w(x, y) = (Σf)∗(x)−1w(Σg)∗(y).

Proof. Inspection of the cofiber sequence in Definition 5.6.8 gives the analo-
gous conclusion in the classical homotopy category hC . Applying cofibrant approx-
imation and the gluing lemma, Definition 5.4.1(iii), we obtain a weak equivalence

M(Qf,Qg) −→M(f, g).

Since M(Qf,Qg) is cofibrant, this is a cofibrant approximation and the stated
conclusion follows directly. �

Definition 5.6.10. The classical homotopy coequalizer C(f, g), or mapping
torus, of a pair of parallel maps f, g : X −→ Y is the homotopy pushout of the sum
f + g : X qX −→ Y (which restricts to f and g on the two copies of X) and the
codiagonal ∇ : X qX −→ X.

Algebraic inspection from Lemma 5.6.9 gives the following calculation.

Lemma 5.6.11 (Mapping torus lemma). For maps f, g : X −→ Y between well-
grounded objects and any object Z, there is a surjection from [C(f, g), Z] to the
equalizer of the maps f∗ and g∗ from [Y, Z] to [X,Z]. Its kernel is isomorphic to
the set of orbits of [ΣX,Z] under the right action of [ΣY, Z] specified by

xy = (Σf)∗(y)−1x(Σg)∗(y).

Definition 5.6.12. The classical homotopy colimit or telescope TelXn of maps
fn : Xn −→ Xn+1 is the homotopy coequalizer of the identity map and the coprod-
uct of the fn, both being self maps of the coproduct of the Xn.

We shall often use the alternative notation hocolimXn for TelXn. Algebraic
inspection from Lemma 5.6.9 gives a lim1 exact sequence.

Lemma 5.6.13 (Telescope lemma). For a sequence of maps fn : Xn −→ Xn+1

between well-grounded objects and any object Y , there is an exact sequence of pointed
sets

∗ −→ lim1 [ΣXn, Y ] −→ [TelXn, Y ] −→ lim [Xn, Y ] −→ ∗.

Lemma 5.6.14 (Lim1 lemma). Let X be the colimit of a sequence of cyl-
cofibrations in : Xn −→ Xn+1 between well-grounded objects. Then there is a nat-
ural weak equivalence TelXn −→ X and a resulting lim1 exact sequence for the
calculation of [X,Y ].
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Proof. By a standard direct comparison, the telescope TelXn is isomorphic to
colimTn, where the Tn, together with a ladder of weak equivalences jn : Xn −→ Tn
and rn : Tn −→ Xn, are constructed inductively by setting T0 = X0 and letting
jn+1 and rn+1 be the maps of pushouts induced by the following diagram.

Xn

i1

��

Xn

ν2

��

in // Xn+1

ν2

��
CylXn

p

��

Xn qXn

i(0,1)oo jnqin // Tn qXn+1

rnqid

��
Xn Xn qXn∇
oo

idqin
// Xn qXn+1

Since jn+1 is a pushout of the bicofibration i1 : Xn −→ Cyl(Xn), the gluing and
ladder lemmas, Definition 5.4.1(iii) and (iv), apply to show that the induced map
TelXn −→ colimXn = X is a weak equivalence. �

Remark 5.6.15. Let C be an arbitrary pointed model category with (for sim-
plicity) a functorial cylinder construction Cyl. If X is cofibrant, let ΣX denote the
quotient Cyl(X)/(X ∨ X). Quillen [139] constructed a natural cogroup structure
on ΣX in HoC . For a cofibration X −→ Y between cofibrant objects, he also
constructed a natural coaction of ΣX on the quotient Y/X. One can then define
cofiber sequences in HoC just as in the homotopy category of a topological model
category, and one can define fiber sequences dually.

The cofiber sequences and fiber sequences each give HoC a suitably weakened
form of the notion of a triangulation, called a “pretriangulation” [75,139], and they
are suitably compatible. If HoC is closed symmetric monoidal one can take this a
step further and formulate what it means for the pretriangulation to be compatible
with that structure, as was done in [124] for triangulated categories. However,
proving the compatibility axioms from this general point of view would at best be
exceedingly laborious, if it could be done at all.

These purely model theoretic constructions of the suspension and looping func-
tors Σ and Ω are more closely related to the familiar topological constructions than
might appear. The homotopy category of any model category is enriched and biten-
sored over the homotopy category of spaces (obtained from the q-model structure)
[55,75], and the suspension and loop functors are given by the (derived) tensor and
cotensor with the unit circle. That is, ΣX ' X ∧ S1 and ΩX ' F (S1, X).

This general point of view is not one that we wish to emphasize. For topological
model categories, the structure described in this section is far easier to define and
work with directly, as in classical homotopy theory, and we have axiomatized what
is required of a model structure in order to allow the use of such standard and
elementary classical methods. In our topological context, the homotopy category
HoC is automatically enriched over HoK∗ and (Σ,Ω) is a Quillen adjoint pair that
descends to an adjoint pair on homotopy categories that agrees with the purely
model theoretic adjoint pair just described.

The crucial point for our stable work is that a large part of this structure exists
before one constructs the desired model structure. It can therefore be used as a
tool for carrying out that construction. This is in fact how stable model categories
were constructed in [61, 105, 106], but there the compatibility between q-type and
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h-type structures was too evident to require much comment. The key step in our
construction of the stable model structure on parametrized spectra in Chapter 12
is to show that cofiber sequences induce long exact sequences on stable homotopy
groups. That will allow us to verify that the stable equivalences are suitably well-
grounded, and from there the model axioms follow as in the earlier work just cited.



CHAPTER 6

The qf-model structure on KB

Introduction

In this chapter, we introduce and develop our preferred q-type model structure,
namely the qf -model structure. It is a Quillen equivalent variant of the q-model
structure that has fewer, and better structured, cofibrations. For clarity of exposi-
tion, we work nonequivariantly in this chapter, which is taken from [152].

We begin by comparing the homotopy theory of spaces and the homotopy
theory of ex-spaces over B, starting with a comparison of the q-model structures
that we have on both. In the category K of spaces, we have the familiar situation
described in §4.1. The homotopy category HoK that we care about is defined in
terms of q-equivalences, the intrinsic notion of homotopy is given by the classical
cylinders, and, since all spaces are q-fibrant, the category HoK is equivalent to
the classical homotopy category hKc of q-cofibrant spaces (or CW complexes).
Since the q-cofibrations are h-cofibrations, the q-model structure and the h-model
structure on K mesh smoothly. Indeed, the classical and model theoretic homotopy
theory have been used in tandem for so long that this meshing of structures goes
without notice. In particular, although cofiber and fiber sequences are defined in
terms of the h-model structure while the homotopy category is defined in terms of
the q-model structure, the compatibility seems automatic.

Now consider the category KB . The homotopy category HoKB that we care
about is defined in terms of q-equivalences of total spaces, but we need some justifi-
cation for making that statement. A map of q-fibrant ex-spaces is a q-equivalence of
total spaces if and only if all of its maps on fibers are q-equivalences. This reformula-
tion captures the idea that the homotopical information in parametrized homotopy
theory should be encoded on the fibers, and it is such fiberwise q-equivalences that
we really care about. It is only for q-fibrant ex-spaces, or ex-spaces whose projec-
tions are at least quasifibrations, that the homotopy groups of total spaces give the
“right answer”. There are three notions of homotopy in sight, h, f , and fp. The
last of these is the intrinsic one defined in terms of the relevant cylinders in KB ,
and HoKB is equivalent to the classical homotopy category hKBcf of q-cofibrant
and q-fibrant objects, defined with respect to fp-homotopy. It is still true that
q-cofibrations are h-cofibrations. However, it is not true that q-cofibrations are fp-
cofibrations, and it is the latter that are intrinsic to cofiber sequences. The classical
and model theoretic homotopy theory no longer mesh.

Succinctly, the problem is that the q-model structure is not an example of a
well-grounded compactly generated model category. The task that lies before us
is to find a model structure which does satisfy the axioms that we set out in §5.5
and therefore can be used in tandem with the fp-structure to do parametrized
homotopy theory. Before embarking on this, we point out the limitations of the

97
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q-model structure more explicitly in §6.1. There are two kinds of problems, those
that we are focusing on in our development of the model category theory, and the
more intrinsic ones that account for Counterexample 0.0.1 and which cannot be
overcome model theoretically.

Ideally, to define the qf -model structure, we would like to take the qf -cofibra-
tions to be those q-cofibrations that are also f -cofibrations. However, with that
choice, we would not know how to prove the model category axioms. We get closer
if we try to take as generating sets of cofibrations and acyclic cofibrations those
generators in the q-model structure that are f -cofibrations, but with that choice
we still would not be able to prove the compatibility condition Theorem 5.5.1(ii).
However, using this generating set of cofibrations and a subtler choice of a generat-
ing set of acyclic cofibrations, we obtain a precise enough homotopical relationship
to the q-equivalences that we can prove the cited compatibility. The construction of
the qf -model structure is given in §6.2, but all proofs are deferred to the following
three sections.

6.1. Some of the dangers in the parametrized world

We introduce notation for the generating (acyclic) cofibrations for the q-model
structures on K /B and KB . These maps are identified in Proposition 5.1.5, start-
ing from the sets I and J in K specified in Definition 4.5.10. We then make some
comments about these maps that help explain the structure of our theory.

Definition 6.1.1. For maps i : C −→ D and d : D −→ B of (unbased) spaces,
we have the restriction d◦i : C −→ B and may view i as a map over B. We agree to
write i(d) for either the map i viewed as a map over B or the map iq id : CqB −→
DqB of ex-spaces over B that is obtained by taking the coproduct with B to adjoin
a section. In either K /B or KB , define IB to be the set of all such maps i(d) with
i ∈ I, and define JB to be the set of all such maps j(d) with j ∈ J . Observe that
in KB , each map in JB is the inclusion of a deformation retract of spaces under,
but not over, B.

Warning 6.1.2. We cannot restrict the maps d to be open here. That is one
of the reasons we chose KB over O∗(B) in §1.3.

Warning 6.1.3. The maps in IB and JB are clearly not f -cofibrations, only
h-cofibrations. Looking at the NDR-pair characterization of f -cofibrations given in
Lemma 5.2.4, we see that, with our arbitrary projections d, there is in general no
way to carry out the required deformation over B. Since the maps in IB and JB
are maps between well-sectioned spaces, they cannot be fp-cofibrations in general,
by Proposition 5.2.3(i).

Remark 6.1.4. Observe that the maps i in IB or JB are closed inclusions
in U , so that those maps in IB or JB which are f -cofibrations are necessarily
f̄ -cofibrations and therefore both f̄p-cofibrations and h̄-cofibrations, by Proposi-
tion 5.1.9 and Theorem 5.2.8.

Warning 6.1.3 shows that the q-model structure is not well-grounded since
its generating (acyclic) cofibrations are not fp-cofibrations. This may sound like a
minor technicality, but that is far from the case. We record an elementary example.

Counterexample 6.1.5. Let B = I and define an ex-map i : X −→ Y over I
by letting X = {0} q I, Y = I q I, and i be the inclusion. The second copies of I
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give the sections, and the projections are given by the identity map on each copy of
I. This is a typical generating acyclic q-cofibration, and it is not an fp-cofibration.
Let Z be the pushout of i and p : X −→ I, where the latter is viewed as a map
of ex-spaces over I. Then Z is the one-point union I ∨ I obtained by identifying
the points 0. The section I −→ Z is not an f -cofibration, so that Z is not well-
sectioned. The same is true if we replace Y by Y ′ = {1/(n + 1) | n ∈ N} q I and
obtain Z ′. The map Z ′ −→ CIZ

′ of Z ′ into its cone over I is not an h-cofibration
(and therefore not a q-cofibration).

Thus we cannot apply the classical gluing lemma to develop cofiber sequences,
as we did in §5.6. This and related problems prevent use of the q-model structure
in a rigorous development of parametrized stable homotopy theory. For example,
consider q-fibrant approximation. If we have a map f : X −→ Y with q-fibrant
approximation Rf : RX −→ RY , there is no reason to believe that CBRf is q-
equivalent to RCBf .

We are about to overcome model-theoretically the problems pointed out in the
warnings above. Turning to the intrinsic problems that must hold in any q-type
model structure, we explain why the base change functor f∗ and the internal smash
product cannot be Quillen left adjoints.

Warning 6.1.6. If f : A −→ B is a map and d : D −→ B is a disk over B, we
have no homotopical control over the pullback A×B D −→ A in general.

Warning 6.1.7. In sharp contrast to the nonparametrized case, the generating
sets do not behave well with respect to internal smash products, although they do
behave well with respect to external smash products. We have

(D qA) Z (E qB) ∼= (D × E)q (A×B).

If the projections of D and E are d and e, then the projection of D × E is d × e.
However, if A = B, then

(D qB) ∧B (E qB) ∼= (d× e)−1(∆B)q (A×B).

We have no homotopical control over the space (d× e)−1(∆B) in general.

This has the unfortunate consequence that, when we go on to parametrized
spectra in Part III, we will not be able to develop a homotopically well-behaved
theory of point-set level parametrized ring spectra. However, we will be able to
develop a satisfactory point-set level theory of parametrized module spectra over
nonparametrized ring spectra.

As a final warning of problems ahead, we observe that the finiteness (or com-
pactness) of our generating cells is no longer present on fibers after fibrant approx-
imation, which throws out some of our intuitions. This observation will imply that
finite cell spectra are generally not dualizable in the traditional fiberwise sense.
We will develop a quite different duality theory, Costenoble–Waner duality, under
which they are dualizable in Chapter 18.

Warning 6.1.8. No matter what q-type model structure one considers, the
generating cells are not fibrant. Let (Dn, p) be a disk over B and let (B̃, q) be the
universal cover of B. Lift p to a map p̃ : Dn −→ B̃. If B = K(π, 1), then p̃ is
an equivalence and (B̃, q) is a fibrant approximation to (Dn, p). For example, if
B = S1, then R is a fibrant approximation of any disk over B, and the derived
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fiber is Z. We can adjoin a disjoint section to form an ex-space (Dn, p)+ over B,
and (B̃, q)+ is a fibrant approximation to it in the category of ex-spaces over B.

6.2. The qf model structure on the category K /B

Rather than start with a model structure on K to obtain model structures
on K /B and KB , we can start with a model structure on K /B and then apply
Proposition 5.1.4 to obtain a model structure on KB . This gives us the opportunity
to restrict the classes of generating (acyclic) cofibrations present in the q-model
structure on K /B to ones that are f -cofibrations, retaining enough of them that
we do not lose homotopical information. This has the effect that the generating
(acyclic) cofibrations are f -cofibrations between well-grounded spaces over B, as
is required of a well-grounded model structure. Such maps have closed images,
hence are f̄ -cofibrations, and therefore all of the cofibrations in the resulting model
structure on K /B are f̄ -cofibrations.

We call the resulting model structure the “qf -model structure”, where f refers
to the fiberwise cofibrations that are used and q refers to the weak equivalences.
The latter are the same as in the q-model structure, namely the weak equivalences
on total spaces, or q-equivalences. This model structure restores us to a situa-
tion in which the philosophy advertised in §4.1 applies, with the q and h-model
structures on spaces replaced by the qf and f -model structures on spaces over B.
Since f -cofibrations in KB are fp-cofibrations, by Proposition 5.1.9, the philoso-
phy also applies to the qf and fp-model structures on KB , or at least on UB (see
Theorem 5.2.8 and Remark 5.2.9).

We need some notations and recollections in order to describe the generating
(acyclic) qf -cofibrations and the qf -fibrations.

Notation 6.2.1. For each n ≥ 1, embed Rn−1 in Rn = Rn−1 × R by sending
x to (x, 0). Let en = (0, 1) ∈ Rn. For n ≥ 0, define the following subspaces of Rn.

Rn+ = {(x, t) ∈ Rn | t ≥ 0} Rn− = {(x, t) ∈ Rn | t ≤ 0}
Dn = {(x, t) ∈ Rn | |x|2 + t2 ≤ 1} Sn−1 = {(x, t) ∈ Rn | |x|2 + t2 = 1}

Sn−1
+ = Sn−1 ∩ Rn+ Sn−1

− = Sn−1 ∩ Rn−
Here R0 = {0} and S−1 = ∅. We think of Sn ⊂ Rn+1 as having equator Sn−1,
upper hemisphere Sn+ with north pole en+1 and lower hemisphere Sn−.

There is a conflict of notation here, but it should not cause confusion since we
shall not be adding disjoint basepoints to any spaces in this chapter. We recall a
characterization of Serre fibrations.

Proposition 6.2.2. The following conditions on a map p : E −→ Y in K are
equivalent; p is called a Serre fibration, or q-fibration, if they are satisfied.

(i) The map p satisfies the covering homotopy property with respect to disks Dn;
that is, there is a lift in the diagram

Dn α //

��

E

p

��
Dn × I

h
//

;;w
w

w
w

w
Y.
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(ii) If h is a homotopy relative to the boundary Sn−1 in the diagram above, then
there is a lift that is a homotopy relative to the boundary.

(iii) The map p has the RLP with respect to the inclusion Sn+ −→ Dn+1 of the
upper hemisphere into the boundary Sn of Dn+1; that is, there is a lift in the
diagram

Sn+
α //

��

E

p

��
Dn+1

h̄

//

<<z
z

z
z

z
Y.

Proof. Serre fibrations p : E −→ Y are usually characterized by the first
condition. Since the pairs (Dn × I,Dn) and (Dn × I,Dn ∪ (Sn−1 × I)) are home-
omorphic, one easily obtains that the first condition implies the second. Similarly
a homeomorphism of the pairs (Dn+1, Sn+) and (Dn × I,Dn) gives that the first
and third conditions are equivalent. A homotopy h : Dn × I −→ Y relative to the
boundary Sn−1 factors through the quotient map Dn × I −→ Dn+1 that sends
(x, t) to (x, (2t − 1)

√
1− |x|2). Conversely, any map h̄ : Dn+1 −→ Y gives rise to

a homotopy h : Dn × I −→ Y relative to the boundary Sn−1. It follows that the
second condition implies the third. �

Property (ii) states that Serre fibrations are the maps that satisfy the “disk
lifting property” and that is the way we shall think about the qf -fibrations. In view
of property (iii), we sometimes abuse language by calling a map h : Dn+1 −→ Y a
disk homotopy. The restriction to the upper hemisphere Sn+ gives the “initial disk”
and the restriction to the lower hemisphere Sn− gives the “terminal disk”.

Definition 6.2.3. A disk d : Dn −→ B in K /B is said to be an f-disk if
i(d) : Sn−1 −→ Dn is an f -cofibration. An f -disk d : Dn+1 −→ B is said to be a
relative f-disk if the lower hemisphere Sn− is also an f -disk, so that the restriction
i(d) : Sn−1 −→ Sn− is an f -cofibration; the upper hemisphere i(d) : Sn−1 −→ Sn+
need not be an f -cofibration.

Definition 6.2.4. Define IfB to be the set of inclusions i(d) : Sn−1 −→ Dn

in K /B, where d : Dn −→ B is an f -disk. Define JfB to be the set of inclusions
i(d) : Sn+ −→ Dn+1 of the upper hemisphere into a relative f -disk d : Dn+1 −→ B;
note that these initial disks are not assumed to be f -disks. A map in K /B is said
to be

(i) a qf -fibration if it has the RLP with respect to JfB and
(ii) a qf -cofibration if it has the LLP with respect to all q-acyclic qf -fibrations,

that is, with respect to those qf -fibrations that are q-equivalences.

Note that JfB consists of relative IfB-cell complexes and that a map is a qf -fibration
if and only if it has the “relative f -disk lifting property.”

With these definitions in place, we have the following theorem. Recall the
definition of a well-grounded model category from Definition 5.5.4 and recall from
Propositions 5.3.7 and 5.4.9 that we have ground structures on K /B and KB with
respect to which the q-equivalences are well-grounded. Also recall the definition of
a quasifibration from Definition 3.6.1.
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Theorem 6.2.5. The category K /B of spaces over B is a well-grounded model
category with respect to the q-equivalences, qf -fibrations and qf -cofibrations. The
sets IfB and JfB are the generating qf-cofibrations and the generating acyclic qf -
cofibrations. All qf -cofibrations are also f̄-cofibrations and all qf -fibrations are
quasifibrations.

Using Proposition 5.1.4 and Proposition 5.1.5, we obtain the qf -model structure
on KB . We define a qf -fibration in KB to be a map which is a qf -fibration when
regarded as a map in K /B, and similarly for qf -cofibrations.

Theorem 6.2.6. The category KB of ex-spaces over B is a well-grounded model
category with respect to the q-equivalences, qf -fibrations, and qf -cofibrations. The
sets IfB and JfB of generating qf -cofibrations and generating acyclic qf-cofibrations
are obtained by adjoining disjoint sections to the corresponding sets of maps in
K /B. All qf -cofibrations are f̄-cofibrations and all qf -fibrations are quasifibra-
tions.

Since the qf -model structures are well-grounded, they are in particular proper
and topological. Furthermore, the qf -cofibrant spaces over B are well-grounded
and the qf -fibrant spaces over B are quasifibrant, but of course not conversely.
Since qf -cofibrations are q-cofibrations, we have an obvious comparison.

Theorem 6.2.7. The identity functor is a left Quillen equivalence from K /B
with the qf -model structure to K /B with the q-model structure, and similarly for
the identity functor on KB.

The following result, which implements the philosophy of §4.1, is false for the
q-model structure. It implies that an acyclic qf -cofibration is an f -equivalence and
not just an h-equivalence, although it still need not be an fp-equivalence in the
case of KB .

Theorem 6.2.8. The identity functor is a left Quillen adjoint from K /B with
the qf-model structure to K /B with the f-model structure. Therefore the identity
functor is a left Quillen adjoint from KB with the qf -model structure to KB with
the f-model structure.

The one real advantage that the q-model structure has over the qf -model struc-
ture is that naturally occurring q-cofibrant ex-spaces are far more common than
naturally occurring qf -cofibrant ex-spaces. The scarcity of qf -cofibrations will force
us to introduce a number of variants of the qf -model structure in the next chapter,
as the following warning illustrates.

Warning 6.2.9. Let B be a cell complex. Then S0
B = (B, id)+ is q-cofibrant

in GKB , but it is not qf -cofibrant with the qf -model structure specified in this
chapter. In fact, (K, p)+ is q-cofibrant but not necessarily qf -cofibrant for any cell
complex K.

We state and prove two technical lemmas in §6.3, prove that K /B is a com-
pactly generated model category in §6.4, and prove that the qf -fibrations are quasi-
fibrations and the model structure is right proper in §6.5.

6.3. Statements and proofs of the thickening lemmas

We need two technical “thickening lemmas”. They encapsulate the idea that
no information about homotopy groups is lost if we restrict from the general disks
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and cells used in the q-model structure to the f -disks and f -cells that we use in the
qf -model structure.

Lemma 6.3.1. Let (Sm, q) be a sphere over B. Then there is an h-equivalence
µ : (Sm, q̄) −→ (Sm, q) in K /B such that (Sm, q̄) is an IfB-cell complex with two
cells in each dimension.

Lemma 6.3.2. Let (Dn, q) be a disk over B. Then there is an h-equivalence
ν : (Dn, q̄) −→ (Dn, q) relative to the upper hemisphere Sn−1

+ such that (Dn, q̄) is a
relative f-disk.

The rest of the section is devoted to the proofs of these lemmas. The reader
may prefer to skip ahead to §6.4 to see how they are used to prove Theorem 6.2.5.

Proof of Lemma 6.3.1. To define the map µ : (Sm, q̄) −→ (Sm, q), we begin
by defining some auxiliary maps for each natural number n ≤ m. They will in fact
be continuous families of maps, defined for each s ∈ [ 12 , 1]. The parameter s will
show that µ is an h-equivalence.

First we define the map

φn+ : Dn ∩ Rn+ −→ As ∪ s · Sn−1
+

from the upper half of the disk Dn to the union of the equatorial annulus

As = Dn−1 − s ·Dn−1 = {(x, 0) ∈ Rn : s ≤ |x| ≤ 1}

and the upper hemisphere

s · Sn−1
+ = {(x, t) ∈ Rn : t ≥ 0 and |(x, t)| = s}

to be the projection from the south pole −en. Similarly, we define

φn− : Dn ∩ Rn− −→ As ∪ s · Sn−1
−

to be the projection from the north pole en. The map φn+ is drawn schematically
in the following picture. Each point in the upper half of the larger disk lies on a
unique ray from −en. The map φn+ sends it to the intersection of that ray with
As ∪ s · Sn−1; two such points of intersection are marked with dots in the picture.

%%%%%%%%%%%%%%%

•7777777777777

• s·Dn

−en
Dn

Next we use the maps φn± to define a continuous family of maps fns : Dn −→ Dn

for s ∈ [ 12 , 1] by induction on n. We let f0
s : D0 −→ D0 be the unique map and we

define f1
s : D1 −→ D1 by

f1
s (t) =


t/s if |t| ≤ s,
1 if t ≥ s,
−1 if t ≤ −s;
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it maps [−s, s] homeomorphically to [−1, 1]. We define fns : Dn −→ Dn by

fns (x, t) =



s−1 · (x, t) if |(x, t)| ≤ s,
s−1 · φn+(x, t) if |(x, t)| ≥ s, t ≥ 0 and |φn+(x, t)| = s,

fn−1
s (φn+(x, t)) if |(x, t)| ≥ s, t ≥ 0 and |φn+(x, t)| ≥ s,
s−1 · φn−(x, t) if |(x, t)| ≥ s, t ≤ 0 and |φn−(x, t)| = s,

fn−1
s (φn−(x, t)) if |(x, t)| ≥ s, t ≤ 0 and |φn−(x, t)| ≥ s.

The map fns is drawn in the following picture. The smaller ball s ·Dn is mapped
homeomorphically to Dn by radial expansion from the origin. Next comes the
region in the upper half of the larger ball that is inside the cone and outside the
smaller ball. Each segment of a ray from the south pole −en that lies in that region
is mapped to a point which is determined by where we mapped the intersection of
that ray-segment with the smaller ball (which was radially from the origin to the
boundary of Dn). Third is the region in the upper half of the larger ball that is
outside the cone. Each segment of a ray from the south pole −en that lies in that
region is first projected to the annulus in the equatorial plane of the two balls; we
then apply the previously defined map fn−1

s to map the projected points to the
equator of Dn. The lower half of the ball is mapped similarly.

//
//

//
//

//
//

//
//

//
//

// ����������������������

sDn

−en
Dn

It is clear that fns gives a homotopy from fn1/2 to the identity and, given any disk
(Dn, q) in K /B, the map fns induces an h-equivalence from the f -disk (Dn, q◦fn1/2)
to the disk (Dn, q).

Finally we define the required cell structure on the domain of the desired map
µ : (Sm, q̄) −→ (Sm, q). For each n ≤ m, the boundary sphere (Sn, q ◦ fn+1

1/2 |S
n) is

constructed from two copies of the f -disk (Dn, q ◦ fn1/2) by gluing them along their
boundary. The inclusions (Dn, q ◦ fn1/2) −→ (Sn, q ◦ fn+1

1/2 |S
n) of the two cells are

given by projecting Dn to the upper hemisphere from the south pole −en+1 and,
similarly, by projecting Dn to the lower hemisphere from the north pole en+1. The
map

µ = fm+1
1/2 |S

m : (Sm, q ◦ fm+1
1/2 |S

m) −→ (Sm, q).

is then the required f -cell sphere approximation. �

Proof of Lemma 6.3.2. Define νs : Dn −→ Dn for s ∈ [ 12 , 1] by

νs(x, t) =


s−1 · (x, t) if |(x, t)| ≤ s,
|(x, t)|−1 · (x, t) if |(x, t)| ≥ s, t ≥ 0 and |x| ≥ s,
s−1 · φn+1

− (x, t) if |(x, t)| ≥ s, t ≤ 0 and |φn+1
− (x, t)| = s,

|φn+1
− (x, t)|−1 · φn+1

− (x, t) if |(x, t)| ≥ s, t ≤ 0 and |φn+1
− (x, t)| ≥ s,
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where φn− is the projection as in the previous proof. Then νs maps s · Dn home-
omorphically to Dn, it is radially constant on the region in the upper half space
between the disks Dn and s · Dn with respect to projection from the origin, and
it is radially constant on the region in the lower half space between the two disks
with respect to projection from the north pole. �

6.4. The compatibility condition for the qf-model structure

This section is devoted to the proof that K /B is a compactly generated topo-
logical model category. Since our generating sets IfB and JfB certainly satisfy con-
ditions (i) and (iii) of Theorem 5.5.1, it only remains to verify the compatibility
condition (ii) and the �-product condition (iv).

For the first, we must show that a map has the RLP with respect to IfB if and
only if it is a q-equivalence and has the RLP with respect to JfB . Thus suppose that
p : E −→ Y has the RLP with respect to IfB . Since all maps in JfB are relative IfB-
cell complexes, p has the RLP with respect to JfB . To show that πn(p) is injective,
let α : Sn −→ E represent an element in πn(E) such that p ◦ α : Sn −→ Y is null-
homotopic. Then there is a nullhomotopy β : CSn −→ Y that gives rise to a lifting
problem

Sn
α //

i

��

E

p

��
Dn+1

ν
// Dn+1 ∼= CSn

β
// Y

where ν : Dn+1 −→ Dn+1 is defined by

ν(x) =

{
2x if |x| ≤ 1

2 ,

|x|−1 · x if |x| ≥ 1
2 .

Then i is an f -disk and we are entitled to a lift, which can be viewed as a nullho-
motopy of α after we identify Dn+1 with CSn.

To show that πn(p) is surjective, choose a representative α : Sn −→ Y of an
element in πn(Y ). The projection of Y induces a projection q : Sn −→ B and by
Lemma 6.3.1 there is an h-equivalence µ : (Sn, q̄) −→ (Sn, q) such that (Sn, q̄) is
an IfB-complex with two cells in each dimension. We may therefore assume that
the source of α is an IfB-cell complex. Inductively, we can then solve the lifting
problems for the diagrams

Sk−1 //

�� !!D
DD

DD
DD

D E

p

��
Sk± i±

// Sk
α|Sk

// Y,

where Sk−1 −→ Sk is the inclusion of the equator and i± : Sk± −→ Sk are the
inclusions of the upper and lower hemispheres. We obtain a lift Sn −→ E.

Conversely, suppose that p : E −→ Y is an acyclic qf -fibration. We must show
that p has the RLP with respect to any cell i in IfB . We are therefore faced with a
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lifting problem

Sn
α //

i

��

E

p

��
Dn+1

β
// Y.

Identifying Dn+1 with CSn we see that β gives a nullhomotopy of p ◦ α. Since
πn(p) is injective there is a nullhomotopy γ : CSn −→ E such that α = γ ◦ i, but
it may not cover β. Gluing β and p ◦ γ along p ◦ α gives δ : Sn+1 −→ Y such that
δ|Sn+1

+ = β and δ|Sn+1
− = p◦γ. Surjectivity of πn+1(p) gives a map ∆: Sn+1 −→ E

and a homotopy h : Sn+1 ∧ I+ −→ Y from p ◦∆ to δ. We now construct a diagram

Sn+1
+

��

//

j

{{ww
ww

ww
ww

w
Sn+1

+ ∪H
(−)/Sn

//

��

Sn+1 × 0 ∪ Sn+1
− × 1

∆∪γ //

��

E

p

��
Dn+2

ν
// Dn+2

ξ
// Dn+2

φ
// Sn+1 ∧ I+ h

// Y

where the downward maps, except p, are inclusions. Part of the bottom row of
the diagram is drawn schematically below. Let H be the region on Sn+1

− be-
tween the equator Sn and the circle through e1 and −en+2 with center on the
line R · (e1 − en+2). Let ξ be a homeomorphism whose restriction to Sn+1

+ maps it
homeomorphically to Sn+1

+ ∪H. Define φ : Dn+2 −→ Dn+2/Sn ∼= Sn+1 ∧ I+ as the
composite of the quotient map that identifies the equator Sn of Dn+2 to a point
and a homeomorphism that maps the upper hemisphere Sn+1

+ to Sn+1×0, maps H
to Sn+1

− × 1, and is such that (h ◦ φ ◦ ξ)|Sn+1
− = β. The map ν is defined as above.

Dn+2

p◦γ

β

p◦∆

p◦α ξ−→

Dn+2

p◦γ
β

p◦∆

p◦αH

φ−→

Sn+1 ∧ I+

p◦γ

β
p◦∆

p◦α

Since the restriction Sn −→ Sn+1
−
∼= Dn+1 of j agrees with the f -cofibration i in

our original lifting problem, we see that j is a JfB-cell. Since p is a qf -fibration
we get a lift in the outer trapezoid. Denote its restriction to Sn+1

−
∼= Dn+1 by

k : Dn+1 −→ E. Then k solves our original lifting problem.
Turning to the �-product condition, Theorem 5.5.1(iv), let i : X −→ Y be a

map in K /B and j : K −→ L be a map in K . We must show that if i is in IfB and j
is in I, then i�j is in IfB . If we were working with the q-model structure, this would
be evident from the fact that a product of cell-boundary pairs is homeomorphic to
a cell-boundary pair. In our situation, by the fiberwise NDR-pair characterization
of f -cofibrations and a standard argument for product pairs (for example, [121, p.
43]), the boundary inclusion i�j is an f -cofibration since i is an f -cofibration and j
is an h-cofibration. This gives that i�j is in IfB , as required, and it follows that the
�-product of a qf -cofibration in KB and a q-cofibration in K is a qf -cofibration.
Elaborating on this observation, we can show that if i is in JfB and j is in I or if i
is in IfB and j is in J , then i�j is in JfB . However, it is worth observing that we do
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not need such precision to conclude that the qf -model structure is topological. It is
simpler and more general to observe that i�j is a generating acyclic q-cofibration
if i ∈ IB and j ∈ J or i ∈ JB and j ∈ I, by inspection of cells exactly as in
the unparametrized context. Therefore the acyclicity condition required for the
q-model structure to be topological holds. The acyclicity condition required for the
qf -model structure to be topological is a special case.

6.5. The quasifibration and right properness properties

We have now established the qf -model structures on both K /B and KB . We
will derive the right properness of K /B, and therefore of KB , from the fact that
every qf -fibration is a quasifibration.

Proposition 6.5.1. If p : E −→ Y is a qf -fibration in K /B, then p is a quasi-
fibration. Therefore, for any choice of e ∈ E, there results a long exact sequence of
homotopy groups

· · · −→ πn+1(Y, y) −→ πn(Ey, e) −→ πn(E, e) −→ πn(Y, y) −→ · · · −→ π0(Y, y),

where y = p(e) and Ey = p−1(y).

Proof. We must prove that p induces an isomorphism

πn(p) : πn(E,Ey, e) −→ πn(Y, y)

for all n ≥ 1 and verify exactness at π0(E, e). We begin with the latter. Let e′ ∈ E
and suppose that p(e′) is in the component of y′. Let γ : I −→ Y be a path in
Y from p(e′) to y′ such that γ is constant at p(e′) for time t ≤ 1

2 . Let q be the
projection of Y . Then (I, q ◦ γ) is a relative f -disk, and we obtain a lift γ̄ : I −→ E
such that γ = p ◦ γ̄. But then e′ is in the same component as the endpoint of γ̄,
which lies in Ey.

Now assume that n ≥ 1. Recall that an element of πn(X,A, ∗) can be repre-
sented by a map of triples (Dn, Sn−1, Sn−1

+ ) −→ (X,A, ∗). We begin by showing
surjectivity. Let α : (Dn, Sn−1) −→ (Y, y) represent an element of πn(Y, y). We can
view Dn as a disk over B, and Lemma 6.3.2 gives an approximation ν : Dn −→ Dn

by a relative f -disk. Then we can solve the lifting problem

Sn−1
+

��

ce // E

p

��
Dn

ᾱ

=={
{

{
{

{
α◦ν

// Y,

where the top map is the constant map at e ∈ E. A lift is a map of triples
ᾱ : (Dn, Sn−1, Sn−1

+ ) −→ (E,Ey, e) such that p∗([ᾱ]) = [α].
For injectivity, let α : (Dn, Sn−1, Sn−1

+ ) −→ (E,Ey, e) represent an element of
πn(E,Ey, e) such that p∗([α]) = 0. Then there is a homotopy h : Dn × I −→ Y rel
Sn−1 such that h|Dn× 0 = p ◦α and h maps the rest of the boundary of Dn× I to
y. Let A = Dn × {0, 1} ∪ Sn−1

+ × I ⊂ ∂(Dn × I) and define β : A −→ E by setting
β(x) = α(x) if x ∈ Dn×0 and β(x) = e otherwise. We then have a homeomorphism
of pairs φ : (Dn × I, A) −→ (Dn+1, Sn+) and an approximation ν : Dn+1 −→ Dn+1
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by an f -disk by Lemma 6.3.2. We can now solve the lifting problem

Sn+

��

β◦(φ|A)−1

// E

��
Dn+1

ᾱ

==z
z

z
z

z

h◦φ−1◦ν
// Y,

and this shows that [α] = 0 in πn(E,Ey, e). �

Corollary 6.5.2. The qf -model structure on K /B is right proper.

Proof. Since qf -fibrations are preserved under pullbacks, this is a five lemma
comparison of long exact sequences as in Proposition 6.5.1. �



CHAPTER 7

Equivariant qf-type model structures

Introduction

We return to the equivariant context in this chapter, letting G be a Lie group
throughout. Actually, our definitions of the q and qf -model structures work for
arbitrary topological groups G, but we must restrict to Lie groups to obtain struc-
tures that are G-topological and behave well with respect to change of groups and
smash products. A discussion of details special to the non-compact Lie case is given
in §7.1, which describes the role played by the family G of compact subgroups of
a Lie group G, but after that the generalization from compact to non-compact Lie
groups requires no extra work. However, we alert the reader that passage to stable
equivariant homotopy theory raises new problems in the case of non-compact Lie
groups that will not be dealt with in this book; see §11.6.

The equivariant q-model structure on GKB is just the evident over and under q-
model structure. However, the equivariant generalization of the qf -model structure
is subtle. In fact, the subtlety is already relevant nonequivariantly when we study
base change along the projection of a bundle. The problem is that there are so few
generating qf -cofibrations that many functors that take generating q-cofibrations
to q-cofibrations do not take generating qf -cofibrations to qf -cofibrations. We show
how to get around this in §7.2. For each such functor that we encounter, we find
an enlargement of the obvious sets of (acyclic) generating qf -cofibrations on the
target of the functor so that it is still a model category, but now the functor does
send generating (acyclic) qf -cofibrations to (acyclic) qf -cofibrations.

The point is that there are many different useful choices of Quillen equiva-
lent qf -type model structures, and they can be used in tandem. For all of our
choices, the weak equivalences are the G -equivalences and all cofibrations are both
q-cofibrations and f -cofibrations. Given a finite number of adjoint pairs with com-
posable left adjoints such that each is a Quillen adjunction with its own choice
of qf -type model structure, we can successively expand generating sets in target
categories of the left adjoints to arrange that the composite be one of Quillen left
adjoints with respect to well chosen qf -type model structures.

In §7.2, we describe the qf(C )-model structure associated to a “generating set”
C of G -complexes. Each such model structure is G-topological. In §7.3, we show
that external smash products are Quillen adjunctions when C is a “closed” gener-
ating set, as can always be arranged, and we show that all base change adjunctions
(f!, f∗) are Quillen adjunctions. We show further that there are generating sets for
which (f∗, f∗) is a Quillen adjunction when f is a bundle with cellular fibers. In
§7.4, we show similarly that various change of group functors are given by Quillen
adjunctions when the generating sets are well chosen. In §7.5, we show that HoGKB

has the properties required for application of the Brown representability theorem.

109
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Those adjunctions between our basic functors that are not given by Quillen adjoint
pairs in any choice of qf -model structure are studied in Chapter 9.

We let [X,Y ]G,B denote the set of maps X −→ Y in HoGKB . The reader
wishing to focus on the nonequivariant theory should skip §§7.1, 7.2, and 7.4 on a
first reading; §§7.3 and 7.5 work the same way equivariantly and nonequivariantly
and, except for some use of the generalized qf -model structures of §7.2, are largely
independent of the other sections.

7.1. Families and non-compact Lie groups

There are several sources of problems in the equivariant homotopy theory of
general topological groups G. Two key examples are that we only know that orbit
types G/K are H-CW complexes for H ⊂ G when G is a Lie group and K is a
compact subgroup, and we only know that a product of orbits G/H × G/K is a
G-CW complex when G is a Lie group and either H or K is a compact subgroup.
This motivates us to restrict to Lie groups, for which these conclusions are ensured
by Theorem 3.4.2 and Lemma 3.4.3.

The compactness requirements force us to restrict orbit types when we prove
properties of our model structures, and the family G of all compact subgroups of
our Lie group G plays an important role. We recall the relevant definitions, which
apply to any topological group G and are familiar and important in a variety of
contexts. They provide a context that allows us to work with non-compact Lie
groups with no more technical work than is required for compact Lie groups.

A family F in G is a set of subgroups that is closed under passage to subgroups
and conjugates. An F -space is a G-space all of whose isotropy groups are in F .
An F -equivalence is a G-map f such that fH is a weak equivalence for all H ∈ F .
If X is an F -space, then the only non-empty fixed point sets XH are those for
groups H ∈ F . In particular, an F -equivalence between F -spaces is the same as
a q-equivalence. For based G-spaces, the definition of an F -space must be altered
to require that all isotropy groups except that of the G-fixed base point must be in
F . The notion of an F -equivalence remains unchanged.

A map in GK /B or GKB is an F -equivalence if its map of total G-spaces
is an F -equivalence. If B is an F -space, then so is any G-space X over B and
any fiber Xb. The only orbits that can then appear in our parametrized theory are
of the form G/H with H ∈ F and the only non-empty fixed point sets XH are
those for groups H ∈ F . In particular, H must be subconjugate to some Gb. An
F -equivalence of G-spaces over an F -space B is the same as a q-equivalence.

It is well-known that equivariant q-type model structures generalize naturally
to families. One takes the weak equivalences to be the F -equivalences, and one
restricts the orbits G/H that appear as factors in the generating (acyclic) cofibra-
tions to be those such that H ∈ F . The resulting cell complexes are called F -cell
complexes. Restricting tensors from G-spaces to F -spaces, we obtain a restriction
of the notion of a G-topological model category to an F -topological model category
that applies here; see Remark 10.3.5.

Proper G-spaces are particularly well-behaved G -spaces, and G -cell complexes
are proper G-spaces. Restricting base G-spaces to be proper, or more generally to
be G -spaces, has the effect of restricting all relevant orbit types G/H to ones where
H is compact. However, this is too restrictive for some purposes. For example,
we are interested in developing nonparametrized equivariant homotopy theory for
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non–compact Lie groups G. Here B = ∗ is a G-space which, in the unbased sense,
is not a G -space.

We therefore do not make the blanket assumption that B is a G -space. We
give the q-model structure in complete generality, in Theorem 7.2.3, but after that
we restrict to G -model structures throughout. That is, our weak equivalences will
be the G -equivalences. This ensures that, after cofibrant approximation, our total
G-spaces are G -spaces. This convention enables us to arrange that all of our model
categories are G-topological. Everything in this chapter applies more generally to
the study of parametrized F -homotopy theory for any family F ; see Remark 7.2.14.

The reader may prefer to think in terms of either the case when B = ∗ or the
case when B is proper. Indeed, in order to resolve the problems intrinsic to the
parametrized context that are described in the Prologue, which we do in Chapter
9, it seems essential that we restrict to proper actions on base spaces. The reason
is that Stasheff’s Theorem 3.5.2 relating the equivariant homotopy types of fibers
and total spaces plays a fundamental role in the solution. Alternatively, the reader
may prefer to focus just on compact Lie groups, reading q-equivalence instead of
G -equivalence and G-space instead of G -space throughout.

7.2. The equivariant q and qf-model structures

Recall from Definition 4.5.10 that the sets I and J of generating cofibrations
and generating acyclic cofibrations of G-spaces are defined as the sets of all maps
of the form G/H × i, where i is in the corresponding set I or J of maps of spaces.

Definition 7.2.1. Starting from the sets I and J of maps of G-spaces, define
sets IB and JB of maps of ex-G-spaces over B in exactly the same way that their
nonequivariant counterparts were defined in terms of the sets I and J of maps of
spaces in Definition 6.1.1. Note that if B is a G -space, then only orbits G/H with
H compact appear in the sets IB and JB .

Taking Y = B in the usual composite adjunction

(7.2.2) GK (G/H × T, Y ) ∼= HK (T, Y ) ∼= K (T, Y H)

for non-equivariant spaces T and G-spaces Y , we can translate back and forth
between equivariant homotopy groups and cells for G-spaces over B on the one hand
and nonequivariant homotopy groups and cells for spaces over BH on the other.
Maps in each of the equivariant sets specified in Definition 7.2.1 correspond by
adjunction to maps in the nonequivariant set with the same name. Systematically
using this translation, it is easy to use Theorem 4.5.6 to generalize the q-model
structures on K /B and KB to corresponding model structures on GK /B and
GKB . We obtain the following theorem.

Theorem 7.2.3 (q-model structure). The categories GK /B and GKB are
compactly generated proper G -topological model categories whose q-equivalences, q-
fibrations, and q-cofibrations are the maps whose underlying maps of total G-spaces
are q-equivalences, q-fibrations, and q-cofibrations. The sets IB and JB are the
generating q-cofibrations and generating acyclic q-cofibrations, and all q-cofibrations
are h̄-cofibrations. If B is a G -space, then the model structure is G-topological.

To show that the q-model structures are G -topological, and G-topological if B
is a G -space, we must inspect the maps i�j in GK /B, where i is a generating
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q-cofibration in GK /B and j is a generating cofibration in GK . They can be
written in the form

i�j : G/H ×G/K × ∂(Dm ×Dn) −→ G/H ×G/K ×Dm ×Dn,

where i�j is the product of the identity map of G/H × G/K with the inclusion
of the boundary of Dm ×Dn. By Lemma 3.4.3, G/H ×G/K is a proper G-space
if H or K is compact. Since we are assuming that G is a Lie group, we can then
triangulate G/H × G/K as a G -CW complex and use the triangulation to write
i�j as a relative IB-cell complex. The case when either i or j is acyclic works in
the same way. As explained in Warning 6.1.7, there is no problem with projection
maps in this external context. Moreover, if i and j are f -cofibrations, then so is
i�j, as we see from the fiberwise NDR pair characterization.

One might be tempted to generalize the qf -model structure to the equivariant
context in exactly the same way as we just did for the q-model structure. This
certainly works to give a model structure. However, there is no reason to think
that it is either G or G -topological. The problem is that we need i�j above to be a
qf -cofibration when i is a generating qf -cofibration, and triangulations into f -cells
are hard to come by. Therefore the G-CW structure on G/H × G/K will rarely
produce a relative IfB-cell complex. This means that we must be careful when
selecting the generating (acyclic) qf -cofibrations if we want the resulting model
structure to be G-topological. We will build the solution into our definition of
qf -type model structures, but we need a few preliminaries.

We shall make repeated use of the adjunction

(7.2.4) GK (C × T, Y ) ∼= K (T,MapG(C, Y ))

for non-equivariant spaces T and G-spaces C and Y . This is a generalization of
(7.2.2). Taking Y = B, we note in particular that it gives a correspondence between
maps f : T −→ T ′ over MapG(C,B) and G-maps id× f : C ×T −→ C ×T ′ over B.

Lemma 7.2.5. For a G -cell complex C, the functor MapG(C,−) : GK −→ K
preserves q-equivalences.

Proof. The functor Map(C,−) is a Quillen right adjoint since the q-model
structure on GK is G -topological. The G-fixed point functor is also a Quillen
right adjoint, for example by Proposition 7.4.3 below. The composite MapG(C,−)
therefore preserves q-equivalences between q-fibrant G-spaces. However, every G-
space is q-fibrant. �

Observe that Lemma 3.4.3 gives that the collection of G -cell complexes is closed
under products with arbitrary orbits G/H of G.

Definition 7.2.6. Let OG denote the set of all orbits G/H of G. Any set C
of G -cell complexes in GK that contains all orbits G/K with K ∈ G and is closed
under products with arbitrary orbits in OG is called a generating set. It is a closed
generating set if it is closed under finite products. The closure of a generating set
C is the generating set consisting of the finite products of the G -cell complexes in
C . We define sets of generating qf(C )-cofibrations and acyclic qf(C )-cofibrations
in GK /B associated to any generating set C as follows.

(i) Let IfB(C ) consist of the maps

(id× i)(d) : C × Sn−1 −→ C ×Dn
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such that C ∈ C , d : C ×Dn −→ B is a G-map, i is the boundary inclusion,
and the corresponding map ı̃ over MapG(C,B) is a generating qf -cofibration
in K /MapG(C,B); that is, ı̃ must be an f -cofibration.

(ii) Similarly let JfB(C ) consist of the maps

(id× i)(d) : C × Sn+ −→ C ×Dn+1

such that C ∈ C , d : C ×Dn+1 −→ B is a G-map, i is the inclusion, and the
corresponding map ı̃ over MapG(C,B) is a generating acyclic qf -cofibration
in K /MapG(C,B).

Adjoining disjoint sections to these maps, we obtain the corresponding sets IfB(C )
and JfB(C ) in GKB .

Fix a generating set C . We define a qf -type model structure based on C ,
called the qf(C )-model structure. Its weak equivalences are the G -equivalences,
which are the same as the q-equivalences when B is a G -space. We define the
qf(C )-fibrations.

Definition 7.2.7. A map f in GK /B is a qf(C )-fibration if MapG(C, f) is
a qf -fibration in K /MapG(C,B) for all C ∈ C . A map in GKB is a qf(C )-
fibration if the underlying map in GK /B is one. In either category, a map f is a
G -quasifibration if fH is a quasifibration for H ∈ G .

Theorem 7.2.8 (qf -model structure). For any generating set C , the categories
GK /B and GKB are well-grounded (hence G-topological) model categories. The
weak equivalences and fibrations are the G -equivalences and the qf(C )-fibrations.
The sets IfB(C ) and JfB(C ) are the generating qf(C )-cofibrations and the generating
acyclic qf(C )-cofibrations. All qf(C )-cofibrations are both q-cofibrations and f̄-
cofibrations, and all qf(C )-fibrations are G -quasifibrations.

Proof. Recall from Proposition 5.4.9 that the q-equivalences in GK /B and
GKB are well-grounded with respect to the ground structure given in Defini-
tion 5.3.6 and Proposition 5.3.7. It follows that the G -equivalences are also well-
grounded. It suffices to verify conditions (i)–(iv) of Theorem 5.5.1. The acyclicity
condition (i) is inherited from the q-model structure.

Consider the compatibility condition (ii). By the adjunction (7.2.4), a map
f has the RLP with respect to IfB(C ) if and only if MapG(C, f) has the RLP
with respect to IfMapG(C,B) for all C ∈ C . By the compatibility condition for
the nonequivariant qf -model structure, that holds if and only if MapG(C, f) is a
q-equivalence and has the LLP with respect to JfMapG(C,B) for all C ∈ C . By
Lemma 7.2.5, MapG(C, f) is a q-equivalence if f is one. Conversely, if MapG(C, f)
is a q-equivalence for all C ∈ C , then the case C = G/K shows that fK is a q-
equivalence for every compact K and thus f is a G -equivalence. By the adjunction
again, we see that f has the RLP with respect to IfB(C ) if and only if f is a
G -equivalence which has the RLP with respect to JfB(C ).

The fiberwise NDR characterization of f̄ -cofibrations given in Lemma 5.2.4
shows that IfB(C ) and JfB(C ) consist of f̄ -cofibrations, as stipulated in (iii). More
precisely, if (u, h), u : Dn −→ I and h : Dn × I −→ Dn, represents (Dn, Sn−1) as a
fiberwise NDR-pair over MapG(C,B), then the map v = u◦π : C×Dn −→ Dn −→ I
and the homotopy given by the maps id×ht over B corresponding to the ht represent
(C ×Dn, C × Sn−1) as a fiberwise NDR pair over B.
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Since MapG(G/K, f) ∼= fK is a nonequivariant qf -fibration for any qf(C )-
fibration f , every qf(C )-fibration is a G -quasifibration by Proposition 6.5.1. That
the model structure is right proper follows as in Corollary 6.5.2.

Finally, we must verify the �-product condition (iv). The relevant maps i�j,

i : C × Sm−1 −→ C ×Dm and j : G/H × Sn−1 −→ G/H ×Dn,

are of the form

C ×G/H × k : C ×G/H × ∂(Dm ×Dn) −→ C ×G/H ×Dm ×Dn,

where k is the boundary inclusion. Now C × G/H ∈ C by the closure property
of the generating set, so we don’t need to triangulate. The projection of the tar-
get factors through the projection of the target C × Dm of i. To see that the
corresponding map k over MapG(C ×G/H,B) is an f̄ -cofibration, let (u, h) repre-
sent (Dm, Sm−1) as a fiberwise NDR-pair over MapG(C,B) and let (v, j) represent
(Dn, Sn−1) as an NDR-pair; we can think of the latter as a fiberwise NDR-pair
over ∗ = MapG(G/H, ∗). Then the usual product pair representation (for example,
[121, p. 43]) exhibits k as a fiberwise NDR over MapG(C,B)×MapG(G/H, ∗) and
thus, by the factorization of the projection of i�j, also over MapG(C ×G/H,B ×
∗). �

Theorem 7.2.9. If C ⊂ C ′ is an inclusion of generating sets, then the identity
functor is a left Quillen equivalence from GK /B with the qf(C )-model structure
to GK /B with the qf(C ′)-model structure. The identity functor is also a left
Quillen equivalence from GK /B with the qf(C )-model structure to GK /B with
the q-model structure. Both statements also hold for the identity functor on GKB.

Proof. The first statement is obvious. For the second, if idC×i is a generating
qf(C )-cofibration, then C is a G -cell complex and we can use the triangulation to
write idC × i as a relative IB-cell complex. �

Theorem 7.2.10. For any C , the identity functor is a left Quillen adjoint
from GK /B with the qf(C )-model structure to GK /B with the f-model structure.
Therefore, the identity functor is a left Quillen adjoint from GKB with the qf(C )-
model structure to GKB with the f-model structure.

Remark 7.2.11. The smallest generating set C is the set of all (non-empty)
finite products of orbits G/H of G such that at least one of the factors has H
compact. Clearly it is a closed generating set. Henceforward, by the qf -model
structure, we mean the qf(C )-model structure associated to this choice of C . In
the nonequivariant case, this is the qf -model structure of the previous chapter.

Remark 7.2.12. In the nonparametrized setting, the G -model structure associ-
ated to the q-model structure and the qf(C )-model structures on GK = GK /∗ co-
incide, and similarly for GK∗. This holds since the f -cofibrations and h-cofibrations
over a point coincide and since the C ∈ C for any choice of C are G -cell complexes.
Of course, the qf(C )-model structures have more generating (acyclic) cofibrations.

Remark 7.2.13. It might be useful to combine the various qf(C )-model struc-
tures by taking the union of the qf(C )-cofibrations over some suitable collection
of generating sets C and so obtain a “closure” of the qf -model structure whose
cofibrations are as close as possible to being the intersection of the q-cofibrations
with the f̄ -cofibrations. We do not know whether or not that can be done.
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Remark 7.2.14. As noted in the introduction, we can generalize the q and
qf(C )-model structures to the context of families F . We generalize the q-model
structure to the F -model structure by taking the F -equivalences and F -fibrations
and by restricting the sets IB and JB to be constructed from orbits G/H with
H ∈ F . The resulting model structure will then be (F ∩ G )-topological and F -
topological if the base space B is a G -space.

To generalize the qf(C ) model structure, we take the weak equivalences to be
the F ∩ G -equivalences and we require the generating set C to consist of F ∩ G -
cell complexes, to contain the orbits G/K for K ∈ F ∩ G , and to be closed under
products with orbits G/K where K ∈ F . With that modification, everything else
above goes through unchanged.

7.3. External smash product and base change adjunctions

The following results relate the q and qf(C )-model structures to smash prod-
ucts and base change functors and show that various of our adjunctions are given by
Quillen adjoint pairs and therefore induce adjunctions on passage to homotopy cat-
egories. For uniformity, since we are not assuming that our base G-space is proper,
we must understand the q-model structure to mean the associated G -model struc-
ture, although many of the results do apply to the full q-model structure. Those
results that refer to q-equivalences by name work equally well for G -equivalences.

Most of the results in this section and the next apply both to the q-model
structure and to the qf(C )-model structure for any generating set C . We agree to
omit the q or qf(C ) from the notations in those cases. In the remaining cases, we
will have to restrict to well chosen generating sets C . Here the idea is to expand
the collection of generating cofibrations in the target category of a left adjoint F
to make it large enough that F takes generating (acyclic) cofibrations to (acyclic)
cofibrations and is therefore a Quillen left adjoint.

With these conventions, our first result is clear from the fact that our model
structures are G-topological.

Proposition 7.3.1. For a based G-CW complex K, the functor (−) ∧B K
preserves cofibrations and acyclic cofibrations, hence the functor FB(K,−) preserves
fibrations and acyclic fibrations. Thus ((−) ∧B K,FB(K,−)) is a Quillen adjoint
pair of endofunctors of GKB.

For the rest of our results, recall from Lemma 5.4.7 that a left adjoint that
takes generating acyclic cofibrations to acyclic cofibrations preserves acyclic cofi-
brations. The following two results apply to the qf(C )-model structure for any
closed generating set C .

Proposition 7.3.2. If i : X −→ Y and j : W −→ Z are cofibrations over base
G-spaces A and B, then

i�j : (Y ZW ) ∪XZW (X Z Z) −→ Y Z Z

is a cofibration over A×B which is acyclic if either i or j is acyclic.

Proof. It suffices to inspect i�j for generating (acyclic) cofibrations as was
done for the case A = ∗ in the proof of Theorem 7.2.8. For generating cofibrations,
the argument there generalizes without change to this setting. The assumption that
C is closed avoids the need for triangulations here. For the acyclicity, it suffices
to work in the q-model structure, for which the conclusion is both more general
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and easier to prove. There it is easily checked using triangulations of products of
G -cell complexes, that if i is a generating cofibration and j is a generating acyclic
cofibration, then i�j is an acyclic cofibration. �

Of course, by Warning 6.1.7, the analogue for internal smash products fails.
Taking W = ∗B and changing notations, we obtain the following special case.

Corollary 7.3.3. Let Y be a cofibrant ex-space over B. Then the functor
(−) Z Y from ex-spaces over A to ex-spaces over A× B preserves cofibrations and
acyclic cofibrations, hence the functor F̄ (Y,−) from ex-spaces over A × B to ex-
spaces over A preserves fibrations and acyclic fibrations. Thus ((−) Z Y, F̄ (Y,−))
is a Quillen adjoint pair of functors between GKA and GKA×B.

The next two results apply to the qf(C )-model structures for any C , provided
that we use the same generating set C for both GKA and GKB .

Proposition 7.3.4. Let f : A −→ B be a G-map. Then the functor f! preserves
cofibrations and acyclic cofibrations, hence (f!, f∗) is a Quillen adjoint pair. The
functor f! also preserves q-equivalences between well-sectioned ex-spaces. If f is a
q-fibration, then the functor f∗ preserves all q-equivalences.

Proof. If (D, p) is a space over A, then f!((D, p) q A) = (D, f ◦ p) q B.
Therefore f! takes generating (acyclic) q-cofibrations over A to such maps over B.
If (u, h) represents (Dn, Sn−1) as a fiberwise NDR-pair over MapG(C,A), then,
after composing the projection maps with MapG(C,A) −→ MapG(C,B), it also
represents (Dn, Sn−1) as a fiberwise NDR-pair over MapG(C,B). It follows that
f! also preserves the generating (acyclic) qf -cofibrations. Recall that the well-
sectioned ex-spaces are those that are f̄ -cofibrant and that f -cofibrations are h-
cofibrations. Since f!X is defined by a pushout in GK , the gluing lemma in GK
implies that f! preserves q-equivalences between well-sectioned ex-spaces.

If f is a q-fibration and k : Y −→ Z is a q-equivalence of ex-spaces over B,
consider the diagram

f∗Z //

��
��

����
��
��
�

Z

		��
��
��
��
��
��

f∗Y

f∗k 66mmmmmmmm

��6
66

66
66

6
// Y

k
77ooooooooo

��3
33

33
33

3

A
f

// B.

The relation (A ×B Z) ×Z Y ∼= A ×B Y shows that the top square is a pullback,
and the pullback f∗Z −→ Z of f is a q-fibration. Since the q-model structure on
the category of G-spaces is right proper, it follows that f∗k is a q-equivalence. �

Proposition 7.3.5. If f : A −→ B is a q-equivalence, then (f!, f∗) is a Quillen
equivalence.

Proof. The conclusion holds if and only if the induced adjunction on homo-
topy categories is an adjoint equivalence [75, 1.3.3], so it suffices to verify the usual
defining condition for a Quillen adjunction in either model structure. The condition
for the other model structure follows formally. We choose the q-model structure.
Let X be a q-cofibrant ex-space over A and Y be a q-fibrant ex-space over B, so
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that A −→ X is a q-cofibration and Y −→ B is a q-fibration of G-spaces. Since the
model structure on the category of G-spaces is left and right proper, inspection of
the defining diagrams in Definition 2.1.1 shows that the canonical maps X −→ f!X
and f∗Y −→ Y of total spaces are q-equivalences. For an ex-map k : f!X −→ Y
with adjoint k̃ : X −→ f∗Y , the commutative diagram

X //

k̃
��

f!X

k

��
f∗Y // Y

of total spaces then implies that k is a q-equivalence if and only if k̃ is a q-
equivalence. �

In view of Counterexample 0.0.1, we can at best expect only a partial and
restricted analogue of Proposition 7.3.4 for (f∗, f∗). We first give a result for the
q-model structure and then show how to obtain the analogue for the qf(C )-model
structures using well chosen generating sets C .

Proposition 7.3.6. Let f : A −→ B be a G-bundle such that B is a G -space
and each fiber Ab is a Gb-cell complex. Then (f∗, f∗) is a Quillen adjoint pair with
respect to the q-model structures. Moreover, if the total space of an ex-G-space Y
over B is a G -cell complex, then so is the total space of f∗Y .

Proof. Since f is a q-fibration, f∗ preserves q-equivalences. It therefore suf-
fices to show that f∗ takes generating cofibrations in IB to relative IA-cell com-
plexes. Observe first that if φ : G/H −→ B is a G-map with φ(eH) = b, then
H ⊂ Gb and the pullback G-bundle φ∗f : f∗(G/H, φ) −→ G/H of f along φ is
G-homeomorphic to G ×H Ab −→ G/H. We can triangulate orbits in a Gb-cell
decomposition of Ab as H-CW complexes, by Theorem 3.4.2, and so give Ab the
structure of an H-cell complex. Then G×H Ab has an induced structure of a G -cell
complex and thus so does f∗(G/H, φ).

For a space d : E −→ B over B with associated ex-space EqB over B, we have
f∗(E q B) = f∗E q A. Let E = G/H × Dn and let i : G/H −→ G/H × Dn be
the inclusion i(gH) = (gH, 0). The composite d ◦ i is a map φ as above. Since the
identity map on G/H × Dn is homotopic to the composite i ◦ π : G/H × Dn −→
G/H ×Dn, where π is the projection, the pullback G-bundle d∗f : f∗(E, d) −→ E
is equivalent to the pullback bundle (φ ◦ π)∗f : f∗(E, φ ◦ π) −→ E. But the latter
is the product of φ∗f : f∗(G/H, φ) −→ G/H and the identity map of Dn as we see
from the following composite of pullbacks

f∗(G/H ×Dn, φ ◦ π) //

(φ◦π)∗f

��

f∗(G/H, φ) //

φ∗f

��

f∗(G/H ×Dn, d) //

d∗f

��

A

f

��
G/H ×Dn

π
// G/H

i
// G/H ×Dn

d
// B.

The G -cell structure on f∗(G/H, φ) gives a canonical decomposition of the inclusion
f∗(G/H, φ) × Sn−1 −→ f∗(G/H, φ) × Dn as a relative G -cell complex. The last
statement follows by applying this analysis inductively to the cells of Y . �

The previous result fails for the qf -model structure. In fact, it already fails
nonequivariantly for the unique map r : A −→ ∗, where A is a cell complex. The
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proof breaks down when we try to use a cell decomposition of A (the fiber over ∗) to
decompose cells A×Sn−1 −→ A×Dn overA as relative IfA-cell complexes. Similarly,
the equivariant proof above breaks down when we try to use the G-cell structure
of f∗(G/H, φ) to obtain a relative IfA-cell complex. Note, however, that there
is no problem when the fibers are homogeneous spaces G/H; the nonequivariant
analogue is just the trivial case when f is a homeomorphism, but principal bundles
and projections G/H × B −→ B give interesting equivariant examples. For the
general equivariant case, we choose a closed generating set C (f) that depends on
the G-bundle f and a given closed generating set C . Using the qf(C (f))-model
structures on GKA and GKB , we then recover the Quillen adjunction.

Construction 7.3.7. Let f : A −→ B be a G-bundle such that B is a G -space
and each fiber Ab is a Gb-cell complex and let C be a closed generating set. We
construct the set C (f) inductively. Let C (f)0 = C and suppose that we have
constructed a set C (f)n of G -cell complexes in GK that is closed under both finite
products and products with arbitrary orbits G/H of G. Let

An = {f∗(C, φ) | C ∈ C (f)n and φ ∈ GK (C,B)}.

Then let C (f)n+1 consist of all finite products of spaces in C (f)n ∪An. Note that
C (f)n+1 contains C (f)n and that the f∗(C, φ) are G -cell complexes by the last
statement of Proposition 7.3.6. Finally, let C (f) =

⋃
C (f)n. Clearly C (f) ⊃ C

is a closed generating set that contains f∗(C, φ) for all C ∈ C (f) and all G-maps
φ : C −→ B.

Proposition 7.3.8. Let f : A −→ B be a G-bundle such that B is a G -space
and all fibers Ab are Gb-cell complexes. Then (f∗, f∗) is a Quillen adjoint pair with
respect to the qf(C (f))-model structures on GKA and the qf(C )-model structure
on GKB.

Proof. Reexamining the proof of Proposition 7.3.6, but starting with a map
d : E = C ×Dn −→ B where C ∈ C (f), we see that

f∗E ∼= f∗(C, φ)×Dn

where φ = d ◦ i. Since f∗(C, φ) is a G -cell complex in C (f), it remains only
to show that f∗(C, φ) × Sn−1 −→ f∗(C, φ) × Dn is an f -cofibration. Let (u, h)
represent (Dn, Sn−1) as a fiberwise NDR-pair over MapG(C,B). Applying f∗

to the corresponding maps ht : C × Dn −→ C × Dn over B, we obtain maps
f∗ht : f∗E −→ f∗E over A. Under the displayed isomorphism, these maps give
a homotopy f∗h : Dn × I −→ Dn that, together with u, represents (Dn, Sn−1) as
a fiberwise NDR-pair over MapG(f∗(C, φ), A). �

The following important corollary should be compared with Warning 6.2.9.

Corollary 7.3.9. If B is a G-cell complex, then (r∗, r∗) is a Quillen adjoint
pair with respect to the qf(C (r))-model structure on GKB and the q-model structure
on GK∗.

7.4. Change of group adjunctions

We consider change of groups in the q and the qf -model structures, starting
with the former. The context of the following results is given in §2.3 and §2.4.
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Proposition 7.4.1. Let θ : G −→ G′ be a homomorphism of Lie groups. The
restriction of action functor

θ∗ : G′KB −→ GKθ∗B

preserves q-equivalences and q-fibrations. If B is a G ′-space, then it also preserves
q-cofibrations.

Proof. Since (θ∗A)H = Aθ(H) for any subgroup H of G and a map f :
X −→ Y of G-spaces is a q-equivalence or q-fibration if and only if each fH is
a q-equivalence or q-fibration, it is clear that θ∗ preserves q-equivalences and q-
fibrations. To study q-cofibrations, recall that θ factors as the composite of a
quotient homomorphism, an isomorphism, and an inclusion. If θ is an inclusion
and H ′ is a compact subgroup of G′, then we can triangulate G′/H ′ as a G-CW
complex by Theorem 3.4.2. If θ is a quotient homomorphism with kernel N and H ′

is a subgroup of G′, then H ′ = H/N for a subgroup H of G and θ∗(G′/H ′) = G/H
so that no triangulations are required. Thus in both of these cases, θ∗ takes gener-
ating q-cofibrations to q-cofibrations. Since θ∗ is also a left adjoint in both cases,
it preserves q-cofibrations in general. �

Remark 7.4.2. We did not require θ∗B to be a G -space in Proposition 7.4.1.
However, if the kernel of θ is compact and B is a G ′-space, then θ∗B is a G -space.
Indeed, θ is then a proper map and Gb = θ−1(G′b) is compact since G′b is compact.
The restriction to compact kernels is the price we must pay in order to stay in
the context of compact isotropy groups. We might instead consider G′-spaces B
such that the isotropy groups of both B as a G′-space and θ∗B as a G-space are
compact, but the assumption on θ∗B would be unnatural. Note however that one
of the main reasons for restricting to compact isotropy groups is to obtain G-CW
structures. If X is a G′-CW complex where G′ = G/N is a quotient group of G,
then θ∗X is a G-CW complex with the same cells since the relevant orbits G′/H ′

can be identified with G/H, where H ′ = H/N .

For the qf -model structures, and to study adjunctions, it is convenient to con-
sider quotient homomorphisms and inclusions separately. For the former, we con-
sider the adjunctions of Proposition 2.4.1.

Proposition 7.4.3. Let ε : G −→ J be a quotient homomorphism of G by a
normal subgroup N . For a G-space B, consider the functors

(−)/N : GKB −→ JKB/N and (−)N : GKB −→ JKBN .

Let j : BN −→ B be the inclusion and p : B −→ B/N be the quotient map.
(i) ((−)/N, p∗ε∗) and (j!ε∗, (−)N ) are Quillen adjoint pairs with respect to the

q-model structures on both GKB and JKB/N .
Let CG and CJ be generating sets of G-cell complexes and J-cell complexes. Con-
sider GKB with the qf(CG)-model structure and JKB/N and JKBN with the
qf(CJ)-model structure.
(ii) ((−)/N, p∗ε∗) is a Quillen adjunction if C/N ∈ CJ for C ∈ CG.
(iii) (j!ε∗, (−)N ) is a Quillen adjunction if ε∗C ∈ CG for C ∈ CJ .

Proof. Since (j!, j∗) and (p!, p
∗) are Quillen adjoint pairs in both the q and

the qf contexts, it suffices to consider the case when N acts trivially on B, so
that j and p are identity maps. Then ε∗ is right adjoint to (−)/N and left adjoint
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to (−)N . The properties of ε∗ in the previous result give the conclusion for the
q-model structures. The functors ε∗ and (−)N preserve q-equivalences. Since

MapG(C, ε∗f ′) ∼= MapG(C/N, f ′) and MapJ(C ′, fN ) ∼= MapG(ε∗C ′, f)

for a J-map f ′ and a G-map f , the conditions on generating sets in (i) and (ii)
ensure that ε∗ and (−)N preserve the relevant qf -fibrations. �

Remark 7.4.4. In (i), we can take CJ to consist of all finite products of quo-
tients C/N with C ∈ CG and orbits J/H to arrange that CJ be closed and contain
these C/N . In (ii), we can take CG to consist of all products of pullbacks ε∗C for
C ∈ CJ with finite products of orbits G/H. This set will be closed if CJ is closed
since ε∗ preserves products.

Using Proposition 7.4.3 in conjunction with the additional change of group
relations of Propositions 2.4.3 and 2.4.4, we obtain the following compendium of
equivalences in homotopy categories.

Proposition 7.4.5. Let A and B be G-spaces. Let j : BN −→ B be the in-
clusion and p : B −→ B/N be the quotient map, and let f : A −→ B be a G-map.
Then, for ex-G-spaces X over A and Y over B,

(p!Y )/N ' Y/N, (f!X)/N ' (f/N)!(X/N),

(j∗Y )N ' Y N , (f∗Y )N ' (fN )∗(Y N ),

(p∗Y )N ' Y/N, (f!X)N ' (fN )!(XN )

(f∗Y )/N ' (f/N)∗(Y/N).

Here B is assumed to be N -free for the last equivalence in the first column, and both
A and B are assumed to be N -free for the last equivalence in the second column.

Proof. The equivalences displayed in the first line come from isomorphisms
between Quillen left adjoints and are therefore clear. Similarly the equivalences in
the second line come from isomorphisms between Quillen right adjoints. The first
equivalence in the third line (in which we have changed notations from Proposi-
tion 2.4.4) comes from an isomorphism between a Quillen right adjoint on the left
hand side, by Proposition 7.3.6, and a Quillen left adjoint on the right hand side
and therefore also descends directly to an equivalence on homotopy categories. For
the second equivalence on the third line, note that (−)N preserves all q-equivalences
and also preserves well-grounded ex-spaces and that (fN )! preserves q-equivalences
between well-grounded ex-spaces. Letting Q and R denote cofibrant and fibrant
replacement functors, as usual, it follows that the maps

(R(f!X))N ←− (f!X)N ∼= (fN )!(XN )←− (fN )!(Q(XN ))

are q-equivalences on ex-spaces X that are qf -fibrant and qf -cofibrant. As noted in
the proof of Proposition 2.4.3, the point set level isomorphism (f!X)N ∼= (fN )!(XN )
is only valid for an ex-space X whose section is a closed inclusion. However, if X
is qf -cofibrant, then it is compactly generated and this holds by Lemma 1.6.2(i).
Thus the equivalence holds in general in the homotopy category. For the last equiv-
alence, take A and B to be N -free and let q : A −→ A/N be the quotient map. Then
(−)/N ∼= (q∗(−))N on ex-G-spaces over A and (−)/N ∼= (p∗(−))N on ex-G-spaces
over B. Since p and q are J-bundles satisfying the hypothesis of Proposition 7.3.8
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(compare §3.2), these isomorphisms exhibit both orbit functors (−)/N as compos-
ites of Quillen right adjoints. Therefore the point-set level isomorphism

(f∗Y )/N ∼= (f/N)∗(Y/N)

(which only required B to be N -free) is a comparison between Quillen right adjoints
and so descends to the claimed equivalence of derived functors. �

The result Proposition 2.4.4 describing passage to orbits as a right adjoint also
descends to homotopy categories.

Proposition 7.4.6. Let E be an N -free G-space, let B = E/N , and let
p : E −→ B be the quotient map. For X ∈ GKE, X/N ∼= (p∗X)N , and this
isomorphism descends to an isomorphism in HoJKB. Therefore the left adjoint
(−)/N of the functor p∗ε∗ is also its right adjoint on homotopy categories.

Proof. The point set level isomorphism is given in Proposition 2.4.4. Since
it gives an isomorphism between a Quillen left adjoint on the left hand side and a
composite of Quillen right adjoints on the right hand side, it descends directly to
homotopy categories. �

The context for the next result is given in Definition 2.3.7 and Proposition 2.3.9.

Proposition 7.4.7. Let ι : H −→ G be the inclusion of a subgroup and let A
be an H-space. The adjoint equivalence (ι!, ν∗ι∗) relating HKA and GKι!A is a
Quillen equivalence in the q-model structures and also in the qf(CH) and qf(CG)-
model structures for any generating sets CH and CG of H-cell complexes and G-cell
complexes such that ι!C = G×HC ∈ CG for C ∈ CH . If A is proper and completely
regular, then the functor ι! is also a Quillen right adjoint with respect to the q and
qf -model structures.

Proof. Recall that ν : A −→ ι∗ι!A = G ×H A is the natural inclusion of H-
spaces and that (ν!, ν∗) is a Quillen adjunction in both the q and qf contexts. The
functor ι∗ preserves q-equivalences and q-fibrations. It takes qf(CG)-fibrations to
qf(CH)-fibrations when ι!C ∈ CG for C ∈ CH since

MapH(C, ι∗f) ∼= MapG(ι!C, f).

To show that (ι!, ν∗ι∗) is a Quillen equivalence, we may as well check the
defining condition in the q-model structure. Let X be a q-cofibrant ex-H-space over
A and Y be a q-fibrant ex-G-space over ι!A. Consider a G-map f : ι!X −→ Y . We
must show that f is a q-equivalence if and only if its adjointH-map f̃ : X −→ ν∗ι∗Y
is a q-equivalence. Since ι! preserves acyclic q-cofibrations, we can extend f to
f ′ : ι!RX −→ Y , where RX is a q-fibrant approximation. Since f ′ is a q-equivalence
if and only if f is one, and similarly for their adjoints, we may assume without loss
of generality that X is q-fibrant. Recall from Proposition 2.3.9 that ι! and ν∗ι∗

are inverse equivalences of categories and observe that ν∗ι∗Y can be viewed as the
restriction, Y |A, of Y along the inclusion of H-spaces ν : A −→ G×H A. From that
point of view, f̃ : X −→ ν∗ι∗Y is just the map X −→ Y |A of ex-H-spaces over A
obtained by restriction of ι∗f along ν.

Now f is a q-equivalence if and only if f restricts to a q-equivalence f[g,a] on
each fiber, meaning that this restriction is a weak equivalence after passage to
fixed points under all subgroups of the isotropy group of [g, a]. For a ∈ A, the
isotropy subgroup Ha ⊂ H of a coincides with the isotropy subgroup G[e,a] ⊂ G of
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[e, a] ∈ G ×H A. For g ∈ G, the isotropy subgroup of [g, a] is gHag
−1. Since the

action by g ∈ G induces a homeomorphism between the fibers over [e, a] and over
[g, a], we see that f is a q-equivalence if and only if each of the restrictions f[e,a] is
a q-equivalence. But that holds if and only if f̃ is a q-equivalence.

For the last statement, recall the description of ι! in Remark 2.4.5 as the com-
posite (p∗π∗ε∗(−))H , where ε : G×H −→ H and π : G×A −→ A are the projections
and p : G × A −→ G ×H A is the quotient map. Since G × A is completely regu-
lar, p is a bundle with fiber G/Ha over [g, a], and Ha is compact since A is proper.
Therefore, by Propositions 7.3.6 and 7.3.8, p∗ is a Quillen right adjoint with respect
to the q and qf -model structures. In view of Proposition 7.4.3, this displays ι! as a
composite of Quillen right adjoints. �

Remark 7.4.8. We can take CG to consist of all finite products of the ι!C with
C ∈ CH and orbits G/K to arrange that CG be closed and contain these ι!C.

We shall prove that (ι!, ν∗ι∗) descends to a closed symmetric monoidal equiv-
alence of homotopy categories in Proposition 9.4.9 below. The first statement of
Proposition 7.4.7 implies that the description of ι∗ in terms of base change that is
given in Proposition 2.3.10 descends to homotopy categories.

Corollary 7.4.9. The functor ι∗ : HoGKB −→ HoHKι∗B is the composite

HoGKB
µ∗ //HoGKι!ι∗B ' HoHKι∗B

7.5. Fiber adjunctions and Brown representability

For a point b in B, we combine the special case b̃ : G/Gb −→ B of Proposi-
tion 7.3.4 with the special case ι : Gb −→ G and A = ∗, hence ν : ∗ −→ G/Gb, of
Proposition 7.4.7 to obtain the following result concerning passage to fibers. Re-
call from Example 2.3.12 that the fiber functor (−)b : GKB −→ GbK∗ is given by
ν∗ι∗b̃∗ = b∗ι∗. By conjugation, its left adjoint (−)b therefore agrees with b̃!ι!.

Proposition 7.5.1. For b ∈ B, the pair of functors ((−)b, (−)b) relating GbK∗
and GKB is a Quillen adjoint pair.

We use certain objects Xb to verify the formal hypotheses of Brown’s repre-
sentability theorem [26] for the category HoGKB , or rather for a suitable subcate-
gory. We need a few preliminaries and some discussion of the nature and limitations
of the Brown representability theorem.

Definition 7.5.2. Define weak colimits in any category H by requiring the
existence but not the uniqueness property of colimits. When H has (specified)
weak sequential colimits, denoted hocolimYn or TelYn, we say that an object X of
H is compact if

colim H (X,Yn) ∼= H (X,hocolimYn)

for any sequence of maps Yn −→ Yn+1 in H .

Of course, homotopy colimits often provide weak colimits, but the two notions
are conceptually distinct. If H has coproducts and weak pushouts, then it has weak
coequalizers and weak sequential colimits, as in §5.6. Definitions 5.6.8, 5.6.10, and
5.6.12 together with Lemmas 5.6.9, 5.6.11, and 5.6.13 give the following result.
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Lemma 7.5.3. Applied to diagrams of cofibrant objects, the classical homotopy
pushouts, homotopy coequalizers, and telescopes in a well-grounded model category
give weak pushouts, weak coequalizers, and weak sequential colimits in its homotopy
category.

Warning 7.5.4. When verifying weak colimit properties by use of homotopy
classes of maps, as in §5.6, one is studying maps out of homotopy colimits, and it
suffices to restrict attention to cofibrant objects. However, when trying to verify
compactness similarly, one must study maps into homotopy colimits, and one must
therefore apply fibrant approximation to homotopy colimits in order to pass to
homotopy classes of maps. This destroys the point-set level control that classical
homotopy colimits provide. Said another way, topological intuition relates to the
hom sets π(X,−) of the classical homotopy category and not the hom sets [X,−]
of the relevant homotopy category. For this reason, compactness is a quite subtle
notion in the homotopy categories of topological model categories in which not all
objects are fibrant.

We also need generating sets of objects and, in unstable homotopy theory, it
is useful to distinguish these from detecting sets of objects. Variant forms of the
following definition appear in [76,134] and elsewhere. In topological or triangulated
categories, it is natural to insist that these classes be closed under suspension, and
we shall do so implicitly.

Definition 7.5.5. A set D of objects in a pointed category H is a detecting set
if H (D,X) = ∗ for all objects D ∈ D implies that X ∼= ∗. A set D is a generating
set if a map f : X −→ Y such that f∗ : H (D,X) −→ H (D,Y ) is a bijection for
all D ∈ D is an isomorphism.

Remark 7.5.6. Clearly any generating set is a detecting set. The converse
holds in triangulated categories, as we shall see in Lemma 13.1.6. The term “de-
tecting set” is new, but we have followed the literature in defining generating sets,
although they might more reasonably be called detecting sets. The reason for the
name “generating set” is given by Theorem 13.1.14 below.

The point of the distinction is that Brown’s theorem requires the use of a gen-
erating set and not just a detecting set of objects, and for that reason it requires
a connectedness hypothesis in unstable situations. The following abstract repre-
sentability theorem was proven by Brown [26, 2.9], although he stated it differently.

Theorem 7.5.7 (Brown). Let H be a category with coproducts and weak
pushouts and therefore weak sequential colimits. Assume that H has a generat-
ing set of compact objects. Let k : H −→ Sets be a contravariant functor that
takes coproducts to products and weak pushouts to weak pullbacks. Then there is an
object Y ∈H and a natural isomorphism k(X) ∼= H (X,Y ) for X ∈H .

The conditions on k are called the wedge and Mayer-Vietoris axioms. Of course,
the representing object Y is unique up to isomorphism. The hypotheses are satisfied
in appropriate subcategories of unstable homotopy categories.

Definition 7.5.8. A G-space K is said to be G-connected if each of its fixed
point sets KH is non-empty and path connected. Let HoGK c

∗ be the full subcat-
egory of G-connected G-spaces in HoGK∗. Say that an ex-G-space X over B is
G-connected if, after fibrant approximation, each of its fibers is Gb-connected. Let
HoGK c

B be the full subcategory of G-connected ex-G-spaces in HoGKB .
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Model categorically, one has the following general result of Hovey [75, 7.3.1].
We need some language to state it.

Notation 7.5.9. By a standard abuse of language, define the cofiber Z of a
cofibration f : X −→ Y in a pointed model category C to be the quotient Y/X,
that is, the pushout of f along the trivial map X −→ ∗. Observe that if C is
cofibrantly generated, then the cell complexes in C consisting of a single cell, the
1-cell complexes, are precisely the cofibers of the generating cofibrations.

Theorem 7.5.10. Let C be a pointed cofibrantly generated model category.
Then the set of all iterated suspensions ΣnZ, n ≥ 0, of 1-cell complexes Z in
C is a set of detecting objects for HoC .

This specializes to give the first statement in the following familiar example.

Lemma 7.5.11. In HoGK∗, the set of spheres SnH = G/H+ ∧ Sn, n ≥ 0, is a
detecting set. On the subcategory HoGK c

∗ of G-connected G-spaces, the set of such
spheres with n > 0 is a generating set.

We emphasize that, already nonequivariantly, we do not know of a convenient
generating set in HoK∗. Naive variants of the sets of spheres given in Lemma 7.5.11
are incorrect, as consideration of based versus unbased homotopy classes of maps
makes clear. The notion of a weak equivalence of spaces, as a condition on homo-
topy groups for all choices of basepoint and thus all components, is more subtle
than appears at first sight. Lemma 7.5.11 leads to the appropriate parametrized
analogue, but here we can restrict to smaller detecting and generating sets than
Theorem 7.5.10 would suggest.

Definition 7.5.12. For n ≥ 0, b ∈ B, and H ⊂ Gb, let Sn,bH be the ex-G-
space (Gb/H+ ∧ Sn)b over B. Explicitly, Sn,bH = b̃!S

n
H = (G/H+ ∧ Sn) ∨b B, where

the wedge is taken with respect to the standard basepoint of G/H+ ∧ Sn and the
basepoint b ∈ B. The inclusion of B gives the section, and the projection maps
G/H+ ∧ Sn to the point b and maps B by the identity map. Equivalently, taking
d to be the constant map at b, Sn,bH is the quotient ex-G-space associated to the
generating cofibration i(d), i : G/H × Sn−1 −→ G/H × Dn. Therefore, Sn,bH is
cofibrant in both the q and the qf -model structures. Let DB be the set of all such
ex-G-spaces Sn,bH , and let Dc

B be the subset of those Sn,bH such that n > 0.

Lemma 7.5.13. DB is a detecting set in HoGKB and Dc
B is a generating set

in HoGK c
B .

Proof. We need only observe that, when n > 0, the fiber over a ∈ B of a
fibrant approximation RSn,bH to Sn,bH is Ga-connected, so that Sn,bH is G-connected
and Dc

B is contained in HoGK c
B . �

Lemma 7.5.14. Each X in DB is a compact object.

Proof. Let X = Sn,bH . Then

[X,Y ]G,B ∼= [Gb/H+ ∧ Sn, Yb]Gb
∼= πn(Y Hb ) ≡ πHn (Yb)

for any qf -fibrant object Y . We must insist on the fibrancy since the homotopy
groups of fibers must be understood in the derived sense. We must show that

colim [X,Yq]G,B ∼= [X,hocolimYq]G,B



7.5. FIBER ADJUNCTIONS AND BROWN REPRESENTABILITY 125

for any sequence of maps fq : Yq −→ Yq+1 in HoGSB . Since we are working in the
homotopy category, we may assume that the Yq are qf -fibrant and qf -cofibrant.
We choose representative maps fq for the given homotopy classes and, since we are
studying maps into homotopy colimits, we take our representative for the homotopy
colimit to be a fibrant approximation RTelYq of the classical telescope of these fq.
Now our desired isomorphism becomes

colimπHn ((Yq)b) ∼= πHn ((RTelYq)b).

In HoHK∗, where every object is q-fibrant, homotopy groups of telescopes are given
as colimits, so that

colimπHn ((Yq)b) ∼= πHn (Tel(Yq)b).
By direct inspection of the telescope construction, we have

Tel(Yq)b ∼= (TelYq)b.

The desired isomorphism is immediate from the following result. �

Lemma 7.5.15. For a sequence of maps fn : Yn −→ Yn+1 between qf -fibrant
and qf -cofibrant objects of GKB and a point b ∈ B, a qf-fibrant approximation
TelYq −→ RTelYq induces a weak Gb-equivalence (TelYq)b −→ (RTelYq)b for each
b ∈ B.

Proof. Inductively, starting with Z1 = Y1 and π1 = id, we construct acyclic
qf -fibrations πq : Zq −→ Yq together with qf -cofibrations gq : Zq −→ Zq+1 such that
πq+1 ◦gq = fq ◦πq by applying the appropriate factorization axiom to fq ◦πq. Then
the Zq are also qf -fibrant and qf -cofibrant. Therefore the πq are fp-equivalences,
so induce homotopy equivalences of fibers. Comparing constructions as in the proof
of Lemma 5.6.14, we see that the telescope of the maps fq is weakly equivalent to
the telescope and therefore to the colimit of the sequence of maps gq. Because the
latter colimit is quasifibrant, by Lemma 3.6.3, the homotopy groups of its fibers are
isomorphic to the homotopy groups of the fibers of its qf -fibrant approximation.
The conclusion follows. �

Warning 7.5.16. We do not know whether or not a general 1-cell complex is
compact. At first sight, that might seem obvious from the compactness of discs,
but, as pointed out in Warning 7.5.4, the need for qf -fibrant approximation of
targets before passage to homotopy classes of maps obstructs such an argument.

Theorem 7.5.17 (Brown). A contravariant set-valued functor on the category
HoGK c

B is representable if and only if it satisfies the wedge and Mayer-Vietoris
axioms.





CHAPTER 8

Ex-fibrations and ex-quasifibrations

To complete the space level foundations of parametrized homotopy theory, we
are faced with two problems that were discussed in the Prologue. In our preferred
qf -model structure, the base change adjunction (f!, f∗) is a Quillen pair for any
map f and is a Quillen equivalence if f is an equivalence. As shown by Coun-
terexample 0.0.1, this implies that the base change adjunction (f∗, f∗) cannot be
a Quillen adjoint pair, and some such defect must hold for any model structure.
Therefore, we cannot turn to model theory to construct the functor f∗ on the level
of homotopy categories. The same counterexample illustrates that passage to de-
rived functors is not functorial in general, so that a relation between composites of
functors that holds on the point-set level need not imply a corresponding relation
on homotopy categories.

In any attempt to solve those two problems, one runs into a third one that
concerns a basic foundational problem in ex-space theory. Model theoretical con-
siderations lead to the use of Serre fibrations as projections, or to the even weaker
class of qf -fibrations. However, only Hurewicz fibrations are considered in most of
the literature. There is good reason for that. Fiberwise smash products, suspen-
sions, cofibers, function spaces, and other fundamental constructions in ex-space
theory do not preserve Serre fibrations.

The solutions to all three problems are obtained by the use of ex-fibrations. Re-
call that these are the well-sectioned h-fibrant ex-spaces. We study their properties
in §8.1. They seem to give the definitively right kind of “fibrant ex-space” from the
point of view of classical homotopy theory, and they behave much better under the
cited constructions than do Serre fibrations, as we show in §8.2. Many variants of
this notion appear in the literature. Precisely this variant, with this name, appears
in Monica Clapp’s paper [31], and we are indepted to her work for an understanding
of the centrality of the notion. Perversely, as we noted in Remark 5.2.7, it is unclear
how it fits into the model categorical framework.

We construct an elementary ex-fibrant approximation functor in §8.3. It plays
a key role in bridging the gap between the model theoretic and classical worlds.
In a different context, the classification of sectioned fibrations, the first author
introduced this construction in [111, §5]. We record some of its properties in §8.4.

We define quasifibrant ex-spaces and ex-quasifibrations and show that they
inherit some of the good properties of ex-fibrations in §8.5. They will play a key
role in the stable theory.

Everything in this chapter works just as well equivariantly as nonequivariantly
for any topological group G of equivariance.

127



128 8. EX-FIBRATIONS AND EX-QUASIFIBRATIONS

8.1. Ex-fibrations

Under various names, the following notions were in common use in the 1970’s.
We shall see shortly that these definitions agree with those given in Definition 5.2.5.

Definition 8.1.1. Let (X, p, s) be an ex-space over B.

(i) (X, p, s) is well-sectioned if s is a closed inclusion and there is a retraction

ρ : X × I −→ X ∪B (B × I) = Ms

over B.
(ii) (X, p, s) is well-fibered if there is a coretraction, or path-lifting function,

ι : Np = X ×B BI −→ XI

under BI , where BI maps to Np via α −→ (sα(0), α).
(iii) (X, p, s) is an ex-fibration if it is both well-sectioned and well-fibered.

The requirement in (i) that the retraction ρ be a map over B ensures that it
restricts on fibers to a retraction that exhibits the nondegeneracy of the basepoint
s(b) in Xb for each b ∈ B. In view of Theorem 5.2.8(i), we have the following
characterization of well-sectioned ex-spaces, in agreement with Definition 5.2.5.

Lemma 8.1.2. An ex-space X is well-sectioned if and only if X is f̄-cofibrant.

We use the term “well-sectioned” since it goes well with “well-based”. The
category of well-sectioned ex-spaces is the appropriate parametrized generalization
of the category of well-based spaces, and restricting to well-sectioned ex-spaces is
analogous to restricting to well-based spaces.

Note that the section of X provides a canonical way of lifting a path in B that
starts at b to a path in X that starts at s(b). The requirement in Definition 8.1.1(ii)
that the path-lifting function ι be a map under BI says that ι(sα(0), α)(t) = s(α(t))
for all α ∈ BI and t ∈ I. That is, ι is required to restrict to the canonical
lifts provided by the section, so that paths in X that start in s(B) remain in
s(B). In contrast with Lemma 8.1.2, the well-fibered condition does not by itself
fit naturally into the model theoretic context of Chapter 5. However, we have the
following characterization of ex-fibrations, which again is in agreement with the
original definition we gave in Definition 5.2.5.

Lemma 8.1.3. If X is well-fibered, then X is h-fibrant. If X is well-sectioned,
then X is an ex-fibration if and only if X is h-fibrant.

Proof. The first statement is clear since the coretraction ι is a path-lifting
function. This gives the forward implication of the second statement, and the
converse is a special case of the following result of Eggar [57, 3.2]. �

Lemma 8.1.4. Let i : X −→ Y be an f̄-cofibration of ex-spaces over B, where
Y is h-fibrant. Then any map ι : X ×B BI −→ Y I such that the composite

X ×B BI
ι //Y I //Y ×B BI

is the inclusion can be extended to a coretraction Y ×B BI −→ Y I .
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Proof. The inclusion X ×B BI −→ Y ×B BI is an h̄-cofibration by Proposi-
tion 4.4.5. Therefore there is a lift ν in the diagram

(Y ×B BI)× {0} ∪ (X ×B BI)× I
f //

��

Y

��
(Y ×B BI)× I g

//

ν

55kkkkkkkkk
B,

where f(y, ω, 0) = y, f(x, ω, t) = ι(x, ω)(t), and g(y, ω, t) = ω(t). The adjoint
Y ×B BI −→ Y I of ν is the required extension to a coretraction. �

Remark 8.1.5. We comment on the terminology and history.
(1) We are following [42, 83] and others in saying that an f̄ -cofibrant ex-space

is well-sectioned; the term “fiberwise well-pointed” is also used. For a based space,
the terms “nondegenerately based” and “well-based” or “well-pointed” are used
interchangeably to mean that the inclusion of the basepoint is an h-cofibration. In
contrast, for an ex-space, the term “fiberwise nondegenerately pointed” is used in
[42,83] to indicate a somewhat weaker condition than well-sectioned.

(2) The term “well-fibered” is new but goes naturally with well-sectioned. The
concept itself is old. We believe that it is due to Eggar [57, 3.3], who calls a
coretraction under BI a special lifting function.

(3) Becker and Gottlieb [9] may have been the first to use the term “ex-
fibration”, but for a slightly different notion with sensible CW restrictions. As
noted in the introduction, precisely our notion is used by Clapp [31]. Earlier, in
[111, §5] and [113], the first author called ex-fibrations “T -fibrations”, and he
studied their classification and their fiberwise localizations and completions. The
equivariant generalization appears in Waner [170]. A more recent treatment of the
classification of ex-fibrations has been given by Booth [20].

8.2. Preservation properties of ex-fibrations

We have a series of results that show that ex-fibrations behave well with respect
to standard constructions. In some of them, one must use the equivariant version of
Lemma 5.2.4 to verify that the given construction preserves well-sectioned objects.
In all of them, if we only assume that the input ex-spaces are well-sectioned, then
we can conclude that the output ex-spaces are well-sectioned. It is the fact that
the given constructions preserve well-fibered objects that is crucial. Few if any of
these results hold with Serre rather than Hurewicz fibrations as projections.

Proposition 8.2.1. Ex-fibrations satisfy the following properties.
(i) A wedge over B of ex-fibrations is an ex-fibration.
(ii) If X, Y and Z are ex-fibrations and i is an f̄-cofibration in the following

pushout diagram of ex-spaces over B, then Y ∪X Z is an ex-fibration.

X
i //

��

Y

��
Z // Y ∪X Z

(iii) The colimit of a sequence of f̄-cofibrations Xi −→ Xi+1 between ex-fibrations
is an ex-fibration.



130 8. EX-FIBRATIONS AND EX-QUASIFIBRATIONS

If the input ex-spaces are only assumed to be well-sectioned, then the output ex-
spaces are well-sectioned.

Proof. The last statement is clear. Using it, we see that the colimits in (i),
(ii), and (iii) are well-sectioned, hence it suffices to prove that they are h-fibrant.
This is done by constructing path lifting functions for the colimits from path lifting
functions for their inputs. In (i), we start with path lifting functions under BI

for the wedge summands and see that they glue together to define a path lifting
function under BI for the wedge. Part (ii) is due to Clapp [31, 1.3], and we omit
full details. She starts with a path lifting function for X and uses Lemma 8.1.4 to
extend it to a path lifting function for Y . She also starts with a path lifting function
for Z. She then uses a representation (h, u) of (Y,X) as a fiberwise NDR pair to
build a path lifting function for the pushout from the given path lifting function
for Z and a suitably deformed version of the path lifting function for Y . In (iii),
Lemma 8.1.4 shows that we can extend a path lifting function for Xi to a path
lifting function for Xi+1. Inductively, this allows the construction of compatible
path lifting functions for the Xi that glue together to give a path lifting function
for their colimit. �

Although of little use to us, since the f -homotopy category is not the right one
for our purposes, many of our adjunctions give Quillen adjoint pairs with respect to
the f -model structure. For example, the following result, which should be compared
with Proposition 7.3.4, implies that (f!, f∗) is a Quillen adjoint pair in the f -model
structures and that it is a Quillen equivalence if f is an h-equivalence.

Proposition 8.2.2. Let f : A −→ B be a map, let X be a well-sectioned ex-
space over A, and let Y be a well-sectioned ex-space over B. Then f!X and f∗Y are
well-sectioned. If Y is an ex-fibration, then so is f∗Y , and the functor f∗ preserves
f-equivalences. If f is an h-equivalence, then (f!, f∗) induces an equivalence of
f-homotopy categories.

Proof. It is easy to check that representations of (X,A) and (Y,B) as fiber-
wise NDR-pairs induce representations of (f!X,B) and (f∗Y,A) as fiberwise NDR-
pairs. As a pullback, the functor f∗ preserves both f -fibrant and h-fibrant ex-
spaces, and f∗ preserve f -equivalences since it preserves f -homotopies. For the
last statement, if f is a homotopy equivalence with homotopy inverse g, then stan-
dard arguments with the CHP imply that f∗ induces an equivalence of f -homotopy
categories with inverse g∗; see, for example, [111, 2.5]. It follows that g∗ is equiva-
lent to f! and that (f!, f∗) is a Quillen equivalence. �

The following result appears in [57] and [111, 3.6]. It also leads to a Quillen
adjoint pair with respect to the f -model structure; compare Corollary 7.3.3.

Proposition 8.2.3. Let X and Y be well-sectioned ex-spaces over A and B.
Then X Z Y is a well-sectioned ex-space over A×B. If X and Y are ex-fibrations,
then X Z Y is an ex-fibration.

Proof. Representations of (X,A) and (Y,B) as fiberwise NDR-pairs deter-
mine a representation of (X Z Y,A × B) as a fiberwise NDR-pair, by standard
formulas [121, p. 43]. Similarly, path lifting functions for X and Y can be used to
write down a path lifting function for X Z Y . �

Corollary 8.2.4. If X and Y are ex-fibrations over B, then so is X ∧B Y .
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Corollary 8.2.5. If X is an ex-fibration over B and K is a well-based space,
then X ∧B K is an ex-fibration over B.

Proposition 8.2.6. Let X and Y be well-sectioned and let f : X −→ Y be
an ex-map that is an h-equivalence. Then f ∧B id : X ∧B Z −→ Y ∧B Z is an
h-equivalence for any ex-fibration Z. In particular, f ∧B id : X ∧B K −→ Y ∧B K
is an h-equivalence for any well-based space K.

Proof. As observed by Clapp [31, 2.7], this follows from the gluing lemma by
comparing the defining pushouts. �

As in ordinary topology, function objects work less well, but we do have the
following analogue of Corollary 8.2.5.

Proposition 8.2.7. If X is an ex-fibration over B and K is a compact well-
based space, then FB(K,X) is an ex-fibration over B.

Proof. Let (h, u) represent (X,B) as a fiberwise NDR-pair. Then (j, v) rep-
resents (FB(K,X), B) as a fiberwise NDR-pair, where

v(f) = supk∈Ku(f(k)) and jt(f)(k) = ht(f(k))

for f ∈ FB(K,X). Note for this that FB(K,B) = B and that, by Proposi-
tion 1.3.16, FB(K,X) is h-fibrant. �

8.3. The ex-fibrant approximation functor

We describe an elementary ex-fibrant replacement functor P . It is just the
composite of a whiskering functor W with a version of the mapping path fibration
functorN . The functor P replaces ex-spaces by naturally h-equivalent ex-fibrations.
From the point of view of model theory, P can be thought of as a kind of q-fibrant
replacement functor that gives Hurewicz fibrations rather than just Serre fibrations
as projections. The nonequivariant version of P appears in [111, 5.3, 5.6], and
the equivariant version appears in [170, §3]. With motivation from the theory of
transports in fibrations, those sources work with Moore paths of varying length.
Surprisingly, that choice turns out to be essential for the construction to work.

We therefore begin by recalling that the space of Moore paths in B is given by

ΛB = {(λ, l) ∈ B[0,∞] × [0,∞) | λ(r) = λ(l) for r ≥ l}

with the subspace topology. We write λ for (λ, l) and lλ for l, which is the length
of λ. Let e : ΛB −→ B be the endpoint projection e(λ) = λ(lλ). The composite of
Moore paths µ and λ such that λ(lλ) = µ(0) is defined by lµλ = lµ + lλ and

(µλ)(r) =

{
λ(r) if r ≤ lλ,
µ(r − lλ) if r ≥ lλ.

Embed B and BI in ΛB as the paths of length 0 and 1. For a Moore path λ in
B and real numbers u and v such that 0 ≤ u ≤ v, let λ|vu denote the Moore path
r 7→ λ(u+ r) of length v − u.

Definition 8.3.1. Consider an ex-space X = (X, p, s) over B.
(i) Define the whiskering functor W by letting

WX = (X ∪B (B × I), q, t),
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where the pushout is defined with respect to i0 : B −→ B× I. The projection
q is given by the projection p of X and the projection B × I −→ B, and the
section t is given by t(b) = (b, 1).

(ii) Define the Moore mapping path fibration functor L by letting

LX = (X ×B ΛB, q, t),

where the pullback is defined with respect to the map ΛB −→ B given by
evaluation at 0. The projection q is given by q(x, λ) = e(λ) and the section t
is given by t(b) = (s(b), b), where b is viewed as a path of length 0.

Thus WX is obtained by growing a whisker on each point in the section of X,
and the endpoints of the whiskers are used to give WX a section. Similarly, LX is
obtained by attaching to x ∈ X all Moore paths in B starting at p(x). The end-
points of the paths give the projection. In the language of §4.3, WX is the standard
mapping cylinder construction of the section of X, thought of as a map in GK /B.
The section t of WX is just the f -cofibration in the standard factorization ρ ◦ t
of s through its mapping cylinder. In particular, WX is well-sectioned. Similarly,
LX is a modification of the mapping path fibration Np in GK . The projection p
of X factors through the projection q of LX, which is an h-fibration; a path lifting
function ξ : LX ×B BI −→ (LX)I is given by ξ((x, λ), γ)(t) = (x, γ|t0λ). Thus LX
is h-fibrant, but it need not be well-fibered.

We can display all of this conveniently in the following diagram. The third
square on the top is a pushout and the second square on the bottom is a pullback.
That defines the maps φ and π, and the maps ρ and ι are induced by the universal
properties from the identity map of X.

B

i1
�� FF

FF
FF

FF
F

FF
FF

FF
FF

F

B

��

B

��

B

s

��

i0
// B × I

��

pr
// B

��
X

��

ι //___ LX
π //

��

X

p

��

φ // WX

��

ρ //___ X

��
B

CC
CC

CC
CC

CC
CC

CC
CC

// ΛB

e

��

p0 // B B B

B

Thus ρ projects whiskers on fibers to the original basepoints and ι is the inclusion
x 7→ (x, p(x)), where p(x) is the path of length zero. Note that φ is not a map
under B and π is not a map over B. They give an inverse f -equivalence to ρ and
an inverse h-equivalence to ι.

Proposition 8.3.2. The map ρ : WX −→ X is a natural f-equivalence of
ex-spaces and WX is well-sectioned. The map ι : X −→ LX is a natural h-
equivalence of ex-spaces and LX is h-fibrant. Therefore W takes f-equivalences
to fp-equivalences and L takes h-equivalences to f-equivalences.

The last statement follows from Proposition 5.2.2. We think of ρ and ι as giving
a well-sectioned approximation and an h-fibrant approximation in the category of
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ex-spaces. We will combine them to obtain the promised ex-fibrant approximation,
but we first insert a technical lemma.

Lemma 8.3.3. If X is an ex-space with a closed section, then WLX is an
ex-fibration. If X is well-fibered, then WX is an ex-fibration.

Proof. A path lifting function ξ : NWLX = WLX ×B BI −→ (WLX)I for
WLX is obtained by letting

ξ(z, γ)(t) =


(x, γ|t0λ) ∈ LX if z = (x, λ) ∈ LX,
(γ(t), u− t) ∈ B × I if z = (b, u) and t ≤ u,
(s(γ(u)), γ|tu) ∈ LX if z = (b, u) and t ≥ u.

It is easy to verify that, as a map of sets, ξ gives a well-defined section of the canon-
ical retraction π : (WLX)I −→ WLX ×B BI . Continuity is a bit more delicate,
but if the section of X is closed, then one verifies that

Φ = {(z, γ) | z is the equivalence class of (s(b), b) ∼ (b, 0)}

is a closed subset of WLX and hence NΦ is a closed subset of NWLX. To see the
implication, note that (−)×BI preserves closed inclusions and Z ×B BI ⊂ Z ×BI
is a closed inclusion because B is in U (see Remark 1.6.4). Continuity follows since
we are then piecing together continuous functions on closed subsets.

If X is well-fibered and ξ : X ×B BI −→ XI is a path-lifting function under
BI , we can define a path lifting function ξ̄ : WX ×B BI −→ (WX)I for WX by

ξ̄(x, γ) =

{
ξ(x, γ) if x ∈ X,
(γ, u) if x = (b, u).

To check that ξ̄ is continuous, we use the fact that the functor N(−) = BI ×B (−)
commutes with pushouts to write NWX as a pushout. We then see that ξ̄ is the
map obtained by passage to pushouts from a pair of continuous maps. �

Recall that the sections of ex-spaces in GUB are closed, by Lemma 1.6.2. Since
we shall only need to apply the constructions of this section to ex-spaces in GUB ,
the closed section hypothesis need not concern us.

Definition 8.3.4. Define the ex-fibrant approximation functor P by the nat-
ural zig-zag of h-equivalences φ = (ρ,Wι) displayed in the diagram

X WX
ρoo Wι // WLX = PX.

By Proposition 8.3.2, P takes h-equivalences between arbitrary ex-spaces to fp-
equivalences. If X has a closed section, then PX is an ex-fibration. If X is an
ex-fibration, then it has a closed section, and the above display is a natural zig-zag
of fp-equivalences between ex-fibrations.

8.4. Preservation properties of ex-fibrant approximation

One advantage of ex-fibrant approximation over q or qf -fibrant approximation
is that there are explicit commutation natural transformations relating it to many
constructions of interest. The following result is an elementary illustrative example.
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Lemma 8.4.1. Let D be a small category, X : D −→ GKB be a functor, and

ω : colimWXd −→W colimXd and ν : colimLXd −→ LcolimXd

be the evident natural maps. Then ω is a map over colimXd and ν is a map under
colimXd, so that the following diagrams commute. All maps in these diagrams are
h-equivalences.

colimWXd
ω //

colim ρ ''NNNNNNNNNNN W colimXd

ρ
wwppppppppppp

colimXd

colimXd

colim ι

xxppppppppppp
ι

&&NNNNNNNNNNN

colimLXd ν
// LcolimXd

Let µ = Wν ◦ ω : colimPXd −→ P colimXd. Then the following diagram of h-
equivalences commutes.

colimXd colimWXd
colim ρoo colimWι//

ω

��

colimPXd

µ

��
colimXd W colimXdρ

oo
Wι
// P colimXd

The analogous statements for limits also hold.

Proof. This is clear from the construction of limits and colimits in Proposi-
tion 1.2.9. The relevant h-equivalences of total spaces are natural and piece together
to pass to limits and colimits. �

Warning 8.4.2. We would like an analogue of the previous result for tensors.
In particular, we would like a natural map (LX) ∧K −→ L(X ∧K) under X ∧K
for ex-spaces X over B and based spaces K. Inspection of definitions makes clear
that there is no such map. The obvious map that one might write down, as in the
erroneous [111, 5.6], is not well-defined. In Part III, this complicates the extension
of P to a functor on spectra over B.

Lemma 8.4.3. Let f : A −→ B be a map.
(i) Let X be an ex-space over A. Then there are natural maps

ω : f!WX −→Wf!X and ν : f!LX −→ Lf!X

of ex-spaces over B such that ω is a map over f!X and ν is a map under f!X.
Let µ = Wν ◦ ω : f!PX −→ Pf!X. Then the following diagram commutes.

f!X f!WX
f!ρoo f!Wι //

ω

��

f!PX

µ

��
f!X Wf!Xρ
oo

Wι
// Pf!X
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(ii) Let Y be an ex-space over B. Then there are natural maps

ω : Wf∗Y −→ f∗WY and ν : Lf∗Y −→ f∗LY

of ex-spaces over A, the first an isomorphism, such that ω is a map over f∗Y
and ν is a map under f∗Y . Let µ = ω ◦Wν : Pf∗Y −→ f∗PY . Then the
following diagram commutes.

f∗Y Wf∗Y
ρoo Wι //

ω

��

Pf∗Y

µ

��
f∗Y f∗WY

f∗ρ
oo

f∗Wι
// f∗PY

If Y is an ex-fibration, then µ is an fp-equivalence.
(iii) Let X be an ex-space over A. Then there are natural maps

ω : Wf∗X −→ f∗WX and ν : Lf∗X −→ f∗LX

of ex-spaces over B such that ω is a map over f∗X and ν is a map under f∗X.
Let µ = ω ◦Wν : Pf∗X −→ f∗PX. Then the following diagram commutes.

f∗X Wf∗X
ρoo Wι //

ω

��

Pf∗X

µ

��
f∗X f∗WX

f∗ρ
oo

f∗Wι
// f∗PX

Proof. Again, the proof is by inspection of definitions. Since f! does not
preserve ex-fibrations, we do not have an analogue for f! of the last statement
about f∗ in (ii). �

Warning 8.4.4. We offer another example of the technical dangers lurking in
this subject. The maps µ in the previous proposition are not h-equivalences in
general, the problem in (ii), say, being that f∗ does not preserve h-equivalences
in general. If µ : Pf∗Y −→ f∗PY were always an h-equivalence, then one could
prove by the methods in §9.3 below that the relations (2.2.12) descend to homotopy
categories for all pullbacks of the form displayed in Proposition 2.2.11. In view of
Counterexample 0.0.1, that conclusion is false. This is a pitfall we fell into, and it
invalidated much work in an earlier draft.

8.5. Quasifibrant ex-spaces and ex-quasifibrations

By analogy with the fact that an ex-fibration is a well-sectioned h-fibrant ex-
space, we adopt the following terminology.

Definition 8.5.1. An ex-space X is quasifibrant if its projection p is a quasi-
fibration. An ex-quasifibration is a well-sectioned quasifibrant ex-space.

If X is quasifibrant, there is a long exact sequence of homotopy groups

· · · −→ πHq+1(B, b) −→ πHq (Xb, x) −→ πHq (X,x) −→ πHq (B, b) −→ · · · −→ πH0 (B, b)

for any b ∈ B, x ∈ Xb and H ⊂ Gb. Using this and the long exact sequences of the
pairs (X,Xb), five lemma comparisons give the following observations.
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Lemma 8.5.2. Let f : X −→ Y be a q-equivalence of ex-spaces over B. Then
each map of fibers f : Xb −→ Yb is a q-equivalence if and only if each map of
pairs f : (X,Xb) −→ (Y, Yb) is a q-equivalence. If X and Y are quasifibrant, then
these maps of pairs are q-equivalences. Conversely, if these maps of pairs are q-
equivalences and either X or Y is quasifibrant, then so is the other.

Working in GUB , we obtain the following result. The same pattern of proof
gives many other results of the same nature that we leave to the reader.

Proposition 8.5.3. The following statements hold.
(i) A wedge over B of ex-quasifibrations is an ex-quasifibration.
(ii) If f : X −→ Y is a map such that X is an ex-quasifibration and Y is quasifi-

brant, then the cofiber CBf is quasifibrant.
(iii) If X is an ex-quasifibration and K is a well-based space, then X ∧B K is an

ex-quasifibration.

Proof. This follows from Lemma 8.5.2, the natural zig-zag

X WXoo // PX

of h-equivalences, the corresponding preservation properties for ex-fibrations, and
the properties of q-equivalences between well-grounded ex-spaces; see Definition 5.4.1
and Proposition 5.4.9. It is also relevant that in each case passage to fibers gives
the nonparametrized analogue of the construction under consideration. Since this
result plays a vital role in our work, we give more complete details of (ii) and (iii);
(i) works the same way.

The cofiber CBf is the pushout of the diagram

CBX Xoo f // Y.

If X is well-sectioned, then the left arrow is an h-cofibration and WX and PX are
well-sectioned. Replacing f by Wf and Pf we obtain three such cofiber diagrams.
Together with our original zig-zag this gives a 3× 3-diagram. Applying the gluing
lemma, Definition 5.4.1(iii), we obtain a zig-zag of q-equivalences

CBf CBWfoo // CBPf.

Similarly, on fibers we obtain zig-zags of q-equivalences

Cfb C(Wf)boo // CW (Lf)b.

There results a zig-zag of q-equivalences of pairs

(CBf, Cfb) (CBWf,CWfb)oo // (CBPf,CW (Lf)b).

Since CBPf is ex-fibrant and in particular quasifibrant, CBf is quasifibrant.
Similarly, by Definition 5.4.1(v), we have natural zig-zags of q-equivalences

X ∧B K WX ∧B Koo // PX ∧B K
and

Xb ∧K WXb ∧Koo // W (LX)b ∧K.
We therefore have a zig-zag of q-equivalences of pairs

(X ∧B K,Xb ∧K) (WX ∧B K,WXb ∧K)oo // (PX ∧B K,W (LX)b ∧K).

Since PX ∧B K is ex-fibrant and hence quasifibrant, X ∧B K is quasifibrant. �



CHAPTER 9

The equivalence between HoGKB and hGWB

Introduction

We developed the point-set level properties of the category GKB of ex-G-spaces
over B in Chapters 1 and 2, and we developed those homotopical properties that
are accessible to model theoretic techniques in Chapters 4 – 7. In this chapter,
we use ex-fibrations to prove that certain structure on the point-set level that
seems inaccessible from the point of view of model category theory nevertheless
descends to homotopy categories. In particular, we prove that HoGKB is closed
symmetric monoidal and that the right derived functor f∗ of the Quillen adjunction
(f!, f∗) in the qf -model structure is closed symmetric monoidal. We use Brown
representability to show that f∗ has a partially defined right adjoint. Here on the
ex-space level, the classical limitation of Brown representability to connected spaces
forces us to restrict the construction of f∗ to G-connected ex-fibrations, which have
Gb-connected fibers.

In §9.1 we use the ex-fibrant approximation functor and the good properties of
the qf -model structure to prove that our model theoretic homotopy category of ex-
G-spaces over B is equivalent to the classical homotopy category of ex-G-fibrations
over B. In §9.2, we discuss how to compare derived functors as constructed on either
side of that equivalence in certain general cases. Replacing the model-theoretic
method of constructing derived functors by a more classical method given in terms
of ex-fibrant approximation, we construct the functors f∗ and FB on homotopy
categories in §9.3. By a combination of methods, we prove that HoGKB is a
symmetric monoidal category and that the base change functor f∗ descends to a
closed symmetric monoidal functor on homotopy categories in §9.4. We also obtain
such descent results for change of group adjunctions and for passage to fibers in that
section. These results are central to the theory, and there seem to be no shortcuts
to their proofs.

Everything is understood to be equivariant in this chapter, and we abbreviate
ex-G-fibration and ex-G-space to ex-fibration and ex-space throughout. We shall
retreat just a bit from all–embracing generality. We assume that G is a Lie group
and that all given base G-spaces B are proper and are of the homotopy types of
G-CW complexes. The reader may prefer to assume that G is compact, but there
is no gain in simplicity. In view of the properties of the base change adjunction
(f!, f∗) given in Proposition 7.3.4, there would be no real loss of generality if we
restricted further to base spaces that are actual G-CW complexes, but that would
be inconveniently restrictive.
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9.1. The equivalence of HoGKB and hGWB

Recall that X ∧B I+ is a cylinder object in the sense of the qf -model structure.
When we restrict to qf -fibrant and qf -cofibrant objects, homotopies in the qf -
model sense are the same as fp-homotopies, by Lemma 5.6.3. The morphism set
[X,Y ]G,B in HoGKB is naturally isomorphic to [RQX,RQY ]G,B , and this is the
set of fp-homotopy classes of maps RQX −→ RQY . Here R and Q denote the
functorial qf -fibrant and qf -cofibrant approximation functors obtained from the
small object argument. The total space of RQX has the homotopy type of a G-
CW complex since B does. This leads us to introduce the following categories.

Definition 9.1.1. Define GVB to be the full subcategory of GKB whose ob-
jects are well-grounded and qf -fibrant with total spaces of the homotopy types of
G-CW complexes. Define GWB to be the full subcategory of GVB whose objects
are the ex-fibrations over B. Let hGWB denote the category obtained from GWB

by passage to fp-homotopy classes of maps.

Note that the definition of GWB makes no reference to model category theory.
Recall that well-grounded means well-sectioned and compactly generated. When
B = ∗, GW∗ is just the category of well-based compactly generated G-spaces of the
homotopy types of G-CW complexes, and it is standard that its classical homotopy
category is equivalent to the homotopy category of based G-spaces with respect to
the q-model structure. We shall prove a parametrized generalization.

We think of GVB as a convenient half way house between GKB and GWB . It
turns out to be close enough to the category of qf -cofibrant and qf -fibrant objects in
GKB to serve as such for our purposes, while already having some of the properties
of GWB . The following crucial theorem fails for the q-model structure. It is essential
for this result that we only require the objects of VB to be well-sectioned, rather
than requiring them to be qf -cofibrant. This will force an assymmetry when we
deal with left and right derived functors in Proposition 9.2.2 below.

Theorem 9.1.2. The qf -cofibrant and qf -fibrant approximation functor RQ
and the ex-fibrant approximation functor P , together with the forgetful functors I
and J , induce the following equivalences of homotopy categories.

HoGKB

RQ // HoGVB
P //

I
oo hGWB

J
oo

Proof. For X in GKB , we have a natural zig-zag of q-equivalences in GKB

X QXoo // RQX.

Therefore X and IRQX are naturally q-equivalent in GKB . If X is in GVB , then
it is qf -fibrant and therefore so is QX. Then the above zig-zag is in GVB and thus
X and RQIX are naturally q-equivalent in GVB .

Since q-equivalences in GVB are h-equivalences, and P takes h-equivalences to
fp-equivalences, it is clear that P induces a functor on homotopy categories. Con-
versely, since fp-equivalences are in particular q-equivalences, the forgetful functor
J induces a functor in the other direction. For X in GVB we have the natural
zig-zag of h-equivalences

X WX
Wι //ρoo PX
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of Definition 8.3.4. However WX may not be in GVB since it may not be qf -fibrant.
Applying qf -fibrant approximation, we get a natural zig-zag of q-equivalences in
GVB connecting X and PX. It follows that X and JPX are naturally q-equivalent
in GVB . Starting with X in GWB , the above display is a zig-zag of fp-equivalences
in GWB , by Proposition 8.3.2. It follows that X and JPX are naturally fp-
equivalent in GWB . �

9.2. Derived functors on homotopy categories

Model category theory tells us how Quillen functors V : GKA −→ GKB induce
derived functors on the homotopy categories on the left hand side of the equivalence
displayed in Theorem 9.1.2. We now seek an equivalent way of passing to derived
functors on the right hand side. We begin with an informal discussion. We focus
on functors of one variable, but functors of several variables work the same way.

Following the custom in algebraic topology, we have been abusing notation
by using the same notation for point-set level functors and for derived homotopy
category level functors. We will continue to do so. However, the more accurate no-
tations of algebraic geometry, LV and RV for left and right derived functors, might
clarify the discussion. As we have already seen in Counterexample 0.0.1, passage to
derived functors is not functorial in general, so that a relation between composites
of functors that holds on the point-set level need not imply a corresponding relation
on passage to homotopy categories.

Recall that, model theoretically, if V is a Quillen right adjoint, then the right
derived functor of V is obtained by first applying fibrant approximation R and
then applying V on homotopy categories, which makes sense since V preserves
weak equivalences between fibrant objects. The left derived functor of a Quillen
left adjoint V is defined dually, via V Q. Problems arise when one tries to compose
left and right derived functors, which is what we must do to prove some of our
compatibility relations.

The equivalence of categories proven in Theorem 9.1.2 gives us a way of putting
the relevant left and right adjoints on the same footing, giving a “straight” passage
to derived functors that is neither “left” nor “right”. We do not attempt a formal
categorical analysis. We need mild good behavior for this to work.

Definition 9.2.1. A functor V : GKA −→ GKB is good if it is continu-
ous, takes well-grounded ex-spaces to well-grounded ex-spaces, and takes ex-spaces
whose total spaces are of the homotopy types of G-CW complexes to ex-spaces with
that property. Since V is continuous, it preserves fp-homotopies.

Proposition 9.2.2. Let V : GKA −→ GKB be a good functor that is a left or a
right Quillen adjoint. If V is a Quillen left adjoint, assume further that it preserves
q-equivalences between well-grounded ex-spaces. Then, under the equivalence of
categories in Theorem 9.1.2, the derived functor HoGKA −→ HoGKB induced
by V Q or V R is equivalent to the functor PV J : hGWA −→ hGWB obtained by
passage to homotopy classes of maps.

Proof. If V is a Quillen right adjoint, then it preserves q-equivalences between
qf -fibrant objects. If V is a Quillen left adjoint, then we are assuming that it
preserves q-equivalences between well-grounded objects. Since GVA consists of
well-sectioned qf -fibrant objects, it follows in both cases that V : GVA −→ GVB
passes straight to homotopy categories to give V : HoGVA −→ HoGVB . Since V
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preserves G-CW homotopy types on total spaces, V takes q-equivalences to h-
equivalences. Therefore PV takes q-equivalences to fp-equivalences and induces
a functor HoGVA −→ hGWB . To show that PV J and either V Q or V R agree
under the equivalence of categories, it suffices to verify that the following diagram
commutes.

HoGKA

RQ

��

V Q or V R // HoGKB

PRQ

��
HoGVA

PV
// hGWB

We have a natural acyclic qf -fibration QX −→ X and a natural acyclic qf -
cofibration X −→ RX. If V is a Quillen left adjoint, then we have a zig-zag
of natural q-equivalences

RQV Q // RV Q V Qoo // V RQ

because V preserves acyclic qf -cofibrations. If V is a Quillen right adjoint, then
we have a zig-zag of natural q-equivalences

RQV R RQV RQ //oo RV RQ V RQoo

because V preserves q-equivalences between qf -fibrant objects. In both cases, all
objects have total spaces of the homotopy types of G-CW complexes, so in fact
we have zig-zags of h-equivalences. Therefore, applying P gives us zig-zags of fp-
equivalences in GWB , by Proposition 8.3.2. �

Remark 9.2.3. When V preserves ex-fibrations, PV is naturally fp-equivalent
to V on ex-fibrations, by Proposition 8.3.2. The derived functor of V can then be
obtained directly by applying V and passing to equivalence classes of maps under
fp-homotopy.

9.3. The functors f∗ and FB on homotopy categories

We use the equivalence between HoGKB and hGWB to prove that, for any
map f : A −→ B between spaces of the homotopy types of G-CW complexes, the
adjunction (f∗, f∗) descends to homotopy categories. We begin by verifying that
f∗ satisfies the hypotheses of Proposition 9.2.2.

Proposition 9.3.1. Let f : A −→ B be a map of base spaces. Then the base
change functor f∗ restricts to a functor f∗ : GWB −→ GWA.

Proof. Consider Y inGWB . Since the total space of Y is of the homotopy type
of a G-CW complex, the fibers Yb are of the homotopy types of Gb-CW complexes
by Theorem 3.5.2. The fiber (f∗Y )a is a copy of Yf(a), and Ga acts through the
evident inclusion Ga ⊂ Gf(a). Therefore (f∗Y )a is of the homotopy type of a
Ga-CW complex. The total space of f∗Y is therefore of the homotopy type of
a G-CW complex, again by Theorem 3.5.2. Moreover, f∗Y is an ex-fibration by
Proposition 8.2.2. Thus f∗ restricts to a functor f∗ : GWB −→ GWA. �

Recalling the discussion of §7.5, we write GW c
B for the full subcategory of GWB

whose objects are the G-connected ex-fibrations.
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Theorem 9.3.2. For any map f : A −→ B of base spaces, the right derived
functor f∗ : HoGK c

B −→ HoGK c
A has a right adjoint f∗, so that

[f∗Y,X]G,A ∼= [Y, f∗X]G,B

for X in GK c
A and Y in GK c

B .

Proof. Clearly f∗Y is G-connected if Y is G-connected. In view of the equiv-
alence of categories in Theorem 9.1.2 and the fact that f∗ descends directly to a
functor f∗ : hGW c

B −→ hGW c
B on homotopy categories, by Propositions 9.2.2 and

9.3.1, it suffices to construct a right adjoint f∗ : hGW c
A −→ hGW c

B . We do that us-
ing the Brown representability theorem. By Theorem 7.5.17, HoGK c

B satisfies the
formal hypotheses for Brown representability, and therefore so does hGW c

B . In fact
GW c

B has the required wedges over B, double mapping cylinders and telescopes since
these constructions preserve ex-fibrations by Proposition 8.2.1 and Corollary 8.2.5
and since they clearly preserve G-CW homotopy types on the total space level and
stay within GUB . The objects in the detecting set DB of Definition 7.5.12 are
not in GWB , but we can apply the ex-fibrant approximation functor P to them to
obtain a detecting set of objects in hGWB . They still satisfy the requisite compact-
ness by Lemma 7.5.14 and our equivalence of categories. Therefore a contravariant
set-valued functor on hGW c

B is representable if and only if it satisfies the wedge and
Mayer-Vietoris axoms.

For a fixed ex-fibrant space X over A, consider the functor π(f∗Y,X)G,A on
objects Y of GW c

B , where π denotes fp-homotopy classes of maps. Since the functor
π(W,X)G,A on objects W of GW c

A is represented and is computed using homotopy
classes of maps, it clearly satisfies the wedge and Mayer-Vietoris axioms. More-
over, the functor f∗ preserves wedges, double mapping cylinders, and telescopes.
Indeed, f∗ : GK c

B −→ GK c
A is a continuous left adjoint and therefore preserves col-

imits and tensors, and this implies that f∗ : GW c
B −→ GW c

A preserves the relevant
homotopy colimits. Moreover, f∗ preserves fp-homotopies and so induces a functor
on homotopy categories that still preserves these homotopy colimits. Therefore the
functor π(f∗Y,X)G,A of Y also satisfies the wedge and Mayer-Vietoris axioms. We
conclude that there is an object f∗X ∈ GW c

B that represents this functor. It follows
formally that f∗ is a functor of X and that the required adjunction holds. �

Remark 9.3.3. When thinking in terms of HoGKB rather than hGWB , it is
vital to remember that f∗ here refers to the right derived functor on homotopy
categories. While f∗ preserves some cofibrant objects, it still cannot be computed
in terms of such point-set level objects. For example, working nonequivariantly,
if f is an inclusion, then, on the point-set level, f∗Sn,b ∼= Sn,a if f(a) = b while
f∗Sn,b ∼= ∗A if b /∈ Im(f). Our adjunction gives

[f∗Sn,b, X]A = [Sn,b, f∗X]B = πn((f∗X)b).

Clearly, this cannot have the erroneously predicted value πn(Xa) if f(a) = b and 0
otherwise. In particular, if A and B are connected and A is not all of B, this would
imply that πn(Xa) = 0 for all a and any X, which is nonsense.

We agree to write ' for natural equivalences on homotopy categories.

Remark 9.3.4. For composable maps f and g, g∗ ◦ f∗ ' (g ◦ f)∗ on homotopy
categories since f∗ ◦ g∗ ' (g ◦ f)∗ on homotopy categories. The latter equivalence
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is clear since f∗ and g∗ are derived from Quillen right adjoints. More sophisticated
commutation laws are proven in the next section.

Applying Theorem 9.3.2 to diagonal maps and composing with the homotopy
category level adjunction between the external smash product and function ex-space
functors, we obtain the following basic result; compare Lemma 2.5.6. Implicitly,
in everything that follows in this section and the next, we restrict to G-connected
ex-spaces whenever we apply base change functors f∗, such as ∆∗. Conclusions
that do not involve these functors apply in general.

Theorem 9.3.5. Define ∧B and FB on HoGKB as the composite (derived)
functors

X ∧B Y = ∆∗(X Z Y ) and FB(X,Y ) = F̄ (X,∆∗Y ).

Then
[X ∧B Y, Z]G,B ∼= [X,FB(Y, Z)]G,B

for X, Y , and Z in HoGK c
B .

Proof. The displayed adjunction is the composite of adjunctions for the (de-
rived) external smash and function ex-space functors and for the (derived) adjoint
pair (∆∗,∆∗). �

Remark 9.3.6. The referee (of the preliminary version) pointed out that the
ex-space analogue of [22, 7.2] shows that we can work directly with the point-
set topology to show that the (∧B , FB) adjunction on the original category GKB

is continuous and so descends to (classical) fp-homotopy categories to give the
adjunction

hGKB(X ∧B Y, Z) ∼= hGKB(X,FB(Y, Z)).

Similar point-set topological arguments work to show that, for a map f : A −→ B,
we have an adjunction

hGKA(f∗X,Y ) ∼= hGKB(X, f∗Y ).

These adjunctions do not imply our Theorems 9.3.2 and 9.3.5. By definition, our
category hGWB is a full subcategory of hGKB , but it is not an equivalent full
subcategory. The objects of GWB are very restricted, and general function ex-
spaces FB(Y,Z) are not fp-homotopy equivalent to such objects. The force of our
theorems is that, after restricting to our subcategories hGW c

B , we still have right
adjoints in these categories. It is this fact that we need to obtain right adjoints in
our preferred homotopy categories HoGK c

B .

9.4. Compatibility relations for smash products and base change

We first prove that HoGKB satisfies the associativity, commutativity and unity
conditions required of a symmetric monoidal category. We then show that all of
the isomorphisms of functors in Proposition 2.2.2 and some of the isomorphisms
of functors in Proposition 2.2.11 still hold after passage to homotopy categories.
Finally, we relate change of groups and passage to fibers to the symmetric monoidal
structure on homotopy categories. In some of our arguments, it is natural to work
in HoGKB . In others, it is natural to work in the equivalent category hGWB .
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Proposition 9.4.1. For maps f : A −→ B and g : A′ −→ B′ of base spaces
and for ex-spaces X over B and Y over B′,

(9.4.2) (f∗Y Z g∗Z) ' (f × g)∗(Y Z Z)

in HoGKA. For ex-spaces W over A and X over A′,

(9.4.3) (f!W Z g!X) ' (f × g)!(W ZX)

in HoGKB.

Proof. For (9.4.2), we work with ex-fibrations, starting in hGWB×B′ . By
Propositions 8.2.2 and 8.2.3, the functors we are dealing with preserve ex-fibrations
and therefore descend straight to homotopy categories. The conclusion is thus im-
mediate from its point-set level analogue. For (9.4.3), we work with model theoretic
homotopy categories, starting in HoGKA×A′ . Since (f × g)! ' (f × id)! ◦ (id× g)!,
we can proceed in two steps and so assume that g = id. By Corollary 7.3.3 and
Proposition 7.3.4, we are then composing Quillen left adjoints. Starting with qf -
cofibrant objects, we do not need to apply qf -cofibrant approximation, and the
conclusion follows directly from its point-set level analogue. �

We use this to complete the proof that HoGKB is symmetric monoidal.

Theorem 9.4.4. The category HoGKB is symmetric monoidal under the func-
tor ∧B, and HoGK c

B is closed symmetric monoidal under FB.

Proof. In view of Theorem 9.3.5, we need only prove the associativity, com-
mutativity, and unity of ∧B up to coherent natural isomorphism. The external
smash product has evident associativity, commutativity, and unity isomorphisms,
and these descend directly to homotopy categories, either by using that the external
smash produce of qf -cofibrant ex-spaces over A and B is qf -cofibrant over A× B
or by using that the external smash product of K ∈ GWA and L ∈ GWB is in
GWA×B . To see that these isomorphisms are inherited after internalization along
∆∗, we use (9.4.2). For the associativity of ∧B , we have

∆∗(∆∗(X Z Y ) Z Z) ' ∆∗(∆× id)∗((X Z Y ) Z Z) ' ((∆× id)∆)∗((X Z Y ) Z Z)

' ((id×∆)∆)∗(XZ(Y ZZ)) ' ∆∗(id×∆)∗(XZ(Y ZZ)) ' ∆∗(XZ∆∗(Y ZZ)).

The commutativity of ∧B is similar but simpler. For the unit, we observe that
S0
B ' r∗S0, r : B −→ ∗. Therefore, since (id× r)∆ = id,

X ∧B S0
B ' ∆∗(X Z r∗S0) ' ∆∗(id× r)∗(X Z S0) ' ((id× r)∆)∗(X) = X. �

We turn next to the derived versions of the base change compatibilities of
Propositions 2.2.2 and 2.2.11. Observe that the functor f! is good since the sec-
tion of a well-sectioned ex-space is an h-cofibration and since G-CW homotopy
types are preserved under pushouts one leg of which is an h-cofibration. Moreover,
f! preserves q-equivalences between well-sectioned ex-spaces by Proposition 7.3.4.
Therefore Proposition 9.2.2 applies to f!. In the remaining results, when we refer
to closed structures and to right adjoints to base change functors f∗, restriction to
G-connected ex-spaces is assumed implicitly.

Theorem 9.4.5. For a G-map f : A −→ B, f∗ : HoGKB −→ HoGKA is a
closed symmetric monoidal functor.
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Proof. The isomorphism f∗S0
B
∼= S0

A implies the equivalence f∗S0
B ' S0

A since
S0
B is qf -fibrant. Alternatively, since S0

B is in GWB , f∗S0
B
∼= S0

A is in GWA, and
the isomorphism implies that f∗S0

B ' S0
A in hGWA. We must prove that the iso-

morphisms (2.2.3) through (2.2.7) descend to equivalences on homotopy categories.
Categorical arguments in [62, §§2, 3] show that it suffices to show that the two
isomorphisms (2.2.3) and (2.2.6) descend to equivalences on homotopy categories.
These two isomorphisms do not involve the right adjoints f∗ or ∆∗ and are therefore
more tractable than the other three (which require G-connected ex-spaces). First
consider (2.2.3):

f∗(Y ∧B Z) ∼= f∗Y ∧A f∗Z.
If Y and Z are in GWB , then the two sides of this isomorphism are both in GWA,
by Proposition 8.2.2 and Proposition 8.2.3. Therefore the point-set level isomor-
phism descends directly to the desired homotopy category level equivalence. Next,
consider (2.2.6):

f!(f∗Y ∧A X) ∼= Y ∧B f!X.
Assume that X is in GWA and Y is in GWB . The functor f! does not preserve ex-
fibrations so, to pass to derived categories, we must replace it by Pf! on both sides.
By Proposition 8.2.6, the functor Y ∧B (−) preserves h-equivalences between well-
sectioned ex-spaces. Since P sends h-equivalences to fp-equivalences, we therefore
have fp-equivalences, natural up to fp-homotopy,

Pf!(f∗Y ∧A X) ∼= P (Y ∧B f!X)
P (id∧Bφ)// P (Y ∧B Pf!X) Y ∧B Pf!X,

φoo

where φ = (ρ,Wι) is the zigzag of h-equivalences of Definition 8.3.4. This implies
the desired equivalence in the homotopy category. �

The reader is invited to try to prove directly that the projection formula holds
in the homotopy category. Even the simple case of f : ∗ −→ B, the inclusion of a
point, should demonstrate the usefulness of Proposition 9.2.2.

Theorem 9.4.6. Suppose given a pullback diagram of G-spaces

C
g //

i

��

D

j

��
A

f
// B

in which f (or j) is a q-fibration. Then there are natural equivalences of functors
on homotopy categories

(9.4.7) j∗f! ' g!i∗, f∗j∗ ' i∗g∗, f∗j! ' i!g∗, j∗f∗ ' g∗i∗.

Proof. As in Proposition 2.2.11, the second and fourth equivalences (which
again require G-connected ex-spaces) are conjugate to the first and third. However,
since the situation is no longer symmetric, we must prove both the first and third
equivalences, assuming f is a q-fibration.

First consider the desired equivalence f∗j! ' i!g∗. We work with ex-fibrations,
starting with X ∈ hGWD. We must replace j! and i! by Pj! and Pi! before passing
to homotopy categories. By Proposition 7.3.4, f∗ preserves q-equivalences since f is
a q-fibration. Moreover, our q-equivalences are h-equivalences since we are dealing
with total spaces of the homotopy types of G-CW complexes. By the diagram in
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Lemma 8.4.3(ii), we see that µ : Pf∗ −→ f∗P is a natural h-equivalence here. This
would be false for arbitrary maps f , as observed in Warning 8.4.4. Since µ is an
h-equivalence between ex-fibrations, it is an fp-equivalence. Therefore

f∗Pj!X ' Pf∗j!X ∼= Pi!g
∗X.

Now consider the desired equivalence j∗f!X ' g!i∗X in HoGKD. Our assump-
tion that f is a q-fibration gives us no direct help with this. However, we may factor
j as the composite of a homotopy equivalence and an h-fibration. Expanding our
pullback diagram as a composite of pullbacks, we see that it suffices to prove our
commutation relation when j is an h-fibration and when j is a homotopy equiva-
lence. The first case is immediate by symmetry from the first part. Thus assume
that j is a homotopy equivalence. Then, since f is a q-fibration, i is also a homo-
topy equivalence. By Proposition 7.3.4, (i!, i∗) and (j!, j∗) are adjoint equivalences
of homotopy categories. Therefore

j∗f! ' j∗f!i!i∗ ' j∗j!g!i∗ ' g!i∗. �

Remark 9.4.8. As illustrated in this proof, it is a useful general procedure
to factor a map f : A −→ B as the composite of a homotopy equivalence and
a Hurewicz fibration. If f is an equivalence, then f! on derived categories is an
equivalence with inverse f∗, hence f! is equivalent to g∗ for a homotopy inverse g of
f . Therefore good properties of (−)∗ translate to good properties of (−)!. When f
is a fibration, we have derived commutation relations coming from Theorem 9.4.6
that can help in the study of f!. Note, however, that this factorization procedure
cannot be used to get around the fibration hypothesis in Theorem 9.4.6. It was our
attempt to achieve this that led to the discovery of Counterexample 0.0.1.

Finally, we turn to a promised compatibility relationship between products and
change of groups. We observed in Proposition 7.4.7 that the point-set level closed
symmetric monoidal equivalence of Proposition 2.3.9 is given by a Quillen equiva-
lence. The following addendem shows that the resulting equivalence on homotopy
categories is again closed symmetric monoidal.

Proposition 9.4.9. Let ι : H −→ G be the inclusion of a subgroup and A
be an H-space. The Quillen equivalence (ι!, ν∗ι∗) descends to a closed symmetric
monoidal equivalence between HoHKA and HoGKι!A.

Proof. Let ∆: A −→ A×A be the diagonal map. The isomorphisms

ι∗∆∗(X Z Y ) ∼= ∆∗ι∗(X Z Y ) ∼= ∆∗(ι∗X Z ι∗Y )

descend to equivalences on homotopy categories, the first since it is between Quillen
right adjoints, the second since ι∗ preserves all q-equivalences. It follows that
ν∗ι∗ is a symmetric monoidal functor on homotopy categories. Since it is also
an equivalence, it follows formally that it is closed symmetric monoidal. �

Combined with Theorem 9.4.5 applied to the inclusion b̃ : G/Gb −→ B, this
last observation gives us the following conclusion.

Theorem 9.4.10. The derived fiber functor (−)b : HoGKB −→ HoGbKb is
closed symmetric monoidal, and it has a left adjoint (−)b and a right adjoint b(−).

We emphasize that this innocent looking result packages highly non-trivial and
important information. It gives in particular that, for ex-spaces X and Y , the
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(derived) fiber FB(X,Y )b of the (derived) function space FB(X,Y ) is equivalent in
HoGbKb to the (derived) function space F (Xb, Yb) of the (derived) fibers Xb and
Yb. On the point set level, that is what motivated the definition of the internal
function ex-space. That it still holds on the level of homotopy categories is a
reassuring consistency result. The annoying implicit restriction to G-connected
ex-spaces will disappear when we pass to a stable situation in Part III.



Part III

Parametrized equivariant stable
homotopy theory





Introduction

We develop rigorous foundations for parametrized equivariant stable homotopy
theory. The idea is to start with a fixed base G-space B and to build a good
category, here denoted GSB , of G-spectra over B. We assume once and for all
that our base spaces B must be compactly generated and must have the homotopy
types of G-CW complexes. By “good” we mean that GSB is a closed symmet-
ric monoidal topological model category whose associated homotopy category has
properties analogous to those of the ordinary equivariant stable homotopy category.
Informally, the homotopy theory of GSB is specified by the homotopy theory that
is seen on the fibers of G-spectra over B. This builds a natural home in which one
can do stable homotopy theory while still keeping track of such unstable data as
the fundamental groupoid of the base space.

There are many foundational problems that make the development of the
parametrized theory a less than obvious generalization of the nonparametrized the-
ory. Problems on the space level were dealt with in Parts I and II, and we deal
with the analogous spectrum level problems here. We give some categorical pre-
liminaries on enriched equivariant categories in Chapter 10. We define and develop
the basic properties of our preferred category of parametrized G-spectra in Chapter
11, working on the point-set level. We study its model structures in Chapter 12,
and we study adjunctions and compatibility relations in Chapter 13. All of the
problems that we faced on the space level are still there, but their solutions are
more difficult. In Chapter 14, we go on to study further such compatibilities that
more fundamentally involve equivariance.

The theory of highly structured spectra is highly cumulative. We build on the
theory of equivariant orthogonal spectra of Mandell and May [105]. In turn, that
theory builds on the theory of nonequivariant orthogonal spectra. A self-contained
treatment of nonequivariant diagram spectra, including orthogonal spectra, is given
by Mandell, May, Schwede, Shipley in [106]. The treatments of [105] and [106], like
this one, are topological as opposed to simplicial. That seems to be essential when
dealing with infinite groups of equivariance. It also allows use of orthogonal spectra
rather than symmetric spectra. These are much more natural equivariantly and,
even nonequivariantly, they have the major convenience that their weak equiva-
lences are exactly the maps that induce isomorphisms of homotopy groups.

The theory of equivariant parametrized spectra can be thought of as the pushout
over the theory of spectra of the theories of equivariant spectra and of nonequiv-
ariant parametrized spectra. In fact, given [105], the equivariance adds few serious
difficulties to the passage from spectra to parametrized spectra, although it does
add many interesting new features. The reader primarily interested in classical ho-
motopy theory should ignore all details of equivariance in reading Chapters 11–13.
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However, there is no nonequivariant precursor of the present treatment of
parametrized spectra in the literature. There are preliminary forms of such a theory
[9,10,31,32,42], but these either do not go beyond suspension spectra or are based
on obsolescent technology. None go far enough for our purposes, although the early
first approximation of Monica Clapp [31], written up in more detail with Dieter
Puppe [32], deserves much credit. Clapp’s emphasis on ex-fibrations, together with
some key technical results about them, have been very helpful.

There are several possible alternative approaches. Rather than building on
the theory of orthogonal G-spectra of [105, 106], one can build on the theory of
G-spectra, S-modules, and SG-modules of [98], [61], and [105], respectively. Po Hu
[78] began work on such a treatment, using parametrized G-spectra. However, she
followed the first author’s unpublished notes [122] by taking the q-model structure
on ex-G-spaces as her starting point, and the stable model structure cannot be
made rigorous from there. It seems to us that resolving the foundational issues
concerning smash products, function spectra, base change functors, compatibility
relations, and so forth considered here would be more difficult in that framework
than in the one we have chosen. In §24.4, we at least give a rigorous definition of
the parametrized stable homotopy category from that point of view.

Alternatively, for finite groups G, one can build on the theory of symmetric
spectra of Hovey, Smith, and Shipley [77] and its equivariant generalization due to
Mandell [104]. Such an approach would avoid the point-set topological technicalities
of the present approach and would presumably lead to rather different looking
problems with fibrations and cofibrations. The problems with the stable homotopy
category level adjunctions that involve base change functors, smash products, and
function spectra are intrinsic and would remain. Our solutions to these problems
do not seem to carry over to the simplicial context in an obvious way, and an
alternative simplicial treatment could prove to be quite illuminating.

In view of the understanding of unstable equivariant homotopy theory for
proper actions of non-compact Lie groups that was obtained in Part II, it might
seem that there should be no real difficulty in obtaining a good stable theory along
the same lines as the theory for compact Lie groups. However, equivariant stable
homotopy theory for non-compact Lie groups is in rudimentary form. We leave its
study to future work, explaining in §11.6 where some of the problems lie. Except in
that section, G is asssumed to be a compact Lie group from Chapter 11 onwards.

A few other notes on terminology may be helpful. We shall not use the term
“ex-spectrum over B” since, stably, there is no meaningful unsectioned theory.
Instead, we shall use the term “spectrum over B”. This is especially convenient
when considering base change. We write out “orthogonal G-spectrum over B”
until §11.4. However, since we consider no other kinds of G-spectra and work
equivariantly throughout, we later abbreviate this to “spectrum over B” when
there is no danger of confusion. That is, we work equivariantly throughout, but we
only draw attention to this fact when it plays a significant mathematical role.

In Part II, the main objects of study were ex-spaces over B, and we used letters
such as X and Y for them, using K and L for spaces. In this part, the main objects
of study are spectra over B, and we change conventions by now using letters such
as X and Y for them, using letters such as K and L for ex-spaces, and using letters
such as T for based spaces.



CHAPTER 10

Enriched categories and G-categories

Introduction

To give context for the structure enjoyed by the categories of parametrized
orthogonal G-spectra that we shall define, we first describe the kind of equivariant
parametrized enrichments that we shall encounter. In fact, our categories have sev-
eral layers of enrichment, and it is helpful to have a consistent language, somewhat
non-standard from a categorical point of view, to keep track of them. In §§10.1 and
10.2, we give some preliminaries on enriched categories, working nonequivariantly
in §10.1 and adding considerations of equivariance in §10.2. We discuss the role of
the several enrichments in sight in our G-topological model G-categories in §10.3.
In this chapter, G can be any topological group.

10.1. Parametrized enriched categories

As discussed in §1.2, all of our categories C are topological, meaning that
they are enriched over the category K∗ of based spaces (= k-spaces). In contrast
with general enriched category theory and our further enrichments, the topological
enrichment is given just by a topology on the underlying set of morphisms, and we
denote the space of morphisms X −→ Y by C (X,Y ). We say that a topological
category C is topologically bicomplete if it is bicomplete and bitensored over K∗.
In fact, we shall have enrichments and bitensorings over the category KB of ex-
spaces over B that imply the topological enrichment and bitensoring by restriction
to ex-spaces B × T for T ∈ K∗.

Recall from §1.3 that KB is topologically bicomplete, with tensors and coten-
sors denoted by K ∧B T and FB(T,K) for T ∈ K∗ and K ∈ KB . It is also closed
symmetric monoidal under its fiberwise smash product and function space func-
tors, which are also denoted by ∧B and FB ; its unit object is S0

B = B × S0. It is
therefore enriched and bitensored over itself. The two enrichments are related by
natural based homeomorphisms

(10.1.1) KB(K,L) ∼= KB(S0
B , FB(K,L)).

This is the case T = S0 of the more general based homeomorphism

(10.1.2) K∗(T,KB(K,L)) ∼= KB(S0
B ∧B T, FB(K,L))

for T ∈ K∗ and K, L ∈ KB . The Yoneda lemma, (10.1.1), and the bitensoring
adjunctions imply that the two bitensorings are related by the equivalent natural
isomorphisms of ex-spaces

(10.1.3) K ∧B T ∼= K ∧B (S0
B ∧B T ) and FB(T,K) ∼= FB(S0

B ∧B T,K).

These in turn imply the equivalent generalizations

(10.1.4) K∧B (L∧B T ) ∼= (K∧BL)∧B T and FB(T, FB(K,L)) ∼= FB(K∧B T,L).
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Formally, rather than defining the enrichments and bitensorings over K∗ indepen-
dently, we can take (10.1.2) and (10.1.3) as definitions of these structures in terms
of the enrichment and bitensoring over KB . Then (10.1.4) and the bitensoring
adjunction homeomorphisms

(10.1.5) KB(K ∧B T,L) ∼= K∗(T,KB(K,L)) ∼= KB(K,FB(T,L))

follow directly.

Remark 10.1.6. We make frequent use of the functor r∗(−) = S0
B ∧B (−)

from based spaces to ex-spaces over B, and we henceforward abbreviate notation
by setting

TB = B × T = S0
B ∧B T

for a based space T , and similarly for maps. Observe that K ∧B T and K ∧B TB
are two names for the same ex-space over B. When working on a formal conceptual
level, it is often best to think in terms of tensors over K∗ and use the first name.
However, on a pragmatic level, to avoid confusion, it is perhaps best to view based
spaces as embedded in ex-spaces via r∗ and to use the second notation, working
only with tensors over KB .

We generalize and formalize several aspects of the discussion above.

Definition 10.1.7. A topological category C is topological over B if it is en-
riched and bitensored over KB . It is topologically bicomplete over B if it is also
bicomplete. We write PB(X,Y ) for the hom ex-space over B, and we write X∧BK
and FB(K,X) for the tensor and cotensor in C , where X, Y ∈ C and K ∈ KB .
Explicitly, we require bitensoring adjunction homeomorphisms of based spaces

(10.1.8) C (X ∧B K,Y ) ∼= KB(K,PB(X,Y )) ∼= C (X,FB(K,Y )).

By Yoneda lemma arguments, these imply unit and transitivity isomorphisms in
C , namely

(10.1.9) X ∼= X ∧B S0
B and X ∧B (K ∧B L) ∼= (X ∧B K) ∧B L,

and also bitensoring adjunction isomorphisms of ex-spaces

(10.1.10) PB(X ∧B K,Y ) ∼= FB(K,PB(X,Y )) ∼= PB(X,FB(K,Y )).

Conversely, there is a natural homeomorphism

(10.1.11) C (X,Y ) ∼= KB(S0
B , PB(X,Y )),

and the isomorphisms (10.1.8) follow from (10.1.10) by applying KB(S0
B ,−).

If we do not require C to be topological to begin with, we can take (10.1.11)
as the definition of the space C (X,Y ) and so recover the topological enrichment.
With the notation of Remark 10.1.6, we obtain tensors and cotensors with based
spaces T by setting

(10.1.12) X ∧B T = X ∧B TB and FB(T,X) = FB(TB , X).

The adjunction homeomorphisms

(10.1.13) C (X ∧B T, Y ) ∼= K∗(T,C (X,Y )) ∼= C (X,FB(T, Y ))

are obtained by replacing K by TB in (10.1.8) and using (10.1.2) and (10.1.11).
In the cases of interest, C is closed symmetric monoidal, and then the hom

ex-spaces PB(X,Y ) can be understood in terms of the internal hom in C by the
following definition and result.
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Definition 10.1.14. Let C be a topological category over B with a closed
symmetric monoidal structure given by a product ∧B and function object functor
FB , with unit object SB . We say that C is a topological closed symmetric monoidal
category over B if the tensors and products are related by a natural isomorphism

X ∧B K ∼= X ∧B (SB ∧B K)

in C for K ∈ KB and X ∈ C .

Proposition 10.1.15. Let C be a topological closed symmetric monoidal cate-
gory over B. Then, for K ∈ KB and X, Y , Z ∈ C , there are natural isomorphisms

FB(K,Y ) ∼= FB(SB ∧B K,Y ),

PB(X,Y ) ∼= PB(SB , FB(X,Y )),

PB(X ∧B Y, Z) ∼= PB(X,FB(Y, Z))

in C and a natural homeomorphism of based spaces

KB(K,PB(X,Y )) ∼= C (SB ∧B K,FB(X,Y )).

10.2. Equivariant parametrized enriched categories

Turning to the equivariant generalization, we give details of the context of
topological G-categories, continuous G-functors, and natural G-maps that we first
alluded to in §1.4. The discussion elaborates on that given in [105, II§1]. Generi-
cally, we use notations of the form CG and GC to denote a category CG enriched
over the category GK∗ of based G-spaces and its associated “G-fixed category”
GC with the same objects and the G-maps between them; GC is enriched over
K∗. We shall write (CG, GC ) for such a pair, and we shall refer to the pair as a
“G-category”.

In the terminology of enriched category theory, GC is the underlying topological
category of CG. The hom objects of CG are G-spaces CG(X,Y ); G-functors and
natural G-maps just mean functors and natural transformations enriched over GK∗.
Consistently with enriched category theory, the space GC (X,Y ) = CG(X,Y )G can
be identified with the space of G-maps S0 −→ CG(X,Y ). We call the points of
CG(X,Y ) “arrows” to distinguish them from the points of GC (X,Y ), which we
call “G-maps”, or often just “maps”, with the equivariance understood.

We cannot expect CG to have limits and colimits, but GC is usually bicomplete.
In many of our examples, both CG and GC are closed symmetric monoidal under
functors ∧B and FB . For example, we have the closed symmetric monoidal G-
category (KG,B , GKB) of ex-G-spaces over a G-space B described in §1.4.

Definition 10.2.1. A G-category (CG, GC ) is G-topological over B if CG is
enriched over GKB and bitensored over KG,B . It follows that GC is enriched over
KB and bitensored over GKB . We say that (CG, GC ) is G-topologically bicomplete
over B if, in addition, GC is bicomplete. We write PB(X,Y ) for the hom ex-G-
space over B, and we write X ∧B K and FB(K,X) for the tensor and cotensor in
CG, where X, Y ∈ CG and K ∈ KG,B . Explicitly, we require bitensoring adjunction
homeomorphisms of based G-spaces

(10.2.2) CG(X ∧B K,Y ) ∼= KG,B(K,PB(X,Y )) ∼= CG(X,FB(K,Y )).

There result coherent unit and transitivity isomorphisms in GC

(10.2.3) X ∼= X ∧B S0
B and X ∧B (K ∧B L) ∼= (X ∧B K) ∧B L
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and also bitensoring adjunction isomorphisms of ex-G-spaces

(10.2.4) PB(X ∧B K,Y ) ∼= FB(K,PB(X,Y )) ∼= PB(X,FB(K,Y )).

Conversely, there is a natural homeomorphism of based G-spaces

(10.2.5) CG(X,Y ) ∼= KG,B(S0
B , PB(X,Y )),

and the isomorphisms (10.2.2) follow from (10.2.4) by applying KG,B(S0
B ,−). Pas-

sage to G-fixed points from (10.2.2) gives the bitensoring adjunction homeomor-
phisms of based spaces

(10.2.6) GC (X ∧B K,Y ) ∼= GKB(K,PB(X,Y )) ∼= GC (X,FB(K,Y )).

We warn the reader that we shall not always adhere strictly to the notational
pattern of Definition 10.2.1 for our several layers of enrichment. In particular, in
the domain categories for our equivariant diagram spaces and diagram spectra, only
CG is of interest, not GC , and our notations will reflect that. On the other hand,
when studying model categories, it is always the bicomplete category GC that is
of fundamental interest.

If (CG, GC ) is G-topological over B, then it is automatically G-topological
(over ∗). This enrichment is recovered by taking (10.1.11), read equivariantly, as
the definition of the based G-space CG(X,Y ). Just as in the nonequivariant case,
for based G-spaces T and objects X of CG, the tensors and cotensors in CG and
GC are given on objects by

(10.2.7) X ∧B T = X ∧B TB and FB(T,X) = FB(TB , X),

using the notation of Remark 10.1.6 equivariantly. The requiredG-homeomorphisms

(10.2.8) CG(X ∧B T, Y ) ∼= KG,∗(T,CG(X,Y )) ∼= CG(X,FB(T, Y ))

follow directly.
We have equivariant analogues of Definition 10.1.14 and Proposition 10.1.15.

Definition 10.2.9. Let (CG, GC ) be a G-topological G-category over B with
a closed symmetric monoidal structure given by a product G-functor ∧B and a
function object G-functor FB , with unit object SB . We say that (CG, GC ) is
a G-topological closed symmetric monoidal G-category over B if the tensors and
products are related by a natural isomorphism

X ∧B K ∼= X ∧B (SB ∧B K)

in GC for K ∈ GKB and X ∈ GC .

Proposition 10.2.10. Let (CG, GC ) be a G-topological closed symmetric mon-
oidal G-category over B. Then, for K ∈ KB and X, Y , Z ∈ C , there are natural
isomorphisms

FB(K,Y ) ∼= FB(SB ∧B K,Y ),

PB(X,Y ) ∼= PB(SB , FB(X,Y )),

PB(X ∧B Y,Z) ∼= PB(X,FB(Y, Z))

in GC and there is a natural homeomorphism of based G-spaces

KG,B(K,PB(X,Y )) ∼= CG(SB ∧B K,FB(X,Y )).
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10.3. G-topological model G-categories

We explain what it means for a G-topological G-category (CG, GC ) over B to
have a G-topological model structure. This structure implies in particular that the
homotopy category HoGC is bitensored over the homotopy category HoGK . We
need some notation. Throughout this section, we consider maps

i : W −→ X, j : V −→ Z, and p : E −→ Y

in GC and a map k : K −→ L in either GKB or GK∗; in the latter case we apply
the functor (−)B = B × (−) to k and so regard it as a map in GKB , as suggested
in Remark 10.1.6. We shall define the notion of a G-topological model category in
terms of the induced map

(10.3.1) C �
G (i, p) : CG(X,E) −→ CG(W,E)×CG(W,Y ) CG(X,Y )

of based G-spaces. Passing to G-fixed points, this gives rise to a map

(10.3.2) GC �(i, p) : GC (X,E) −→ GC (W,E)×GC (W,Y ) GC (X,Y )

of based spaces, and we have the following motivating observation.

Lemma 10.3.3. The pair (i, p) has the lifting property if and only if the function
GC �(i, p) is surjective.

Definition 10.3.4. Let (CG, GC ) be a G-topological G-category over B such
that GC is a model category. We say that the model structure is G-topological if
C �
G (i, p) is a fibration in GK∗ when i is a cofibration and p is a fibration and is

acyclic when, further, either i or p is acyclic.

Remark 10.3.5. The definition must refer consistently to either h-type or q-
type model structures; the resulting notions are quite different. We usually have in
mind a q-type model structure, in which case the weak equivalences and fibrations
are often characterized by conditions on the H-fixed point maps fH of a map f . If
F is a family of subgroups of G, such as the family G of compact subgroups, then
we can restrict attention to those H that are in F . The resulting F -equivalences
and F -fibrations usually specify another model structure on GC . In particular, we
have the F -model structure on GK∗. For the qf -type model structures of §7.2, we
must start with a generating set C that contains the orbits G/H with H ∈ F ∩ G
and consists of F ∩G -cell complexes. We say that an F -model structure on GC is
F -topological if the condition of the previous definition holds when we use the F -
notions of fibration, cofibration and weak equivalence throughout. The observations
of this section generalize to F -topological model categories for any family F .

In addition to the map of G-spaces displayed in (10.3.1), we have a map

(10.3.6) P�
B (i, p) : PB(X,E) −→ PB(W,E)×PB(W,Y ) PB(X,Y )

of ex-G-spaces over B.

Warning 10.3.7. We can define what it means for (CG, GC ) to be a G-
topological model G-category over B, using the map P�

B (i, p) of ex-G-spaces rather
than the map C �

G (i, p) of G-spaces. However,we know of no q-type examples (even
nonequivariant ones) where this condition is satisfied. For example, (KG,B , GKB)
is G-topological, by Theorems 7.2.3 and 7.2.8, but, as Warning 6.1.7 makes clear
by adjunction, we cannot expect it to be G-topological over B.
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Just as in the classical theory of simplicial or topological model categories, there
are various equivalent reformulations of what it means for GC to be G-topological.
To explain them, observe that the tensors and cotensors with ex-G-spaces over B
give rise to induced maps

(10.3.8) i�Bk : (X ∧B K) ∪W∧BK (W ∧B L) −→ X ∧B L

and

(10.3.9) F�
B (k, p) : FB(L,E) −→ FB(K,E)×FB(K,Y ) FB(L, Y )

of ex-G-spaces over B. If (CG, GC ) is closed symmetric monoidal, then we also
have the induced maps

(10.3.10) i�Bj : (X ∧B V ) ∪W∧BV (W ∧B Z) −→ X ∧B Z

and

(10.3.11) F�
B (j, p) : FB(Z,E) −→ FB(V,E)×FB(V,Y ) FB(Z, Y )

in GC . We have various adjunction isomorphisms relating these various �-product
maps and �-function object maps.

Proposition 10.3.12. If k is a map of ex-G-spaces over B, then there are
adjunction isomorphisms

(10.3.13) P�
B (i�Bk, p) ∼= F�

B (k, P�
B (i, p)) ∼= P�

B (i, F�
B (k, p))

of maps of ex-G-spaces over B and

(10.3.14) C �
G (i�Bk, p) ∼= K �

G,B(k, P�
B (i, p)) ∼= C �

G (i, F�
B (k, p))

of maps of based G-spaces. If k is a map of based G-spaces, then the last pair of
isomorphisms can be rewritten as

(10.3.15) C �
G (i�Bk, p) ∼= K �

G,∗(k,C
�
G (i, p)) ∼= C �

G (i, F�
B (k, p)).

When (CG, GC ) is closed symmetric monoidal there are adjunction isomorphisms

(10.3.16) P�
B (i�Bk, p) ∼= P�

B (i, F�
B (k, p))

of maps of ex-G-spaces over B and

(10.3.17) C �
G (i�Bk, p) ∼= C �

G (i, F�
B (k, p))

of maps of based G-spaces.

Together with Lemma 10.3.3, this implies the promised alternative equivalent
conditions that describe when a model category is G-topological.

Proposition 10.3.18. Let (CG, GC ) be a G-topological G-category over B such
that GC has a model structure. Then the following conditions are equivalent.

(i) The map i�Bk of (10.3.8) is a cofibration in GC if i is a cofibration in GC
and k is a cofibration in GK∗. It is acyclic if either i or k is acyclic.

(ii) The map F�
B (k, p) of (10.3.9) is a fibration in GC if p is a fibration in GC

and k is a cofibration in GK∗. It is acyclic if either p or k is acyclic.
(iii) The map C �

G (i, p) of (10.3.1) is a fibration in GK∗ if i is a cofibration in GC
and p is a fibration in GC . It is acyclic if either i or p is acyclic.
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Proof. The third condition is our definition of the model structure being
G-topological. We prove that the first condition is equivalent to the third. A
similar argument shows that the second condition is also equivalent to the third.
The map C �

G (i, p) is a fibration if and only if (k,C �
G (i, p)) has the lifting property

with respect to all acyclic cofibrations k in GK∗. By Lemma 10.3.3 and the first
adjunction isomorphism in (10.3.15), that holds if and only if (i�Bk, p) has the
lifting property, that is, if and only if i�Bk is an acyclic cofibration. If either i or
p is acyclic, then we take k to be a cofibration in GK∗ and argue similarly. �





CHAPTER 11

The category of orthogonal G-spectra over B

Introduction

Intuitively, an orthogonal spectrumX over B consists of ex-spacesX(V ) over B
and ex-maps σ : X(V )∧BSW −→ X(V ⊕W ) for suitable inner product spaces V and
W . The orthogonal group O(V ) must act on X(V ), and σ must be (O(V )×O(W ))-
equivariant. The orthogonal group actions enable the definition of a good external
smash product. Moreover, they will later allow us to define stable weak equivalences
in terms of homotopy groups, as would not be possible if we only had actions by
symmetric groups.

Similarly, use of general inner product spaces allows us to build in actions
by a compact Lie group G without difficulty. For non-compact Lie groups, we
should ignore inner products and use linear isomorphisms, replacing the compact
orthogonal group O(V ) by the general linear group GL(V ). However, as we explain
in §11.6, there are more serious problems in generalizing to non-compact Lie groups;
except in that section, we require G to be a compact Lie group.

Working equivariantly, we first ignore the structure maps σ and describe the
diagram category of ex-G-spaces in §11.1. We build in the structure maps in §11.2,
where we define the category of orthogonal G-spectra over B. In §11.3, we show
that this category too can be described as a diagram category of ex-G-spaces, of
course over a different domain category. The formal properties of the category
of ex-G-spaces over B carry over to the category of orthogonal G-spectra over B,
but there are some new twists. For example, our category of G-spectra over B is
enriched not just over based G-spaces, but more generally over ex-G-spaces over
B. We discussed the relevant formalities in the previous chapter. This enhanced
enrichment is essential to the definition of function G-spectra over B.

We show in §11.4 that the base change functors and their properties also carry
over to these categories of parametrized G-spectra, and we discuss change of group
functors and restriction to fibers in §11.5.

11.1. The category of IG-spaces over B

We recall the G-category (IG, GI ) from [105, II.2.1]. The objects and arrows
of IG are finite dimensional G-inner product spaces and linear isometric isomor-
phisms. The maps of GI are G-linear isometries. More precisely, as dictated by
the general theory of [105,106], we take IG(V,W ) as based with basepoint disjoint
from the space of linear isometric isomorphisms V −→W . The objects V run over
a collection V of G-representations that is closed under direct sums and contains
the trivial representation R. We generally focus on the collection V (U) of all rep-
resentations that embed up to isomorphism in a given “G-universe” U , where a

159
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G-universe is a sum of countably many copies of representations in a set of repre-
sentations that includes the trivial representation. We usually think in terms of a
“complete G-universe”, one that contains all representations of G, but the choice
is irrelevant until otherwise stated.

Based G-spaces are ex-G-spaces over ∗, and IG-spaces are defined in [105,
II.2.3] as G-functors IG −→ TG, where TG is the G-category of compactly gen-
erated based G-spaces. One can just as well drop the weak Hausdorff condition,
which plays no necessary mathematical role in [105, 106], and allow general k-
spaces. With the notations of Part II, we can thus change the target G-category
to KG,∗. Then we generalize the definition to the parametrized context simply
by changing the target G-category to the category KG,B of ex-G-spaces over a G-
space B. Thus we define an IG-space X over (and under) B to be a G-functor
X : IG −→ KG,B . Using nonequivariant arrows and equivariant maps, we obtain
the G-category (IGKB , GI KB) of IG-spaces.

To unravel definitions, for each representation V ∈ V we are given an ex-G-
space X(V ) over B, for each arrow (linear isometric isomorphism) f : V −→W we
are given an arrow (non-equivariant map)

X(f) : X(V ) −→ X(W )

of ex-G-spaces over B, and the continuous function

X : IG(V,W ) −→ KG,B(X(V ), X(W ))

is a based G-map. An arrow α : X −→ Y is just a natural transformation, and
a G-map is a G-natural transformation, for which each αV : X(V ) −→ Y (V ) is a
G-map. For both arrows and G-maps, the naturality diagrams

X(V )
αV //

X(f)

��

Y (V )

Y (f)

��
X(W )

αW

// Y (W )

must commute for all arrows f : V −→ W . The group G acts on the space
IGKB(X,Y ) of arrows by levelwise conjugation. The G-fixed category is denoted
by GI KB . It has objects the IG-spaces X and maps the G-maps.

To study the parametrized enrichment of the G-category of orthogonal G-
spectra over B, it is convenient to extend the domain category IG, which is enriched
over KG,∗, to a new domain category IG,B that is enriched over KG,B . Departing
from the notational pattern of Definition 10.2.1 and using Remark 10.1.6, we define
the hom ex-G-spaces over B of IG,B by

(11.1.1) IG,B(V,W ) = IG(V,W )B ≡ B ×IG(V,W ).

If X : IG −→ KG,B is an IG-space, then the given based G-maps

X : IG(V,W ) −→ KG,B(X(V ), X(W ))

correspond by adjunction (see (10.2.7) and (10.2.8)) to ex-G-maps

X(V ) ∧B IG,B(V,W ) −→ X(W ).

In turn, these correspond by the internal hom adjunction to ex-G-maps

X : IG,B(V,W ) −→ FB(X(V ), X(W )).
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These give an equivalent version of the original G-functor X, but now in terms of
categories enriched over the category GKB .

Lemma 11.1.2. The G-category (IGKB , GI KB) of IG-spaces is equivalent
to the G-category of IG,B-spaces, where an IG,B-space is a G-functor

X : IG,B −→ KG,B

enriched over GKB.

Proposition 11.1.3. The G-category (IGKB , GI KB) is G-topological over
B and thus also G-topological. Therefore the category GI KB is topologically bi-
complete over B.

Proof. We define tensor and cotensor IG-spaces over B

X ∧B K and FB(K,X)

levelwise, where K is an ex-G-space and X is an IG-space. For IG-spaces X
and Y , we must define a parametrized morphism ex-G-space PB(X,Y ) over B.
Parallelling a standard formal description of the G-space IGKB(X,Y ), we define
PB(X,Y ) to be the end

(11.1.4) PB(X,Y ) =
∫

IG,B

FB(X(V ), Y (V )).

Explicitly, it is the equalizer displayed in the following diagram of ex-G-spaces.

PB(X,Y )

��∏
V FB(X(V ), Y (V ))

ν̃

��
µ̃

��∏
V,W FB(IG,B(V,W ), FB(X(V ), Y (W ))).

The products run over the objects and pairs of objects of a skeleton skIG of
IG. The (V,W )th coordinate of µ̃ is given by the composite of the projection to
FB(X(W ), Y (W )) and the G-map

FB(X(W ), Y (W )) −→ FB(IG,B(V,W ), FB(X(V ), Y (W )))

adjoint to the composite ex-G-map

FB(X(W ), Y (W )) ∧B IG,B(V,W )

id∧BX

��
FB(X(W ), Y (W )) ∧B FB(X(V ), X(W ))

◦
��

FB(X(V ), Y (W )).

The (V,W )th coordinate of ν̃ is the composite of the projection to FB(X(V ), Y (V ))
and the G-map

ν̃V,W : FB(X(V ), Y (V )) −→ FB(IG,B(V,W ), FB(X(V ), Y (W ))
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adjoint to the composite ex-G-map

IG,B(V,W ) ∧B FB(X(V ), Y (V ))

Y ∧B id

��
FB(Y (V ), Y (W )) ∧B FB(X(V ), Y (V ))

◦
��

FB(X(V ), Y (W )).

Passage to ends from the isomorphisms of ex-G-spaces

FB(X(V ) ∧B K,Y (V )) ∼= FB(K,FB(X(V ), Y (V ))) ∼= FB(X(V ), FB(K,Y (V )))

gives natural isomorphisms of ex-G-spaces

(11.1.5) PB(X ∧B K,Y ) ∼= FB(K,PB(X,Y )) ∼= PB(X,FB(K,Y )).

With these constructions, we see that (IGKB , GI KB) is G-topological over B;
compare Definition 10.2.1 and the discussion following it. The last statement follows
since GI KB is complete and cocomplete, with limits and colimits constructed
levelwise from the limits and colimits in GKB . �

We have several kinds of smash products and function objects in this context.
For IG-spaces X and Y over B, define the “external” smash product X ZB Y by

X ZB Y = ∧B ◦ (X × Y ) : IG ×IG −→ KG,B .

Thus (X ZB Y )(V,W ) = X(V ) ∧B Y (W ). Here we have used the word “external”
to refer to the use of pairs of representations, as is usual in the theory of diagram
spectra. It is standard category theory [43,106] to use left Kan extension to inter-
nalize this external smash product over B; relevant general definitions are recalled
in §23.1. This gives the internal smash product X∧B Y of IG-spaces over B, which
is again an IG-space over B. For an IG-space Y over B and an (IG ×IG)-space
Z over B, define the external function IG-space over B, denoted F̄B(Y, Z), by

F̄B(Y,Z)(V ) = PB(Y, Z〈V 〉),
where Z〈V 〉(W ) = Z(V,W ). It is mainly to allow this definition that weneed the
morphism ex-G-spaces PB(−,−). It is also formal to obtain an internal function
IG-space functor FB on IG-spaces over B by use of right Kan extension [43,106].
Using these internal smash product and function IG-space functors, we obtain the
following result. Recall Definition 10.2.9 and Proposition 10.2.10.

Theorem 11.1.6. (IGKB , GI KB) is a G-topological closed symmetric mon-
oidal G-category over B.

Remark 11.1.7. In the theory of ex-spaces, we also have the “external smash
product” of ex-spaces over different base spaces defined in §2.5. Using the two
different notions of “external” together, we obtain the definition of the “external
external smash product” of an IG-space X over A and an IG-space Y over B; it
is an (IG × IG)-space over A × B. We write X Z Y for the left Kan extension
internalization of this smash product. Thus X Z Y is an IG-space over A × B.
Similarly, using the external function ex-space construction F̄ of §2.5, for an IG-
space Y over B and an IG-space Z over A×B, we obtain the “internalized external
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function IG-space” F̄ (Y,Z) over A. Notationally, use of Z and F̄ without an
ensuing subscript always denotes these internalized external operations with respect
to varying base spaces. We shall return to these functors in Proposition 11.4.10.

Similarly, but more simply, we have the “external tensor” K Z Y of an ex-G-
space K over A and an IG-space Y over B, which again is an IG-space over A×B.
When A = ∗, this just constructs the tensor of a based G-space with an IG-space
over B. When B = ∗, this constructs an IG-space over A from an ex-G-space
over A and a nonparametrized IG-space. Since these external tensors can be view
as special cases of external smash products, via variants of Definition 10.2.9 and
(11.2.6) below, we shall not treat them formally and shall not repeat the definitions
on the G-spectrum level. However, we shall find several uses for them.

11.2. The category of orthogonal G-spectra over B

For a representation V of G and an IG-space X, we define

(11.2.1) ΣVBX = X ∧B SVB and ΩVBX = FB(SVB , X),

where SV is the one-point compactification of V .

Definition 11.2.2. Define the G-sphere SB , written SG,B when necessary for
clarity, to be the IG-space over B that sends V to SVB .

Clearly SVB ∧BSWB ∼= SV⊕WB , and the functor SB is strong symmetric monoidal,
where the monoidal structure on IG is given by direct sums. It follows that SB is
a commutative monoid in the symmetric monoidal category GI KB , and we can
define SB-modulesX in terms of (right) actionsX∧BSB −→ X. These SB-modules
are our orthogonal G-spectra over B, but it is more convenient to give the definition
using the equivalent reformulation in terms of the external smash product.

Definition 11.2.3. An IG-spectrum, or orthogonal G-spectrum, over B is an
IG-space X over B together with a structure G-map

σ : X ZB SB −→ X ◦ ⊕
such that the evident unit and associativity diagrams commute. Thus we have
compatible equivariant structure maps

σ : ΣWB X(V ) = X(V ) ∧B SWB −→ X(V ⊕W ).

Let SG,B denote the topological G-category of IG-spectra over B and arrows
f : X −→ Y that commute with the structure maps, with G acting by conjugation
on arrows. Let GSB denote the topological category of IG-spectra over B and
G-maps (equivariant arrows) between them.

Definition 11.2.4. Define the suspension orthogonal G-spectrum functor and
the 0th ex-G-space functor

Σ∞B : KG,B −→ SG,B and Ω∞B : SG,B −→ KG,B

by (Σ∞BK)(V ) = ΣVBK, with the evident isomorphisms as structure maps, and
Ω∞BX = X(0). Then Σ∞B and Ω∞B give left and right adjoints between KG,B and
SG,B and, on passage to G-fixed points, between GKB and GSB .

The category GSB is our candidate for a good category of parametrized G-
spectra over B. It inherits all of the properties of the category GI KB of IG-spaces
that were discussed in the previous section and, in the case B = ∗, it is exactly



164 11. THE CATEGORY OF ORTHOGONAL G-SPECTRA OVER B

the category GS of orthogonal G-spectra that is studied in [105]. We summarize
its formal properties in the following omnibus theorem. In the language of §10.2,
much of it can be summarized by the assertion that the G-category (SG,B , GSB)
is a G-topological closed symmetric monoidal G-category over B, but we prefer to
be more explicit than that.

Theorem 11.2.5. The G-category SG,B is enriched over GKB and is ten-
sored and cotensored over KG,B. The category GSB is enriched over KB and is
tensored and cotensored over GKB. The G-category SG,B and the category GSB

admit smash product and function spectrum functors ∧B and FB under which they
are closed symmetric monoidal with unit object SB. Let X and Y be orthogonal
G-spectra over B and K be an ex-G-space over B. The morphism ex-G-spaces
PB(X,Y ) can be specified by

PB(X,Y ) = Ω∞B FB(X,Y ),

and there are natural isomorphisms

Σ∞BK ∼= SB ∧B K and Ω∞BX ∼= PB(SB , X).

The tensors and cotensors are related to smash products and function G-spectra by
natural isomorphisms

(11.2.6) X ∧B K ∼= X ∧B Σ∞BK and FB(K,X) ∼= FB(Σ∞BK,X)

of orthogonal G-spectra. There are natural isomorphisms

(11.2.7) PB(Σ∞BK,X) ∼= FB(K,Ω∞BX)

and

(11.2.8) PB(X ∧B K,Y ) ∼= FB(K,PB(X,Y )) ∼= PB(X,FB(K,Y ))

of ex-G-spaces,

(11.2.9) SG,B(X ∧B K,Y ) ∼= KG,B(K,PB(X,Y )) ∼= SG,B(X,FB(K,Y ))

of based G-spaces, and

(11.2.10) GSB(X ∧B K,Y ) ∼= GKB(K,PB(X,Y )) ∼= GSB(X,FB(K,Y ))

of based spaces. Moreover, GSB is G-topologically bicomplete over B.

Proof. For the enrichment, the G-space SG,B(X,Y ) is the evident sub G-
space of IGKB(X,Y ), and the space GSB(X,Y ) is the evident sub space of
GI KB(X,Y ). The tensors and cotensors in SG,B are constructed in IGKB and
given induced structure maps. The limits and colimits in GSB are constructed
in the same way. As in [105, II§3], we think of orthogonal G-spectra over B as
SB-modules, and we construct the smash product and function spectra functors
by passage to coequalizers and equalizers from the smash product and function
IG-space functors, exactly as in the definition of tensor products and hom functors
in algebra. We have defined PB(X,Y ) in the statement, but we shall give a more
intrinsic alternative description later. The first isomorphism of (11.2.6) is given by
unit and associativity relations

X ∧B K ∼= (X ∧B SB) ∧B K ∼= X ∧B Σ∞BK.
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The second follows from the Yoneda lemma since

GSB(X,FB(K,Y )) ∼= GSB(X ∧B K,Y )
∼= GSB(X ∧B Σ∞BK,Y )
∼= GSB(X,FB(Σ∞BK,Y )).

Now (11.2.7) and (11.2.8) follow from already established adjunctions. For part of
the latter, we apply Ω∞B to the composite isomorphism

FB(X ∧B K,Y ) ∼= FB(X ∧B Σ∞BK,Y )
∼= FB(X,FB(Σ∞BK,Y ))
∼= FB(X,FB(K,Y )).

Comparisons of definitions, seen more easily from (11.3.2) below, give

(11.2.11) SG,B(X,Y ) = KG,B(S0
B , PB(X,Y ))

and

(11.2.12) GSB(X,Y ) ∼= GKB(S0
B , PB(X,Y )).

Therefore the isomorphisms (11.2.9) and (11.2.10) follow from (11.2.8). �

As noted in §10.1, we obtain the following corollary by replacing K with TB
for a based G-space T in the tensors and cotensors of the theorem. Of course, these
tensors and cotensors with G-spaces could just as well be defined directly. It will
be important in our discussion of model category structures to keep separately in
mind the tensors and cotensors over ex-G-spaces over B and over based G-spaces.

Corollary 11.2.13. The G-category SG,B is enriched over GK∗ and is ten-
sored and cotensored over KG,∗. The category GSB is enriched over KG,∗ and is
tensored and cotensored over GK∗. Thus, for orthogonal G-spectra X and Y and
based G-spaces T ,

(11.2.14) SG,B(X ∧B T, Y ) ∼= KG,∗(T,SG,B(X,Y )) ∼= SG,B(X,FB(T, Y ))

and

(11.2.15) GSB(X ∧B T, Y ) ∼= GK∗(T,SG,B(X,Y )) ∼= GSB(X,FB(T, Y )).

We have the parallel definition of G-prespectra over B.

Definition 11.2.16. A G-prespectrum X over B consists of ex-G-spaces X(V )
over B for V ∈ V together with structure G-maps σ : ΣWB X(V ) −→ X(V ⊕W )
such that σ is the identity if W = 0 and the following diagrams commute.

ΣZBΣWB X(V )

ΣZ
Bσ

��

∼= // ΣW⊕Z
B X(V )

σ

��
ΣZBX(V ⊕W ) σ

// X(V ⊕W ⊕ Z)

Let PG,B denote the G-category of G-prespectra and nonequivariant arrows, and
let GPB denote its G-fixed category of G-prespectra and G-maps. There result
forgetful functors

U : SG,B −→PG,B and U : GSB −→ GPB .
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The categories PG,B and GPB enjoy the same properties that were speci-
fied for SG,B and GSB in Theorem 11.2.5 and Corollary 11.2.13, except for the
statements about smash product and function spectra. Here, since we do not have
the internal hom functor FB , we must give an alternative direct description of
PB(X,Y ), as in (11.3.2) below.

11.3. Orthogonal G-spectra as diagram ex-G-spaces

Arguing as in [106, §2] and [105, II§4], we construct a new domain category
JG,B which has the same object set V as IG and, like IG,B , is enriched over GKB .
It builds in spheres in such a way that the category of IG-spectra over B is equiva-
lent to the category of JG,B-spaces overB. Here, just as for IG,B in Lemma 11.1.2,
we understand a JG,B-space to be an enriched G-functor X : JG,B −→ KG,B .
Thus it is specified by ex-G-spaces X(V ) and ex-G-maps

X : JG,B(V,W ) −→ FB(X(V ), X(W )).

To construct JG,B , recall from [105, II§4] that we have a topological G-category
JG with object set V such that the category of IG-spectra is equivalent to the
category of JG-spaces. We define

(11.3.1) JG,B(V,W ) = JG(V,W )B ,

just as we defined IG,B in (11.1.1), and the desired equivalence of categories follows.
Several constructions of JG are given in [105, 106], and we shall shortly give an
alternative direct description of JG,B that is based on one of them. The intuition
is that an extension of an IG,B-space to a JG,B-space builds in an action by SB .

The alternative description of GSB as the category of enriched G-functors
JG,B −→ KG,B and enriched G-natural transformations leads to a more concep-
tual proof of Theorem 11.2.5: it is a specialization of general results about diagram
categories of enriched functors. In analogy with (11.1.4) we could have defined
PB(X,Y ) to be the end

(11.3.2) PB(X,Y ) =
∫

JG,B

FB(X(V ), Y (V ))

and derived the isomorphism (11.2.8) just as we derived (11.1.5) in the previous
section. By the Yoneda lemma, the two definitions of PB(X,Y ) agree. With
this description of PB , some of the adjunctions in Theorem 11.2.5 become more
transparent.

This leads us to the promised alternative description of JG,B . It is given in
terms of IG,B rather than JG and follows the formal definition of [106, 2.1]. We
have the represented functors V ∗ : IG −→ KG,B specified by V ∗(W ) = IG,B(V,W ).
If X is an IG-space, such as V ∗, then the smash product X ∧B SB in the category
of IG-spaces should be thought of as the “free” orthogonal G-spectrum over B
generated by X. Let

(11.3.3) JG,B(V,W ) = PB(W ∗ ∧B SB , V ∗ ∧B SB),

with the evident composition. Then we can mimic the arguments of [106, §§2, 23] to
check that the category of JG,B-spaces is equivalent to the category of IG-spectra
over B. An enriched Yoneda lemma argument [87, 2.4] shows that this description
of JG,B coincides up to isomorphism with our original one.
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Although we will not have occasion to quote it formally, we record the following
consequence of the identification of IG-spectra over B with JG,B-spaces.

Lemma 11.3.4. For any enriched G-functor T : KG,B −→ KG,B and orthogonal
G-spectrum X over B, the composite functor T ◦X is an orthogonal G-spectrum over
B. Similarly, an enriched natural transformation ξ : T −→ T ′ induces a natural G-
map ξ : T ◦X −→ T ′ ◦X.

Proof. The enriched functor T is given by maps

T : FB(K,L) −→ FB(T (K), T (L)).

Composing levelwise with X gives maps

JG,B(V,W ) −→ FB(T (X(V )), T (X(W )))

that specify T ◦ X. It is a direct categorical implication of the fact that T is an
enriched functor that there are natural maps of ex-G-spaces

T (K) ∧B L −→ T (K ∧B L) and TFB(K,L) −→ FB(K,T (L))

for ex-G-spaces K and L. This explains more concretely why the structure maps
of X induce structure maps for T ◦X. Similarly, since ξ is enriched, it is given by
maps from the unit ex-G-space S0

B to FB(T (K), T ′(K)) such that the appropriate
diagrams commute. We specialize to K = X(V ) to obtain ξ : T ◦X −→ T ′ ◦X. �

The following functors relating ex-G-spaces to orthogonal G-spectra over B
play a central role in our theory. In particular, they give “negative dimensional”
spheres Σ∞V S

0
B = S−VB .

Definition 11.3.5. Let V ∗ = V ∗B denote the represented JG,B-space specified
by V ∗(W ) = JG,B(V,W ). Define the shift desuspension functor

FV : KG,B −→ SG,B

by letting FVK = V ∗ ∧B K for an ex-G-space K. Let EvV : SG,B −→ KG,B be
the functor given by evaluation at V . The alternative notations

Σ∞V K = FVK and Ω∞V K = EvV
are often used. In particular, F0 = Σ∞0 = Σ∞B and Ev0 = Ω∞0 = Ω∞B .

Lemma 11.3.6. The functors FV and EvV are left and right adjoint, and there
is a natural isomorphism

FVK ∧B FWL ∼= FV⊕W (K ∧B L).

Proof. The first statement is clear, and the verification of the second state-
ment is formal, as in [106, §1]. �

11.4. The base change functors f∗, f!, and f∗

From now on, we drop the adjective “orthogonal” (or prefix IG), and we gen-
erally take the equivariance for granted, referring to orthogonal G-spectra over B
just as spectra over B. We return G to the notations when considering change of
groups, or for emphasis, but otherwise G-actions are tacitly assumed throughout.

We first show that the results on base change functors proven for ex-spaces
in §2.2 extend to parametrized spectra. We then show that the results in §2.5
relating external and internal smash product and function ex-spaces also extend to
parametrized spectra. Let A and B be base G-spaces.
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Theorem 11.4.1. Let f : A −→ B be a G-map. Let X be in SG,A and let Y
and Z be in SG,B. There are G-functors

f! : SG,A −→ SG,B , f∗ : SG,B −→ SG,A, f∗ : SG,A −→ SG,B

and G-adjunctions

SG,B(f!X,Y ) ∼= SG,A(X, f∗Y ) and SG,A(f∗Y,X) ∼= SG,B(Y, f∗X).

On passage to G-fixed points levelwise, there result functors

f! : GSA −→ GSB , f∗ : GSB −→ GSA, f∗ : GSA −→ GSB

and adjunctions

GSB(f!X,Y ) ∼= GSA(X, f∗Y ) and GSA(f∗Y,X) ∼= GSB(Y, f∗X).

The functor f∗ is closed symmetric monoidal. Therefore, by definition and impli-
cation, f∗SB ∼= SA and there are natural isomorphisms

f∗(Y ∧B Z) ∼= f∗Y ∧A f∗Z,(11.4.2)

FB(Y, f∗X) ∼= f∗FA(f∗Y,X),(11.4.3)

f∗FB(Y, Z) ∼= FA(f∗Y, f∗Z),(11.4.4)

f!(f∗Y ∧A X) ∼= Y ∧B f!X,(11.4.5)

FB(f!X,Y ) ∼= f∗FA(X, f∗Y ).(11.4.6)

Proof. We define the functors f∗, f!, and f∗ levelwise. This certainly gives
well-defined functors on IG-spaces that satisfy the appropriate adjunctions there.
We shall show shortly that these functors preserve IG-spectra. For a based G-
space T , f∗(TB) ∼= TA, and this implies f∗SB ∼= SA. If we replace IG-spectra
by IG-spaces and replace the internal smash product and function object functors
(∧ and F ) by their external precursors (Z and F̄ ), then everything is immediate
by levelwise application of the corresponding results for ex-spaces. Still working
with IG-spaces, we first show how to internalize the isomorphisms (11.4.2) and
(11.4.5) by use of the universal property of left Kan extension. Indeed, noting that
(f∗X) ◦ ⊕ ∼= f∗(X ◦ ⊕), and similarly for f∗ and f!, we have

IGKA(f∗(Y ∧B Z), X) ∼= IGKB(Y ∧B Z, f∗X)
∼= (IG ×IG)KB(Y ZB Z, f∗X ◦ ⊕)
∼= (IG ×IG)KA(f∗(Y ZB Z), X ◦ ⊕)
∼= (IG ×IG)KA(f∗Y ZA f

∗Z,X ◦ ⊕)
∼= IGKA(f∗Y ∧A f∗Z,X)

and

IGKB(f!X ∧B Y, Z) ∼= (IG ×IG)KB(f!X ZB Y, Z ◦ ⊕)
∼= (IG ×IG)KB(f!(X ZA f

∗Y ), Z ◦ ⊕)
∼= (IG ×IG)KA(X ZA f

∗Y, f∗Z ◦ ⊕)
∼= IGKA(X ∧A f∗Y, f∗Z)
∼= IGKA(f!(X ∧A f∗Y ), Z).
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As explained in [62, §§2–3], the remaining isomorphisms on the IG-space level
follow formally.

We must show that our functors on IG-spaces preserve IG-spectra. The given
structure map σ : Y ZB SB −→ Y ◦ ⊕ gives rise via the external version of (11.4.2)
to the required structure map

f∗Y ZA SA ∼= f∗(Y ZB SB) −→ f∗Y ◦ ⊕.
Similarly, the given structure map σ : X Z SA −→ X ◦ ⊕ gives rise to the required
structure map

f!X ZB SB ∼= f!(X ZA SA) −→ f!X ◦ ⊕.
As in [62, (3.6)], there is a canonical natural map, not usually an isomorphism,

π : f∗X ZB Y −→ f∗(X ZA f
∗Y ).

Taking Y = SB , we see that σ also induces the required structure map

f∗X ZB SB −→ f∗(X ZA SA) −→ f∗X ◦ ⊕.
Now the spectrum level adjunctions follow directly from their IG-space analogues.
The spectrum level isomorphisms (11.4.2) and (11.4.5) follow from their IG-space
analogues by comparisons of coequalizer diagrams, and the remaining isomorphisms
again follow formally. �

Remark 11.4.7. Since the base change functors are defined levelwise, they
commute with the evaluation functors EvV . These commutation relations for the
right adjoints f∗ and f∗ imply conjugate commutation isomorphisms

f∗FV ∼= FV f
∗ and f!FV ∼= FV f!

of left adjoints. In particular,

f∗Σ∞B ∼= Σ∞A f
∗ and f!Σ∞A ∼= Σ∞B f!.

Via (11.2.6), these isomorphisms and the isomorphisms of the theorem imply iso-
morphisms relating base change functors to tensors and cotensors. For example
(11.4.5) implies isomorphisms

f!(f∗Y ∧A K) ∼= Y ∧B f!K and f!(f∗L ∧A X) ∼= L ∧B f!X.
Here K and L are ex-spaces over A and B and X and Y are spectra over A and B.

The following result is immediate from its precursor Proposition 2.2.11 for ex-
spaces.

Proposition 11.4.8. Suppose given a pullback diagram of G-spaces

C
g //

i

��

D

j

��
A

f
// B.

Then there are natural isomorphisms of functors

(11.4.9) j∗f! ∼= g!i
∗, f∗j∗ ∼= i∗g

∗, f∗j! ∼= i!g
∗, j∗f∗ ∼= g∗i

∗.

Returning to Remark 11.1.7, we have the following important results on exter-
nal smash product and function spectra and their internalization by means of base
change along diagonal maps.
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Proposition 11.4.10. Let X be a spectrum over A, Y be a spectrum over B,
and Z be a spectrum over A×B. There is an external smash product functor that
assigns a spectrum XZY over A×B to X and Y and an external function spectrum
functor that assigns a spectrum F̄ (Y, Z) over A to Y and Z, and there is a natural
isomorphism

GSA×B(X Z Y,Z) ∼= GSA(X, F̄ (Y, Z)).
The internal smash products are determined from the external ones via

X ∧B Y ∼= ∆∗(X Z Y ) and FB(X,Y ) ∼= F̄ (X,∆∗Y ),

where X and Y are spectra over B and ∆: B −→ B ×B is the diagonal map.

Proof. It is not hard to start from Remark 11.1.7 and construct these func-
tors directly. We instead follow Lemma 2.5.5 and observe that the spectrum level
external functors can and, up to isomorphism, must be defined in terms of the
internal functors as

X Z Y ∼= π∗AX ∧A×B π∗BY and F̄ (Y,Z) ∼= πA ∗FA×B(π∗BY,Z),

where πA : A × B −→ A and πB : A × B −→ B are the projections. The dis-
played adjunction is immediate from the adjunctions (π∗A, πA ∗), (π∗B , πB ∗), and
(∧A×B , FA×B). The second statement follows formally, as in Lemma 2.5.6. �

Proposition 11.4.11. For ex-spaces K over A and L over B, there is a natural
isomorphism

Σ∞A×B(K Z L) ∼= Σ∞AK Z Σ∞B L.

Proof. This is most easily seen using adjunction and the Yoneda lemma. Us-
ing external function objects, we see that F̄ (Σ∞B L,Z) ∼= F̄ (L,Z) for Z ∈ GSA×B .
This has zeroth ex-space F̄ (L,Z(0)) over A. �

11.5. Change of groups and restriction to fibers

We give the analogues for parametrized spectra of the results concerning change
of groups and restriction to fibers that were given for parametrized ex-spaces in
§2.3. We shall say more about change of groups in Chapter 14. Fix an inclusion
ι : H −→ G of a (closed) subgroup H of G and let A be an H-space and B be a
G-space. We index H-spectra over A on the collection ι∗V of H-representations
ι∗V with V ∈ V . As we discuss in §§14.2 and 14.3, when V is the collection of all
representations of G, we can change indexing to the collection of all representations
of H since our assumption that G is compact ensures that every representation
of H is a direct summand of a representation ι∗V . We have an evident forgetful
functor

(11.5.1) ι∗ : GSB −→ HSι∗B .

On the space level, we write ι! ambiguously for both the based and unbased induc-
tion functors G+ ∧H (−) and G×H (−), and similarly for coinduction ι∗. Context
should make clear which is intended. Applying the unbased versions to retracts, we
defined induction and coinduction functors ι! and ι∗ on ex-spaces in Definition 2.3.7.
These functors extend to the spectrum level. Since we are now considering change
of groups, we write SG,B instead of SB for the G-sphere spectrum over B.

Proposition 11.5.2. Levelwise application of ι! and ι∗ gives functors

ι! : HSA −→ GSι!A and ι∗ : HSA −→ GSι∗A.
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Proof. We must show that the structure H-maps σ : XZSH,A −→ X ◦⊕ of an
H-spectrum X over A induce structure G-maps for the IG-spaces ι!X and ι∗X. It
is clear that ι!(X ◦⊕) ∼= ι!X ◦⊕ and ι∗(X ◦⊕) ∼= ι∗X ◦⊕. Using (2.3.4), we see that
SG,ι!A

∼= ι!SH,A. Since the functor ι! on the ex-space level is symmetric monoidal
by Proposition 2.3.9, its levelwise IG-space analogue commutes up to isomorphism
with the external smash product Z. Thus σ induces a structure G-map

ι!X Zι!A SG,ι!A ∼= ι!(X ZA SH,A) −→ ι!(X ◦ ⊕) ∼= ι!X ◦ ⊕.
For ι∗, let µ : ι∗ι∗ −→ Id be the counit of the space level adjunction (ι∗, ι∗)
(see (2.3.2)). For an H-space A, µ is the H-map MapH(G,A) −→ A given by
evaluation at the identity element of G. Applied to an ex-space K over A, thought
of as a retract, µ gives a map ι∗ι∗K −→ K of total spaces over and under the map
µ : ι∗ι∗A −→ A of base spaces in the category of retracts of §2.5. We can apply
this to X levelwise. We also have the projection pr : µ∗SH,A −→ SH,A over µ.
Together, these maps give

ι∗(ι∗X Zι∗A SG,ι∗A) ∼= ι∗ι∗X Zι∗ι∗A µ
∗SH,A

µZpr // X ZA SH,A.

For the isomorphism, we have used the facts that ι∗ is strong monoidal and that
ι∗SG,ι∗A

∼= SH,ι∗ι∗A
∼= µ∗SH,A. The adjoint of the composite of this map with

the structure map σ : X ZA SH,A −→ X ◦ ⊕ gives the required structure map
ι∗X Zι∗A SG,ι∗A −→ ι∗X ◦ ⊕. �

As on the ex-space level, the categories HSA and GSι!A = GSG×HA can be
used interchangeably. The following result is immediate from Proposition 2.3.9.

Proposition 11.5.3. Let ν : A −→ ι∗ι!A be the natural inclusion of H-spaces.
Then ι! : HSA −→ GSι!A is a closed symmetric monoidal equivalence of categories
with inverse the composite ν∗ ◦ ι∗ : GSι!A −→ HSι∗ι!A −→ HSA.

In particular, if A = ∗ then ν maps ∗ to the identity coset eH ∈ G/H and we see
thatHS andGSG/H can be used interchangeably. Arguing as in Proposition 2.3.1,
we could more easily prove this directly.

Corollary 11.5.4. The category HS is equivalent as a closed symmetric
monoidal category to GSG/H . Under this equivalence,

ι∗ ∼= r∗, ι! ∼= r!, and ι∗ ∼= r∗,

where r : G/H −→ ∗.

Looking at the fiber Xb(V ) = X(V )b over b of a G-spectrum X over B, we
see a Gb-spectrum Xb of the sort that has been studied in [105], where Gb is the
isotropy group of b. Our homotopical analysis of parametrized G-spectra will be
based on the idea of applying the results of [105] fiberwise. By the previous result,
we can think of this fiber as a G-spectrum over G/Gb. The following spectrum level
analogues of Example 2.3.12 and Example 2.3.13 analyze the relationships among
passage to fibers, base change, and change of groups.

Example 11.5.5. For b ∈ B, we write b : ∗ −→ B for the Gb-map that sends ∗
to b and b̃ : G/Gb −→ B for the induced inclusion of orbits. Under the equivalence
GSG/Gb

∼= GbS , b̃∗ may be interpreted as the fiber functor GSB −→ GbS that
sends Y to Yb. Its left and right adjoints b̃! and b̃∗ may be interpreted as the functors
that send aGb-spectrumX to theG-spectraXb and bX overB obtained by levelwise
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application of the corresponding ex-space level adjoints of Example 2.3.12. With
these notations, the isomorphisms of Theorem 11.4.1 specialize to the following
natural isomorphisms, where Y and Z are in GSB and X is in GbS .

(Y ∧B Z)b ∼= Yb ∧ Zb,

FB(Y, bX) ∼= bF (Yb, X),

FB(Y, Z)b ∼= F (Yb, Zb),

(Yb ∧X)b ∼= Y ∧B Xb,

FB(Xb, Y ) ∼= bF (X,Yb).

Example 11.5.6. Let f : A −→ B be a G-map and let ib : Ab −→ B be the
inclusion of the fiber over b, which is a Gb-map. As in Example 2.3.13, we have the
compatible pullback squares

Ab
fb //

ib

��

{b}

b

��
A

f
// B

G×Gb
Ab

G×Gb
fb//

ı̃b

��

G/Gb

b̃

��
A

f
// B.

Applying Proposition 11.4.8 to the right-hand square and interpreting the conclu-
sion in terms of fibers, we obtain canonical isomorphisms of Gb-spectra

(f!X)b ∼= fb!i
∗
bX and (f∗X)b ∼= fb∗i

∗
bX,

where X is a G-spectrum over A, regarded on the right-hand sides as a Gb-spectrum
over A by pullback along ι : Gb −→ G.

11.6. Some problems concerning non-compact Lie groups

In equivariant stable homotopy theory, the key idea is that the one-point com-
pactification of a representation V of dimension n is a G-sphere and that smashing
with that sphere should be a self-equivalence of the equivariant stable homotopy
category. That is, the idea is to invert G-spheres in just the way that we in-
vert spheres when constructing the nonequivariant stable homotopy category. For
compact Lie groups of equivariance, the philosophy and its implementation and
applications are well understood. When we invert representation spheres, we invert
other homotopy spheres as well, and the relevant Picard group is analyzed in [63].

For non-compact Lie groups, the philosophy is less clear and its technical im-
plementation is problematic. The focus on finite dimensional representations is
intrinsic to the philosophy just expressed, but fails to come to grips with basic
features of the representation theory of non-compact Lie groups. A theory based
on finite dimensional representations may still have its uses, but there are real dif-
ficulties in obtaining even that much. In particular, a focus on spheres associated
to linear representations, rather than on less highly structured homotopy spheres,
may be misplaced.

A non-compact semi-simple Lie group will generally have no non-trivial finite
dimensional unitary or orthogonal representations, hence our theory of “orthogo-
nal” G-spectra is clearly too restrictive. This, at least, is easily remedied. The use
of linear isometries in the definition of orthogonal spectra is a choice dictated more
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by the history than by the mathematics. In the alternative approach to equivariant
stable homotopy theory based on Lewis-May spectra and EKMM [61, 98, 105], use
of orthogonal complements is certainly convenient and perhaps essential. However,
the diagram orthogonal spectra of [105,106] could just as well have been developed
in terms of diagram “general linear spectra”. In the few places where complements
are used, they can by avoided. For consistency with the previous literature, we have
chosen to give our exposition in the compact case using the word “orthogonal” and
the language from the cited references, but for general Lie groups of equivariance,
we should eliminate all considerations of isometries.

More precisely, for the complete case, we redefine I by taking V to be the
collection of all finite dimensional representations V of G. More generally, we can
index on any subcollection that contains the trivial representation and is closed
under finite direct sums. Since we are only interested in a skeleton of I , we may
as well restrict to orthogonal representations in V when G is compact. We re-
place linear isometries by linear isomorphims when defining the G-spaces I (V,W ).
Thus we replace orthogonal groups by general linear groups. Otherwise, the formal
definitional framework developed in this chapter (or, in the nonparametrized case,
[105, II]) goes through verbatim for general topological groups G.

However, we emphasize the formality. When considering change of groups, for
example, the significance changes drastically. As noted at the start of the previous
section, for an inclusion ι : H −→ G of a (closed) subgroup H of G, we index
H-spectra on the collection ι∗V of H-representations ι∗V with V ∈ V . We also
pointed out the relevance of the compact case of the following result.

Proposition 11.6.1. If G is either a compact Lie group or a matrix group and
W is a representation of a subgroup H, then there is a representation V of G and
an embedding of W as a subrepresentation of ι∗V .

This is clear in the compact case and is given by [136, 3.1] for matrix groups.
However, the following striking counterexample, which we learned from Victor
Ginzburg, shows just how badly this basic result fails in general.

Counterexample 11.6.2 (Ginzburg). Let H be the Heisenberg group of 3×3
matrices  1 a c

0 1 b
0 0 1


where a, b, and c are real numbers. Embed R in H as the subgroup of matrices
with a = b = 0. Embed Z in R as usual. Then R is a central subgroup of H.
Define G = H/Z. Then T = R/Z is a circle subgroup of G. Moreover, T is the
center of G and coincides with the commutator subgroup [G,G]. Let V be any
finite dimensional (complex linear) representation of G. Since T is compact, the
action of T on V is semisimple, and since T is central, any weight space of T is a
G-submodule. Therefore V is a direct sum of G-submodules Vi such that T acts on
each Vi by scalar matrices. Since T = [G,G], this scalar action of T on Vi is trivial:
the determinant of g is 1 for any g ∈ [G,G]. Therefore no nontrivial 1-dimensional
character of T can embed in V . Reinterpreting in terms of real representations, as
we may, we conclude that, for ι : T −→ G, ι∗V is the trivial T -universe.

For a compact Lie group G and an inclusion ι : H ⊂ G, ι∗X is a dualizable H-
spectrum ifX is a dualizable G-spectrum, and anH-spectrum indexed on the trivial
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H-universe is dualizable if and only if it is a retract of a finite H-CW spectrum built
up from trivial orbits. We conclude that duality theory (in the nonparametrized
context) cannot work as one would wish in the context of the previous example.

Looking ahead, some of the theory of the following three chapters also works
formally in the context of non-compact Lie groups. However, there is an obvious
mismatch between our emphasis on the one-point compactifications of representa-
tions, which have at least two fixed points even if the isotropy groups away from
zero are compact, and the desire to focus on proper actions. Even ignoring 0 and
∞, it is not clear that anything like Illman’s Theorem 3.4.2 applies to give homo-
topical control on spheres of representations, however they might be interpreted, or
on orbits. A serious attempt to come to grips with these and other issues is beyond
the scope of this book.



CHAPTER 12

Model structures for parametrized G-spectra

Introduction

We define and study two model structures on the category GSB of (orthogonal)
G-spectra over B. We emphasize that, except for the theory of smash products,
everything in this chapter applies equally well to the category GPB of G-prespectra
over B. That fact will become important in the next chapter.

We start in §12.1 by defining a “level model structure” on GSB , based on the
qf -model structure on GKB . In §12.2, we record analogues for this model structure
of the results on external smash product and base change functors that were given
for GKB in §7.2. The level model structure serves as a stepping stone to the stable
model structure, which we define in §12.3. It has the same cofibrations as the level
model structure, and we therefore call these “s-cofibrations”. An essential point
in our approach is a fiberwise definition of the homotopy groups of a parametrized
G-spectrum that throws much of our work onto the theory of nonparametrized
orthogonal G-spectra developed by Mandell and the first author in [105]. We define
homotopy groups using the level qf -fibrant replacement functor provided by the
level model structure, and we define stable equivalences to be the π∗-isomorphisms.
It is essential to think in terms of fibers and not total spaces since the total spaces
of a parametrized spectrum do not assemble into a spectrum. We show in §12.4
that the π∗-isomorphisms give a well-grounded subcategory of weak equivalences,
and we complete the proofs of the model axioms in §12.5. We return to the context
of §12.2 in §12.6, where we prove that various Quillen adjoint pairs in the level
model structures are also Quillen adjoint pairs in the stable model structures.

The basic conclusion is that GSB is a well-grounded model category in the
sense of §5.5 under the stable model structure. Although not very noticeable on
the surface, essential use is made of the qf -model structure on GKB throughout this
chapter. As we observe in Remark 12.1.8, the q-model structure on GKB does give
rise to a level model structure on GSB . However this model structure is not well-
grounded and does not provide the necessary tools to work out the technical details
of §12.4. The results there are crucial to prove that the relative cell complexes over
B defined in terms of the appropriate generating acyclic s-cofibrations are acyclic.1

It was our fruitless attempt to obtain a stable model structure starting from the
level q-model structure that led us to the construction of the qf -model structure
on GKB and to the notion of a well-grounded model category.

When there are no issues of equivariance, we generally abbreviate G-spectrum
over B, ex-G-space, and G-space to spectrum over B, ex-space, and space; G is a
compact Lie group throughout.

1In [78, 3.4], such acyclicity of relative cell complexes is assumed without proof.
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12.1. The level model structure on GSB

After changing the base space from ∗ to B, the level model structure works in
much the same way as in the nonparametrized case of [105].

Definition 12.1.1. Let f : X −→ Y be a map of spectra over B. With one
exception, for any type of ex-space and any type of map of ex-spaces, we say that
X or f is a level type of spectrum over B or a level type of map of spectra over B if
each X(V ) or f(V ) : X(V ) −→ Y (V ) is that type of ex-space or that type of map.
Thus, for example, we have level h, level f and level fp-fibrations, cofibrations
and equivalences from §5.1 together with the corresponding fibrant and cofibrant
objects. We have level q-equivalences and level q and qf -fibrations from §7.1 and
we have level ex-fibrations and level ex-quasifibrations from §8.1 and §8.5. The
exceptions concern cofibrations and cofibrant objects. We shall never be interested
in “level q-cofibrations” or “level qf -cofibrations”, nor in “level q-cofibrant” or “level
qf -cofibrant” objects, since these do not correspond to cofibrations and cofibrant
objects in the model structures that we consider. Instead we have the following
definitions.

(i) f is an s-cofibration if it satisfies the LLP with respect to the level acyclic
qf -fibrations.

(ii) f is a level acyclic s-cofibration if it is both a level q-equivalence and an
s-cofibration.

To reiterate, in the phrase “level acyclic qf -fibration”, the adjective “level” applies
to “acyclic qf -fibration”, but in the phrase “level acyclic s-cofibration” it applies
only to “acyclic”; the cofibrations are not defined levelwise.

Definition 12.1.2. A spectrum X over B is well-sectioned if it is level well-
sectioned, so that each ex-space X(V ) is f̄ -cofibrant. It is well-grounded if it is
level well-grounded, so that each X(V ) is well-sectioned and compactly generated.

The discussion of §4.3 applies to the category GSB of G-spectra over B with
homotopies defined in terms of the cylinders X ∧B I+. In particular, we have the
notion of a Hurewicz cofibration in GSB , abbreviated cyl-cofibration, defined in
terms of these cylinders, and we also have the notion of strong Hurewicz cofibration,
abbreviated cyl-cofibration.

Lemma 12.1.3. A cyl-cofibration of spectra over B is a level fp-cofibration and
a cyl-fibration of spectra over B is a level fp-fibration. A cyl-cofibration between
well-sectioned spectra over B is a level f-cofibration and therefore both a level h-
cofibration and a level fp-cofibration.

Proof. By the mapping cylinder retraction characterization of Hurewicz cofi-
brations, a cyl-cofibration of spectra over B is a level fp-cofibration. The statement
about fibrations follows similarly from the path lifting function characterization of
Hurewicz fibrations. An fp-cofibration between well-sectioned ex-spaces is an f -
cofibration by Proposition 5.2.3, and all f -cofibrations are h-cofibrations. �

Recall the notions of a ground structure and of a well-grounded subcategory of
weak equivalences from Definitions 5.3.2, 5.3.3, and 5.4.1.

Proposition 12.1.4. The well-grounded spectra over B give GSB a ground
structure whose ground cofibrations, or g-cofibrations, are the level h-cofibrations.
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The level q-equivalences specify a well-grounded subcategory of weak equivalences
with respect to this ground structure. In the gluing and colimit lemmas, one need
only assume that the relevant maps are level h-cofibrations, not necessarily also
cyl-cofibrations.

Proof. That we have a ground structure follows levelwise from the ground
structure on ex-spaces in Proposition 5.3.7. That the level q-equivalences are well-
grounded follows levelwise from Proposition 5.4.9. �

We construct the level model structure on GSB from the qf -model structure
on GKB specified in Remark 7.2.11, but all results apply verbatim starting from
the qf(C )-model structure for any closed generating set C (as defined in Defini-
tion 7.2.6). We shall need the extra generality for the reasons discussed in Chapter
7. Recall that IfB and JfB denote the sets of generating qf -cofibrations and gener-
ating acyclic qf -cofibrations in GKB . We use the shift desuspension functors FV
of Definition 11.3.5 to obtain corresponding sets on the spectrum level. We need
the following observations.

Lemma 12.1.5. The functor FV enjoys the following properties.
(i) If K is a well-grounded ex-space over B, then FVK is well-grounded. If K is

an ex-fibration, then FVK is a level ex-fibration.
(ii) If i : K −→ L is an h-equivalence between well-grounded ex-spaces over B,

then FV i is a level h-equivalence.
(iii) If i : K −→ L is an fp-cofibration, then FV i is a cyl-cofibration and therefore

a level fp-cofibration. If, further, K and L are well-sectioned, then FV i is a
level f-cofibration and therefore a level h-cofibration.

(iv) If i : K −→ L is an fp-cofibration, then FV i is a cyl-cofibration.
(v) If i : K −→ L is an f-cofibration between well-grounded ex-spaces over B,

then FV i is a cyl-cofibration which is a level f-cofibration and therefore both
a level fp-cofibration and a level h-cofibration.

Proof. By Definition 11.3.5, (FVK)(W ) = JG(V,W )B ∧B K, and the G-
space JG(V,W ) is well-based. Now (i) holds by Corollary 8.2.5 and (ii) holds
by Proposition 8.2.6. Since FV is left adjoint to the evaluation functor EvV
and since cyl-fibrations are level fp-fibrations, (iv) and the first statement of (iii)
follow from the definitions by adjunction. The second statement of (iii) follows
from Proposition 5.2.3. The first half of (v) follows from (iv) since f -cofibrations
are fp-cofibrations, and the second half follows from (iii) since FV i is a level f -
cofibration between well-grounded spectra and therefore a level f -cofibration by
Theorem 5.2.8(ii). �

Definition 12.1.6. Define FIfB to be the set of maps FV i with V in a skeleton
skIG of IG and i in IfB . Define FJfB to be the set of maps FV j with V in skIG

and j in JfB .

Recall the notion of a well-grounded model structure from Definition 5.5.4.
Among other properties, such model structures are compactly generated, proper,
and G-topological.

Theorem 12.1.7. The category GSB is a well-grounded model category with
respect to the level q-equivalences, the level qf -fibrations and the s-cofibrations. The
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sets FIfB and FJfB give the generating s-cofibrations and the generating level acyclic
s-cofibrations. All s-cofibrations are both Cyl-cofibrations and level f-cofibrations,
hence level fp and level h-cofibrations, and all s-cofibrant spectra over B are well-
grounded.

Proof. By Lemma 12.1.5, the maps in FIfB and FJfB are cyl-cofibrations be-
tween well-grounded objects and f -cofibrations, hence the s-cofibrations are bicofi-
brations by Lemma 5.3.5. Moreover, the maps in FJfB are level acyclic. Therefore,
to prove the model axioms, we need only verify the compatibility condition (ii) in
Theorem 5.5.1. Adjunction arguments show that a map is a level qf -fibration if and
only if it has the RLP with respect to FJfB and that it is a level acyclic q-fibration
if and only if it has the RLP with respect to FIfB . This implies that the classes
of s-cofibrations and of FIfB-cofibrations (in the sense of Definition 4.5.1(iii)) coin-
cide. Therefore, if a map has the RLP with respect to FIfB , then it is a level acyclic
qf -fibration. The required compatibility condition now follows from its analogue
for GKB . Condition (iv) in Theorem 5.5.1 holds by its ex-space level analogue and
the fact that (FVK) ∧B T ∼= FV (K ∧B T ) for an ex-space K over B and a based
space T . Right properness follows directly from the space level analogue. �

Remark 12.1.8. Just as in Definition 12.1.6, we can also define sets FIB and
FJB based on the generating sets IB and JB for the q-model structure on GKB . We
can then use Theorem 4.5.6 to prove the analogue of Theorem 12.1.7 stating that
GSB is a compactly generated model category under the level q-model structure.
Since the compatibility condition holds by the same proof as for the level qf -model
structure, we need only verify the acyclicity condition to show this.

For a generating acyclic q-cofibration j ∈ JB , we have FV j = V ∗ ∧B j, where
V ∗(W ) = JG,B(V,W ). This map is a level h-equivalence by Lemma 12.1.5(ii).
Although j is an h-cofibration, it is not immediate that FV j is a level h-cofibration.
(This holds for j ∈ JfB by Lemma 12.1.5(iii), since j is then an fp-cofibration).
Indeed, for general ex-spaces K and h-cofibrations f , K ∧B f need not be an h-
cofibration. However, since JG,B(V,W ) = JG(V,W )B , we see directly that FV j
is indeed a level h-cofibration. By inspection of the definition of wedges over B in
terms of pushouts, the gluing lemma in K then applies to show that wedges over B
of maps in FJB are level acyclic h-cofibrations. Since pushouts and colimits in SB

are constructed levelwise on total spaces, it follows that relative FJB complexes
are acyclic h-cofibrations since the q-model structure on K is well-grounded.

Remark 12.1.9. As in the nonparametrized case [105], “positive” model struc-
tures would be needed to obtain a comparison with the as yet undeveloped alter-
native approach to parametrized stable homotopy theory based on [61, 98]. Such
model structures can be defined as in [105, p. 44], starting from the subsets (FIfB)+

and (FJfB)+ that are obtained by restricting to those V such that V G 6= 0. One
then defines the positive level versions of all of the types of maps specified in Def-
inition 12.1.1 by restricting to those levels V such that V G 6= 0. The positive
level analogue of Theorem 12.1.7 holds, where the positive s-cofibrations are the
s-cofibrations that are isomorphisms at all levels V such that V G = 0; compare
[105, III.2.10]. However, we shall make no use of the positive model structure in
this paper, and we will make little further reference to it.

The same proof as in [105, I.2.10, II.4.10, III.2.12] gives the following result.
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Theorem 12.1.10. The forgetful functor U from spectra over B to prespectra
over B has a left adjoint P such that (P,U) is a Quillen equivalence.

12.2. Some Quillen adjoint pairs relating level model structures

This section gives the analogues for the level model structure of some of the
ex-space level results in §§7.2-7.4. These results are also analogues of results in
[105, III.§2], which in turn have non-equivariant precursors in [106, §6]. They admit
essentially the same proofs as in Chapter 7 or in the cited references. The level qf -
model structure is understood throughout. More precisely, where a qf(C )-model
structure was used in Chapter 7, we must use the corresponding level qf(C )-model
structure here. Since we want our model structures to be G-topological, we only
use generating sets C that are closed under finite products.

Our first observation is immediate from the fact that equivalences and fibra-
tions are defined levelwise, the next follows directly from its ex-space analogue
Proposition 7.3.1, and the third and fourth are proven in the same way as their
ex-space analogues 7.3.2 and Corollary 7.3.3. All apply to the level qf(C )-model
structures for any choice of C .

Proposition 12.2.1. The pair of adjoint functors (FV ,EvV ) between GKB

and GSB is a Quillen adjoint pair.

Proposition 12.2.2. For a based G-CW complex T , ((−) ∧B T, FB(T,−)) is
a Quillen adjoint pair of endofunctors of GSB.

Proposition 12.2.3. If i : X −→ Y and j : W −→ Z are s-cofibrations of
spectra over base spaces A and B, then

i�j : (Y ZW ) ∪XZW (X Z Z) −→ Y Z Z

is an s-cofibration over A×B which is level acyclic if either i or j is acyclic.

As in §7.2, we cannot expect this result to hold for internal smash products over
B. The case A = ∗, which relates spectra to spectra over B, is particularly impor-
tant. As we explain in §14.1, it leads to a fully satisfactory theory of parametrized
module spectra over nonparametrized ring spectra.

Corollary 12.2.4. If Y is s-cofibrant over B, then the functor (−) Z Y from
GSA to GSA×B is a Quillen left adjoint with Quillen right adjoint F̄ (Y,−).

Again the next result is a direct consequence of its ex-space analogue Proposi-
tion 7.3.4 and applies with any choice of C .

Proposition 12.2.5. Let f : A −→ B be a G-map. Then (f!, f∗) is a Quillen
adjoint pair. The functor f! preserves level q-equivalences between well-sectioned
G-spectra over B. If f is a qf-fibration, then f∗ preserves all level q-equivalences.

Proposition 12.2.6. If f : A −→ B is a q-equivalence, then (f!, f∗) is a Quillen
equivalence.

Proof. We mimic the proof of Proposition 7.3.5, but with X and Y taken to
be an s-cofibrant G-spectrum over A and a level qf -fibrant G-spectrum over B. It
is clear that f∗Y −→ Y is a level q-equivalence since A −→ B is a q-equivalence.
Since X is s-cofibrant, ∗A −→ X is a level h-cofibration. Note that it is essential for
this statement that we start from the qf and not the q-model structure on ex-spaces.
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Since pushouts along level h-cofibrations preserve level q-equivalences, X −→ f!X
is a level q-equivalence. The conclusion follows as in Proposition 7.3.5. �

Proposition 12.2.7. Let f : A −→ B be a G-bundle whose fibers Ab are Gb-
CW complexes. Then the functor f∗ preserves level q-equivalences and s-cofibrations.
Therefore (f∗, f∗) is a Quillen adjoint pair.

Proof. Here we must use a generating set C (f) as specified in Proposi-
tion 7.3.8. The proof that f∗ preserves s-cofibrations reduces to showing that
the maps f∗FV i ∼= FV f

∗i are s-cofibrations for generating s-cofibrations i. Since
FV is a Quillen left adjoint it takes qf -cofibrations to s-cofibrations, so we are
reduced to the ex-space level, where f∗i is shown to be a qf -cofibration in Propo-
sition 7.3.8. �

Corollary 12.2.8. If B is a G-cell complex, then (r∗, r∗) is a Quillen adjoint
pair.

Now consider the change of groups functors of §11.5. The following result shows
that the equivalence of Proposition 11.5.3 descends to homotopy categories. It is
proven by levelwise application of its ex-space analogue Proposition 7.4.7, together
with change of universe considerations that are deferred until §14.2 and §14.3.

Proposition 12.2.9. Let ι : H −→ G be the inclusion of a subgroup. The pair
of functors (ι!, ν∗ι∗) relating HSA and GSι!A give a Quillen equivalence. If A is
completely regular, then ι! is also a Quillen right adjoint.

For a point b in B, we combine the special case b̃ : G/Gb −→ B of Propo-
sition 12.2.5 with Proposition 12.2.9, where ι : Gb −→ G and ν : ∗ −→ G/Gb, to
obtain the following analogue of Proposition 7.5.1. Recall from Example 11.5.5 that
the fiber functor (−)b : GSB −→ GbS is given by ν∗ι∗b̃∗ = b∗ι∗. Its left adjoint
(−)b therefore agrees with b̃!ι!.

Proposition 12.2.10. For b ∈ B, the pair of functors ((−)b, (−)b) relating
GbS∗ and GSB is a Quillen adjoint pair.

12.3. The stable model structure on GSB

The essential point in the construction of the stable model structure is to define
the appropriate (stable) homotopy groups. The weak equivalences will then be the
maps of parametrized spectra that induce isomorphisms on all homotopy groups.
We refer to them as the π∗-isomorphisms or s-equivalences, using these terms in-
terchangeably. There are several motivating observations for our definitions. We
return the group G to the notations for much of this section.

For the first, let ∗B denote the terminal G-spectrum over B, so that each ∗B(V )
is the terminal ex-G-space ∗B . Then a G-spectrum X over B is level qf -fibrant if
and only if each projection X(V ) −→ ∗B(V ) = ∗B is a qf -fibration of ex-G-spaces.
It is equivalent that each fixed point map X(V )H −→ BH be a non-equivariant
qf -fibration, and, by Proposition 6.5.1, we have resulting long exact sequences of
homotopy groups

(12.3.1) · · · −→ πHq+1(B) −→ πHq (Xb(V )) −→ πHq (X(V )) −→ πHq (B) −→ · · ·

for each b ∈ BH . Here, for a G-space T , πHq (T ) denotes πq(TH).
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Second, as we have already discussed in §11.4, the fibers Xb of a G-spectrum X
are Gb-spectra, and our guiding principle is to use these nonparametrized spectra
to encode the homotopical information about our parametrized spectra. Proposi-
tion 12.2.10 allows us to encode levelwise information in the level homotopy groups
of fibers, and it is plausible that we can similarly encode the full structure of our
parametrized G-spectrum X in the spectrum level homotopy groups of the fiber
Gb-spectra Xb. However, we can only expect to do so when X is level qf -fibrant
and we have the long exact sequences (12.3.1).

Recall that the homotopy groups πHq (Y ) of a nonparametrized G-spectrum
Y are defined in [105, III.3.2] as the colimits of the groups πHq (ΩV Y (V )), where
the maps of the colimit system are induced in the evident way by the adjoint
structure maps σ̃ : Y (V ) −→ ΩW−V Y (W ) of Y . The functor ΩV on based G-
spaces preserves q-fibrations and the functor ΩVB = FB(SV ,−) on G-spectra over B
preserves level qf -fibrations. Formally, these hold since SV is a q-cofibrant G-space
and the relevant model structures are G-topological. This leads to two families of
long exact sequences relating the homotopy groups πHq (ΩVXb(W )) of fibers to the
homotopy groups of the base space B and of the total spaces X(W ). First, if X is
a level q-fibrant G-spectrum over B, then, using basepoints determined by a point
b ∈ BH for any H ⊂ Gb, the q-fibrations ΩVX(W ) −→ ΩVB of based G-spaces
with fibers ΩVXb(W ) induce long exact sequences
(12.3.2)
· · · −→ πHq+1(Ω

VB) −→ πHq (ΩVXb(W )) −→ πHq (ΩVX(W )) −→ πHq (ΩVB) −→ · · · .

Second, if X is level qf -fibrant, then the qf -fibrations (ΩVBX)(W ) −→ ∗B of ex-G-
spaces over B with fibers ΩVXb(W ) induce long exact sequences
(12.3.3)
· · · −→ πHq+1(B) −→ πHq (ΩVXb(W )) −→ πHq ((ΩVBX)(W )) −→ πHq (B) −→ · · · .

The first allows us to relate the homotopy groups of the Xb to the homotopy groups
of the ordinary loops ΩVX(W ) on total spaces. The second allows us to relate the
homotopy groups of the Xb to the homotopy groups of the parametrized loop ex-
spaces (ΩVBX)(W ). It is the second that is most relevant to our work.

Definition 12.3.4. The homotopy groups of a level qf -fibrant G-spectrum
over B, or of a level qf -fibrant G-prespectrum X, are all of the homotopy groups
πHq (Xb) of all of the fibers Xb, where H ⊂ Gb. The homotopy groups of a general
G-spectrum, or G-prespectrum, X over B are the homotopy groups πHq ((RX)b) of a
level qf -fibrant approximation RX to X. We still denote these homotopy groups by
πHq (Xb). In either category, a map f : X −→ Y is said to be a π∗-isomorphism or,
synonymously, an s-equivalence, if, after level qf -fibrant approximation, it induces
an isomorphism on all homotopy groups.

There are also homotopy groups specified in terms of maps out of sphere spectra
over B, but we choose to ignore them in setting up our model theoretic foundations.
Our choice captures the intuitive idea that spectra over B should be parametrized
spectra: the fiber spectra should carry all of the homotopy theoretical information.
With this choice, a good deal of the work needed to set up the stable model structure
reduces to work that has already been done in [105]. The following observation is
a starting point that illustrates the pattern of proof.

Lemma 12.3.5. A level q-equivalence of G-spectra over B is a π∗-isomorphism.
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Proof. A level qf -fibrant approximation to the given level q-equivalence is a
level acyclic qf -fibration, and it induces a level q-equivalence on fibers over points
of B by Proposition 12.2.10. This allows us to apply [105, III.3.3], which gives the
same conclusion for nonparametrized G-spectra, one fiber at a time. �

To exploit our definition of homotopy groups, we need the following accompa-
nying definition and proposition.

Definition 12.3.6. An Ω-G-prespectrum over B is a level qf -fibrant prespec-
trum X over B whose adjoint structure maps σ̃ : X(V ) −→ ΩW−V

B X(W ) are q-
equivalences of ex-G-spaces over B, that is, q-equivalences of total G-spaces. An
(orthogonal) Ω-G-spectrum over B is a level qf -fibrant G-spectrum over B whose
adjoint structure maps are q-equivalences; equivalently, its underlying prespectrum
must be an Ω-G-prespectrum over B.

Since we are omitting the adjective “orthogonal” from “orthogonal G-spectrum
over B”, we must use the term “Ω-G-prespectrum over B” on the prespectrum level
to avoid confusion; the usual term “Ω-G-spectrum” was used in [105]. We state the
following two results for Ω-G-spectra, but they hold equally well for Ω-G-prespectra.

Proposition 12.3.7. A level fibrant G-spectrum X over B is an Ω-G-spectrum
over B if and only if each fiber Xb is an Ω-Gb-spectrum.

Proof. By the five lemma, this is immediate from a comparison of the long
exact sequences in (12.3.1) and (12.3.3). �

This result leads to the following partial converse to Lemma 12.3.5.

Theorem 12.3.8. A π∗-isomorphism between Ω-G-spectra over B is a level
q-equivalence.

Proof. The analogue for nonparametrized Ω-G-spectra is [105, III.3.4]. In
view of Proposition 12.3.7, we can apply that result on fibers and then use that
Ω-G-spectra over B are required to be level qf -fibrant to deduce the claimed level
q-equivalence on total spaces from (12.3.1). �

Technically, the real force of our definition of homotopy groups is that this
result describing the π∗-isomorphisms between Ω-G-spectra over B is an immediate
consequence of the work in [105]. Given this relationship between Ω-G-spectra
and homotopy groups, many of the arguments of [105] apply fiberwise to allow
the development of the stable model structure. However, as discussed in the next
section, careful use of level fibrant approximation is required. We shall use the
terms “stable model structure” and “s-model structure” interchangeably. The s-
cofibrations are the same as those of the level qf -model structure and the s-fibrant
G-spectra over B turn out to be the Ω-G-spectra over B.

Now that we have seen how the equivariance appears in the definition of homo-
topy groups and the deduction of results about G-spectra over B from results about
Gb-spectra, we revert to our custom of generally deleting G from the notations.

Definition 12.3.9. A map of spectra or prespectra over B is
(i) an acyclic s-cofibration if it is a π∗-isomorphism and an s-cofibration,
(ii) an s-fibration if it satisfies the RLP with respect to the acyclic s-cofibrations,
(iii) an acyclic s-fibration if it is a π∗-isomorphism and an s-fibration.
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We shall prove the following basic theorem in the next two sections.

Theorem 12.3.10. The categories GSB and GPB are well-grounded model
categories with respect to the π∗-isomorphisms (= s-equivalences), s-fibrations and
s-cofibrations. The s-fibrant objects are the Ω-spectra over B.

Remark 12.3.11. Recall Remark 12.1.9. We can define positive Ω-prespectra
and positive analogues of our s-classes of maps, starting with the positive level qf -
model structure. As in [105, III§5], the positive analogue of the previous theorem
also holds, with the same proof. The identity functor is the left adjoint of a Quillen
equivalence from GSB or GPB with its positive stable model structure to GSB

or GPB with its stable model structure.

The proof of the following result is virtually the same as the proof of its non-
parametrized precursor [105, III.4.16 and III.5.7] and will not be repeated.

Theorem 12.3.12. The adjoint pair (P,U) relating the categories GPB and
GSB of prespectra and spectra over B is a Quillen equivalence with respect to either
the stable model structures or the positive stable model structures.

As in [105, III.§6], Theorem 12.3.10 leads to the following definition and theo-
rem, whose proof is the same as the proof of [105, III.6.1].

Definition 12.3.13. Let [X,Y ]` denote the morphism sets in the homotopy
category associated to the level qf -model structure on GPB or GSB . A map
f : X −→ Y is a stable equivalence if f∗ : [Y,E]` −→ [X,E]` is an isomorphism for
all Ω-spectra E over B. Define the positive analogues similarly. Let [X,Y ] denote
the morphism sets in the stable homotopy category HoGSB of spectra over B.

Theorem 12.3.14. The following are equivalent for a map f : X −→ Y of
spectra or prespectra over B.

(i) f is a stable equivalence.
(ii) f is a positive stable equivalence.
(iii) f is a π∗-isomorphism.
Moreover [X,E] = [X,E]` if E is an Ω-spectrum.

Lemma 12.6.1 below should make it clear why the last statement is true.

12.4. Cofiber sequences and π∗-isomorphisms

In the main, the proof of Theorem 12.3.10 is obtained by applying the results in
[105] fiberwise. Since total spaces are no longer assumed to be weak Hausdorff, we
have to be a little careful: we are quoting results proven for T and using them for
K∗. However, we can just as well interpret [105] in terms of K∗. The total spaces
X(V ) of an s-cofibrant spectrum over B are weak Hausdorff, hence s-cofibrant
approximation places us in a situation where total spaces are in U and therefore
fibers are in T .

There is a more substantial technical problem to overcome in adapting the
proofs of [105, 106] to the present setting. In the situations encountered in those
references, all objects were level q-fibrant, and that simplified matters considerably.
Here, level qf -fibrant approximation entered into our definition of homotopy groups,
and for that reason the results of this section are considerably more subtle than their
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counterparts in the cited sources. Their proofs depend on the full strength of our
topological model structures in general and the qf -model structure in particular.

We begin by noting that any level ex-quasifibrant approximation, not neces-
sarily a qf -fibrant approximation, can be used to calculate the homotopy groups of
parametrized spectra.

Lemma 12.4.1. A zig-zag of level q-equivalences connecting a spectrum X over
B to a level ex-quasifibrant spectrum Y over B induces an isomorphism between the
homotopy groups of X and of Y , and the latter can be computed directly in terms
of the fibers of Y .

Proof. This follows from Lemma 12.3.5 by applying a level qf -fibrant approx-
imation functor to the zig-zag. �

Theorem 12.4.2. Let f : X −→ Y be a map between G-spectra over B. For
any H ⊂ G and b ∈ BH , there is a natural long exact sequence

· · · −→ πHq+1(Yb) −→ πHq ((FBf)b) −→ πHq (Xb) −→ πHq (Yb) −→ · · ·
and, if X is well-sectioned, there is also a natural long exact sequence

· · · −→ πHq (Xb) −→ πHq (Yb) −→ πHq ((CBf)b) −→ πHq−1(Xb) −→ · · · .

Proof. For the first long exact sequence, let R be a level qf -fibrant approxi-
mation functor and consider Rf . We claim that the induced map FBf −→ FBRf
is a level q-equivalence and that FBRf is level qf -fibrant. This means that FBRf is
a level qf -fibrant approximation to FBf , so that the homotopy groups of the fibers
(FBRf)b ∼= F ((Rf)b) are the homotopy groups of FBf . When restricted to fibers
over b, the parametrized fiber sequence RX −→ RY −→ FBRf of spectra over B
gives the nonparametrized fiber sequence (RX)b −→ (RY )b −→ F ((Rf)b), and the
long exact sequence follows from [105, III.3.5]. To prove the claim, observe that
since FB(I, Y ) −→ Y is a Hurewicz fibration, it has a path-lifting function which
levelwise shows that FB(I, Y ) −→ Y is a level fp-fibration and therefore a level
qf -fibration (since all qf -cofibrations are fp-cofibrations in GKB). The dual gluing
lemma (see Definition 5.4.1(iii)) then gives that the induced map FBf −→ FBRf
is a level q-equivalence. Since FB(I,−) preserves level qf -fibrant objects and since
pullbacks of level qf -fibrant objects along a level qf -fibration are level qf -fibrant,
FBRf is level qf -fibrant.

Since the maps X −→ CBX and RX −→ CBRX are cyl-cofibrations between
well-sectioned spectra and therefore level h-cofibrations by Lemma 12.1.3, the glu-
ing lemma gives that CBf −→ CBRf is a level q-equivalence. Since RX and RY
are level well-sectioned and level qf -fibrant, they are level ex-quasifibrations. It
follows from Proposition 8.5.3 that CBRf is a level ex-quasifibration. We cannot
conclude that CBRf is level qf -fibrant, but by Lemma 12.4.1 we can nevertheless
use CBRf to calculate the homotopy groups of CBf . On fibers over b, the cofiber
sequence of Rf is just the cofiber sequence of (Rf)b, and the long exact sequence
follows from [105, III.3.5]. �

Recall Proposition 12.1.4, which specifies the ground structure in GSB and
shows that the level q-equivalences give a well-grounded subcategory of weak equiv-
alences; the g-cofibrations are just the level h-cofibrations. The following result
shows that the same is true for the π∗-isomorphisms. However, in contrast to
Proposition 12.1.4, it is crucial to assume that the relevant maps in the gluing
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and colimit lemmas are both cyl-cofibrations and g-cofibrations, as prescribed in
Definition 5.4.1.

Theorem 12.4.3. The π∗-isomorphisms in GSB give a well-grounded subcat-
egory of weak equivalences. In detail, the following statements hold.

(i) A homotopy equivalence is a π∗-isomorphism.
(ii) The homotopy groups of a wedge of well-grounded spectra over B are the direct

sums of the homotopy groups of the wedge summands.
(iii) The π∗-isomorphisms are preserved under pushouts along maps that are both

cyl and g-cofibrations.
(iv) Let X be the colimit of a sequence in : Xn −→ Xn+1 of maps that are both

cyl and g-cofibrations and assume that X/BX0 is well-grounded. Then the
homotopy groups of X are the colimits of the homotopy groups of the Xn.

(v) For a map i : X −→ Y of well-grounded spectra over B and a map j : K −→ L
of well-based spaces, i�j is a π∗-isomorphism if either i is a π∗-isomorphism
or j is a q-equivalence.

Proof. The conclusion that the π∗-isomorphisms give a well-grounded subcat-
egory of weak equivalences, as prescribed in Definition 5.4.1, follows directly from
the listed properties, using Lemma 5.4.3 to derive the gluing lemma. Since level q-
equivalences are π∗-isomorphisms, s-cofibrant approximation in the level qf -model
structure gives the factorization hypothesis Lemma 5.4.3(ii).

A homotopy equivalence of spectra is a level fp-equivalence and hence a level
q-equivalence, so (i) follows from Lemma 12.3.5. For finite wedges, (ii) is imme-
diate from the evident split cofiber sequences and Theorem 12.4.2. For arbitrary
wedges of well-grounded spectra over B, ∨BXi −→ ∨BRXi is a level q-equivalence
since the level q-equivalences are well-grounded and ∨BRXi is level quasifibrant by
Proposition 8.5.3. By Lemma 12.4.1 we can use ∨BRXi to calculate the homotopy
groups of ∨BXi. Over a point b in B, ∨BRXi is just ∨(RXi)b and the result follows
from the nonparametrized analogue [105, III.3.5].

Now consider (iii). Let i : X −→ Y be both a cyl-cofibration and a g-cofibration
and let f : X −→ Z be a π∗-isomorphism. Since i and its s-cofibrant approxima-
tion Qi are both cyl and g-cofibrations and since the level q-equivalences give a
well-grounded subcategory of weak equivalences, the gluing lemma shows that we
may approximate our given pushout diagram by one in which all objects are well-
sectioned. Let j : Z −→ Y ∪X Z be the pushout of i along f . Since i and j are
cyl-cofibrations and j is the pushout of i, their cofibers are homotopy equivalent.
Comparing the long exact sequences of homotopy groups associated to the cofiber
sequences of i and j gives that the pushout Y −→ Y ∪X Z of f along i is a π∗-
isomorphism.

For (iv), we may use s-cofibrant approximation in the level model structure
to replace our given tower by one in which all objects are well-sectioned. We
note as in the proof of Lemma 5.6.14 that the natural map TelXn −→ colimXn

is a level q-equivalence and therefore a π∗-isomorphism. Relating the telescope to
a classical homotopy coequalizer as in the cited proof, we reduce the calculation
of the homotopy groups of the telescope to an algebraic inspection based on (ii).
Alternatively, one can commute double colimits to reduce the verification to its
space level analogue.

For (v), it suffices to show that the tensor X∧B T preserves π∗-isomorphisms in
either variable, by Lemma 5.4.5. That follows from Proposition 12.4.4 below. �
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Proposition 12.4.4. Let X and Y be well-grounded spectra over B and T and
W be well-based spaces.

(i) If g : T −→W is a q-equivalence, then

id ∧B g : X ∧B T −→ X ∧B W

is a level q-equivalence and therefore a π∗-isomorphism.
(ii) If f : X −→ Y is a π∗-isomorphism, then

f ∧B id : X ∧B T −→ Y ∧B T

is a π∗-isomorphism; if T is a finite based CW complex, then

FB(id, f) : FB(T,X) −→ FB(T, Y )

is a π∗-isomorphism.
(iii) For a representation V in V , f : X −→ Y is a π∗-isomorphism if and only if

ΣVBf is a π∗-isomorphism.

Proof. Part (i) holds since the level q-equivalences are well-grounded. There-
fore, for the first part of (ii), we may assume by q-cofibrant approximation in the
space variable that T is a based CW complex. Using Proposition 8.5.3, it also
implies that − ∧B T preserves approximations of well-grounded spectra over B
by level ex-quasifibrations. Now the first part of (ii) follows fiberwise from its
nonparametrized analogue [105, III.3.11] and (iii) follows fiberwise from its non-
parametrized analogue [105, III.3.6]. Since FB(−, X) takes cofiber sequences of
based spaces to fiber sequences of spectra over B, the second part of (iii) follows
from the first exact sequence in Theorem 12.4.2, as in the proof of [105, III.3.9]. �

This leads to the following result, which shows that we are in a stable situation.

Proposition 12.4.5. For all well-grounded spectra X over B and all repre-
sentations V in IG, the unit η : X −→ ΩVBΣVBX and counit ε : ΣVBΩVBX −→ X of
the (ΣVB ,Ω

V
B) adjunction are π∗-isomorphisms. Therefore, if f : X −→ Y is a map

between well-grounded spectra over B, then the natural maps η : FBf −→ ΩBCBf
and ε : ΣBFBf −→ CBf are π∗-isomorphism.

Proof. For η, after approximation ofX by an ex-quasifibration, the conclusion
follows fiberwise from its nonparametrized analogue [105, III.3.6]. Using the two
out of three property and the triangle equality for the adjunction, it follows that
ΩVBε is a π∗-isomorphism, hence so is ε. For the last statement, the maps η and ε are
the parametrized analogues of the maps defined for ordinary loops and suspensions
in [121, p. 61], and they fit into diagrams relating fiber and cofiber sequences like
those displayed there. Now the last statement follows from the five lemma and the
exact sequences in Theorem 12.4.2. �

12.5. Proofs of the model axioms

We need some G-spectrum level recollections from [105] and their analogues for
G-spectra over B to describe the generating acyclic s-cofibrations. Let (SG, GS )
denote the G-category of G-spectra. To keep track of enrichments, we again return
G to the notations for the moment.
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We have a shift desuspension functor FV from based G-spaces to G-spectra
given by FV T = V ∗ ∧T , where V ∗(W ) = JG(V,W ) [105, III.4.6]. It is left adjoint
to evaluation at V . For G-spectra X, the adjoint structure G-map

σ̃ : X(V ) −→ ΩWX(V ⊕W )

may be viewed by adjunction as a G-map

σ̃ : SG(FV S0, X) −→ SG(FV⊕WSW , X).

Passing to G-fixed points and taking X = FV S
0, the image of the identity map

gives a map of G-spectra

λV,W : FV⊕WSW −→ FV S
0.

(The notation λV,W was used in [105], but we need room for a subscript). A Yoneda
lemma argument then shows that the map of G-spaces

SG(λV,W , id) : SG(FV S0, X) −→ SG(FV⊕WSW , X)

can be identified with σ̃ : X(V ) −→ ΩWX(V ⊕W ).
We need the analogue for G-spectra over B. Recall from Definition 11.3.5 that,

for an ex-G-space K over B, (FVK)(W ) = V ∗(W ) ∧B K, where

V ∗(W ) = JG,B(V,W ) = JG(V,W )B = (FV S0)(W ) ∧B S0
B .

It follows that we can identify FVK with the evident external tensor FV S0∧BK of
the G-spectrum FV S

0 and the ex-G-space K over B; compare Remark 11.1.7. We
have used the notation ∧B for this generalized tensor, but viewing it as a special
case of the external smash product of spectra over ∗ and over B would suggest the
alternative notation Z.

Definition 12.5.1. For ex-G-spaces K over B, we define a natural map

λV,WB : FV⊕WΣWB K −→ FVK

by identifying the source and target with external tensor products and setting

λV,WB = λV,W ∧B id : (FV⊕WSW ) ∧B K −→ (FV S0) ∧B K.

We can describe the adjoint structure maps of G-spectra over B in terms of
these maps λV,WB .

Lemma 12.5.2. Under the adjunctions

PB(FV S0
B , X) ∼= FB(S0

B , X(V )) ∼= X(V )

and
PB(FV⊕WSWB , X) ∼= FB(S0

B ,Ω
W
B X(V ⊕W )) ∼= ΩWB X(V ⊕W ),

the map
PB(λV,WB , id) : PB(FV S0

B , X) −→ PB(FV⊕WSWB , X)

corresponds to
σ̃ : X(V ) −→ ΩWB X(V ⊕W ).

Proof. When X = FV S
0
B , the conclusion holds by comparison with the case

of G-spectra. The general case follows from the Yoneda lemma of enriched category
theory. See, for example, [23, 6.3.5]. �
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We could have started off by defining λV,WB in a conceptual manner analogous
to our definition of λV,W , but we want the explicit description of λV,WB in terms of
λV,W in order to deduce homotopical properties in the parametrized context from
homotopical properties in the nonparametrized context. For that and other pur-
poses, we need the following observation. We return to our convention of deleting
G from the notations, on the understanding that everything is equivariant.

Lemma 12.5.3. If φ : X −→ Y is an s-equivalence of level well-based nonpara-
metrized spectra and K is a well-grounded ex-space with total space of the homotopy
type of a G-CW complex, then φ ∧B id : X ∧B K −→ Y ∧B K is an s-equivalence.

Proof. We use the ex-fibrant approximation functor P of Definition 8.3.4. We
have a natural zig-zag of h-equivalences between K and PK. By Proposition 8.2.6,
it induces a zig-zag of level h-equivalences between X ∧B K and X ∧B PK and, by
Corollary 8.2.5, X ∧B PK is a level ex-fibration. Therefore, by Lemma 12.4.1, it
suffices to consider the case when K is an ex-fibration. Since (X ∧B K)b = X ∧Kb

and Kb is of the homotopy type of a Gb-CW complex, by Theorem 3.5.2, each
(φ ∧B id)b is an s-equivalence by [105, III.3.11]. �

The following result is crucial.

Proposition 12.5.4. Let K be a well-grounded ex-space with total space of the
homotopy type of a CW complex. Then

λV,WB : FV⊕WΣWB K −→ FVK

and
λV,W Z id : FV⊕WSW Z FZK −→ FV S

0 Z FZK

are π∗-isomorphisms of spectra over B.

Proof. Since λV,WB = λV,W ∧B id, Lemma 12.5.3 and the corresponding non-
parametrized statement [105, III.4.5] imply the first statement. For the second
statement, observe that for spectra X we have the associativity relation

X Z FZK ∼= X Z (FZS0 ∧B K) ∼= (X ∧ FZS0) ∧B K.
Taking X = FV T for a based space T and using Lemma 11.3.6, we see that

FV T Z FZK ∼= FV⊕Z(T ∧B K).

Using equivalences of this form and checking definitions, we conclude that the map
λV,W Z id of the statement can be identified with the map

λV⊕Z,W ∧B id : (FV⊕Z⊕WSW ) ∧B K −→ (FV⊕ZS0) ∧B K.
Thus the second π∗-isomorphism is a special case of the first. �

From here, the proof of Theorem 12.3.10 closely parallels arguments in [105,
III.§4], but simplified a little by Theorem 5.5.1. The generating set of s-cofibrations
is again FIfB . The generating set FKf

B of acyclic s-cofibrations is given by a variant
of the definition in the nonparametrized case [105, III.4.6].

Definition 12.5.5. Recall the factorization of λV,W through the mapping
cylinder (in the category of spectra) as

λV,W : FV⊕WSW
kV,W

// MλV,W
rV,W

// FV S0.
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Here kV,W is an s-cofibration and rV,W is a deformation retraction. For i : C −→ D
in IfB , the map

i�kV,W : C ∧B MλV,W ∪C∧BFV⊕WSW D ∧B FV⊕WSW −→ D ∧B MλV,W

is an s-cofibration in GSB by Proposition 12.2.3, and it is therefore also a cyl-
cofibration by Theorem 12.1.7. It is a π∗-isomorphism by Proposition 12.5.4 and
inspection of definitions. The s-cofibrations in FJfB are level acyclic and are there-
fore also π∗-isomorphisms. Restricting to V and W in skIG, define the generating
set FKf

B of acyclic s-cofibrations to be the union of FJfB and the set of all maps
of the form i�kV,W with i ∈ IfB .

A fortiori, the following result identifies the s-fibrations, but it must be proven
a priori as a first step towards the verification of the model axioms.

Proposition 12.5.6. A map f : X −→ Y satisfies the RLP with respect to
FKf

B if and only if f is a level qf -fibration and the diagrams

(12.5.7) X(V ) σ̃ //

f(V )

��

ΩWB X(V ⊕W )

ΩW
B f(V⊕W )

��
Y (V )

σ̃
// ΩWB Y (V ⊕W )

are homotopy pullbacks for all V and W .

Proof. As in [105, III.4.7], the homotopy pullback property must be inter-
preted as requiring a q-equivalence from X(V ) into the pullback in the displayed
diagram. Recall that FJfB is contained in FKf

B and that a map has the RLP with
respect to FJfB if and only if it is a level qf -fibration. This gives part of both
implications. It remains to show that a level qf -fibration f has the RLP with re-
spect to i�kV,W for all i ∈ IfB if and only if the displayed diagram is a homotopy
pullback. This is a formal but not altogether trivial exericise from the fact that
the level qf -model structure is G-topological in the sense characterized in Propo-
sition 10.3.18. Notice that the map i�kV,W is isomorphic to the map i�kV,WB ,
where kV,WB = kV,W ∧B S0

B . With notation as in (10.3.6), f has the RLP with
respect to i�kV,WB for all i ∈ IfB if and only if the pair (i, P�

B (kV,WB , f)) has the
lifting property for all i ∈ IfB , which holds if and only if the map P�

B (kV,WB , f) of
ex-spaces over B is an acyclic qf -fibration. This map is a qf -fibration since, for
j ∈ JfB , the map j�kV,W ∼= j�kV,WB is a level acyclic s-cofibration of spectra over
B by Proposition 12.2.3. Since f is a level qf -fibration, (j�kV,WB , f) has the lift-
ing property, hence, by adjunction, so does (j, P�

B (kV,WB , f)). Finally, P�
B (kV,WB , f)

is homotopy equivalent to P�
B (λV,WB , f) so one is a q-equivalence if and only if the

other is. Under the isomorphisms in Lemma 12.5.2, the map P�
B (λV,WB , f) coincides

with the map from X(V ) into the pullback in the displayed diagram and is thus a
q-equivalence if and only if that diagram is a homotopy pullback. �

Observe that ∗B is an Ω-spectrum with trivial homotopy groups.

Corollary 12.5.8. The terminal map F −→ ∗B satisfies the RLP with respect
to FKB if and only if F is an Ω-spectrum over B.



190 12. MODEL STRUCTURES FOR PARAMETRIZED G-SPECTRA

Corollary 12.5.9. If f : X −→ Y is a π∗-isomorphism that satisfies the RLP
with respect to FKB, then f is a level acyclic qf -fibration.

Proof. Since f is a level qf -fibration by Proposition 12.5.6, the dual of the
gluing lemma applied to the diagram

∗B //

��

Y X
foo

FB(I, Y ) // Y X
f
oo

gives that the induced map F −→ FBf of pullbacks is a level q-equivalence. Since
f has the RLP with respect to FKB , so does its pullback F −→ ∗B . By the
previous corollary, F is thus an Ω-spectrum over B. In particular, it is level qf -
fibrant. We conclude that F is a level qf -fibrant approximation for FBf . Since f
is a π∗-isomorphism, Theorem 12.4.2 gives that F is acyclic. By Theorem 12.3.8,
this implies that F −→ ∗B is a level q-equivalence. Thus the fibers F (V )b all
have trivial homotopy groups. We conclude (with a bit of extra argument as in
[106, 9.8] to handle π0) that each map of fibers f(V )b induces an isomorphism on
homotopy groups. Therefore, since each f(V ) is a qf -fibration, each f(V ) induces
an isomorphism on homotopy groups. �

The proof of the model axioms for the stable model structure is now immediate.

Proof of Theorem 12.3.10. The π∗-isomorphisms give a well-grounded sub-
category of weak equivalences, by Theorem 12.4.3. Conditions (i), (iii), and (iv)
in Theorem 5.5.1 are clear from our specification of the generating acyclic s-
cofibrations and the result for the level qf -model structure. For condition (ii),
a π∗-isomorphism that satisfies the RLP with respect to FKB has the RLP with
respect to FIB by Corollary 12.5.9. Conversely, a map that has the RLP with re-
spect to FIB is a level acyclic qf -fibration and therefore has the RLP with respect to
FKB by Proposition 12.5.6. It is a π∗-isomorphism since it is level acyclic. Since
all s-fibrations are level qf -fibrations, right properness follows from the slightly
stronger observation in the following result. �

Proposition 12.5.10. The π∗-isomorphisms in GSB are preserved under pull-
backs along level qf -fibrations.

Proof. Let g be the pullback of a level qf -fibration f along a π∗-isomorphism.
Then g is a level qf -fibration and the fibers of g(V ) are isomorphic to the fibers of
f(V ). Therefore the homotopy fibers FBg are level q-equivalent to the homotopy
fibers FBf . The result follows by comparison of the first long exact sequence in
Theorem 12.4.2 for f and g. �

12.6. Some Quillen adjoint pairs relating stable model structures

We prove here that all of the adjoint pairs that were shown to be Quillen
adjoints with respect to the level model structure in §12.2 are still Quillen adjoints
with respect to the stable model structure. In view of the role played by level
qf -fibrant approximation in our definition of homotopy groups, it is helpful to
first understand the relationship between s-fibrant approximation and level qf -
fibrant approximation. Now that the model structures have been established, we



12.6. SOME QUILLEN ADJOINT PAIRS RELATING STABLE MODEL STRUCTURES 191

henceforward use the term s-equivalence rather than the synonymous term π∗-
isomorphism.

Lemma 12.6.1. Let ν : X −→ RX and ν` : X −→ R`X be an s-fibrant ap-
proximation of X and a level qf-fibrant approximation of X. Then there is an
s-equivalence ξ : R`X −→ RX under X.

Proof. Since ν` is a level acyclic s-cofibration, it is an acyclic s-cofibration by
Lemma 12.3.5. Since RX is s-fibrant, the RLP gives a map ξ under X, and it is
an s-equivalence since ν and ν` are s-equivalences. �

We have the following relationship between the homotopy categories of ex-
spaces over B and of spectra over B.

Proposition 12.6.2. The pair (Σ∞B ,Ω
∞
B ) is a Quillen adjunction relating GSB

and GKB. More generally, (Σ∞V ,Ω
∞
V ) = (FV , EvV ) is a Quillen adjunction for any

representation V ∈ V .

Proof. The maps Σ∞V i, where i ∈ IfB is a generating cofibration for the qf -
model structure on GKB , are among the generating cofibrations of the s-model
structure on GSB , and it follows that Σ∞V preserves cofibrations. Since Σ∞V takes
acyclic qf -cofibrations to level acyclic qf -cofibrations, and these are acyclic by
Lemma 12.3.5, Σ∞V also preserves acyclic cofibrations. �

Now consider an adjoint pair (F, V ) between categories of parametrized spectra
that is a Quillen adjunction with respect to the level model structures. Since the
cofibrations are the same in the level model structure and in the stable model
structure, the left adjoint F certainly preserves cofibrations. Thus, to show that
(F, V ) is also a Quillen adjunction with respect to the stable model structures, we
need only show that F carries acyclic s-cofibrations to s-equivalences. When F
preserves all s-equivalences, this is obvious; otherwise, by Lemma 5.4.7, it suffices
to verify this for the generating acyclic s-cofibrations. The cited result applies in
general to subcategories of well-grounded weak equivalences, and in our context
it applies to both the level q-equivalences and the s-equivalences. Recall that a
Quillen left adjoint in any model structure preserves weak equivalences between
cofibrant objects, by Ken Brown’s lemma [75, 1.1.12]. The following parenthetical
observation applies to give a stronger conclusion for the Quillen left adjoints that
we shall encounter. It will play a crucial role in exploiting the equivalence of
homotopy categories that we will establish in the next chapter. Note that the s-
cofibrant spectra are the cofibrant objects in both the level and the stable model
structures, and they are well-grounded.

Proposition 12.6.3. Let F be a Quillen left adjoint between categories of
parametrized spectra with their stable model structures and suppose that F preserves
level q-equivalences between well-grounded spectra. Then F preserves s-equivalences
between well-grounded spectra.

Proof. If g : X −→ Y is an s-equivalence, where X and Y are well-grounded,
factor g in the level model structure as

X
g′ // W

g′′ // Y,

where g′ is an s-cofibration and g′′ is a level acyclic qf -fibration. Then W is well-
grounded and Fg′′ is a level q-equivalence by assumption. Since F is a Quillen left
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adjoint in the s-model structures, Fg′ is an s-equivalence. Since level q-equivalences
are s-equivalences it follows that Fg = Fg′′ ◦ Fg′ is an s-equivalence. �

The following sequence of results consists of analogues for the stable model
structures of results proven for the level model structures in §12.2. Recall that we
actually have well-grounded stable model structures s(C ) for any closed generating
set C . As in §12.2, wherever a qf(C )-model structure was used in Chapter 7
for some particularly well chosen C , we must use the corresponding s(C )-model
structure here.

Proposition 12.6.4. Let T be a based G-CW complex. Then (−∧BT, FB(T,−))
is a Quillen adjunction on GSB. When T = SV , it is a Quillen equivalence.

Proof. This is immediate from the fact that the stable model structure is
G-topological, together with Propositions 12.4.4 and 12.4.5. �

Proposition 12.6.5. If i : X −→ Y and j : W −→ Z are s-cofibrations of
spectra over base spaces A and B, then

i�j : (Y ZW ) ∪XZW (X Z Z) −→ Y Z Z

is an s-cofibration over A×B which is s-acyclic if either i or j is s-acyclic.

Proof. The statement about s-cofibrations is part of the analogue, Proposi-
tion 12.2.3, for the level model structure. As usual, it suffices to show that i�j
is an s-equivalence if i ∈ FIfB and j ∈ FKf

B , where FKf
B is the set of generating

acyclic s-cofibrations specified in Definition 12.5.5. Arguing as in Lemma 5.4.5 and
using properness, this will hold if smashing the source and the target of i with j
give s-equivalences. The reduction so far would work just as well for internal smash
products. The required last step reduces via inspection of Definition 12.5.5 to an
application of Proposition 12.5.4, with base space taken to be A × B. The reason
that this last step works for external smash products but fails for internal smash
products is made clear in Warning 6.1.7. �

Corollary 12.6.6. If Y is an s-cofibrant spectrum over B, then the functor
(−) Z Y from GSA to GSA×B is a Quillen left adjoint with Quillen right adjoint
F̄ (Y,−).

Proposition 12.6.7. Let f : A −→ B be a G-map. Then (f!, f∗) is a Quillen
adjoint pair. If f is a q-equivalence, then (f!, f∗) is a Quillen equivalence.

Proof. We must show that f! takes acyclic s-cofibrations to s-equivalences.
Since f! preserves well-grounded objects and level q-equivalences between well-
grounded objects by Proposition 12.2.5, it suffices by Lemma 5.4.7 to prove that f!k
is an s-equivalence for each map k in FKf

A. This follows from the corresponding
Quillen adjunction with respect to the level model structure if k ∈ FJfA, so assume
that k is of the form i�kV,W ∼= i�kV,WA . We claim that f!k is a map in FKf

B and is
therefore an s-equivalence. Observe that kV,WA ∼= f∗kV,WB . Using (11.4.5) and the
fact that f! preserves pushouts, we see from the definition of the �-product that
f!(i�f∗k

V,W
B ) ∼= (f!i)�k

V,W
B . Since i is obtained from a map over A by adjoining a

disjoint section, f!i is obtained from a map over B by adjoining a disjoint section
and is thus in IfB .

Now assume that f is a q-equivalence. By [75, 1.3.16], (f!, f∗) is a Quillen
equivalence if and only if f∗ reflects s-equivalences between s-fibrant objects and
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the composite X −→ f∗f!X −→ f∗Rf!X given by the unit of the adjunction
and s-fibrant approximation is an s-equivalence for all s-cofibrant X. Since the s-
fibrant objects are the Ω-spectra over B and the s-equivalences between Ω-spectra
over B are the level q-equivalences, the reflection property follows directly from
the corresponding Quillen equivalence with respect to the level model structure.
That result also gives that the composite X −→ f∗f!X −→ f∗R`f!X is a level q-
equivalence and hence an s-equivalence. Applying Lemma 12.6.1 with X replaced
by f!X and observing that f∗ preserves s-equivalences between level qf -fibrant
G-spectra over B since (f∗Y )a ∼= Yf(a), a little diagram chase shows that the
composite X −→ f∗f!X −→ f∗Rf!X is an s-equivalence. �

Observe that Proposition 12.6.3 applies to f!.

Proposition 12.6.8. Let f : A −→ B be a G-bundle whose fibers Ab are Gb-
CW complexes. Then (f∗, f∗) is a Quillen adjoint pair.

Proof. We must show that f∗ preserves acyclic s-cofibrations. Again it suf-
fices by Lemma 5.4.7 to prove that f∗k is an s-equivalence between well-grounded
spectra for each map k ∈ FKf

B . That f∗k is a map between well-grounded spectra
follows from the fact that if K q B is a space over B with a disjoint section, then
f∗FV (KqB) = FV f

∗KqA is well-grounded. To see that f∗k is an s-equivalence, it
is enough, as in the proof of Proposition 12.6.7, to consider k = i�kV,WB with i ∈ IfB .
We have that f∗kV,WB = kV,WA and, since f∗ preserves pushouts, smash products,
and factorizations through mapping cylinders, we see as in the cited proof that
f∗k ∼= f∗i�kV,WA , which is an acyclic s-cofibration. �

Corollary 12.6.9. If B is a G-cell complex, then (r∗, r∗) is a Quillen adjoint
pair.

Proposition 12.6.10. Let ι : H −→ G be the inclusion of a subgroup. The pair
of functors (ι!, ν∗ι∗) relating HSA and GSι!A gives a Quillen equivalence. If A is
completely regular, then ι! is also a Quillen right adjoint.

Proof. By Proposition 14.3.1 below, (ι!, ν∗ι∗) is a Quillen adjoint pair. The
proof that it is a Quillen equivalence is the same as the proof of the ex-space
level analogue in Proposition 7.4.7. The last statement is less obvious. As in
the proof of the corresponding statement in Proposition 7.4.7, it follows from the
spectrum level analogue of Remark 2.4.5, which in turn requires the spectrum level
analogue of Proposition 2.4.4, and the analogue in the stable model structure of
Proposition 7.4.3. The required analogues are proven in §14.4 below. �

We shall see that (ι!, ν∗ι∗) descends to a closed symmetric monoidal equivalence
of homotopy categories in Proposition 13.7.9 below.

Corollary 12.6.11. The functor ι∗ : HoGSB −→ HoHSι∗B is the composite

HoGSB
µ∗ //HoGKι!ι∗B ' HoHKι∗B

Using Example 11.5.5 as in Proposition 12.2.10, the following result is now a
special case of Propositions 12.6.10 and 12.6.7.

Proposition 12.6.12. For b ∈ B, the pair of functors ((−)b, (−)b) relating
GbS and GSB is a Quillen adjoint pair.





CHAPTER 13

Adjunctions and compatibility relations

Introduction

The utility of the stable homotopy category HoGSB depends on the fact that
the usual functors and adjunctions descend to it and still satisfy appropriate com-
mutation relations. We consider such matters in this chapter. Many of our basic
adjunctions are Quillen adjunctions in the stable model structure. We recorded
those in §12.6. The crucial adjunction missing from §12.6 is (f∗, f∗) for a general
map f of base spaces. This cannot be a Quillen adjoint pair by the argument in
Counterexample 0.0.1. We used Brown representability to construct the right ad-
joint f∗ between homotopy categories of ex-spaces in Theorem 9.3.2. Analogously,
in §13.1 we use Brown representability to construct f∗ between homotopy categories
of parametrized spectra, and we use base change along diagonal maps to internalize
smash products and function spectra. There is an interesting twist here. It is not
easy to verify the Mayer-Vietoris axiom directly. Rather, we use the triangulated
category variant of the Brown representability theorem, whose hypotheses turn out
to be easier to check.

In §13.7, we complete the proof that our stable homotopy categories are sym-
metric monoidal and prove some basic compatibility relations among smash prod-
ucts and base change functors. These results involve commutation of Quillen
left and right adjoints, and we would not know how to prove them using only
model theoretic fibrant and cofibrant replacement functors. Rather, their proofs
depend on an equivalence between our model theoretic stable homotopy category
of parametrized G-prespectra and a classical homotopy category of what we call
“excellent” parametrized G-prespectra. We used an analogous, but more elemen-
tary, equivalence of categories in Chapter 9. It is essential to use parametrized
G-prespectra rather than parametrized G-spectra to make the comparison since
the relevant constructions do not all preserve functoriality on linear isometries;
that is, they do not preserve IG-spaces. Results proven using the comparison are
then translated to parametrized G-spectra along the Quillen equivalence between
parametrized G-prespectra and parametrized G-spectra.

These equivalences of categories allow us to use a prespectrum level analogue
T of the ex-fibrant approximation functor P to study derived functors. We define
excellent parametrized G-prespectra in §13.2. We lift the ex-fibrant approximation
functor P from ex-G-spaces to parametrized G-spectra in §13.3. There are several
further twists here. First, the functor P on ex-G-spaces does not behave well with
respect to tensors, so extending it to a functor on parametrized G-prespectra is
subtle. Second, with the extension, the zig-zag of h-equivalences connecting P to
the identity functor is no longer given by honest maps of parametrizedG-prespectra,
only weak maps. Third, the functor P does not take parametrized G-prespectra to

195
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excellent ones. To remedy this, we introduce two auxiliary functors K and E in
§13.4. The composite T = KEP does land in excellent parametrized G-prespectra,
and K converts weak maps to honest maps. In §§13.5 and 13.6 we use T to prove
the promised equivalence of homotopy categories and show how to study derived
funtors in this context.

There are few issues of equivariance in this chapter, and we generally continue
to omit the (compact Lie) group G from the notations. We adopt the convention
of calling isomorphisms in homotopy categories equivalences and we denote them
by ' rather than ∼=.

13.1. Brown representability and the functors f∗ and FB

We need some preliminaries about the two versions of Brown representability
that are applicable in stable situations. Recall Example 11.5.5.

Definition 13.1.1. For n ∈ Z and H ⊂ G, we have an s-cofibrant sphere
G-spectrum SnH such that πHn (X) = [SnH , X]G for all G-spectra X. Explicitly,

SnH =

{
Σ∞(G/H+ ∧ Sn) if n ≥ 0,
F−n(G/H+ ∧ S0) if n < 0

(as in [105, II.4.7]), where F−n is the shift desuspension by Rn. We may allow the
ambient group to vary. Replacing G by Gb for b ∈ B and letting H ⊂ Gb, define
Sn,bH to be the G-spectrum b̃!S

n
H = (SnH)b over B. Note that Sn,bH is s-cofibrant, by

Proposition 12.2.10. By adjunction, for G-spectra X over B, πHn (Xb) is isomorphic
to [Sn,bH , X]G,B . Let DB be the set of all such G-spectra Sn,bH over B.

From here, the following three results work in much the same way as their ex-
space analogues in §7.5. The category HoGSB has coproducts and weak pushouts,
hence weak sequential colimits. Again, care must be taken with compactness, as
defined in Definition 7.5.2, since maps into homotopy colimits must be interpreted
in the derived sense.

Lemma 13.1.2. Each X ∈ DB is compact.

Proof. The sphere H-spectra SnH are compact in HS , where all objects are
s-fibrant, so that the analogue in that category is clear. We mimic the ex-space level
proofs of Lemmas 7.5.14 and 7.5.15. Remember that s-equivalences are defined in
terms of homotopy groups of fibers after level fibrant approximation. As in the
proof of Lemma 7.5.14, for a sequence of maps fq : Yq −→ Yq+1 between s-fibrant
and s-cofibrant G-spectra over B, we take RTelYq as our model for the derived
homotopy colimit of the Yq, where R denotes s-fibrant approximation. As a fibrant
approximation, the map TelYq −→ RTelYq is an s-equivalence. To show that the
homotopy groups of RTelYq are given as colimits of the homotopy groups of the Yq,
we must show that the homotopy groups of the source can be computed directly,
without level fibrant approximation. Arguing as in the proof of Lemma 7.5.15,
we approximate our given sequence of maps fq : Yq −→ Yq+1 by a sequence of s-
cofibrations gq : Zq −→ Zq+1 of s-fibrant and s-cofibrant G-spectra over B. Here
the Zq are again s-fibrant and s-cofibrant, and the approximating maps Zq −→ Yq
are homotopy equivalences and therefore level homotopy equivalences on fibers. We
use Theorem 12.4.3(iv) to compute the homotopy groups of colimZq as the colimit
of homotopy groups of the Zq, and the conclusion follows. �
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Proposition 13.1.3. A map ξ : Y −→ Z in GSB is an s-equivalence if and
only if the induced map ξ∗ : [X,Y ]G,B −→ [X,Z]G,B is a bijection for all X ∈ DB.

Proof. This is a tautology since as X ranges through the Sn,bH , [X,Y ]G,B
ranges through the homotopy groups πHn (Yb) that define the s-equivalences. �

Theorem 13.1.4 (Brown). A contravariant set-valued functor on the category
HoGSB is representable if and only if it satisfies the wedge and Mayer-Vietoris
axioms.

Since we have the Quillen adjoint pair (f!, f∗), we have the right derived func-
tor f∗ : HoGSB −→ HoGSA. As in the proof of the analogous result on the level
of ex-spaces, Theorem 9.3.2, we can obtain the desired right adjoint f∗ to f∗ by use
of Brown’s theorem provided that we can show that f∗ preserves the relevant ho-
motopy colimits. However, since f∗ : GSB −→ GSA does not preserve s-cofibrant
objects, this is not obvious. We will later give results that would allow us to carry
out the proof in a manner analogous to the proof of Theorem 9.3.2, but it is in-
structive to switch gears and give a more direct proof. It is based on the use of
triangulated categories, which are reviewed briefly in §16.6, and it would not have
applied on the ex-space level.

Lemma 13.1.5. The category HoGSB is triangulated.

Proof. The treatment of triangulated categories in [124] gives a general pat-
tern of proof for showing that homotopy categories associated to appropriate model
categories, generally called stable model categories, are triangulated. It applies here.
The distinguished triangles are those equivalent in HoGSB to cofiber sequences of
well-grounded spectra or, equivalently by Proposition 12.4.5, those equivalent to
the negatives of fiber sequences. It is relevant to note that, by the proof of Theo-
rem 12.4.2, every cofiber sequence is equivalent in HoGSB to a cofiber sequence
of level ex-quasifibrations. �

In triangulated categories, there is an alternative version of Brown’s repre-
sentability theorem due to Neeman [132]. It requires a “generating set of compact
objects”. We defined detecting sets and generating sets in Definition 7.5.5, but here
the distinction disappears; see, for example, [134, 6.2.9] or [76, 1.4.5]. Contrary to
the usual practice in the literature, we insist that detecting sets and generating sets
in triangulated categories be closed under the suspension equivalence Σ.

Lemma 13.1.6. Any detecting set in a triangulated category is a generating set.

Together with Theorem 7.5.10, this has the following consequence.

Theorem 13.1.7. The set of iterated suspensions of cell complexes with a single
cell in any cofibrantly generated stable model category C is a set of generating objects
for HoC .

Of course, our generating set DB is smaller than the one given by this general
result. Turning to compactness, we assume that any given triangulated category
A has all small coproducts.

Definition 13.1.8. An object X in a triangulated category A is said to be
compact if the natural map ⊕[X,Yi] ∼= [X,qYi] is an isomorphism for any set of
objects Yi; A is said to be compactly generated if it has a generating set D of
compact objects.
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The following obvious lemma describes a general way to prove compactness.

Lemma 13.1.9. Let T : A −→ B be a left adjoint between triangulated cate-
gories A and B such that the right adjoint U : B −→ A preserves coproducts. If
A is compact in A , then TA is compact in B.

Remark 13.1.10. We are following Neeman [132–134] in using the term “com-
pact”; the term “small” is used for the same notion in [76]. Neither term is fully
satisfactory. Observe that this is a different notion from the sequential one that
we specified in Definition 7.5.2. It is clear from the construction of sequential
homotopy colimits (see Definition 16.6.5) that a compact object in the sense of
Definition 13.1.8 is compact in the sense of Definition 7.5.2. We doubt that the
converse holds in general triangulated categories, but we have not looked for a
counterexample. The notion in Definition 13.1.8 is the more fundamental one; the
notion in Definition 7.5.2 serves only to specify exactly what is relevant to the
classical Brown representability theorem.

Warnings 7.5.4 and 7.5.16 apply equally well to the present notion of compact-
ness, but the required compactness of objects of DB reduces to the compactness of
spheres, as in the proofs of Lemmas 7.5.14 and 13.1.2.

Lemma 13.1.11. DB is a generating set of compact objects in HoGSB.

Proof. Take U in Lemma 13.1.9 to be the fiber functor (−)b : HoGSB −→
HoGbS for some b ∈ B. Arguing as in the proof of Lemma 13.1.2, it preserves
coproducts since the homotopy groups of coproducts are the direct sums of their
homotopy groups. Clearly the objects of DB are of the form TA for some compact
A in some HoGbS , as in Lemma 13.1.2. �

Theorems 13.1.12, 13.1.14, and 13.1.17 below are proven in [132, 2.1 3.1, 3.2,
4.1]. Related results that compare compactness to dualizability appear in [76, 2.1.3]
and will become relevant in §16.7; see also [62, §8].

Theorem 13.1.12. Let A be a compactly generated triangulated category. A
functor k : A op −→ A b that converts coproducts to products and takes distinguished
triangles to exact sequences is representable.

Definition 13.1.13. Let B be a full subcategory of a triangulated category
A . Then B is a thick subcategory if the third term of a distinguished triangle with
two terms in B is in B and if a direct summand of an object in B is in B. A thick
subcategory B is localizing if it is also closed under coproducts.

Theorem 13.1.14. Let A be a triangulated category with a generating set D
of compact objects. Then the thick subcategory of A generated by D is the full sub-
category B of compact objects in A , and the localizing subcategory of A generated
by D is A itself.

One can be more precise about how this works, giving a kind of cellular theory
in triangulated categories, as in [76, 2.3.1].

Theorem 13.1.15. Let A be a triangulated category with a generating set D
of compact objects. Then every object X is isomorphic to a homotopy colimit of
a sequence of maps fi : Xi −→ Xi+1 such that X0 = ∗ and the cofiber of fi is a
coproduct of generating objects.
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Remark 13.1.16. This result applies to our generating set DB in HoSB . Here
the conclusion seems quite surprising since the cell complexes generated by just
those generating s-cofibrations whose cofiber 1-cell complexes are in DB are very
restricted. In fact, one finds by inspection of pushouts and colimits that such a cell
spectrum X is isomorphic to the wedge over B of the (Xb)b = b!Xb. That is, one
sees only fibers, glued together trivially. This illustrates the fundamental difference
between generating sets of cofibrations and cellular objects in a stable model cate-
gory and generating sets of objects and cellular objects (as in Theorem 13.1.15) in
its derived triangulated homotopy category. Concretely, the difference is explained
by the need for fibrant approximation in the comparison of [−,−] and π(−,−).

Theorem 13.1.12 specializes to give an adjoint functor theorem for exact func-
tors between triangulated categories (as defined in Definition 16.6.6).

Theorem 13.1.17. Let A be a compactly generated triangulated category and
let B be any triangulated category. An exact functor F : A −→ B that preserves
coproducts has a right adjoint G.

Theorem 13.1.18. For any G-map f : A −→ B, there is a right adjoint f∗ to
the functor f∗ : HoGSB −→ HoGSA, so that

[f∗Y,X]G,A ∼= [Y, f∗X]G,B

for X in GSA and Y in GSB.

Proof. The left adjoint f! commutes with Σ and preserves cofiber sequences,
and this remains true after passage to derived homotopy categories. Therefore the
derived functor f! is exact. Since f∗ is Quillen right adjoint to f!, the derived functor
f∗ is right adjoint to f! and is therefore also exact; see, for example, [131, 3.9]. If X
is in DA, then f!X is compact in HoGSB , as we see from commutation relations
between relevant Quillen left adjoints given in Remark 11.4.7. It follows formally
that f∗ preserves coproducts, by [132, 5.1] or [62, 7.4]. �

Remark 13.1.19. For composable maps f and g, there is a natural equivalence
g∗ ◦ f∗ ' (g ◦ f)∗ on homotopy categories since f∗ ◦ g∗ ' (g ◦ f)∗.

Exactly as for ex-spaces in Theorem 9.3.5, we apply change of base along the
diagonal map ∆: B −→ B × B to obtain internal smash product and function
spectra functors in HoGSB .

Theorem 13.1.20. Define ∧B and FB on HoGSB to be the composite (derived)
functors

X ∧B Y = ∆∗(X Z Y ) and FB(X,Y ) = F̄ (X,∆∗Y ).

Then

[X ∧B Y, Z]G,B ∼= [X,FB(Y, Z)]G,B

for X, Y and Z in HoGSB.

Proof. The displayed adjunction is the composite of the adjunction for the
external smash product and function spectra functors given by Corollary 12.6.6 and
the adjunction (∆∗,∆∗). �
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13.2. The category GEB of excellent prespectra over B

We must still prove that HoGSB is a closed symmetric monoidal category un-
der the derived internal smash product, that the derived functor f∗ is closed sym-
metric monoidal, and that various compatibility relations that hold on the point-set
level descend to homotopy categories. In particular, since our right adjoints f∗, ∆∗,
and therefore FB come from Brown’s representability theorem, it is not at all obvi-
ous how to prove that they are well-behaved homotopically. In Chapter 9, we solved
the corresponding ex-space level problems by proving that HoGKB is equivalent
to the more classical and elementary homotopy category hGWB . Here GWB is the
category of ex-fibrations over B whose total spaces are compactly generated and of
the homotopy types of G-CW complexes, and hGWB is obtained from GWB simply
by passage to homotopy classes of maps. This equivalence allowed us to exploit the
ex-fibrant approximation functor P of §8.3 to resolve the cited problems.

We shall resolve our spectrum level problems similarly, and the following defi-
nitions give the appropriate analogues of GWB and hGWB . However, to keep closer
to the ex-space level, it is essential to work with parametrized prespectra rather
than parametrized spectra. It is safe to do so in view of the Quillen equivalence
(P,U) of Theorem 12.3.12 relating GPB and GSB .

Definition 13.2.1. Let X be a G-prespectrum over B.

(i) X is well-structured if each level X(V ) is in GWB .
(ii) X is Σ-cofibrant if it is well-grounded and each structure map

σ : ΣWB X(V ) −→ X(V ⊕W )

is an fp-cofibration and therefore an f -cofibration.

We can now give the definition of excellent G-prespectra over B and of the
associated classical homotopy category. Working with classical nonequivariant and
nonparametrized coordinatized prespectra {En}, it has been known since the 1960’s
that the following definition gives the simplest quick and dirty rigorous construction
of the stable homotopy category.

Definition 13.2.2. The category GEB of excellent G-prespectra over B is the
full subcategory of GPB whose objects are the well-structured Σ-cofibrant Ω-G-
prespectra over B. Let hGEB denote the classical homotopy category obtained
from GEB by passage to homotopy classes of maps.

We comment on the conditions we require of excellent prespectra over B. We
require that they be well-structured so that we can exploit levelwise our equivalence
of homotopy categories on the ex-space level. We require that they be Σ-cofibrant
since that provides “homotopical glue” that is necessary for the transition from
the known equivalence on the ex-space level to the desired equivalence on the pre-
spectrum level. We shall make this idea precise shortly, in Proposition 13.2.5. We
require that they be Ω-prespectra over B since it is clearly sensible to restrict at-
tention to s-fibrant objects in GSB if we hope to compare homotopy categories.
Recall that X is an Ω-prespectrum if it is a level qf -fibrant prespectrum over B
whose adjoint structure maps

σ̃ : X(V ) −→ ΩW−V
B X(W )
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are q-equivalences. Since excellent prespectra over B are required to be level ex-
fibrations, they are automatically level qf -fibrant. The condition on the adjoint
structure maps is stronger than it appears on the surface.

Lemma 13.2.3. For excellent G-prespectra X over B, the adjoint structure
maps

σ̃ : X(V ) −→ ΩWB X(V ⊕W )
are fp-equivalences.

Proof. The σ̃ are q-equivalences between G-CW homotopy types and are
therefore h-equivalences. Since they are maps between ex-fibrations, they are fp-
equivalences by Proposition 5.2.2. �

This implies, for example, that homotopy-preserving functors GEB −→ GPB

that may not preserve level q-equivalences nevertheless do preserve the equivalence
property required of the adjoint structure maps.

Remark 13.2.4. Our definition of excellent parametrized prespectra is close to
that used by Clapp and Puppe [31, 32], who in turn were influenced by definitions
in [112]. Curiously, while Clapp [31] focuses on ex-fibrations, Clapp and Puppe
[32] never mention fibration conditions. These papers are nonequivariant, but the
second is written in terms of what the authors call “coordinate-free spectra” over
B. These are the same as our nonequivariant prespectra over B, except that their
adjoint structure maps σ̃ are required to be closed inclusions, which holds automat-
ically for Σ-cofibrant prespectra. Clapp and Puppe [32] use the term “cofibrant”
for our notion of Σ-cofibrant.

A crucial result of Clapp and Puppe makes the idea of homotopical glue precise.
It is stated nonequivariantly in [32, 6.1], but it works just as well equivariantly.
Translated to our language, it reads as follows.

Proposition 13.2.5 (Clapp-Puppe). If f : X −→ Y is a level fp-equivalence
between Σ-cofibrant prespectra over B, then f is a homotopy equivalence of pre-
spectra over B. Therefore, if f : X −→ Y is a level h-equivalence between well-
structured Σ-cofibrant prespectra over B, then f is a homotopy equivalence of pre-
spectra over B.

Sketch proof. The proof is analogous to the proof that a ladder of homotopy
equivalences connecting sequences of cofibrations induces a homotopy equivalence
on passage to colimits. The point is that, for Σ-cofibrant parametrized prespectra
Y , we can carry out inductive arguments just as if Y were such a colimit. Using stan-
dard cofibration arguments, carried over to the parametrized case, we can extend
an fp-homotopy inverse of ΣWi

B X(Vi) −→ ΣWi

B Y (Vi) to an fp-homotopy inverse
of X(Vi+1) −→ Y (Vi+1) and proceed inductively. The last statement follows by
Corollary 5.2.6(i), which shows that a level h-equivalence between well-structured
prespectra over B is a level fp-equivalence. �

Remark 13.2.6. The category GEB inherits many of the preservation proper-
ties for ex-fibrations that are catalogued in §8.2 and are inherited by GWB . The
condition of being well-structured is defined levelwise, so that any construction that
takes GWB to itself will preserve well-structured G-prespectra over B. By the re-
tract characterization of fp-cofibrations, any functorial construction that commutes
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with ΣB will preserve Σ-cofibrant prespectra over B. Any homotopy-preserving
functorial construction that commutes with ΩB will preserve Ω-G-prespectra over
B. For example, base change functors f∗ preserve excellent G-prespectra. Functors
that take excellent G-prespectra to well-structured G-prespectra can be composed
with the approximation functor T = KE defined in §13.4 below to rectify them to
functors that preserve excellent G-prespectra.

13.3. The level ex-fibrant approximation functor P on prespectra

We seek an approximation functor to play the role on the parametrized pre-
spectrum level that the functor P played on the ex-space level functor. We shall
introduce three approximation functors, P , E and K, that successively build in the
properties of being well-structured, being an Ω-prespectrum, and being Σ-cofibrant,
each preserving the properties already obtained. We define P in this section and
E and K in the next.

Lifting the ex-space level functor P of §8.3 to the prespectrum level requires
care. Recall that P is the composite of the whiskering functor W and the Moore
mapping path space functor L, together with the natural zig-zag of h-equivalences

(13.3.1) K WK
ρoo Wι // WLK = PK

of Definition 8.3.4 for ex-spaces K over B. The functors W and L do not com-
mute with tensors with based spaces, hence cannot be enriched over GKB , by
Lemma 11.3.4. There is therefore no canonical way of inducing structure maps
after applying P levelwise to a prespectrum, as one might at first hope. We shall
resolve this by constructing by hand certain non-canonical but natural maps

(13.3.2) αV : WK ∧B SV −→W (K ∧B SV )

and

(13.3.3) βV : LK ∧B SV −→ L(K ∧B SV )

such that α0 = id, β0 = id and the following associativity diagram commutes,
where (F, fV ) stands for either (W,αV ) or (L, βV ).
(13.3.4)

FK ∧B SV ∧B SV
′ fV ∧id//

∼=
��

F (K ∧B SV ) ∧B SV
′ fV ′ // F (K ∧B SV ∧B SV

′
)

∼=
��

FK ∧B SV⊕V
′ fV⊕V ′ // F (K ∧B SV⊕V

′
)

The definitions of these maps and the proofs that these diagrams commute
depend on chosen decompositions of V and V ′ as direct sums of indecomposable
representations, and we cannot choose compatible decompositions for all represen-
tations V and V ′ at once. For this reason, and for other reasons that will become
apparent later, we must switch gears and work with sequentially indexed prespectra.

Thus, to be precise about the constructions in this section and the next, we
restrict our original collection V of indexing representations to a countable cofinal
sequence W of expanding representations in our given universe U . More precisely,
W consists of representations Vi for i ≥ 0 such that V0 = 0 and Vi ⊂ Vi+1. We set
Wi = Vi+1−Vi. Such a sequence can be chosen in any universe. We could just as well
start with representations Wi and define Vi inductively by Vi+1 = Vi⊕Wi. There is
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no need to use orthogonal complements. We shall write in terms of complements,
but on the understanding that that is just a notational convenience.

Remark 13.3.5. There is a small quibble here since we originally defined our
categories of parametrized prespectra only on collections of representations that
are closed under finite direct sums, which W clearly is not. However, if we let
W ′ consist of all finite sums of the Wi, then we recover such a collection. As in
§11.3 (or [106, §2]), we can interpret GPW ′

B as a diagram category indexed on a
certain small category, say DW ′

G , with object set W ′, and we can interpret GPW
B

as a diagram category indexed on the full subcategory DW
G of DW ′

G whose object
set is W . This gives a restriction functor U : GPW ′

B −→ GPW
B that is right adjoint

to a prolongation functor P [106, §3], and (P,U) induces an adjoint equivalence
of homotopy categories. We shall study such “change of universe” adjunctions in
§14.2. They allow us to lift all results we prove about the categories of parametrized
prespectra indexed on cofinal sequences to our usual ones indexed on collections of
representations closed under direct sums.

Definition 13.3.6. Let X be a prespectrum over B indexed on the countable
cofinal sequence W = {Vi}, where V0 = 0 and Vi+1 = Vi⊕Wi. Let X have structure
maps σi : ΣWi

B X(Vi) −→ X(Vi+1). Then the maps

Wσi ◦ α : WX(Vi) ∧B SWi −→WX(Vi+1)

and
Lσi ◦ β : LX(Vi) ∧B SWi −→ LX(Vi+1)

specify structure maps for prespectra WX and LX over B. Therefore PX = WLX
is a prespectrum over B.

Unfortunately, as will be clear from the following construction, the maps in the
zig-zag (13.3.1) do not lift to the prespectrum level. They only induce weak maps
of prespectra, that is, levelwise maps that only commute with the structure maps
up to (canonical) fp-homotopy. Fortunately, the last approximation functor K,
which arranges Σ-cofibrancy and will be discussed in the next section, turns weak
maps into honest ones.

Construction 13.3.7. We define αV and βV . Fix a decomposition of V into
a direct sum of irreducible representations and let PV be the set of the projections
from V to the irreducible subrepresentations in this fixed decomposition. Define
three equivariant maps from V to the real numbers by setting

‖v‖V = max
π∈PV

|πv|, µV (v) =
∏

π∈PV

(1− |πv|), νV (v) =
∏

π∈PV

max(1, |πv|).

Applying the same definitions to another representation V ′ and to V ⊕ V ′ with
its induced decomposition as a sum of irreducible representations, we see that the
following equations hold.

‖v ⊕ v′‖V⊕V ′ = max{‖v‖V , ‖v′‖V ′},
µV⊕V ′(v ⊕ v′) = µV (v)µV ′(v′),

νV⊕V ′(v ⊕ v′) = νV (v)νV ′(v′).

Define a natural map

hV : WK ∧B SV ∧B [1,∞)+ −→W (K ∧B SV ),
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by setting

hV (x ∧ v ∧ t) =

{
x ∧ µ(t−1v)−1 · v if ‖v‖ ≤ t,

(p(x), 1− ν(t−1v)−1) if ‖v‖ ≥ t,

hV ((b, s) ∧ v ∧ t) =

{
(b, s) if ‖v‖ ≤ t,
(b, 1− (1− s)ν(t−1v)−1) if ‖v‖ ≥ t.

At time t = 1 this specifies αV and it is easy to verify that the associativity
diagram (13.3.4) commutes. Further, the map ρ ◦ hV extends to t =∞ to give an
fp-homotopy from ρ◦αV to ρ∧B id. It follows that ρ induces levelwise a weak map
of prespectra WX −→ X.

Similarly define

kV : LK ∧B SV ∧B [1,∞)+ −→ L(K ∧B SV ),

by setting

kV ((x, λ) ∧ v ∧ t) =

{
(x ∧ v, λ) if ‖v‖ ≤ t,
(x ∧ v, ν(t−1v)λ if ‖v‖ ≥ t.

Here, if 1 ≤ a < ∞, and λ ∈ ΛB, then aλ denotes the Moore path of length lλ/a
given by aλ(t) = λ(at). At time t = 1 this specifies βV , and it is again easy to check
the required associativity. The map kV ◦ (ι ∧ id) extends to an fp-homotopy from
βV ◦ (ι ∧B id) to ι, hence ι induces levelwise a weak map of prespectra X −→ LX,
to which we can apply W to obtain a weak map WX −→WLX = PX.

In view of Definition 8.3.4, naturality arguments from Definition 13.3.6 and
Construction 13.3.7 prove the following theorem.

Theorem 13.3.8. There are functors L, W , and P = WL on GPB that are
given levelwise by the functors L, W , and P on GKB. There are natural weak maps
ρ : WX −→ X and ι : X −→ LX that are given levelwise by the ex-space maps ρ
and ι. Therefore, there is a natural zig-zag of weak maps φ = (ρ,Wι) as displayed
in the diagram

X WX
ρoo Wι // WLX = PX.

These maps are level h-equivalences, and P converts level h-equivalences to level
fp-equivalences. If each X(V ) is compactly generated and of the homotopy type
of a G-CW complex, then PX is well-structured. If X is well-structured, then the
weak maps in the above display are level fp-equivalences between well-structured G-
prespectra over B. If, further, the adjoint structure maps of X are h-equivalences
or q-equivalences, then so are the adjoint structure maps of LX, WX, and PX.

Proof. The only point that may need elaboration is the last clause. For a
weak map f : X −→ Y , we have a homotopy commutative diagram

X(V ) σ̃ //

f

��

ΩWB X(V ⊕W )

ΩW
B f

��
Y (V )

σ̃
// ΩWB Y (V ⊕W ).

The functor ΩWB preserves fp-equivalences. Therefore, if f is an fp-equivalence,
then the σ̃ for X are h-equivalences or q-equivalences if and only if the σ̃ for Y are
so. We apply this to f = ρ and f = Wι. �
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13.4. The auxiliary approximation functors K and E

We begin with the parametrized Ω-prespectrum approximation functor E. This
is a folklore construction when B is a point. In the parametrized context, the
construction makes essential use of Stasheff’s theorem, Theorem 3.5.2.

Proposition 13.4.1. There is a functor E : GPB −→ GPB and a natural
map α : X −→ EX with the following properties.

(i) The functor E preserves level fp-equivalences and well-grounded prespectra.
(ii) If X is well-structured, then EX is a well-structured Ω-prespectrum and the

map α : X −→ EX is an s-equivalence.

Proof. Define EX by letting EX(Vi) be the telescope over j ≥ i of the ex-
spaces ΩVj−Vi

B X(Vj) with respect to the adjoint structure maps

ΩVj−Vi

B σ̃ : ΩVj−Vi

B X(Vj) −→ ΩVj−Vi

B ΩWj

B X(Vj+1) ∼= ΩVj+1−Vi

B X(Vj+1).

Since the functor ΩWi

B commutes with telescopes, ΩWi

B EX(Vi+1) is isomorphic to the
telescope over j ≥ i+1 of the ex-spaces ΩVj−Vi+1

B X(Vj). The adjoint structure map
EX(Vi) −→ ΩWi

B EX(Vi+1) is induced by the maps ΩVj−Vi

B σ̃j for j ≥ i. The map
α : X −→ EX is given by the inclusion of the bases of the telescopes. If f : X −→ Y
is a level fp-equivalence, then Ef : EX −→ EY is a level fp-equivalence since a
standard inductive argument (applicable in any topologically bicomplete category)
shows that the telescope of a ladder of fp-equivalences is an fp-equivalence.

If X is well-grounded or level ex-fibrant, then so is EX since the construction
clearly stays in the category of compactly generated spaces and since it preserves
the conditions of being well-sectioned or level ex-fibrant by results in §8.2. To
show that E preserves well-structured prespectra, it remains to show that if X has
total spaces of the homotopy types of G-CW complexes, then so does EX. By
Stasheff’s theorem (Theorem 3.5.2), the fibers X(V )b = Xb(V ) have the homotopy
types of Gb-CW complexes. We have the analogous construction E in the category
of Gb-prespectra and, by Milnor’s theorem (Theorem 3.4.5) and standard facts
about telescopes, the (E(Xb))(V ) have the homotopy types of Gb-CW complexes.
It is clear from the definition of E that (E(Xb))(V ) = ((EX)(V ))b. That is, the
Gb-prespectrum E(Xb) is the fiber (EX)b of the G-prespectrum EX over B. By
Stasheff’s theorem again, it follows that the (EX)(V ) have the homotopy types of
G-CW complexes.

To check that the adjoint structure maps are q-equivalences when X is well-
structured, it suffices to check that they induce q-equivalences on the fibers over
b for all b ∈ B. That holds by inspection of the homotopy groups of the colimits
that define (EX)b ∼= E(Xb). Similarly, we see that α is a π∗-equivalence when X
is well-structured by fiberwise comparison of the colimits of homotopy groups of
fibers that define the homotopy groups of X and EX. �

To approximate parametrized prespectra by level fp-equivalent Σ-cofibrant pre-
spectra, we use the elementary cylinder construction K that was first defined in
[108] and has been used in various papers since. We recall the construction and
its main properties from [98, 6.8], which carries over verbatim to the parametrized
context. A more sophisticated but less convenient treatment is given in [61].

Proposition 13.4.2. There is a functor K : GPB −→ GPB and a natural
level fp-equivalence π : KX −→ X. Therefore K preserves level fp-equivalences.
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If X is well-grounded, then KX is Σ-cofibrant. If X is well-structured, then KX is
well-structured. If X is a well-structured Ω-prespectrum, then so is KX and thus
KX is excellent. There is a natural weak map ι : X −→ KX that is a right inverse
of π, and K takes weak maps f to honest maps Kf such that ι ◦ f = Kf ◦ ι.

Proof. DefineKX, a level inclusion ι : X −→ KX, and a level fp-deformation
retraction π : KX −→ X right inverse to ι as follows. Let KX(0) = X(0) and
ι(0) = π(0) = id. Inductively, suppose given KX(Vi), an inclusion ι(Vi) : X(Vi) −→
KX(Vi) and an inverse fp-deformation retraction π(Vi) : KX(Vi) −→ X(Vi). Let
KX(Vi+1) be the double mapping cylinder in GKB of the pair of maps

ΣWi

B KX(Vi) ΣWi

B X(Vi)
Σ

Wi
B
ι(Vi)oo σ // X(Vi+1)

in GKB . Let σ : ΣWi

B KX(Vi) −→ KX(Vi+1) be the inclusion of the left base of the
double mapping cylinder, which is an fp-cofibration, and let ι(Vi+1) : X(Vi+1) −→
KX(Vi+1) be the inclusion of the right base. Let π(Vi+1) : KX(Vi+1) −→ X(Vi+1)
be the map obtained by first using the fp-equivalence ΣWi

B π(Vi) on the left base to
map to the mapping cylinder of σ and then using the evident deformation retraction
to the right base. There is an equivalent description as a finite telescope. Certainly
π is a map of prespectra over B and a level fp-deformation retraction with level
inverse the weak map ι. The functoriality of the construction is clear.

If X is well-grounded, then KX is clearly also well-grounded and thus KX is
Σ-cofibrant. If X is well-structured, then so is KX by Propositions 8.2.1 and 8.2.3.
If, further, the adjoint structure maps of X are q-equivalences, then they are fp-
equivalences since X is well-structured. Since K preserves fp-homotopies, it follows
thatKX is also an Ω-prespectrum. Alternatively, since ΩVB is a Quillen right adjoint
in the qf -model structure, it preserves q-equivalences between qf -fibrant ex-spaces.
In particular, the maps ΩWB π(Vi) are q-equivalences.

If f : X −→ Y is a weak map with fp-homotopies

hi : ΣWi

B X(Vi) ∧B I+ −→ Y (Vi+1)

from σY ◦ ΣWif(Vi) to f(Vi+1) ◦ σX , define Kf inductively by setting Kf(0) =
f(0) and letting Kf(Vi+1) be ΣWj

B Kf(Vi) on the left end of the mapping cylinder,
f(Vi+1) on the right end and as follows on the cylinder itself:

Kf(Vi+1)[x, t] =

{
[ΣWi

B f(Vi)(x), 2t] if 0 ≤ t ≤ 1
2 ,

hi(x, 2t− 1) if 1
2 ≤ t ≤ 1.

Then Kf is a map of prespectra over B and ι ◦ f = Kf ◦ ι. �

The composite approximation functor T = KEP has various good preservation
properties. The ex-space level properties of P recorded in §8.4 are inherited on the
prespectrum level, and we have the following sample result for E and K.

Lemma 13.4.3. For a G-map f : A −→ B, a prespectrum Y over B and a
prespectrum X over A, there are natural isomorphisms

f∗EY ∼= Ef∗Y, f∗KY ∼= Kf∗Y and Kf!X ∼= f!KX.

Proof. The relevant telescopes commute with f∗ since it is a symmetric
monoidal left adjoint and with f! since it is a left adjoint and the projection formula
(2.2.6) holds. �
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13.5. The equivalence between HoGPB and hGEB

We can now extend the results of §9.1 to parametrized prespectra. As in the
previous section, our parametrized prespectra are indexed on a countable cofinal
sequence of expanding representations in our given universe. We begin by collating
the results of the previous two sections.

Theorem 13.5.1. Let X be a well-grounded G-prespectrum over B whose total
spaces are of the homotopy types of G-CW complexes and define TX = KEPX.

(i) TX is an excellent G-prespectrum.
(ii) T takes level q-equivalences between G-prespectra over B that satisfy the hy-

potheses on X to homotopy equivalences of G-prespectra.
(iii) There is a zig-zag of s-equivalences between X and TX.
(iv) If X is an excellent G-prespectrum over B, then the zig-zag consists of level

fp-equivalences, and it gives rise to a zig-zag of homotopy equivalences of
G-prespectra over B connecting X and TX.

Proof. We have that PX is well-structured by Theorem 13.3.8, EPX is a
well-structured Ω-prespectrum by Proposition 13.4.1, and TX is excellent by Propo-
sition 13.4.2. In (ii), a level q-equivalence is a level h-equivalence. By the results
just quoted, P takes level h-equivalences to level fp-equivalences, which are pre-
served by E, and K takes level fp-equivalences to homotopy equivalences. Since
K converts weak maps to genuine maps, we have the following diagram of maps of
G-presepectra over B.

(13.5.2) KX

π

��

KWX
Kρoo

π

��

WKX

Wπ

��

WKι // WKLX

Wπ

��

KEPX

π

��
X WX WX WLX α

// EPX

The vertical maps π, hence also the vertical maps Wπ, are level fp-equivalences.
The map ρ is a level f -equivalence. The map ι is a level h-equivalence, hence so is
WKι. The map α is an s-equivalence because PX is well-structured. Since level
q-equivalences are also s-equivalences, the diagram displays a zig-zag of s-equiva-
lences between X and TX.

For the last statement, observe that all prespectra in the diagram are well-
structured Ω-prespectra over B. Moreover, α is a level q-equivalence by Theo-
rem 12.3.8. It is therefore a level h-equivalence since our total spaces have the
homotopy types of G-CW complexes. Since all prespectra in our diagram are well-
structured, our level h-equivalences are level fp-equivalences, by Proposition 8.3.2.
Applying K where needed, we can expand the diagram to a zig-zag of level fp-
equivalences between Σ-cofibrant prespectra. By Proposition 13.2.5, this gives a
zig-zag of homotopy equivalences connecting X and TX. �

We introduce a category that is intermediate between GPB and GEB .

Definition 13.5.3. Define GQB to be the full subcategory of GPB consisting
of the well-grounded Ω-prespectra over B whose total spaces are of the homotopy
types of G-CW complexes. Define HoGQB to be the homotopy category obtained
by inverting the s-equivalences in GQB ; by the proof of the next theorem, there are
no set-theoretic problems in defining HoGQB . Define T = KEP : GQB −→ GEB .
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Since the Ω-prespectra over B are the s-fibrant prespectra over B and since
s-cofibrant spectra are well-grounded and have total spaces of the homotopy types
of G-CW complexes, all G-prespectra over B that are s-cofibrant and s-fibrant are
in GQB . We prove that HoGPB is equivalent to hGEB by proving that these
categories are both equivalent to HoGQB .

Theorem 13.5.4. The canonical s-cofibrant and s-fibrant approximation func-
tor RQ and the composite approximation functor T = KEP , together with the
forgetful functors, induce the following equivalences of homotopy categories.

HoGPB

RQ // HoGQB

T //
I
oo hGEB

J
oo

Proof. For X in GPB , we have a natural zig-zag of s-equivalences in GPB

X QXoo // RQX.

Therefore X and IRQX are naturally s-equivalent in GPB . If X is in GQB , then
it is s-fibrant and therefore so is QX. Then the above zig-zag is in GQB , hence X
and RQIX are naturally s-equivalent in GQB .

By Theorem 12.3.8, s-equivalences inGQB are level q-equivalences, and T takes
level q-equivalences to homotopy equivalences by Theorem 13.5.1. Conversely, since
homotopy equivalences are s-equivalences, the forgetful functor J induces a functor
in the other direction.

For X in GQB we have the natural zig-zag of s-equivalences displayed in
(13.5.2). Applying s-fibrant approximation, we get a natural zig-zag of s-equivalences
in GQB so X and JTX are naturally s-equivalent in GQB . Starting with X in
GEB , the last statement of Theorem 13.5.1 shows that X and TJX are naturally
homotopy equivalent in GEB . �

13.6. Derived functors on homotopy categories

With P replaced by T , the discussion of derived functors in §9.2 carries over
from the level of ex-spaces to the level of parametrized prespectra indexed on cofinal
sequences. In §13.7 and §14.2 we will discuss how to pass from there to conclusions
on the level of parametrized spectra indexed on our usual collections of represen-
tations closed under direct sums. We must show that if V is a Quillen left or
right adjoint, then its model theoretic left or right derived functor agrees under our
equivalences of categories with the functor obtained simply by passing to homotopy
classes of maps from the composite TV . As on the ex-space level, we need some
mild good behavior for this to work.

Definition 13.6.1. A functor V : GPA −→ GPB is good if it is continu-
ous, preserves well-grounded parametrized prespectra, and takes prespectra over
A whose levelwise total spaces are of the homotopy types of G-CW complexes to
prespectra over B with that property. Since V is continuous, it preserves homo-
topies. There are evident variants for functors V with source or target GK∗: V
must be continuous, preserve well-grounded objects, and preserve G-CW homotopy
type conditions on objects.

Note that a good functor V need not take Ω-G-prespectra to Ω-G-prespectra
and recall that a Quillen right adjoint must preserve fibrant objects and thus, in
our context, must preserve Ω-G-prespectra.
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Proposition 13.6.2. Let V : GPA −→ GPB be a good functor that is a part
of a Quillen adjoint pair. If V is a Quillen left adjoint, assume further that it pre-
serves level q-equivalences between well-grounded objects. Then the derived func-
tor HoGPA −→ HoGPB, induced by V Q or V R, is equivalent to the functor
TV J : hGEA −→ hGEB under the equivalence of categories in Theorem 13.5.4

Proof. If V is a Quillen right adjoint, then it preserves s-equivalences between
s-fibrant objects. If V is a Quillen left adjoint, then it preserves s-equivalences be-
tween well-grounded objects by Proposition 12.6.3. Therefore, since GQA consists
of well-sectioned s-fibrant objects, the functor V : GQA −→ GPB passes straight
to homotopy categories to give V : HoGQA −→ HoGPB in both cases.

If V is a Quillen right adjoint, then it takes an s-equivalence f in GQA to
an s-equivalence since the objects of GQA are s-fibrant. Then V f is a level q-
equivalence by Theorem 12.3.8 and, since V is good, it is a level h-equivalence. On
the other hand, if V is a Quillen left adjoint, then Theorem 12.3.8 gives that f is
a level q-equivalence and, by assumption, V f is then a level q-equivalence. Since
V is good, V f is actually a level h-equivalence. In both cases it follows that V
takes s-equivalences to level h-equivalences and therefore TV passes to a functor
HoGQA −→ hGEB .

To show that TV J and either V Q or V R agree under the equivalence of cate-
gories, it suffices to verify that the following diagram commutes.

HoGPA

RQ

��

V Q or V R // HoGPB

TRQ

��
HoGQA

TV
// hGEB

We have functorial s-cofibrant and s-fibrant approximation functors Q and R,
with natural acyclic s-fibrations QX −→ X and acyclic s-cofibrations X −→ RX.
Clearly Q and R preserve s-equivalences. If V is a Quillen left adjoint, then we
have a zig-zag of natural s-equivalences

RQV Q // RV Q V Qoo // V RQ

because V preserves acyclic s-cofibrations. If V is a Quillen right adjoint, then we
have a zig-zag of natural s-equivalences

RQV R RQV RQ //oo RV RQ V RQoo

because V preserves s-equivalences between s-fibrant objects. In both cases, all
objects have total spaces of the homotopy types of G-CW complexes, hence we
have zig-zags of level h-equivalences. Applying T , we obtain a zig-zag of homotopy
equivalences in GEB by Theorem 13.5.1. �

Remark 13.6.3. If V preserves excellent parametrized prespectra, then TV
is naturally homotopy equivalent to V on excellent parametrized prespectra. The
derived functor of V can then be obtained directly by applying V and passing to
homotopy classes of maps.

13.7. Compatibility relations for smash products and base change

This section is parallel to §9.3. The main change is just that we must replace
the functor P used there with the functor T = KEP that we have here. This



210 13. ADJUNCTIONS AND COMPATIBILITY RELATIONS

gives us results for the categories GPW
B of parametrized prespectra indexed on

a collection W consisting of a cofinal sequence in some universe U . In order to
obtain statements about GS V

B , where V = V (U), we have two pairs of Quillen
equivalences, both of which can be viewed as consisting of a prolongation functor
left adjoint to a forgetful functor that creates the weak equivalences; see [105, 1.2].

GPW
B

j∗ //
GPV

B

P //
j∗
oo GS V

BU
oo

We postpone until §14.2 consideration of the pair (j∗, j∗) and the extension from
GPW

B to GPV
B and deal with the extension from GPV

B to GS V
B in this section.

One general remark is in order, though. The forgetful functors j∗ and U create
weak equivalences and therefore pass directly to homotopy categories. If they com-
mute on the point set level with a functor V which is defined and part of a Quillen
adjoint pair (on each of our three categories), then they will also commute with its
derived functor on the level of homotopy categories. It follows formally that the
derived prolongation functors P and j∗ then also commute with the derived functor
V and its adjoints. This holds in particular for the base change functor V = f∗.
Extending commutation results for such functors from GPW

B to GS V
B is therefore

easy. However, some of the functors V that we need to consider only exist on some
of the categories in the above display, and such functors require special care. These
include the change of universe functors that we discuss in §14.2, which don’t exist
on the level of GPW

B , and the smash product ∧B , which we have only specified on
the spectrum level and which we now discuss on the prespectrum level.

Remark 13.7.1. Because the domain category for the diagram category of
(equivariant and parametrized) prespectra is only monoidal, not symmetric mon-
oidal, we cannot use left Kan extension to internalize “external” smash products of
prespectra; see [106, 4.1]. Here “external” is understood in the sense of indexing on
pairs of representations. Therefore, on the equivariant parametrized prespectrum
level, when we write X Z Y for prespectra X over A and Y over B, we should
understand the external external smash product, in the sense of Remark 11.1.7.
When passing from prespectrum level arguments to spectrum level conclusions using
(P,U), we are implicitly using composites of the general form PV U, and similarly
for functors of several variables involving smash products. We can carry out the
several variable arguments externally on the prespectrum level, only internalizing
with left Kan extension after passage to spectra, where we have good homotopical
control by Corollary 12.6.6.

Alternatively, we can make use of classical “handicrafted smash products” of
prespectra, which are defined by use of arbitrary choices of sequences of representa-
tions. As discussed on the nonequivariant nonparametrized level in [106, §11], hand-
icrafted smash products of prespectra agree under the adjoint equivalence (P,U)
with the internalized smash products. Provided that we use external parametrized
handicrafted smash products over varying base spaces, only internalizing along
diagonal maps at the end, the discussion there adapts readily to give the same con-
clusion for homotopy categories of equivariant parametrized prespectra and spectra.
The advantage of handicrafted smash products is that their definition involves only
direct use of ex-space level constructions that enjoy good preservation properties
with respect to ex-fibrations. This often allows direct transposition of ex-space level
arguments in hGWB to parametrized prespectrum level arguments in hGEB .
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We state the following results in terms of parametrized spectra, and we indicate
which parts of the proofs require the use of hGEB and which parts work directly in
the stable homotopy category HoGSB .

Proposition 13.7.2. Let f : A −→ B and g : A′ −→ B′ be G-maps. If W and
X are spectra over A and A′, then

f!W Z g!X ' (f × g)!(W ZX)

in HoGSB×B′ . If Y and Z are spectra over B and B′, then

f∗Y Z g∗Z ' (f × g)∗(Y Z Z)

in HoGSA×A′ .

Proof. Working directly in HoGSB×B′ , the first equivalence reduces to its
point-set level analogue by consideration of Quillen left adjoints, as in the corre-
sponding proof of Proposition 9.4.1. We work in hGEA×A′ to prove the second
equivalence. Here f∗ and Z (understood in the external or handicrafted sense)
are both good, and both preserve excellent prespectra. Indeed, they preserve well-
structured prespectra by levelwise application of Propositions 8.2.2 and 8.2.3, they
preserve Σ-cofibrant prespectra since f∗ and Z on ex-spaces preserve fp-cofibrations
because they are left adjoints that commute with fp-homotopies, and they preserve
Ω-prespectra by Lemma 13.2.3 since they preserve fp-homotopies. Therefore, using
excellent prespectra, we can pass straight to homotopy categories, without use of
T , as in the corresponding proof of Proposition 9.4.1. �

Theorem 13.7.3. The category HoGSB is closed symmetric monoidal under
the functors ∧B and FB.

Proof. Working either in hGEB or in HoGSB , one easily proves the external
analogues of the required associativity, commutativity, and unity isomorphisms,
noting for the argument in hGEB that the previous proof shows that there is no
need to use the functor T . The internal isomorphisms for ∧B follow by pullback
along diagonal maps, using the second equivalence in the previous result in the
same way as in the proof of Theorem 9.4.4. �

We have a commutation relation between change of base and suspension spec-
trum functors that is analogous to the relation between change of base and smash
products recorded in Proposition 13.7.2.

Proposition 13.7.4. For a G-map f : A −→ B, there are natural equivalences

Σ∞B f! ' f!Σ∞A and Σ∞A f
∗ ' f∗Σ∞B

of (derived) functors. The same conclusion holds more generally for the shift desus-
pension functors FV = Σ∞V .

Proof. Working in HoGSB , the first equivalence is clear since it is a com-
parison of Quillen left adjoints that commute on the point-set level. For the second
equivalence, we start in hGWB and end in hGEA. For K ∈ GWB , the point set level
suspension prespectrum Σ∞BK is both Σ-cofibrant and well-structured, by Corol-
lary 8.2.5, but of course it is not an Ω-prespectrum over B. Since Σ∞B is good and
takes well-grounded q-equivalences to well-grounded level q-equivalences, TΣ∞B is
equivalent to the model theoretic left derived functor of the Quillen left adjoint Σ∞B .
Here we may omit P from the composite functor T and, since f∗ commutes with
both K and E, the conclusion follows on passage to homotopy categories. �
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Applying this to ∆: B −→ B×B and using Proposition 11.4.11, we obtain the
following consequence.

Proposition 13.7.5. For ex-spaces K and L over B,

Σ∞B (K ∧B L) ' Σ∞BK ∧B Σ∞B L

in HoGSB.

For f : A −→ B, evident properties of the functor f! on ex-spaces imply that
the functor f! : GPA −→ GPB is good, and f! satisfies the other hypotheses of
Proposition 13.6.2 by Proposition 12.2.5. We use this to prove the following basic
result.

Theorem 13.7.6. For a G-map f : A −→ B between base spaces, the derived
functor f∗ : HoGSB −→ HoGSA is closed symmetric monoidal.

Proof. Since SB is not s-fibrant, the isomorphism f∗SB ∼= SA in GSB does
not immediately imply the required equivalence f∗SB ' SA in HoGSA, where
f∗SB means f∗RSB . However, Proposition 13.7.4 s pecializes to give this equiva-
lence. For the rest, we must show that the isomorphisms (11.4.2) through (11.4.6)
descend to equivalences on homotopy categories. By category theory in [62], it
suffices to consider (11.4.2) and (11.4.5), and the proofs are similar to those in
Theorem 9.4.5. Since Z and ∆∗ both preserve excellent prespectra, so do the inter-
nalized smash products ∧A and ∧B . For excellent prespectra Y and Z over B, it
follows that both sides of

f∗(Y ∧B Z) ∼= f∗Y ∧A f∗Z

are excellent prespectra over A, hence the point-set level isomorphism descends
directly to the desired equivalence on the homotopy category level. Next consider

f!(f∗Y ∧A X) ∼= Y ∧B f!X,

where X is an excellent prespectrum over A. Here we must replace f! by Tf! on
both sides. By Theorem 13.5.1 we have a natural zig-zag φ of level h-equivalences
connecting T to the identity functor which, when applied to excellent parametrized
prespecra gives rise to a zig-zag ψ of actual homotopy equivalences. We obtain the
following zig-zag.

Tf!(f∗Y ∧A X) ∼= T (Y ∧B f!X)
T (id∧Bφ) // T (Y ∧B Tf!X)

ψ //oo Y ∧B Tf!X.oo

Using handicrafted products with their termwise construction in terms of smash
products of ex-spaces, it follows from Proposition 8.2.6 that id∧B − preserves level
h-equivalences between well-sectioned spectra. Thus id ∧B φ is a zig-zag of level
h-equivalences and T (id ∧B φ) is a zig-zag of actual homotopy equivalences. �

Theorem 13.7.7. Suppose given a pullback diagram of G-spaces

C
g //

i

��

D

j

��
A

f
// B
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in which f (or j) is a q-fibration. Then there are natural equivalences of (derived)
functors on stable homotopy categories

(13.7.8) j∗f! ' g!i∗, f∗j∗ ' i∗g∗, f∗j! ' i!g∗, j∗f∗ ' g∗i∗.

Proof. Working in hGEB , the proof is similar to that of Theorem 9.4.6 but
with P replaced by T . Again it suffices to consider the first equivalence, and, as
explained there, since f is a q-fibration there is a level fp-equivalence µ : Pf∗ −→
f∗P . Since f∗ commutes with both K and E, we obtain a level fp-equivalence
µ : Tf∗ −→ f∗T between Σ-cofibrant prespectra over A so it is in fact a homotopy
equivalence by Proposition 13.2.5. Then f∗Tj!X ' Tf∗j!X ∼= Ti!g

∗X. �

The following observation holds by the same proof as the analogous ex-space
level result Proposition 9.4.9.

Proposition 13.7.9. Let ι : H −→ G be the inclusion of a subgroup and A be
an H-space. The closed symmetric monoidal Quillen equivalence (ι!, ν∗ι∗) descends
to a closed symmetric monoidal equivalence between HoHSA and HoGSι!A.

Combined with Theorem 13.7.6, applied to the inclusion b̃ : G/Gb −→ B, and
Proposition 13.7.4, this last observation gives us the following stable analogue of
Theorem 9.4.10.

Theorem 13.7.10. The derived fiber functor (−)b : HoGKB −→ HoGbK∗ is
closed symmetric monoidal and it has both a left adjoint (−)b and a right adjoint
b(−). Moreover, the derived fiber functor commutes with the derived suspension
spectrum functor, (Σ∞BK)b ' Σ∞(Kb) as Gb-spectra.

For emphasis, we repeat a remark that we made after the analogous ex-space
level result. This innocent looking result packages highly non-trivial and important
information. In particular, it gives that FB(X,Y )b ' F (Xb, Yb) in HoGbS for
X,Y ∈ HoGSB , where the fiber and function object functors are understood in
the derived sense. This reassuring consistency result is central to our applications
in Part IV, where parametrized duality is studied fiberwise.





CHAPTER 14

Module categories, change of universe, and change
of groups

Introduction

We first give a discussion of module categories of parametrized spectra over
nonparametrized ring spectra. One motivation is to set up the homotopical foun-
dations for studying the special properties of generalized homology and cohomology
theories on parametrized spectra that are represented by such nonparametrized ring
spectra. The good behavior of the external smash product GS ×GSB −→ GSB

makes it easy to do this. While the mathematics here is evident, it deserves em-
phasis since the ideas are likely to have future applications.

In the rest of the chapter, we focus on problems that are special to the equi-
variant context. We give the parametrized generalization of some of the work in
[105] concerning change of universe, change of groups, and fixed point and orbit
spectra. As usual, an essential point is to determine which of the standard adjunc-
tions are given by Quillen adjoint pairs and to prove that other adjunctions and
compatibilities that are evident on the point set level also descend to homotopy
categories.

We discuss change of universe in §14.2. Here the use of prespectra indexed on
cofinal sequences in the previous chapter introduces some minor difficulties that
were not studied in the nonparametrized theory of [105, V§1] and are already rel-
evant nonequivariantly. We study subgroups and fixed point spectra in §14.3. We
study quotient groups and orbit spectra in §14.4. Aside from some analogues for
parametrized spectra of earlier results for parametrized spaces, these sections are
precisely parallel to [105, V§§2 and 3]. We have not written down the parametrized
analogue of [105, V§4], which gives the theory of geometric fixed point spectra,
since it would be tedious to repeat the constructions given there. It will be appar-
ent to the interested reader that, mutatis mutandis, the definitions and results in
[105, V§4] generalize directly to the parametrized context.

14.1. Parametrized module G-spectra

We can define a parametrized (strict) ring G-spectrum R over B to be a monoid
in the symmetric monoidal category GSB , and we can then define parametrized
R-modules and R-algebras in the usual way, as has become standard in stable
homotopy theory [61, 77, 105, 106]. However, even though the smash product ∧B
in GSB gives a point-set level symmetric monoidal structure, we cannot expect to
obtain Quillen model structures on the categories of such R-modules or R-algebras,
as was done for orthogonal G-spectra in [105, III§§7,8]. To do that, we would need
better homotopical behavior than we can prove here. We have only set up adequate
foundations for the classical style theory of up to homotopy parametrized module

215
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spectra over up to homotopy parametrized ring spectra. From that point of view,
our homotopical foundations are entirely satisfactory. The source of the problem is
Warning 6.1.7, which implies that X ∧B (−) in GSB cannot be a Quillen functor.

However, in applications, it is natural to start with a nonparametrized orthog-
onal ring G-spectrum R. We are then interested in understanding the R-homology
and R-cohomology theories of G-spectra over B and their relationships with the
R-homology and R-cohomology of the fibers. For this study, just as in the non-
parametrized work of [61,77,105,106], one is interested in the theory of R-modules.
The external smash product Z : GS × GSB −→ GSB has enough of the good
properties of the nonparametrized smash product GS × GS −→ GS to give us
homotopical control over parametrized module spectra over nonparametrized ring
spectra. We devote this section to developing the relevant theory, which is parallel
to [105, III§7]. Let R be a ring spectrum inGS which is well-grounded when viewed
as a spectrum, meaning that each R(V ) is well-based and compactly generated.

Definition 14.1.1. A (left) R-module over B is a G-spectrum M over B to-
gether with a left action R ZM −→ M satisfying the usual associativity and unit
conditions. The category GRMB of left R-modules over B consists of the G-spectra
M over B and the maps of G-spectra over B that preserve the action by R.

Since (R Z X)b = R ∧ Xb, a parametrized R-module over B is precisely that:
each Xb is an R-module Gb-spectrum. More formally, we have the G-category
(RMG,B , GRMB), as discussed in §1.4 and §10.2, and the following result is clear.

Proposition 14.1.2. The G-category (RMG,B , GRMB) is G-topologically bi-
complete in the sense of Definition 10.2.1. All of the required limits, colimits,
tensors, and cotensors are constructed in the underlying G-category (SG,B , GSB)
and then given induced R-module structures in the evident way. A cyl-cofibration
of R-modules is a cyl-cofibration of underlying G-spectra over B.

The last statement holds by the retract of mapping cylinders characterization of
cyl-cofibrations. This immediately implies that GRMB inherits a ground structure
from GSB , in the sense of Definition 5.3.2. Recall that the well-grounded G-spectra
over B are those that are level well-grounded (well-sectioned and compactly gener-
ated) and that the g-cofibrations of G-spectra over B are the level h-cofibrations;
see Definition 12.1.2 and Proposition 12.1.4.

Definition 14.1.3. An R-module over B is well-grounded if its underlying G-
spectrum over B is well-grounded. A map of R-modules over B is a g-cofibration,
level q-equivalence, or s-equivalence if its underlying map of G-spectra over B is
such a map.

Also recall the notion of a subcategory of well-grounded weak equivalences
from Definition 5.4.1. Since colimits and tensors for R-modules are defined in
terms of the underlying G-spectra over B, the following theorem is immediate from
its counterpart for G-spectra over B, which is given by Proposition 12.1.4 and
Theorem 12.4.3.

Theorem 14.1.4. Definition 14.1.3 specifies a ground structure on GRMB

such that the level q-equivalences and the s-equivalences both give subcategories of
well-grounded weak equivalences.
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Finally, recall the definition of a well-grounded model structure from Defini-
tion 5.5.4. Such model structures are compactly generated, and we must define the
generators of GRMB . The free R-module functor FR = R Z− : GSB −→ GRMB

is left adjoint to the forgetful functor U : GRMB −→ GSB . Adjunction arguments
from the definitions show that FR preserves cyl-cofibrations and cyl-cofibrations.

Definition 14.1.5. Define FRFIfB , FRFJfB and FRFKf
B by applying the free

R-module functor to the maps in the sets specified in Definition 12.1.6 and Defini-
tion 12.5.5. A map of R-modules over B is

(i) a level qf -fibration or an s-fibration if it is one in GSB ,
(ii) an s-cofibration if it satisfies the LLP with respect to the level acyclic qf -

fibrations,

Theorem 14.1.6. The category GRMB is a well-grounded model category with
respect to the level q-equivalences, the level qf -fibrations, and the s-cofibrations.
The sets FRFIfB and FRFJfB give the generating s-cofibrations and generating level
acyclic s-cofibrations. All s-cofibrations of R-modules over B are s-cofibrations of
G-spectra over B.

We omit the proof since it is virtually the same as the proof of the following
theorem, which gives the starting point for serious work on the homology and
cohomology theory of parametrized G-spectra.

Theorem 14.1.7. The category GRMB is a well-grounded model category with
respect to the s-equivalences, the s-fibrations, and the s-cofibrations; FRFKf

B gives
the generating acyclic s-cofibrations.

Proof. The compatibility condition in Theorem 5.5.1 is automatic by adjunc-
tion from the parametrized spectrum level, and we have already observed that the
free R-module functor FR preserves cyl-cofibrations. It also preserves the relevant
�-products, and FRFVK = (R∧FV S0)ZK is well-grounded if K is a well-grounded
ex-space. Only the acyclicity condition remains. If R is s-cofibrant as a ring spec-
trum, then R is also s-cofibrant as a spectrum, by [105, III.7.6(iv) and (v)]. In that
case, the functor R Z (−) = UFR is a Quillen left adjoint by Corollary 12.6.6 and
therefore preserves level acyclic s-cofibrations. It follows that the maps in FRKf

B

are s-equivalences. The case of a general well-grounded R reduces to the cofibrant
case by use of the next result; compare Proposition 14.1.9 below. �

Proposition 14.1.8. The following statements hold.
(i) For an s-cofibrant spectrum X over B, the functor − Z X : GS −→ GSB

preserves s-equivalences between well-grounded spectra in GS .
(ii) If Y is well-grounded in GS , j : A −→ X is an acyclic s-cofibration in GSB,

and A is well-grounded, then Y Z j : Y ZA −→ Y ZX is an s-equivalence.

Proof. Let φ : Y −→ Z be an s-equivalence between well-grounded spectra.
By parts (ii)–(iv) of Definition 5.4.1, it suffices to show that φ Z FVK is an s-
equivalence if K is the source or target of a map in IfB . This map is isomorphic to
the map (φ∧FV S0)∧BK, where FV S0 is the shift desuspension in GS , not GSB .
Here φ ∧ FV S0 is an s-equivalence by the nonparametrized analogue [105, III.7.3],
and the conclusion follows from Lemma 12.5.3. (The comment on the notations Z
and ∧B above Definition 12.5.1 is relevant: the former is an external smash product
and the latter is a tensor).



218 14. MODULE CATEGORIES, CHANGE OF UNIVERSE, AND CHANGE OF GROUPS

For (ii), we apply an argument from [106, 12.5]. We let Z = X/BA, which
is s-cofibrant, and we let QY −→ Y be an s-cofibrant approximation. Since j is
an s-cofibration, it is a cyl-cofibration and Cj is homotopy equivalent to Z. Since
A is well-grounded, we can apply the long exact sequence of homotopy groups of
Theorem 12.4.2 to conclude that Z is s-acyclic. The map Z −→ ∗B is then an
s-equivalence between s-cofibrant spectra over B. Since QY Z − is a Quillen left
adjoint, by Proposition 12.2.3, QY ZZ −→ QY Z∗B ∼= ∗B is an s-equivalence. Since
QY Z Z −→ Y Z Z is an s-equivalence by part (i), Y Z Z is s-acyclic. Since the
functor Y Z − preserves cofiber sequences, another application of Theorem 12.4.2
shows that Y Z j is an s-equivalence. �

Proposition 14.1.9. If φ : Q −→ R is an s-equivalence of well-grounded ring
spectra, then the functors

φ∗ = R ∧Q (−) : GQMB −→ GRMB and φ∗ : GRMB −→ GQMB

given by extension of scalars and restriction of action define a Quillen equivalence
(φ∗, φ∗) between the categories of Q-modules and of R-modules over B.

Proof. Since s-fibrations and s-equivalences are created in the underlying
category of spectra over B, it is clear that they are preserved by φ∗, so that we
have a Quillen pair. If M is an s-cofibrant Q-module, then, by the previous result,
the unit map φ ∧ id : M ∼= Q ∧Q M −→ φ∗(R ∧Q M) of the adjunction is an s-
equivalence of spectra over B. Therefore, if N is an s-fibrant R-module, then a
map M −→ φ∗N of Q-modules is an s-equivalence if and only if its adjoint map
R ∧QM −→ N of R-modules is an s-equivalence. �

Implicitly, we have been studying modules over the sphere spectrum S in earlier
chapters, and we can redo all of our model theoretic work with S replaced by R.
The results of §12.6 and §13.1 carry over directly. For f : A −→ B, base change
preserves R-modules, (f!, f∗) gives a Quillen adjoint pair relating the categories of
R-modules over A and over B, and we obtain a Quillen equivalence if f is a q-
equivalence. If f is a bundle with cellular fibres, we obtain a Quillen pair (f∗, f∗),
and we can apply the triangulated category version of Brown representability to
construct a right adjoint f∗ in general.

However, we do not know how to generalize the rest of Chapter 13 to the
module context since we have not worked out a theory of excellent R-modules with
an accompanying excellent R-module approximation functor. In view of the retreat
to prespectra with their primitive handicrafted smash products in that theory, it
seems unlikely to us that any such construction can be expected.

We also have the notion of a right R-module over a nonparametrized ring
spectrum R. If M and N are right and left R-modules over A and B and L is a left
R-module over A × B, then we define spectra M ZR N over A × B and F̄R(N,L)
over A by the usual coequalizer

M ZR ZN //// M ZN // M ZR N

and equalizer
F̄R(N,L) // F̄ (N,L) // // F̄ (R ZN,L).

If R is commmutative, then M ∧R N and FR(N,L) are naturally R-modules.
We have good homotopical control over these external constructions, as in

Propositions 12.2.3 and 12.6.5. For example, if we take A = ∗, then we have good
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homotopical control over the smash product spectrum M ∧R N over B and the
non-parametrized function spectrum FR(N,L), where M is a non-parametrized
right R-module and N and L are left R-modules over B. However, if we take
A = B and internalize M ZR N along the diagonal ∆: B −→ B × B by setting
M∧RN = ∆∗M ZRN and FR(M,N) = F̄R(M,∆∗N), we lose homotopical control.

Similarly, when R is commutative, RMB has the structure of a closed sym-
metric monoidal category, and that allows us to define (commutative) R-algebras
over B to be (commutative) monoids in RMB . However, because of the lack of
homotopical control, in the absence of the theory of Chapter 13, we cannot give the
categories of R-algebras and of commutative R-algebras over B model structures.

Remark 14.1.10. There are interesting examples of rings and modules that
allow varying base spaces and are defined in terms of the external smash product.
We shall work out one rather surprising way of realizing this idea in Chapter 23,
but it seems likely that there are others. For example, one might consider G-
spectra Rn over Bn with products Rm Z Rn −→ Rm+n, or one might consider
“globally defined” parametrized ring spectra R consisting of spectra RB over B for
all B together with appropriate products RA Z RB −→ RA×B . The RB would in
particular be module spectra over the nonparametrized ring spectrum R∗. As in
the nonparametrized theory, one must use the positive stable model structures to
study such ring objects model theoretically when R∗ is commutative. The essential
point is that the external smash product is sufficiently well-behaved homotopically
that there is no obstacle to passage from point-set level constructions to homotopy
category level conclusions.

14.2. Change of universe

Recall that G-spectra over B are defined in terms of a chosen collection V of
representations of G. As usual in equivariant stable homotopy theory, we must
introduce functors that allow us to change the collection V . Such functors are
usually referred to as “change of universe” functors, since V is often given as the
collection V (U) of all representations that embed up to isomorphism in a given
G-universe U . However, it is often convenient to restrict V to be a cofinal subcol-
lection of V (U) that is closed under direct sums, and when we dealt with excellent
prespectra it became essential to restrict V further to a countable cofinal sequence
of expanding representations in U . In both cases, it is usual to insist that the trivial
representation R be included in V . Observe that such change of universe functors
are already essential nonequivariantly. In order to deal with the change functors
in all of the above cases at once, we adopt a slightly different approach from the
one that was used in [105, V.§1]. We then explain how it specializes to the more
explicit approach given there.

Let GS V
B denote the category of G-spectra over B indexed on V . If V is

not closed under direct sums, then we are thinking of GS V
B as the restriction of

the diagram category corresponding to GS V ′

B , where V ′ is the closure of V under
sums, as discussed in Remark 13.3.5.

Let i : V ⊂ V ′ be the inclusion of one collection of representations in another.
Thinking of parametrized spectra as diagram ex-spaces, we see that the evident
forgetful functor

i∗ : GS V ′ −→ GS V
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has a left adjoint i∗ given by the prolongation, or expansion of universe, functor

(i∗X)(V ′) = J V ′

G (−, V ′)⊗J V
G
X.

Such prolongation functors are discussed in detail in [106, I§3] and [105, I§2]. By
[105, I.2.4], the unit Id −→ i∗i∗ of the adjunction is a natural isomorphism.

We have more concrete descriptions of the functor i∗ when V consists of a
cofinal sequence of representations in some universe U . Recall that J V

G (V, V ) is
the orthogonal group O(V ) with a disjoint base point.

Lemma 14.2.1. If V = {Vi} ⊂ V ′ is a countable expanding sequence in some
G-universe U , then

(i∗X)(V ′) ∼= J V ′

G (Vi, V ′) ∧O(Vi) X(Vi)

where i is the largest natural number such that there is a linear isometry Vi −→ V ′.

Proof. The forgetful functor i∗ is restriction along a functor ι : J V
G −→J V ′

G

and (i∗X)(V ′) is constructed as the coequalizer of the pair of parallel maps∨
j,k J V ′

G (Vj , V ′) ∧B J V
G (Vk, Vj) ∧B X(Vk)

// //
∨
j J V ′

G (Vj , V ′) ∧B X(Vj)

given by composition in J V ′

G and by the evaluation maps associated to the diagram
X. A cofinality argument that is easily made precise by use of the explicit descrip-
tion of the category J V ′

G given in [105, II.§4] shows that the above coequalizer
agrees with the coequalizer of the subdiagram

J V ′

G (Vi, V ′) ∧B J V
G (Vi, Vi) ∧B X(Vi)

// //J V ′

G (Vi, V ′) ∧B X(Vi).

This coequalizer is the space that we have denoted by J V ′

G (Vi, V ′)∧O(Vi)X(Vi). �

Remark 14.2.2. The argument above works in the same way for prespectra.
It gives the conclusion that, for parametrized prespectra X in GPV

B ,

(i∗X)(V ) ∼= ΣV−Vi

B X(Vi).

Remark 14.2.3. Assume that V and V ′ are closed under finite sums and con-
tain the trivial representation. We can then define the change of universe functors

IV
V ′ = i∗i

′∗ : GS V ′

B −→ GS V
B

where i : {Rn} ⊂ V and i′ : {Rn} ⊂ V ′. Explicitly

(IV
V ′X)(V ) ∼= J V

G (Rn, V ) ∧O(n) X(Rn).

This is the definition given in [105, V.1.2]. These change of universe functors IV
V ′

are exceptionally well behaved on the point set level, and they agree with those
that we are using when V ⊂ V ′. They are symmetric monoidal equivalences of
categories. For collections V , V ′ and V ′′, they satisfy

IV
V ′ ◦ ΣV ′

B
∼= ΣV

B , IV
V ′ ◦ IV ′

V ′′
∼= IV

V ′′ , IV
V
∼= Id.

Moreover, IV
V ′ is continuous and commutes with smash products with ex-spaces.

In particular, it is homotopy preserving and therefore induces equivalences of the
classical homotopy categories. Unfortunately, however, the functors IV

V ′ are as
poorly behaved on the homotopy level as they are well behaved on the point set level.
They do not preserve either level q-equivalences or s-equivalences in general, and
the point set level relations above do not descend to the model theoretic homotopy
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categories that we are interested in. Furthermore, these functors IV
V ′ do not exist if

V is a cofinal expanding sequence. We shall therefore not make much use of them.

Returning to our original context, let i : V ⊂ V ′. The adjoint pair (i∗, i∗) has
good homotopical properties.

Theorem 14.2.4. Let i : V ⊂ V ′. Then i∗ preserves level q-equivalences, level
qf -fibrations, s-fibrations, and s-acyclic s-fibrations. Therefore (i∗, i∗) is a Quillen
adjoint pair in the level qf -model structure and in the s-model structure. Moreover,
i∗ on homotopy categories is symmetric monoidal. If V is cofinal in V ′, then i∗

creates the weak equivalences and (i∗, i∗) is a Quillen equivalence.

Proof. It is clear from its levelwise definition that i∗ preserves level q-equi-
valences and level qf -fibrations. It follows that its left adjoint i∗ preserves s-
cofibrations and level acyclic s-cofibrations. This in turn implies that i∗ preserves
s-acyclic s-fibrations, since those are the maps that satisfy the RLP with respect
to the s-cofibrations. The levelwise description of s-fibrations in Proposition 12.5.6
implies that i∗ preserves s-fibrations. The last statement follows from the defini-
tion of homotopy groups and the fact that the unit id −→ i∗i∗ is an isomorphism.
The functor i∗ commutes with Z on the point set level, by [105, I.2.14], and this
commutation relation descends directly to homotopy categories. Applying Propo-
sition 14.2.8 below to the diagonal map of B, it follows that the derived functor i∗
is symmetric monoidal. �

Many results now carry over verbatim from the case of G-spectra. For exam-
ple, i∗Σ∞,BV ′ is isomorphic to Σ∞B,V on the poinst set level, and this isomorphism
descends to homotopy categories. We shall concentrate in the rest of the section
on properties special to the parametrized setting. We have constructed the change
of universe functors on both the spectrum and prespectrum level and they are
compatible with the restriction functors U. However, in order to make use of excel-
lent parametrized prespectra, we must restrict to parametrized prespectra indexed
on cofinal sequences j : W ⊂ V and j′ : W ′ ⊂ V ′ of indexing representations in
the given universes U ⊂ U ′. But then there need not be an induced inclusion
i : W ⊂ W ′. We therefore also define change of universe functors for prespectra
indexed on cofinal sequences.

Definition 14.2.5. Let i : V ⊂ V ′ and choose cofinal sequences W = {Vi}
and W ′ = {V ′i } in V and V ′ such that Vi+1 = Vi ⊕Wi and V ′i = Vi ⊕ Zi, where
Zi+1 = Zi ⊕W ′

i and thus V ′i+1 = V ′i ⊕Wi ⊕W ′
i . Define a pair of adjoint functors

GPW
B

ı̄∗ //
GPW ′

B
ı̄∗
oo

by setting

(̄ı∗X)(V ′i ) = ΣZi

B X(Vi) and (̄ı∗Y )(Vi) = ΩZi

B Y (V ′i ).

The structure maps are induced from the given structure maps in the evident way.

Proposition 14.2.6. The pair (̄ı∗, ı̄∗) is a Quillen adjoint pair with respect
to both the level qf -model structure and the stable model structure. The following
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diagram commutes when the vertical arrows point in the same direction.

HoGPW
B

ı̄∗

��

HoGPV
B

i∗

��

j∗oo

HoGPW ′

B

ı̄∗

OO

HoGPV ′

B

i∗

OO

(j′)∗
oo

Proof. This is clearly a Quillen adjunction in the level qf -model structure,
and to see that it is a Quillen adjunction in the stable model structure it therefore
suffices to observe that the homotopy pullback condition of Proposition 12.5.6 is
preserved by the right adjoint ı̄∗. This holds since the homotopy pullbacks (12.5.7)
associated to the pairs (Vi,Wi) and an s-fibration f : X −→ Y are still homotopy
pullbacks after we apply ΩZi

B to them. The resulting diagrams display the required
homotopy pullback diagrams (12.5.7) for the map ı̄∗f .

For the diagram with downwards pointing vertical arrows, we have

(̄ı∗j∗X)(V ′i ) = ΣZi

B X(Vi) ∼= ΣV
′

i−Vi

B X(Vi) = ((j′)∗i∗X)(V ′i ).

This point set level isomorphism descends to homotopy categories since the functors
j∗ and (j′)∗ preserve all s-equivalences. For the diagram with upwards pointing
arrows, the adjoint structure maps of X ∈ GPV ′

B induce maps

(j∗i∗X)(Vi) = X(Vi) −→ ΩZi

B X(V ′i ) = (̄ı∗(j′)∗X)(Vi).

When X is s-fibrant, its adjoint structure maps are level q-equivalences, and we
thus obtain an equivalence j∗i∗ ' ı̄∗(j′)∗ on homotopy categories. �

On the point-set level, we have the following commutation relations between
change of universe functors and change of base functors.

Lemma 14.2.7. Let i : V ⊂ V ′ and let f : A −→ B be a G-map. Then i∗

commutes up to natural isomorphism with the change of base functors f!, f∗, and
f∗, and i∗ commutes up to natural isomorphism with f! and f∗.

Proof. The first statement is clear from the levelwise constructions of the
base change functors, and the second statement follows by conjugation since i∗, f!,
and f∗ are left adjoints of i∗, f∗, and f∗. �

The missing relation, i∗f∗ ∼= f∗i∗, would hold with the alternative point-set
level definitions of Remark 14.2.3, where i∗ and i∗ are inverse equivalences. How-
ever, these are point-set level relationships that need not descend to model theoretic
homotopy categories. With our preferred definition of i∗ in terms of prolongation,
the following result shows that i∗f∗ ' f∗i∗ on homotopy categories even though
we need not have an isomorphism on the point-set level.

Proposition 14.2.8. Let i : V ⊂ V ′ and let f : A −→ B be a G-map. Then
there are natural equivalences of derived functors

i∗f∗ ' f∗i∗, i∗f! ' f!i∗, i∗f
∗ ' f∗i∗, i∗f∗ ' f∗i∗, i∗f! ' f!i∗

in the relevant homotopy categories.
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Proof. The first two equivalences are clear since we are commuting Quillen
right adjoints and their corresponding Quillen left adjoints. The fourth will follow
by adjunction from the third. If f is a homotopy equivalence, then f∗ ' (f!)−1 and
in this case the third follows from the second and the fifth from the first. Factoring
f as the composite of an h-fibration and a homotopy equivalence, we see that the
third will hold in general if it holds when f is an h-fibration. Similarly, factoring f
as the composite of an h-cofibration and a homotopy equivalence, we see that the
fifth will hold in general if it holds when f is an h-cofibration.

Further, for the third equivalence, it suffices to show that ı̄∗f∗ ' f∗ ı̄∗ since
Proposition 14.2.6 then gives that

i∗f
∗ ' i∗j∗j∗f∗ ' (j′)∗ ı̄∗f∗j∗ ' (j′)∗f∗ ı̄∗j∗ ' f∗(j′)∗(j′)∗i∗ ' f∗i∗.

Similarly, for the fifth equivalence, it suffices to show that ı̄∗f! ' f! ı̄∗, for then

i∗f! ' i∗(j′)∗(j′)∗f! ' j∗ ı̄∗f!(j′)∗ ' j∗f! ı̄∗(j′)∗ ' f!(j′)∗(j′)∗i∗ ' f!i∗.

We have reduced the proof of the third equivalence to the situation when f is an
h-fibration and i∗ is replaced by ı̄∗. The functor f∗ preserves excellent prespectra
over B, but we must apply T to ı̄∗ before passing to homotopy categories. As in the
proof of Theorem 13.7.7, since f is assumed to be an h-fibration we have a natural
homotopy equivalence µ : Tf∗ −→ f∗T in our categories indexed on W or on W ′.
Therefore

T ı̄∗f
∗ ∼= Tf∗ ı̄∗ ' f∗T ı̄∗.

Similarly, we have reduced the proof of the fifth equivalence to the situation
when f is an h-cofibration and i∗ is replaced by ı̄∗. Then f! preserves level h-
equivalences, and so does ı̄∗ since it preserves level q-equivalences and preserves
objects whose total spaces are of the homotopy types of G-CW complexes. Since
T takes zig-zags of level h-equivalences to homotopy equivalences,

Tf!T ı̄
∗ oo ' // Tf! ı̄∗ ∼= T ı̄∗f! oo

' // T ı̄∗Tf!

displays a zig-zag of homotopy equivalences showing that f! ı̄∗ ' ı̄∗f!. �

14.3. Restriction to subgroups

Let θ : G′ −→ G be a homomorphism and let θ∗V be the collection of G′-
representations θ∗V for V ∈ V , where V is our chosen collection of indexing G-
representations. We have implicitly used the following result in our earlier results
on change of groups.

Proposition 14.3.1. The functor θ∗ : GSB −→ G′S θ∗V
θ∗B preserves level q-

equivalences, level qf -fibrations, s-fibrations, and s-equivalences provided that the
model structures are defined with respect to generating sets CG and CG′ of G-cell
complexes and G′-cell complexes such that θ!C = G×G′ C ∈ CG for C ∈ CG′ .

Proof. Since (θ∗A)H = Aθ
∗(H) for a G-space A and a subgroup H of G′, this

is clear from the definitions of homotopy groups and from the characterizations of
fibrations given in Definition 7.2.7 and Proposition 12.5.6. Note in particular that
θ∗ preserves the level qf -fibrant approximations that are used in the definition of
the stable homotopy groups. �
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For the remainder of this section fix a subgroup H of G and consider the
inclusion ι : H ⊂ G. For an H-space A, we simplify notation by letting HS V

A

denote the category of H-spectra over A indexed on ι∗V . Clearly, we then have
the restriction of action functor

ι∗ : GS V
B −→ HS V

ι∗B .

For i : V ⊂ V ′, we have ι∗i∗ = i∗ι∗ since with either composite we are just re-
stricting from the representations in V ′ to the representations in V and viewing all
G-spaces in sight as H-spaces.

When V = V (U) for a G-universe U , there is a quibble here (as was discussed
in [105, V.10]). We are using ι∗V as the corresponding indexing collection for
H. However, if V is an irreducible representation of G, ι∗V is generally not an
irreducible representation of H and we should expand ι∗V to include all represen-
tations that embed up to isomorphism in ι∗U to fit the definitions into our usual
framework. However, there is a change of universe functor associated to the inclu-
sion i : ι∗V (U) ⊂ V (ι∗U) that fixes this. The functor i∗ preserves all s-equivalences
and descends to an equivalence on homotopy categories. We can and should use
these rectifications when restricting to H-spectra over ι∗B for a fixed chosen H.

Remark 14.3.2. Consider passage to fibers and recall Proposition 12.6.12.
(i) Applied to inclusions of orbits, Proposition 14.2.8 implies that the functors i∗

for i : V ⊂ V ′ are compatible with passage to fibers, in the sense that

(i∗X)b ∼= i∗(Xb) for b ∈ B,

where i∗ on the right is the change of universe functor on Gb-spectra.
(ii) When V = V (U), we can view the fiber functor

(−)b : GSB −→ GbS

as landing in spectra indexed on V (ι∗U), ι : Gb −→ G, by composing with i∗
for i : ι∗V (U) ⊂ V (ι∗U). However, these change of universe functors must be
used with caution since they are not compatible as b and therefore Gb vary.

Recall from Propositions 12.6.10 and 13.7.9 that the equivalence of categories
(ι!, ν∗ι∗) between HSA and GSι!A induces a closed symmetric monoidal equiva-
lence of categories between HoHSA and HoGSι!A. By Corollary 12.6.11, we can
interpret the restriction functor ι∗ : HoGSB −→ HoHSι∗B as the composite of
base change µ∗ along µ : ι!ι∗B −→ B and this equivalence applied to A = ι∗B. The
following spectrum level analogue of Proposition 2.3.11 gives compatibility relations
between change of base functors and these results on change of groups.

Proposition 14.3.3. Let f : A −→ ι∗B be a map of H-spaces and f̃ : ι!A −→ B
be its adjoint map of G-spaces. Then the following diagrams commute up to natural
isomorphism, where µ : ι!ι∗B −→ B and ν : A −→ ι∗ι!A are the counit and unit of
the adjunction (ι!, ι∗).

GSι!A
f̃! // GSB

HSA
f!

//

ι!

OO

HSι∗B

µ!◦ι!

OO GSB
f̃∗ //

ι∗

��

GSι!A

ν∗◦ι∗

��
HSι∗B

f∗
// HSA
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These diagrams descend to natural equivalences of composites of derived functors
on homotopy categories.

Proof. The point set level diagrams commute by Proposition 2.3.11, applied
levelwise. The left diagram is one of Quillen left adjoints and the right diagram
is one of Quillen right adjoints, by Propositions 12.6.7 and 12.6.10 and Corol-
lary 12.6.11. �

We now define a parametrized fixed point functor associated to the inclusion
ι : H −→ G. Its target is a category of nonequivariant parametrized spectra. In the
next section we will consider a fixed point functor that takes values in a category
of parametrized WH-spectra, where WH = NH/H is the Weyl group.

Write GS triv
B for G-spectra over B indexed on trivial representations. These

are “naive” parametrized G-spectra. As usual, to define fixed point spectra, we
must change to the trivial universe before taking fixed points levelwise. Thus let
V G = {V G | V ∈ V }. It is contained in V if V = V (U) for some universe U .

Definition 14.3.4. The G-fixed point functor (−)G : GSB −→ SBG is the
composite of i∗, i : V G ⊂ V , and levelwise passage to fixed points. For a subgroup
H of G the H-fixed point functor (−)H : GSB −→ SBH is the composite of ι∗,
ι : H ⊂ G, and (−)H .

Since the homotopy groups of a level qf -fibrant G-spectrum X over B are the
homotopy groups πHq (Xb), we see from the nonparametrized analogue [105, V.3.2]
that these are then the homotopy groups of XH . Recall in particular that the
s-fibrant G-spectra over B are the Ω-G-spectra over B, which are level qf -fibrant.
Therefore, for all subgroups H of G, the homotopy groups of a parametrized G-
spectrum X are the nonequivariant homotopy groups of the nonequivariant spectra
XH , provided that (−)H is understood to mean the derived fixed point functor.

On the point-set level, the functor (−)G is a right adjoint. Thinking of the
homomorphism ε : G −→ e to the trivial group, let ε∗ : SA −→ GS triv

ε∗A be the
functor that sends spectra over a space A to G-trivial G-spectra over A regarded
as a G-trivial G-space. The following result is immediate by passage to fibers from
its nonparametrized special case [105, V.3.4]. Let A`` denote the collection of all
representations of G.

Proposition 14.3.5. Let A be a space. Let Y be a naive G-spectrum over ε∗A
and X be a spectrum over A. There is a natural isomorphism

GS triv
ε∗A(ε∗X,Y ) ∼= SA(X,Y G).

For (genuine) G-spectra Y over ε∗A, there is a natural isomorphism

GSε∗A(i∗ε∗X,Y ) ∼= SA(X, (i∗Y )G),

where i : triv ⊂ A``. Both of these adjunctions are given by Quillen adjoint pairs
relating the respective level and stable model structures.

Returning to G-spaces B and comparing Definition 11.3.5 with the proof of
[105, V.3.5-3.6], we obtain the following curious results.

Proposition 14.3.6. For a representation V and an ex-G-space K, we have
that (FVK)G = ∗BG unless G acts trivially on V , when (FVK)G ∼= FV (KG) as a
nonequivariant spectrum over BG. The functor (−)G preserves s-cofibrations, but
it does not preserve acyclic s-cofibrations.
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Corollary 14.3.7. For ex-G-spaces K,

(Σ∞BK)G ∼= Σ∞B (KG).

This isomorphism of spectra over BG does not descend to the homotopy cat-
egory HoGSBG . The reader is warned to consult [105, V§3] for the meaning of
these results. There is also an analogue of the comparison between G-fixed points
and smash products in [105, V.3.8], but only when B = BG and only with good
behavior with respect to cofibrant objects when external smash products are used.
We shall not state the result formally.

14.4. Normal subgroups and quotient groups

We now turn to quotient homomorphisms and associated orbit and fixed point
functors. The material of this section generalizes a number of results from §2.4,
§7.3, and §9.5 to the level of parametrized spectra.

Just as we have been using ι generically for inclusions of subgroups, we shall use
ε generically for quotient homomorphisms. In particular, for an inclusion ι : H ⊂ G,
we let WH = NH/H, where NH is the normalizer of H in G, and we have the
quotient homomorphism ε : NH −→ WH. We can study this situation by first
restricting from G to NH, thus changing the ambient group. Therefore, there is no
loss of generality if we focus attention on a normal subgroup N of G with quotient
group J = G/N , as we do throughout this section.

Definition 14.4.1. Let GS N-triv
B be the category of G-spectra over B indexed

on the N -trivial representations of G. Regard representations of J as N -trivial
representations of G by pullback along ε : G −→ J . For a J-space A, define

ε∗ : JSA −→ GS N-triv
ε∗A

levelwise by regarding ex-J-spaces over A as N -trivial G-spaces over ε∗A. For a
G-space B, define

(−)/N : GS N-triv
B −→ JSB/N and (−)N : GS N-triv

B −→ JSBN

by levelwise passage to orbits over N and to N -fixed points.

Lemma 14.4.2. The N -fixed point functor (−)N preserves level q-equivalences,
level qf -fibrations, s-fibrations, and s-equivalences, provided that the model struc-
tures are defined with respect to generating sets CG and CJ of G-cell complexes and
J-cell complexes such that C/N ∈ CJ for C ∈ CG.

Proof. This is a special case of Proposition 14.3.1; it also follows directly from
the ex-space level analogue in Proposition 7.4.3, the characterization of s-fibrations
in Proposition 12.5.6, and inspection of the definition of the s-equivalences. �

Proposition 14.4.3. Let j : BN −→ B be the inclusion and p : B −→ B/N be
the quotient map. Then the following factorization diagrams commute.

GS N-triv
B

p!

��

(−)/N // JSB/N

GS N-triv
B/N

(−)/N

99ssssssssss

and GS N-triv
B

j∗

��

(−)N

// JSBN

GS N-triv
BN

(−)N

99ssssssssss
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These diagrams descend to give natural equivalences on homotopy categories

(p!X)/N ' X/N and (j∗X)N ' XN

for X in HoGS N-triv
B . The following adjunction isomorphisms follow.

(i) For Y ∈ GS N-triv
B and X ∈ JSB/N ,

JSB/N (Y/N,X) ∼= GS N-triv
B (Y, p∗ε∗X).

(ii) For Y ∈ GS N-triv
B and X ∈ JSBN ,

GS N-triv
B (j!ε∗X,Y ) ∼= JSBN (X,Y N ).

(iii) For (genuine) G-spectra Y ∈ GSB and X ∈ JSBN ,

GSB(i∗j!ε∗X,Y ) ∼= JSBN (X, (i∗Y )N ),

where i : triv ⊂ A``.
All of these adjunctions are Quillen adjoint pairs with respect to both the level and
the stable model structures and so descend to homotopy categories.

Proof. The factorizations follow from the ex-space level analogue, Proposi-
tion 2.4.1. The statement about Quillen adjunctions holds since (−)N , ε∗ and i∗

preserve level q-equivalences, level fibrations, s-equivalences, and level s-fibrations
by Lemma 14.4.2, Proposition 14.3.1, and Theorem 14.2.4. �

The following result records the behavior of the orbit and fixed point functors
with respect to base change.

Proposition 14.4.4. Let f : A −→ B be a map of G-spaces. Then the following
diagrams commute up to natural isomorphism.

GS N-triv
A

f! //

(−)/N

��

GS N-triv
B

(−)/N

��
JSA/N

(f/N)!

// JSB/N

GS N-triv
B

f∗ //

(−)N

��

GS N-triv
A

(−)N

��
JSBN

(fN )∗
// JSAN

GS N-triv
A

f! //

(−)N

��

GS N-triv
B

(−)N

��
JSAN

(fN )!

// JSBN

They descend to give the following natural equivalences on homotopy categories:

(f!X)/N ' (f/N)!(X/N), (f∗X)N ' (fN )∗(Y N ), (f!X)N ' (fN )!(X/N),

where X ∈ HoGS N-triv
A and Y ∈ HoGS N-triv

B . If B is an N -free G-space, then
the following diagram also commutes up to natural isomorphism.

GS N-triv
B

f∗ //

(−)/N

��

GS N-triv
A

(−)/N

��
JSB/N

(f/N)∗
// JSA/N

If A and B are both N -free, it descends to give a natural equivalence

(f∗Y )/N ' (f/N)∗(Y/N)

on homotopy categories.
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Proof. The point-set level commutative diagrams are obtained levelwise from
the analogous diagrams for ex-spaces given in Proposition 2.4.3. The proof that
these isomorphisms descend to equivalences on homotopy categories is the same as
the proof of the analogous result for ex-spaces given in Proposition 7.4.5. �

The spectrum level analogue of Propositions 2.4.4 and 7.4.6 also holds.

Proposition 14.4.5. Let E be an N -free G-space, let B = E/N , and let
p : E −→ B be the quotient map. Then the diagram

GS N-triv
E

p∗

��

(−)/N // JSB

GS N-triv
B

(−)N

::tttttttttt

commutes up to a natural isomorphism. It descends to give a natural equivalence

X/N ' (p∗X)N

in HoJSB for X ∈ GS N-triv
E . Therefore the left adjoint (−)/N of the functor p∗ε∗

is also its right adjoint.

Proof. The point-set level commutative diagram is obtained levelwise from
the analogous diagram for ex-spaces given in Proposition 2.4.4, and this isomor-
phism descends to homotopy categories by the same proof as that of Proposi-
tion 7.4.6. �
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Introduction

We put the foundations of Part III to work in this part. Unless otherwise stated,
we work in derived homotopy categories, and all functors should be understood in
the derived sense. For example, we have the derived fiber functor

(−)b : HoGSB −→ HoGbS .

Since passage to fibers is a Quillen right adjoint, this means that we replace G-
spectra X over B by s-fibrant approximations before taking point-set level fibers.
For emphasis, and to make the notation Xb clear and unambiguous, we may some-
times assume explicitly that X is s-fibrant, but this hypothesis is always implicit. A
map f in HoGSB is an equivalence if and only if fb is an equivalence for all b ∈ B,
and that allows us to transfer information back and forth between the parametrized
and nonparametrized homotopy categories with impunity. Here we use the word
“equivalence” to mean an isomorphism in HoGSB , and we use the notation ' for
this relation. We reserve the symbol ∼= to mean an isomorphism that already holds
on the point set level.

We have proven that the basic structure enjoyed by the category GSB of
parametrized spectra descends coherently to the homotopy category HoGSB . In
particular, HoGSB is a closed symmetric monoidal category, and the derived fiber
functor is closed symmetric monoidal. In any symmetric monoidal category, we
have standard categorical notions of dualizable and invertible objects. Early work
in parametrized stable homotopy theory of Clapp, Puppe, Becker, and Gottlieb
[9,10,31,32] was aimed at the understanding of fiberwise duality, viewed primarily
as a tool for the study of transfer maps in the nonparametrized setting. We rework
and generalize results of this sort in Chapter 15. A particularly interesting new
construction explains precisely how to define bundles of spectra rigorously.

Classically, categorical duality in the symmetric monoidal category of spec-
tra gives the definitively right context for the study of Spanier-Whitehead duality
and duality between homology and cohomology theories. Categorical duality in
symmetric monoidal categories of parametrized spectra is related fiberwise to this
classical duality theory. However, this fiberwise duality theory is not the right con-
text for the study of parametrized Spanier-Whitehead duality and duality between
parametrized homology and cohomology theories.

The right duality theory was discovered by Costenoble and Waner [41], and
we therefore call it Costenoble-Waner duality. To place it in context, we proceed
from the general to the particular. We develop categorical duality theory in closed
symmetric bicategories in Chapter 16. This chapter gives category theory that has
applications to many other subjects, and it can be read independently of anything
else in this book.

231
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We construct a closed symmetric bicategory of parametrized spectra with vary-
ing base spaces in Chapter 17, and we relate duality to base change using “base
change spectra” in that bicategory. In Chapter 18, we focus on the category of
G-spectra over a fixed B and explain Costenoble-Waner duality. We reiterate how
different this is from fiberwise duality. Nonequivariantly, the sphere spectrum over
B, which is invertible and thus fiberwise dualizable, can only be Costenoble-Waner
dualizable when B is dualizable, that is, when B is equivalent to a finite CW com-
plex. Parametrized finite cell spectra are generally not fiberwise dualizable, but
we show that they are Costenoble-Waner dualizable. We also give a self-contained
proof of a parametrized version of Atiyah duality for smooth G-manifolds. This
version implies the classical version since the functor r! from spectra over B to
spectra preserves dualizability.

In Chapter 19, we show how to insert parametrized Costenoble-Waner duality
fiberwise into bundles of equivariant spectra. The result gives what we think of as a
fiberwise version of Costenoble-Waner duality. The proof of the result is of consid-
erable conceptual interest. We generalize the symmetric bicategory of parametrized
spectra to a symmetric bicategory of parametrized spectra over spaces over a given
base space B. With appropriate equivariance, the bundle construction obtained
from a fixed principal bundle P −→ B maps the bicategory of parametrized spec-
tra to this bicategory of parametrized spectra over spaces over B. The construction
preserves dual pairs, and fiberwise Costenoble-Waner duality is obtained by start-
ing from dual pairs in the bicategory of spectra, applying the bundle construction
to obtain dual pairs of parametrized spectra over spaces over B, and then applying
base change to obtain dual pairs of spectra over B. Hiding here is the use of a
version of tricategories, but we shall not make that point of view explicit.

We emphasize that fiberwise Costenoble-Waner duality, like the earlier results
in this chapter, is of considerable interest nonequivariantly. However, it can also
be thought of as a fiberwise generalization of the Wirthmüller isomorphism in non-
parametrized equivariant stable homotopy theory. In fact, parametrized Atiyah
duality specializes directly to give a generalization of the Wirthmüller isomorphism
from orbits to arbitrary G-manifolds, and the fiberwise version specializes directly
to give the Adams isomorphism in equivariant stable homotopy theory.



CHAPTER 15

Fiberwise duality and transfer maps

Introduction

In §15.1, we prove the fiberwise duality theorem, which says that a G-spectrum
X over B is dualizable or invertible if and only if each fiber Xb is dualizable or in-
vertible. This allows us to recognize dualizable or invertible G-spectra over B when
we see them, and it gives a powerful tool for using parametrized stable homotopy
theory for studying classical stable homotopy theory.

We recall the definition and properties of trace maps in symmetric monoidal
categories in §15.2, and in §15.3 we explain how the fiberwise duality theorem leads
to a simple conceptual definition of transfer maps for Hurewicz fibrations. We
regard a Hurewicz fibration p : E −→ B with stably dualizable fibers as a space
over B. We adjoin a copy of B to obtain a section, and we suspend to obtain a
G-spectrum over B. It is dualizable since its fibers are dualizable, hence it has
a transfer map defined by categorical nonsense. Pushing down to G-spectra by
base change along the map r : B −→ ∗, we obtain the transfer map of G-spectra
Σ∞B+ −→ Σ∞E+.

This definition of transfer maps is a direct generalization of various earlier ones
[9, 10, 28, 31, 170], most of which restrict to finite dimensional base spaces and are
nonequivariant. The properties of the transfer now follow immediately from the gen-
eral properties of trace maps in symmetric monoidal categories. An essential point
is that the homotopy category of G-spectra over B is closed symmetric monoidal
with a “compatible triangulation”, in the sense specified in [124] and recalled later;
see §§16.6, 16.7, and 17.5. This point implies that our traces and transfers satisfy
additivity relations as well as the more elementary standard properties.

Some of the classical constructions of the transfer work only for bundles, but
have various properties that are inaccessible to the more general construction and
are important in calculations. These transfers also admit a perhaps more satisfying
construction. Rather than relying on duality on the level of parametrized spectra,
they are obtained by inserting duality maps for fibers fiberwise into bundles. In the
literature, the construction again usually requires finite dimensional base spaces
and is nonequivariant. We give a general conceptual version of this alternative
construction in §15.6.

As a first preliminary, in §15.4 we show how to insert parametrized spectra
fiberwise into the standard construction of bundles associated to principal bundles.
The construction on the ex-space level was studied in §3.3, and we show that the
properties proven there remain true on the spectrum level. The construction is
likely to have many further applications, and it is basic to twisted homology and
cohomology theories. It is of considerable interest nonequivariantly, but we develop
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it the context of equivariant bundles with structure group Π and ambient group G
related by an extension 1 −→ Π −→ Γ −→ G −→ 1.

As a second preliminary, in §15.5 we develop the theory of Π-free parametrized
Γ-spectra. This is a direct generalization of the nonparametrized theory and is
important in many contexts. In particular, it will play a role in our proof of the
Adams isomorphism in §19.7.

The application to transfer maps in §15.6 can be described as follows. It is a
special case of a more general construction that uses the full strength of the bundle
construction functor PF of §15.4. For the special case, we take F = ∗ and use
P = P∗. To avoid confusion with the general case, we rename the fiber M and
assume that it is dualizable. We then have a transfer map τ : SΓ −→ Σ∞Γ M+ of
(nonparametrized) Γ-spectra. We insert this into the functor P to obtain a map

Pτ : PSΓ −→ PΣ∞Γ M+

of G-spectra over B. Again pushing down to a map of G-spectra along r : B −→ ∗,
we obtain the transfer G-map Σ∞GB+ −→ Σ∞G E+.

This description hides a subtlety. The construction of P involves composi-
tion with a change of universe functor i∗. Although i∗ is not in general symmet-
ric monoidal, it restricts to a symmetric monoidal equivalence between categories
of parametrized Π-free Γ-spectra. This allows us to prove that P is symmetric
monoidal in general. Since transfer maps are natural with respect to symmetric
monoidal functors, this fact makes it transparent that the fiberwise transfer map
of a bundle agrees with its transfer map as a Hurewicz fibration.

We assume throughout that all given groups G are compact Lie groups and all
given base G-spaces B are G-CW complexes. This ensures that (r∗, r∗) is a Quillen
adjunction, r : B −→ ∗, but only a few details of proofs would be changed if we
allowed B just to have the homotopy type of a G-CW complex.

15.1. The fiberwise duality theorem

We characterize the dualizable and invertible G-spectra over B. A recent expo-
sition of the general theory of duality in closed symmetric monoidal categories ap-
pears in [123], to which we refer the reader for discussion of the relevant categorical
definitions and arguments. It is based on the more thorough and topological treat-
ment of [98], which is carried further in [63]. The following theorem is a substantial
generalization of various early results of the same nature about ex-fibrations. Re-
sults of this form were proven, for example, by Becker and Gottlieb [9, §4], Clapp
[31, 3.5], and Waner [170, 4.6].

Theorem 15.1.1 (The fiberwise duality theorem). Let X be an (s-fibrant) G-
spectrum over B. Then X is dualizable (respectively, invertible) if and only if Xb

is dualizable (respectively, invertible) as a Gb-spectrum for each b ∈ B.

Proof. By definition, X is dualizable if and only if the natural map

ν : DBX ∧B X −→ FB(X,X)

in HoGSB is an equivalence, where DBX = FB(X,SB). Passing to (derived) fibers
(DBX)b ' DXb, this holds if and only if the resulting map

DXb ∧Xb ' (DBX ∧B X)b
νb // FB(X,X)b ' F (Xb, Xb)
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in HoGbS is an equivalence for all b ∈ B. By the categorical coherence observation
Remark 2.2.10, the latter map is the corresponding natural map ν in HoGbS .
Again by definition, that map is an equivalence if and only if Xb is dualizable.

Similarly, X is invertible if and only if the evaluation map

ev: DBX ∧B X −→ SB

in HoGSB is an equivalence. Passing to (derived) fibers, this holds if and only if
the resulting map

DXb ∧Xb ' (DBX ∧B X)b
evb // (SB)b ' S

in HoGbS is an equivalence for all b ∈ B. Again by Remark 2.2.10, the latter map
is the evaluation map for Xb in HoGbS , and that map is an equivalence if and
only if Xb is invertible. �

Therefore, to recognize parametrized dualizable and invertible G-spectra, it
suffices to recognize nonparametrized dualizable and invertible G-spectra. As we
now recall from [63], these are well understood.

Recall that a G-space X is dominated by a G-space Y if X is a retract up
to homotopy of Y , so that the identity map of X is homotopic to a composite
X −→ Y −→ X. If Y has the homotopy type of a G-CW complex, then so does X.
We say that X is finitely dominated if it is dominated by a finite G-CW complex.
This does not imply that X has the homotopy type of a finite G-CW complex, even
when X and all of its fixed point spaces XH are simply connected and therefore,
since they are finitely dominated, homotopy equivalent to finite CW complexes.

For example, a G-space X is a G-ENR (Euclidean neighborhood retract) if it
can be embedded as a retract of an open subset of some representation V . Such
open subsets are triangulable as G-CW complexes, so X has the homotopy type of
a G-CW complex. A compact G-ENR is a retract of a finite G-CW complex and is
thus finitely dominated, but it need not have the homotopy type of a finite G-CW
complex. Non-smooth topological G-manifolds give examples of such non-finite
compact G-ENRs.

The following result is [63, 2.1].

Theorem 15.1.2. Up to equivalence, the dualizable G-spectra are the G-spectra
of the form Σ−V Σ∞X where X is a finitely dominated based G-CW complex and
V is a representation of G.

Definition 15.1.3. A generalized homotopy representation X is a finitely dom-
inated based G-CW complex such that, for each subgroup H of G, XH is equivalent
to a sphere Sn(H). A stable homotopy representation is a G-spectrum of the form
Σ−V Σ∞X, where X is a generalized homotopy representation and V is a represen-
tation of G.

The following result is [63, 0.5].

Theorem 15.1.4. Up to equivalence, the invertible G-spectra are the stable
homotopy representations.

Combining results, we obtain the following conclusion about ex-G-fibrations.

Theorem 15.1.5. Let E be an ex-G-fibration over B. If each fiber Eb is a
finitely dominated Gb-space, then Σ∞B E is a dualizable G-spectrum over B. If each
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Eb is a generalized homotopy representation of Gb, then Σ∞B E is an invertible G-
spectrum over B.

Proof. Since the derived suspension spectrum functor commutes with passage
to derived fibers, by Theorem 13.7.10, the derived fiber (Σ∞B E)b is equivalent to
Σ∞Eb. The conclusion follows from Theorems 15.1.1, 15.1.2, and 15.1.4. �

In particular, sphere G-bundles and, more generally, spherical G-fibrations over
B, have invertible suspension G-spectra over B.

15.2. Duality and trace maps in symmetric monoidal categories

Since the stable homotopy category HoGSB is closed symmetric monoidal, we
have the following generalized trace maps at our disposal. We state the defini-
tion and recall its properties in full generality in this section, and we specialize to
show how it gives a simple conceptual definition of the transfer maps associated to
equivariant Hurewicz fibrations in the next.

Definition 15.2.1. Let C be any closed symmetric monoidal category with
unit object S. For a dualizable object X of C with a “coaction” map ∆X : X −→
X ∧CX for some object CX ∈ C , define the trace τ(f) of a self map f of X by the
diagram

S
η //

τ(f)

��

X ∧DX
γ // DX ∧X

Df∧∆X

��
CX S ∧ CX∼=
oo DX ∧X ∧ CX .ε∧1

oo

Remark 15.2.2. Such a categorical description of generalized trace maps was
first given by Dold and Puppe [51], where they showed that it gives the right
framework for trace maps in algebra, the transfer maps of Becker and Gottlieb
[9,10], and the fixed point theory of Dold [50]. These early constructions of transfer
maps had finiteness conditions that were first eliminated by Clapp [31,32]. Indeed,
she gave an early construction of a parametrized stable homotopy category and
proved a precursor of our fiberwise duality theorem. The equivariant analogue of
the attractive space level treatment of Spanier-Whitehead duality given by Dold
and Puppe was worked out in [98], and a recent categorical exposition of duality
has been given in [123].

Two cases are of particular interest. The first is when CX = S and ∆X is the
unit isomorphism. Then τ(f) is called the Lefschetz constant of f and is denoted
by χ(f); in the special case when f = id it is called the Euler characteristic of X
and denoted by χ(X). The second is when CX = X. We then think of ∆X as a
diagonal map, and τX = τ(id) is called the transfer map of X.

Remark 15.2.3. If CX comes with a “counit” map ξ : CX −→ S such that the
composite

X
∆ // X ∧ CX

id∧ξ // X

is the identity, then χ(f) = ξ ◦ τ(f) by a little diagram chase. The reason for
the terminology “coaction” and “counit” for the maps ∆X and ξ is that in many
situations CX is a comonoid and ∆X is a coaction of CX on X.
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The following basic properties of the trace are proven in [98, III§7] and in [124],
where more detailed statements are given. Define a map

(f, α) : (X,∆X) −→ (Y,∆Y )

to be a pair of maps f : X −→ Y and α : CX −→ CY such that the following
diagram commutes.

X
∆X //

f

��

X ∧ CX
f∧α
��

Y
∆Y

// Y ∧ CY

Proposition 15.2.4. The trace satisfies the following properties, where X and
Y are dualizable and ∆X and ∆Y are given.

(i) (Naturality) If C and D are closed symmetric monoidal categories and
F : C −→ D is a lax symmetric monoidal functor such that FSC

∼= SD and
F (X) ∧ F (DX) ∼= F (X ∧DX), then

τ(Ff) = Fτ(f),

where CFX = FCX and ∆FX = F∆X .
(ii) (Unit property) If f is a self map of the unit object, then χ(f) = f .
(iii) (Fixed point property) If (f, α) is a self map of (X,∆X), then

α ◦ τ(f) = τ(f).

(iv) (Invariance under retracts) If X i−→ Y
r−→ X is a retract, f is a self map of

X, and (i, α) is a map (X,∆X) −→ (Y,∆Y ), then

α ◦ τ(f) = τ(ifr).

(v) (Commutation with ∧) If f and g are self maps of X and Y , then

τ(f ∧ g) = τ(f) ∧ τ(g),

where ∆X∧Y = (id ∧ γ ∧ id) ◦ (∆X ∧∆Y ) with γ the transposition.
(vi) (Commutation with ∨) If C is additive and h : X ∨ Y −→ X ∨ Y induces

f : X −→ X and g : Y −→ Y by inclusion and retraction, then

τ(h) = τ(f) + τ(g),

where CX = CY = CX∨Y and ∆X∨Y = ∆X ∨∆Y .
(vii) (Anticommutation with suspension) If C is triangulated, then

τ(Σf) = −τ(f)

for all self maps f , where ∆ΣX = Σ∆X .

In the triangulated context, there is another and very much deeper property.

Theorem 15.2.5 (Additivity). Let C be a closed symmetric monoidal category
with a “compatible triangulation”. Let X and Y be dualizable and let ∆X and ∆Y

be given, where C = CX = CY . Let (f, id) be a map (X,∆X) −→ (Y,∆Y ) and
extend f to a distinguished triangle

X
f // Y

g // Z
h // ΣX.
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Assume given maps φ and ψ that make the left square commute in the first of the
following two diagrams.

X
f //

φ

��

Y
g //

ψ

��

Z
h //

ω

��

ΣX

Σφ

��
X

f
// Y g

// Z
h
// ΣX

X
f //

∆X

��

Y
g //

∆Y

��

Z
h //

∆Z

��

ΣX

Σ∆X

��
X ∧ C

f∧id
// Y ∧ C

g∧id
// Z ∧ C

h∧id
// Σ(X ∧ C)

Then there are maps ω and ∆Z such that the diagrams commute and

τ(ψ) = τ(ω) + τ(φ).

The most important case starts with only the distinguished triangle (f, g, h)
and concludes with the fundamental additivity relation

χ(Y ) = χ(X) + χ(Z).

The additivity of traces was studied in [98, III§7] in the equivariant stable homotopy
category, but the proof there is incorrect. A thorough investigation of precisely what
is needed to prove the additivity of traces is given in [124], where the axioms for
a “compatible triangulation” are formulated. These axioms hold in all situations
previously encountered in algebraic topology and algebraic geometry. Although the
verification is a little more subtle, they also hold here. Since it would be digressive
at this point, we defer discussion of triangulated categories and the proof of the
following theorem to §§16.6, 16.7, and 17.5.

Theorem 15.2.6. The category HoGSB is a closed symmetric monoidal cat-
egory with a compatible triangulation.

15.3. Transfer maps of Hurewicz fibrations

With these foundations in place, we can now generalize the classical construc-
tion of transfer maps. The results above specialize to give more information about
them than is to be found in the literature. If X is a dualizable G-spectrum over
B with a diagonal map ∆X : X −→ X ∧B X, then we have the transfer map
τX : SB −→ X. We shall apply this to suspension G-spectra associated to G-
fibrations p : E −→ B, but we do not assume that p has a section. Recall that
(E, p)+ denotes (E, p) with a disjoint section, and observe that (E, p)+ is an ex-G-
fibration if p is a Hurewicz G-fibration.

Recall the desription of the base change functors associated to r : B −→ ∗
from Example 2.1.8. As we have said before, the spectrum level versions of these
functors are central to the deduction of results in classical stable homotopy theory
from results in parametrized stable homotopy theory. Many such deductions start
from the following observation.

Lemma 15.3.1. For a G-map p : E −→ B, thought of as a G-space over B,

r!Σ∞B (E, p)+ ' Σ∞E+,
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where r : B −→ ∗. In particular, r!SB ' Σ∞B+.

Proof. We have r!Σ∞B ' Σ∞r!. This is a commutation relation between
Quillen left adjoints, and the corresponding commutation relation for right adjoints
holds since

r∗Ω∞X = B ×X0
∼= Ω∞B r

∗X

for a G-spectrum X. It therefore suffices to show that r!(E, p)+ is equivalent to
E+, where r! denotes the functor on derived categories. By Proposition 7.3.4, r!
preserves q-equivalences between well-sectioned ex-spaces and it follows that

r!Q(E, p)+ ' r!(E, p)+ ∼= E+,

where the first equivalence is induced by qf -cofibrant approximation of (E, p)+. �

To be precise about diagonal maps on the parametrized level, we consider base
change along ∆: B −→ B ×B. We have the obvious commutative diagram

E

p

��

∆ // E × E

p×p
��

B
∆
// B ×B.

We consider E as a space over B × B via this composite. The diagonal map of E
then specifies a natural map

∆!((E, p)+) = (E,∆ ◦ p)+ −→ (E × E, p× p)+ ∼= (E, p)+ Z (E, p)+

of ex-spaces over B × B. This is a comparison map between Quillen left adjoints
and therefore descends to a natural map in HoGKB×B . Its adjoint is a natural map
(E, p)+ −→ (E, p)+∧B (E, p)+ in HoGKB . Apply the (derived) suspension functor
Σ∞B to this map and note that the target is equivalent to Σ∞B (E, p)+∧BΣ∞B (E, p)+,
by Proposition 13.7.5. This gives the required natural diagonal map

(15.3.2) ∆(E,p)+ : Σ∞B (E, p)+ −→ Σ∞B (E, p)+ ∧B Σ∞B (E, p)+

in HoGSB .

Definition 15.3.3 (The transfer map). Let p : E −→ B be a Hurewicz G-
fibration over B such that each fiber Eb is homotopy equivalent to a retract of
a finite Gb-CW-complex. Then Σ∞B (E, p)+ is a dualizable G-spectrum over B by
Theorem 15.1.5 and we obtain the transfer map

τ(E,p)+ : SB −→ Σ∞B (E, p)+

in HoGSB . Define the transfer map of E to be the map

τE = r!τ(E,p)+ : Σ∞B+
∼= r!SB −→ r!Σ∞B (E, p)+ ∼= Σ∞E+

in HoGS .

With this definition, all of the standard properties of transfer maps are di-
rect consequences of the general categorical results Proposition 15.2.4 and Theo-
rem 15.2.5 and the properties of r!.
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15.4. The bundle construction on parametrized spectra

The construction of the transfer in the previous section works “globally”, start-
ing on the parametrized spectrum level. We now give a fiberwise construction of
“stable bundles” that leads to an alternative fiberwise perspective. However, it is
natural to work in greater generality than is needed for the construction of the
transfer. The extra generality will be needed in Chapter 19 and later. The relevant
bundle theoretic background was recalled in §3.2 and the basic properties of the
point-set level bundle construction were developed in §3.3.

Let Π be a normal subgroup of a compact Lie group Γ such that Γ/Π = G and
let q : Γ −→ G be the quotient homomorphism. Let p : E −→ B be a (Π; Γ)-bundle
with fiber a Γ-space F and with associated principal (Π; Γ)-bundle π : P −→ B.
Then P is a Π-free Γ-space, π is the quotient map to the orbit G-space B = P/Π,
and p is the associated G-bundle E ∼= P ×Π F −→ B. To simplify the homotopical
analysis, we assume for the rest of this section that F and P are Γ-CW complexes
such that P is Π-free. We let E = P ×Π F and B = P ×Π ∗. Note that B is a
G-CW complex. We are thinking of the cases when F is a point or when F is a
smooth Γ-manifold.

Recall the bundle construction of §3.3:

PF = P ×Π (−) : ΓKF −→ GKE .

We can extend the functor PF from ex-spaces to ex-spectra. Change of universe
must enter since Γ-spectra are indexed on representations of Γ and G-spectra are
indexed on representations of G. We view representations of G as Π-trivial repre-
sentations of Γ. This gives i : q∗VG −→ VΓ. It is important to keep track of which
universe we are working in, and we introduce the following notations.

Notation 15.4.1. Define PF = PF ◦ i∗ : ΓSF −→ GSB , where

i∗ : ΓSF = ΓS VΓ
F −→ ΓS q∗VG

F = ΓS Π−triv
F

is the change of universe functor and

PF : ΓS Π-triv
F −→ GSE

is the levelwise bundle construction of §3.3. We use the same notations for the
corresponding functors on prespectra.

Working in the universe VG, with Π acting trivially on our representations V ,
we have

PFK ∧E SV ∼= PF (K ∧F SV ).
Therefore, for a Γ-spectrum X over F , the ex-G-spaces PFX(V ) over E inherit
structure maps from X, so that PFX is a well-defined G-spectrum over E and the
functor PF makes sense.

Except where explicitly indicated otherwise, we index both G-spectra and Γ-
spectra on VG for the rest of this section, working with PF . We return to PF in
the following sections. In fact, the functors PF and PF are of independent interest.
The latter is essential in this chapter and in Chapter 19. However, only the former
will be relevant for the study of twisted homology, and, when indexing on Π-trivial
representations, there is no need to restrict Π and Γ to be compact Lie groups. The
case Γ = Π×G, with G but not necessarily Π a compact Lie group is of particular
interest.

The functor PF is exceptionally well-behaved, as the following result shows.
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Proposition 15.4.2. The functor PF : ΓS Π-triv
F −→ GSE is both a left and a

right Quillen adjoint with respect to the level and stable model structures. Moreover,
the functor PF : ΓPΠ-triv

F −→ GPE takes excellent Γ-prespectra over F to excellent
G-prespectra over E = P ×Π F .

Proof. The two adjunctions are defined as in Lemma 3.3.1. Thus PF is the
composite of π∗ : ΓSF −→ ΓSP×F , where π : P × F −→ F is the projection, and
(−)/Π: ΓSP×F −→ GSE . By Propositions 12.2.5, 12.2.7, 12.6.7, and 12.6.8, π∗ is
both a left and a right Quillen adjoint, provided we use appropriate generating sets
in our definitions of the model structures. By Proposition 14.4.3, the functor (−)/Π
is a Quillen left adjoint. By Proposition 14.4.5, it coincides with the right adjoint
(−)Π◦p′∗, where p′ is the quotient map P×F −→ P×ΠF = E. Using Lemma 3.2.1,
we see that p : E −→ B is a G-bundle with CW fibers. Therefore p∗ is a Quillen
right adjoint by Propositions 12.2.7 and 12.6.8, and (−)Π is a Quillen right adjoint
by Proposition 14.4.3. The last statement is easily checked from Definition 13.2.2
and Lemma 13.2.3. �

We need an observation about the behavior of PF on fibers.

Lemma 15.4.3. Fix b ∈ B. Let ι : Gb −→ G and ρb : Gb −→ Γ be the inclusion
and the homomorphism of Lemma 3.2.1. Let b : ∗ −→ B and jb : Eb −→ E denote
the evident inclusions of Gb spaces. The following diagrams commute, and these
commutation relations descend to homotopy categories.

ΓS Π-triv
∗

P∗

��

ρ∗b // GbSb

GSB
ι∗
// GbSB

b∗

OO and ΓS Π-triv
F

PF

��

ρ∗b // GbSEb

GSE
ι∗

// GbSE

j∗b

OO

Proof. On the level of ex-spaces, this is Lemma 3.3.2. The diagrams extend
levelwise to parametrized spectra, and passage to homotopy categories is clear from
the previous result. �

Write Σ∞G,E for the suspension G-spectrum over E, where the relevant universe
is understood to be complete, and write Σ∞Π−triv,F for the suspension Γ-spectrum
over F indexed on the Π-trivial Γ-universe q∗VG, where i : q∗VG ⊂ VΓ.

Proposition 15.4.4. There are natural isomorphisms of functors

i∗Σ∞Γ,F ∼= Σ∞Π−triv,F : ΓKF −→ ΓS Π−triv
F ,

PFΣ∞Π−triv,F
∼= Σ∞G,EPF : ΓS Π−triv

F PF −→ GSE ,

and therefore
PFΣ∞Γ,F ∼= Σ∞G,EPF : ΓKF −→ GSE ,

and these isomorphisms descend to homotopy categories. In particular,

PFSΓ,F ' SG,E .

Proof. The statement about i∗ is clear from §14.2. For the statement about
PF , let K be an ex-Γ-space over F and observe that we have isomorphisms

(PFΣ∞Π−triv,FK)(V ) = PF (K ∧F SVF ) ∼= (PFK) ∧E SVE = (Σ∞G,EPFK)(V )
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since Π acts trivially on V . This gives a natural isomorphism of G-spectra over E,
and it descends to homotopy categories since it is a comparison of composites of
Quillen left adjoints. �

The following result relates external smash products and diagonal maps to the
functor PF . In §15.6, we shall use the theory of Π-free Γ-spectra developed in §15.5
to prove the analogue for PF . Recall the factorization ∆E = ιE ◦ δE of (3.3.3).

Proposition 15.4.5. For Xi ∈ ΓS Π-triv
Fi

,

PF1×F2(X1 ZX2) ' ι∗(PF1X1 Z PF2X2),

where ι is the inclusion E1 ×B E2 −→ E1 × E2, Ei = P ×Π Fi. For X ∈ ΓS Π-triv
F

and Y ∈ ΓS Π-triv
F×F ,

PF×F (∆F !X) ' δE !PFX and PF∆∗
FY ' δ∗EPF×FY.

Therefore the functor PF is monoidal.

Proof. On the point-set level, these isomorphisms follow levelwise from Propo-
sition 3.3.6. By Proposition 15.4.2 and the proof of Proposition 13.7.2, the functors
PF , Z, and ι∗ all preserve excellent prespectra, and it follows that our first equiva-
lence passes directly to homotopy categories. The second equivalence only involves
Quillen left adjoints and the third only involves Quillen right adjoints. The last
statement follows as in Proposition 3.3.7. �

We have the following relations between PF and base change functors. They
can be used in conjunction with the general relations between change of universe
and base change functors that were proven in Proposition 14.2.8 to obtain the
analogues for PF .

Proposition 15.4.6. Let f : F −→ F ′ be a map of Γ-spaces, let E = P ×Π F
and E′ = P ×Π F ′, and let g = P ×Π f : E −→ E′. For X ∈ ΓS Π-triv

F and
Y ∈ ΓS Π-triv

F ′ , there are natural isomorphisms

g!PFX −→ PF ′f!X, PF f
∗Y −→ g∗PF ′Y and PF ′f∗X −→ g∗PFX.

The first two isomorphisms descend to derived homotopy categories, and the third
does so provided that f is a bundle with CW fibres.

Proof. The corresponding result on the ex-space level is given in Proposi-
tion 3.3.8. Applied levelwise, those point-set level isomorphisms carry over directly
to parametrized prespectra and spectra. We must show that they descend to equiv-
alences in homotopy categories. The first commutation relation is between com-
posites of left Quillen adjoints, the second is between composites of right Quillen
adjoints, and, with the proviso on f , so is the third. �

15.5. Π-free parametrized Γ-spectra

We retain the notations of the previous section in this section and the next.
In the next section, we show that the bundle construction on parametrized spectra
leads to a fiberwise generalization of the restriction to bundles of the trace and
transfer maps for fibrations that we described in §15.2. The definition depends on
a result that is proven by use of the theory of Π-free Γ-spectra that we present here.

We first recall what it means to say that a Γ-spectrum X (indexed on any
universe) is Π-free. Let F (Π; Γ) be the family of subgroups Λ of Γ such that
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Λ ∩ Π = e. A Γ-CW complex T is Π-free if and only if the only orbit types
Γ/Λ that appear in its construction have Λ ∈ F (Π; Γ). We then say that T is
an F (Π; Γ)-CW complex. We can make the same definitions for Γ-CW spectra,
and in general we say that a Γ-spectrum is Π-free if it is isomorphic in HoΓS to
an F (Π; Γ)-CW spectrum. There is a more conceptual homotopical reformulation
that is the one relevant to the parametrized point of view and that does not depend
on the theory of Γ-CW spectra.

Let E(Π; Γ) be the universal Π-free Γ-space, so that E(Π; Γ)Λ is contractible
if Λ ∩Π = e and is empty otherwise. We may take E(Π; Γ) to be an F (Π; Γ)-CW
complex. Let B(Π; Γ) = E(Π; Γ)/Π and observe that B is a G-CW complex and
therefore also a Γ-CW complex. We note parenthetically that the quotient map
p : E(Π; Γ) −→ B(Π; Γ) is the universal principal (Π; Γ)-bundle. That is, pullback
along p gives a bijection

[X,B(Π; Γ)]G −→ B(Π; Γ)(X),

where B(Π; Γ)(X) denotes the set of equivalence classes of principal (Π; Γ)-bundles
over the G-space X; see [92] or [118, VII§2].

Definition 15.5.1. Let r : E(Π; Γ) −→ ∗ be the projection and let σ be the
counit of the (derived) adjunction (r!, r∗). A Γ-spectrum X is said to be Π-free if
σ : r!r∗X −→ X is an equivalence.

The definition should seem reasonable since r!r∗T ∼= E(Π; Γ)+ ∧ T for a Γ-
space T . It is equivalent to the original definition in terms of an equivalence in
HoGS to an F (Π; Γ)-CW spectrum; see [98, II.2.12] or [105, VI§4]. This definition
generalizes readily to the parametrized context.

Definition 15.5.2. Let π : E(Π; Γ)× F −→ F be the projection and let σ be
the counit of the (derived) adjunction (π!, π

∗). An ex-Γ-space or Γ-spectrum X
over a Γ-space F is said to be Π-free if σ : π!π

∗X −→ X is an equivalence.

Since the fiber (π!π
∗X)f is E(Π; Γ)+ ∧Xf , the definition should seem reason-

able. Since equivalences are detected fiberwise, we have the following results.

Lemma 15.5.3. A Γ-spectrum X over F is Π-free if and only if each of its fibers
Xf is a (Π ∩ Γf )-free Γf -spectrum.

Proof. The fiber of E(Π; Γ)×F −→ F over f ∈ F is the Γ-space E(Π; Γ) with
the action restricted along ι : Γf −→ Γ. It is a model of the universal (Π∩Γf )-free
Γf -space E(Π ∩ Γf ,Γf ). Applying (−)f to the counit π!π

∗X −→ X and using
Theorem 13.7.7 we obtain the counit r!r∗Xf −→ Xf where r : ι∗E(Π; Γ) −→ ∗. �

Lemma 15.5.4. If P is a Π-free Γ-space and X is any ex-Γ-space or Γ-spectrum
over F , then P ×X is a Π-free ex-Γ-space or Γ-spectrum over P × F .

A useful slogan asserts that “Π-free Γ-spectra live in the Π-trivial universe”.
To explain it, consider the inclusion i : q∗VG −→ VΓ of the complete G-universe VG
as the universe of Π-trivial representations in the complete Γ-universe VΓ. Then
the slogan is given meaning by the following result. In the nonparametrized case
F = ∗, it is proven in [98, II§2] and is discussed further in [105, VI§4]. Since the
parametrized case presents no complications and the proof is quite easy, we only
give a sketch.
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Proposition 15.5.5. The change of universe adjunction (i∗, i∗) descends to
a symmetric monoidal equivalence between the homotopy categories of Π-free Γ-
spectra over F indexed on Π-trivial representations of Γ on the one hand and indexed
on all representations of Γ on the other. For Π-free Γ-spectra X over F indexed on
VΓ, there is a natural equivalence i∗(E(Π; Γ)+ ∧ i∗X) ' X.

Sketch Proof. If Λ ∩ Π = e, then the quotient map q : Γ −→ G maps Λ
isomorphically onto a subgroup of G. Any representation V of Λ is therefore of
the form q∗W for a representation W of q(Λ). It follows that the restrictions to
Λ of the universes VΓ and q∗VG have the same representations. Therefore, on
Π-free Γ-spectra over F , the unit and counit of the adjunction (i∗, i∗) are F (Π; Γ)-
equivalences, in the sense that they are Λ-equivalences for any Λ in F (Π; Γ).
Smashing the unit and counit with E(Π; Γ)+, which has trivial fixed point sets
for subgroups not in F (Π; Γ), we obtain natural equivalences, and it follows from
Definition 15.5.1 that the unit and counit are themselves equivalences when ap-
plied to Π-free Γ-spectra. Alternatively, restricting to s-fibrant Γ-spectra over F ,
the conclusion follows fiberwise from its nonparametrized precursor. Since i∗ is
symmetric monoidal, by Theorem 14.2.4, so is the equivalence. The last statement
holds since

i∗(E(Π; Γ)+ ∧ i∗X) ' E(Π; Γ)+ ∧ i∗i∗X ' X. �

15.6. The fiberwise transfer for (Π; Γ)-bundles

Returning to the context of §15.4, consider a fixed given principal (Π; Γ)-bundle
P , where Π is a normal subgroup of Γ with quotient group G and quotient map
q : Γ −→ G. We also consider a Γ-space F and the associated (Π; Γ)-bundle

p : E = P ×Π F −→ P ×Π ∗ = B.

We have the inclusion i : q∗VG −→ VΓ of the complete G-universe VG as the universe
of Π-trivial representations in the complete Γ-universe VΓ.

The change of universe functor i∗ : ΓSF −→ ΓS Π−triv
F is not symmetric mon-

oidal, and it does not preserve dualizable objects. For example, with F = ∗ and
Π = e, the orbit spectrum i∗Σ∞Γ/Λ is not dualizable if Λ is a non-trivial subgroup
of Γ. The bundle theoretic study of transfer maps is based on the following result.

Proposition 15.6.1. For Xi ∈ ΓSFi
,

PF1×F2(X1 ZX2) ' ι∗(PF1X1 Z PF2X2),

where ι is the inclusion E1 ×B E2 −→ E1 ×E2, Ei = P ×Π Fi. For X ∈ ΓSF and
Y ∈ ΓSF×F ,

PF×F (∆F !X) ' δE !PFX and PF∆∗
FY ' δ∗EPF×FY.

Therefore the functor PF = PF i
∗ : HoΓSF −→ HoGSE is symmetric monoidal.

Proof. We proved the analogue for the functor PF in Proposition 15.4.5, and
PF = PF i

∗. Since i∗ commutes with all base change functors, by Proposition 14.2.8,
the second and third statements follow immediately from the result for PF . How-
ever, since i∗ is not monoidal, we cannot commute it directly with Z to obtain the
first statement. We get around this by using the factorization of PF1×F2 as the
composite π∗(−)/Π, where π : P ×F1 ×F2 −→ F1 ×F2 is the projection. We have
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the following chain of equivalences, the second of which is given by Lemma 15.5.4
and Proposition 15.5.5.

π∗i∗(X1 ZX2) ' i∗π∗(π∗1X1 ∧F1×F2 π
∗
2X2)

' i∗π∗π∗1X1 ∧P×F1×F2 i
∗π∗π∗2X2

' π∗π∗1i∗X1 ∧P×F1×F2 π
∗π∗2i

∗X2

' π∗(i∗X1 Z i∗X2)

Passing to orbits over Π, we obtain the first of the following equivalences, and the
second follows from the result for PF

PF1×F2(X1 ZX2) ' PF1×F2(i
∗X1 Z i∗X2) ' ι∗(PX1 Z PX2). �

Now Proposition 15.2.4(i) shows that PF commutes with trace maps.

Theorem 15.6.2. Let X ∈ HoΓSF be dualizable. Then PFX ∈ HoGSE is
dualizable. Suppose given a coaction map ∆X : X → X ∧F CX and a self map
φ : X −→ X. Then

τ(PFφ) ' PF τ(φ) : SE −→ PFCX ,
where PFX is given the coaction map

PF (∆X) : PFX −→ PF (X ∧F CX) ' PFX ∧E PFCX .

These trace maps are maps of G-spectra over E, rather than over B. We can
apply r!, r : E −→ ∗, to obtain trace maps of nonparametrized spectra. This kind of
trace map can be viewed as a fiberwise generalization of the kind of nonparametrized
trace map that is defined bundle theoretically in the literature. To connect up with
the latter, we specialize and change our point of view so as to arrive at bundle
theoretic trace maps over B. Specializing further to transfer maps, we obtain the
promised comparison with the transfer maps of Definition 15.3.3.

With these goals in mind, we now focus on the case F = ∗, so that E above
becomes B, with p the identity map, and our trace maps are parametrized over B.
We study our original fixed given (Π; Γ)-bundle p : E −→ B in a different fashion.
We rename its fiber M to avoid confusion with respect to the role that space is
playing. In the theory above, F was a base space for paramentrized spectra and
there was no need for F to be dualizable. We now consider the case when M is
stably dualizable, so that Σ∞M+ is dualizable, and we write τM for the transfer
map S −→ Σ∞M+ in ΓS , as defined in and after Definition 15.2.1. We apply
Theorem 15.6.2 with F = ∗ and X = Σ∞M+ to obtain the following special case.
Here we use the diagonal map induced by the diagonal map of M . We have

P∗ : ΓK∗ −→ GKB and P∗ : ΓS −→ GSB ,

and we observe that, by Proposition 15.4.4,

P∗Σ∞M+ ' Σ∞P∗M+ = Σ∞B (E, p)+.

Theorem 15.6.3. Let M be a compact Γ-ENR and let p : E −→ B be a (Π; Γ)-
bundle with fiber M and associated principal (Π; Γ)-bundle P . Let φ be a self-map
of Σ∞M+. Then

τ(P∗φ) ' P∗(τ(φ)) : SB → Σ∞B (E, p)+.
Therefore, taking φ = id and applying r!, r : B −→ ∗,

τE ' r!P∗τM : Σ∞B+ −→ Σ∞E+.
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This result gives a clear and precise comparison between the specialization
to bundles of the globally defined transfer map for Hurewicz fibrations and the
fiberwise transfer map for bundles. Effectively, we have inserted the transfer map
for M+ fiberwise into P ×Π (−) to obtain an alternative description of the transfer
map for the dualizable G-spectrum Σ∞(E, p)+ over B.

There is a useful reinterpretation of the description of transfer maps given by
Theorem 15.6.3. Consider π : P −→ ∗. By Proposition 14.4.4, instead of applying
r!, r : B −→ ∗, to orbit spectra under the action of Π, we could first apply π! and
then pass to orbits. For a Γ-spectrum X, we have a natural isomorphism

π!π
∗i∗X ∼= P+ ∧ i∗X

and a natural equivalence

i∗(P+ ∧ i∗X) ' P+ ∧X.
Corollary 15.6.4. let M be a compact Γ-ENR and let p : E −→ B be a (Π; Γ)-

bundle with fiber M and associated principal (Π; Γ)-bundle P . Then the transfer
τE : Σ∞B+ −→ Σ∞E+ is obtained by passage to orbits over Π from the map

τ̃ = id ∧ i∗τM : P+ ∧ i∗S −→ P+ ∧ i∗Σ∞M+,

and i∗τ̃ can be identified with

id ∧ τM : P+ ∧ S −→ P+ ∧ Σ∞M+.

Remark 15.6.5. The corollary gives exactly the transfer map as defined by
Lewis and May [98, IV.3.1]. Working in the nonparametrized context, they tried in
vain to obtain a spectrum level transfer map for Hurewicz fibrations over general
base spaces. The comparison here also sheds light on the relationship between
the two constructions of Becker and Gottlieb [9, 10], both of which require finite
dimensional base spaces. The first is bundle theoretic and is easily seen to be
equivalent to the construction in this section by using Atiyah duality to interpret
τM for a Γ-manifold M . Precisely, by [98, IV.2.3], if M is embedded in V with
normal bundle ν and τ is the tangent bundle of M , then the transfer map τM is
homotopic to the map obtained by applying the functor Σ−V Σ∞ to the composite of
the Pontryagin-Thom map SV −→ Tν and the map Tν −→ T (ν ⊕ τ) ∼= M+ ∧ SV
induced by the inclusion ν −→ ν ⊕ τ . The second, which is generalized to the
equivariant setting by Waner [170], is fibration theoretic and is easily seen to be
equivalent to the construction of §15.2. Another approach to the comparison is
to show that suitable Hurewicz fibrations are equivalent to bundles, as is done by
Casson and Gottlieb in [28].

Remark 15.6.6. Since our definition coincides with that of [98, IV.3.1], the
properties of the transfer catalogued in [98, IV§§3–7] apply verbatim. Many of
these properties generalize directly to the parametrized trace and transfer maps of
Theorem 15.6.2. The definition of [98, IV.3.1] actually works more generally, with
P , or rather i∗Σ∞P+, replaced by a general Π-free Γ-spectrum indexed on VG.
The constructions here admit similar generalizations. One way to achieve this with
minimal work is to use the case P = E(Π; Γ) of the construction already on hand.
Thus, for a Π-free Γ-spectrum P̄ over F indexed on VG, we can define

PFX = E(Π; Γ)F (P̄ ∧F i∗X)

and develop parametrized trace and transfer maps from there. We leave the further
development of the theory to the interested reader.



CHAPTER 16

Closed symmetric bicategories

Introduction

In Chapter 18, we describe the parametrized analogue of Spanier-Whitehead
duality. When we turn to parametrized homology and cohomology theories, it will
give duality there exactly as Spanier-Whitehead duality does in classical homology
and cohomology. That theory is due to Costenoble and Waner [41]. However, in
their work, which is based on the foundations given by earlier drafts of this book,1

everything is done directly in terms of the constructions that we have already
presented. A new conceptual framework gives the theory greater clarity and force,
as our applications in Chapter 18 will show. We describe that framework here.

In fact, Costenoble-Waner duality is an application of a specialization to para-
metrized spectra of a general categorical duality theory in closed symmetric bi-
categories. After recalling basic language about bicategories in §16.1, we describe
symmetric bicategories and closed symmetric bicategories informally in §16.2 and
§16.3. Details of the relevant categorical coherence theory will appear elsewhere,
but the reader should have no difficulty accepting them on faith. Such structures
arise in other branches of mathematics, as we illustrate with the closed symmetric
bicategory of bimodules. That example should make the idea clear. Analogues
for differential graded bimodules and bimodules over highly structured ring spectra
also promise to be of interest. As we explain in §16.4, formal duality theory in such
a bicategory works in much the same way as the duality theory in the special case
of closed symmetric monoidal categories that we used in the previous chapter. In
the brief §16.5, we give a simple result with powerful implications. It shows how
one can sometimes compose dualities to create new ones.

The most interesting examples of closed symmetric bicategories, in both algebra
and topology, are suitably triangulated. To make use of this, one must formulate
appropriate compatibility relations between the triangulation and the bicategory
structure. After a quick review of triangulated categories in §16.6, we give a start
by explaining the most basic axioms for such a structure in §16.7, following [124].
We discuss the behavior of duality in triangulated symmetric bicategories in §16.8,
largely following [76].

We emphasize that this chapter is just a beginning and not a full development.
We believe that this theory will have many future applications, and it raises quite
a few new questions in higher category theory. We shall mention in passing a few
concepts relevant to giving a full categorical depiction of the structures at hand,
but we shall focus on the bare essentials.

1Costenoble and Waner plan to revise [41] for publication based on the current version.
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16.1. Recollections about bicategories

We outline a description of bicategories that is slanted towards our new concepts
and introduces an absolute minimum of relevant categorical terminology.

A bicategory has three layers of structure: objects (or 0-cells), morphisms
between objects (or 1-cells) and morphisms between morphisms (or 2-cells). The
standard example is categories, functors, and natural transformations, but a more
relevant example is rings, bimodules, and homomorphisms between bimodules, as
discussed in Example 16.2.2 below. A particularly relevant point of view is that
bicategories naturally extend the notion of a monoidal category. Recall that a
monoidal category M is a category together with a product functor M×M −→M
and a unit functor ∗ −→ M , where ∗ is the trivial category, that are associative
and left and right unital up to coherent natural isomorphism. One can think of M
as a bicategory with a single 0-cell such that the 1-cells and 2-cells are the objects
and morphisms of M . Bicategories can be thought of as monoidal categories with
“many objects”, and that point of view leads to the correct formal definition.

Precisely, a bicategory C has a class of objects, or 0-cells, and for each pair
of 0-cells A,B it has a category C (A,B). Each C (A,B) has a class of objects, or
1-cells, and for each pair of 1-cells X,Y there is a set C (X,Y ) of morphisms, or
2-cells, X −→ Y . We write composition of 2-cells α : X −→ Y and β : Y −→ Z
simply by juxtaposition, βα; note that X, Y , and Z must all be 1-cells A −→ B
for the same A and B. This is called vertical composition. Finally, C also has a
horizontal composition functor

� : C (B,C)× C (A,B) −→ C (A,C)

for each triple of 0-cells and a unit functor UA : ∗ −→ C (A,A) for each 0-cell, that
are associative and left and right unital up to coherent natural isomorphism.

The bulk of the definition is the specification of “coherence” but, exactly as
in the case of monoidal categories, that is given just by a unit triangle and the
standard associativity pentagon for a quadruple of composable 1-cells [99, XII§6].
A bicategory is a 2-category if the associativity and unit 2-cells are identity maps.

We shall have many maps between bicategories, but we shall rarely be very
categorically explicit. Still, it will be helpful to have the relevant language on
hand. A lax functor (alias morphism) F : C −→ D between bicategories is the
many object generalization of a lax monoidal functor between monoidal categories.
It consists of a function F on 0-cells and, for each pair A,B of 0-cells of C , a functor
F = FA,B : C (A,B) −→ D(FA,FB), together with natural 2-cells

FY � FX −→ F (Y �X) and UFA −→ FUA

that satisfy suitable coherence conditions. Dually, an oplax functor F : C −→ D
has the direction of its unit and composition 2-cells reversed:

F (Y �X) −→ FY � FX and FUA −→ UFA.

In either case, F is called a pseudo-functor (alias homomorphism) if these naturality
2-cells are isomorphisms and a strict functor (alias strict homomorphism) if these
2-cells are identity maps.

For a property P of functors, a lax functor F is said to be locally P if each
FA,B has property P . Local equivalences are of particular interest. There is also
a notion of internal equivalence between 0-cells A and B of C , namely a pair of 1-
cells X : A −→ B and Y : B −→ A together with isomorphism 2-cells UA ∼= Y �X
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and UB ∼= X � Y . A biequivalence of bicategories is a local equivalence F that
is essentially surjective on 0-cells, in the sense that every 0-cell of the target is
internally isomorphic to a 0-cell coming from the source. In our examples, F will
be a bijection on 0-cells.

A lax natural transformation (alias transformation) σ between lax functors
F,G : C −→ D consists of 1-cells σA : FA −→ GA and, for a 1-cell X : A −→ B
of C , 2-cells σX : GX � σA −→ σB � FX, natural in X, such that appropriate
coherence diagrams relating these 2-cells to the unit and associativity isomorphism
2-cells commute. We replace lax by strong or strict if these 2-cells are isomorphisms
or identity maps. Dually, we have oplax natural transformations between oplax
functors.

Finally, a modification (no known alias) between transformations σ, σ′ from F
to G consists of 2-cells ΓA : σA −→ σ′A making the appropriate diagram commute;
there are no variants at this level.

16.2. The definition of symmetric bicategories

The most interesting monoidal categories are the symmetric monoidal ones.
We could view a symmetric monoidal category as a “symmetric bicategory with a
single object”, if only somebody had previously defined the notion of a symmetric
bicategory. It appears that nobody has. This is perhaps not surprising, for two
reasons. First, it seems counterintuitive to talk about commutativity in view of
the directionality of 1-cells when one has many 0-cells, and in fact it will be essen-
tial to make a distinction between symmetry and commutativity (as presaged in
Remark 2.5.4). Second, it turns out that the sensible many object generalization,
when restricted to one object bicategories, actually gives a more general structure
than a symmetric monoidal category, as we shall see. In any case, we proceed to
fill the gap.

The opposite bicategory C op of C has the same 0-cells as C does but has
C op(B,A) = C (A,B). This reverses the source and target of 1-cells X; if we
write Xop for a 1-cell A −→ B of C regarded as a 1-cell B −→ A of C op, then the
2-cells Xop −→ Y op in C op(B,A) are the same as the 2-cells X −→ Y in C (A,B).
Intuitively, an involution t on a bicategory is a biequivalence between C and C op

that is a bijection on 0-cells, but we prefer to be more explicit.

Definition 16.2.1. An involution on a bicategory C consists of the following
data.

(i) A bijection t on the 0-cells of C such that ttA = A.
(ii) Equivalences of categories t : C (A,B) −→ C (tB, tA) = C op(tA, tB), with the

equivalences given by isomorphism 2-cells ξ : id ∼= tt.
(iii) Natural isomorphism 2-cells ι = ιA : UtA −→ tUA for 0-cells A and

γ = γX,Y : tY �op tX ≡ tX � tY −→ t(Y �X)

for 1-cells X : A −→ B and Y : B −→ C; the left and right unit 2-cells λ and
ρ must be related by the equivalent equalities of 2-cells

t(λX)γX,UX
(id� ι) = ρtX and t(ρX)γUX ,X(ι� id) = λtX ,
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the appropriate hexagonal coherence diagram relating γ to the associativity 2-
cell αmust commute, and the following diagram relating ξ to γ must commute:

Y �X

ξ�ξ
��

ξ // tt(Y �X)

ttY � ttX γ
// t(tX � tY ).

t(γ)

OO

A symmetric bicategory C is a bicategory equipped with an involution. We say that
C is a symmetric 2-category if its associativity and unit 2-cells are identity maps.
A 0-cell A of C is said to be commutative if tA = A.

The functors t in (ii) are often isomorphisms of categories, with ξ = id and
t(γ)γ = id. It would not be illuminating to write down the hexagon. Actu-
ally, the hexagon in the usual definition of a pseudo-functor [93], applied to our
involution t, and the hexagon adapted from the usual definition of a symmetric
monoidal category [99, p. 184] do not look exactly the same, but they are equiva-
lent by elementary diagram chases. Observe that if we have a single 0-cell A, then
t : C (A,A) −→ C (A,A) need not be the identity functor, as it would be if C were
symmetric monoidal.

We require of a lax functor F : C −→ D between symmetric bicategories that
Ft = tF on 0-cells, that the functors tF and Ft from C (A,B) to D(tFB, tFA) be
naturally isomorphic, and that the 2-cells giving the isomorphism commute appro-
priately with the 2-cells ξ and γ in C and D . The details of this definition and of the
symmetric versions of other standard bicategorical concepts are straightforward.

We have not fully adopted the philosophy of higher category theory, which
would require us to weaken all identities in our definition to isomorphisms. Rather,
we have adopted a pragmatic compromise dictated in part by our desire to keep
close to the classical theory of symmetric monoidal categories and in larger part
by the nature of the examples that we know. We could weaken our involutory
conditions, perhaps relaxing the identity and equivalence conditions of (i) and (ii)
and certainly dropping the displayed diagram, at the expense of adding further
coherence diagrams. Doing so, we reach the as yet unexplored notion of a braided
bicategory, the many object version of a braided monoidal category. Lest the reader
think that our definition is esoteric, we give an elementary paradigmatic example.

Example 16.2.2. Let R be a commutative ring, perhaps Z. We define the
closed symmetric bicategory BR of bimodules over R-algebras. The 0-cells are the
R-algebras (rings if R = Z). For a 0-cell A, tA is the opposite R-algebra, namely
the same R-module but with the opposite multiplication. It is usual to write aop

for an element of A regarded as an element of Aop and to write aopbop = ba for the
product, but it would be more logical to write a ·op b = b ·a to indicate that it is only
the product and not the underlying R-module that is changed. The commutative
0-cells are the commutative R-algebras. The 1-cells X : A −→ B are the (B,A)-
bimodules, and tX : tB −→ tA is the R-module X regarded as a (tA, tB)-bimodule
under the standard identification of left actions by A with right actions by tA,
ax = xaop or, in more logical notation, a · x = x ·op a. The 2-cells α : X −→ Y are
the morphisms of (B,A)-bimodules, and t(α) is the same morphism of R-modules
regarded as a morphism of (tA, tB)-bimodules. Finally, we define � by

� = ⊗B : BR(B,C)×BR(A,B) −→ BR(A,C).
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(Our left-right conventions are dictated by the order of composition here.) The unit
UA is just A regarded as an (A,A)-bimodule under left and right multiplication, and
the associativity and unity isomorphisms are the usual ones. Obviously tUA = UtA.
The symmetry isomorphism

γ : tX ⊗tB tY −→ t(Y ⊗B X)

is the usual bimodule symmetry isomorphism, γ(x ⊗ y) = y ⊗ x. Observe that
BR(A,R) and BR(R,A) are the categories of right and left A-modules, respectively.
If we restrict attention to the full sub bicategory with a single commutative 0-cell
A = tA, we obtain the category of (A,A)-bimodules, on which t is not the identity
functor. The symmetric monoidal category of A-modules sits inside this as the
subcategory of central (A,A)-modules X, namely those for which ax = xa for all a
and x.

Example 16.2.3. The previous example works equally well if we take R to be a
commutative differential graded k-algebra for a commutative ring k. Here we take
the 0-cells to be the differential graded R-algebras A and the 1-cells A −→ B to be
the differential graded (B,A)-bimodules. Of course, we use the graded symmetry
γ, with the usual sign. We may pass to derived categories of bimodules, keeping the
0-cells and 1-cells the same, to obtain another example. Similarly, topologically, we
can take R to be a commutative ring spectrum in one of the modern categories of
spectra, such as the category of orthogonal spectra. Here we take the 0-cells to be
the R-algebras A and the 1-cells to be the (B,A)-bimodules. Again, we can pass to
derived homotopy categories of bimodules. In fact, formalizing the construction of
Example 16.2.2, we obtain a symmetric bicategory of algebras and bimodules over
any commutative monoid R in any cocomplete symmetric monoidal category M .
A similar remark applies to the additional structure on BR discussed in Examples
16.2.6, 16.3.7, and 16.3.9 below.

The definition of symmetric bicategories would be of little use without a coher-
ence theorem, and the expected result reads as follows.

Theorem 16.2.4. Any symmetric bicategory is biequivalent to a symmetric
2-category.

The one object case is closely related to the well-known equivalence between
symmetric monoidal categories and permutative categories (see, for example, [110,
4.2]). The non-symmetric analogue is a well-known result relating bicategories
and 2-categories [93], and its proof adapts readily. The bicategories BR and our
topological examples have much further structure, and the relevant coherence prob-
lems, in particular that of determining which diagrams relating the coherence con-
straints must commute, have generally not yet been addressed. However, several
constituents of the structure in our examples have been studied separately.

Example 16.2.5. A sensible categorical way to incorporate maps of R-algebras
along with the other structure that we have described is to observe that BR is part
of a “pseudo (or semi-strict) double category” [69, App]. A pseudo double category
is a more general structure than that of a bicategory which has vertical as well as
horizontal 1-cells. We can extend BR to such a structure by letting the maps of R-
algebras give the vertical 1-cells and allowing correspondingly more general 2-cells.
However, in both this algebraic example and our topological examples, we shall
encode base change functors induced by maps in terms of horizontal composition,



252 16. CLOSED SYMMETRIC BICATEGORIES

and it is usually the base change functors, rather than the maps that induce them,
that are of primary interest. However, we will encounter several places in the theory
where not working in the more general categorical framework will leave us without
categorical language to express the phenomena we encounter.

We also have the following fundamental piece of structure, whose relationship
with the closed symmetric bicategory structure has yet to be fully formalized. In
fact, while our notion of a “symmetric bicategory” is new, there is an earlier and
more obvious notion of a “symmmetric monoidal bicategory”, and BR has both
such structures.

Example 16.2.6. The bicategory BR is a symmetric monoidal bicategory under
the tensor product

⊗ = ⊗R : BR ×BR −→ BR

(where ⊗ is applied to R-algebras, to R-bimodules, and to morphisms thereof).
The unit ∗ −→ BR is given by R (regarded as a 0-cell, a 1-cell (R,R)-bimodule,
and a 2-cell identity map). The unity, associativity, and commutativity constraints
are evident.

We shall encounter precisely analogous structure in our bicategory of parame-
trized spectra over varying base spaces. The external smash product there is the
analogue of ⊗R, and the external commutativity isomorphism induced from that
of Remark 2.5.4 is the analogue of the commutativity constraint.

Under the name Gray category, monoidal bicategories and symmetric monoidal
bicategories with appropriate strictness conditions have been studied extensively.
See, for example, the papers [44,70,157] of Gray, Day, and Street.

Remark 16.2.7. Just as monoidal categories are one object bicategories, so
monoidal bicategories are one object tricategories [68]. In fact, we actually have
something like a tricategory in sight, with 0-cells commutative rings, 1-cells alge-
bras, 2-cells bimodules, and 3-cells maps of bimodules. However, it does not have
the strictly hierarchical structure of a tricategory since we do not view algebras as
morphisms of rings. In line with Example 16.2.5, we can codify the structure on
hand, incorporating the maps of commutative rings and the maps of algebras, in
a previously unexplored categorical structure that has both vertical and horizon-
tal cells. We will encounter the same formal structure in parametrized homotopy
theory and, again, the lack of the relevant categorical theory will leave us without
language to express some of the phenomena we encounter. With Michael Shulman,
we intend to give an exposition elsewhere.

16.3. The definition of closed symmetric bicategories

While the literature of bicategories is extensive, closed bicategories have been
less studied and less exploited. This is unfortunate, since such structures appear
quite commonly in mathematics. We shall indicate the basic facts, but, here again,
a thorough study of categorical coherence is needed. Coherence in closed monoidal
and closed symmetric monoidal categories has been studied by Eilenberg and Kelly
[58] and Kelly and Mac Lane [88].

Definition 16.3.1. A bicategory C is right and left closed (or �-closed), if
there are right and left internal hom (or �-hom) functors

. : C (A,B)op × C (A,C) −→ C (B,C)
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and
/ : C (A,C)× C (B,C)op −→ C (A,B)

for all triples of 0-cells A, B, C and “internal adjunction” natural isomorphisms

(16.3.2) C (X,Z / Y ) ∼= C (Y �X,Z) ∼= C (Y,X . Z)

for 1-cells X : A −→ B, Y : B −→ C, and Z : A −→ C.

The adjoints of identity 2-cells then give unit and counit 2-cells

(16.3.3) ε : (X . Z)�X −→ Z and η : Y −→ X . (Y �X)

(16.3.4) ε : Y � (Z / Y ) −→ Z and η : X −→ (Y �X) / Y.

Of course, C might be right closed without being left closed, and vice versa.

Definition 16.3.5. A symmetric bicategory is closed if it is left closed, in which
case it is also right closed with

X . Z ∼= t(tZ / tX) : B −→ C

for X : A −→ B and Z : A −→ C.

Remark 16.3.6. The notations . and / for the internal �-hom functors seem to
be nonstandard, but are convenient and have been used previously for this purpose,
for example in [89]. (There does not seem to be a standard notation). One can
think of X . Z : B −→ C as the 1-cell of “maps pointing right from X to Z” and
Z / Y : A −→ B as the 1-cell of “maps pointing left from Y to Z”. The triangles
represent arrowheads pointing in the appropriate direction. Mnemonically, X . Z
is a 1-cell from the target of X to the target of Z (with X and Z having the same
source) and Z / Y is a 1-cell from the source of Z to the source of Y (with Y and
Z having the same target). We write sources on the left and targets on the right.

Example 16.3.7. The symmetric bicategory BR of bimodules over R-algebras
is closed. For a (B,A)-bimodule X, (C,B)-bimodule Y , and (C,A)-bimodule Z,
the left and right internal �-homs are given by

Z / Y = HomC(Y,Z) and X . Z = HomA(X,Z).

Here Z / Y is a (B,A)-bimodule and X . Z is a (C,B)-bimodule. The required
internal adjunctions

BR(Y,HomA(X,Z)) ∼= BR(Y ⊗B X,Z) ∼= BR(X,HomC(Y,Z))

relating the morphism categories BR(B,C), BR(A,C) and BR(A,B) are evident.

Example 16.3.8. The closed symmetric bicategory structure on BR encodes
base change along maps of R-algebras. For a map f : A′ −→ A of R-algebras,
thought of as 0-cells, we have “base change bimodules”, namely the 1-cells

Af : A′ −→ A and fA = tAf : A −→ A′,

where Af and fA denote A regarded as an (A,A′)-bimodule or as an (A′, A)-
bimodule. The action of A′ is given by pullback along f , the action of A is the
evident one, and the equality fA = tAf is evident. For any R-algebra B, pullback
of right actions along f gives a functor f∗ : BR(A,B) −→ BR(A′, B), which has a
left adjoint f! and a right adjoint f∗ given by extension and coextension of scalars.
By inspection, we have

f∗M ∼= M �Af , f!M
′ ∼= M ′ � fA, and f∗M

′ ∼= Af . M
′.
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Similarly, for a map g : B′ −→ B of R-algebras and any R-algebra A, the pullback
of action functor g∗ : BR(A,B) −→ BR(A,B′) has a left adjoint g! and a right
adjoint g∗, and these satisfy

g∗N ∼= gB �N, g!N
′ ∼= Bg �N ′, and g∗N

′ ∼= gB / N ′.

We also have a closed structure for the symmetric monoidal bicategory structure
on BR given in Example 16.2.6. Again, our bicategory of parametrized spectra will
have analogous structure.

Example 16.3.9. The �-closed symmetric bicategory BR is also a ⊗-closed
symmetric monoidal bicategory. Its left and right internal ⊗-hom objects are given
by the (B,A)-bimodules and (D,C)-bimodules

Hom(D,C)(Y, Z) and Hom(B,A)(X,Z),

where X is a (B,A)-bimodule, Y is a (D,C)-bimodule, and Z is a (B⊗D,A⊗C)-
bimodule. These give internal adjunctions

BR(Y,Hom(B,A)(X,Z)) ∼= BR(X ⊗ Y, Z) ∼= BR(X,Hom(D,C)(Y, Z))

relating the morphism categories BR(A,B), BR(A⊗ C,B ⊗D), and BR(C,D).

The adjunctions (16.3.2) imply various isomorphisms and natural transforma-
tions. Most of them would be familiar in ⊗ and Hom notation. Even in the
symmetric case, it is most efficient to carefully distinguish between / and .. Here
we could instead systematically collapse our dichotomy into statements concern-
ing only one of these functors, using the canonical isomorphisms X ∼= ttX and
t(X . Z) ∼= tZ / tX. Spelling this out is essential for purposes of calculation. In
particular, this is where the symmetry isomorphism γ and attendant signs in graded
situations come into play. However, this is a routine categorical exercise. It is used
implicitly throughout the theory of symmetric monoidal categories M , where one
defines only a single hom functor and regards it via γ as giving both of the inter-
nal adjunctions displayed in (16.3.2). That is, one uses γ to verify one of the two
isomorphisms

M (X,Hom(Y,Z)) ∼= M (X ⊗ Y,Z) ∼= M (Y,Hom(X,Z)).

This implicit use of γ forces explicit use of it elsewhere in that theory.
We have natural isomorphisms

(16.3.10) (Y �X) . Z ∼= Y . (X . Z)

for X : A −→ B, Y : B −→ C, and Z : A −→ D,

(16.3.11) Z / (Y �X) ∼= (Z / Y ) / X

for X : A −→ B, Y : B −→ C, and Z : D −→ C, and

(16.3.12) (X . Z) / Y ∼= X . (Z / Y )

for X : A −→ B, Y : C −→ D, and Z : A −→ D. The proofs are exercises in
adjunctions and the Yoneda lemma. For example, the last is a direct consequence
of the associativity (up to natural isomorphism) of composition since

C (W, (X . Z) / Y ) ∼= C ((Y �W )�X,Z)

and
C (W,X . (Z / Y )) ∼= C (Y � (W �X), Z)

for W : B −→ C.
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By defining their adjoints in terms of evaluation maps ε of (16.3.3) and (16.3.4),
we obtain natural maps

(16.3.13) µ : Z � (X . Y ) −→ X . (Z � Y )

for X : A −→ B, Y : A −→ C, and Z : C −→ D,

(16.3.14) ν : (Z / Y )�W −→ (Z �W ) / Y

for Y : B −→ C, Z : A −→ C, and W : D −→ A, and

(16.3.15) ω : (Z / Y )� (X .W ) −→ X . (Z �W ) / Y

for X : A −→ B, W : A −→ C, Y : D −→ E, and Z : C −→ E; we have omitted
parentheses on the right since the two ways of parenthesizing the target give iso-
morphic results, by (16.3.12). When X = UA or Y = UE , ω specializes to ν or µ.
Conversely, parenthesizing in the two possible ways, ω is the composite

(Z / Y )� (X .W )
µ //X . ((Z / Y )�W ) id.ν //X . ((Z �W ) / Y )

or

(Z / Y )� (X .W ) ν //(Z � (X .W )) / Y
µ/id //(X . (Z �W )) / Y.

16.4. Duality in closed symmetric bicategories

We develop duality theory in closed bicategories. We could focus just on left
closed or right closed C using C op to translate from one to the other. However,
we are interested in the closed symmetric case, where both versions are available.
If we were writing for the categorical cognoscenti, we would use single arrows for
1-cells and double arrows for 2-cells, drawing pasting diagrams to illustrate our
concepts. We prefer to be more down to earth. As in the bimodule examples in
the previous sections, which illustrate our philosophy that a symmetric bicategory
is to be thought of as a symmetric monoidal category with many objects, we want
to consider the 1-cells as the fundamental objects of study, and we thus want to
understand duality theory for 1-cells. For example, a module over a commutative
R-algebra B is “dualizable” if and only if it is finitely generated and projective, and
it is natural to formulate a related categorical concept of dualizability for bimodules.
We have not yet studied even such elementary algebraic examples, but it is clear
that they are relevant to Morita theory.

We shall write B for UB for simplicity of notation. It should be clear from
context when B is being viewed as a 1-cell (like an R-algebra B viewed as a (B,B)-
bimodule) rather than as a 0-cell. Since our internal homs exhibit an asymmetry,
we start with a more symmetric version of duality that makes no reference to them
and applies in any bicategory, not necessarily symmetric or closed. We shall omit
most of the categorical proofs. They are diagram chases similar, but not always
identical, to those in the one object symmetric monoidal case as given, for example,
in [98, III§1]. We follow part of the treatment there (where dualizable objects are
called “finite”), except that we reorder its definitions and results.

Definition 16.4.1. Let X : B −→ A and Y : A −→ B be 1-cells in a bicategory
C . Then (X,Y ) is said to be a dual pair if there are 2-cells

η : A −→ X � Y and ε : Y �X −→ B,
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called coevaluation and evaluation maps, such that the following diagrams commute
in C (B,A) and C (A,B), respectively.

X

id

��

A�X
∼=oo η�id // (X � Y )�X

∼=
��

X X �B∼=
oo X � (Y �X)

id�ε
oo

Y

id

��

Y �A
∼=oo id�η // Y � (X � Y )

∼=
��

Y B � Y∼=
oo (Y �X)� Y

ε�id
oo

We say that X is right dualizable if it is part of such a dual pair, and we say that
Y is left dualizable if it is part of such a dual pair. We say that X is left dual to Y
and Y is right dual to X.

Note that the right/left symmetry is forced on us by the directionality of 1-cells
even when C is symmetric. One must not imagine that a right dualizable 1-cell is
also left dualizable. The following examples show that this is not so.

Example 16.4.2. Let f : B −→ A be a map of R-algebras and recall the base
change bimodules Af : B −→ A and fA : A −→ B from Example 16.3.8. We may
identify fA�Af : B −→ B with A regarded as a (B,B)-bimodule by pullback along
f , and we let η = f : B −→ fA � Af . We have Af � fA = A ⊗B A, and we let
ε : Af � fA −→ A be given by the product on A. Then η and ε display (fA,Af )
as a dual pair; the left and right unit laws for A induce the required commutative
diagrams. Observe that (Af , fA) is not a dual pair in general.

Example 16.4.3. We specialize the previous example to the unit ι : R −→ A
of an R-algebra with product φ : A⊗R A −→ A. Here the 1-cells Aι : R −→ A and
ιA : A −→ R are A regarded as an (A,R)-bimodule (= left A-module) and as an
(R,A)-bimodule (= right A-module), and ι and φ display (ιA,Aι) as a dual pair.
For (Aι, ιA) to be a dual pair we would have to have maps

η : A −→ A⊗R A and ε : A −→ R

of (A,A) and (R,R)-bimodules, a coproduct and a counit, such that the left and
right counit laws hold.

We shall have a topological analogue where the situation is precisely the reverse:
the relevant objects will have a coproduct and a counit, but they will not have a
product and a unit.

Duality is characterized by a duality adjunction. For 1-cells X : B −→ A and
Y : A −→ B and a 2-cell ε : Y �X −→ B, define

(16.4.4) ε# : C (W,Z � Y ) −→ C (W �X,Z)

by letting ε#(α) be the composite 2-cell

W �X α�id //(Z � Y )�X ∼= Z � (Y �X)
id�ε //Z �B ∼= Z.

Dually, for a 2-cell η : A −→ X � Y , define

(16.4.5) η# : C (W �X,Z) −→ C (W,Z � Y )

by letting η#(β) be the composite 2-cell

W ∼= W �A
id�η //W � (X � Y ) ∼= (W �X)� Y

β�id //Z � Y.
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Both maps are defined for 1-cells W : A −→ C and Z : B −→ C for any 0-cell C.
Duality says that these are inverse isomorphisms.

Proposition 16.4.6. The following conditions are equivalent, where X : B −→
A and Y : A −→ B are 1-cells in a bicategory C and ε : Y � X −→ B is a given
2-cell.

(i) (X,Y ) is a dual pair with evaluation map ε.
(ii) ε# is a bijection for all W and Z.
(iii) ε# is a bijection when W = A and Z = X and when W = Y and Z = B.
Dually, the following conditions are equivalent when η : A −→ X � Y is given.

(i’) (X,Y ) is a dual pair with coevaluation map η.
(ii’) η# is a bijection for all W and Z.
(iii’) η# is a bijection when W = A and Z = X and when W = Y and Z = B.
If C is symmetric, then η and ε exhibit (X,Y ) as a dual pair if and only if

γ−1t(η) : tA −→ tY � tX and t(ε)γ : tX � tY −→ tB

exhibit (tY, tX) as a dual pair.

Proof. Trivially, (ii) implies (iii), and (i) implies (ii) since diagram chases
show that ε# and η# are inverse bijections when ε and η display (X,Y ) as a dual
pair. To see that (iii) implies (i), we construct η by ε#(η) = id, using the case
W = A and Z = X. This already gives one of the required diagrams. For the
other diagram, we check that ε# takes both the identity map and the composite
(ε� id)(id� η) to ε when W = Y and Z = B. �

Duals of 2-cells are characterized in the following result.

Proposition 16.4.7. Let X,X ′ : B −→ A and Y, Y ′ : A −→ B be 1-cells such
that (X,Y ) and (X ′, Y ′) are dual pairs and let α : X −→ X ′ and β : Y −→ Y ′ be
given 2-cells.

(i) There is a unique 2-cell α∗ : Y ′ −→ Y that makes either of the following
diagrams commute, and then the other diagram also commutes.

A
η //

η

��

X ′ � Y ′

id�α∗

��

Y ′ �X
id�α //

α∗�id

��

Y ′ �X ′

ε

��
X � Y

α�id
// X ′ � Y Y �X ε

// B

(ii) There is a unique 2-cell β∗ : X ′ −→ X that makes either of the following
diagrams commute, and then the other diagram also commutes.

A
η //

η

��

X ′ � Y ′

β∗�id

��

Y �X ′ β�id //

id�β∗

��

Y ′ �X ′

ε

��
X � Y

id�β
// X � Y ′ Y �X ε

// B

The definitions just given make sense whether or not C is closed. We assume
from now on that C is closed, and we then have canonical candidates for right and
left duals that are defined for any object, whether or not it is right or left dualizable.
It is convenient to introduce notations for them.
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Definition 16.4.8. For a 1-cell X : B −→ A, define DrX = X . B : A −→ B.
For a 1-cell Y : A −→ B, define D`Y = B / Y : B −→ A.

A 2-cell ε : Y �X −→ B has a pair of adjoint maps

ε̃ : X −→ D`Y and ε̃ : Y −→ DrX.

They are related to the canonical evaluation maps ε of (16.3.3) and (16.3.4) by the
commutative diagram

Y �D`Y

ε
&&LLLLLLLLLLL Y �X

ε̃�idoo

ε

��

id�ε̃ // DrX �X

ε

xxqqqqqqqqqqq

B

The following result justifies the left and right nomenclature of Definition 16.4.1.

Proposition 16.4.9. If ε : Y �X −→ B is the evaluation map of a dual pair
(X,Y ), then the adjoint 2-cells

ε̃ : X −→ D`Y and ε̃ : Y −→ DrX

are isomorphisms.

We now change our point of view and focus on the canonical duals. The maps
µ and ν of (16.3.13) and (16.3.14) specialize to maps

(16.4.10) µ : Z �DrX −→ X . Z

and

(16.4.11) ν : D`Y �W −→W / Y.

Clearly µ is an isomorphism 2-cell when Z = B and ν is an isomorphism 2-cell
when W = B.

Proposition 16.4.12. The following are equivalent for a 1-cell X : B −→ A.
(i) X is right dualizable.
(ii) µ is an isomorphism when Z = X. Then the canonical evaluation map and

composite

ε : DrX �X −→ B and η : A
ζ // X .X

µ−1
// X �DrX

display (X,DrX) as a dual pair, where ζ is adjoint to the unit A�X ∼= X.
(iii) µ is an isomorphism for all Z.
When these hold, the adjoint of ε is an isomorphism X −→ D`DrX.

Dually, the following are equivalent for a 1-cell Y : A −→ B.
(i ′) Y is left dualizable.
(ii ′) ν is an isomorphism when W = Y . Then the canonical evaluation map and

composite

ε : Y �D`Y −→ B and η : A
ζ // Y / Y

ν−1
// D`Y � Y

display (D`Y, Y ) as a dual pair, where ζ is adjoint to the unit Y �A ∼= Y .
(iii ′) ν is an isomorphism for all W .
When these hold, the adjoint of ε is an isomorphism Y −→ DrD`Y .
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In these results, the last statements give two versions of the usual isomorphism
between a dualizable object and its double dual in a symmetric monoidal category.
Similarly, we have the following analogues of results about dualizable objects in
symmetric monoidal categories. They generalize (iii) in the previous results.

Proposition 16.4.13. Consider the maps µ, ν, and ω.
(i) If either X or Z is right dualizable, then

µ : Z � (X . Y ) −→ X . (Z � Y )

is an isomorphism.
(ii) If either W or Y is left dualizable, then

ν : (Z / Y )�W −→ (Z �W ) / Y

is an isomorphism.
(iii) If X is right and Y is left dualizable, then

ω : (Z / Y )� (X .W ) −→ X . (Z �W ) / Y

is an isomorphism.

Proof. The proofs are modifications of those of the symmetric monoidal ana-
logues given in [98, III.1.3]. In (i), if X is right dualizable, then diagram chases
show that the composite around the right in the following diagram is inverse to µ.

X . (Z � Y )

µ−1

��

∼= // X . (Z � Y )�A
id�η // X . (Z � Y )�X �DrX

ε�id

��
Z � (X . Y ) Z � Y �DrX

id�µ
oo

A similarly explicit inverse gives (ii) when Y is left dualizable. These two parts
imply (iii) by virtue of the description of ω as a composite of maps µ and ν. To see
that µ is an isomorphism when Z is left dualizable, we use a naturality diagram to
show that we may as well replace Z by D`DrZ, and we then check that µ factors
as displayed in the following diagram.

D`DrZ � (X . Y ) ν //

µ

��

(X . Y ) / DrZ

∼=
��

X . (D`DrZ � Y ) X . (Y / DrZ)
(id.ν)−1
oo

This concludes the proof. �

16.5. Composites and naturality of dualities

The following result is trivial. We call it a theorem because more direct proofs
of important special cases originally seemed to be non-trivial. While we will be
using it in topology, it is also of interest in algebra.

Theorem 16.5.1. Consider 1-cells W,X, Y, Z as in the diagram

C
W ))

B
Z

hh
X ))

A.
Y

ii
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Let (η, ε) be coevaluation and evaluation maps that exhibit (X,Y ) as a dual pair,
and let (ζ, σ) be coevaluation and evaluation maps that exhibit (W,Z) as a dual
pair. Then the composites

A
η // X � Y

∼= // X �B � Y
id�ζ�id// (X �W )� (Z � Y )

and

(Z � Y )� (X �W )
id�ε�id// Z �B �W

∼= // Z �W σ // C

are coevaluation and evaluation maps that exhibit (X �W,Z �Y ) as a dual pair of
1-cells.

Proof. We have put parentheses in the displayed composites in order to em-
phasize how to think about them, but otherwise we are ignoring associativity iso-
morphisms. Also ignoring insertion and deletion of unit objects via unit isomor-
phisms, we see that the square in the following diagram commutes by naturality,
and the triangles commute by the given dualities.

X �W
η�id //

SSSSSSSSSSSSSS

SSSSSSSSSSSSSS X � Y �X �W
id�ζ�id //

id�ε�id

��

X �W � Z � Y �X �W

id�ε�id

��
X �W

id�ζ�id //

WWWWWWWWWWWWWWWWWWWWWW

WWWWWWWWWWWWWWWWWWWWWW X �W � Z �W

id�σ
��

X �W

The commutativity of the other diagram required for the first claimed duality is
proven similarly. �

We have the following addendum.

Proposition 16.5.2. Assume further that A = C and X = Z. Then η is dual
to σ and ε is dual to ζ (with respect to the unit duality of A or B).

Proof. With X = Z, we have the commutative diagram

A

∼=

��

η

''OOOOOOOOOOOOO // X �W �X � Y

σ�id

��

X � Y

id�ζ�id
55kkkkkkkkkkkkkk

∼=

))SSSSSSSSSSSSSS

A�A
id�η

// A�X � Y.

Since the unlabelled arrow is the unit for the composite adjunction, η is dual to σ
by Proposition 16.4.7. A similar diagram shows that ε is dual to ζ. �

We record a dual pair of naturality results. They admit several variants, such
as the one given in [98, III.1.9] for an analogue in the context of closed symmetric
monoidal categories.



16.6. A QUICK REVIEW OF TRIANGULATED CATEGORIES 261

Proposition 16.5.3. Let F : B −→ C be a lax functor between symmetric
bicategories. Let (X,Y ) be a dual pair in B, X : B −→ A and Y : A −→ B,
and assume that the unit and composition coherence 2-cells UFB −→ FUB and
FX � FY −→ F (X � Y ) are isomorphisms. Then (FX,FY ) is a dual pair in C .

Proof. Let η and ε be coevaluation and evaluation maps that represent (X,Y )
as a dual pair. Then the 2-cells

UFA
unit // FUA

Fη // F (X � Y ) FX � FY
compoo

and

FY � FX
comp // F (Y �X) Fε // FUB UFB

unitoo

give coevaluation and evaluation maps that represent (FX,FY ) as a dual pair. �

Reversing the direction of the unit and composition 2-cells, we obtain the dual.

Proposition 16.5.4. Let F : B −→ C be an oplax functor between symmetric
bicategories. Let (X,Y ) be a dual pair in B, X : B −→ A and Y : A −→ B,
and assume that the unit and composition coherence 2-cells FUA −→ UFA and
F (Y �X) −→ FY � FX are isomorphisms. Then (FX,FY ) is a dual pair in C .

16.6. A quick review of triangulated categories

We recall our preferred definition of a triangulated category from [124]. It is
equivalent to Verdier’s original definition. That and other basic consequences of
the definition are proven in [124].

Definition 16.6.1. A triangulation on an additive category C is an additive
self-equivalence Σ : C −→ C together with a collection of “triangles”

X
f //Y

g //Z
h //ΣX,

called the distinguished triangles, such that the following axioms hold.
(T1) Let X be any object and f : X −→ Y be any map in C .

(a) The triangle X id−→X −→ ∗ −→ ΣX is distinguished.
(b) The map f : X −→ Y is part of a distinguished triangle (f, g, h).
(c) Any triangle isomorphic to a distinguished triangle is distinguished.

(T2) If (f, g, h) is distinguished, then so is (g, h,−Σf).
(T3) (Verdier’s axiom) Consider the following diagram.

X

f   @
@@

@@
@@

h

  
Z

h′

��@
@

@
@

g′

!!
W

g′′

""E
EE

EE
EE

E

j′′

""
ΣU

Y

g
??~~~~~~~

f ′ ��@
@@

@@
@@

V

j′
=={

{
{

{

h′′

!!C
C

C
C ΣY

Σf ′

<<yyyyyyyy

U

j
??~

~
~

~

f ′′

==ΣX
Σf

<<yyyyyyyy
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Assume that h = g ◦ f , j′′ = Σf ′ ◦ g′′, and (f, f ′, f ′′) and (g, g′, g′′) are
distinguished. If h′ and h′′ are given such that (h, h′, h′′) is distinguished,
then there are maps j and j′ such that the diagram commutes and (j, j′, j′′) is
distinguished. We call the diagram a braid of distinguished triangles generated
by h = g ◦ f or a braid cogenerated by j′′ = Σf ′ ◦ g′′.

We record the implied converse versions of two of the axioms.

Lemma 16.6.2 (T2′). If (g, h,−Σf) is distinguished, then so is (f, g, h).

Lemma 16.6.3 (T3′). In the diagram of (T3), if j and j′ are given such that
(j, j′, j′′) is distinguished, then there are maps h′ and h′′ such that the diagram
commutes and (h, h′, h′′) is distinguished.

We have labeled our axioms (T?), while Verdier’s original axioms are labelled
(TR?) [165]. Our (T1) is his (TR1) , our (T2) and (T2′) together are his (TR2),
and our (T3) is his (TR4). We have omitted his (TR3), since it is implied.

Lemma 16.6.4 (TR3). If the rows are distinguished and the left square com-
mutes in the following diagram, then there is a map k that makes the remaining
squares commute.

X
f //

i

��

Y
g //

j

��

Z
h //

k

���
�
� ΣX

Σi

��
X ′

f ′
// Y ′

g′
// Z ′

h′
// ΣX ′

The maps asserted to exist in these axioms are not unique, and some choices
are better than others. This point is important for the full force of the compatibility
axioms relating triangulations to symmetric monoidal structures, but we refer the
reader to [124,134] for that. We recall some standard language.

Definition 16.6.5. Let C be a triangulated category. Any Z that fits into
a distinguished triangle starting with f : X −→ Y is called a cofiber of f and
denoted Cf ; it is unique up to non-unique isomorphism by (TR3). The homotopy
coequalizer C(f, g) of maps f, g : X −→ Y is C(f − g); it is a weak coequalizer.
The homotopy colimit, hocolimXi, of a sequence of maps fi : Xi −→ Xi+1 is the
homotopy coequalizer of q id,qfi : qXi −→ qXi. It is a weak sequential colimit.

Definition 16.6.6. An additive functor between triangulated categories is ex-
act if it commutes with Σ up to natural isomorphism and preserves distinguished
triangles.

16.7. Compatibly triangulated symmetric bicategories

We are concerned with compatibility relations. Thus we now change our start-
ing point, and we assume from now on that C is a closed symmetric bicategory.

Definition 16.7.1. C is triangulated if each category C (A,B) is triangulated.

We write Σ rather than ΣA,B for the translation automorphism in C (A,B),
and we write Σn for the n-fold iterate of Σ, allowing negative n by use of Σ−1.
Each C (A,B) is additive, and we write ⊕ for the biproduct.

The definition is of no interest without compatibility relations relating the
triangulations to the compositions. We must relate the triangulation to � and the
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identity 1-cells UA : A −→ A (abbreviated to A as before) and to . and /. We may
focus on . since we assume that C is symmetric. Throughout, we do not specify
sources and targets of 1-cells, assuming tacitly that their sources and targets match
up appropriately.

Remark 16.7.2. Our analogy between algebra and topology weakens at this
point. In the derived bicategories of bimodules, the C (A,B) are not themselves
symmetric monoidal categories. However, each C (A,B) in our bicategory of para-
metrized spectra is itself a symmetric monoidal category with a compatible trian-
gulation. Pullbacks along diagonal maps of the cartesian products B × A lead to
the internal products in the C (A,B), and this has no algebraic analogue in general.

There are five compatibility axioms, (TC1)–(TC5), for a triangulation to be
compatible with a closed symmetric monoidal structure on a category C . We
define precise analogues of the first three and a weak form of the fourth for a closed
symmetric bicategory C by direct comparison, briefly discussing the omitted axiom
at the end. We call the result “weak compatibility” because of the omitted axiom.
Note that the maps involved in exact triangles are composable 2-cells, so that each
such triangle is in one of the categories C (A,B). Recall Definition 16.2.1.

Definition 16.7.3. The triangulation on C is weakly compatible with its closed
symmetric structure if ΣC −→ C is a pseudo-functor (in particular, t ◦ Σ ∼= Σ ◦ t)
and axioms (TC1)–(TC4) are satisfied.

(TC1) For X : A −→ B, there is a natural isomorphism

α : X � ΣA −→ ΣX

such that the composite

Σ2A = Σ(ΣA)α
−1

−→ΣA� ΣA
γ−→ΣA� ΣA α−→Σ(ΣA) = Σ2A

is multiplication by −1. There is also a natural isomorphism t ◦ Σ ∼= Σ ◦ t.

(TC2) For a distinguished triangle X
f //Y

g //Z
h //ΣX

and an object W , each of the following triangles is distinguished.

X �W
f�id // Y �W

g�id // Z �W
h�id // Σ(X �W )

W �X
id�f // W � Y

id�g // W � Z
id�h // Σ(W �X)

W .X
id.f // W . Y

id.g // W . Z
id.h // ΣW .X

Σ−1X .W
−h.id // Z .W

g.id // Y .W
f.id // X .W

Moreover, the involution t is an exact functor of X and Y such that t ◦Σ is
naturally isomorphic to Σ ◦ t.

Remark 16.7.4. In (TC2) and in (TC3) below, we implicitly use isomorphisms
such as

(ΣX)� Y ∼= Σ(X � Y ) ∼= X � (ΣY ) and (Σ−1X) . Y ∼= Σ(X . Y ) ∼= X . (ΣY )

that are implied by (TC1). Here use of α directly implies that Σ(X�Y ) ∼= X�(ΣY ),
and Σ(X � Y ) ∼= (ΣX)� Y follows by use of the isomorphism t ◦ Σ ∼= Σ ◦ t.
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We view axioms (TC1) and (TC2) as analogues of the elementary axioms (T1)
and (T2) for a triangulated category. The completely expected nature of the follow-
ing frightening looking diagrams is explained in [124], to which we refer the reader
for explanations and intuition. It gives the basic relationship between (T3) and �.
(TC3) (The braid axiom for composites of triangles.) Suppose given distinguished

triangles

X
f //Y

g //Z
h //ΣX

and

X ′ f ′ //Y ′
g′ //Z ′

h′ //ΣX ′.

Then there are distinguished triangles

Y �X ′ p1 // V
j1 // X � Z ′

f�h′ // Σ(Y �X ′),

Σ−1(Z � Z ′)
p2 // V

j2 // Y � Y ′
−g�g′ // Z � Z ′,

X � Y ′
p3 // V

j3 // Z �X ′ h�f ′ // Σ(X � Y ′),

such that the following diagram commutes.

Σ−1(Y � Z ′)

Σ−1(g�id)

%%LLLLLLLLLLLLLLLLLLLLL

Σ−1(id�h′)

��

X �X ′

f�id

yyrrrrrrrrrrrrrrrrrrrrrr
id�f ′

%%LLLLLLLLLLLLLLLLLLLLLL Σ−1(Z � Y ′)

Σ−1(id�g′)

yyrrrrrrrrrrrrrrrrrrrrr

Σ−1(h�id)

��
Y �X ′

p1

&&LLLLLLLLLLLLLLLLLLLLLLL

id�f ′

��:
::

::
::

::
::

::
::

::
::

::
::

::
::

::
::

:

g�id

��

Σ−1(Z � Z ′)

p2

��

Σ−1(id�h′)

����
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

Σ−1(h�id)

��:
::

::
::

::
::

::
::

::
::

::
::

::
::

::
::

: X � Y ′

id�g′

��

p3

xxrrrrrrrrrrrrrrrrrrrrrrr

f�id

����
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

V

j2

��

j3

xxrrrrrrrrrrrrrrrrrrrrrrr

j1

&&LLLLLLLLLLLLLLLLLLLLLLL

Z �X ′

id�f ′

��

h�id

%%LLLLLLLLLLLLLLLLLLLLLL Y � Y ′

g�id

yyrrrrrrrrrrrrrrrrrrrrrr

id�g′

%%LLLLLLLLLLLLLLLLLLLLLL X � Z ′

f�id

��

−id�h′

yyrrrrrrrrrrrrrrrrrrrrrr

Z � Y ′ Σ(X �X ′) Y � Z ′

The point of (TC3) is that it intertwines three braids given by Verdier’s ax-
iom, saying that we can use the same maps in a priori different braids with the
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same objects. Applying (TC3) to the distinguished triangles (−Σ−1h, f, g) and
(−Σ−1h′, f ′, g′), we obtain the following equivalent form of (TC3).

Lemma 16.7.5 (TC3′). For the distinguished triangles (f, g, h) and (f ′, g′, h′)
displayed in (TC3), there are distinguished triangles

X � Z ′
k1 // W

q1 // Z � Y ′
h�g′ // Σ(X � Z ′),

Y � Y ′
k2 // W

q2 // Σ(X �X ′)
−Σ(f�f ′)// Σ(Y � Y ′),

Z �X ′ k3 // W
q3 // Y � Z ′

g�h′ // Σ(Z �X ′),

such that the following diagram commutes.

X � Y ′

f�id

%%KKKKKKKKKKKKKKKKKKKKK

id�g′

��

Σ−1(Z � Z ′)
Σ−1(h�id)

yysssssssssssssssssssss
−Σ−1(id�h′)

%%KKKKKKKKKKKKKKKKKKKKK Y �X ′

id�f ′

yysssssssssssssssssssss

g�id

��
X � Z ′

k1

%%LLLLLLLLLLLLLLLLLLLLLL

id�h′

��9
99

99
99

99
99

99
99

99
99

99
99

99
99

99
99

9

f�id

��

Y � Y ′

k2

��

id�g′

����
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

g�id

��9
99

99
99

99
99

99
99

99
99

99
99

99
99

99
99

9 Z �X ′

id�f ′

��

k3

yyrrrrrrrrrrrrrrrrrrrrrr

h�id

����
��

��
��

��
��

��
��

��
��

��
��

��
��

��
��

W

q2

��

q3

yyssssssssssssssssssssss

q1

%%KKKKKKKKKKKKKKKKKKKKKK

Y � Z ′

id�h′

��

g�id

%%KKKKKKKKKKKKKKKKKKKKK Σ(X �X ′)

Σ(f�id)

yysssssssssssssssssssss

Σ(id�f ′)

%%KKKKKKKKKKKKKKKKKKKKK Z � Y ′

h�id

��

id�g′

yysssssssssssssssssssss

Σ(Y �X ′) Z � Z ′ Σ(X � Y ′)

Axiom (TC4) relates the diagrams displayed in (TC3) and (TC3′). It is not
hard to formulate it in full by comparison with [124], but that would involve some
recollections of definitions about well-behaved choices of maps in our axioms and
would be digressive here. We state a weak form that gives the idea.
(TC4) (The additivity axiom – weak form.) The maps ji and ki in (TC3) and

(TC3′) can be so chosen that k2 ◦ j2 = k1 ◦ j1 + k3 ◦ j3.

Remark 16.7.6. In an interesting follow up to [124], Keller and Neeman claim
that (TC4) is a consequence of (TC3) and Verdier’s axiom [86, 4.1]. However, they
assume that their triangulated categories all come from bounded derived categories
of Abelian categories, which fails in the interesting topological examples. What
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is true is that in any reasonable context in which one can prove the axioms, one
obtains a strong form of Verdier’s axiom, made precise in [124, 3.6,3.8], in the
presence of which (TC4) does follow from (TC3).

The omitted axiom (TC5), the “braid duality axiom”, relates the diagrams
(TC3) and (TC3′) when (f ′, g′, h′) = (Drg,Drf,DrΣ−1h). A precise formulation is
subtle and beyond the scope of this book. The idea will become clear in §17.5, where
the analogue for closed symmetric monoidal categories is discussed. The axiom
(TC5) in closed symmetric monoidal categories is motivated by the importance of
the additivity of transfer maps, such as those discussed in the previous chapter,
and trace maps [124]. The relevant theory for closed symmetric bicategories has
not yet been worked out. It is an observation of Kate Ponto that the relationship
between the bicategory composition � and the monoidal structure ⊗ that are both
present in the motivating examples will play a key role in developing such a theory.

16.8. Duality in triangulated symmetric bicategories

We let C be a closed symmetric bicategory with a compatible triangulation
throughout this section. Actually, we shall only use the elementary compatibility
axioms (TC1) and (TC2). In [76], Hovey, Palmieri, and Strickland give an axiomatic
study of stable homotopy theory, starting from a closed symmetric monoidal cat-
egory, H say, with a compatible triangulation (again, with only the elementary
compatibility axioms since [124] was not yet available). In [76, 1.1.5(c)], they asked
how much of their theory works in derived categories of bimodules. With the new
context provided here, the quick answer seems to be “nearly everything”.

They define a stable homotopy category by requiring H to have a set of du-
alizable objects D such that the smallest localizing subcategory containing D is
H itself. In our context, we can define a stable homotopy bicategory similarly,
requiring each C (A,B) to have a set of (left or right) dualizable objects D(A,B)
such that the smallest localizing subcategory containing D(A,B) is C (A,B) itself.
We shall not pursue that line of thought here, since that would lose focus on what
is relevant to parametrized stable homotopy theory. However, an understanding of
the relationship between compact and dualizable objects in C (A,B) is illuminating
in the topological theory and is also of interest in algebra. We illustrate the pro-
cess of translation from the symmetric monoidal context of [76] to our symmetric
bicategorical context by mimicking that part of [76] which discusses this issue.

Recall that an object X of a triangulated category C , is compact if the Abelian
group valued functor C (X,−) commutes with coproducts. The full subcategory of
compact objects in any triangulated category (understood to have coproducts) is
clearly a thick subcategory. The subcategory of dualizable objects in a symmetric
monoidal category is thick, and the analogue holds in a symmetric bicategory.

Proposition 16.8.1. The full subcategory of right (or left) dualizable objects
is a thick subcategory of C (B,A).

Proof. One characterization of what it means for X : B −→ A to be right
dualizable is that the natural map

(16.8.2) ε# : C (W,Z �DrX) −→ C (W �X,Z)

defined in Proposition 16.4.6(ii) must be a bijection for all 1-cells W : A −→ C
and Z : B −→ C, where C is any 0-cell. The functors of X on the two sides of
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(16.8.2) send distinguished triangles to long exact sequences. By the naturality of
ε# and the five lemma, if (16.8.2) is an isomorphism for two 1-cells appearing in
a distinguished triangle, then it is an isomorphism for the third one. Similarly, if
ε# is an isomorphism for X, then it is an isomorphism for any direct summand of
X. �

Proposition 16.8.3. If C (B,A) has a generating set D(B,A) of compact and
right dualizable objects, then every compact object is right dualizable, and similarly
for left dualizability.

Proof. The thick subcategory generated by D(B,A) is the subcategory of
compact objects in C (B,A), by Theorem 13.1.14, and all of its objects are right
dualizable. �

Motivated by the symmetric monoidal analogue, a stable homotopy category
is said to be algebraic in [76] if its dualizable generating objects are also compact.
Heading towards a determination of when, conversely, right dualizable objects are
necessarily compact, we shall give a characterization of dualizability in terms of a
different notion of compactness, following [76, 2.1.2].

Definition 16.8.4. A 1-cell X : B −→ A is .-compact in a 0-cell C if the
natural 2-cell

q(X . Yi) −→ X . (qYi)
is an isomorphism for any set of 1-cells Yi : B −→ C; it is .-compact if it is .-compact
in all C. Dually, X is /-compact from C if the natural 2-cell

q(Yi / X) −→ (qYi) / X
is an isomorphism for any set of 1-cells Yi : C −→ A.

The previous definition makes sense in any closed bicategory such that each
C (B,A) has coproducts, but in our triangulated bicategory context it relates as
follows to the notion of a compact object in a triangulated category.

Lemma 16.8.5. If X : B −→ A is .-compact in A and the unit 1-cell A is
compact in the triangulated category C (A,A), then X is compact in the triangulated
category C (B,A). Dually, if X is /-compact from B and the unit 1-cell B is
compact, then X is compact.

Proof. For Yi : B −→ A, we have

C (X,qYi) ∼= C (A,X.(qYi)) ∼= C (A,q(X.Yi)) ∼= ⊕C (A,X.Yi) ∼= ⊕C (X,Yi). �

Motivated by the symmetric monoidal analogue, an algebraic stable homotopy
category is said to be unital in [76] if its unit object is compact.

Proposition 16.8.6. If X : B −→ A is right dualizable, then X is .-compact.
Conversely, if C (B,A) has a generating set of right dualizable objects and X is
.-compact in A, then X is right dualizable.

Proof. For the first statement,

X . (qZi) ∼= (qZi)�DrX ∼= q(Zi �DrX) ∼= q(X . Zi).

For the second statement, consider the full subcategory of C (B,A) consisting of
those 1-cells Z such that

µ : Z �DrX −→ X . Z
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is an isomorphism. It is clearly a thick subcategory, and, if X is .-compact in A,
it is a localizing subcategory. It is an isomorphism when Z is right dualizable by
Proposition 16.4.13(i), and it is therefore an isomorphism for all Z when C (B,A)
has a generating set of right dualizable objects. Taking Z = X and using Proposi-
tion 16.4.12, we conclude that X is right dualizable. �

We combine the previous results to compare thick subcategories of C (B,A).

Theorem 16.8.7. Assume that C (B,A) has a generating set of right dualizable
objects. Then its thick subcategories of right dualizable objects, objects that are .-
compact in A, and .-compact objects all coincide. If, further, the unit 1-cell A
is compact, then this category also coincides with the thick subcategory of compact
objects in C (B,A).

Finally, we record some relationships between the composition product � and
our notions of compactness and dualizability.

Proposition 16.8.8. Consider X : B −→ A and Y : A −→ C.
(i) If Y is compact and X is .-compact in C, then Y �X is compact.
(ii) If X is compact and Y is /-compact from A, then Y �X is compact.
(iii) If X and Y are .-compact in D, then Y �X is .-compact in D.
(iv) If X and Y are /-compact from D, then Y �X is /-compact from D.

Proof. These follow directly from (16.3.2), (16.3.10), (16.3.11) and the defi-
nitions. �

Observe that we have already proven in Theorem 16.5.1 that �-composites of
right (or left) dualizable objects are right (or left) dualizable. As in [76, 2.1.1(a)],
we have further results of the same nature that mix compactness with dualizability.

Proposition 16.8.9. Consider X : B −→ A and Y : A −→ C.
(i) If X is right dualizable and Y is compact (or .-compact in D), then Y �X

is compact (or .-compact in D).
(ii) If Y is left dualizable and X is compact (or /-compact from D), then Y �X

is compact (or /-compact from D).

Proof. As left adjoints, the functors, Y � (−) and (−) � X commute with
coproducts. The conclusions follow formally from this, the duality adjunctions of
Proposition 16.4.6, the isomorphisms (16.3.10) and (16.3.11), and the isomorphisms
µ and ν of (16.3.13), and (16.3.14). �



CHAPTER 17

The closed symmetric bicategory of parametrized
spectra

Introduction

We change our point of view on parametrized categories by letting the base
space vary and putting the resulting categories together into a single bicategory.
While we could work on the point-set level, the interest lies on the level of derived
homotopy categories. We can work either with ex-spaces or with parametrized
spectra, with identical formal structure and with compatibility via the suspension
spectrum functors. For definiteness, and since the interest is in duality phenomena
that only appear stably, we focus on parametrized spectra. As usual, we generally
write ' for isomorphisms in derived homotopy categories.

Spectra mean G-spectra in this chapter. Equivariance plays no special role.
Fixing G and omitting it from the notation, we construct the bicategory E x of
parametrized spectra in §17.1. We then encode structure relating the various cat-
egories HoGSB in terms of the structure of E x. For this purpose, we introduce
“base change spectra” associated to maps of base spaces in §17.2. These are ana-
logues of the elementary base change bimodules defined in Example 16.3.8. They
allow us to encode all of our base change functors in terms of the bicategory oper-
ations �, /, and .. As we explain in §17.3, the base change spectra come in dual
pairs, and compositions of dualities show that certain base change functors preserve
dual pairs. This is essential to the applications of E x to the study of duality in
parametrized homology and cohomology. Heading towards this, we explain in §17.4
how structure in the ambient bicategory E x informs us about the internal structure
in the individual categories HoGSB .

We return to unfinished business in §17.5, explaining how to prove that the
triangulation of HoGSB is compatible with its symmetric monoidal structure and
showing how that implies the corresponding weak compatibility of the triangulation
of E x with its bicategory composition.

17.1. The definition of the bicategory E x

We shall arrive at structure that is formally similar to that in the bicategory of
bimodules. Although the details work differently, it is helpful to keep the analogy
in mind. We have the external smash product

(17.1.1) Z : HoSA ×HoSB −→ HoSA×B .

It should be viewed as the analogue of the tensor product over R of a left A-module
with a left B-module to give a left A⊗R B-module. That external tensor product
implicitly underlies the construction of the category BR of bimodules. Similarly,

269



270 17. THE CLOSED SYMMETRIC BICATEGORY OF PARAMETRIZED SPECTRA

the external function spectrum functor

(17.1.2) F̄ : HoS op
B ×HoSA×B −→ HoSA

is the analogue of the functor HomR taking a right B-module and an (A,B)-
bimodule to a left A-module.

Construction 17.1.3. We construct the closed bicategory E x of parametrized
spectra over varying base spaces. The 0-cells of E x are the spaces B ∈ U . The
category E x(A,B) of 1-cells and 2-cells from A to B is HoSB×A. (The order of
the factors is dictated by the order in which we write the composition �). Thus
the 1-cells are spectra X over B × A and the morphism set E x(X,Y ) is the set
[X,Y ]B×A of maps in the stable category of spectra over B×A. The essential point
is the construction of the functors

� : E x(B,C)× E x(A,B) −→ E x(A,C),

and for that we need an analogue of the functor ⊗B in the bimodule context. Define

θB : HoSC×B×B×A −→ HoSC×A

to be the composite πC×A!∆
∗
B derived from the maps

C ×A C ×B ×Aπoo ∆ // C ×B ×B ×A

induced by the projection C × B × A −→ C × A and the diagonal map of B;
observe that θB is the identity functor when B is a point. Then define � to be the
composite θB ◦ Z, where the relevant external smash product is

Z : HoSC×B ×HoSB×A −→ HoSC×B×B×A.

The unit UA in E x(A,A) = HoSA×A is defined to be ∆A!SA; it is usually written
A, with the interpretation as a 1-cell being dictated by context. The functor θB
has right adjoint θ∗B = ∆B∗π

∗
C×A, and the left and right internal homs are

Z / Y = F̄ (Y, θ∗BZ) : A −→ B and X . Z = F̄ (X, θ∗BZ) : B −→ C,

where X : A −→ B, Y : B −→ C, and Z : A −→ C.

It is not obvious that � is unital and associative, but these are not hard to show.
For this and other verifications, we make repeated use of the commutation relations
proven in Theorems 13.7.6 and 13.7.7. The former gives the derived projection
formula, among other things, and the latter gives the equality of composite change
of base functors associated to pullback squares in which one arrow being pulled
back is a q-fibration. The triviality that projection maps of cartesian products are
fibrations often makes the fibration hypothesis obvious, but we must be wary of
diagonal maps. The following observation expresses � in terms of internal rather
than external smash products. Our proofs and applications will go back and forth
between the two interpretations. Nothing like this holds in the context of bimodules,
and it is what makes the bicategory E x a useful tool for the study of homology.

Proposition 17.1.4. For X : A −→ B and Y : B −→ C,

Y �X ' πC×A!(π
∗
C×BY ∧C×B×A π∗B×AX) : A −→ C,

where all indicated projections have source C ×B ×A. For Z : A −→ C,

Z / Y ' πB×A∗FC×B×A(π∗C×BY, π
∗
C×AZ) : A −→ B
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and
X . Z ' πC×B∗FC×B×A(π∗B×AX,π

∗
C×AZ) : B −→ C.

Proof. Clearly ∆B : C ×B ×A −→ C ×B ×B ×A factors as the composite
of πC×B×B×A and ∆C×B×A, and ∆∗

B factors accordingly. The second statement
follows from the first by inspection of adjunctions. �

Among other things, the following result implies that � is unital. We indicate
the target of all projection maps and the variable to which diagonal maps are
applied in the statements of this and later results, but to simplify notations we just
write π and ∆ in proofs, relying on context to determine the source and target of
projection maps and the variable to which a diagonal map is being applied.

Proposition 17.1.5. For a spectrum X over A and spectra Y,Z over B ×A,

Y �∆A!X ' Y ∧B×A π∗AX,

∆∗
A(Z / Y ) ' πA∗FB×A(Y,Z) and (∆A!X) . Z ' FB×A(π∗AX,Z).

Symmetrically, for spectra X,W over A×B and a spectrum Y over B,

∆B !Y �X ' π∗BY ∧A×B X,

W / (∆B !Y ) ' FA×B(π∗BY,W ) and ∆∗
B(X .W ) ' πB∗FA×B(X,W ).

Proof. By Proposition 17.1.4 and Theorems 13.7.7 and 13.7.6, we have

Y �∆!X ' π!(π∗Y ∧B×A×A π∗∆!X)

' π!(π∗Y ∧B×A×A ∆!π
∗X)

' π!∆!((∆∗π∗Y ) ∧B×A π∗X)

' Y ∧B×A π∗X.

The last isomorphism holds since the composite of id×∆A : B×A −→ B×A×A with
either of the projections to B ×A is the identity map, so that both π!∆! ' id and
∆∗π∗ ' id. Passage to adjoints and symmetry give the remaining conclusions. �

Since π∗ASA ' SB×A, the right unit isomorphism Y �A ' Y , where A denotes
the unit ∆A!SA, is now clear from the previous result and the fact that SB×A is
the unit for ∧B×A. Symmetry gives the left unit isomorphism B � X ' X. For
associativity, we check that for X : A −→ B, Y : B −→ C and Z : C −→ D, both
Z � (Y �X) and (Z � Y )�X are isomorphic to

πD×A!(∆C ×∆B)∗(Z Z Y ZX).

For the second of these isomorphisms, we use the following commutative diagram,
in which the diamond is a pullback.

D × C × C ×B ×B ×A

D × C ×B ×A
∆B //

∆C×∆B

OO

π

**VVVVVVVVVVVVVVVVVV

π

��

D × C ×B ×B ×A

∆C

jjVVVVVVVVVVVVVVVVVV

π

))TTTTTTTTTTTTTTT

D ×A D ×B ×Aπ
oo

∆B

// D ×B ×B ×A
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We obtain (Z � Y )�X by applying base change functors coming from the zig-zag
along the hypotenuse and the bottom side of the outer triangle to Z Z Y ZX, and
commutation relations derived from the diagram give the required isomorphism.

Turning to the analogue for symmetry, we next construct the symmetric struc-
ture on E x. Since there is no “opposite” to a space, t is the identity on 0-cells,
but it is not the identity on the morphism categories between them. Recall from
Remark 2.5.4, extended to spectra, that Z in (17.1.1) has a natural symmetry iso-
morphism

γ : Y ZX −→ t∗(X Z Y )
where t : B×A −→ A×B denotes the interchange map, which is not to be confused
with the commutativity isomorphism γ for the external smash product.

Construction 17.1.6. Define tB = B on 0-cells. Using the interchange map
t, define

t = t∗ : E x(A,B) = HoSB×A −→ HoSA×B = E x(B,A).
For 1-cells Y : B −→ C and X : A −→ B, we must define an isomorphism

γ : t∗X � t∗Y −→ t∗(Y �X)

of spectra over A× C. We have a pair of pullback squares

C ×A

t

��

C ×B ×A

t′

��

πoo ∆B // C ×B ×B ×A

t′′

��
A× C A×B × Cπoo ∆B // A×B ×B × C

where t′(c, b, a) = (a, b, c) and t′′(c, b, b′, a) = (a, b′, b, c) = t(t × t)(c, b, b′, a). Com-
muting derived functors (−)∗ and (−)! and commuting functors both of the form
(−)∗, we obtain the composite isomorphism

t∗X � t∗Y = θB(t∗X Z t∗Y )

' θB(t× t)∗(X Z Y )

' θB(t× t)∗t∗(Y ZX)

' θBt′′
∗(Y ZX)

' t∗θB(Y ZX)

= t∗(Y �X).

Remark 17.1.7. Just as the tensor product and Hom over the ground ring
R give BR a structure of ⊗-closed symmetric monoidal bicategory, so the external
smash product of (17.1.1) and the external function spectrum functor F̄ gives rise to
a Z-closed symmetric monoidal structure on the bicategory E x. The unit ∗ −→ E x
is given by the sphere spectrum over a point and its identity map, the product on
0-cells is just the Cartesian product, and

Z : E (A,B)× E (C,D) −→ E (A× C,B ×D)

sends (X,Y ), where X : A −→ B and Y : B −→ Z, to (id × t × id)∗(X Z Y ). The
twist in the middle is needed since X ZY is a spectrum over B×A×D×C and we
require a spectrum over B×D×A×C. The associativity, unity, and commutativity
isomorphisms are all evident. What requires a little work is the verification that
Z is indeed a morphism of bicategories. For Z : A × C −→ B × D, F̄ (X,Z) and
F̄ (Y, Z) give the right and left internal Z-hom functors.
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17.2. Base change spectra

The bicategory E x has still more structure. The 0-cells of E x are the objects
of U , and the morphisms of U induce base change functors that should be viewed
from the perspective of E x as giving change of source and target functors. Here the
context of Example 16.2.5 would be needed to build maps of base spaces themselves
into an enlargement of the bicategory E x. Remember that E x(A,B) = HoGSB×A.
For a map f : A −→ A′, the base change functor

(idB × f)∗ : HoGSB×A′ −→ HoGSB×A

should be thought of as a change of source functor in E x:

E x(f∗, id) : E x(A′, B) −→ E x(A,B).

This change of source functor has left and right adjoint change of source functors

(idB × f)! = E x(f!, id) and (idB × f)∗ = E x(f∗, id).

Similarly, for a map g : B −→ B′, the base change functor

(g × idA)∗ : HoGSB′×A −→ HoGSB×A

should be thought of as a change of target functor in E x:

E x(id, g∗) : E x(A,B′) −→ E x(A,B).

It has left and right adjoint change of target functors

(g × idA)! = E x(id, g!) and (g × idA)∗ = E x(id, g∗).

We shall use the notations in terms of id × f and g × id to limit the problem
of incessant translation between two notations for the same functor, but we are
thinking in terms of change of source and target in E x. As we now explain, this
structure is actually internal to the bicategory E x. If we regard U as a bicategory
(in fact 2-category) with only identity 2-cells, then there is a bifunctor U −→ E x
which is the identity on 0-cells but sends a 1-cell f : B −→ A to a 1-cell Sf : B −→ A.
It comes with a companion twisted 1-cell tSf : A −→ B, and we call both Sf and
tSf “base change spectra”. When f = idA, these are both the unit 1-cell ∆!SA = A.
We are particularly interested in the case r : B −→ ∗, when Sr is just the sphere
spectrum SB viewed as a 1-cell B −→ ∗. The change of source and target functors
are given by operations �, /, and . with base change spectra. In the next section,
we will see that the pairs (tSf , Sf ) play an important role in duality theory in E x.

Definition 17.2.1. For a map f : B −→ A, define the base change spectrum
Sf : B −→ A by

Sf = Σ∞A×B(B, (f, id))+ ' (f, id)!SB .
Recall that (B, (f, id))+ denotes the ex-space over A × B obtained by adjoining a
disjoint section to (f, id) : B −→ A×B. Define the (left dual) base change spectrum
tSf : A −→ B by

tSf = Σ∞B×A(B, (id, f))+ ' (id, f)!SB .

It is vitally important to remember the source and target of these 1-cells. How-
ever, ignoring the source and target, Sr ' SB ' tSr as spectra over B. These base
change spectra are obtained by change of source and target from unit 1-cells in E x.

Proposition 17.2.2. For f : B −→ A, there are canonical equivalences

(f × id)!B ' Sf ' (id× f)∗A and (id× f)!B ' tSf ' (f × id)∗A.
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Proof. Since B = ∆!SB , (f × id)∆ = (f, id), and (id× f)∆ = (id, f), the left
hand equivalences of each displayed pair are clear. Passage to homotopy categories
is immediate since the functors involved are Quillen left adjoints. On the point-
set level of ex-spaces, we obtain right hand equivalences in the displayed pairs
by inspection of the pushouts and pullbacks that define the relevant base change
functors. The verifications are easy since all sections in sight are adjoined disjointly.
However, passage to homotopy categories is less immediate, and we switch to our
direct means of passage to homotopy categories. If f is an h-fibration, we apply
the ex-fibrant approximation functor P to the ex-space Sf ∼= (id × f)∗∆!S

0
B . We

may commute P past (id × f)∗ since id × f is an h-fibration. Therefore PSf '
(id × f)∗P∆!S

0
A, which gives the derived identity in HoGWA×B ' HoGKA×B .

We factor a general map f as the composite f = g ◦ h, where h is a homotopy
equivalence and g is an h-fibration. We then have the chain of fp-equivalences

Sg ' PSg ∼= P (id× g)∗∆!SA ' (id× g)∗P∆!SA

of ex-fibrations. We apply the equivalence (id× h)∗, which preserves ex-fibrations,
to obtain the general case in HoGKA×B . Finally, we apply Σ∞A×B on the derived
level, which commutes with all the relevant functors. �

We next investigate how change of source or target interacts with horizontal
composition. For composites A −→ B −→ C, we show that change of the source
A or target C commutes with horizontal composition. We will then use this result
to prove the promised encoding of changes of source and target as operations with
base change spectra. In turn, that will allow us to reinterpret the following result
as a collection of associativity relations, and then further associativity relations will
relate change of the 0-cell B to horizontal composition.

Proposition 17.2.3. Suppose given 1-cells

A
X // B

Y // C.

(i) For maps of base spaces f : A −→ A′ and h : C −→ C ′,

(h× id)!Y � (id× f)!X ' (h× f)!(Y �X) : A′ −→ C ′.

(ii) For maps of base spaces f : A′ −→ A and h : C ′ −→ C,

(h× id)∗Y � (id× f)∗X ' (h× f)∗(X � Y ) : A′ −→ C ′.

Proof. Both (i) and (ii) can be proven in two ways, either using the definition
of� in terms of external smash products or its description in terms of internal smash
products. For the first way, we start the proof by using the evident relation

(h× id× id× f)!(Y ZX) ' (h× id)!Y Z (id× f)!X

or
(h× id× id× f)∗(Y ZX) ' (h× id)∗Y Z (id× f)∗X.

By composition, it suffices to prove the result when either f = id or h = id. We
can commute functors that are both of the form (−)! or both of the form (−)∗

associated to a commutative diagram, and we can commute functors (−)! and (−)∗

associated to a pullback diagram in which one pair of parallel arrows is given by
q-fibrations. Using the first way and taking f or h to be the identity map, such
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commutation relations already imply (i). For (ii), we use the second way. In the
case h = id, the proof then goes as follows.

Y � (id× f)!X ' π! (π∗Y ∧C×B×A π∗(id× f)!X)

' π!(π∗Y ∧C×B×A (id× id× f)!π∗X)

' π!(id× id× f)! ((id× id× f)∗π∗Y ∧C×B×A′ π∗X)

' (id× f)!π! (π∗Y ∧C×B×A′ π∗X)

' (id× f)!(Y �X)

Here the second and fourth equivalences use evident pullback squares of base spaces,
and the third equivalence is an application of the projection formula. �

Proposition 17.2.4. For a map f : A −→ A′ of 0-cells, change of source is
given by

Y � Sf ' (id× f)∗Y ' tSf . Y : A −→ B,

X � tSf ' (id× f)!X : A′ −→ B and Sf . X ' (id× f)∗X : A′ −→ B

for 1-cells X : A −→ B and Y : A′ −→ B. Similarly, for a map g : B −→ B′ of
0-cells, change of target is given by

tSg � Z ' (g × id)∗Z ' Z / Sg : A −→ B,

Sg �X ' (g × id)!X : A −→ B′ and X / tSg ' (g × id)∗X : A −→ B′

for 1-cells X : A −→ B and Z : A −→ B′.

Proof. The four equivalences involving the horizontal composition � are im-
mediate from Proposition 17.2.2 and the cases h = id and f = id of Proposi-
tion 17.2.3, with X or Y taken to be a unit 1-cell. For example,

(g × id)!X ' (g × id)!(B �X) ' (g × id)!B �X ' Sg �X.

The four equivalences involving the left or right hom functors / or . follow formally
by use of the Yoneda lemma. For example,

E x(Y, Sf . X) ∼= E x(Y � Sf , X) ∼= E x((id× f)∗Y,X) ∼= E x(Y, (id× f)∗X). �

Remark 17.2.5. With notations for dual spectra to be introduced in the next
section, the first and third display of the proposition gives that DrtSf ' Sf when
Y is the unit 1-cell A′ and that D`Sg ' tSg when Z is the unit 1-cell B′.

The functoriality of the base change spectra is an immediate consequence.

Corollary 17.2.6. If f : B −→ A and g : C −→ B are maps of 0-cells, then

Sf � Sg ' Sfg and tSg � tSf ' tSfg.

Proof. For the first, we have

Sf � Sg ' (f × id)!Sg ' (f × id)!(g × id)!C ' (fg × id)!C ' Sfg.

The second follows by applying t. �

The first equivalence of Proposition 17.2.3 can now be reinterpreted as the
associativity equivalence

(Sh � Y )� (X � tSf ) ' Sh � (Y �X)� tSf ,
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and similarly for the second. The further associativity relations

Y � (Sg �X) ' (Y � Sg)�X and (Y � tSg)�X ' Y � (tSg �X)

give us the promised relationship between horizontal composition and base change
in the 0-cell at which we are composing.

Proposition 17.2.7. Suppose given 1-cells X : A −→ B and Y : B′ −→ C.

(i) For a map of base spaces g : B −→ B′,

Y � (g × id)!X ' (id× g)∗Y �X.

(ii) For a map of base spaces g : B′ −→ B,

(id× g)!Y �X ' Y � (g × id)∗X.

By conjugating adjunctions, we can obtain still more such relationships.

Remark 17.2.8. There are alternative lines of development here, and the de-
tails of one of them will become relevant later. Instead of first proving Propo-
sition 17.2.3, we could first prove the three equivalences involving � of Proposi-
tion 17.2.4 and then deduce Proposition 17.2.3 and the rest of the results of this
section. To show directly that Y �Sf ' (id×f)∗Y : A′ −→ B for a map f : A −→ A′

and a 1-cell Y : A′ −→ B, consider the following diagram.

B ×A

idB×(f,idA)

��

idB×(f,idA) // B ×A′ ×A π //

∆A′

��

B ×A

id×f

��

B ×A′ ×A

π

��

idB×A′×(f,idA)
// B ×A′ ×A′ ×A

B ×A′
id

// B ×A′

We start with Y over B ×A′ in the lower left corner. We observe that

(17.2.9) π∗Y ' π∗B×A′Y ∧B×A′×A SB×A′×A ' π∗B×A′Y ∧B×A′×A π∗ASA ' Y Z SA

by the unit isomorphism for ∧B×A′×A, Theorem 13.7.6, and the identification of
external smash products of Lemma 2.5.5. By the definition of � and Sf , we obtain
Y � Sf by starting with Y , pulling up along π, pushing right, pulling up, and
pushing right. Of course, we obtain (id × f)∗Y by pushing right and pulling up
and, since the composite on the top row is the identity map, this is equivalent to
pulling up along the left column and pushing forward along the top row. Thus it
suffices to show that if we start with π∗Y , then the canonical map from pulling
up and then pushing forward to pushing forward and then pulling up (as in the
proof of Proposition 2.2.11) is an equivalence. To see this, we expand the upper
left square by factoring its vertical maps as the vertical composites in the following
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diagram. To simplify notation, let g = idB × (f, idA).

B ×A

(g,idB×A)

��

g // B ×A′ ×A
∆B×A′×A

��
B ×A′ ×A×B ×A

idB×A′×A×g //

π125

��

B ×A′ ×A×B ×A′ ×A
π1256

��
B ×A′ ×A

idB×A′×(f,idA)
// B ×A′ ×A′ ×A

The upper pullback gives the projection formula for g when one starts in the lower
left corner with X Z Y where X is over B ×A′ ×A and Y is over B ×A. Pushing
right and then pulling up gives X ∧B×A′×A g!Y whereas pulling up and pushing
right gives g!(g∗X∧B×AY ). The natural map from the latter to the former induces
the equivalence of the projection formula. The lower pullback involves projections
and therefore gives an analogous equivalence.

17.3. Duality of base change spectra

In analogy with Example 16.4.2, we prove that (tSf , Sf ) is a dual pair, where
f is a map B −→ A. Note the order. We are particularly interested in the case
r : B −→ ∗, and it would be awkward to have to translate A to B rather than A to
∗. Recall that we have a 1-cell tX : A −→ B associated to a 1-cell X : B −→ A.

Theorem 17.3.1. For any map f : B −→ A, (tSf , Sf ) is a dual pair.

Proof. We emphasize that this does not imply that (Sf , tSf ) is a dual pair.
We shall explain why in the course of the proof. Let us begin by working on the
ex-space level. All of our definitions, including the composition �, make sense on
the point-set level, and here we have the elementary relation

(A, p)+ Z (B, q)+ ∼= (A×B, p× q)+.
We use this to calculate:

tS0
f � S0

f = πB×B !(idB ×∆A × idB)∗((B, (id, f))+ Z (B, (f, id))+.

We find that this is (f × f)∗(A,∆)+, and the diagonal map of B gives

η : ∆!S
0
B = (B,∆)+ −→ (f × f)∗(A,∆)+ ∼= tS0

f � S0
f .

When A = ∗ and f = r, (r × r)∗(∗,∆) = B ×B and the map is

η = ∆+ : (B,∆)+ −→ (B ×B, id)+.

Observe that one cannot expect to have a map pointing the other way. When f = r,
such a map would require a product B × B −→ B over B × B, which is absurd.
Similarly,

S0
f � tS0

f = πA×A!(idA ×∆B × idA)∗((B, (f, id))+ Z (B, (id, f))+).

We find that this is (B, (f, f))+ over A×A. Clearly f itself gives a map

ε : S0
f � tS0

f
∼= (B, (f, f))+ −→ (A,∆)+ = ∆!S

0
A.

When A = ∗ and f = r,

ε = r+ : B+ = (B, r)+ −→ (∗, id)+ = S0.
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Observe again that, for a general map f , there is no map pointing the other way.
When f = r, such a map would be a choice of basepoint in B. The commutativity
of the space level diagrams, on the point-set level, is proven by a tedious, but
straightforward, expansion of terms and inspection of definitions, which is especially
simple when f = r, where it reduces to the fact that r : B −→ ∗ is a counit for the
diagonal ∆: B −→ B × B. Applying parametrized suspension spectrum functors,
which commute with functors of the form (−)!, (−)∗, and (−)Z(−), and noting that
all functors in sight are Quillen left adjoints (at least if B and A are CW complexes),
we see that this point-set level duality gives rise to a corresponding duality after
passage to parametrized spectra and derived homotopy categories. �

Remark 17.3.2. For concreteness, we extract the following observations from
the proof. Remember that Sr and tSr denote SB regarded as a 1-cell B −→ ∗ or
∗ −→ B. The coevaluation map

η : ∆!SB ' Σ∞B×B(B,∆)+ −→ Σ∞B×B(B ×B, id)+ ' tSr � Sr
is induced by ∆: B −→ B × B, viewed as a map (B,∆)+ −→ (B × B, id)+ of
ex-spaces over B ×B, while the evaluation map

ε : Sr � tSr ∼= Σ∞B+ −→ Σ∞∗+ = S

is induced by r : B −→ ∗, viewed as a map (B, r)+ −→ (∗, id)+ of ex-spaces over ∗.

The following result is fundamental, but its proof is now very easy.

Theorem 17.3.3. If X : B −→ A is right dualizable with right dual Y : A −→ B
and f : B −→ C is any map, then (id×f)!X : C −→ A is right dualizable with right
dual (f × id)!Y : A −→ C.

Proof. We just reinterpret the base change functors in terms of composition
with base change spectra and apply Theorem 16.5.1. Precisely, translating along
Theorem 17.3.1, the conclusion is that (X � tSf , Sf � Y ) is a dual pair. Since
(tSf , Sf ) is a dual pair by Theorem 17.3.1, our formal result Theorem 16.5.1 on
composites of duals shows how to define the required coevaluation and evaluation
maps in terms of the given ones. �

Although it is much less useful to us, we have another result of the same nature.

Theorem 17.3.4. If X : B −→ A is right dualizable with right dual Y : A −→ B
and f : C −→ A is any map, then (f × id)∗X : B −→ C is right dualizable with
right dual (id× f)∗Y : C −→ B.

Proof. This just says that (tSf �X,Y � Sf ) is a dual pair. �

17.4. Using E x to encode relations between HoGSB and HoGS

We are interested primarily in the relationships between the two isomorphic
copies E x(∗, B) and E x(B, ∗) of HoGSB in E x and the copy E x(∗, ∗) of HoGS .
These relationships are clarified conceptually by working in the ambient bicategory
E x, where it is natural to bring E x(B,B) into play. We will explain the role that
E x(B,B) plays in its own right at the end of the section. To avoid ambiguity in
the meaning of �, we adopt the following notational convention, which agrees with
our categorical formalism concerning interchange maps such as t : ∗×B −→ B×∗.
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Notations 17.4.1. A spectrum can and must be viewed as a 1-cell ∗ −→ ∗.
By default, we view a spectrum X over B as a 1-cell B −→ ∗. We write tX for the
same spectrum over B viewed as a 1-cell ∗ −→ B. Thus, for spectra X and Y over
B, X� tY : ∗ −→ ∗ is a spectrum, but tY �X : B −→ B is a spectrum over B×B.

The point is that, when working in E x, we must always remember the source
and target of our 1-cells. However, when we draw conclusions in HoGSB , we
can forget the distinction since that category, by itself, is unaware of the ambient
bicategory E x that is informing us about its internal structure.

Taking two of A, B, and C to be a point, Proposition 17.1.4 specializes to give
a dictionary relating smash product and function spectra to �, /, and ..

Proposition 17.4.2. Let X and Y be spectra over B and let Z be a spectrum.
As spectra,

Y � tX ' r!(Y ∧B X) and tY / tX ' r∗FB(X,Y ) ' X . Y.

As spectra over B,

tX � Z ' X Z Z, Z �X ' Z ZX and Z / X ' FB(X, r∗Z) ' tX . Z.

As spectra over B ×B,

tY �X ' Y ZX.

Here we have used Lemma 2.5.5 to rewrite some of these in simpler external
form than the specialization of Proposition 17.1.4 gives directly. Similarly, taking
A or B to be a point, Proposition 17.1.5 specializes to give the following description
of smash products and function spectra over B in terms of the bicategory structure.

Proposition 17.4.3. Let X and Y be spectra over B. Then

∆!X � tY ' X ∧B Y ' X �∆!Y,

∆!X . Y ' FB(X,Y ) ' ∆∗(X . Y ) and X /∆!Y ' FB(Y,X) ' ∆∗(X / Y ).

Specialization of Proposition 17.2.4 gives descriptions of all of our base change
functors as bicategory operations with base change spectra.

Corollary 17.4.4. Let f : B −→ A be a map and let X be a spectrum over A
and Y be a spectrum over B, thought of as 1-cells A −→ ∗ and B −→ ∗. Then

f!Y ' Y � tSf and tf!Y ' Sf � tY
X � Sf ' f∗X ' tSf . X and tSf � tX ' tf∗X ' tX / Sf

f∗Y ' Sf . Y and tf∗Y ' tY / tSf .

Using this dictionary, we can translate results on base change to results about
compositions with base change spectra. For example, Theorem 13.7.7 can be inter-
preted in several ways as a statement about such bicategory operations. We can
view the given 1-cells as having target ∗. Applying t to the relations so obtained
gives relations in which we view the given 1-cells as having source ∗. Moreover, each
relation is an equivalence with one pullback (−)∗ on each side, and each pullback
can be expressed in two ways. By symmetry and application of t, all such relations
come from the following ones.
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Theorem 17.4.5. Suppose given a pullback diagram of 0-cells

C
g //

i

��

D

j

��
A

f
// B

in which f or j is a q-fibration. Let X be a spectrum over A and Y be a spectrum
over D. Then

tSj . (X � tSf ) ' X � tSf � Sj ' X � Si � tSg ' (tSi . X)� tSg
and

tSf . (Sj . tY ) ' (Sj . tY )� Sf ' Si . (Y � Sg) ' Si . (tSg . Y ).

Remarkably, although we view E x(B,B) primarily as a part of E x that is
especially helpful for the study of the two copies of HoGSB embedded as the
1-cells B −→ ∗ and ∗ −→ B, it bears its own intrinsically close relationship with
HoGSB . We may view E x(B,B) as a monoidal category under �, with unit object
B = ∆!SB , or we may view both it and the symmetric monoidal category HoGSB

as symmetric bicategories with a single object. Taking the latter point of view, we
have the following observation.

Proposition 17.4.6. The functor ∆! : HoGSB −→ E x(B,B) is a map of
symmetric bicategories.

Proof. By the first display in Proposition 17.1.5, the projection formula, and
the fact that ∆∗π∗ ' id since π ◦∆ = id, we have

∆!X �∆!Y ' ∆!X ∧B×B π∗Y ' ∆!(X ∧B ∆∗π∗Y ) ' ∆!(X ∧B Y ).

It is easily checked that this equivalence is compatible with the unit, associativity,
and symmetry constraints. We are not saying, because it is not true, that the
category E x(B,B) is symmetric monoidal under �, but rather that HoGSB is
mapping into it in a symmetric way. With the language of symmetric bicategories,
the meaning is clear. �

Remark 17.4.7. Continuing with the analogy and contrast between bimod-
ules and parametrized spectra of Examples 16.2.2 and 16.4.3, recall that a com-
mutive R-algebra A is a 0-cell such that tA = A, whereas tB = B for every
space B. The functor ∆! can be viewed as an analogue of the embedding of the
symmetric monoidal category of A-modules as a symmetric monoidal subcategory
of the monoidal category of (A,A)-bimodules. Here again, diagonals in topology
are replaced by multiplications in algebra, since the latter embedding is given by
φ∗ : MA −→ BR(A,A), where φ : A⊗A −→ A is the product of A.

17.5. Sketch proofs of the compatible triangulation axioms

We return to the proof Theorem 15.2.6, which says that HoGSB is a closed
symmetric monoidal category with a compatible triangulation. We have the closed
symmetric monoidal structure and the triangulation, the latter by Lemma 13.1.5.
There are five axioms to prove, (TC1)–(TC5). The statements of the first three are
exactly the same as given in §16.7, except that � and . must be replaced by ∧B and
FB and the unit 1-cells in (TC1) must be replaced by SB ; (TC4) is a strengthened
version of the axiom (TC4) as stated in §16.7.



17.5. SKETCH PROOFS OF THE COMPATIBLE TRIANGULATION AXIOMS 281

The model theoretic method of proof described in [124] assumes the usual model
theoretic compatibilities, such as the pushout-product axiom of [146], and these fail
to hold in the present context. The details of the modified arguments only make
sense by close comparison with the proofs in [124], but we shall at least explain
what is involved. The essential idea is to first verify versions of the axioms using
external smash products and function objects and then pull back along diagonal
maps to obtain the conclusions. Note that the base change functors associated to
a map f of base spaces are exact. We see this for f! since it preserves cofibration
sequences, and it follows for f∗ and f∗ since (left or right) adjoints of exact functors
between triangulated categories are exact.

The axiom (TC1) only involves suspension, in our case ΣB , and is thus easily
checked using Proposition 12.6.4. For (TC2), we must show that the functors
X ∧B (−), FB(X,−), and FB(−, Y ) preserve distinquished triangles, where X and
Y are G-spectra over B. Either model theoretically or by standard topological
arguments with cofiber sequences and fiber sequences, it is easy to see that these
conclusions hold with ∧B and FB replaced by the external functors Z and F̄ . For Z,
we use the proof of Theorem 12.4.2 to arrange level quasi-fibrant cofibers. For FB ,
we remember that the triangulation by fibrations is the negative of the triangulation
by fibrations, as a consequence of Proposition 12.4.5. Since ∆∗ and ∆∗ are exact,
the conclusion internalizes directly.

Similarly, the braid axiom (TC3) and the additivity axiom (TC4) hold for Z by
the arguments explained in [124, §6]. These arguments work with cofiber sequences
in which one uses actual quotients instead of cofibers, but one can transfer the
conclusions to standard cofiber sequences by using the usual equivalence between
quotients and cofibers of Cyl-cofibrations. This works since our s-cofibrations are
Cyl-cofibrations. The essential point is that, on the external level, smash products
of cofibrant objects are cofibrant and one can work with actual cones and cofibers,
modulo the replacement argument of Theorem 12.4.2, just as if we were in a more
naive space level context. These results for the external products pull back along
∆∗ to give the axioms internally in HoGSB . In particular, the constructed central
terms V and W that one obtains in (TC3) and (TC3′) are of the form ∆∗V and
∆∗W for objects V and W in GSB×B .

Before turning to the last axiom, we explain how the weak compatibility axioms
for E x follow from the arguments just given. The morphism category E x(A,B) is
HoSB×A, which is a symmetric monoidal category with a compatible triangulation.
We have a dictionary, Proposition 17.1.4, that translates �, ., and / into the
language of base change functors and smash product and function spectra that
are internal to one or another of the categories HoSB×A, and the axioms involve
distinguished triangles in one such category at a time. This allows us to deduce
the axioms (TC1)–(TC4) for E x directly from the corresponding axioms for the
various categories HoSB and the exactness of base change functors.

The last axiom is the braid duality axiom (TC5) of [124, §4]. It is more subtle
because it involves simultaneous use of ∧B and FB . We describe what it says. We
fix a distinguished triangle

(17.5.1) X
f //Y

g //Z
h //ΣBX,
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and we have a dual distinguished triangle

(17.5.2) DBZ
DBg // DBY

DBf // DBX
DB(Σ−1

B
h)
// ΣBDBZ.

For simplicity, we assume right away that the given spectra X, Y , and Z over B
are fiberwise dualizable. We can apply (TC3) and (TC3′) to both the pair

((f, g, h), (DBg,DBf,DBΣ−1
B h))

and the reverse pair
((DBg,DBf,DBΣ−1

B h), (f, g, h)).
The dual of a diagram (TC3) for the first pair is a diagram (TC3′) for the second
pair [124, 4.1.3]. A weakened form of the axiom that suppresses some further
information relating to (TC4) reads as follows. We write the central entry in a
diagram as in (TC3′) for the second pair as W to avoid confusion with (TC3′) for
the first pair, and similarly for the maps that appear in such a diagram.
(TC5) (The braid duality axiom.) There is a diagram as in (TC3′) for the pair of

distinguished triangles ((DBg,DBf,DBΣ−1
B h), (f, g, h)) which satisfies the

following properties.
(a) There is a map ε : W −→ SB such that the following diagram commutes.

(DBZ ∧B Z) ∨B (DBX ∧B X)
(k1,k3) //

(ε,ε)
**VVVVVVVVVVVVVVVVVVVVV W

ε

��

DBY ∧B Y
k2oo

ε

vvmmmmmmmmmmmmmmm

SB

(b) The chosen diagram as in (TC3′) is isomorphic to the dual of a diagram
as in (TC3) for the pair of distinguished triangles

((f, g, h), (DBg,DBf,DBΣ−1
B h)).

The dual of (a) for the coevaluation maps is implied.

Lemma 17.5.3 (TC5a′). For a diagram as in (TC3) for the pair of triangles
((f, g, h), (DBg,DBf,DBΣ−1

B h)) which satisfies (TC5b), there is a map η : SB → V
such that the following diagram commutes.

SB
(η,η)

tthhhhhhhhhhhhhhhhhhhhh

η

��

η

((QQQQQQQQQQQQQQQ

(Z ∧B DBZ) ∨B (X ∧B DBX) V
(j3,j1)oo j2 // Y ∧B DBY

This gives precisely the information that is needed to prove the additivity of
Euler characteristics and trace maps. The observant reader will recognize that it is
not clear how to formulate an analogous axiom for closed symmetric bicategories.

The rest of the section is for the diligent reader who is willing to compare line
by line with [124, §7]. The argument for (TC5) there takes five dense pages, and we
do not want to reproduce it here. Rather, we describe what needs to be changed
in the proof to deal with our more complicated situation.

To have well-behaved point-set level smash products, we must work externally,
using Z and the s-model structure. We begin the argument for (TC5a) by letting
T ∈ GSB×B be a fibrant and cofibrant model of the derived ∆∗SB . We take our
cofiber sequence (f, g, h) in canonical form in GSB , with X, Y , and Z all cofibrant.
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Then F̄ (X,T ) is fibrant, and a cofibrant approximation DBX −→ F̄ (X,T ) gives
a fibrant and cofibrant point-set level model for the derived DBX = FB(X,SB) in
HoGSB . Here we are implicitly using that FB(X,SB) ' F̄ (X,∆∗SB) in HoGSB .
Arguing as in [124, §7], we construct a good point-set level model for the cofibration
sequence (17.5.2) in GSB , using the same notation for its terms. That leads to a
diagram exactly like [124, (7.5)], hence to a diagram like [124, (7.3)], except that
it lies in GSB×B and features an object W there. All of the rest of its terms are
of the form (−) Z (−), except for its target, which is T . The diagram passes to
the homotopy category HoGSB×B , where its target is ∆∗SB . The adjoint of the
resulting diagram, which is obtained by applying ∆∗ and then the evaluation map
∆∗∆∗SB −→ SB , is the diagram called for in (TC5a).

Following the proof of (TC5b) in [124, §7], the next step would be to obtain a
good point-set level model for the natural duality map

ξ : DBX ∧B Y −→ DB(X ∧B DBY ),

starting from good point-set level models for DBX and DBY as in the previous
paragraph. The argument there begins by constructing a map r : T ∧ T −→ T
and using it to obtain a point-set level map F (X,T ) ∧ F (Y, T ) −→ F (X ∧ Y, T ) of
models for duals in the relevant point-set level category. This makes no sense in
our external context. Specializing the general categorical definition, ξ in HoGSB

is the adjoint of the map

DBX ∧B Y ∧B X ∧B DBY ' DBX ∧B X ∧B DBY ∧B Y
ε∧Bε //SB ∧B SB ∼= SB ,

where the equivalence is given by commutation equivalences γ. A Yoneda lemma
argument shows that we have an equivalence

∆∗
BF̄ (V,∆B×B

∗ SB×B) ' F̄ (∆∗
BV,∆B

∗ SB) ' DB(∆∗
BV)

in HoGSB for V ∈ GSB×B , where we use subscript and superscript B and B ×B
to indicate the space whose diagonal map is intended.

Working in HoGSB×B , with X, Y in GSB , we have a natural map

∆B
∗ X Z ∆B

∗ Y

η

��
∆B×B
∗ ∆∗

B×B(∆B
∗ X Z ∆B

∗ Y )

'
��

∆B×B
∗ (∆∗

B∆B
∗ X Z ∆∗

B∆B
∗ Y )

∆B
∗ (εZε)
��

∆B
∗ (X Z Y ).

The equivalence in the middle is a base change equivalence coming from the trivial
observation that (id∧γ∧ id)◦ (∆B×∆B) = ∆B×B . Taking X = Y = SB and using
that SB Z SB is isomorphic to SB×B , we obtain a map

∆∗SB Z ∆∗SB −→ ∆∗SB×B .

Letting U ∈ GSB×B×B×B be a fibrant and cofibrant model for ∆∗SB×B , we
can represent the displayed map in HoGSB×B by a map r : T Z T −→ U in
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GSB×B×B×B . We have a natural point set level pairing

F̄ (X,T ) Z F̄ (Y, T ) −→ F̄ (X Z Y, T Z T )

of spectra over B ×B. Composing with r, we obtain a pairing

F̄ (X,T ) Z F̄ (Y, T ) −→ F̄ (X Z Y, U).

Using a cofibrant approximation DBY −→ F̄ (Y, T ) and the evaluation map for Y ,
we obtain a composite map DBY Z Y −→ F̄ (Y, T ) Z Y −→ T with adjoint map
Y −→ F̄ (DBY, T ). The required point-set level model for ξ is obtained by applying
∆∗ to the composite

DBX Z Y −→ F̄ (X,T ) Z F̄ (DBY, T ) −→ F̄ (X ZDBY, U).

At precisely this point in the cited proof of [124, §7], where a model for ξ has
just been obtained, the notation D′X is introduced for F (X,T ). We instead define
D′(V) = F̄ (V, U) for V ∈ GSB×B . Now we carry out our diagram chasing exactly
as in [124, §7], but working in GSB×B with our new functor D′. After constructing
all of the diagrams of the proof on the point-set level there and passing to homotopy
categories, we apply ∆∗, remembering that it is an exact functor. The diligent
reader will see that the argument then goes through verbatim to give (TC5b).



CHAPTER 18

Costenoble-Waner duality

Introduction

We specialize the theory of duality from Chapters 16 and 17 to the theory
of Costenoble-Waner duality in the category of G-spectra over B in §18.1. The
similarity with Spanier-Whitehead duality will be evident. The essential point is to
identify dual parametrized spectra in the Costenoble-Waner sense. We show in §18.2
that retracts of finite cell spectra over B (in the s-model structure) are dualizable
and that the compact spectra over B are precisely the dualizable spectra over B.
As we shall explain, we do not know how to prove conversely that a dualizable
spectrum is a retract of a finite cell spectrum.

We also do not have a direct proof that the single-cell spectra over B are
Costenoble-Waner dualizable, which of course is the starting point for the inductive
proof that all finite cell spectra over B are dualizable. However, parametrized
Atiyah duality implies that they are. We recall that single-cell spectra arise from
(non-fibrant) sphere spaces over B and that the (invertible) sphere spectrum SB
over B is not among them. For this reason, intuition from the classical case is
misleading. Equivariantly, duality of single-cell spectra is in any case non-trivial
since Atiyah duality specializes to give the dualizability of orbit spectra.

We prove parametrized Atiyah duality for smooth G-manifolds in §18.6. This
reproves the classical Atiyah duality theorem since the functor r! preserves dual
pairs. In fact, as advertised in Example 0.0.3, we give a relative version that appears
to be new even in the non-parametrized case. It gives an explicit description of the
Spanier-Whitehead dual of M/L, where M is a smooth closed manifold and L is a
smooth closed submanifold. We treat the more usual relative case of manifolds with
boundary in §18.7. In both versions, Atiyah duality is a special case of a general
space level Costenoble-Waner duality theorem for G-ENR pairs that we explain
in §18.5 and prove in §18.8, following Costenoble and Waner [41, 4.2.8]. Their
proof relies for details on the non-parametrized treatment given in [98, III.§4], and
we give a more self-contained account. We begin work in §18.3 by showing how
to deduce spectrum level Costenoble-Waner duality from space level Costenoble-
Waner duality, and we give preliminaries on relative mapping cones in §18.4.

Equivariance adds no extra difficulties in this chapter. We assume that a given
compact Lie group G acts on all of our spaces and spectra, and we generally omit
G from the notations except for occasional emphasis. We assume that all base
G-spaces have the homotopy types of G-CW complexes. Here again, “equivalence”
means isomorphism in the relevant stable homotopy category and is denoted by '.

285
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18.1. The two notions of duality in HoGSB

In §15.1 we discussed fiberwise duality for parametrized spectra X in HoGSB

and defined the fiberwise dual of X to be

DBX = FB(X,SB) ' F̄ (X,∆∗SB).

There is another notion of duality in HoGSB . Costenoble and Waner discovered
it in [41], and we therefore name it after them. The Costenoble-Waner dual of X
in HoGSB is

DCW
B X = F̄ (X,∆!SB).

In this section, we describe both notions of duality as special cases of duality in the
bicategory E x of parametrized spectra.

Recall that, by the conventions of Notations 17.4.1, we implicitly view a para-
metrized spectrum X over B as a 1-cell X : B −→ ∗ in the bicategory E x, writing
tX for the opposite 1-cell tX : ∗ −→ B. Here the spaces ∗ and B are 0-cells,
but we also write ∗ and B for the unit 1-cells S in GS = E x(∗, ∗) and ∆!SB in
GSB×B = E x(B,B). We have four duals with respect to these 1-cells. The ones
with respect to ∗ are

D`X = ∗ / X : ∗ −→ B and DrtX = tX . ∗ : B −→ ∗,
and the ones with respect to B are

D`tX = B / tX : B −→ ∗ and DrX = X . B : ∗ −→ B.

First we consider the duals with respect to ∗. We have that tX is right dualiz-
able if and only if X is left dualizable, and tD`X ' DrtX. Therefore, these duals
have the same underlying spectrum over B, which by Proposition 17.1.4 is

FB(X, r∗S) ' FB(X,SB).

Said another way, (tX, Y ) is a dual pair if and only if (tY,X) is a dual pair, and
then the underlying spectrum of Y is equivalent to FB(X,SB). The evaluation and
coevaluation maps of the two pairs correspond under application of the involution
t in our symmetric bicategory. By the following result, this notion of duality in E x
is equivalent to fiberwise duality.

Proposition 18.1.1. Let X and Y be spectra over B. Then a pair of maps

η : ∆!SB −→ tX � Y and ε : Y � tX −→ S,

represent (tX, Y ) as a dual pair if and only if their adjoint maps

η̄ : SB −→ X ∧B Y and ε̄ : Y ∧B X −→ SB ,

represent (X,Y ) as a fiberwise dual pair.

Proof. The respective adjoints are taken with respect to the adjunctions
(∆!,∆∗) and (r!, r∗). This makes sense since tX�Y = XZY and thus ∆∗(tX�Y ) =
X ∧B Y and since Y � tX = r!(Y ∧B X) and SB = r∗S. Expanding everything out
in terms of external smash products and base change maps associated to r and ∆,
we find by easy but laborious diagram chases that the defining triangle identities
are equivalent. Alternatively, we can check that ε satisfies the condition required
of a coevaluation map if and only if ε̄ does, and similarly for η and η̄. For the for-
mer, let W be a spectrum over B, let Z be a spectrum, and consider the following
diagram, in which C stands for HoGS and CB stands for HoGSB .
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CB(W, r∗Z ∧B Y )
(−)∧BX//

(−)�tX **UUUUUUUUUUUUUUUUU CB(W ∧B X, r∗Z ∧B Y ∧B X)
ε̄∗ //

r!

��

CB(W∧B , r∗Z ∧B SB)

r!

��
C (W � tX, Z � Y � tX)

(r!ε̄)∗ //

ε∗
**VVVVVVVVVVVVVVVVVV C (W � tX, Z � r!SB)

counit

��
C (W � tX, Z � S)

The composite on the top row is the map ε̄]. It is an isomorphism if X is fiberwise
dualizable with evaluation ε̄. We have r∗Z ∧B Y ∼= Z � Y , by Proposition 17.1.5,
and the composite on the hypotenuse is the map ε] of Proposition 16.4.6(ii). It
is an isomorphism if (tX, Y ) is a dual pair with evaluation map ε. The upper
vertical arrows are obtained by applying r! to maps and using the projection formula
and Proposition 17.1.4 to identify the target objects. The lower vertical arrow is
induced by the counit r!SB = r!r

∗S −→ S of the adjunction (r!, r∗), and the vertical
composite on the right is the adjunction isomorphism.

For the latter, let both W and Z be spectra over B and consider the following
diagram, in which CB and CB×B stand for HoGSB and HoGSB×B .

CB(∆!W � tX, tZ)
(−)�Y //

(−)∧BY **UUUUUUUUUUUUUUUUU CB×B(∆!W � tX � Y, tZ � Y )
η∗ //

∆∗

��

CB×B(∆!W �∆!SB , tZ � Y )

∆∗

��
CB(W ∧B X ∧B Y, Z ∧B Y )

(∆∗η)∗ //

η̄∗ ++WWWWWWWWWWWWWWWWWWWW CB(W ∧B ∆∗∆!SB , Z ∧B Y )

unit

��
CB(W ∧B SB , Z ∧B Y )

The composite on the top row is the map η] of Proposition 16.4.6(iii). It is an
isomorphism if tX is right dualizable with coevaluation η. We have ∆!W � tX '
W ∧B X, by Proposition 17.4.3, and the composite on the hypotenuse is the map
η̄]. It is an isomorphism if X is fiberwise dualizable with coevaluation map η̄. If
U : B −→ B is a 1-cell, then ∆!W �U ' π∗W ∧B×B U , by Proposition 17.1.4, and
therefore ∆∗(∆!W � U) ' W ∧B ∆∗U . Also note that tZ � Y ' Z Z Y . Using
the last two observations, the upper vertical arrows are obtained by applying ∆∗ to
maps. The lower vertical arrow is induced by the unit of the (∆!,∆∗) adjunction,
and the vertical composite on the right is the adjunction isomorphism. �

We now turn to the duals with respect to B. We have that X is right dualizable
if and only if tX is left dualizable, andD`tX ' tDrX. Therefore, the two duals have
the same underlying spectrum over B which we identify using Proposition 17.1.4.

Definition 18.1.2. LetX be a spectrum over B. Define the Costenoble-Waner
dual spectrum of X in HoGSB to be

DCW
B X = F̄ (X,∆!SB).

Viewed in two ways as a 1-cell in E x,

DCW
B X ' B / tX = D`tX : B −→ ∗ and tDCW

B X ' X . B = DrX : ∗ −→ B.
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We say that X is Costenoble-Waner dualizable with dual Y if (X, tY ), or equiv-
alently (Y, tX), is a dual pair in E x, and then the underlying spectrum of Y is
equivalent to DCW

B X.

Note for consistency with Proposition 17.1.4 that Lemma 2.5.5 gives

π1∗FB×B(π∗2X,∆!SB) ' F̄ (X,∆!SB) ' π2∗FB×B(π∗1X,∆!SB).

Remark 18.1.3. To reiterate, let us be precise about the specializations of
right and left duality that are visible to us now. For two spectra X and Y over
B to be Costenoble-Waner duals, or equivalently for (X, tY ) to be a dual pair of
1-cells, we must have maps

η : S −→ X � tY and ε : tY �X −→ ∆!SB

such that the appropriate diagrams commute. However, for two spectra X and Y
to be fiberwise duals, or equivalently for (tX, Y ) to be a dual pair of 1-cells, we
must have maps

η : ∆!SB −→ tX � Y and ε : Y � tX −→ S

such that the appropriate diagrams commute. As we have seen in the case of SB
and tSB , these are wholly different conditions.

Propositions 16.4.6 and 16.4.12 give three ways of thinking about the following
formal consequence of the definition.

Proposition 18.1.4. A spectrum X over B is Costenoble-Waner dualizable
with dual Y if and only if Y is Costenoble-Waner dualizable with dual X, and then
DCW
B DCW

B X is equivalent to X.

Of course, the analogue for fiberwise duality also holds. We record the most
important consequence of Costenoble-Waner duality. In view of Proposition 17.4.2,
it is an immediate reinterpretation of Proposition 16.4.12.

Proposition 18.1.5. If X is a Costenoble-Waner dualizable spectrum over B
and J is any spectrum over B, then

µ : r!(J ∧B DCW
B X) ' J � tDCW

B X −→ X . J ' r∗FB(X, J)

is an equivalence of spectra.

Our general duality theory in E x reduces in the case A = B = ∗ to Spanier-
Whitehead duality theory in the stable homotopy category HoGS , and Theo-
rem 17.3.3 specializes to give the following result.

Corollary 18.1.6. If the sphere spectrum SB over B is Costenoble-Waner
dualizable, then Σ∞B+ is dualizable in the classical sense.

Proof. As noted in Lemma 15.3.1, r!SB ' Σ∞B+. �

18.2. Costenoble-Waner dualizability of finite cell spectra

We explain the proof of the following two results in this section.

Theorem 18.2.1. If a spectrum X over B is a wedge summand in HoGSB of
a finite cell spectrum, then X is Costenoble-Waner dualizable.

Recall the notion of a compact object in a triangulated category from Defini-
tion 13.1.8.
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Theorem 18.2.2. A spectrum X over B is compact if and only if it is Coste-
noble-Waner dualizable.

Putting these results together, we obtain the following immediate consequence.

Corollary 18.2.3. A retract of a finite cell spectrum over B is a compact
object of HoGSB.

This result may seem obvious at first sight, but in view of Warning 7.5.16 it
is actually rather surprising. We would not know how to prove it directly, without
use of the theory of dualizable objects. One might ask whether the converse of
Theorem 18.2.1 (or equivalently Corollary 18.2.3) is true, and we will return to
that question after proving the theorems. It is convenient to use the following
shorthand language.

Definition 18.2.4. An ex-space K over B is said to be Costenoble-Waner
dualizable if Σ∞BK is Costenoble-Waner dualizable in HoGSB .

The first and main step in the proof of Theorem 18.2.1 is a special case of the
parametrized Atiyah duality theorem, which we will explain in a more precise form
than is needed here in §18.5 below.

Theorem 18.2.5. If M is a smooth compact G-manifold, then the sphere ex-
space S0

M over M is Costenoble-Waner dualizable.

Corollary 18.2.6. For H ⊂ G and n ≥ 0, S0
G/H×Sn is Costenoble-Waner

dualizable.

To generalize from spheres S0
M to ex-spaces over general base spaces, we use

a quick trick that we learned from Costenoble and Waner [41]. It is based on the
following elementary observation.

Lemma 18.2.7. For a space (K, p) over B, (K, p)+ is isomorphic to p!S
0
K .

Proposition 18.2.8. If S0
K is Costenoble-Waner dualizable and (K, p) is a

space over B, then (K, p)+ is Costenoble-Waner dualizable.

Proof. We apply Theorem 17.3.3 with A = ∗ and f = p. �

Since the domains and targets of our generating s-cofibrations are of the form
(G/H × Sn, p)+ and (G/H ×Dn, p)+, they are Costenoble-Waner dualizable.

Proposition 18.2.9. The cofiber of a map of Costenoble-Waner dualizable
spectra over B is Costenoble-Waner dualizable, and a retract of a Costenoble-Waner
dualizable spectrum over B is Costenoble-Waner dualizable.

Proof. This is implied by Proposition 16.8.1, which says that the full subcat-
egory of right dualizable objects in a triangulated symmetric bicategory is thick,
but of course it could also be proven directly by specializing the proof there. �

Applying this to generating cofibrations and then proceeding by induction on
the number of cells, this implies Theorem 18.2.1. Since the compact spectra over B
are the objects of the thick subcategory generated by a subset DB of the collection
of compact single-cell spectra over B, by Lemma 13.1.11 and Theorem 13.1.14,
Theorem 18.2.2 is a special case of the general result Proposition 16.8.3. That
result gives a further characterization of the thick subcategory of Costenoble-Waner
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dualizable spectra over B as the category of .-compact spectra over B. Since the
generating set DB consists of single-cell spectra over B, another characterization is
that this is the thick subcategory generated by the finite cell spectra over B.

Remark 18.2.10. The converse of Theorem 18.2.1 is equivalent to the assertion
that the retracts up to isomorphism of finite cell spectra over B are themselves the
objects of a thick subcategory of HoGSB . However, a map f : X −→ Y in HoGSB

between finite cell spectra over B can only be realized on the point set level after
fibrant approximation of its target, using [X,Y ] ∼= π(X,RY ). While RY is a cell
spectrum over B, it is hardly ever a finite one, and we see no reason to believe that
the cofiber of f is isomorphic in HoGSB to a finite cell spectrum.

We can see the same problem differently by trying to adapt the proof that a
dualizable spectrum is a retract of a finite CW spectrum, [118, XVI.7.4], to the
parametrized context. Thus suppose that X is Costenoble-Waner dualizable with
right dual Y and coevaluation map η : S −→ X � Y . We may assume that X and
Y are s-fibrant cell spectra over B. We ask whether X is a retract in HoGSB of
a finite cell spectrum over B. Since X is the colimit of its finite subcomplexes W
(although these need not be s-fibrant) and S is compact, it might seem clear that
η factors through W � tY for some finite subcomplex W of X. Assuming that it
does, we have the following commutative diagram whose bottom composite is the
identity map.

W � tY �X
id�ε //

��

W �B ∼= W

��
X ∼= S �X

η�id
//

66nnnnnnnnnnnn
X � tY �X

id�ε
// X �B ∼= X.

Therefore X is a retract up to homotopy and thus a wedge summand up to ho-
motopy of W . However, η is only given in HoGSB . Its target there is X � tY =
r!∆∗(XZY ), and this must be understood in the derived sense. Now ∆∗ is a Quillen
right adjoint, r! is a Quillen left adjoint, and S is cofibrant, so η is represented by
a point-set level map S −→ Rr!Q∆∗R(X Z Y ), where Q and R denote cofibrant
and fibrant approximations (in GSB or GS ). The fibrant approximations throw a
monkey wrench into the proposed use of the compactness of S to prove the desired
factorization.

One interest of this discussion is that we do not yet know the answer to the
following question.

Question 18.2.11. Let M be a smooth G-manifold. Is SM equivalent in
HoGSM to a retract of a finite cell spectrum over M?

A general conclusion of this discussion is that, in a compactly generated topo-
logical model category whose objects are not fibrant, one cannot expect to work
with finite complexes with any degree of facility. The relevant fibrant approxima-
tions are blind to finite cell structures. We shall discuss other problems of this
nature in Chapter 24.

18.3. Costenoble-Waner V -duality

As in the study of Spanier-Whitehead duality, we can work on the ex-G-space
level and define Costenoble-Waner V -duality for a representation V of G. We adopt
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the same notational conventions for the bicategory of ex-G-spaces over B that we
adopted for the bicategory of parametrized G-spectra in Notations 17.4.1.

Definition 18.3.1. Let K and L be in HoGKB . We say that (K, tL) is a
V -dual pair if there are maps

η : SV −→ K � tL and ε : tL�K −→ ∆!S
V
B

such that the following two diagrams commute.

SV �K

γ

��

η�id // (K � tL)�K

assoc

��
K �∆!S

V
B K � (tL�K)

id�ε
oo

tL� SV

γ(id�α)

��

id�η // tL� (K � tL)

assoc

��
∆!S

V
B � tL (tL�K)� tL

ε�id
oo

We must explain the two left vertical maps. Rewriting the source and target,
γ : SV ∧K −→ K ∧ SV is the obvious interchange map, and similarly for L, while
α : SV −→ SV is the antipode map sending v to −v.

Recall that the Lefschetz constant χ(α), namely the map of G-spectra

χ(α) : S
ζ // SV ∧ S−V

γ // S−V ∧ SV
id∧α // // S−V ∧ SV

σ // S,

is the identity [98, II.5.11]. Here S−V = Σ∞V S
0 and ζ and σ are the coevaluation and

evaluation maps of the dual pair (SV , S−V ) of G-spectra, where we have suppressed
the suspension spectrum functor Σ∞ from the notation. We use this to prove the
following expected result.

Proposition 18.3.2. If (K, tL) is a V -dual pair, then (Σ∞BK, tΣ
−V
B Σ∞B L) is a

dual pair of G-spectra over B.

Proof. In what follows, we suppress the suspension functor Σ∞B , implicitly
applying it to K and L, and we write (−)B for r∗ on both G-spaces (as in Re-
mark 10.1.6) and G-spectra. Define η̄ to be the composite

S
ζ // SV � S−V

η�id // (K � tL)� S−V assoc // K � (tL� S−V )

and define ε̄ to be the composite displayed in the diagram

(tL� S−V )�K

ε̄

��

γ�id // (∆!S
−V
B � tL)�K assoc // ∆!S

−V
B � (tL�K)

id�ε
��

∆!SB ∆!(S−V ∧ SV )B
∆!(σ(id∧α))B

oo ∆!S
−V
B �∆!S

V
B .'

oo

Here, modulo unit isomorphisms, γ permutes smashing with S−V from the right to
the left. We must verify the commutativity of the diagrams required of (η̄, ε̄). They
are given by the perimeters of the following two diagrams, in which we abbreviate
� to · and omit parentheses and uses of associativity isomorphisms.



292 18. COSTENOBLE-WANER DUALITY

S ·K

γ

��

ζ·id // SV · S−V ·K
η·id·id //

id·γ
��

γ

}}zzzzzzzzzzzzzzzzzzzz
K · tL · S−V ·K

id·id·γ
��

SV ·K ·∆!S
−V
B

η·id·id//

γ·id

��

K · tL ·K ·∆!S
−V
B

id·ε·idvvmmmmmmmmmmmm

id·γ

��

K ·∆!SB
id·∆!ζB //

χ(α)

��

K ·∆!(S
V · S−V )B

id·∆!γB

��

K ·∆!S
V
B ·∆!S

−V
B

id·γ

��

'
oo

K ·∆!SB K ·∆!(S
−V · SV )B

id·∆!(σα)B

oo K ·∆!S
−V
B ·∆!S

V
B'

oo K ·∆!S
−V
B · tL ·K

id·id·ε
oo

Here the top row is η̄ � id. The middle triangle is a transitivity relation among
maps γ and, using a similar implicit triangle at the right, we see that the composite
down the right column and along the bottom row is id � ε̄. The triangle on the
right is the first V -duality diagram. The two trapezoids, the top right square, and
the bottom middle square are naturality diagrams, from which uses of associativity
isomorphisms and the associativity pentagon have been suppressed. The bottom
left square commutes by the definition of χ(α). Since χ(α) = id, the left vertical
composite is γ, and it therefore becomes the identity after using unit equivalences
to identify its source and target with K.

tL · S−V · S
id·ζ //

γ

��

tL · S−V · SV · S−V
id·η·id //

γ·id
��

γα

zzuuuuuuuuuuuuuuuuuuuuuuuu
tL · S−V ·K · tL · S−V

γ·id

��

∆!SB · tL · S−V ∆!S
−V
B · tL · SV · S−V

id·η·id

))TTTTTTTTTTTTTTT

id·(γα)·id

��
∆!(S

−V · SV )B · tL · S−V

∆!(σα)B ·id

OO

∆!S
−V
B ·∆!S

V
B · tL · S−V

'
oo ∆!S

−V
B · tL ·K · tL · S−V

id·ε·id
oo

Here the top row is id � η and the composite down the right, along the bottom,
and up to the middle entry in the first column is ε� id. The triangle at the right
is the second V -dual pair diagram. The trapezoid and the lower left triangle are
naturality diagrams. The upper left triangle commutes since the maps (ζ, σ) are
the structure maps of the dual pair (SV , S−V ). �

18.4. Preliminaries on unreduced relative mapping cones

There are several constructions on unsectioned parametrized spaces that nat-
urally give rise to ex-spaces and that we make heavy use of in this chapter. We
collect the main results here, following [51] and [98, III§4] in the nonparametrized
context. Recall from Remark 2.1.9 that we still have base change adjunctions in
this setting. We are interested in the relative theory, and we let GU 2/B denote
the category of pairs (K,L) over B, where L is a closed subspace of a compactly
generated space K. We restrict to U and assume that L is closed in K to avoid
irrelevant point-set pathology and to ensure that the inclusion i : L −→ K is an
f -cofibration if and only if it is an f̄ -cofibration.

Construction 18.4.1. We describe quotients and cofibers in GU 2/B.
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(i) Let K/BL be the fiberwise quotient over B. It is constructed as the pushout
in GU /B of the diagram

B Loo // K.

The map from B into the pushout gives a canonical section; explicitly, the
fiber over b is the based space Kb/Lb, and the base points give the section.

(ii) Let CB(K,L) be the (unreduced) fiberwise cofiber of i. It is the fiberwise
double mapping cylinder of i and the projection p : L −→ B and can be
constructed as the pushout in GU /B of the evident diagram

K qB Lq Loo // L× I.

Equivalently, it is the quotient MB(K,L)/BL of the (unreduced) fiberwise
mapping cylinder of i. The cone points specify a section, allowing us to
regard CB as a functor GU 2/B −→ GUB .

(iii) We write CB(K) = CB(K, ∅). It can be identified with (k, p)+, where p is the
projection of K.

Standard arguments, Proposition 8.2.1, and inspection of definitions give the
following three results.

Proposition 18.4.2. If i : L −→ K is an f-cofibration over B or, equivalently,
(K,L) is an f-NDR pair over B, then the fiberwise collapse of CBL is an fp-
equivalence

CB(K,L) −→ K/BL

Proposition 18.4.3. The ex-space CB(K,L) is always well-sectioned, and it
is an ex-fibration if both K and L are h-fibrant. If (K,L) is an f-NDR pair, then
K/BL is well-sectioned.

Proposition 18.4.4. Let f : A −→ B be a map of base spaces, let (K,L) be a
pair over A, and let (M,N) be a pair over B. Then

f!CA(K,L) ∼= CB(f!K, f!L) and f∗CB(M,N) ∼= CA(f∗M,f∗N).

We emphasize that, here in the unsectioned context, f!K is just K with pro-
jection fp, where p is the projection of K. Taking f to be the inclusion of a point
b : ∗ −→ B, the second part recovers that the fiber CB(K,L)b is C(Kb, Lb). If Lb
is empty, this is Kb with a disjoint basepoint.

Proposition 18.4.5 (Excision). Let U ⊂ L ⊂ K be spaces over B. The
inclusion K − U −→ K induces a homeomorphism

(K − U)/B(L− U) −→ K/BL.

Therefore, if (K −U,L−U) and (K,L) are f-NDR pairs, the inclusion induces an
fp-equivalence

CB(K − U,L− U) ' CB(K,L).

Proof. For the first statement, the displayed quotient map is a continuous
bijection. By examining the relevant subspace and quotient topologies we see that
the map is in fact a homeomorphism. When we have f -NDR pairs, the fiber-
wise cofibers are fp-equivalent to the corresponding fiberwise quotients by Propo-
sition 18.4.2. �
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Proposition 18.4.6. Let (K,L) and (M,N) be pairs over A and B. Then
there is a natural homeomorphism

K/AL ZM/AN ∼= (K ×M)/A×B(L×M ∪K ×N).

Therefore, if (K,L) and (M,N) are f-NDR pairs over A and B, there is a canonical
fp-equivalence

CA(K,L) Z CB(M,N) ' CA×B(K ×M,L×M ∪K ×N).

Proof. The fiberwise quotient on the right is the pushout displayed in the
outer rectangle of the diagram

(L×M)q (K ×N) //

��

K ×M

��
(A×M)q (K ×B) //

��

K/AL×M/BN

��
A×B // (K ×M)/A×B(L×M ∪K ×N).

The composite construction implied by the diagram gives the first statement. The
second statement follows from Proposition 18.4.2. �

In view of the previous lemma, the notation

(K,L)× (M,N) = (K ×M,L×M ∪K ×N)

is as convenient as it is categorically incorrect. Using this notation, we endow the
categories of parametrized pairs GU 2/(B × A) with the horizontal composition
specified by

(M,N)� (K,L) = πC×A!∆
∗
B((M,N)× (K,L)),

where (K,L) is a pair over B ×A and (M,N) is a pair over C ×B. The fiberwise
cone construction preserves this composition.

Proposition 18.4.7. For f-NDR pairs (K,L) and (M,N) of G-spaces over
B ×A and C ×B, respectively, there is a canonical fp-equivalence

CC×A ((M,N)� (K,L)) ' CC×B(M,N)� CB×A(K,L).

Proof. This follows directly from Propositions 18.4.4 and 18.4.6. �

Proposition 18.4.8. The functor CB : GU 2/B −→ GUB preserves q-equi-
valences.

Proof. This is immediate from the gluing lemma and the definition of CB as
a double mapping cylinder. �

Of course, pushforward functors f! do not change total spaces in the unsectioned
context, so they also preserve q-equivalences. These facts give the information we
need to pass from the point-set level to the derived homotopy category level in our
use of the functor CB in the arguments to follow.
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18.5. V -duality of G-ENRs

In this section we provide a large class of Costenoble-Waner V -dualizable para-
metrized ex-spaces (K, p)+ over B. By Proposition 18.2.8, if S0

K is Costenoble-
Waner dualizable, then so is p!S

0
K ' (K, p)+, and we therefore focus on S0

K .
Throughout this section, (K,L) will be a compact G-ENR pair. This means

that (K,L) is an h-NDR pair such that K can be embedded as a G-subspace of a
representation V in such a way that there is a G-retraction q : N −→ K of an open
neighborhood N of K in V . We view (N, q) as a space over K; the example to keep
in mind is that of a tubular neighborhood of a G-manifold.

Theorem 18.5.1 (Costenoble-Waner duality theorem). If (K,L) is a compact
G-ENR pair, then the ex-space CK(K,L) over K is Costenoble-Waner V -dualizable
with dual CK(N − L,N −K).

The proof will be given in §18.6. This implies the general result that we are
really after. For the absolute case, recall that (K, p)+ = CB(K, ∅) ≡ CB(K).

Theorem 18.5.2. If (K, p) is a G-space over B and (K,L) is a compact G-ENR
pair, then CB(K,L) is Costenoble-Waner V -dualizable with dual CB(N−L,N−K).
In particular, (K, p)+ is V -dual to CB(N,N −K).

Proof. In the statement, we view N and K as spaces over B with projec-
tions pq and p, which means that we first consider them as spaces over K with
projections q and idK and then apply p!. Theorem 18.5.1 gives that CK(K,L)
and CK(N − L,N −K) are V -duals over K. Using Proposition 18.4.4, it follows
from Proposition 18.2.8 that p!CK(K,L) ∼= CB(K,L) and p!CK(N − L,N −K) ∼=
CB(N − L,N −K) are V -duals over B. �

Remark 18.5.3. In the original nonparametrized version of Dold and Puppe
[51] and its equivariant generalization of [98, III§4], C(N − L,N −K) is replaced
by its excisive equivalent C(V − L, V − K). However, the parametrization forces
us to focus on N rather than V .

Returning to Theorem 18.5.1, we compare its absolute and relative cases, but
first we introduce some notation. Let i : L −→ K be the inclusion. Since i is an
h-cofibration, we have a neighborhood deformation retraction d : K −→ K which
restricts to a retraction j : U −→ L defined on some open neighborhood U of L in
K. Let ι : L −→ U and κ : U −→ K be the inclusions, so that i = κι and dκ = ij.
We display these maps in the commutative diagram

(18.5.4) L
ι //

i   @
@@

@@
@@

U

κ

��

j // L

i

��
K

d
// K

where the composite along the top row is the identity.
Since we are working on the space and not the spectrum level in this section,

the desuspension in the following result should be interpreted as appearing after
stabilization. We have written the result in the form most convenient for our later
applications.



296 18. COSTENOBLE-WANER DUALITY

Theorem 18.5.5. The cofiber sequences

(L, i)+ −→ (K, id)+ −→ CK(K,L) −→ ΣK(L, i)+
and

Σ−1
K CK(N,N −L) −→ CK(N −L,N −K) −→ CK(N,N −K) −→ CK(N,N −L)

are V -dual, where i : L −→ K is the inclusion.

Proof. The first cofiber sequence is

CK(L) −→ CK(K) −→ CK(K,L) −→ ΣKCK(L).

We recognize from Theorem 18.5.1 that the second and third terms in the sec-
ond sequence are V -dual to the third and second terms, respectively, in the first
sequence. Recall the maps displayed in (18.5.4). We define

(18.5.6) NL = j!j
∗i∗N = j!κ

∗d∗N.

This is a space over L whose projection is a retraction of an open neighborhood of
L in V . In the next section, we will take L to be a closed submanifold of a closed
manifold, and in that context NL will be the normal bundle νL of L. We have a
canonical inclusion

i!NL = i!j!κ
∗d∗N = i!j!j

∗i∗N −→ N

over K. By excision, Proposition 18.4.5, it induces an equivalence

i!CL(NL, NL − L) ∼= i!CL(j!κ∗d∗N, j!κ∗d∗N − L) −→ CK(N,N − L).

We conclude that the fourth (and first) term in the second sequence is V -dual to
the first (and fourth) term in the first sequence since CK(L) ' i!CL(L) and i!
preserves dual pairs. That the maps in the second sequence are the V -duals of the
maps in the first sequence will follow from Proposition 16.4.7 and the definition
of the coevaluation maps η̄ in (18.8.1). In fact, the direction of argument will be
reversed in the last subsection of §18.7, where we use this comparison of cofibration
sequences to deduce the relative case of Theorem 18.5.1 from the absolute case. �

18.6. Parametrized Atiyah duality for closed manifolds

The results of the previous section specialize to lift the familiar Atiyah dual-
ity theorem to a statement in the parametrized world. In the absolute case, the
conclusion reads as follows. We remind the reader that everything is equivariant.

Theorem 18.6.1 (Parametrized Atiyah duality theorem). Let M be a smooth
closed manifold embedded in a representation V . Then (SM , SνM ) is a Costenoble-
Waner V -dual pair.

We have two natural relative versions of Theorem 18.6.1. The first concerns
a closed submanifold L of a smooth closed manifold M . The second concerns a
smooth compact manifold M with non-empty boundary. There presumably is a
more general context giving both of these as special cases, where L is allowed to
be a submanifold of a smooth compact manifold M such that the boundary of L is
the intersection, assumed transverse, of L with the boundary of M . However, we
have not pursued that idea.

We deal with the relative case for closed manifolds in this section. As we have
mentioned, the non-parametrized implication of this relative version does not seem
to appear in the literature. In fact, it is harder to see the non-parametrized version
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directly than to deduce it from the parametrized version. The non-parametrized
implication in the case when M is a manifold with boundary, which we deal with
in the next section, is standard.

Thus, specializing the notations of the previous section, let K = M be a smooth
closed manifold embedded in a representation V and let L be a closed submanifold
of M with inclusion i : L −→ M . We take U to be the normal bundle νM,L of L
embedded as a tubular neighborhood in M , N to be the normal bundle νM of M
in V , and NL to be the normal bundle νL = i∗νM ⊕ νM,L of L in V . Then (18.5.4)
takes the form

(18.6.2) L
ι //

i ""D
DD

DD
DD

D νM,L

κ

��

j // L

i

��
M

d
// M.

Here ι is the inclusion of the zero section in νM,L, κ is the embedding of νM,L in
M , and d is a deformation of M that restricts on νM,L to the projection j of this
relative normal bundle. More explicitly, we may take U to be the open disc bundle
in a larger tubular neighborhood W . Then j is the projection of the disk bundle,
and we can take d to agree with j on U , to be the identity on M −W , and to send
w to φ(|w|)w for |w| ≥ 1 in W , where φ is any continuous function on [1,∞) such
that φ(1) = 0 and φ(t)→ 1 as t→∞.

As usual, if ξ is a bundle, we let Sξ denote the fiberwise one-point compactifi-
cation of ξ with section given by the points at infinity.

Construction 18.6.3. We construct a map tM : SνM −→ i!S
νL over M which

is a parametrized precursor of the V -dual of the inclusion L+ −→ M+ and is
closely related to the Pontryagin-Thom map t : M+ −→ TνM,L. We define an ex-
map α : d!S

0
M −→ i!S

νM,L such that r!α is homotopic to t and define tM in terms of
α. To define α, it suffices to specify a map (M,d) −→ i!S

νM,L over M . Note that
i!S

νM,L is obtained from SνM,L by gluing M − i(L) to the section. Let νM,L be the
closure of νM,L in M . The identity map of νM,L extends to give a continuous map
νM,L −→ SνM,L over L that sends a point on the boundary to the corresponding
point in the section of SνM,L . Identifying i(L) with the section, this map agrees on
the boundary with the restriction of d to M − νM,L. These two maps glue together
to give the required map α.

The desired map tM is now defined up to homotopy by the following zig-zag.

(18.6.4) SνM

tM

��

d!d
∗SνM

'oo

t′M

wwooooooooooooo
d!S

0
M ∧M SνM

α∧M id

��

∼=oo

i!S
νL i!(SνM,L ∧L i∗SνM )∼=
oo i!S

νM,L ∧M SνM
∼=
oo

The upper left wrong way pointing map is the counit of the (d!, d
∗) adjunction and

is an equivalence because d is a homotopy equivalence. The two isomorphisms on
the right are given by the projection formula, and the bottom left isomorphism
comes from νL ∼= νM,L ⊕ i∗νM . The map t′M is defined by commutativity of the
trapezoid on the right. By the diagram, the cofiber CM (tM ) of tM is equivalent to
CM (α) ∧M SνM .
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Theorem 18.6.5 (Parametrized relative Atiyah duality theorem). Let L be a
closed submanifold of a smooth closed manifold M . The Pontryagin-Thom map

tM : SνM −→ i!S
νL

of Construction 18.6.3 is V -dual to the inclusion i!S0
L −→ S0

M , and these maps give
rise to Costenoble-Waner dual cofiber sequences

Σ−1
M Σ∞MM/ML −→ i!SL −→ SM −→ Σ∞MM/ML

and
Σ−V−1
M CM (tM ) −→ Σ−VM SνM −→ Σ−VM i!S

νL −→ Σ−VM CM (tM )

of G-spectra over M . In particular, the dual of Σ∞MM/ML is Σ−V−1
M CM (tM ).

Proof. We observe first that the quotient map CM (M,L) −→ M/ML is an
equivalence. This does not follow from Proposition 18.4.2 since (M,L) is not an f -
NDR pair over M . However, it is an NDR-pair, and the gluing lemma gives that the
quotient map is a q-equivalence. Therefore Theorem 18.5.5 and Proposition 18.3.2
identify the dual of the first cofiber sequence as the cofiber sequence obtained by
applying Σ−V Σ∞M to the evident cofiber sequence

CM (N−L,N−M)→ CM (N,N−M)→ CM (N,N−L)→ ΣMCM (N−L,N−M).

We must obtain an equivalence between this cofiber sequence and the second cofiber
sequence displayed in the statement of the theorem. Focus on the second maps of
both sequences. By a standard comparison of cofiber sequences argument, it suffices
to obtain horizontal equivalences that make the following diagram commute (up to
stable homotopy).

(18.6.6) CM (N,N −M)

∩
��

' // SνM

tM

��
CM (N,N − L) '

// i!SνL .

With N = νM , inclusion and collapse induce a zig-zag of equivalences

CM (N,N −M)←− CM (N,N −DM ) −→ SνM ,

where DM is a small disk bundle around M in N . This gives the top equivalence.
Similarly, inclusion and collapse induce a zig-zag of equivalences

CL(NL, NL − L)←− CL(NL, NL −DL) −→ SνL ,

where DL is a small disk bundle around L in NL. Applying i!, this gives an
equivalence between i!CL(NL, NL−L) and i!SνL . The composite along the bottom
row in the diagram that follows displays an equivalence between CM (N,N − L)
and i!CL(NL, NL − L); it is a specialization of a general equivalence that plays a
role in the proof of Theorem 18.5.5 given in §18.7 below. The composite gives the
bottom equivalence. We have still another such zig-zag of equivalences

CL(U,U − L)←− CL(U,U −DM,L) −→ SνM,L ,

where DM,L is a (compatibly chosen) small disk bundle around L in U . Via this
zig-zag, the map α : d!S

0
M −→ i!S

νM,L of Construction 18.6.3 corresponds to the
map ᾱ : d!S

0
M
∼= (M,d)+ −→ i!CL(U,U − L) that is given by the identity on the

closure of U ∼= νM,L in M and that sends M − U to the section via the map d.
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Now consider the following diagram, in which we have used more compact
notations, such as CM

(
N

N−M
)

for CM (N,N −M). The left vertical arrow is the
inclusion and, under the equivalences just given, we find that the zig-zag along
the top row and the rightmost column is equivalent to the zig-zag of (18.6.4) that
defines tM . Therefore, it suffices to prove that the diagram commutes.

CM

(
N

N−M

)

��

d!d
∗CM

(
N

N−M

)
oo

��

d!S
0
M ∧M CM

(
N

N−M

)∼=oo ᾱ∧M id//

��

i!CL

(
U

U−L

)
∧M CM

(
N

N−M

)

∼=

��

d!S
0
M ∧M CM

(
N

N−L

)
∼=

vvlllllllllllll
ᾱ∧M id

))SSSSSSSSSSSSSSS

d!d
∗CM

(
N

N−L

)
xxppppppppppp

d!κ!S
0
U ∧M CM

(
N

N−L

)
OO

∼=

vvmmmmmmmmmmmmm
// i!CL

(
U

U−L

)
∧M CM

(
N

N−L

)
∼=
��

CM

(
N

N−L

)
d!κ!κ

∗d∗CM

(
N

N−L

)
OO

exc
oo ∼= // i!CL

(
NL

NL−L

)
We freely use Proposition 18.4.4 to commute the fiberwise cone construction with
base change functors. The isomorphisms relating the second and third columns
are given by projection formulas. The maps relating the first and second column,
and the vertical maps pointing upwards in the second and third columns are all
given by the counit of either the (d!, d

∗) adjunction or the (κ!, κ
∗) adjunction. The

projection formula shows that the upper vertical arrow in the last column is an
isomorphism since i∗(N,N −M) ∼= i∗(N,N − L). The lower vertical arrow in the
last column is the isomorphism induced by the isomorphism

(U,U − L)×L i∗(N,N − L) ∼= j!j
∗i∗(N,N − L) = (NL, NL − L)

by use of the projection formula. The upper three trapezoids commute by naturality
since their vertical maps are all induced from the inclusion of N −M in N − L.
The bottom trapezoid commutes by inspection since the bottom map identifies
d!κ!κ

∗d∗N as i!NL, the top map is the inclusion of d!κ!S
0
U
∼= i!j!S

0
U
∼= i!CL(U), and

the other two maps are given by the projection formula. The triangle on the left
and the parallelogram commute by simpler inspections, leaving only the triangle
in the middle right. For that, we note that d!κ!κ

∗S0
M
∼= d!κ!S

0
U
∼= j!i!S

0
U and the

restriction of ᾱ to S0
U is the identity map. �

We can apply base change functors p! to these V -dual pairs to obtain new
ones. In particular, taking p = r : M −→ ∗, this gives the V -dual pairs (M+, T νM ),
(L+, T νL) and (M/L,C(t)) where Tξ denotes the Thom complex of a bundle ξ and
t : TνM −→ TνL is the Pontryagin-Thom construction in Construction 18.6.3.

Corollary 18.6.7. Let L be a closed submanifold of a smooth closed manifold
M . The Pontryagin-Thom map

t : TνM −→ TνL

of Construction 18.6.3 is V -dual to the inclusion L+ −→M+, and these maps give
rise to Spanier-Whitehead dual cofiber sequences

Σ−1Σ∞M/L −→ Σ∞L+ −→ Σ∞M+ −→ Σ∞M/L
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and
Σ−V−1C(t) −→ Σ−V TνM −→ Σ−V TνL −→ Σ−V C(t).

In particular, the dual of Σ∞M/L is Σ−V−1C(t).

18.7. Parametrized Atiyah duality for manifolds with boundary

We now turn to the case when the smooth manifold M is compact but has a
non-empty boundary ∂M . Let i : ∂M −→ M be the inclusion and embed M in a
representation V . We can arrange that V = V ′⊕R and that M embeds in the half
space V ′ × [0,∞) in such a way that ∂M embeds in V ′ and M − ∂M embeds in
V ′ × (0,∞). The manifold M has a normal bundle νM which one can think of as
a neighborhood of M in V ′ × [0,∞) (but not as a neighborhood of M in all of V ).
Its restriction to ∂M is the normal bundle ν∂M of ∂M in V ′ (but not in V ). Note
in particular that if ∂M 6= ∅, then the normal bundle of M cannot be identified
with a tubular neighborhood of M (considered as embedded in all of V ). A simple
example to keep in mind is M = {(x, y) ∈ R2 | x2 + y2 = 1, y ≥ 0}, the upper half
of the unit circle in the plane, with V ′ the x-axis.

Warning 18.7.1. We emphasize the difference in the meaning of ν∂M here and
of νL in the previous section. In both cases, we have submanifolds, ∂M and L, of a
manifold M embedded in a representation V . In the previous section, νL referred
to the normal bundle of L in V . In this section, ν∂M refers to the normal bundle of
∂M in V ′. The relation with νM is therefore quite different in the two cases. Here
we have that i∗SνM ∼= Sν∂M and we have an inclusion i!S

ν∂M −→ SνM , whereas
there we had i∗SνM ∧L SνM,L ∼= SνL and we had a map tM : SνM −→ i!S

νL .

Theorem 18.7.2 (Parametrized Atiyah duality theorem—boundary version).
Let M be a smooth compact manifold with boundary ∂M . The quotient map

SνM −→ SνM /MS
ν∂M

is V -dual to the quotient map S0
M −→ M/M∂M , and these maps give rise to

Costenoble-Waner dual cofiber sequences

i!S∂M −→ SM −→ Σ∞MM/M∂M −→ ΣM i!S∂M
and

Σ−VM i!S
ν∂M −→ Σ−VM SνM −→ Σ−VM SνM /MS

ν∂M −→ Σ−V+1
M i!S

ν∂M

of G-spectra over M .

Proof. As we have already remarked, the normal bundle of M cannot be
identified with a tubular neighborhood of M in V when ∂M 6= ∅. We begin by
making the relation precise in a way that will be convenient for the proof of the
theorem. We glue an exterior boundary collar ∂M × [−2, 0] to ∂M = M ∩ (V ′× 0)
to obtain a manifold M2 with boundary ∂M2 embedded in V ′ × [−2,∞). We let
M1 = M2∩(V ′×[−1,∞)), with boundary ∂M1. We sometimes also write (M0, ∂M0)
for (M,∂M). Let q2 : M2 −→ M be the identity on M and retract ∂M × [−2, 0]
to ∂M . Let qi : Mi −→ M , i = 0 and i = 1 be the restrction of q2 to Mi, so that
q0 = id. Let N be a tubular neighborhood of M2 in V and let ρ : N −→ M2 be
the retraction corresponding to the bundle projection. Let Ni ⊂ N2, i = 0 and
i = 1, be the restriction of (N, ρ) to Mi ⊂ M2. Although N cannot be identified
with the normal bundle of M2, we can identify Ni with the normal bundle of Mi,
i = 0 and i = 1, and the restrictions N∂Mi

to the boundaries can be identified with



18.7. PARAMETRIZED ATIYAH DUALITY FOR MANIFOLDS WITH BOUNDARY 301

the normal bundles ν∂Mi
. From now on, we view N as a space over M via the

composite retraction q2 ◦ ρ.
Observe that the evident identification of [−2, 0] with [0, 1] induces an identi-

fication of the quotient M2/M (∂M2 ∪M0) with ΣM∂M+. That is, since q2 is just
the collar retraction, the definitions of these two spaces over M are identical. We
therefore have a cofiber sequence

(18.7.3) (∂M2, q2)+ −→ (M2, q2)+ −→ CM (M2, ∂M2) −→ CM (M2, ∂M2 ∪M0)

and Theorem 18.5.5 gives that its V -dual is

(18.7.4) CM
(
N−(∂M2∪M0)

N−M2

)
−→ CM

(
N−∂M2
N−M2

)
−→ CM

(
N

N−M2

)
−→ CM

(
N

N−∂M2

)
.

Using that q2 : M2 −→ M is an equivalence, we see that the first cofiber sequence
above is equivalent to the first displayed cofiber sequence in the statement of the
theorem. We must therefore obtain an equivalence between the second cofiber
sequence above and the second cofiber sequence in the statement of the theorem.
We focus on the first maps of these two cofiber sequences. Although in this case
we could easily elaborate our arguments to compare the full cofiber sequences, as
in [98, III.5.4], we instead use that it suffices to obtain horizontal equivalences that
make the following diagram commute.

(18.7.5) CM (N − (∂M2 ∪M0), N − ∂M)

��

' // i!Sν∂M2

��
CM (N − ∂M2, N −M2)

' // SνM .

To obtain the horizontal maps in the above diagram, we begin by describing an
equivalence

i!C∂M (N∂M1 , N∂M1 − ∂M1)
' //

��

i!S
ν∂M1

��
CM (N1, N1 −M1)

' // SνM1 .

Recall that N1 is the inverse image of M1 in N and N∂M1 is its restriction to ∂M1.
Then N1 and N∂M1 are equivalent to the normal bundles of M1 and ∂M1 and the
horizontal maps in the above square are given by the zig-zag where we replace
(M1, ∂M1) by the unit disk bundles in (N1, N∂M1) and then use the quotient maps.
The equivalence q1 : M1 −→ M shows that the right vertical map in the above
square is equivalent to the right vertical map in (18.7.5).

It now suffices to show that the horizontal inclusions in the following square
are equivalences, since we have already seen that the left vertical map is equivalent
to the inclusion i!Sν∂M −→ SνM .

i!C∂M (N∂M1 , N∂M1 − ∂M1) //

��

CM (N − (∂M2 ∪M0), N −M2)

��
CM (N1, N1 −M1) // CM (N − ∂M2, N −M2)

We would like to say that the horizontal inclusions are excision equivalences, but
as they stand the pairs on the left and right hand side are not f -NDR pairs. We
can work around that problem since, up to equivalence, we can replace (Mε, ∂Mε)
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in the above square with the unit disk bundles (DMε
, D∂Mε

) in the normal bundles
Nε of Mε for ε = 1, 2. Then the second horizontal map becomes excision by
U = N − (N1 ∪DM2) since

(N −DM2)− U = N1 −DM1 , and (N −D∂M2)− U = N1 ∪DM2−∂M2 ' N1

and the first horizontal map becomes excision by U = N − (N∂M1 ∪DM2) since

(N −DM2)− U = N∂M1 −D∂M1 ,

(N − (D∂M2∪M0))− U = N∂M1 ∪DM×(−2,0) ' N∂M1 .

This concludes the proof that (18.7.4) is equivalent to the second displayed cofiber
sequence in the statement of the theorem. �

Again, we can apply base change functors p! to these V -dual pairs to obtain
new ones. Taking p = r : M −→ ∗, this gives the V -dual pairs (M/∂M,TνM ),
(M+, T νM/Tν∂M ) and (∂M+,ΣTν∂M ). For consistency, note that the dual of
∂M+ is Σ−V+1Tν∂M ' ΣV

′
Tν∂M .

Corollary 18.7.6. Let M be a compact smooth manifold M with boundary
∂M . The quotient map

TνM −→ TνM/Tν∂M

is V -dual to the quotient map M+ −→M/∂M , and these maps give rise to Spanier-
Whitehead dual cofiber sequences

Σ∞∂M+ −→ Σ∞M+ −→ Σ∞M/∂M −→ Σ∞Σ∂M+

and
Σ−V Tν∂M −→ Σ−V TνM −→ Σ−V TνM/Tν∂M −→ Σ−V+1Tν∂M .

18.8. The proof of the Costenoble-Waner duality theorem

This section is devoted to the proof of Theorem 18.5.1 and we retain the nota-
tion introduced at the beginning of §18.5. We begin with an explicit description of
the structure maps of the V -dual pair when K = M is a compact G-manifold and
L is empty. Keeping this description in mind will aid in understanding the proof
that follows.

We then define the structure maps in the general case and proceed with the
proof of Theorem 18.5.1. To begin with, we work on the point-set level in categories
of pairs of G-spaces over the base G-spaces ∗, K and K×K and the corresponding
categories of ex-G-spaces. To fit diagrams on the page, instead of (X,W ) we will
often use the more compact notation

(
X
W

)
for objects in categories of pairs. We will

make frequent use of the properties of the unreduced cone construction that we
discussed in §18.4. Since K ⊂ V is compact, we can assume that its neighborhood
N is contained in a closed disc D about the origin in V .

The geometric structure maps. As usual, M is embedded with tubular
neighborhood N in a G-representation V . We identify N with the normal bundle
ν of M . Then CM (M) = S0

M and CM (N,N −M) ' Sν . Under this equivalence,
the coevaluation map is given by the Pontryagin-Thom construction

η : SV −→ Tν = r!S
ν ∼= r!(S0

M ∧M Sν) ' S0
M � tSν .

To construct the evaluation map we use the zero section of ν to embed M as the
diagonal in ν×M ∼= N ×M , which we view as a space over M ×M with projection
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q× id. A normal bundle Γ of this embedding is given by the subspace (q× id)−1(U)
sitting over a tubular neighborhood U of the diagonal in M ×M . Now U can be
identified with the tangent bundle of M . Such an identification can be given by
shrinking τ to a neighborhood of the zero-section and then using an exponential
function so that the point (x,m) determines a unique geodesic from x to m. This
geodesic determines a tangent vector based at x. Thus a point of U is thought of
both as a point (x,m) ∈ M ×M and a tangent vector at x. A point (n,m) in Γ
can thus be thought of as specifying the normal vector n at q(n) together with the
tangent vector (q(n),m) at q(n). This identifies Γ with the sum of the normal and
tangent bundles and therefore with the trivial bundle M × V . Note, however, that
when we think of Γ as a space over M ×M , then we are remembering how (n,m)
splits into the normal and tangent vectors, but when we look at π1!Γ, then we have
forgotten about the splitting.

In essence, we can now define ε to be the Pontryagin-Thom construction of the
embedding M −→ ν ×M . However, since this must be a map over M ×M , we
specify it more precisely as the zig-zag

tSν � S0
M ' Sν ×M −→ Γ/M×M∂Γ −→ (M I , p)+ ∧ SV ←− ∆!S

V
M .

Here the first map is given by the Pontryagin-Thom construction and Γ is the
closure of Γ in V . The projection p : M I −→ M ×M is given by evaluation at
0 and 1. The second map sends (n,m) to (ωq(n),m, v) where ωq(n),m is a geodesic
from q(n) to m and v is the sum of the normal vector n and the tangent vector
(q(n),m). The third (wrong way pointing) map is the equivalence induced from
the constant path map c : M −→ (M I , p) over the diagonal ∆: M −→ M ×M by
adjoining the identity map on the disjoint sections and taking the fiberwise smash
product with the identity map of SV . Thus it sends a point (m, v) ∈ ∆!S

V
M that is

not in the section to (cm, v).

The coevaluation map. We apply the unreduced cone construction C to the
zig-zag of inclusions

(18.8.1) η̄ :
(

V
V−D

)
//
(

V
(V−K)∪L

)
r!

(
N−L
N−K

)excoo

where the map on the right is excision by (V −N) ∪L. Identifying the source and
using that r!CK ∼= C∗r!, by Proposition 18.4.4, we obtain

SV

η

��

C
(

V
V−D

)'oo // C
(

V
(V−K)∪L

)

r!

(
CK

(
K
L

)
∧K CK

(
N−L
N−K

))
r!(S0

K ∧K CK
(
N−L
N−K

)
) ∼=oo r!CK

(
N−L
N−K

)exc

OO

where the map on the bottom is induced from S0
K = CK(K, ∅) −→ CK(K,L). This

is of course a homeomorphism when L = ∅.

The evaluation map. To define the evaluation map, we need the analogue of
the tubular neighborhood Γ we described in the manifold case at the end of §18.5.
By the compactness of K, there is a Lebesgue number ε > 0 such that any ε-ball
centered on a point of K is contained in N . We agree to replace N with the smaller
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neighborhood of K that is the union of all such ε-balls. We define

Γ = {(n, x) ∈ (N − L)×K | ‖q(n)− x‖ < ε}.
For points x, y ∈ V , let ω(x,y)(t) = (1 − t)x + ty be the linear path from x to y.
Note that the parametrized line segment ω(q(n),x) is contained in N if (n, x) ∈ Γ.
Moreover, Γ is a neighborhood of the diagonal ∆K−L inside (N − L) × K, and
the image of the projection is a neighborhood of ∆K−L in K × K. By analogy
with the manifold case, we think of the image of the projection of Γ as a tubular
neighborhood of the diagonal in K × K, and we think of points (n, x) ∈ Γ as
specifying a “normal vector” n and a “tangent vector” (q(n), x), both based at the
point q(n).

The evaluation map is now obtained from the following zig-zag of spaces over
K ×K.

(18.8.2) ε̄ :
(
N−L
N−K

)
×

(
K
L

)
//
(

(N−L)×K
((N−L)×K)−∆K−L

)
∆!K ×

(
V
V−0

)
c

��(
Γ

Γ−∆K−L

) (ωr×id,d) //

exc

OO

(KI , p)×
(
V
V−0

)
The first two maps are inclusions, the second being obtained by excising the com-
plement of Γ in (N−L)×K. The third map sends (n, x) ∈ Γ to (ω(q(n),x), n−x) and
the fourth sends (x, v) to (cx, v) where cx is the constant path at x. The projection
p of KI is given by evaluation at the endpoints, p(ω) = (ω(0), ω(1)). Applying
CK×K to the above zig-zag and identifying the source and target, we obtain the
following composite.

CK
(
N−L
N−K

)
Z CK

(
K
L

)
ε

��

' // CK×K
((

N−L
N−K

)
×

(
K
L

))
// CK×K

(
(N−L)×K

(N−L)×K−∆K−L

)

∆!S
V
K

' // (KI , p)+ ∧ C
(
V
V−0

)
CK×K

(
Γ

Γ−∆X−L

)
oo

exc

OO

The first equivalence is given by Proposition 18.4.6 and the last one uses an inverse
of a based homotopy equivalence C(V, V − 0) −→ SV .

The first V -duality diagram. First we consider the commutativity of the
following diagram on the point-set level.(

V
V−D

)
×

(
K
L

)
//

γ
((QQQQQQQQQQQQQ

(
V

(V−K)∪L
)
×

(
K
L

)
��

r!
(
N−L
N−K

)
×

(
K
L

)
oo

��uullllllllllllll

K ×
(
V
V−0

)
incl

//

∼=
��

(
K
L

)
×

(
V
V−0

)
π2!

(
(N−L)×K

(N−L)×K−∆K−L

)
oo

π2!∆!K ×
(
V
V−0

)
c×id

// π2!K
I ×

(
V
V−0

)p1×id

OO

π2!

(
Γ

Γ−∆K−L

)
(ω,d)

oo

iiRRRRRRRRRRRRRR

OO

The top row is the product of the zig-zag η̄ of (18.8.1) with (K,L) and the zig-zag
continuing clockwise along the perimeter and ending in the bottom left corner is
obtained from the zig-zag ε̄ of (18.8.2) by applying π2!. The unlabeled maps to
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the center are all given by (π2, d) which sends (n, x) to (x, n − x). The map p1 is
the endpoint projection. The bottom left square commutes, as do all of the small
triangles with one vertex in the center, except the one in the upper left corner.
That one only commutes up to the homotopy

h(v, x, t) = (x, v − tx)

which is easily seen to land inside the required target.
We now pass to homotopy categories. By Proposition 18.4.8, the unreduced

cone construction passes directly to homotopy categories as it takes q-equivalences
between parametrized pairs to q-equivalences of ex-spaces. Applying CK to the
above diagram and commuting it past base change functors we see that the com-
posite of the left column with the bottom horizontal map in the following diagram
in HoGKK is given by γ.

C
(

V
V−D

)
∧ CK

(
K
L

)
Cη̄∧id

��

' // SV ∧ CK
(
K
L

)
η∧id

��

Cr!
(
N−L
N−K

)
∧ CK

(
K
L

)
'
��

// r!
(
CK

(
K
L

)
∧K CK

(
N−L
N−K

))
∧ CK

(
K
L

)
assoc

��

π2!CK×K

((
N−L
N−K

)
×

(
K
L

))
π2!CK×K ε̄

��

// CK
(
K
L

)
�

(
CK

(
N−L
N−K

)
Z CK

(
K
L

))
id�ε
��

π2!CK×K

(
∆!K ×

(
V
V−0

))
// CK

(
K
L

)
�∆!S

V
K

The top square commutes by the definition of η and the bottom square commutes by
the definition of ε. The unlabeled horizontal maps are all induced by the inclusion
S0
K = CK(K, ∅) −→ CK(K,L). In particular, letting (X,W ) denote any pair

over K × K, the middle two horizontal maps are given as follows, where we use
Proposition 18.4.6 to identify the target.

π2!CK×K
(
X
W

)
' π2!(∆× id)∗

(
S0
K Z CK×K

(
X
W

))
−→ CK

(
K
L

)
� CK×K

(
X
W

)
We conclude that the composite of the right hand column is the twist map. This
verifies the first V -duality diagram.

The second V -duality diagram, absolute case. We consider first the ab-
solute case L = ∅. We have the diagram(

N
N−K

)
×

(
V

V−D

)
//

γχ
**UUUUUUUUUUUUUUUU

(
N

N−K

)
×

(
V

V−K

)
��

(
N

N−K

)
× r!

(
N

N−K

)
oo

��uujjjjjjjjjjjjjjj

(
V

V−0

)
×

(
N

N−K

)
∼=

ttjjjjjjjjjjjjjjjj

(
N×K

N×K−∆K

)
�

(
N

N−K

)
oo

(
∆!K ×

(
V

V−0

))
�

(
N

N−K

)
c
//
(
KI ×

(
V

V−0

))
�

(
N

N−K

) (
Γ

Γ−∆K

)
�

(
N

N−K

)
iiTTTTTTTTTTTTTTT

oo

OO
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where the top row is the product of (N,N −K) with the zig-zag η̄ of (18.8.1). For
a space or pair X over K we have that

X ×
(

N
N−K

) ∼= X ×∆∗π∗2
(

N
N−K

) ∼= (id×∆)∗
(
X ×K ×

(
N

N−K
))
.

Taking X = (N,N −K), this identifies the space in the upper right hand corner of
the above diagram as

π1!

((
N

N−K
)
×

(
N

N−K
))
'

((
N

N−K
)
×K

)
�

(
N

N−K
)
.

The zig-zag going clockwise along the perimeter from the upper right hand corner
to the lower left hand corner is ε̄ � (N,N −K). The four unlabeled maps to the
center are given by (d, π1), sending (n, v) to (n − v, n). The only map out of the
center is the the unit isomorphism for �. All triangles except the first and last
commute. For the first we have the homotopy

h(n, v, t) = (tn− v, n)

and for the last we need a homotopy

k :
(

Γ
Γ−∆K

)
�

(
N

N−K
)
−→

(
KI ×

(
V
V−0

))
�

(
N

N−K
)

between the two maps around the bottom triangle. We identify the source of k as
the pair (X,W ) over K, where

X = {(n,m) ∈ N ×N | (n, q(m)) ∈ Γ},

with projection sending (n,m) to q(n), and W consists of all (n,m) ∈ X such that
either q(n) 6= q(m) or m 6= q(m). The target of k is the pair (Y, Z) over K, where

Y = {(ω, v,m) ∈ KI × V ×N | q(m) = ω(1)},

with projection sending (ω, v,m) to ω(0), and Z consists of all (ω, v,m) ∈ Y such
that either v 6= 0 or q(m) 6= m. With these identifications, we must define k to be
a homotopy between

k0(n,m) = (ω(q(n),q(m)), n− q(m),m) and k1(n,m) = (cq(n), n−m,n).

Since (n, q(m)) ∈ Γ we have that ‖n− q(m)‖ < ε, and the line segment between n
and m is therefore contained in N . We let mt = ω(n,m)(1− t) and define

k(n,m, t) = (ω(q(n),q(mt)), n− ω(q(m),m)(t),mt).

We apply CK to the above diagram, commute it past base change functors,
and get the following diagram in HoGKB , where the composite of the left hand
column with the bottom map is given by γ(id ∧ α).
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CK

(
N

N−K

)
∧ C

(
V

V−D

)
id∧Cη̄

��

// CK

(
N

N−K

)
∧ SV

id∧η

��
CK

(
N

N−K

)
∧ r!CK

(
N

N−K

)
'

��

// CK

(
N

N−K

)
∧ r!

(
CK

(
K
L

)
∧K CK

(
N

N−K

))
assoc

��
CK×K

((
N

N−K

)
×

(
K
L

))
� tCK

(
N

N−K

)
Cε̄�id

��

//
(
CK

(
N

N−K

)
Z CK

(
K
L

))
� tCK

(
N

N−K

)
ε�id

��
CK×K

(
∆!K ×

(
V

V−0

))
� tCK

(
N

N−K

)
// ∆!S

V
K � tCK

(
N

N−K

)
Here the top and bottom squares commute by the definition of η and ε, and for the
middle square we have used the following equivalence from Proposition 18.4.2:

CK

(
W �

(
N

N−K
))
' CK×KW � tCK

(
N

N−K
)
.

The second V -duality diagram, relative case. We derive the relative case
from the absolute case by using the cofiber sequences

(18.8.3) i!S
0
L −→ S0

K −→ CK(K,L)

and

(18.8.4) CK
(
N−L
N−K

)
−→ CK

(
N

N−K
)
−→ CK

(
N

N−L
)

of Theorem 18.5.5. We have i!CL(NL, NL − L) ' CK(N,N − L), as in the proof
of Theorem 18.5.5, and we see from the absolute case we have already proven that
the second and third terms of the second sequence are the V -duals of the second
and first terms of the first sequence.

To complete our proof that (CK(K,L), CK(N −K,N −L)) is a dual pair with
structure maps (η, ε), it suffices to show that η is the coevaluation map of a dual
pair. Indeed, since we have already shown that (η, ε) satisfies one of the V -duality
diagrams, it will follow that ε must be the evaluation map of the duality. By
Proposition 16.4.6(iii’), it suffices to show that

(18.8.5) η# : E x(W � CK(K,L), Z) −→ E x(W,Z � CK(N −K,N − L))

is a bijection for all 1-cells W : ∗ −→ C and Z : B −→ C, where C is any tar-
get space. We have corresponding maps for the pairs (S0

K , C(N,N − K)) and
(i!S0

L, CK(N,N − L)), which by the absolute case we already know to be isomor-
phisms. Since both sides of the maps η# are exact in the relevant variables, the
result will follow from the five-lemma once we show that the maps η# are compat-
ible with the cofiber sequences (18.8.3) and (18.8.4), so that (18.8.4) is the V -dual
of (18.8.3). Thus the conclusion will follow by Proposition 16.4.7 once we verify the
commutativity of the following three diagrams.
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SV
η̄ //

η̄

��

r!

(
CK

(
N

N−K
)
∧K S0

K

)
��

r!

(
CK

(
N

N−L
)
∧K i!S

0
L

)
// r!

(
CK

(
N

N−L
)
∧K S0

K

)

SV
η̄ //

η̄

��

r!

(
CK

(
N−L
N−K

)
∧K CK

(
K
L

))
��

r!

(
CK

(
N

N−K
)
∧K S0

K

)
// r!

(
CK

(
N

N−K
)
∧K CK

(
K
L

))

SV
η̄ //

η̄

��

r!

(
CK

(
N

N−L
)
∧K i!S

0
L

)
'
��

r!

(
Σ−1
K CK

(
N

N−L
)
∧K ΣKi!S0

L

)
��

r!

(
CK

(
N−L
N−K

)
∧K CK

(
K
L

))
// r!

(
CK

(
N−L
N−K

)
∧K ΣKi!S0

L

)
These are elementary diagram chases using the definition of the coevaluation maps
η̄ given in (18.8.1). They follow from the following two and a desuspension of the
third.

C
(

V
V−D

)
��

// C
(

V
V−K

)
vvmmmmmmmmmmmmm

r!CK
(

N
N−K

)'oo

��

vvlllllllllllll

C
(
V

V−L
)

r!CK
(
N

N−L
)

��

id

((QQQQQQQQQQQQQQ'
oo

r!

(
CK

(
N

N−L
)
∧M i!S

0
L

)
counit

// r!CK
(
N

N−L
)

C
(

V
V−D

)
//

��

C
(

V
(V−K)∪L

)

C
(

V
V−K

)
88qqqqqqqqqqq

r!CK
(
N−L
N−K

)'

OO

//

xxrrrrrrrrrrrr
r!

(
CK

(
N−L
N−K

)
∧K CK

(
K
L

))
��

r!CK
(

N
N−K

)'

OO

// r!
(
CK

(
N

N−L
)
∧K CK

(
K
L

))
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ΣC
(

V
V−D

)
//

��

ΣC
(
V

V−L
)

ΣC
(

V
(V−K)∪L

)
66llllllllllllll

Σr!CK
(
N

N−L
)'

OO

// Σr!
(
CK

(
N

N−L
)
∧M i!S

0
L

)

��

Σr!CK
(
N−L
N−K

)
66llllllllllllll

'

OO

��

Σr!
(
CK

(
N−L
N−K

)
∧K CK

(
K
L

))
// r!

(
ΣKCK

(
N−L
N−K

)
∧K ΣKi!S0

L

)





CHAPTER 19

Fiberwise Costenoble-Waner duality

Introduction

It is often the case that a given functor will have a relatively familiar left adjoint,
like induction, and a relatively mysterious right adjoint, like coinduction. Results
that prove an equivalence of the right adjoint with a shift of the left adjoint are
common and are studied categorically in [62].

Let F be a G-space such that SF is a Costenoble-Waner dualizable G-spectrum
over F and let TF be dual to SF . For example, F could be a smooth G-manifold.
We show in §19.1 that Costenoble-Waner duality for the pair (SF , TF ) specializes to
such a comparison between the left adjoint r! (quotient out sections) and the right
adjoint r∗ (take global sections) of the pullback functor r∗ associated to r : F −→ ∗.
Specialized to orbits G/H, this result translates under the equivalence between the
category of G-spectra over G/H and the category of H-spectra to the Wirthmüller
isomorphism in the form proven by Lewis and May in [98, II§6]. However, the
general result is already of fundamental importance nonequivariantly. In partic-
ular, specialization of this result to smooth manifolds will give the parametrized
homotopical version of Poincaré duality that we advertised in Example 0.0.2.

In §19.5, we show that the comparison between r! and r∗ in §19.1 is a special
case of a general fiberwise comparison between left and right adjoints p! and p∗
associated to bundles p : E −→ B with fiber F . The bundles we consider are of
the type introduced in §3.2 and studied in §15.3. The fiber F is now a Γ-space,
where Γ is an extension of the ambient group G by the structural group Π. When
Γ = Π, G is trivial and we are considering nonequivariant bundles. Fiberwise
Costenoble-Waner duality computes the right adjoint p∗ : HoGSE −→ HoGSB as
a suitable shift of the left adjoint p!. As we observe in §19.6, this result specializes
to a fiberwise variant of our homotopical Poincaré duality theorem.

The proofs are based on a generalization of the foundations. In §19.2, we
construct a symmetric bicategory GE xB for any base G-space B. The bicategory
E x, or GE x to indicate the ambient group, is the case when B is a point. In §19.3,
we obtain an oplax functor ι! : GE xB −→ GE x by use of pushforward functors
associated to inclusions of the form ι : E2 ×B E1 −→ E1 × E2. We also show
how the bicategories GE xB behave with respect to base change and change of
groups. In §19.4, we show that the bundle construction gives rise to a pseudo-
functor P : ΓE x −→ GE xB . The composite ι!P carries the dual pair (SF , tTF ) to a
dual pair (Sp, tTp). Costenoble-Waner duality for this pair specializes to give the
claimed comparison between p! and p∗. Moreover, this comparison restricts on fibers
to a comparison of the form given in §19.1 relating r! and r∗. In earlier drafts, we
called fiberwise Costenoble-Waner duality the fiberwise Wirthmüller isomorphism,
but the new point of view gives more information. It is also reasonable to call the

311
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result Hu duality since, when Γ = G×Π and M is a smooth manifold, it specializes
to a version of the main result of Po Hu’s monograph [78].

In §19.7, we show that the Adams isomorphism relating orbit spectra and
fixed point spectra in the form given by Lewis and May in [98, II§8] is a virtually
immediate special case of fiberwise Costenoble-Waner duality.

Since the results of this chapter subsume a number of results with a substan-
tial history and since earlier versions were proven quite differently, we give some
background discussion and comparison of methods in §19.8. In particular, we show
that a general map from right adjoints to left adjoints that featured prominently in
earlier proofs of some of our results gives inverse equivalences to the natural duality
maps that appear in our framework.

19.1. Costenoble-Waner duality and homotopical Poincaré duality

We assume that F is a G-space such that SF is a Costenoble-Waner dualizable
G-spectrum over F with (right) dual TF , so that we have a dual pair (SF , tTF ) in
GE x. Thus tTF is equivalent to the right dual DrSF . Therefore the map

(19.1.1) µX : X � tTF −→ SF . X

of Proposition 18.1.5 is an equivalence for all 1-cells X : F −→ A, where A is any G-
space. Taking A = ∗, so that X is a G-spectrum over F , and using the dictionaries
Proposition 17.4.2 and Corollary 17.4.4 to translate from the bicategory notation,
this equivalence takes the form

(19.1.2) r!(X ∧F TF ) ' r∗X.

Thus it calculates the right adjoint r∗ in terms of a shift of the left adjoint r!.
Taking F to be the simplest kind of G-manifold, an orbit G/H, recall from

Corollary 11.5.4 that the category of H-spectra is equivalent to the category of
G-spectra over G/H. The equivalence is given in one direction by applying the
functor G×H (−), and in the other by taking the fiber over the identity coset. This
equivalence preserves all structure in sight, including the symmetric monoidal and
model structures. Under this equivalence, r∗ corresponds to the restriction of group
action functor associated to the inclusion ι : H −→ G, and its left and right adjoints
r! and r∗ therefore correspond to induction and coinduction. By Proposition 11.5.2,
TG/H = ι!S

−L, where L is the tangent representation at the identity coset in G/H.
Translated to the nonparametrized context, (19.1.2) gives a natural equivalence

(19.1.3) G+ ∧H (X ∧ S−L) ' FH(G+, X)

for all H-spectra X. In this form, the result is known as the Wirthmüller isomor-
phism. Previous proofs were quite different.

Heading towards Poincaré duality, but still working equivariantly, take F to
be a smooth closed G-manifold and write it M . Then TM = Σ−VM Sν is not just
dualizable in the symmetric monoidal category HoGSM , it is invertible with inverse
Σ∞MS

τ . Precisely,

(19.1.4) Σ∞MS
τ ∧M TM ' Σ−V (Sτ ∧M Sν) ' SM

since τ ⊕ν is the trivial bundle and so Sτ ∧M Sν ∼= SVM . This leads to the following
result, which in turn will lead to the usual homological Poincaré duality theorem
in §20.5 and, equivariantly, in §21.4.
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Theorem 19.1.5 (Homotopical Poincaré duality). Let M be a smooth closed
G-manifold and let k be a non-parametrized G-spectrum. Then there is a canonical
equivalence of G-spectra

k ∧M+ ' SM . (k ∧ Sτ ).

Proof. The smash product on the left is just the nonparametrized tensor of
a spectrum and a space. That on the right is the (external) smash product of a
spectrum and an ex-space over M , and can be written in several equivalent ways:

k ∧ Sτ ' k ∧ Σ∞MS
τ ' r∗k ∧M Σ∞MS

τ ,

where the middle term is the (external) smash product of a spectrum and a spec-
trum over M , and the right term is a smash product of spectra over M . We have
the chain of equivalences

k ∧M+ ' r!(k ∧M SM ) by r!SM = M+ and the projection formula,

' r!(k ∧M Sτ ∧M TM ) since TM is invertible with inverse Sτ ,

' r∗(k ∧M Sτ ) by Costenoble-Waner duality (19.1.2),

' SM . (k ∧M Sτ ) by SM = Sr and Corollary 17.4.4. �

We have relative versions of this result, both for compact manifolds with bound-
ary and for pairs of closed manifolds.

Theorem 19.1.6 (Homotopical Poincaré duality—boundary version). Let M
be a smooth compact manifold with boundary ∂M . Let k be a non-parametrized
G-spectrum and define J = k ∧ SτM . Then there is a canonical equivalence

k ∧ ∂M+

'
��

// k ∧M+
//

'
��

k ∧M/∂M //

'
��

k ∧ Σ∂M+

'
��

(ΣM i!S∂M ) . J // (Σ∞MM/M∂M) . J // SM . J // (i!S∂M ) . J

of cofiber sequences of G-spectra.

Proof. Recall from Proposition 16.4.12 that if (X, tY ) is a dual pair of spectra
over M , then there is a natural equivalence

(19.1.7) µJ : J � tY −→ X . J.

We insert the cofiber sequence of right dualizable parametrized spectra

i!S∂M −→ SM −→ Σ∞MM/M∂M −→ ΣM i!S∂M
into the right hand side of (19.1.7) in place of X. This gives us the bottom row of
the claimed diagram. We showed in Theorem 18.7.2 that the dual of the cofiber
sequence in the previous display is

(19.1.8) Σ−VM i!S
ν∂M −→ Σ−VM SνM −→ Σ−VM SνM /MS

ν∂M −→ Σ−V+1
M i!S

ν∂M .

As explained in §18.7, ν∂M is the normal bundle of ∂M in V ′, where V = V ′ ⊕ R.
We can insert this sequence into the left hand side of (19.1.7) in place of tY , and
that gives us a cofiber sequence and an equivalence with the cofiber sequence in the
bottom row. It remains to identify the resulting sequence with the top row of the
claimed diagram. Using Proposition 17.4.2, we see that the first map in (19.1.8)
becomes

r!(k ∧ SτM ∧M Σ−VM i!S
ν∂M ) −→ r!(k ∧ SτM ∧M Σ−VM SνM ).
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Using that τM ⊕ νM = M × V and ν∂M = i∗νM , together with the projection
formula and the commutation of i∗ with smash products, we see that this map is
equivalent to the map k ∧ ∂M+ −→ k ∧M+ induced by the inclusion. �

Theorem 19.1.9 (Homotopical Poincaré duality—relative version). Let M be
a smooth closed manifold with a closed submanifold L. Let k be a non-parametrized
G-spectrum and define J = k ∧ SτM . Then there is a canonical equivalence

k ∧ Σ−1C(t)

'
��

// k ∧M+
id∧t //

'
��

k ∧ TνM,L
//

'
��

k ∧ C(t)

'
��

(M/ML) . J // SM . J // (i!SL) . J // (Σ−1
M M/ML) . J

of cofiber sequences of G-spectra, where t : M+ −→ TνM,L is the Pontryagin-Thom
map that collapses the complement of νM,L ⊂M to a point.

Proof. We begin exactly as in the proof of Theorem 19.1.6 and insert the
cofiber sequence of right dualizable parametrized spectra

Σ−1
M Σ∞MM/ML −→ i!SL −→ SM −→ Σ∞MM/ML

into the right hand side of (19.1.7) in place of X. This gives us the bottom row of
the claimed diagram. We showed in Theorem 18.6.5 that the dual sequence of the
cofiber sequence in the previous display is

(19.1.10) Σ−V−1
M CM (tM ) −→ Σ−VM SνM −→ Σ−VM i!S

νL −→ Σ−VM CM (tM ).

We can insert this sequence into the left hand side of (19.1.7) in place of tY , and
that gives us a cofiber sequence and an equivalence with the cofiber sequence in
the bottom row. It remains to identify the resulting sequence with the top row
of the claimed diagram. Using Proposition 17.4.2, we see that the second map in
(19.1.10) becomes

r!(k ∧ SτM ∧M Σ−VM SνM )
r!(id∧MΣ−V

M
tM )
// r!(k ∧ SτM ∧M Σ−VM i!S

νL)

where tM is the left vertical map in the diagram (18.6.4). Using the equivalence
SτM ∧M SνM ' ΣVMSM , it follows from that diagram that this map is equivalent to
the map

k ∧M+ ' r!(k ∧M d!S
0
M )

r!(id∧Mα) // r!(k ∧M i!S
νM,L) ' k ∧ TνM,L,

which is id∧ r!α. It was shown in Construction 18.6.3 that r!α is equivalent to the
Pontryagin-Thom map t : M+ −→ TνM,L. �

19.2. The bicategories E xB

At the end of §16.2, we mentioned that there is a categorical structure, not a
tricategory but similar in flavor, of commutative rings, algebras, bimodules, and
maps of bimodules that better encodes the full structure present in the algebraic
situation. Analogously, we have the same categorical structure made up of spaces,
spaces over spaces, spectra over spaces over spaces, and maps of such parametrized
spectra. This idea might seem esoteric, were it not that, at least implicitly, it plays
a fundamental role in our work. We shall not make the full structure explicit.
However, in analogy with the bicategories BR parametrized by commutative rings
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R, we shall construct and use a collection of closed symmetric bicategories E xB
parametrized by G-spaces B. The idea is that the implicit use of a point (the ana-
logue of the integers) in the definition of E x can be replaced by use of B throughout
chapter 17.

Instead of the external smash product and function spectra functors of (17.1.1)
and (17.1.2), the starting point for the definition is given by external smash product
and function spectra functors

(19.2.1) ZB : HoSK ×HoSL −→ HoSK×BL

and

(19.2.2) F̄B : HoS op
L ×HoSK×BL −→ HoSK

for (unsectioned) G-spaces K and L over B. Letting

ι : K ×B L −→ K × L

be the inclusion, these functors are specified by

(19.2.3) X ZB Y = ι∗(X Z Y ) and F̄B(Y, Z) = F̄ (Y, ι∗Z).

With this definition, we have the expected equivalence

(19.2.4) F̄B(X ZB Y, Z) ' F̄B(X, F̄B(Y, Z))

and adjunction

(19.2.5) HoSK×BL(X ZB Y, Z) ∼= HoSK(X, F̄B(Y, Z)).

Definition 19.2.6. Define a bicategory E xB as follows. The 0-cells are the
G-spaces K = (K, p) over B. The category E xB(K,L) is the category HoGSL×BK

of G-spectra over the pullback L×B K over B. We denote its objects, that is the
1-cells, by X : K B //L . The composition

�B : HoGSM×BL ×HoGSL×BK −→ HoGSM×BK

is θ ◦ ZB , where
θ : HoSM×BL×BL×BK −→ HoSM×BK

is given by pullback along the diagonal and pushforward along the projection dis-
played in the diagram

M ×B L×B L×B K M ×B L×B K
δLoo π // M ×B K.

For a 0-cell K = (K, p), the unit 1-cell UK in E x(K,K) = HoSK×BK is δK !SK ,
δK : K −→ K ×B K, and we usually write K instead of UK . The functor θ has a
right adjoint θ∗, and the left and right internal homs are

Z /B Y = F̄B(Y, θ∗Z) : K B //L and X .B Z = F̄B(X, θ∗Z) : L B //M

for 1-cells X : K B //L , Y : L B //M , and Z : K B //M .

The commutative diagram

(19.2.7) M ×B L×B K
δL //

∆

�� ∆L ++WWWWWWWWWWWWWWWWWWWWW M ×B L×B L×B M

ι

��
(M ×B L×B K)× (M ×B L×B K)

π×π
// (M ×B L)× (L×B K)
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of spaces over B gives rise to a description of the horizontal composition and internal
hom functors parallel to that given for E x in Proposition 17.1.4.

Proposition 19.2.8. For 1-cells X : K B //L and Y : L B //M ,

Y �B X ' πM×BK !(π
∗
M×BL

Y ∧M×BL×BK π∗L×BK
X) : K B //M,

where all indicated projections have source M ×B L×B K. For Z : K B //M ,

Z /B Y ' πL×BK∗FM×BL×BK(π∗M×BL
Y, π∗M×BK

Z) : K B //L

and
X .B Z ' πM×BL∗FM×BL×BK(π∗L×BK

X,π∗M×BK
Z) : L B //M.

From here, generalizations of other results in §17.1 hold with nearly identical
proofs. The results of §§17.2–17.5 also generalize, but we shall not go into detail.

19.3. Comparisons of bicategories

We shall use GE xB as a tool for studying GE x, and for that we need functors
that relate these bicategories as B and G vary. We especially need the following
comparison functor.

Proposition 19.3.1. For each B, there is a pushforward oplax functor

ι! : E xB −→ E x

that sends a 0-cell (K, p) to the total space 0-cell K and sends a 1-cell X : K B //L
to the 1-cell ι!X : K −→ L, where ι : L×B K −→ L×K is the inclusion. The unit
coherence 2-cell is an equivalence.

Proof. The factorization ∆ = ι ◦ δ induces the required unit equivalence

ι!U(K,p) = ι!δ!SK ' ∆!SK = UK .

We have a commutative diagram of base spaces

M ×B K
ι // M ×K

M ×B L×B K
ι //

δL

��

π

OO

M × L×K

∆L

��

π

OO

M ×B L×B L×B K

ι

��
M ×B L× L×B K

ι×ι // M × L× L×K.

The top square gives rise to an equivalence ι!π! ' π!ι!. As in the proof of Proposi-
tion 2.2.11, the bottom square gives rise to a natural map

α : ι!δ∗Lι
∗ −→ ∆∗

L(ι× ι)!,

namely the adjoint of the map

δ∗Lι
∗ −→ δ∗Lι

∗(ι× ι)∗(ι× ι)! ' ι∗∆∗
L(ι× ι)!
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given by the unit of the adjunction ((ι×ι)!, (ι×ι)∗). Note that although the bottom
square is a pullback, there is no reason to expect α to be an equivalence. Applying
π! to α, we obtain a natural map

ι!π!δ
∗
Lι
∗ ' π!ι!δ

∗
Lι
∗ −→ π!∆∗

L(ι× ι)!.
Applying this construction to Y Z X for G-spectra Y over M ×B L and X over
L×B K, this gives the required coherence 2-cell

ψ : ι!(Y �B X) −→ ι!Y � ι!X. �

By Proposition 16.5.4, we have the following immediate consequence.

Corollary 19.3.2. If (X,Y ) is a dual pair in E xB and the coherence 2-cell

ψ : ι!(Y �X) −→ ι!Y � ι!X
is an equivalence, then (ι!X, ι!Y ) is a dual pair in E x.

We exhibit a key example where ψ is an equivalence.

Proposition 19.3.3. Taking L = B, let Y be a G-spectrum over M ∼= M×BB
and regard SK as a G-spectrum over K ∼= B ×B K. Then the coherence 2-cell

ψ : ι!(Y �B SK) −→ ι!Y � ι!SK
is an equivalence.

Proof. By the definition of �B and the observation that δB : B −→ B ×B B
and π : M×BB×BK −→M×BK are both isomorphic to identity maps, the source
of ψ is just ι!ι∗(Y Z SK), ι : M ×B K −→ M ×K. As in (17.2.9), Y Z SK ' π∗1Y.
Therefore the source and target of ψ are equivalent to

ι!ι
∗π∗1Y and π!∆∗

B(ι× ι)!π∗1Y.
When L = B, the lower square of the diagram in the previous proof can be rewritten
as the upper left square in the following diagram.

M ×B K
ι //

ι

��

M ×B ×K

∆B

��

π // M ×K

id×p

��

M ×K
π1

��

(id,p)×id// M ×B ×K
id×id×(p,1) //

π12

��

M ×B ×B ×K

M
(id,p)

// M ×B
id

// M ×B

The top square in the diagram of the previous proof reduces to the identification
of the composite π ◦ ι on the top row as ι : M ×B K −→ M ×K. The composite
on the middle row is ι × ι, and the left vertical composite π1 ◦ ι is the projection
π1 : M ×B K −→ M . Starting with Y over M in the lower left corner, pulling
up along the left column and pushing forward along the top row calculates the
source of ψ, while pulling half way up, pushing right twice, pulling up and pushing
right calculates the target of ψ. The outer rectangle and the lower left square
are pullbacks of bundles and so induce equivalences from lower left to upper right
vertices of the two pushforward and pullback composites. In the remaining (non-
commutative) part of the diagram, pulling back along id×p is equivalent to pulling
back along π12, pushing right, pulling up, and pushing right, by the argument in
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Remark 17.2.8. It follows that the source and target of ψ are equivalent via the
canonical transformation associated to the upper left rectangle which maps the
composite functor obtained by pushing right twice and pulling up to the composite
functor obtained by pulling up and pushing right. By definition, this map gives ψ
after composition with π!. �

In our applications, we shall only be concerned with the full sub-bicategory
GE xfib

B of GE xB whose 0-cells (K, p) are (Hurewicz) fibrations. We then have the
following observation about base change functors.

Proposition 19.3.4. Let f : A −→ B be a map of G-spaces. Then pullback
along f induces a pseudofunctor f∗ : GE xfib

B −→ GE xfib
A .

Proof. On 0-cells, we define f∗(K, p) = (A×B K, id×B q), The functor

f∗ : GE xB(K,L) = HoGSL×BK −→ HoGSf∗L×Af∗K = GE xA(f∗K, f∗L)

is defined by observing that f∗(L×B K) ∼= f∗L×A f∗K and that one arrow of the
evident pullback diagram is a map

f∗L×A f∗K −→ L×B K.

By abuse of notation, we also write this map as f , and then the required functor
is indeed the pullback f∗. For triples (M,L,K) of 0-cells of GE xB , we have a
commutative diagram

f∗M ×A f∗K

f

��

f∗M ×A f∗L×A f∗K
πoo δ //

fib

��

f∗M ×A f∗L×A f∗L×A f∗K

fib

��
M ×B K M ×B L×B Kπ

oo
δ

// M ×B L×B L×B K

in which the left square is isomorphic to the first of the following pair of pullbacks.

A×B (M ×B L×B K)

π

��

f×B id // M ×B L×B K
ι //

π

��

(M ×B K)× L

id×p
��

A×B (M ×B K)
f×B id

// M ×B K
(id,p)

// (M ×B K)×B

Here p is used generically for projections to B. Since p : L −→ B is a fibration,
so are the left two vertical maps. This ensures that f∗π! ' π!f

∗. Commutation
isomorphisms relating f∗ to the remaining constituents in the definition of � and
its unit 1-cells are evident, using (19.2.7), and the verification that f∗ is a pseudo-
functor is straightforward. �

We use this together with the following remark to consider passage to fibers.

Remark 19.3.5. We would like to say that change of groups induces an equiv-
alence GE xfib

G/H
∼= HE x. However, we have not introduced enough categorical

language to express this. With the language of Example 16.2.5, the point is that
the equivalence is given in terms of vertical 1-cells rather than the horizontal 1-cells
that appear in the definition of a biequivalence of bicategories. We will develop the
relevant category theory elsewhere, but we can explain the proof without giving
the categorical specification of what it is proving. On 0-cells, we send an H-space
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K to the G-space G×H K over G/H and send a G-space (K, p) over G/H to the
fiber Ke over eH. We have

GE xG/H(K,L) = HoGS (L×G/H K),

and (L ×G/H K)e ∼= Le × Ke. Restriction to fibers and extension of scalars give
inverse equivalences which are easily seen to commute with � and unit objects to
give the kind of equivalence we have in mind; compare §14.3.

Corollary 19.3.6. Restriction to fibers defines a pseudo-functor GE xfib
B −→

GbE x for each b ∈ B.

Proof. We apply Proposition 19.3.4 to b̃ : G/Gb −→ B and then apply Re-
mark 19.3.5 with H = Gb. �

19.4. The bundle construction pseudo-functor

We fix notations as in §3.3 and §15.4, letting P be a Π-free Γ-space for an
extension Γ of G by Π, these being compact Lie groups. We let B = P/Π. For a
Γ-space F , we defined the bundle construction PF on ex-Γ-spaces over F in §3.3.
We extended the construction to Γ-spectra over F in §15.4. There we have two
variants, PF and PF , the latter being needed to deal with Γ-spectra over F indexed
on complete universes. In §15.6, we showed that PF carries fiberwise dual pairs of
spectra over F to fiberwise dual pairs of spectra over E, where E is the associated
bundle P ×ΠF . Analogously, we prove here that PF carries Costenoble-Waner dual
pairs of spectra over F to Costenoble-Waner dual pairs of spectra over E.

The essential point is to switch focus from the bundle construction PF for a
fixed fiber Γ-space F to a pseudo-functor P between symmetric bicategories that is
obtained from such PF by letting F run over cartesian products F1×F2 of Γ-spaces
and E run over cartesian products E1 ×B E2 in the category K /B of spaces over
B. Recall from Lemma 3.3.4 that the functor P ×Π (−) from spaces to spaces over
B is cartesian.

Thus, to begin with, we have the functors

(19.4.1) PF : HoΓSF −→ HoGSE .

Here we are regarding E = P ×Π F just as a G-space, ignoring the fact that it has
the projection p = P ×Π r : E −→ B. The key point in assembling such functors
into a pseudo-functor between bicategories is to remember the implicit projections.

As in §15.6, there are two layers of structure to consider, and we shall proceed
in two stages. The description given above refers to the more elementary first stage.

Construction 19.4.2. We define a pseudo-functor

P : ΓE x −→ GE xB

between symmetric bicategories. Write F for a typical 0-cell of ΓE x, so that F is
a Γ-space. We define PF = (E, p), where E = P ×Π F and p = P ×Π r : E −→ B,
r : F −→ ∗. We define P on 1-cells and 2-cells by letting

P : ΓE x(F1, F2) −→ GE xB(E1, E2),

Ei = P ×Π Fi, be the functor

PF2×F1 : HoΓSF2×F1 −→ HoGSE2×BE1 .
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The unit isomorphism 2-cell

UPF = δ!SPF −→ P∆!SF = PUF
is obtained by specialization of equivalences in Propositions 15.4.4 and 15.6.1. The
horizontal composition isomorphism 2-cell

PY � PX −→ P(Y �X)

is obtained by using Propositions 3.3.8 and 15.6.1 to commute P past the functors
that define the horizontal composition in ΓE x.

In the previous construction, F was a variable. We now change our point of
view and generalize the previous construction to one whose starting point is some
fixed F ; the previous construction is the case F = ∗ of the generalized verion.

Construction 19.4.3. Fix a base Γ-space F with associated G-bundle E =
P ×Π F . We define a pseudo-functor

P/F : ΓE xF −→ GE xE .

Write (L, q) for a 0-cell of ΓE xF ; thus (L, q) is a Γ-space over F . We define

P/F (L, q) = (P ×Π L,P ×Π q),

which is a G-space over E. We define

P/F : ΓE xF (L1, L2) −→ GE xE(N1, N2),

Ni = P ×Π Li, to be the functor

PL2×FL1 : HoΓSL2×FL1 −→ HoGSN2×EN1 .

The coherence isomorphism 2-cells are defined as in the previous construction.

Here we use the notation P/F rather than PF to avoid confusion. The symmetric
monoidal functor PF of (19.4.1) preserves fiberwise dual pairs, whereas the pseudo-
functor P/F preserves all Costenoble-Waner dualizable pairs.

Corollary 19.4.4. If (X,Y ) is a dual pair in ΓE x, then (PX,PY ) is a
dual pair in GE xB. More generally, if (X,Y ) is a dual pair in ΓE xF , then
(P/F X,P/F Y ) is a dual pair in GE xE.

19.5. The fiberwise Costenoble-Waner duality theorem

Again, fix an extension Γ of G by Π and a Π-free Γ-space P with base space
B = P/Π. Fix a Γ-space F and let E = P×ΠF . We assume that SF is a Costenoble-
Waner dualizable Γ-spectrum over F with (right) dual TF , so that (SF , tTF ) is a
dual pair. We fix this context throughout the section. With these hypotheses, we
now generalize (19.1.2) from r : F −→ ∗ to the G-bundle p : E −→ B with fiber F .
Note that we will use Construction 19.4.2 here, not Construction 19.4.3. That is,
we will use the ambient bicategory GE xB to inform us about GE x. A more general
analogue can be obtained using Construction 19.4.3.

Theorem 19.5.1. Let TE be the G-spectrum PFTF over E. Then (Sp, tTp) is
a dual pair in GE x, where

Sp ≡ ι!PSF ' (p, id)!SE and Tp ≡ ι!PTF = (p, id)!TE .
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Proof. Here SF and tTF are 1-cells F −→ ∗ and ∗ −→ F , PSF and tPTF are
1-cells E B //B and B B //E, and Sp and tTp are 1-cells E −→ B and B −→ E.
The relevant parts of the oplax functor ι! : GEB −→ GE x of Proposition 19.3.1 are
given by pushforward along

ι = (p, id) : E ∼= B ×B E −→ B × E and ι = (id, p) : E ∼= E ×B B −→ E ×B.

The conclusion follows immediately from Proposition 19.3.3 and Corollaries 19.3.2
and Corollary 19.4.4. �

With the notations of the previous theorem, we have the following consequence.
Let jb : Eb −→ E be the inclusion and let ρb : Gb −→ Γ be the fiber representation
specified in Lemma 3.2.1. Recall the description of PF on fibers from Lemma 15.4.3.

Theorem 19.5.2. For 1-cell G-spectra X : E −→ A, the dual pair (Sp, tTp)
gives rise to a natural duality equivalence

(19.5.3) µX : X � tTp −→ Sp . X

of 1-cell G-spectra B −→ A. Restricting the source along b : ∗ −→ B by applying
(id× b)∗(−) ' (−)� Sb, µ gives rise to the corresponding equivalence

µX�Sj : (X � Sj)� tρ∗bTF −→ ρ∗bSF . (X � Sj)

of (19.1.1). When A is a point, so that X is a G-spectrum over E, µX is an
equivalence

(19.5.4) p!(X ∧E TE) ' p∗X

of G-spectra over B that restricts on fibers to the corresponding equivalences

r!(j∗bX ∧ρ∗bF ρ
∗
bTF ) ' r∗X

of Gb-spectra given in (19.1.2).

Proof. The first statement is immediate. For the second, we fix b and we
agree to restrict group actions to Gb throughout the proof. We also abbreviate
j = jb. Identifying ρ∗bF with Eb and using change of universe and change of groups,
Lemma 15.4.3 tells us that the functors ρ∗b and j∗P from HoΓSF to HoGbSEb

are
isomorphic. In particular, ρ∗bTF ' j∗PTF = j∗TE . Thinking of r : Eb −→ ∗, we
write the latter as Tr, so that (Sr, tTr) is a dual pair of Gb-spectra over Eb. It is
essentially just the original dual pair (SF , tTF ), pulled back to Gb along ρb. Let
ε̄ and ε denote the evaluation maps of the pairs (Sp, tTp) and (Sr, tTr). We first
obtain a diagram relating ε to ε̄ and then use it to prove the second statement of
the theorem. The comparison relies on the following commutative diagram of base
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spaces.

(19.5.5) Eb × Eb

j×id

��

π1

((QQQQQQQQQ
k // E ×B E

π1

((PPPPPPPPP

ι

��

Eb
j //

(j,id)

��

E

∆

��
E × Eb

id×j //

id×r

��

E × E

id×p

��

E × Eb

id×r ((QQQQQQQ id×j
// E × E

id×p
((PPPPPPPP

E × ∗
id×b

// E ×B

The left, right, and bottom faces are pullbacks, and the lower square in the front
face is the same as the bottom face. The vertical composites in the front face may
be identified with j and (id, p). We construct the following commutative diagram.

(19.5.6)

Sj � tTr � Sr

'
��

id�ε // Sj �∆!SEb
' Sj

'
��

(id× r)∗j!j∗TE

φ

��

(j × id)!π∗1j
∗TE

α

'
oo

σ'
��

(j×id)!ε // (j × id)!∆!SEb

'
��

(id× r)∗(id× b)∗(id, p)!TE

τ '
��

(j × id)!k∗π∗1TE

ξ

��

(j×id)!k
∗Pε // (j × id)!k∗δ!SE

ξ

��
(id× j)∗(id× p)∗(id, p)!TE

'
��

(id× j)∗ι!π∗1TE
ψ

'
oo (id×j)∗ι!Pε // (id× j)∗ι!δ!SE

'
��

tTp � Sp � Sj
ε̄�id

// ∆!SE � Sj ' Sj

The unlabelled equivalences in the top and bottom rectangle are given by the
dictionary Proposition 17.2.4. The equivalences α and ψ are obtained from the left
and right pullback faces of (19.5.5). The equivalences σ and τ are commutation
relations induced from the top and bottom faces. The map φ is obtained from the
front face (as in Proposition 2.2.11), starting with TE over the E in the upper right
corner, and the maps ξ are obtained from the back face. We shall prove shortly
that φ and therefore also the left map ξ is an equivalence, and the right map ξ is
an equivalence since the right vertical composite agrees with the evident composite
of unit equivalences. The middle left hexagon commutes by a diagram chase from
the commutative diagram (19.5.5), and the lower middle rectangle is a naturality
diagram. We must explain the remaining three rectangles.

As observed more generally in (17.2.9), the domain tTF �SF of the evaluation
map for the dual pair (SF , tTF ) may be identified with π∗1TF , and similarly for
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the equivalent dual pair (Sr, tTr). Instead of starting with the top left vertical
equivalence, we could have identified Sj � tTr�Sr with (j× id)!(id× r)∗j∗TE . The
map α in the diagram specifies the associativity isomorphism relating these two
identifications, and the top rectangle amounts to the diagram obtained by applying
(j× id)! to the specification of ε as a map with domain π∗1Tr = π∗1j

∗TE . The map k
at the top of (19.5.5) is the inclusion Eb×Eb = (E×B E)b −→ E×B E of the fiber
over b. Recall from Corollary 19.3.6 that base change functors along inclusions of
fibers give a pseudofunctor GE xfib

B −→ GbE x. We have the dual pair (PSF ,PtTF ),
and applying k to its evaluation map Pε recovers the evaluation map for the fiber
dual pair (j∗Sr, j∗tTr), modulo the identification of domains given by the map σ
in the diagram. This gives the upper middle rectangle. Finally, the equivalence ψ
in the bottom rectangle is obtained by applying (id × j)∗ to the equivalence ψ of
Proposition 19.3.3 (which simplifies considerably in our case M = K = E). The
commutativity of the bottom rectangle is obtained by applying (id × j)∗ to the
definition of ε̄ in terms of Pε; compare Proposition 16.5.4.

Now return to the second statement of the theorem. We are given a 1-cell
X � Sj : Eb −→ A, and our claim is that

(19.5.7) µX � Sb ' µX�Sj

up to identifications of their source and target 1-cells. Once we prove that, this will
also give us an alternative proof of Theorem 19.5.2 as a consequence of equivalences
of the form (19.1.1). Indeed, µX is an equivalence if and only if its restriction to
fibers is an equivalence, and we can restrict to the fiber over (a, b) by first restricting
to A× {b} and then restricting to (a, b).

We define equivalences φ and ω that make the following diagram commute up
to natural equivalence (an isomorphism 2-cell in E x).

(19.5.8) (X � Sj)� tTr
µX�Sj //

φ

��

Sr . (X � Sj)

ω

��
(X � tTp)� Sb

µX�id
// (Sp . X)� Sb

To obtain ω, we apply the dictionary Proposition 17.2.4 to interpret the source and
target as base change functors and use a commutation relation derived from the
product of A× (−) with the pullback diagram

Eb
j //

r

��

E

p

��
∗

b
// B.

Explicitly, with id = idA, ω is the equivalence

Sr . (X � Sj) ' (id× r)∗(id× j)∗X ' (id× b)∗(id× p)∗X ' (Sp . X)� Sb.

To obtain φ, we apply the funtor X � (−) to the following map derived (as before)
from the front face of (19.5.5), where id = idE and the dictionary Proposition 17.2.4
gives the first and last equivalences

Sj � tTr ' j!tTr = tj!j
∗TE ' t(id× b)∗(id, p)!TE = t(id× b)∗Tp ' tTp � Sb.
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The prefixed letter t in the middle terms just indicates that we are viewing these Gb-
spectra over E as 1-cells ∗ −→ E, as dictated by consistency with the outermost
terms. We claim that this map is an equivalence. Logically, the verification is
only necessary to obtain the second proof that µX is an equivalence, since the
commutativity of (19.5.8) will imply that φ must be an equivalence. However,
we can see this directly by checking that the map just displayed agrees with the
following composite equivalence of 1-cells ∗ −→ E.

tj!j
∗TE ' tj!(j∗TE ∧Eb

Sr) by a unit isomorphism,

' t(TE ∧E j!r∗S) by the projection formula,
' ∆!TE � Sj � tSr by Proposition 17.4.3,
' ∆!TE � tSp � Sb by Theorem 17.4.5,

' t(id× b)∗(id, p)!TE by Proposition 17.2.4.

Recall that µX is defined as the adjoint of ε̄ : X � tTp � Sp −→ X � E ' X,
and similarly for µX�Sj

. We expand (19.5.8) as follows, abbreviating some labels
of arrows by deleting functors applied to maps. For example, the map φ on the
second row is shorthand for Sr . (φ� Sr).

X � tTp � Sb

coev

��

X � Sj � tTr

coev
uujjjjjjjjjjjjjjj

µ

��

φ

'
oo

Sr . (X � tTp � Sb � Sr)

τ '
��

Sr . (X � Sj � tTr � Sr)
ε

))TTTTTTTTTTTTTTT
φ

'
oo

Sr . (X � tTp � Sp � Sj)

ω '
��

ε̄
// Sr . (X � Sj)

ω'
��

(Sp . (X � tTp � Sp))� Sb ε̄
// (Sp . X)� Sb

The composite of the maps in the left column is coev � id, hence the composite
down the left column and along the bottom row is µX � id, so that the diagram
is indeed an expansion of (19.5.8). The top trapezoid and bottom rectangle are
naturality diagrams, and the triangle commutes by the definition of µX�Sj

as the
adjoint of ε. The middle trapezoid commutes since it is obtained by applying the
functor Sr . (X � (−)) to the commutative diagram (19.5.6). �

19.6. Fiberwise Poincaré duality

Just as (19.1.2) led to the homotopical version of Poincaré duality formulated
in (Theorem 19.1.5), so 19.5.4 leads to a fiberwise homotopical Poincaré duality
theorem. We retain the context of the previous section, except that we now take
F to be a smooth closed Γ-manifold and rename it M . Thus we have the ex-G-
space (E, p)+ over B, where B = P/Π and E = P ×Π M . Since the Γ-spectrum
TM = Σ−VM Sν over M is invertible with inverse Σ∞MS

τ in HoΓSM and the func-
tor PM : HoΓSM −→ HoGSB is symmetric monoidal, by Proposition 15.6.1, the
G-spectrum TE = PMTM over B is invertible in HoGSB . Its inverse is the spec-
trum level G-bundle of spherical tangents along the fiber associated to p, namely
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Σ∞E PMS
τ ' PMΣ∞E S

τ , which we will denote PMSτ . We have two versions of fiber-
wise homotopical Poincaré duality, one starting with a G-spectrum J over B and
the other with a G-spectrum k. It is convenient below to write r̄ : B −→ ∗ and
r : E −→ ∗, so that r̄ ◦ p = r.

Theorem 19.6.1 (Homotopical Poincaré duality for bundles). Let M be a
smooth closed Γ-manifold and let J be a G-spectrum over B. Then there is a
canonical equivalence of G-spectra over B

J ∧B (E, p)+ ' Sp . (p∗J ∧E PMSτ ).

Therefore, taking J = r̄∗k for a G-spectrum k,

k ∧ (E, p)+ ' Sp . (k ∧ PMSτ ).

Proof. In the first statement, the smash product on the left is the tensor of a
spectrum over B and an ex-space over B. That on the right is the smash product
of spectra over E and is equivalent to the tensor p∗J ∧E PMSτ . The following chain
of equivalences gives the conclusion.

J ∧B Σ∞B (E, p)+ ' J ∧B p!SE since p!SE ' Σ∞B (E, p)+,

' p!(p∗J ∧E SE) by the projection formula,

' p!(p∗J ∧E PMSτ ∧E TE) since SE ' PMSτ ∧E TE ,
' p∗(p∗J ∧E PMSτ ) by (19.5.4),

' Sp . (p∗J ∧E PMSτ ) by Corollary 17.4.4.

In the second statement, the smash product on the left pairs a spectrum with an
ex-space over B to obtain a spectrum over B and is equivalent to J ∧B (E, p)+;
that on the right pairs a spectrum with a spectrum over E to obtain a spectrum
over E and is equivalent to p∗J ∧E PMSτ . �

If we apply r̄! to the above result, taking J = r̄∗k, the left side becomes
k ∧ Σ∞E+, whose homotopy groups are k∗(E). We would like to understand the
right side in cohomological terms. In general, the right side is hard to interpret since
r̄! does not commute with p∗ = Sp . (−). However, if B is a smooth G-manifold,
then r̄!(X) ' r̄∗(X ∧B SτB ) for any G-spectrum X over B, since SτB is inverse to
TB , and the right side begins to look cohomological. We still need to commute p∗
past smash products, but the following general observation achieves that.

Remark 19.6.2. Let f : A −→ B be a map such that there is a natural isomor-
phism f∗X ' f!(X ∧A I), where I is invertible with (homotopical) inverse I−1 so
that we also have f!X ' f∗(X ∧A I−1). Then the projection formula for f! formally
implies the projection formula for f∗. That is, f∗(f∗Y ∧A X) ' Y ∧B f∗X for
G-spectra X over A and Y over B.

Theorem 19.6.3. Let M be a smooth closed Γ-manifold and B be a smooth
closed G-manifold, and let J be a G-spectrum over B. Then there is a canonical
equivalence of G-spectra over B

r̄!(J ∧B (E, p)+) ' SE . (p∗J ∧E PMSτM ∧E p∗SτB ).

Therefore, taking J = r̄∗k for a G-spectrum k,

k ∧ E+ ' SE . (k ∧ (PMSτM ∧E p∗SτB )).
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Proof. Applying r̄! to the first equivalence of Theorem 19.6.1, the left side
becomes r̄!(J ∧B (E, p)+) and we must evaluate the right side. The first and last
of the following equivalences are immediate, the second is given by Remark 19.6.2
and the third by r∗ ' r̄∗p∗.

r̄!(Sp . (p∗J ∧E PMSτM )) ' r̄∗(p∗(p∗J ∧E PMSτM ) ∧B SτB )

' r̄∗p∗(p∗J ∧E PMSτM ∧E p∗SτB )

' r∗(p∗J ∧E PMSτM ∧E p∗SτB )

' SE . (p∗J ∧E PMSτM ∧E p∗SτB )

When J = r̄∗k, the left side reduces to k ∧ E+ by the projection formula and the
right side reduces to SE . (k ∧ (PMSτM ∧E p∗SτB )) since p∗J ' r∗k. �

In fact, the previous result is a rather elaborate consistency check on our general
theory. There is a bundle theoretic reinterpretation that allows it to be viewed
as a special case of Theorem 19.1.5. Assuming that P is completely regular, so
that P −→ B is locally trivial in the appropriate equivariant sense [92, p. 267], the
smooth structures on B, Γ, andM induce smooth structures on P and E. Therefore
both ordinary and fiberwise Costenoble-Waner duality apply to E. It is clear by
inspection that the tangent G-bundle of E is isomorphic to the Whitney sum of the
bundle of tangents along the fibers and the pullback of the tangent bundle of B:

(19.6.4) τE ∼= (P ×Π τM )⊕ p∗τB .

Therefore, the sphere G-bundle SτE is isomorphic to the fiberwise smash product
PMS

τ ∧E p∗SτB . Applying Σ∞E , which commutes with smash products, we see that

(19.6.5) Σ∞E S
τE ' PMSτM ∧E p∗SτB .

If we insert this into Theorem 19.6.3, taking J = r̄∗k, we obtain

k ∧ E+ ' SE . (k ∧ SτE ).

which is the homotopical Poincaré duality of Theorem 19.1.5.

19.7. The Adams isomorphism

Let N be a normal subgroup of G and let ε : G −→ J be the quotient by N . The
conjugation action of G on N induces an action of G on the tangent space of N at
the identity element, giving us the adjoint representation A = A(N ;G). Let (i∗, i∗)
be the change of universe adjunction associated to the inclusion i : q∗VJ −→ VG
of the complete J-universe VJ as the universe of N -trivial representations in the
complete G-universe VG.

Recall the discussion of N -free G-spectra from §15.5, where Π and Γ played
the roles of N and G.

Theorem 19.7.1 (Adams isomorphism). For N -free G-spectra X in GS N-triv,
there is a natural equivalence

X/N ' (i∗Σ−Ai∗X)N

in Ho JS N-triv.

We shall derive this by applying Theorem 19.5.2 to the quotient G-map

p : E(N ;G) −→ B(N ;G),



19.7. THE ADAMS ISOMORPHISM 327

where E(N ;G) is the universal N -free G-space and B(N ;G) = E(N ;G)/N . To
place ourselves in the required bundle theoretic context, we give another description
of p, following [118, II§7]. It is formal and would similarly identify p : E −→ E/N
for any N -free G-space E. Let Γ = GnN be the semi-direct product of G and N ,
where G acts by conjugation on N . Write Π for the normal subgroup {e} n N of
Γ. We then have an extension

1 −→ Π −→ Γ θ−→ G −→ 1,

where θ(g, n) = gn. Give N the Γ-action (g, n) ·m = gnmg−1. Then N ∼= Γ/G as
Γ-spaces, where we view G as the subgroup Gn {e} of Γ. The composite

E(N ;G) ∼= θ∗E(N ;G)×Π (Γ/G) −→ θ∗E(N ;G)×Π ∗ ∼= B(N ;G)

induced by Γ/G −→ ∗ is p. Since θ∗E(N ;G) is a Π-free Γ-space, we see that p is
a bundle with fiber Γ/G ∼= N to which Theorem 19.5.2 applies. We must identify
the G-spectrum Tp over E(N,G) of Theorem 19.5.1 when F = Γ/G. We write r
for the map E(N ;G) −→ ∗.

Proposition 19.7.2. The G-spectrum Tp over E(N,G) is equivalent to r∗S−A.

Proof. The tangent bundle of Γ/G ∼= N is the trivial bundle N×A [98, p. 99].
Indeed, let Γ act on A via the projection ε : Γ −→ G, ε(n, g) = g. We obtain a
Γ-trivialization of the tangent bundle of Γ/G by sending (n, a) ∈ N×A to deLn(a),
where deLn is the differential at e of left translation by n. It follows that the
tangent bundle along the fibers of p is also trivial:

θ∗E(N ;G)×N (Γ/G×A) ∼= (θ∗E(N ;G)×N Γ/G))×A ∼= E(N ;G)×A.

Thus the spherical bundle of tangents along the fiber is E(N ;G)×SA = r∗SA. Its
inverse is the bundle construction on the spherical fibration of the normal bundle
of Γ/G, which of course is also trivial. Its G-spectrum over E(N ;G) is r∗S−A. �

Proof of the Adams isomorphism. Let X ∈ GS N-triv be N -free. Apply-
ing Theorem 19.5.2 to the G-spectrum r∗i∗X over E(N ;G) and using that Tp is
r∗S−A, we obtain a natural equivalence

p!(r∗i∗X ∧E(N ;G) r
∗S−A) ' p∗r∗i∗X

of G-spectra over B(N ;G). Write r̄ for the map B(N ;G) −→ ∗, so that r̄ ◦ p = r.
Applying the functor r̄!((i∗(−))N ) to the displayed equivalence, we obtain a natural
equivalence

r̄!((i∗p!(r∗i∗X ∧E(N ;G) r
∗S−A))N ) ' r̄!((i∗p∗r∗i∗X)N )

in Ho JS N-triv. We proceed to identify both sides. The source is

r̄!((i∗p!(r∗i∗X ∧E(N ;G) r
∗S−A))N )

' r̄!((i∗p!r
∗Σ−Ai∗X)N ) by Theorem 13.7.3

' (r̄!i∗p!r
∗Σ−Ai∗X)N by Proposition 14.4.4

' (i∗r̄!p!r
∗Σ−Ai∗X)N by Propositions 14.2.8 and 15.5.5

' (i∗r!r∗Σ−Ai∗X)N by functoriality

' (i∗Σ−Ai∗X)N by Definition 15.5.1.
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The target is

r̄!((i∗p∗r∗i∗X)N ) ' r̄!((p∗r∗i∗i∗X)N ) by Proposition 14.2.8

' r̄!((p∗r∗X)N ) by Proposition 15.5.5

' r̄!((p!r
∗X)/N) by Proposition 14.4.5

' (r̄!p!r
∗X)/N by Proposition 14.4.4

' (r!r∗X)/N by functoriality

' X/N. by Definition 15.5.1. �

19.8. Some background and comparisons

Aside from acknowledgment of the essential precursor [41] of Costenoble and
Waner, it is hard for us to give precise antecedents for our homotopical versions of
Poincaré duality in §19.1 and §19.5. There are various hints in the literature that
something like our results should be true but, to the best of our knowledge, the
present formulations are new.

The Wirthmüller and Adams isomorphisms, in their appropriately general ver-
sions as isomorphisms between certain left and right adjoint functors on G-spectra,
were the most difficult results in Lewis and May’s work on the foundations of
equivariant stable homotopy theory [98]. The proofs there always seemed unsatis-
factory, but the results have since been used in many applications. With our new
perspective, these results are just very special cases of parametrized Atiyah duality
and its fiberwise generalization. The new proofs complete the program begun in
[105] of reproving conceptually all of the basic foundational results that were first
proven in a less satisfactory ad hoc way in [98].

Historically, the Wirthmüller isomorphism, viewed as a statement about the
behavior of equivariant homology theories on orbit G-spaces, is a key result in
Wirthmüller’s early paper [171]. Shortly afterwards, he recognized it both as a
duality theorem on orbits and as a special case of equivariant Atiyah duality [172].
The Adams isomorphism was first proven in [3, 5.4], but only for finite groups and
only in the equivariant Spanier-Whitehead suspension category. Adams knew and
cited the Lewis-May result for G-free spectra, which had not yet appeared, but
Lewis and May called the result the Adams isomorphism in their published version
[98] because Adams was the first to formulate the result in proper generality as a
statement about general normal subgroups, rather than just the trivial subgroup.

The basic idea that parametrized G-spectra should clarify and simplify the
Wirthmüller and Adams isomorphisms was explained in an e-mail from Gaunce
Lewis to Po Hu [97]. In her monograph [78], Hu first formulated and proved a
fiberwise version of the Wirthmüller isomorphism, and she used it to prove the
Adams isomorphism. Our results in this chapter include variant versions of all of
her results, and our original arguments were inspired by those in her work.

Remark 19.8.1. Taking the fiber F in §19.5 to be a smooth manifold M and
taking Γ = G×Π with only Π acting on M , one can think of p : E −→ B as a topo-
logical G-bundle with a reduction of its structural group to a suitably large compact
subgroup Π of the group of diffeomorphisms of M . That case of Theorem 19.5.2
is a variant of the main theorem, [78, 4.8], of Hu’s monograph. She worked with
Diff(M) itself as an implicit structure group, without use of an auxiliary group
Π and without an ambient group Γ. That bundle theoretic framework leads to
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formidable complications, hence her arguments are much more difficult than ours.
Her result is both more and less general than the specialization of ours to the case
Γ = G × Π: it allows bundles that might not admit a single compact structure
group Π, but it requires the base spaces to be G-CW complexes with countably
many cells, requires smooth manifolds as fibers, and does not handle more general
group extensions.

Remark 19.8.2. In outline, our proof of the Adams isomorphism is an alterna-
tive implementation of the argument that Hu gave in [78, pp 81–99]. However, in
her restricted bundle theoretic context, the argument, although more conceptual,
is technically more difficult than the original proof in [98, pp 96–102]. The context
supplied by our bundle construction eliminates the need for most of her work.

A general categorical study of isomorphisms between left and right adjoints
was given by Fausk, Hu, and May in [62], and a simplified proof of the Wirthmüller
isomorphism from that perspective was given in [125]. It is a curious feature of those
papers, and the earlier work cited above, that they start with a general natural
map from the right adjoint to the left adjoint and then explain when that map is
an equivalence. Specializing their categorical context, take p and the spectrum TE
as in §19.5, so that there is an equivalence

αp : p!TE −→ DB(p!SE).

For aG-spectrumX over E, their definitions specialize to give a canonical candidate
map

ωp : p∗X −→ p!(X ∧E TE)

for an equivalence, namely the composite displayed in the commutative diagram

(19.8.3) p∗X ' p∗X ∧B DB(SB)

ωp

��

id∧BDB(σ) // p∗X ∧B DB(p!SE)

p∗X ∧B p!TE

id∧Bαp'

OO

p!(X ∧E TE) p!(p∗p∗X ∧E TE).

'

OO

p!(ε∧E id)
oo

The maps σ : p!SE ' p!p
∗SB −→ SB and ε : p∗p∗X −→ X are given by the counits

of the adjunctions (p!, p
∗) and (p∗, p∗). The lower right equivalence is given by the

projection formula. We took the same perspective in earlier versions of this book.
Note however that the definition of ωp relies on having the equivalence αp, which
from our present perspective already depends on knowing that SF is Costenoble-
Waner dualizable. In contrast, we now start from a canonical duality map from the
left adjoint to the right adjoint that always exists, without any further assumptions.

The following comparison is only to be expected. Specialize the definition of
ωp to the case when p is r : F −→ ∗ for a G-space F and write ωX instead of ωr to
emphasize the dependence on X, where X is a G-spectrum over F . The following
result shows that ωX is a left inverse of the map µX of (19.1.1). The analogue for
the map µX used in Theorem 19.5.2 follows fiberwise.
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Proposition 19.8.4. Let (SF , tTF ) be a dual pair of G-spectra over F . Then
the equivalence

µX : X � tTF −→ SF . X

is right inverse to ωX ; that is ωX ◦ µX ' id.

Proof. We begin by reformulating the definition of

ωX : r∗(X) −→ r!(X ∧F TF )

in terms of the bicategory E x. Let (η, ε) be the structure maps of the dual pair
(SF , tTF ) and recall that ε induces a map

ξX : (X � tTF )� SF
assoc // X � (tTF � SF )

id�ε // X � F ' // X

whose adjoint is the equivalence µX . Let (σ, ζ) be the structure maps of the dual
pair (tSF , SF ). We have the composite duality (SF � tSF , SF � tTF ) of 1-cells
∗ −→ ∗, and η is the dual of σ; see Proposition 16.5.2. We obtain the following
diagram, in which ∗ denotes the unit 1-cell ∆!S = S of the 0-cell ∗.

(SF . X)� (∗ . ∗)
id�(σ.∗) // (SF . X)� ((SF � tSF ) . ∗)

SF . X

ωX

��

'

OO

id�η // (SF . X)� (SF � tTF )

'

OO

assoc

��
X � tTF ((SF . X)� SF )� tTF

ev�tTFoo

Translating it in terms of the category HoGSF and base change functors associated
to r : F −→ ∗, we see that the perimeter is exactly the definition of ω. For example,
the associativity isomorphism translates into the projection formula, the spectrum
in the lower right hand corner is r!(r∗r∗X ∧F TF ), and so on. Note that ωX is
clearly functorial in X.

Now consider the following diagram.

X � tTF
id�η //

coev
))RRRRRRRRRRRRRR

µ

��

(X � tTF )� (SF � tTF )
assoc

**VVVVVVVVVVVVVVVVV

SF . [(X � tTF )� SF ] ω //

id.(µ�id)

��

[(X � tTF )� SF ]� tTF

µ�id�id

��
SF . X coev

//

SSSSSSSSSSSSSS

SSSSSSSSSSSSSS
SF . [(SF . X)� SF ] ω //

id.ev

��

[(SF . X)� SF ]� tTF

ev�id

��
SF . X

ω // X � tTF



19.8. SOME BACKGROUND AND COMPARISONS 331

The top face commutes since ωZ factors as the bottom row in the following diagram,
where we write Z for X � TF .

Z

coev

��

id�η // Z � (SF � TF )

coev�id

��

assoc

**UUUUUUUUUUUUUUUU

SF . (Z � SF )
id�η // (SF . (Z � SF )� (SF � TF )

ev�TF // (Z � SF )� TF
Since µ is the adjoint of ξ, the right vertical composite in our large diagram is ξ�id.
In view of the definition of ξ and the defining property of the duality (η, ε), the
composite from the top left hand corner to the bottom right hand corner, through
the top right hand corner, is the identity. Since the composite through the lower
left hand corner is ω ◦ µ, this proves that ω ◦ µ ' id. �





Part V

Homology and cohomology, Thom
spectra, and addenda





Introduction

Parametrized homology and cohomology theories have a surprisingly scanty
history, perhaps due to the lack of rigorous foundations. An early paper of Dold
[49] gave an axiomatization. Several later papers, notably [74,153,154] of Hodgkins
and Smith, studied the Eilenberg-Moore spectral sequence, viewed as a Künneth
spectral sequence for homology on parametrized spaces. The book [42] of Crabb
and James ends with some sample applications of such theories.

However, from our point of view, the parametrized theories studied in these
references are usually just those obtained by applying classical homology and coho-
mology theories on based spaces, most often ordinary theories, to the based spaces
r!X derived from ex-spaces X. This elementary construction is already very useful,
but we are interested in the study of parametrized theories that are represented
by general parametrized spectra, not just those that are represented by r∗k for a
nonparametrized spectrum k. As illustrated in Example 0.0.2, the more general
theories illuminate even very basic facets of the classical theories.

We introduce such parametrized theories in Chapter 20, describing them in both
axiomatic and represented versions. It is usual to give equivalent axiomatizations
of classical theories on general spaces and on CW complexes. We will show how to
axiomatize parametrized theories on cell complexes, but we do not have a theory of
CW complexes that is adequate for this purpose. We will return to this question in
Chapter 24. Another twist is that Adams’ variant of Brown representability to the
effect that a cohomology theory defined only on finite complexes is representable
does not always apply, so that the representability of homology theories requires
some new arguments. An interesting new feature, not fully explored here, concerns
the relevant notion of coefficients for parametrized theories, which involves the
fundamental groupoid of the base space. However, such technicalities and new
features aside, we show that the whole panoply of structure familiar from classical
algebraic topology is now available in the parametrized context. In particular, we
have all of the usual machinery of products and duality.

For readability, we have separated out the equivariant theory for a separate
treatment in Chapter 21. One basic motivation for the equivariant parametrized
theory is that it gives a context in which to better understand equivariant orienta-
tions, Thom isomorphisms, and Poincaré duality. There is no problem for G-simply
connected manifolds M [98, III§6], but restriction to such M is clearly inadequate
for applications to transformation group theory. Despite a great deal of work on
the subject by Costenoble and Waner, and some by May, [37–40,119], this circle of
ideas is not yet fully understood. Costenoble and Waner [41] use our work to study
this problem for ordinary equivariant theories, but there is much more to be done.

Recently, twisted K-theory has entered mathematics through string theory
and has been studied heuristically and calculationally in such papers as [5, 6, 52,
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64–66, 107, 141, 164]. There are many points of view that one can take. From our
perspective, as we explain in Chapter 22, we see the full force of parametrized
theory coming into play. Twisted K-theory is an example of a general type of
represented parametrized cohomology theory. Starting with a spectrum k and a
subgroup Π of its automorphism monoid, one constructs a spectrum kΠ = EΠ×Π k
over BΠ. For a space X, a “twisting” is a Π-bundle classified by a map p : X −→
BΠ. The twisted cohomology of X is then the kΠ-cohomology of the space (X, p)
over BΠ or, equivalently, the p∗kΠ-cohomology of X, regarded as a space over
itself. The definition works equally well equivariantly. The bundle construction
that we emphasized in Chapter 15 is exactly right for applications like this. We
also explain various parametrized spectral sequences, including a Čech type local
to global spectral sequence, a twisted Rothenberg-Steenrod spectral sequence, and
the parametrized Künneth (or Eilenberg-Moore) spectral sequence.

Chapter 23 gives new perspectives on Thom spectra. It gives a new way of
constructing commutative algebras over commutative orthogonal ring spectra via a
conceptual axiomatization of exactly how Thom spectra appear “in nature”. There
is a longstanding notion of a functor with smash product, or FSP. There are several
variants of this notion, including one based on orthogonal spaces, which we call an
I -FSP. There is an analogous notion of an I -functor with Cartesian products, or
I -FCP. We introduce the notion of a parametrized I -functor with smash product,
or I -PFSP, over an I -FSP. This is an elementary ex-space level notion, making
no use of parametrized spectra. An I -PFSP E over an I -FSP R has a base space
I -FCP B, and it gives a commutative orthogonal R-algebra r!E on collapsing out
sections. Starting with a suitable monoid or group-valued I -FCP Π that acts
from the right on an I -FCP D and from the left on an I -FSP R, there is a two-
sided bar construction B(D,Π, R) that gives many examples. In particular, with
D = ∗, we construct a “Thom Thom spectrum” MMU , which is a commutative
MU -algebra. The construction iterates to give a Thom spectrum MqU , which is an
Mq−1U -algebra. Allowing general D allows examples like D = GL1Q, the I -FCP
of units of a commutative ring spectrum Q. At this writing, we have not yet begun
the serious study of these new spectra, but their mere existence is tantalizing.

We also describe a conceptual construction of the Thom spectrum Mf associ-
ated to a map f : X −→ BF , where BF is the classifying space for stable spherical
fibrations. There is a universal spherical fibration spectrum B(F, S) over BF . The
Thom spectrum of f is just r!f∗B(F, S). The construction generalizes. We can
replace BF by a classifying space obtained from any base I -FCP B(D,Π). This is
the starting point for work in progress with Blumberg. As an aside, we give insights
into the nature of the unit space GL1(R) of a ring spectrum R in §§22.2 and 23.6.

The epilogue, Chapter 24, gives some odds and ends. It discusses the blindness
of model category theory to CW theory, as opposed to cell theory, and it describes
as much of CW theory as seems to apply to parametrized homotopy theory. It
contrasts the diagram spectra utilized in this book to the more rigidly structured
spectra utilized in such sources as [61,98]. It does not go deeply into such alterna-
tive foundations, but it does give a proof that our parametrized stable category is
equivalent to a category defined in terms of such structured parametrized spectra.



CHAPTER 20

Parametrized homology and cohomology theories

Introduction

We set up the foundations for parametrized homology and cohomology theory
in this chapter, focusing on the nonequivariant case. We discuss axiomatizations of
homology and cohomology theories on ex-spaces in §20.1, describing four equivalent
variants: theories on pairs of spaces over B, reduced theories on ex-spaces over B,
and cellular versions of both. The cellular theory is based on model categorical
cellular spaces over B, rather than on CW spaces over B as one would expect from
classical homology theory. We defer discussion of this difference to Chapter 24. We
discuss represented theories on ex-spaces and on spectra over B in §20.2, and we
prove there that all parametrized cohomology theories are representable.

We discuss features special to the parametrized world in the rather sketchy
§20.3. There is much more to be said about this subject. We just set out the basic
definitions. In particular, we describe the behavior of theories with respect to base
change and construct coefficient systems of represented theories as functors from
the fundamental groupoid of the base space to graded Abelian groups. We describe
parametrized Serre spectral sequences in §20.4. Other spectral sequences will be
discussed in Chapter 22.

We describe the homological implications of Costenoble-Waner and parame-
trized Atiyah duality in §20.5, where we flesh out the discusion of Poincaré duality
given in Example 0.0.2 and describe the Thom isomorphism. We describe relative
Poincaré duality separately in §20.6. Even in the nonparametrized case, we have
not seen our relative Poincaré duality theorem for a closed submanifold of a smooth
closed manifold in the literature.

We use the bicategory approach to parametrized theory to explain products
in homology and cohomology in §20.7. Finally, we turn to the representability of
parametrized homology theories in §20.8. The classical method for proving repre-
sentability fails, and we explain an alternative route to the conclusion.

One point of notation should be mentioned. In Example 0.0.2, we used the no-
tations kB∗ and k∗B for homology and cohomology theories represented by a spectrum
kB over B. In applications, this is likely to be a useful distinguishing convention.
However, it is more logical and nearly consistent with the examples used there to
reserve this notational convention for the case when kB is r∗k ∼= k ∧ SB for a non-
parametrized spectrum k. The standard generic notation for a homology theory
is k∗ or E∗. We shall use k∗, and we shall understand this notation to indicate
that a nonparametrized theory represented by a spectrum k is intended. Use of the
generic notation E∗ for a homology theory represented by a (parametrized or non-
parametrized) spectrum E would be awkward since it would later conflict with our
use of E for total spaces of bundles. We shall instead use the generic notations J∗
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and J∗ for parametrized homology and cohomology theories, thought of as repre-
sented by a parametrized spectrum J . Thus we omit B from the notations and take
the parametrized context for granted. This is most convenient when everything is
parametrized, as it is in most of this chapter.

We should also comment on a path that we have chosen not to take. In analogy
with grading by representations equivariantly, one might consider grading by vector
bundles over B in the parametrized setting. However this is done, it is basically a
notational device for incorporating smash products with sphere bundles. We find it
best to use such smash products explicitly. An indexing that depends on the base
space makes it considerably more awkward to formulate the relationship between
homology and base change functors. Moreover, for non-compact base spaces, not all
sphere bundles are invertible, and the grading would only be useful upon restriction
to the invertible ones.

20.1. Axioms for parametrized homology and cohomology theories

Consider the category K 2/B of pairs (X,Y ) of spaces over B. We describe
homology and cohomology theories on this category axiomatically. The details work
out exactly as in the classical case when B is a point, and we follow the elementary
textbook treatment of [121]. A map f : (X,Y ) −→ (X ′, Y ′) of pairs is a weak
equivalence if both f : X −→ X ′ and f : Y −→ Y ′ are weak equivalences. A triad
(X;Y, Z) of spaces over B is excisive if it is excisive on total spaces, so that X is
the union of the interiors of Y and Z.

Definition 20.1.1. A homology theory J∗ on K 2/B consists of functors Jq
from K 2/B to the category of Abelian groups (or any other Abelian category)
together with natural transformations ∂ : Jq(X,Y ) −→ Jq−1(Y ), where Jq(X) is
defined to be Jq(X, ∅). These functors and natural transformations must satisfy
the following axioms.
• Exactness. The following sequence is exact, where the arrows are ∂ and

maps induced by the inclusions Y −→ X and (X, ∅) −→ (X,Y ):

· · · −→ Jq(Y ) −→ Jq(X) −→ Jq(X,Y ) −→ Jq−1(Y ) −→ · · · .
• Excision. If (X;Y,Z) is excisive, then the inclusion (Y, Y ∩ Z) −→ (X,Z)

induces an isomorphism

J∗(Y, Y ∩ Z) −→ J∗(X,Z).

• Additivity. If (X,Y ) is the disjoint union of a set of pairs (Xi, Yi), then the
inclusions (Xi, Yi) −→ (X,Y ) induce an isomorphism⊕

iJ∗(Xi, Yi) −→ J∗(X,Y ).

• Weak equivalence. If f : (X,Y ) −→ (X ′, Y ′) is a weak equivalence, then

f∗ : J∗(X,Y ) −→ J∗(X ′, Y ′)

is an isomorphism.
Cohomology theories J∗ are defined via the dual axioms.

The weak equivalence axiom implies that the theory is defined on the homotopy
category HoK 2/B obtained by inverting the weak equivalences. We say that a
theory is “ordinary” if it satisfies the dimension axiom Jq(B) = 0 for q 6= 0, where
B is regarded as a space over itself via the identity map. (Recall that we write ∗B
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for the sectioned analogue, but we are working in K /B here). Such theories exist,
but are not particularly interesting; see Remark 20.3.7.

Similarly, we have reduced homology theories defined on ex-spaces over B,
which are the analogues of reduced homology theories on based spaces.

Definition 20.1.2. A reduced homology theory J̃∗ consists of functors J̃q from
the category of well-grounded ex-spaces over B to the category of Abelian groups
together with natural suspension isomorphisms

σ : J̃q(X) ∼= J̃q+1(ΣBX)

that satisfy the following axioms.

• Exactness. If i : Y −→ X is an fp-cofibration, then the sequence

J̃q(Y ) −→ J̃q(X) −→ J̃q(X/BY )

is exact.
• Additivity. If X is the wedge over B of a set of well-grounded ex-spaces Xi,

then the inclusions Xi −→ X induce an isomorphism⊕
iJ̃∗(Xi) −→ J̃∗(X).

• Weak equivalence. If f : X −→ X ′ is a weak equivalence, then

f∗ : J̃∗(X) −→ J̃∗(X ′)

is an isomorphism.

Reduced cohomology theories J̃∗ are defined via the dual axioms.

As in the classical case, the exactness, additivity, and weak equivalence axioms
work one degree at a time and do not require mention of the suspension isomor-
phism. A reduced theory is ordinary if J̃q(S0

B) = 0 for q 6= 0.
Using the foundations of §5.6, the long exact sequences associated to cofiber

sequences, the Mayer-Vietoris theorem, the commutation of homology with directed
colimits, the lim1 exact sequence in cohomology, and other standard properties can
be deduced from the axioms exactly as in the classical case [121, Chapters 14 and
19]. Their statements are essentially identical to those given there.

It is convenient to have an alternative axiomatization on cellular pairs, by
which we mean a qf -cell complex X and a subcomplex Y . We let C 2/B denote
the category of such pairs and all continuous maps between them and let HoC 2/B
denote its homotopy category. We insist on using the qf -model structure and not
the q-model structure, especially when considering reduced theories. As we have
seen in Counterexample 6.1.5, q-cell complexes over B need not be well-grounded.
We restricted to well-grounded ex-spaces when defining reduced homology theories
for the same compelling reasons that dictate restriction to well-based spaces in
defining reduced homology theories on based spaces; compare Lemmas 5.6.5 and
5.6.7.

Definition 20.1.3. A homology theory J∗ on C 2/B consists of functors Jq
from HoC 2/B to the category of Abelian groups together with natural transfor-
mations ∂ : Jq(X,Y ) −→ Jq−1(Y ), where Jq(X) = Jq(X, ∅). These functors and
natural transformations must satisfy the exactness and additivity axioms as in Def-
inition 20.1.1 and the following version of the excision axiom.
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• Excision. If (X;Y,Z) is a cellular triad, in the sense that X is the union of
subcomplexes Y and Z, then the inclusion (Y, Y ∩ Z) −→ (X,Z) induces an
isomorphism

J∗(Y, Y ∩ Z) −→ J∗(X,Z).

Similarly, let CB denote the category of qf -cell complexes in KB and let HoCB
denote its homotopy category.

Definition 20.1.4. A reduced homology theory J̃∗ on CB consists of functors
J̃q from HoCB to the category of Abelian groups together with natural suspension
isomorphisms

σ : J̃q(X) ∼= J̃q+1(ΣBX)

that satisfy the exactness axiom for the inclusion of a subcomplex and the additivity
axiom as stated in Definition 20.1.2.

Again, cohomology theories are defined dually.

Theorem 20.1.5. The four notions of homology theories defined above are
equivalent, in the sense that a theory of any one of the four types canonically deter-
mines and is determined by a theory of each of the other three types. The analogous
statement holds for cohomology.

Proof. Given either type of absolute theory J∗, we define the corresponding
reduced theory by J̃∗(X) = J∗(X,B), where we regard the section as an inclusion
B −→ X in K /B. Given a reduced theory J̃∗, we define the corresponding unre-
duced theory by letting J∗(X) = J̃∗(X+) and J∗(X,Y ) = J̃∗(CB(i+)). Here the
plus denotes addition of a disjoint section B; i : Y −→ X is the inclusion, and CB
is the cofiber functor on maps. If i is an f -cofibration, for example if (X,Y ) is a
cellular pair, then J̃(CB(i+)) ∼= J̃(X+/BY+). (When B = ∗, the quotient here is
just X/Y with basepoint the image of Y , but that makes no sense in the parame-
trized context). If J∗ or J̃∗ is a theory on general pairs or general ex-spaces, then
restriction to cellular pairs or cellular ex-spaces gives the corresponding cellular
theory. For a theory J∗ or J̃∗ on cellular pairs or cellular ex-spaces, we construct
the corresponding theory on general pairs or general ex-spaces by using qf -cofibrant
approximations given by the small object argument. This proceeds in three stages.
We approximate spaces or ex-spaces over B as usual. For pairs (X,Y ) of spaces
over B, we first approximate Y , obtaining QY −→ Y , and then approximate X by
factoring QY −→ Y −→ X though a qf -cofibration QY −→ QX and an acyclic
qf -fibration QX −→ X. For excisive triads (X;Y, Z), we approximate the pairs
(Y, Y ∩ Z) and (Z, Y ∩ Z) in this fashion and then define QX = QY ∪Q(Y ∩Z) QZ.
This gives a cellular triad (QX;QY,QZ) and a map of triads from it to the excisive
triad (X;Y,Z). The essential point is that QX −→ X is a weak equivalence, and
this follows from the nonparametrized analogue proven in [121, §10.7]. In the cel-
lular version of the passage from a reduced homology theory to a homology theory
on pairs, excision is trivial since Y+/B(Y ∩ Z)+ ∼= X+/BZ+ for a cellular triad
(X;Y,Z). As in [121, §14.4], in the non-cellular case we can deduce excision when
passing from reduced to unreduced homology theories by an indirect argument.
Indeed, unreduced general and unreduced cellular theories are equivalent, reduced
general and reduced cellular theories are equivalent, and reduced and unreduced
cellular theories are equivalent. Therefore, reduced and unreduced general theories
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are equivalent. Thus excision in the general context is derived from the cellular
approximation of triads. �

Remark 20.1.6. In nonparametrized theory, one uses CW complexes rather
than cell complexes in the axiomatizations. In the parametrized context, the foun-
dational theory of CW complexes does not extend so far, for reasons explained in
Chapter 24, notably the failure of the cellular approximation theorem in general.
However, there are distinctions to be made here between the reduced and unre-
duced contexts. First, in the unreduced context we could just as well have used
the q-cell complexes rather than qf -cell complexes since the qf -model structure was
introduced solely to circumvent problems arising from the presence of sections. Sec-
ond, and more interesting, if we are given a space X over B, we can compose with
QX −→ X, whereQX is a CW approximation toX, to obtain a CW-approximation
over B. Thus there is no loss of calculational generality if we restrict attention to
CW complexes over B. Trivially, the skeletal filtration is given by spaces over B.
In analogy with nonparametrized theory, it would seem that this should lead to a
parametrized Atiyah-Hirzebruch spectral sequence. However, since the inclusions of
skeleta are not fiberwise cofibrations and since the appropriate form of an E2-term
is unclear, we have not pursued this idea.

20.2. Represented homology and cohomology theories

From now on in this chapter, we focus on reduced homology and cohomology
theories on ex-spaces, and we follow standard modern practice by omitting the tilde
from the notation. We also generalize from ex-spaces to spectra over B.

There is an obvious first example of homology and cohomology theories, and
we use it to guide us towards the right general notions of represented theories. Let
k∗ and k∗ be (reduced) homology and cohomology theories on well-based spaces.
Recall that the functor r! : KB −→ K∗ associated to the trivial map r : B −→ ∗
is given by r!X = X/B. Since this functor is a left adjoint that preserves tensors
with based spaces, suspension, and cofiber sequences, we see immediately that if
we define

(20.2.1) kB∗ (X) = k∗(r!X) and k∗B(X) = k∗(r!X),

then these are (reduced) homology and cohomology theories on KB . We call these
the parametrized theories induced by the theories k∗ and k∗ and refer to them as
classical theories.

Now suppose that k∗ and k∗ are represented by an Ω-prespectrum k. Then

(20.2.2) kB∗ (X) = π∗(k ∧ r!X) and k∗B(X) = π−∗F (r!X, k).

We have the Ω-prespectrum r∗k over B, and we have the relations

(20.2.3) k ∧ r!X ' r!(r∗k ∧B X) and F (r!X, k) ' r∗FB(X, r∗k).

Here and later, we are working in derived homotopy categories and using the nota-
tion ' for natural equivalences there. The displayed equivalences are special cases
of the derived versions of (2.2.6) and (2.2.7) proven in Theorem 9.4.5. This suggests
the following general definition.

Definition 20.2.4. Let J and X be spectra over B. For integers n, define the
n-th J-homology and J-cohomology groups of X by

Jn(X) = πn(r!(J ∧B X))
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and
Jn(X) = π−n(r∗FB(X, J)) ∼= [S−nB , FB(X, J)]B .

The last isomorphism comes from the (r∗, r∗) adjunction and the isomorphisms
r∗Sn ∼= SnB . It implies that J0(X) is just the represented functor [X, J ]B of X.
The same definitions specify the homology and cohomology groups of an ex-space
K, and these are given equivalently by taking X = Σ∞BK in the definition above.
These groups give homology and cohomology theories in K, as axiomatized in
Definition 20.1.2. This innocuous statement depends on the full strength of our
foundational work on the properties of our derived homotopy categories and the
functors relating them. The exactness and wedge axioms go all the way back to
the cofiber sequence and wedge lemmas, Lemmas 5.6.5 and 5.6.7. Those results
motivate the requirement that ex-spaces be well-grounded in our definition of re-
duced homology and cohomology theories, and it is essential to the deduction of the
axioms that our s-model structure is well-grounded. Note too that it is essential
that we can work freely with the functors ∧B and FB , even though they are not
related by Quillen adjunctions.

On ex-spaces X, homology and cohomology theories are determined by their
values for non-negative n, since we can take

J−n(X) ∼= J0(ΣnBX) and J−n(X) ∼= J0(ΣnBX)

as definitions. On spectra X over B, this still makes sense for negative n. Thus
homology and cohomology theories on spectra over B are determined by their values
for n = 0, where the appropriate axiomatization just requires an exact and additive
contravariant homotopy functor. As usual, we can apply the Brown representability
theorem in HoKB and HoSB to prove the following result.

Theorem 20.2.5. A reduced cohomology theory on ex-spaces over B is repre-
sented by an Ω-prespectrum J , unique up to non-unique equivalence. A cohomology
theory on spectra over B is represented uniquely by an orthogonal spectrum over B
in HoSB.

The non-uniqueness works just as it does classically. The morphisms of Ω-
prespectra that correspond to morphisms of cohomology theories on ex-spaces are
sequences of maps Ji −→ J ′i that are only compatible up to homotopy. There is a
lim1 exact sequence

0 −→ lim1[ΣBJi, J ′i ]B −→ [J, J ′]B −→ lim[Ji, J ′i ]B −→ 0

that relates such “weak maps” of Ω-prespectra to maps in the stable category
and thus relates maps of cohomology theories on ex-spaces over B to maps of
cohomology theories on spectra over B.

The representability of homology is less obvious, and we shall return to this in
§20.8. Represented parametrized theories behave as follows with respect to base
change.

Proposition 20.2.6. Let f : A −→ B be a map.
(i) For J ∈ SA and X ∈ SB,

(f!J)n(X) ∼= Jn(f∗X) and (f∗J)n(X) ∼= Jn(f∗X).

(ii) For X ∈ SA and J ∈ SB,

(f∗J)n(X) ∼= Jn(f!X) and (f∗J)n(X) ∼= Jn(f!X).
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Proof. These are immediate from the fact that rB ◦ f = rA and the derived
versions of (11.4.5) and (11.4.6), which imply that all four isomorphisms are ob-
tained by passage to homotopy groups from natural equivalences of spectra. �

In particular, as our motivation dictates, we have the following special case,
which shows that we recover the theories of (20.2.2) as represented theories.

Corollary 20.2.7. Let k be a spectrum and X be a spectrum over B. Then

(r∗k)∗(X) ∼= k∗(r!X) ≡ kB∗ (X) and (r∗k)∗(X) ∼= k∗(r!X) ≡ k∗B(X).

20.3. Coefficient systems and restriction maps

Another special case relates parametrized theories to classical theories fiberwise.

Corollary 20.3.1. Let b : ∗ −→ B be the inclusion of a point of B.
(i) For k ∈ S and X ∈ SB,

(b!k)n(X) ∼= kn(Xb) and (b∗k)n(X) ∼= kn(Xb).

(ii) For X ∈ S and J ∈ SB,

(Jb)n(X) ∼= Jn(b!X) and (Jb)n(X) ∼= Jn(b!X).

In particular,
Jn(b!S) ∼= πn(Jb) ∼= J−n(b!S).

The homotopy groups π∗(Jb) as b varies should be viewed as a parametrized
system of coefficient groups for the homology and cohomology theories represented
by J . When J = r∗k, (r∗k)b = k and these groups are all just π∗(k). In general,
these coefficient groups are coherently twisted as we move around the base space,
the coherence being given in terms of the fundamental groupoid ΠB. We use the
following geometric precursor of coefficient systems to prove this. It is convenient
to write b∗X rather than Xb for the derived fiber of X at b.

Proposition 20.3.2. For ex-spaces X over B, there is a (covariant) functor
C(X) from ΠB to the homotopy category HoKB/X of ex-spaces over B with aug-
mentations to X that sends b ∈ B to b!b∗X with augmentation given by the counit
b!b

∗X −→ X of the (b!, b∗) adjunction. The corresponding result for spectra J over
B also holds, and C(Σ∞BX) is naturally isomorphic to Σ∞B C(X).

Proof. For a path h : I −→ B from b to b′, counits of the evident q-equiva-
leneces give weak equivalences

i0!i0
∗h∗X −→ h∗X ←− i1!i1

∗h∗X

of ex-spaces over I. Apply h! and observe that the factorizations hi0 = b and
hi1 = b′ give corresponding factorizations of functors (−)! and (−)∗. We obtain
weak equivalences

b!b
∗X −→ h!h

∗X ←− b′!b′
∗
X

of ex-spaces over B augmented over X. If we have another path h′ : b −→ b′ and
a homotopy k between them, we may view k as defined on a disk D with two
base points connected by two boundary curves h0 : I −→ D and h1 : I −→ D. We
construct an analogous diagram of weak equivalences

h!h
∗X −→ k!k

∗X ←− h′!h′
∗
X,
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and a diagram chase shows that the weak equivalences between b!b
∗X and b′!b

′∗X
obtained from h and h′ are equal in the homotopy category. The compatibility with
Σ∞B is easily checked. �

Note that, by composition, a map f : X −→ Y of ex-spaces over B induces a
functor HoKB/X −→ HoKB/Y , hence a natural transformation C(X) −→ C(Y ).
We have proven the previous result in a version convenient for equivariant gen-
eralization, where orbits replace points, but here in the nonequivariant world the
following corollary may seem more natural.

Corollary 20.3.3. For ex-spaces X over B, there is a canonical functor
ΠB −→ HoK that sends b to Xb, and similarly for spectra over B.

Proof. Apply r! to everything, noticing that rb = id for each b : ∗ −→ B. �

Definition 20.3.4. Let J and X be parametrized spectra over B.
(i) The coefficient system of J , denoted L∗(J), is the composite functor π∗r!CJ

from ΠB to graded Abelian groups that sends b to π∗(Jb).
(ii) The coefficient system of J∗(X), denoted L∗(X, J), is the composite functor

π∗r!C(J ∧B X) from ΠB to graded Abelian groups that sends b to Jb∗(Xb).
(iii) The coefficient system of J∗(X), denoted L ∗(X, J), is the composite functor

π−∗r!C(FB(X, J)) from ΠB to graded Abelian groups that sends b to J∗b (Xb).

In (i), the groups involved are just the homotopy groups of derived fibers in
terms of which weak equivalences in the stable category were originally defined, but
now their coherence as b varies is relevant. There is another way of thinking about
“coefficients”. Since S = b∗SB , the counit maps b!b∗SB −→ SB induce maps

(20.3.5) J∗(b!S) −→ J∗(SB) and J∗(SB) −→ J∗(b!S).

Remark 20.3.6. By analogy with classical theories, the groups J∗(SB) and
J∗(SB) should be called coefficient groups. Here we encounter a surprise: these
groups are different. In fact,

J∗(SB) = π∗(r!J) and J∗(SB) = π∗(r∗J).

From this point of view, the map r∗J −→ r∗b∗b
∗J ∼= Jb induced by the unit map

id −→ b∗b
∗ also gives rise to a natural map J∗(SB) −→ J∗(b!S), but this agrees

with the second map of (20.3.5) by Remark 2.2.9. The existence of both fiberwise
coefficient systems and global coefficient groups is related to the fact that the duality
of §15.1 is not the right duality for the comparison of homology and cohomology
theories.

Remark 20.3.7. For a spectrum k and a point b ∈ B, Corollary 20.3.1(i) gives

(b!k)∗(SB) = k∗ and (b∗k)∗(SB) = k∗.

In particular, with k = Hπ for an Abelian group π, the parametrized homology
and cohomology theories (b!k)∗ and (b∗k)∗ are ordinary.

20.4. The Serre spectral sequence

Starting from the skeletal filtration of a CW base space, we give a parametrized
interpretation of the Serre spectral sequence. The parametrized setting leads to a
description of the E2-terms in terms of the local systems that are specified in Defini-
tion 20.3.4. Remember that our homology and cohomology theories are understood
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to be reduced. We set up the desired spectral sequences without assuming that our
theories are representable. This will allow us to use them in §20.8 to prove the
representability of homology, which in turn allows us to assume that our theories
are representable when identifying the E2 terms. Therefore the hypotheses on B,
X, and J in the following result can always be arranged without loss of generality.

Theorem 20.4.1 (Serre spectral sequence). Let B be a CW complex with p-
skeleton Bp and let X be an excellent spectrum over B. Let jp : Bp −→ B be the
inclusion, let Xp = jp!j

∗
pX, and let ip : Xp −→ Xp+1 be the induced inclusion of

spectra over B. Let J∗ and J∗ be parametrized homology and cohomology theories
over B.

(i) There is a strongly convergent spectral sequence

E1
p,q =

⊕
p-cells e

Jp+q(e!e∗Xp, ∂e!∂e
∗Xp−1) =⇒ Jp+q(X).

(ii) There is a conditionally convergent spectral sequence

Ep,q1 =
∏

p-cells e

Jp+q(e!e∗Xp, ∂e!∂e
∗Xp−1) =⇒ Jp+q(X).

The sequence converges strongly if the derived E∞ terms RE∞ vanish.

If the theories are represented by an excellent spectrum J over B, then

E2
p,q = Hp(B;Lq(X, J)) and Ep,q2 = Hp(B;L q(X, J)).

Proof. The convergence statements are explained in Boardman’s study [13,
(5.1), 6.1, 7.1, and §13], and their proofs are direct application of his results. We
shall say no more about them.

The spectral sequences are constructed from the exact couple associated to
the long exact homology and cohomology sequences of the pairs (Xp, Xp−1). Note
that, since X is excellent, it is levelwise ex-fibrant, and the same is true for all
pullbacks of X. The inclusions ip are level h-cofibrations by Proposition 4.4.5, and
it follows that X is weakly equivalent to the telescope of the Xn. The E1-terms are
E1
p,q = Jp+q(Xp, Xp−1) and Ep,q1 = Jp+q(Xp, Xp−1). To identify them, we must

calculate the cofiber CB(ip−1). The formal background is given by Theorem 12.4.2
and its proof. Consider the following diagram in HoSBp , where we are implicitly
extending the section of parametrized spectra on subspaces of Bp to all of Bp by
pushforward along inclusions.

∨
e ∂e

∗Xp−1

∨
e
je
//

��

∨
e e
∗Xp

��
Xp−1

ip−1

// Xp

The cell boundary inclusions je : ∂e∗Xp −→ e∗Xp are level h-cofibrations, by
Proposition 4.4.5 again, and it follows that the square is a homotopy pushout.

However, the horizontal arrows will in general not be level f -cofibrations, and
it is not obvious that their fiberwise cofibers are weakly equivalent. To see that
they are, we look more closely at the comparison map of fiberwise cofibers, which



346 20. PARAMETRIZED HOMOLOGY AND COHOMOLOGY THEORIES

is constructed as the induced map of pushouts from the front face to the back face
in the following cube; again, everything is pushed forward to spectra over B

Xp−1 // CBXp−1

��

∨
e ∂e

∗Xp−1 //

��

77ppppppp

��

∨
e CB∂e

∗Xp−1

��

66llllllll

Xp // CB(ip−1).

∨
e e
∗Xp

77pppppppp
// ∨

e CB(je)

66llllllll

Since the front and back face are pushouts, it follows that the right side, like the
left side, is a homotopy pushout. Looking at the right side, the map on top is a
weak equivalence since it is a map between fiberwise contractible spectra over Bp,
and the left map is a level h-cofibration. It follows that the bottom map is also a
weak equivalence.

To identify the E2-term, recall the definitions of the coefficient systems L∗(X, J)
and L ∗(X, J) from Definition 20.3.4. Since the proofs of the homology and coho-
mology statements are nearly identical, we only treat cohomology. We continue to
work in the category of excellent prespectra over B. Thinking of Sp−1 and Dp as
the equator and upper hemisphere of Sp, a choice of basepoint in S0 determines a
basepoint in all spheres and disks, and we let b(e) = e(∗) ∈ B for each cell e. The
inclusion of the full subcategory of ΠB with objects these basepoints of cells is an
equivalence, and we can therefore restrict attention to these points of ΠB when
defining and computing local cohomology. Consider r : Dp −→ ∗. Then Propo-
sition 20.2.6(ii) gives the first and third of the following isomorphisms, while the
second comes from the fact that the inclusion of the basepoint in Dp is an inverse
equivalence to r that gives b(e) when composed with e.

Jp+q(e!e∗Xp, ∂e!∂e
∗Xp−1) ∼= (e∗J)p+q(e∗Xp, ∂e∗Xp−1)

∼= (r∗Jb(e))p+q(e∗Xp, ∂e∗Xp−1)
∼= Jp+qb(e) (r!e∗Xp, r!∂e

∗Xp−1)

Since e(Dp) is contractible,

r!e
∗Xp ' r!r∗b(e)∗e∗Xp ' r!r∗Xb(e) ' Dp

+ ∧Xb(e),

and similarly r!∂e∗Xp−1 ' Sp−1
+ ∧Xb(e). The cofiber of the inclusion of the latter

into the former is then Sp ∧Xb(e) and we have

Jp+qb(e) (r!e∗Xp, r!∂e
∗Xp−1) ∼= Jp+qb(e) (Sp ∧Xb(e)) ∼= Jqb(e)(Xb(e)).

This recalculates the E1 term as the relevant cellular chain group

Ep,q1 =
∏

p-cells e

Jqb(e)(Xb(e)) ∼= Cpcell(B;L q(X, J)).

Standard but careful arguments, paying close attention to signs, identify the canon-
ical differentials on either side. Passing to cohomology, we obtain the desired iden-
tification of the E2 term. �
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Remark 20.4.2. The caseX = SB should be regarded as an Atiyah-Hirzebruch
type spectral sequence for the computation of the coefficients of parametrized ho-
mology and cohomology theories. By Lemma 18.2.7 and Proposition 20.2.6(ii), we
can use this version of the Atiyah-Hirzebruch spectral sequence more generally than
it appears at first. If (K, p) is a space over B, where K is a CW-complex, we obtain
spectral sequences that converge from

E2
p,q = Hp(K;Lq(SK , p∗J)) and Ep,q2 = Hp(K;L q(SK , p∗J))

to J∗((K, p)+) and J∗((K, p)+), where J is an excellent spectrum over B.

20.5. Poincaré duality and the Thom isomorphism

To study duality and products, we reinterpret represented parametrized homol-
ogy and cohomology theories in terms of our bicategory of parametrized spectra.
By Proposition 17.4.3, for spectra X and J over B we have equivalences of spectra

r!(J ∧B X) ' J � tX and r∗FB(X, J) ' X . J.

Therefore Definition 20.2.4 admits the following direct reinterpretation.

Proposition 20.5.1. For spectra J and X over B,

J∗(X) = π∗(J � tX) and J∗(X) = π−∗(X . J).

The Costenoble-Waner analogue of Spanier-Whitehead duality relating the ho-
mology and cohomology theories represented by a spectrum J over B is a direct
consequence of Proposition 18.1.5, which gives that J � tY ' X . J if (X,Y ) is a
dual pair of spectra over B.

Theorem 20.5.2 (Costenoble-Waner duality). Let X be a Costenoble-Waner
dualizable spectrum over B with Costenoble-Waner dual Y . Then

J∗(Y ) ∼= J−∗(X).

Turning to Poincaré duality, let k be a spectrum and M be a smooth closed
n-manifold. The fiberwise one-point compactification of the tangent bundle τ is
denoted Sτ , and Theorem 19.1.5 gives that k∧M+ ' SM .(k∧Sτ ). Taking X = SM
and J = k ∧ Sτ in Proposition 20.5.1 and using a notation that emphasizes that
the relevant cohomology is parametrized, we obtain the version of Poincaré duality
stated in Example 0.0.2.

Theorem 20.5.3 (Poincaré duality—unoriented version). Let k be a spectrum
and M be a smooth closed manifold. Then

k∗(M+) ∼= (k ∧ Sτ )−∗(SM ).

By introducing grading by bundles, one might arrive at the notation kτ−∗(M+)
for the right hand side. We have not chosen that route, but it gives the right idea.
The purpose of an orientation is to allow one to replace τ by the dimension n of
M . We give a direct a homotopical interpretation. Recall that

k ∧X ' r∗k ∧B X
for any space or spectrum X over B.

Definition 20.5.4. Define a spherical fibration over B to be an ex-fibration
(X, p, s) whose fibers Xb are all equivalent to Sn for some n ≥ 0. The Thom
complex of X is TX = r!X = X/s(B).
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(i) A k-trivialization of X is an equivalence

k ∧X ' k ∧ SnB
of spectra over B.

(ii) Let k be a commutative ring spectrum. A k-orientation of X is a cohomology
class µ ∈ kn(TX) such that the restriction of µ to fibers,

µb ∈ kn(TXb) ∼= kn(Sn) ∼= k0(S0) = π0(k),

is a unit in the ring π0(k) for each b ∈ B.
(iii) A k-trivialization or k-orientation of a smooth closed n-manifold M is a k-

trivialization or k-orientation of Sτ .

Note that n is fixed even if B is not connected. This is not a serious restriction
since we can work one component at a time. In contrast, the analogous restriction
in the equivariant case presents serious mathematical problems, as we will discuss
in §21.4. Students of algebraic topology often find the definition of an orientation
mysterious and unenlightening. In the parametrized context, however, the following
result gives it immediate intuitive content. It says that a k-oriented spherical
fibration over B is k-equivalent to the trivial spherical fibration B × Sn = SnB over
B. This is a parametrized version of a standard observation on the Thom spectrum
level that we believe was first noticed by Mahowald and Ray [103].

Proposition 20.5.5. A k-orientation µ of a spherical fibration X specifies a
k-trivialization of X.

Proof. Using suspension spectra implicitly, µ ∈ kn(TX) is represented by a
map

µ : r!X = TX −→ Σnk = k ∧ Sn

with adjoint
µ̃ : X −→ r∗(k ∧ Sn) ' k ∧ SnB .

Smashing on the left with k and using the product k ∧ k −→ k, we obtain the map
µ̄. It restricts on the fiber over b ∈ B to a map of k-module spectra

µ̄b : k ∧ Sn ' k ∧Xb −→ k ∧ (b× Sn) ' k ∧ Sn.
On passage to homotopy groups, this induces a map of free π∗(k)-modules on one
generator, and to say that µ restricts to a unit on the fiber over b is precisely to say
that this restriction is an equivalence. This means that µ̄ is an equivalence. �

Of course, r!S0
B = B+. We have

(k ∧ SnB)−∗(SB) ∼= (r∗Σnk)−∗(S0
B) ∼= kn−∗(B+).

Taking B = M and applying the equivalence µ̄ to the right side of the unoriented
version of the Poincaré duality theorem we obtain the oriented version. Intuitively,
the orientation untwists the parametrized twisting encoded by the tangent bundle.

Theorem 20.5.6 (Poincaré duality—oriented version). Let k be a commutative
ring spectrum and M be a k-oriented smooth closed n-manifold. Then

k∗(M+) ∼= kn−∗(M+).

The homology Thom isomorphism is also induced by the equivalence µ̄, and
the cohomology Thom isomorphism is induced by the equivalence µ̂ given in the
following dual version of Proposition 20.5.5.
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Proposition 20.5.7. A k-orientation µ of a spherical fibration X induces an
equivalence of spectra over B

µ̂ : FB(SnB , r
∗k) −→ FB(X, r∗k).

Proof. For spectra Y and Z over B, we have a natural map

FB(Y, k ∧ Z) −→ FB(k ∧ Y, k ∧ Z),

where ∧ is the external smash product of a spectrum and a spectrum over B, namely
the adjoint of the composite

FB(Y, k∧Z)∧B (k∧Y ) ' FB(Y, k∧Z)∧B Y ∧k −→ k∧Z∧k ' k∧k∧Z −→ k∧Z

induced by transpositions, the evaluation map, and the product on k. Taking
Y = SnB and Z = SB , so that k ∧ Z ' r∗k, this gives

FB(SnB , r
∗k) −→ FB(k ∧ SnB , r∗k),

and µ̂ is obtained by composing this map with µ̃∗. On passage to fibers over b ∈ B
and then to π∗, µ̂ induces a map of free π∗(k)-modules on one generator that is
an isomorphism by the defining property of an orientation. Thus µ̂ induces an
equivalence on fibers and is therefore an equivalence. �

Theorem 20.5.8 (Thom isomorphism). If X is a k-oriented spherical fibration
over B, then there are canonical equivalences

k ∧ TX ' k ∧ ΣnB+ and F (ΣnB+, k) ' F (TX, k)

and therefore canonical isomorphisms

k∗(B+) ∼= kn+∗(TX) and k∗(B+) ∼= kn+∗(TX).

Proof. We obtain the first equivalence by applying r! to µ̄ and using that
r!(k ∧ Y ) ' k ∧ r!Y for any spectrum Y over B. We obtain the second equivalence
by applying r∗ to µ̂ and using that r∗FB(Y, r∗k) ' F (r!Y, k) for any Y . �

Remark 20.5.9. Remembering that r!η : TX −→ B+ ∧ TX is the Thom di-
agonal ∆, where η : X −→ r∗r!X is the unit of the adjunction (r!, r∗), a diagram
chase shows that the second equivalence is the composite

F (ΣnB+, k) //F (Σnk ∧B+, k)
(µ∧id)∗//F (TX ∧B+, k)

∆∗
//F (TX, k),

where the first arrow is induced from the product of k as in the proof of Proposi-
tion 20.5.7. This is a standard description from which it follows directly that the
cohomology Thom isomorphism sends x ∈ kq(B+) to the product xµ ∈ kq+n(TX).
Similarly, the cap product description of the Poincaré duality isomorphism follows
directly from our proof. Observe that our proofs of these isomorphisms are purely
homotopical, with no use of spectral sequences.

We shall use the results of §19.6 to give fiberwise versions of some of these
results in §21.7. The results there give nonequivariant information and use little
equivariant theory, but it seems best to defer their discussion until the equivariant
theory is in place.
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20.6. Relative Poincaré duality

Using the arguments of the previous section, Theorems 19.1.6 and 19.1.9 di-
rectly imply two relative versions of Poincaré duality. The nonparametrized ori-
ented version of the first is familiar, but this does not seem to be true of the second.

Theorem 20.6.1 (Boundary Poincaré duality). Let M be a smooth compact
manifold with boundary ∂M and boundary inclusion i : ∂M −→ M . Let k be a
spectrum and define J = k ∧ SτM . Then there is an isomorphism of long exact
sequences

· · · −→ kp(∂M+) //

∼=
��

kp(M+) //

∼=
��

kp(M/∂M) //

∼=
��

kp−1(∂M+) −→ · · ·

∼=
��

· · · −→ J−p−1(i!S∂M ) // J−p(M/M∂M) // J−p(SM ) // J−p(i!S∂M ) −→ · · · .

If k is a commutative ring spectrum and M is k-oriented, then the bottom sequence
is isomorphic to the long exact sequence

· · · −→ kn−1−p(∂M+) // kn−p(M/∂M) // kn−p(M+) // kn−p(∂M+) −→ · · · .

Theorem 20.6.2 (Relative Poincaré duality). Let M be a smooth closed man-
ifold with a closed submanifold L and inclusion i : L −→M . Let t : M+ −→ TνM,L

be the Pontryagin-Thom map and let C(t) be its cofiber. Let k be a spectrum and
define J = k ∧ SτM . Then there is an isomorphism of long exact sequences

· · · −→ kp+1(C(t)) //

∼=
��

kp(M+) //

∼=
��

kp(TνM,L) //

∼=
��

kp(C(t)) −→ · · ·

∼=
��

· · · −→ J−p(M/ML) // J−p(SM ) // J−p(i!SL) // J−p+1(M/ML) −→ · · · .

If k is a commutative ring spectrum and M is k-oriented, then there is also an
isomorphism with the long exact sequence

· · · −→ kn−p(M/L) // kn−p(M+) // kn−p(L+) // kn−p+1(M/L) −→ · · · .

Example 20.6.3. Combining the first isomorphism in this last result with the
absolute oriented version of Poincaré duality for the smooth closed d-manifold L,
we see that

kn−d+p(TνM,L) ∼= kd−p(L+) ∼= kp(L+).

20.7. Products in parametrized homology and cohomology

Products and slant products in parametrized homology and cohomology work
in much the same way as in [124, §9]. There, these products in nonparametrized ho-
mology and cohomology are described as formal consequences of structure present
in any triangulated category with a compatible closed symmetric monoidal struc-
ture. We have such structure in each category HoGSB , but it is more relevant that
we have analogous structure in E x, as explained in §16.7 and §17.5.

We have the evident pairing

(20.7.1) πm(X)⊗ πn(Y ) −→ πm+n(X ∧ Y ),
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for ordinary spectra X and Y . Remember that ∧ on the right can be viewed as

� : E x(∗, ∗)× E x(∗, ∗) −→ E x(∗, ∗).

Remember too that a spectrum X over B is regarded as a 1-cell B −→ ∗ when
identified with a spectrum over ∗ × B and as a 1-cell ∗ −→ B, denoted tX, when
identified with a spectrum over B×∗. This notational convention fixes the meaning
of the operation �, so that J � tX means a 1-cell ∗ −→ ∗ and thus a spectrum.
Similarly, in tJ / tX we regard both X and J as 1-cells ∗ −→ B and in X . J
we regard both X and J as 1-cells B −→ ∗, so that we have a spectrum in either
case. Since we insist that all of our pairings �, /, and . have ordinary spectra as
output in what follows, there is no ambiguity if we omit the notational reminder
“t”, and we agree to do so in all of our homological and cohomological statements.
However, we sometimes return t to the notation when discussing the homotopical
antecedents of our homological pairings.

Let J , K, X, and Y be spectra over B. Then we have external pairings

(20.7.2) ∧ : Jp(X)⊗Kq(Y ) −→ (J �K)p+q(X � Y )

(20.7.3) ∪ : Jp(X)⊗Kq(Y ) −→ (J �K)p+q(X � Y ).

The slant products require a mixture of spectra and spectra over B, and there
are several cases present. If either J orX is a spectrum and the other three variables
are spectra over B, then we have a slant product

(20.7.4) / : Jp(X � Y )⊗Kq(Y ) −→ (J �K)p−q(X).

If either K or Y is a spectrum and the other three variables are spectra over B,
then we have a slant product

(20.7.5) \ : Jp(X)⊗Kq(X � Y ) −→ (J �K)q−p(Y ).

The naturality of slant products is better seen by rewriting them in adjoint form

(20.7.6) / : Jp(X � Y ) −→ Hom(Kq(X), (J �K)p−q(X)),

(20.7.7) \ : Kq(X � Y ) −→ Hom(Jp(X), (J �K)q−p(Y )).

Observe that all of these products mix nonparametrized and parametrized the-
ories. They are obtained by passing to π∗ and applying the pairing (20.7.1) and
functoriality to formally defined canonical maps of spectra. However, there is an
important conceptual point to be made. As observed in Remark 16.2.7, the bicat-
egorical context does not incorporate maps of 0-cells, in our case maps of spaces.
Said another way, it does not capture all of the structure implicit in the category of
retracts of §2.5. We need the spectrum level version of the external commutativity
isomorphism γ of Remark 2.5.4 to define the following maps, and it is not part of
our mere bicategorical framework. We shall not go into categorical detail since the
topological context should be clear.

The pairing (20.7.2) is induced by the following pairing of spectra. The iso-
morphisms on the left and right record that the relevant composition � is just the
ordinary smash product ∧ and use the associativity isomorphism for �.
(20.7.8)
(J �X)∧ (K � Y ) ' J � (X �K)� Y −→ J � (K �X)� Y ' (J �K)∧ (X � Y )



352 20. PARAMETRIZED HOMOLOGY AND COHOMOLOGY THEORIES

Here X �K means tX �K, which is just the external smash product X ZK over
B ×B. The middle arrow is given by the commutativity isomorphism

γ : X �K −→ K �X.
Similarly, the pairing (20.7.3) is induced by a pairing
(20.7.9)
(X . J)∧ (Y .K) ' (X . J)� (Y .K) −→ (X � Y ) . (J �K) ' F (X � Y, J �K).

Again, the isomorphisms on the left and right record that the relevant operations �
and . in E x reduce to ∧ and F . The middle arrow is the adjoint of the composite

(X . J)� ((Y . K)�X)� Y −→ (X . J)� (X � (Y . K))� Y ε�ε //J �K.
The operation � inside the middle parentheses of the first two terms is Z, and the
first arrow is a commutativity isomorphism γ.

The pairing (20.7.4) depends for its details on which of J or X is a spectrum.
In either case, it is induced by a pairing of the form

(20.7.10) ((X � Y ) . J)�K � Y −→ X . (J �K).

To describe this, recall from (16.3.10) that we have the natural isomorphism

(X � Y ) . J ' X . (Y . J),

which is proven by the same Yoneda lemma argument as the isomorphism

F (X ∧ Y, J) ' F (Y, F (X, J))

when all variables are spectra. Then (20.7.10) is the composite

((X � Y ) . J)�K � Y −→ (Y . (X . J))� Y �K
−→(X . J)�K
−→X . (J �K),

where the first arrow uses γ and the isomorphism just cited, the second arrow is
ε� id, and the third is the adjoint of the composite

(X . J)�K �X
id�γ //(X . J)�X �K ε�id //J �K .

Finally, the pairing (20.7.5) is induced by a pairing of the form

(20.7.11) (X . J)�K �X � Y −→ J �K � Y
obtained by first using γ to permute K and X and then using ε : (X.J)�X −→ J .

There are many unit, associativity, and commutativity relations relating the
four products. In the nonparametrized setting these are catalogued in [2] and
[162], and many of them follow from isomorphisms displayed explicitly in §16.3.
These formulas in the parametrized setting would be direct consequences of the
axioms for a closed symmetric bicategory with a weakly compatible triangulation,
were it not for the use of γ; that introduces the usual signs but no complications.
Actually, the triangulation has not yet entered explicitly, but we have in mind the
formulas and commutative diagrams given by Adams [2, pp. 235–244] and Switzer
[162, pp. 276–283] that relate the four products to connecting homomorphisms in
the homology and cohomology of pairs of spaces, and these now extend directly to
pairs of ex-spaces. For spaces (X, p) over B, we can internalize external products
via the diagonal map

Σ∞B (X, p)+ −→ Σ∞B (X, p)+ ∧B Σ∞B (X, p)+
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that is made precise in (15.3.2). The internalization of the product \ is the cap
product.

We can internalize the representing spectrum along any pairing J �K −→ L
of spectra, or of spectra over B in the cases of (20.7.10) or (20.7.11) when J or K
is a spectrum rather than a spectrum over B. If J is a ring spectrum over B with
product J ∧B J −→ J , we have the induced product

(20.7.12) J � J ∼= r!(J ∧B J) −→ r!J.

In particular, if J = r∗k for a ring spectrum k, we have the product

(20.7.13) r∗k ∧B r∗k ∼= r∗(k ∧ k) −→ r∗k.

Applying r! and using the counit r!r∗k −→ k, we obtain a pairing

r∗k ⊗ r∗k −→ k.

Here we also have that

(20.7.14) r∗k � k = r∗k Z k ∼= r∗(k ∧ k) ∼= k Z r∗k = k � r∗k.

The isomorphisms are clear pointwise on the ex-space level, hence hold levelwise on
the spectrum level, and they descend model categorically to homotopy categories.
Thus, for spectra X and Y over B, we can internalize all four of our pairings so
that they take values in k∗ or k∗ when we start with J = K = r∗k in (20.7.4) and
(20.7.5), with J = k and K = r∗k in (20.7.6), and with J = r∗k and K = k in
(20.7.7).

We conclude that all of the products that we are accustomed to dealing with in
nonparametrized theories are available to us in our classical parametrized homology
and cohomology theories, where they continue to satisfy all of the usual properties.

20.8. The representability of homology theories

In classical homology theory, if one is given a homology theory k∗ defined
on finite complexes, one defines a corresponding cohomology theory k∗ on finite
complexes by applying k∗ to dual complexes. One then quotes Adams’ variant [1]
of Brown representability [25] to conclude that k∗ and therefore k∗ is represented.

Since all finite cell spectra over B are Costenoble-Waner dualizable, one might
expect to be able to apply the same arguments in our parametrized context. There
are several problems. First, although we know that finite parametrized cell com-
plexes are dualizable, we do not know that their duals are finite complexes since we
do not know that the dual of a 1-cell complex is a finite cell complex. We can get
around this, albeit not altogether satisfactorily, by assuming that the given parame-
trized theory J∗ is defined on all Costenoble-Waner dualizable spectra over B rather
than just on the finite complexes. Then the definition of J∗ makes sense. Since its
domain of definition contains the finite cell spectra over B, we can represent it if
we can represent appropriate functors defined on finite cell complexes.

Another problem concerns countability assumptions. Recall that Brown [25]
originally proved the relevant representability theorem for those set-valued (con-
travariant) functors on finite CW complexes that satisfy the Mayer-Vietoris axiom
and take countable values. Adams [1] assumed that the functor is group-valued
and removed the countability hypothesis. However, countability is still central to
his proof. He uses heavily that, up to equivalence, there are only countably many
finite CW complexes and countably many maps between them. Neeman [133] gave
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a different proof applicable to general triangulated categories. Recall the definitions
of detecting and generating sets from Definition 7.5.5 and the discussion of Brown
representability in triangulated categories from §13.1.

Theorem 20.8.1 (Neeman). Let A be a compactly generated triangulated cat-
egory, let B be the full subcategory of compact objects in A , and assume that B
is equivalent to a countable category (countably many objects and countably many
morphisms). If h : Bop −→ Ab takes distinguished triangles to exact sequences,
then h is representable in the sense that h is the restriction to B of the functor
A (−, X) for some X in A . A natural transformation h −→ j of functors repre-
sented by X and Y is represented by a map X −→ Y , not necessarily unique.

This is the concatenation of two results. Say that a functor h as in the statement
is “homological”. First, the countability hypothesis ensures that the subcategory
of homological functors in the category of functors Bop −→ Ab coincides with the
subcategory of functors of projective dimension ≤ 1 [133, 5.1]. Second, assuming
that B is essentially small, Brown representability holds in the form stated for all
homological functors h if and only if the homological functors coincide with the
functors of projective dimension ≤ 1 [133, 4.1, 4.11]. Neeman [133, §6] also gave a
counterexample in the absence of the countability hypothesis.

Remark 20.8.2. It is essential to Theorem 20.8.1 that B be equivalent to a
countable category rather than just have a countable set of compact generators. In
the derived category of any commutative ring R, the complexes R[n] are compact
(since R[n] is R-free on one generator) and detect homology, hence they give a
countable detecting set. However Neeman’s counterexample is the derived category
of K[x, y] for any uncountable field K.

We need a criterion for verifying the countability assumption on B.

Lemma 20.8.3. Let A be a triangulated category with a detecting set D of
compact objects such that the full subcategory of A with object set D is countable.
Then the full subcategory B of all compact objects in A is countable.

By Theorem 13.1.14, B is the thick subcategory of A generated by D . Thus
the conclusion is a special case of the following general result. We are very grateful
to Neeman, who gave us the proof in response to our asking if the previous lemma
might be true.

Lemma 20.8.4. Let C be a countable subcategory of a triangulated category A .
Then the thick subcategory T generated by C is countable.

Proof. For an object X of A , let S [X] be the full subcategory of A whose
objects are those Y such that A (X,Y ) and A (Y,X) are countable. Clearly S [X]
is thick. In general, S [X] could only contain the zero object. However, if X is
in C , then C is contained in S [X] and therefore T is contained in S [X]. We
conclude that if X is in C , then A (X,Y ) and A (Y,X) are countable for every Y
in T . This implies that if X is in T , then S [X] contains C and therefore also
contains T . Therefore A (X,Y ) is countable for every pair of objects of T .

It remains to show that T has only countably many isomorphism classes of
objects. We use the usual inductive construction of the thick closure T of C . For
any full countable subcategory F of A , define S [F ] to be the full subcategory of A
whose objects are all direct summands of all objects Z that occur in a distinguished
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triangle X −→ Y −→ Z −→ ΣX generated by a map X −→ Y in F . Since there
are only countably many such maps, there are only countably many isomorphism
classes of such objects Z. Each such Z is in the thick subcategory generated by F ,
hence A (Z,Z) is countable by the first paragraph. Therefore there are countably
many idempotents Z −→ Z, hence countably many direct summands of Z. Thus
S [F ] has countably many objects. By the first paragraph, it also has countably
many morphisms since it is contained in the thick subcategory generated by F .
Now define T0 = C , and, inductively, Tn = S [Tn−1]. By induction, each Tn is
countable, and T is the union of the Tn. �

Proposition 20.8.5. If B has countably many path components and each ho-
motopy group of each path component is countable, then the category of compact
objects in HoSB is countable.

Proof. It suffices to find a detecting set DB of compact objects such that the
full subcategory of HoSB with object set DB is countable. We have the generating
set of all Sn,b specified in Definition 13.1.1, where n runs over the integers and b
runs over the points of B. By Corollary 20.3.3, if π∗(Xb) = 0, then π∗(Xb′) = 0
for all b′ in the same path component as b. Thus we obtain a countable detecting
subset by choosing one b from each path component of B. We have

[Sm,a, Sn,b]B ∼= πm(Sn,ba )

and it remains to show that these homotopy groups of (derived) fibers are countable.
Recall that Sn,b = b!S

n. Spacewise, the homotopy groups of the total spaces of
the point-set level spectra b!Sn over B are countable because the homotopy groups
of B are countable. Therefore, after level fibrant approximation, the homotopy
groups of fibers are countable. The spectrum level homotopy groups of fibers are
countable colimits of these groups and are therefore also countable. �

We conclude that Theorem 20.8.1 applies to prove the representability of coho-
mology theories defined on compact objects of HoSB when B satisfies the count-
ability assumptions of Proposition 20.8.5. In the rest of this section, we sketch how
to use a colimit argument to obtain the same conclusion more generally. Since the
countability hypothesis of Proposition 20.8.5 is not unduly restrictive, we shall be
brief.

Theorem 20.8.6. Let h be a contravariant functor defined on the full subcate-
gory of compact objects of HoSB and taking values in Abelian groups. If h satisfies
the wedge and Meyer-Vietoris axioms, then it is the restriction of a represented
functor on HoSB.

Sketch proof. Using a Quillen equivalence induced by an equivalence on
base spaces, we may replace B by the second barycentric subdivison of the geo-
metric realization of its total singular complex and so assume that B is a simplicial
complex. Let ∆n be the topological n-simplex and consider a simplex e : ∆n ⊂ B.
Since e! preserves compact objects, h ◦ e! is a cohomological functor defined on the
compact objects of HoS∆n

. Since HoS∆n
is equivalent to Ho S∗, this functor is

represented by a spectrum Je over ∆n. If two n-simplices e1 and e2 intersect in an
(n − 1)-dimensional simplex e, let i1 : e −→ e1 and i2 : e −→ e2 be the inclusions.
The two represented cohomological functors [i1!(−), Je1 ] and [i2!(−), Je2 ] both re-
strict to h ◦ e!, and we obtain non-canonical equivalences i∗1Je1 ' Je ' i∗2Je2 whose
represented functors on compact objects are canonically isomorphic to h ◦ e!.
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Now we construct a spectrum J over B as the telescope of spectra jn!J
n over B,

where the Jn are spectra over the n-skeleta Bn and jn : Bn −→ B is the inclusion.
Let J0 be the disjoint union of the pushforward over B0 of the Je for all 0-cells e.
Inductively, construct Jn as the homotopy pushout∨

e

∨
b Jb

//

��

Jn−1

��∨
e Je

// Jn,

where e runs over the n-simplices of B, b runs over the faces of the boundary ∂e,
and all spectra are pushed forward to be spectra over Bn. Then e∗J is equivalent
to Je for all e. Of course, h and the functor represented by J extend to cohomology
theories by the suspension axiom. Using Theorem 20.4.1, we construct spectral
sequences for the computation of h∗ and J∗ on compact spectra X over B. The
E1-terms depend only on the restrictions of X to simplices in B and so can be
identified. Therefore h∗ is the restriction of J∗ to compact spectra over B. The
intuition is just that h∗ is built up from its restrictions to simplices, on which it
agrees with J∗ by construction. The spectral sequence merely serves to formalize
this intuition. �



CHAPTER 21

Equivariant parametrized homology and
cohomology

Introduction

The material of the previous chapter generalizes readily to the equivariant
context, as we show in §§21.1–21.5. Homology and cohomology theories on G-
spaces can be Z-graded or RO(G)-graded. The Z-graded theories are represented
by naive G-spectra, which are indexed on trivial representations. Such theories do
not admit Spanier-Whitehead or Poincaré duality. Their axioms read in precisely
the same way as in the nonequivariant context of §20.1. The RO(G)-graded theories
are the ones that are of interest to us, and they are indexed on all representations
of G.

We restrict attention to reduced homology and cohomology theories, and we
write them without a tilde. We define theories axiomatically in §21.1 and in rep-
resented form in §21.2, and we discuss coefficient systems in §21.3. We describe
Costenoble-Waner and parametrized Poincaré duality in §21.4. At this point the
theory diverges sharply from the nonequivariant theory since the evident equivari-
ant analogue of a k-orientation is too restrictive, as we shall explain. We consider
products and the representability of homology in §21.5.

The last two sections are not direct generalizations of the results of the pre-
vious chapter, but rather are two new beginnings, both of which are of interest
nonequivariantly as well as equivariantly. The context of the bicategories GE xB
established in Chapter 19 suggests a generalization of our parametrized homology
and cohomology theories in which the implicit base object ∗ that we have used so
far is replaced by a general G-space B. We give the definitions because they are
so natural, in §21.6, but we shall not pursue this point of view in any depth. A
generalized version of Costenoble-Waner duality is immediate.

We turn to fiberwise versions of Poincaré duality in §21.7, emphasizing the
nonequivariant case. While we have a version applicable to general base spaces, we
lack calculational understanding of its cohomological side. We focus on bundles E
whose base B and fiber M are smooth closed manifolds. Clearly E need not be
k-orientable when B and M are k-orientable. For example, the Klein bottle is an
S1-bundle over S1 but is not HZ-orientable. It is a natural problem to determine
when E does inherit a k-orientation from B and M , but we know of no general
discussion in the literature. Somewhat digressively, since parametrized theory is
not essential, we illustrate ideas by describing two ways of resolving this problem.

We only establish the barest beginnnings of the equivariant theory here, giving
little more than parallels to the material of the previous chapter. The equivari-
ant parametrized theory has many special features. The coefficient sytems that
we describe are just the tip of the iceberg of a new theory that is in process of

357
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development. The paper of Costenoble and Waner [41] makes substantial progress.
It focuses on “ordinary” RO(G)-graded homology and cohomology theories and
builds on the equivariant geometric orientation theory of [37].

21.1. Equivariant homology and cohomology theories

The term “RO(G)-graded” is technically a misnomer for the theories that we
are interested in since one cannot think of representations as isomorphism classes
and still keep track of signs, which in equivariant theories are units in the Burnside
ring A(G). In the nonparametrized context, RO(G)-graded theories are given a
precise axiomatization and are shown to be representable in [118, §XIII.1], although
the exposition there is unnecessarily cumbersome. We show how to adapt that
treatment to the parametrized context. Such an adaptation has also been carried
out by Costenoble and Waner [41].

Recall that we started our stable work with the G-category (IG, GI ) of finite
dimensional G-inner product spaces and linear isometric isomorphisms. We now
focus on the equivariant maps and we rename GI , calling it RO(G) in order to
indicate that we are now thinking of it as a forerunner of the real representation
ring RO(G). Say that two maps in RO(G) are homotopic if their associated based
G-maps SV −→ SW are stably homotopic. Let hRO(G) be the resulting homotopy
category. Then hRO(G)(V, V ) is a copy of the Burnside ring A(G).

Definition 21.1.1. An RO(G)-graded parametrized homology theory is a func-
tor

JG∗ : hRO(G)op ×HoGKB −→ A b,

written JGV (X) on objects (V,X) and similarly on morphisms, together with natural
suspension isomorphisms

σW : JGV (X) −→ JGV⊕W (ΣWB X)

such that the following axioms are satisfied.
• Exactness and additivity. For each representation V , the functor JGV is

exact on cofiber sequences and sends wedges to sums.
• Compatibility. The following diagram commutes, where α is map W −→W ′

in hRO(G):

JGV (X) σW ′
//

σW

��

JGV⊕W ′(ΣW
′

B X)

JG
id⊕α(id)

��
JGV⊕W (ΣWB X)

(Σα
B id)∗

// JGV⊕W (ΣW
′

B X).

• Transitivity. σ0 = id and the σ are transitive in the sense that the following
diagram commutes for each pair of representations (W,Z):

JGV (X) σW
//

σW⊕Z
''PPPPPPPPPPPP

JGV⊕W (ΣWB X)

σZ
vvlllllllllllll

JGV⊕W⊕Z(ΣW⊕Z
B X).
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Definition 21.1.2. An RO(G)-graded parametrized cohomology theory is a
functor

J∗G : hRO(G)× (HoGKB)op −→ A b,

written JVG (X) on objects (V,X) and similarly on morphisms, together with natural
isomorphisms

σW : JVG (X) −→ JV⊕WG (ΣWB X)
such that the evident duals of the axioms for homology are satisfied.

The following observation illuminates the functoriality in hRO(G), although
we shall make little use of it. It is relevant to the proof that cohomology theories
are representable. Thinking of cohomology theories on ex-G-spaces as represented
one degree at a time, JVG (X) = [X, J(V )]G,B , it describes the functoriality in V .

Lemma 21.1.3. Let J be an orthogonal Ω-G-spectrum over B. Then J induces
a functor J : hRO(G) −→ HoGKB.

Proof. Since J : I −→ KG,B is a continuous G-functor, it induces homotopy
preserving maps GI (V,W ) −→ GKB(J(V ), J(W )) for all V and W . Since J is
an Ω-G-spectrum over B, stably homotopic maps V −→ W induce the same map
J(V ) −→ J(W ) in HoGKB . �

The axioms refer only to the “positive degree” part of the theory. We extend
a theory so defined to “formal differences V 	W” for any pair of representations
(V,W ) by setting

(21.1.4) JGV	W (X) = JGV (ΣWB X) and JV	WG (X) = JVG (ΣWB X).

We use the symbol 	 to avoid confusion with either orthogonal complement or
difference in the representation ring, but we write − instead of 	 when V = 0.
Rigorously, we are thinking of V 	W as an object of the category hRO(G)op ×
hRO(G). For each X, (21.1.4) defines functors from this category and from its
opposite category to the category of Abelian groups.

The representation group RO(G) is obtained by passage to equivalence classes
from the set of formal differences V 	W , where V 	W is equivalent to V ′ 	W ′

if there is a G-linear isometric isomorphism α : V ⊕W ′ −→ V ′ ⊕W . Of course,
RO(G) is a ring under ⊗, but the ring structure is not directly relevant to us. When
interpreting RO(G)-graded homology theories, we must keep track of the choice of
α, and we see that a given α determines the explicit isomorphism displayed as the
unlabelled arrow in the diagram of isomorphisms

JGV (ΣWB X)

��

σW ′
// JGV⊕W ′(ΣW⊕W ′

B X)

JG
α (Στ

B id)

��
JGV ′(Σ

W ′

B X)
σW

// JGV ′⊕W (ΣW
′⊕W

B X),

where τ : W⊕W ′ −→W ′⊕W is the transposition isomorphism. The purpose of the
careful axiomatization is to give precision to signs arising from such permutations
of representations.

If V G = 0, write V + n = V ⊕ Rn and V − n = V 	 Rn. The first axiom
ensures that, for each such V , the JGV+n and σ1 define a Z-graded homology theory.
The second axiom ensures that we retain complete information on suspensions if we
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restrict attention to one object in each isomorphism class of representations, that
is, if we restrict to any skeleton of RO(G). We can restrict further to a skeleton
of its homotopy category. The third axiom says that we can restrict further to
irreducible representations, as is implicit in restricting to σ = σ1 when G = e. We
can replace GKB by GSB in the definitions just given and so define RO(G)-graded
homology and cohomology theories on G-spectra over B.

21.2. Represented equivariant theories

The definition of represented theories is now the same as Definition 20.2.4,
interpreted equivariantly, but we must first recall the relevant homotopy group
functors.

Definition 21.2.1. For G-inner product spaces V , define the V th and (−V )th
homotopy groups of a G-spectrum Y by

πGV (Y ) = [SV , Y ]G and πG−V (Y ) = [S−V , Y ]G.

Observe that these give functors

hRO(G)op ×HoGS −→ A b and hRO(G)×HoGS −→ A b.

Indeed, for a map α : V −→W in hRO(G), we have the map α : SV −→ SW with
dual D(α) : S−W −→ S−V characterized by commutativity of the diagram

SV ∧ S−W
id∧D(α)//

α∧id

��

SV ∧ S−V

'
��

SW ∧ S−W '
// S.

Applying [−, Y ]G to the maps α and D(α) gives functoriality in the variable V .

Definition 21.2.2. For G-spectra J and X over B, define the J-homology and
J-cohomology groups of X by

JGV (X) = πGV (r!(J ∧B X))

and
JVG (X) = πG−V (r∗FB(X, J)) ∼= [S−VB , FB(X, J)]G,B .

The required functoriality is clear. The suspension isomorphisms σW in homology
and cohomology are given by

[SV , r!(J ∧B X)]G ∼= [SV ∧ SW , r!(J ∧B X) ∧ SW ]G
∼= [SV⊕W , r!(J ∧B ΣWB X)]G

and

[S−V , r∗FB(X, J)]G ∼= [S−V ∧ S−W , r∗FB(X, J) ∧ S−W ]G
∼= [S−(V⊕W ), r∗FB(ΣWB X, J)]G.

The first isomorphisms are given by smashing with SW or with S−W . The second
isomorphisms are obvious on the sources in our sets [−,−]G and are given on the
targets by the canonical commutation of funtors equivalences

r!(J ∧B X) ∧ SW ' r!(J ∧B X ∧B SW ) ' r!(J ∧B ΣWB X)
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and
r∗FB(X, J) ∧ S−W ' r∗FB(X ∧B SW , J) ' r∗FB(ΣWB X, J).

In the first composite, the left equivalence is given by commuting tensors with r!.
In the second composite, the left equivalence is obtained by passing to adjoints and
using that r∗ commutes with tensors. In both, the right equivalence is given by
X ∧B SW ∼= ΣWB X. The naturality in V and X is clear. The compatibility and
transitivity axioms follow by direct inspection.

The exactness and wedge axioms work in exactly the same way as nonequiv-
ariantly. The same definitions specify the homology and cohomology groups of an
ex-G-space K, and these are given equivalently by taking X = Σ∞BK in the defini-
tion above. Clearly these groups give (reduced) homology and cohomology theories
in K, as axiomatized in Definition 21.1.1.

Since we are working with spectra and have desuspensions, the entire theory
can be reconstructed from JG0 or J0

G, turning the suspension isomorphisms and
the axioms relating them into definitions. In particular, if we set V = 0 in the
second axiom, it turns into definitions of Jα and Jα on morphisms α : W −→ W ′

in hRO(G). Of course, in cohomology, J0
G(X) is the represented functor [X, J ]G,B

of X. Brown’s representability applies just as it does nonequivariantly.

Theorem 21.2.3. A reduced cohomology theory on ex-G-spaces over B is repre-
sented by an Ω-G-prespectrum J , unique up to non-unique equivalence. A cohomol-
ogy theory on G-spectra over B is represented uniquely by an orthogonal G-spectrum
over B in HoGSB.

Proof. For the ex-G-space level, we use Brown representability in HoGKB to
obtain J(V ) such that JVG (X) ∼= [X, J(V )]G,B . Suspension isomorphisms give weak
equivalences J(V ) −→ ΩWJ(V ⊕W ). The axioms imply that we lose no information
if we restrict attention to a cofinal sequence in a skeleton of RO(G), and we then
have an Ω-G-prespectrum defined on an indexing sequence. By our general theory,
it is weakly equivalent to the underlying prespectrum of an orthogonal G-spectrum.
Now we can use Lemma 21.1.3 to obtain the functoriality in V and (tediously) verify
the compatibility and transitivity axioms. The spectrum level version is easier since
we need only use Brown representability in HoGSB to represent J0

G. �

The following corollary is standard, but powerful. ManyRO(G)-graded theories
onG-spectra, such as the ordinary theory associated to a Mackey functor, arise most
naturally by applying it.

Corollary 21.2.4. A Z-graded cohomology theory on G-spectra over B is
represented by a G-spectrum over B and therefore extends to an RO(G)-graded
cohomology theory on G-spectra over B.

21.3. Change of base and equivariant cofficient systems

Change of base in homology and cohomology behave in the same way equiv-
ariantly as nonequivariantly, giving generalizations of Proposition 20.2.6 and, with
an equivariant reinterpretation of the E2-term, Theorem 20.4.1. The first of these
impliesgeneralizations of Corollary 20.2.7, to be discussed in the next section, and
Corollary 20.3.1. However, the latter should be interpreted in terms of the G-maps
b̃ : G/Gb −→ B rather than the Gb-maps b : ∗ −→ B, since otherwise its last state-
ment fails for general compact Lie groups in view of the Wirthmüller isomorphism.
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Looking at the last statement of Corollary 20.3.1, it seems reasonable to interpret
the groups

JGV (b̃!SG/Gb
) and JVG (b̃!SG/Gb

),

where b̃ is thought of as a map G/Gb −→ B, as the coefficient groups of the ho-
mology and cohomology theories represented by J . However, it is notationally and
conceptually preferable to work with general maps p : G/H −→ B, thought of both
as maps which generate base change functors and as G-spaces (G/H, p) over B.
We then have the following equivariant analogue of the last statement of Corol-
lary 20.3.1. Here SG/H is the sphere G-spectrum over G/H, that is Σ∞G/HS

0
G/H .

Proposition 21.3.1. Let p : G/H −→ B be a G-map with p(eH) = b and let
V be a representation of G regarded as a representation of H by restriction. Then

JGV (p!SG/H) ∼= [SV , r!p∗J ]G ∼= πHV	L(H)(Jb),

where L(H) is the tangent H-representation of G/H at eH, and

JVG (p!SG/H) ∼= [S−V , r∗p∗J ]G ∼= πH−V (Jb).

Proof. For the first isomorphism, the equivariant version of Corollary 20.3.1(ii)
gives

JGV (p!SG/H) ∼= (p∗J)GV (SG/H) = [SV , r!(p∗J ∧G/H SG/H)]G ∼= [SV , r!p∗J ]G,

where we have used that SG/H is the unit for the smash product over G/H. Since
Jb ' (p∗J)eH , we have r!p∗J ' ι!p

∗J = G+ ∧H Jb by the change of group isomor-
phism described in §2.3 and proven in stable categories in Proposition 14.3.3. The
Wirthmüller isomorphism (19.1.3) gives G+ ∧H Jb ' FH(G+,ΣL(H)Jb), and this
implies that

[SV , r!p∗J ]G ∼= πHV (ΣL(H)Jb) = πHV	L(H)(Jb).

For the second isomorphism, Corollary 20.3.1(ii) gives the first of the isomorphisms

JVG (p!SG/H) ∼= (p∗J)VG(SG/H) ∼= [S−VG/H , FG/H(SG/H , p∗J)]G,G/H
∼= [S−VG/H , p

∗J ]G,G/H ∼= [S−V , r∗p∗J ]G.

Here we have used a unit isomorphism, the isomorphism S−VG/H ' r∗S−V and ad-
junction. The cited results on change of groups give r∗p∗J ' ι∗Jb = FH(G+, Jb),
and therefore [S−V , r∗p∗J ]G ∼= πH−V (Jb). �

Just as nonequivariantly, since SG/H ' p∗SB , the counit maps p!p
∗SB −→ SB

induce maps

(21.3.2) J∗(p!SG/H) −→ J∗(SB) and J∗(SB) −→ J∗(p!SG/H)

which can be viewed as comparisons of fiberwise coefficient systems and global
coefficient groups.

To explain the coherence of these systems as p varies, recall from tom Dieck
[46, 10.7] or [37, 1.1] that there is an equivariant fundamental groupoid ΠGB. Its
objects are the pairs (G/H, p). Its morphisms

(α, ω) : (G/H, p) −→ (G/K, q)

consist of a G-map α : G/H −→ G/K together with an equivalence class of paths
p(eH) −→ qα(eH) in BH . We interpret such a path as a homotopy h : G/H ×
I −→ B from p to q ◦ α, and we interpret the relevant homotopies k : h ' h′
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between paths as maps k : G/H × D −→ B, where D is a disk with two vertices
and two boundary semi-circles, as in the proof of Proposition 20.3.2. Composition
is induced by composition of maps of orbits and the usual composition of paths,
or by composition of homotopies under our reinterpretation. There is an evident
projection from ΠGB to the orbit category OG, and the fiber overG/H is isomorphic
to the nonequivariant fundamental groupoid of BH . It is important to remember
that the name “fundamental groupoid” is a misnomer here, since not all maps
in ΠGB are isomorphisms. However, a morphism (α, ω) is the composite of the
isomorphism (id, ω) : (G/H, p) −→ (G/H, q◦α) and the map (α, c) : (G/H, q◦α) −→
(G/K, q), where c is a constant path. Taking this into account, we see that the
proof of Proposition 20.3.2 applies directly to give the following precise analogue.

Proposition 21.3.3. For ex-G-spaces X over B, there is a (covariant) functor
C(X) from ΠGB to the homotopy category HoGKB/X of ex-G-spaces over B with
augmentations to X that sends p : G/H −→ B to p!p

∗X with augmentation given
by the counit p!p

∗X −→ X of the (p!, p
∗) adjunction. The corresponding result

for G-spectra J over B also holds, and C(Σ∞BX) is naturally isomorphic to the
composite functor Σ∞B C(X).

Formulation of a version based strictly on fibers, like that of Corollary 20.3.3,
would be awkward at best. It is more convenient to think of the points of B as
the spaces (G/H, p) over B. Composing C(J) with the functors [SVB ,−]G,B as V
varies, we obtain a kind of algebraic coefficient system associated to the cohomology
theory J∗G. However, there are several variants of the equivariant fundamental
groupoid and of this definition that are necessary to develop a theory adequate
to the applications. In fact, a full treatment must take account of versions of
“representations” that are defined on ΠGB and are built out of Gb-representations
for each point b ∈ B. Such parametrized representations are specified and studied
in [37,41].

21.4. Duality theorems and orientations

As in Proposition 20.5.1, for G-spectra X and J over B we have equivalences
of G-spectra

(21.4.1) r!(J ∧B X) ' J � tX and r∗FB(X, J) ' X . J.

We can therefore reinterpret our definitions of homology and cohomology as

(21.4.2) JG∗ (X) = πG∗ (J � tX) and J∗G(X) = πG−∗(X . J).

When (X,Y ) is a dual pair, J�tY ' X.J and the Costenoble-Waner analogue
of Spanier-Whitehead duality applies to our RO(G)-graded theories. We restate it
equivariantly for emphasis.

Theorem 21.4.3 (Costenoble-Waner duality). Let X be a Costenoble-Waner
dualizable G-spectrum over B with Costenoble-Waner dual Y . Then

JG∗ (Y ) ∼= J−∗G (X).

Here and below, −(V 	 W ) = W 	 V . This allows us to interpret Exam-
ple 0.0.2 equivariantly. The (reduced) “classical” equivariant parametrized homol-
ogy and cohomology theories on ex-G-spaces or G-spectra X over B associated
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to nonparametrized equivariant homology and cohomology theories kG∗ and k∗G are
specified by

(21.4.4) kG,B∗ (X) = kG∗ (r!X) and k∗G,B(X) = k∗G(r!X).

If kG∗ and k∗G are represented by an Ω-G-prespectrum k, then

(21.4.5) kG,B∗ (X) = πG∗ (k ∧ r!X) and k∗G,B(X) = πG−∗F (r!X, k).

We have the Ω-G-prespectrum r∗k over B, and we have the relations

(21.4.6) k ∧ r!X ' r!(r∗k ∧B X) and F (r!X, k) ' r∗FB(X, r∗k).

By Corollary 20.2.7, interpreted equivariantly, we have the reinterpretation
(21.4.7)

(r∗k)G∗ (X) ∼= kG∗ (r!X) ≡ kG,B∗ (X) and (r∗k)∗G(X) ∼= k∗G(r!X) ≡ k∗G,B(X).

Now let M be a smooth closed G-manifold. As in the nonequivariant case in
§20.3, Theorem 19.1.5 gives that k ∧M+ ' SM . (k ∧ Sτ ). Taking X = SM and
J = k ∧ Sτ in (20.5.1), we obtain equivariant Poincaré duality in RO(G)-graded
theories.

Theorem 21.4.8 (Poincaré duality—unoriented version). Let k be a G-spectrum
and M be a smooth closed G-manifold. Then

kG∗ (M+) ∼= (k ∧ Sτ )−∗G (SM ).

From here, a restricted version of equivariant orientation theory works in ex-
actly the same way as orientation theory in the nonequivariant theory. We review it,
and then say a few words about why it is too restrictive. Just as nonequivariantly,

k ∧X ' r∗k ∧B X

for any G-space or G-spectrum X.

Definition 21.4.9. Let V be a representation of G. Define a V -sphere fibration
over B to be an ex-G-fibration (X, p, s) whose fibers Xb are Gb-equivalent to SV

(restricted to Gb) for all b ∈ B. The Thom complex of X is TX = r!X = X/s(B).
A V -manifold is a G-manifold whose tangent sphere bundle is a V -sphere bundle.

(i) A k-trivialization of X is an equivalence

k ∧X ' k ∧ SVB
of G-spectra over B.

(ii) Let k be a commutative ring G-spectrum. A k-orientation of X is a cohomol-
ogy class µ ∈ kVG(TX) such that the restriction of µ to fibers,

µb ∈ kVGb
(TXb) ∼= kVGb

(SV ) ∼= k0
Gb

(S0) = πGb
0 (k),

is a unit in the ring πGb
0 (k) for each b ∈ B.

(iii) A k-trivialization or k-orientation of a smooth closed V -manifold M is a k-
trivialization or k-orientation of Sτ .

As in the nonequivariant case, a k-oriented V -sphere fibration over B is k-
equivalent to the trivial V -sphere fibration B × SV = SVB over B.

Proposition 21.4.10. A k-orientation µ of a V -sphere fibration X induces a
k-trivialization of X.
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For any “degree” α = W 	 Z, we have

(k ∧ SVB )−α(SB) ∼= (r∗ΣV k)−α(S0
B) ∼= kV−α(B+),

where V − α = (V ⊕ Z) 	W . Taking B = M and applying the equivalence µ̄ to
the right side of the unoriented version of the Poincaré duality theorem we obtain
the restricted oriented version.

Theorem 21.4.11 (Poincaré duality—V -oriented version). Let k be a commu-
tative ring G-spectrum and M be a k-oriented smooth closed V -manifold. Then

kα(M+) ∼= kV−α(M+).

The homology Thom isomorphism is also induced by the equivalence µ̄, and
the cohomology Thom isomorphism is induced by the equivalence µ̂ given in the
following dual version of Proposition 21.4.10.

Proposition 21.4.12. A k-orientation µ of a spherical fibration X induces an
equivalence of spectra over B

µ̂ : FB(SVB , r
∗k) −→ FB(X, r∗k).

Theorem 21.4.13 (V -Thom isomorphism). If X is a k-oriented V -sphere fi-
bration over B, then there are canonical equivalences

k ∧ TX ' k ∧ ΣnB+ and F (ΣnB+, k) ' F (TX, k)

and therefore canonical isomorphisms

kGα (B+) ∼= kα+V (TX) and kα(B+) ∼= kα+V (TX).

Remark 21.4.14. The diagram chase described in Remark 20.5.9 works equiv-
ariantly and shows that the cohomology Thom isomorphism sends x ∈ kα(B+) to
the cup product xµ ∈ kα+V (TX) induced by the Thom diagonal, and dually in
terms of cap products in homology.

Remark 21.4.15. Relative versions of Poincaré duality follow from Theorems
19.1.6 and 19.1.9, exactly as in §20.6. Aside from the RO(G)-grading, the state-
ments are identical, and we will not repeat them.

We regard the results above as giving a restricted version of orientation the-
ory because the restriction to V -sphere fibrations (and V -manifolds) is unrealistic
except under an unrealistically strong connectivity hypothesis, as we now explain.

Definition 21.4.16. A spherical G-fibration over B is an ex-G-fibrationX such
that each fiber Xb is Gb-homotopy equivalent to SVb for some Gb-representation Vb
(depending on b).

It is usual to define the dimension of X to be the set of fiber representations
Vb or, more precisely, the set of Gb-homotopy types SVb . The following condition
ensures that this dimension function defined on the points of B is constant, so that
X is a V -sphere fibration for some V .

Definition 21.4.17. A G-space B is G-connected if each of its fixed point
spaces BH is non-empty and path connected.

Lemma 21.4.18. If B is G-connected and X is a spherical G-fibration over B,
then X is a V -sphere fibration for some G-representation V .
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Proof. If c is a G-fixed point of B and Xc is G-homotopy equivalent to SV ,
then every fiber Xb is Gb-homotopy equivalent to SV . �

Therefore, for G-connected base spaces, the V -orientation theory above is en-
tirely satisfactory. However, interestingG-manifoldsM are usually notG-connected,
and then a more elaborate theory is needed in which orientations take all of the
fiber representations Vb into account. From a concrete geometric point of view,
orientations of spherical G-fibrations are described in [37] in terms of parametrized
representations of the fundamental groupoid ΠGB. However, it is far from obvious
how to connect the geometric definition there to cohomology. From the manifold
point of view, that question amounts to the problem of simplifying the cohomology
side of the unoriented version of Poincaré duality when given an orientation of Sτ .

It is natural to first tackle this question for “ordinary” theories, namely those
whose Z-graded parts satisfy the dimension axiom. That is the main theme of the
work of Costenoble and Waner [41]. A major stumbling block tackled there is that,
for infinite compact Lie groups, the represented dual of an ordinary cohomology
theory is not ordinary, as was explained briefly in [118, XIII§4]. The reason is that
orbits are not self-dual, as we have seen in the Wirthmüller isomorphism, so that the
category of Mackey functors in which the coefficients of ordinary theories must live
is not self-dual. Costenoble and Waner use our parametrized spectra to overcome
such difficulties. They work out general Thom isomorphism and Poincaré duality
theorems for ordinary RO(G)-graded cohomology theories, and they manage to do
this using descriptions of the represented homology and cohomology theories in
terms of chains and cochains.

In general, a k∗G-orientation of M should be a cohomology class in the Thom
space of the tangent bundle that lives in a “degree” that depends on the parametrized
dimension function of the tangent bundle. A naive version of such a theory is given
in [119]. Much more work will be needed to reach a calculationally useful under-
standing of such an equivariant cohomological orientation theory.

Remark 21.4.19. There are particularly interesting theories where orientation
theory works well without such elaboration, such as equivariant K-theory and equi-
variant cobordism. The point is that it is possible for a spherical G-fibration that is
not a V -sphere fibration to have a k-orientation in essentially the prescribed sense.
For example, this often happens in equivariant K-theory, where the equivariant
version of the Atiyah-Bott-Shapiro orientation [4] gives any equivariant complex
n-plane G-bundle a K-orientation of dimension 2n, and similarly for spin-bundles
and real K-theory; see French [67] for details. The reason this makes sense is that
KV
G
∼= K2n

G for any compact Lie group G and any complex representation V of
dimension n. Such orientations still have the implications described above.

21.5. Products and the representability of homology

Products and slant products in equivariant parametrized homology and coho-
mology theories work exactly as in §20.7, and we shall not repeat the discussion;
see also [41]. The starting point is that we have the evident pairing

(21.5.1) πGV (X)⊗ πGW (Y ) −→ πGV⊕W (X ∧ Y )

for ordinary G-spectra X and Y . The products were derived in §20.7 from the
analogous nonequivariant pairing together with maps constructed in our bicategory
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of parametrized spectra and the commutativity isomorphism for the external smash
product. Such maps work in exactly the same way equivariantly.

The representability of equivariant homology theories also works in the same
way as in the nonequivariant theory. Here again, there are two approaches. First,
Neeman’s general result Theorem 20.8.1 implies that cohomology theories defined
on compact objects, and therefore homology theories defined on compact objects,
are representable provided an appropriate countability hypothesis is satisfied. The
following equivariant version of Proposition 20.8.5 verifies the required hypothesis.

Proposition 21.5.2. If each BH has countably many path components and
each homotopy group of each path component of B is countable, then the category
of compact objects in HoGSB is countable.

Proof. By [135, 1.7.27], there are only countably many conjugacy classes of
(closed) subgroups of a compact Lie group G. We have the generating set of all Sn,bH
specified in Definition 13.1.1, where n runs over the integers, b runs over the points
of B, and H runs over the subgroups of G. Observe that the Sn,bH for subgroups
H in the same conjugacy class are G-homeomorphic. By Proposition 21.3.3, if
π∗(Xb) = 0, then π∗(Xb′) = 0 for all b′ in the same path component of some BH as
b. Thus we obtain a countable detecting subset by choosing one b from each path
component of BH , where H runs through one subgroup in each conjugacy class
(H). We have

[Sm,aH , Sn,bK ]B ∼= πm((Sn,bK )H)
and these homotopy groups of (derived) fibers are countable by the proof of Propo-
sition 20.8.5. �

Second, we could give an ad hoc telescope argument that works in general, in
analogy with Theorem 20.8.6. We have not tried to work out complete details. The
starting point of restriction to a simplicial complex should be replaced by restric-
tion to a colimit of finite dimensional G-simplicial complexes, where a G-simplicial
complex is a G-CW complex with simplicial orbit space under the induced trian-
gulation. We can do that by Waner’s result [168, 4.3] that any G-CW complex
is homotopy equivalent to a G-simplicial complex. However, this is a less conve-
nient starting point for the precise gluing that we described in the sketch proof
of Theorem 20.8.6. That proof also relies on the spectral sequence argument of
Theorem 20.4.1, but we have already noted that that result goes through with the
same proof, when properly interpreted. Note that all that is needed is a spectral
sequence for the Z-graded part of our cohomology theory, but we point out the
following digressive observation.

Remark 21.5.3. Spectral sequences in RO(G)-graded equivariant cohomology
generally appear as RO(G)-graded families of spectral sequences, one for each α =
V 	W such that V and W contain no trivial summands. The values of the original
theory in gradings α + n, n ∈ Z, form a Z-graded theory, and one finds a family
of spectral sequences, one for each such α, together with suspension isomorphisms
relating the spectral sequences as α varies.

21.6. Fiberwise parametrized homology and cohomology

The symmetric bicategories GE xB discussed in Chapter 19 lead to a generaliza-
tion of our parametrized homology and cohomology theories in which the implicit
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base object ∗ is replaced by a general G-space B. Costenoble-Waner duality also
generalizes. We start with a fixedG-space (K, p) over B and replace the base change
functors induced by r : B −→ ∗ used previously with the base change functors in-
duced by p : K −→ B. We omit the fixed group G from the notations, regarding it
as implicit in the structure of K as a G-space.

Definition 21.6.1. Let (K, p) be a G-space over B and let J be a G-spectrum
over K. For G-spectra X over K and representations V of G, define

J
(K,p)
V (X) = [SVB , p!(J ∧K X)]B

and
JV(K,p)(X) = [S−VB , p∗FK(X, J)]B .

Using standard commutation relations, we obtain suspension isomorphisms

(21.6.2) σW : J (K,p)
V (X)→ J

(K,p)
V⊕W (ΣWKX) and σW : JV(K,p)(X)→ JV⊕W(K,p) (ΣWKX)

exactly as in Definition 21.2.2, and we extend the theory to formal differences V 	W
by

(21.6.3) J
(K,p)
V	W (X) = J

(K,p)
V (ΣWKX) and JV	W(K,p) (X) = JV(K,p)(Σ

W
KX).

With evident modifications, all of the basic properties of equivariant parametrized
homology and cohomology theories carry over. Of course, when G = e, we obtain
integer graded homology and cohomology theories this way.

The following generalization of Proposition 17.4.2 makes clear how duality
works in this context. The result is obtained by specializing Proposition 19.2.8
to cases where two out of the three G-spaces over B used there are B itself.

Proposition 21.6.4. Let (K, p) be a G-space over B, let X and Y be G-spectra
over K and let Z be a G-spectrum over B. Thinking of K as B ×B K and B as
B×B B, regard X and Y as 1-cells K B //B and regard Z as a 1-cell B B //B .
Then, as G-spectra over B,

Y �B tX ' p!(Y ∧K X) and tY /B tX ' p∗FK(X,Y ) ' X .B Y.

As spectra over K,

tX �B Z ' X ZB Z, Z �B X ' Z ZB X

and
Z /B X ' FK(X, p∗Z) ' tX .B Z.

As spectra over K ×B K,
tY �B X ' Y ZB X.

In particular, we can reinterpret our definitions of homology and cohomology
in terms of J�B tX and X.B J . We call dual pairs in GE xB “B-dual pairs”. When
(X,Y ) is a B-dual pair of G-spectra over K, J �B tY ' X .B J . The following
generalized version of the Costenoble-Waner analogue of Spanier-Whitehead duality
follows directly.

Theorem 21.6.5 (Costenoble-Waner B-duality). Let X be a Costenoble-Waner
B-dualizable G-spectrum over K with Costenoble-Waner B-dual Y . Then, for a G-
spectrum J over K,

J
(K,p)
∗ (Y ) ∼= J−∗(K,p)(X).
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21.7. Fiberwise Poincaré duality and orientations

We now place ourselves in the context of §19.6. Thus we fix an extension Γ
of G by Π and a Π-free Γ-space P with base space B = P/Π. To focus on the
nonequivariant version, the reader should take G = e and thus Γ = Π. Equivari-
antly, the special case Γ = G×Π is of greatest interest. We also fix a smooth closed
Γ-manifold M of dimension n and let E = P ×Π M , so that we have a G-bundle
p : E −→ B with fiber M . Then SM is Costenoble-Waner dualizable with (right)
dual TM = Σ∞MΣ−V SνM , where νM is the normal Γ-bundle of an embedding of M
in a Γ-representation V . We factor r : E −→ ∗ as r̄ ◦ p, r̄ : B −→ ∗.

With our definitions, fiberwise homotopical Poincaré duality as given in Theo-
rem 19.6.1 does not compute homology in terms of cohomology; the cohomological
side of that result is a G-spectrum over B that is given by the functor Sp . (−)
on G-spectra over E, and that does not fit into either our original or our general-
ized version of parametrized cohomology. In the case G = e, all we obtain is the
following result.

Theorem 21.7.1. Let M be a smooth closed Π-manifold of dimension n and
let k be a spectrum. Then

k∗(E+) ∼= π∗(r̄!p∗(k ∧ PMSτ )).
If k is a commutative ring spectrum and PMSτ is k orientable, then the right side
is isomorphic to π∗(r̄!p∗(k ∧ SnE)).

The right side is a mixture of the homological r̄! and the cohomological p∗. That
is perhaps all that can be expected since B can be infinite dimensional. We now
specialize to the case when B is a smooth closed manifold. Then, using the fiberwise
description of the tangent bundle of E and its suspension spectrum given in (19.6.4)
and (19.6.5), Theorems 19.1.5 and 19.6.3 give the following isomorphisms.

Theorem 21.7.2. Let M be a smooth closed Γ-manifold and B be a smooth
closed G-manifold, and let J be a G-spectrum over B. Then

J∗((E, p)+) ∼= (p∗J ∧E PMSτM ∧E p∗SτB )−∗(SE) ∼= (p∗J ∧E SτE )−∗(SE).

When J = r̄∗k = kB for a G-spectrum k, this takes the form

kB∗ (E+) ∼= (k ∧ PMSτM ∧E p∗SτB )−∗(SE) ∼= (k ∧ SτE )−∗(SE).

Of course, with the first isomorphism, our discussions of nonequivariant and
equivariant Poincaré duality in §20.4 and §21.4 apply directly. We shall focus on the
second isomorphism and its use to prove the k-orientability needed for a conclusion
in terms of nonparametrized cohomology. We focus on the nonequivariant case
G = e, but, since it is only the Π-equivariance that matters in the discussion below,
the general case would introduce no added difficulty. The starting point is clear.

Proposition 21.7.3. Let k be a commutative ring spectrum. If B and PMSτM

are k-oriented, then E = P×ΠM is k-oriented and therefore k∗(E+) ∼= kn+t−∗(E+),
where n = dimM and t = dimB.

Proof. Recall that τE ∼= PMτM ⊕ p∗τB . Since pullbacks and Whitney sums
of k-oriented vector bundles are k-oriented, the conclusion is immediate. �

These results focus attention on the problem of determining when PMS
τM is

k-orientable or, more generally, when PFX is k-orientable, where, with G = e, F
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is a Π-space and X is a spherical Π-fibration of dimension n over F . Thus we do
not require F to be a manifold and do not require X to come from a vector bundle.
Note the role of equivariance. It is clearly not enough that X be nonequivariantly
k-orientable, as the Klein bottle example again shows. We give two solutions, a
more calculational one based on a universal example for P and an equivariant one
that illustrates conceptual points about the relationship between “genuine“ and
“naive” Π-spectra.

We owe the first to Shmuel Weinberger. Let f : B −→ BΠ classify our principal
Π-bundle P , so that we have a pullback diagram

P
g //

��

EΠ

��
B

f
// BΠ.

It gives rise to pullback diagrams

P ×Π X
g×Πid //

��

EΠ×Π X

��
P ×Π F

g×Πid //

��

EΠ×Π F

��
B

f
// BΠ,

as we see by first checking the lower square and then the upper one. The following
result is an immediate consequence.

Proposition 21.7.4. If the Borel construction spherical fibration

EΠ×Π X −→ EΠ×Π F

induced by a spherical Π-fibration X −→ F is k-orientable, then the spherical fibra-
tion P ×Π X −→ P ×Π F is k-orientable for every principal Π-bundle P over any
base space B.

The Borel construction is relatively calculable, so this is a reasonable criterion.
However, a less useful criterion based directly on X may be illuminating. We
may regard k as a “naive” Π-spectrum with trivial Π-action, “naive” meaning
indexed on the Π-trivial universe. Equivariant duality theory does not work in
that universe, and equivariant orientation theory works poorly, as we now explain.
Working naively, the theory represented by k satisfies kn(X/Π) ∼= knΠ(X) for any Π-
space or Π-spectrum X. We have the Thom Π-space TX. Consider a cohomology
class ν ∈ kn((TX)/Π) ∼= knΠ(TX). Regard ν as a map

ν : Σ∞TX −→ Σnk

of naive Π-spectra. Since TX = r!X, r : F −→ ∗, ν has an adjoint map

ν̃ : Σ∞F X −→ Σnr∗k ' k ∧ SnF
of naive Π-spectra over F . Smashing with k and using the product on k, we obtain

ν̄ : k ∧ Σ∞F X −→ k ∧ k ∧ SnF −→ k ∧ SnF .



21.7. FIBERWISE POINCARÉ DUALITY AND ORIENTATIONS 371

Definition 21.7.5. For a commutative ring spectrum k, a naive k-orientation
of a spherical Π-fibration X of dimension n over F is a class ν ∈ kn(TX/Π) such
that ν̄ : k ∧ Σ∞F X −→ k ∧ SnF is an equivalence of naive Π-spectra over F .

This definition may seem reasonable from the parametrized point of view, but
it is calculationally daunting. A map of Π-spectra over F is an equivalence if and
only if its induced maps of fibers are equivalences. The restriction of ν to the
fiber Xf over f is an element of knΠ(Xf ) ∼= kn(Xf/Πf ). Since the orbit spaces
here need not be spheres and we do not have the suspension by representations
isomorphisms to transfer our question to one about units in k0, it is not clear how
to compute from this (orbifold theoretic) definition. However, using the definition
PM = PM ι

∗, where ι∗ is the relevant change of universe, and the commutation
relations of Proposition 15.4.4 for suspension spectrum functors, we obtain the
following conclusion.

Proposition 21.7.6. If X −→ F is a naively k-orientable spherical Π-fibration,
then P ×Π X −→ P ×Π F is a k-orientable spherical fibration for any principal Π-
bundle over any base space B.





CHAPTER 22

Twisted theories and spectral sequences

Introduction

This chapter has two goals. We describe certain general types of “twisted”
parametrized homology and cohomology theories, and we give further spectral se-
quences for the calculation of parametrized homology and cohomology.

In particular, we shall locate twisted K-theory as a special case of a twisted co-
homology theory. There is already a substantial body of work in twisted K-theory,
and our work is not a contribution to that subject, but rather a contextualization
that makes many of its properties transparent. It is well-known that this example
belongs to parametrized cohomology theory and that it requires more adequate
foundations than were previously available. Our exposition makes folklore precise
and is in large part based on Atiyah and Segal [5], especially the sketch at the end
of their §3. In the equivariant case, we rely on details in the general stack-theoretic
treatment of Tu, Xu, and Laurent-Gengoux [164]. We make no claim to originality.

We specialize our general framework to homology and cohomology theories that
are represented by bundles of spectra in §22.1. We give some relevant remarks on
automorphism monoids of spectra in §22.2. In particular, we give some observations
about the “unit monoid” GL1(k) for a symmetric or orthogonal ring Ω-spectrum
k. Especially for commutative ring spectra k, there is quite a bit of confusion
in the literature about this space. Remarks here and in §23.6 help to sort this
out. We show how naturally twisted K-theory appears as a twisted parametrized
cohomology theory in §22.3. It will be apparent that this is indeed a very special
case. There are many analogous examples that await exploration.

In §22.4, we give a spectral sequence associated to a simplicial parametrized
space. Actually, to illustrate ideas, we show how this works in general in any
well-grounded topological model category. It is folklore that the spectral sequence
applies to Reedy cofibrant simplicial objects in any good model category, but focus
on the Reedy model structure is overly restrictive in topological situations. Using
base change functors to describe a sheaf theoretic perspective, we specialize this
spectral sequence to obtain Čech type local to global, or descent, spectral sequences
for the calculation of parametrized homology and cohomology theories in §22.5.

Douglas [52] used a Rothenberg-Steenrod type spectral sequence to give com-
putations in twisted K-theory. We show how to construct such spectral sequences
in general in §22.6. This is another specialization of the simplicial spectral sequence
of §22.4.

The Eilenberg-Moore spectral sequence is a kind of dual to the Rothenberg-
Steenrod spectral sequence. It was viewed by Hodgkin [74] and Smith [153,154] as a
Künneth spectral sequence in parametrized homology. In §22.7, we use parametrized
spectra to give a new and generalized version of their construction. It is related
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to theirs in much the same way that versions of the Adams spectral sequence con-
structed using spectra are related to the original construction using spaces, before
the introduction of the stable homotopy category. The new construction raises in-
teresting questions of convergence, but we will not pursue them here. It is also so
closely parallel to the construction of the Adams spectral sequence as to suggest a
common generalization (perhaps generalizing [102]), but we shall not pursue that
idea either.

22.1. Twisted homology and cohomology theories

Let G be a compact Lie group. The reader may take G to be the trivial group,
but there is no gain in simplicity. We restrict our general bundle theoretic context
to the most important special case by taking Γ = G × Π (and, in the context of
§15.3, F = ∗). Let k be a Γ-spectrum indexed on a Π-trivial Γ-universe. As we
noted in §15.3, when working in a Π-trivial universe there is no reason to restrict
Π to be a compact Lie group. It can be any topological group, say locally compact
and well-based, as always holds in practice. The generality is important in twisted
K-theory, where the relevant group is an appropriate model for K(Z, 2), namely
the projective unitary group.

We have a theory of principal (G,Π)-bundles, where the “structural group” is
Π and the “ambient group” is G. Such a bundle is just a proper (G × Π)-space,
with free action by Π; see §3.2 and [91]. Now take P in our bundle construction to
be a universal principal (G,Π)-bundle, denoting it by EGΠ. This means that the
fixed point space (EGΠ)Λ is contractible for all closed subgroups Λ of G× Π such
that Λ∩Π is trivial; such subgroups are all of the form Λ = Hρ = {(h, ρ(h) |h ∈ H}
for some subgroup H of G and homomorphism ρ : H −→ Π. Then the orbit G-
space BGΠ = EGΠ/Π is a classifying space for principal (G,Π)-bundles. Of course
some models for EG(Π) and hence BG(Π) may be more convenient than others
in particular examples. In the nonequivariant case G = e, we are starting with a
universal principal Π-bundle EΠ −→ BΠ.

Definition 22.1.1. Define kΠ to be the G-spectrum EGΠ×Π k over BGΠ. It
is a parametrized G-spectrum indexed on a complete G-universe and represents
parametrized (unreduced) RO(G)-graded homology and cohomology theories on
the homotopy category HoGK /BGΠ of G-spaces over BGΠ. We write k∗(X, p)
and k∗(X, p) for the values of this theory on a G-space (X, p) over BGΠ.

We use unreduced theories on spaces over B, rather than reduced theories on
ex-spaces, to conform with the literature. It seems natural to do so since our
focus here is on spaces, in particular manifolds, rather than spectra. However,
an unreduced theory determines and is determined by the corresponding reduced
theory, and the full panoply of stable techniques is available to us.

Note that p is an actual G-map p : X −→ B, not a homotopy class. We may
think of p as a principal (G,Π)-bundle over X, namely the pullback of EGΠ along
p. If we call the resulting bundle P and write

(22.1.2) kP∗ (X) = k∗(X, p) and k∗P (X) = k∗(X, p),

then our notations agree with those of Atiyah and Segal [5] (except that they
did not consider homology). It is reasonable to think of p as the homotopy class
that determines the equivalence class of P . This makes sense since the twisted
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k-homology or k-cohomology of (X, p) depends only on the homotopy class of p (by
construction or the weak equivalence axiom).

The altered notations lead to an altered viewpoint. We may view X as a space
over itself, and then p!X = (X, p) as a space over B. By Proposition 20.2.6(ii),
read equivariantly and in the unreduced sense, we then have

(22.1.3) k∗(X, p) ∼= (p∗kΠ)∗(X) and k∗(X, p) ∼= (p∗kΠ)∗(X).

On the right hand sides of these isomorphisms,

(22.1.4) p∗kΠ
∼= P ×Π k

is a bundle of spectra over X twisted by P . To conform with (22.1.2), we could
denote it alternatively by kP when considering homology or kP when considering
cohomology. Unravelling the definitions, we see that k0

P (X) is just the set of ho-
motopy classes of sections of the bundle P ×Π k0 over X. Note that from this
point of view there is no need to insist on using all maps X −→ BGΠ. It may be
more sensible to restrict attention to a preferred class of principal (G,Π)-bundles,
as seems to be appropriate in the equivariant case of twisted K-theory.

We think of our original definition as extrinsic, given by theories represented by
a G-spectrum over BGΠ that is independent of X. We think of (22.1.3) as giving
the intrinsic form of the theory, susceptible of direct geometric analysis starting
with X. To see the idea, think of classical nonequivariant K-theory. It is given
extrinsically as a represented theory with values given by homotopy classes of maps
into BU × Z, which is the zeroth space of the K-theory spectrum. It is given
intrinsically by starting with the Grothendieck group of vector bundles over X. We
remark that, as in this example, the extrinsic version of homology can be most
convenient even when cohomology admits an intrinsic description.

Applying Remark 20.4.2 to (22.1.3), but using the notations here, we obtain
the following version of the Atiyah-Hirzebruch spectral sequence for the calculation
of these twisted theories in the nonequivariant case.

Proposition 22.1.5. Let X be a CW complex. Then there are spectral se-
quences

E2
p,q = Hp(X;Lq(X, p∗kΠ)) =⇒ k∗(X, p)

and (with conditional convergence)

Ep,q2 = Hp(X;L q(X, p∗kΠ)) =⇒ k∗(X, p).

22.2. Automorphism monoids of spectra and GL1(k)

We change our point of view slightly. We start with a nonparametrized G-
spectrum k and ask what it means to have an action by Π on k. As before, G is a
compact Lie group but Π can be general. We view such an action as a “twisting” of
k by Π. Since we are using naive Π-spectra, such an action consists of a continuous
family of automorphisms of the G-spectrum k by elements of Π. It is given by
a homomorphism, usually taken to be a monomorphism, t : Π −→ Iso(k), where
Iso(k) is the topological group of G-equivariant automorphisms of k.

It is natural to ask how sensitive this is to the choice of one’s category of spectra
and to the choice of a spectrum within its homotopy type (or weak homotopy type).
Since reasonable categories of spectra have a faithful forgetful functor to prespectra
and fibrant prespectra are Ω-prespectra, it seems reasonable to work in the category
of excellent (nonparametrized) G-prespectra of Definition 13.2.2, since those can
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be expected to have the largest automorphism groups. We recall that excellent
G-spectra are Ω-G-prespectra whose structure maps are h-cofibrations and whose
spaces are well-based, compactly generated, and of the homotopy types of G-CW
cmplexes. A weak equivalence between such prespectra is a homotopy equivalence,
by Proposition 13.2.5.

There is an evident monoid that is more sensible from a homotopical point of
view than the group Iso(k) and is homotopy invariant. In any reasonable topological
category with a subcategory of weak equivalences, we can form the topological
monoid Aut(X) of weak self-equivalences of any object X, which we shall write as
HX for the moment. In [113, §3], it is proven in the context of based or unbased
spaces that if f : X −→ Y is a weak equivalence, then there is a natural zigzag

BHX −→ BHf ←− BHY

of weak equivalences, where Hf is a certain topological category with two objects
constructed from f . It follows that HX, ΩBHX, ΩBHY , and HY are weakly
equivalent as A∞-spaces and therefore that HX and HY are weakly equivalent as
topological monoids. Inspection of the argument in [113, §3] shows that it applies to
quite general topological categories and in particular applies to prove the following
result, in which Aut(k) denotes the monoid of self-equivalences of an excellent G-
prespectrum k.

Theorem 22.2.1. Let f : k −→ ` be a weak equivalence of excellent G-prespectra.
Then there is a natural zigzag of weak equivalences connecting BAut(k) to BAut(`).

Suppose we have a topological group Π of the homotopy type of a CW complex,
a homomorphism of topological monoids Π −→ M (for example M = Aut(k))
and a zigzag of weak equivalences connecting BM to BN for another topological
monoid N (for example N = Aut(`)). Then BΠ has the homotopy type of a CW
complex and, by Whitehead’s theorem, we obtain a map BΠ −→ BN , unique up
to homotopy, which is compatible with our zigzag. We cannot conclude that t
lifts to a homomorphism of monoids Π −→M , but it is clear that no homotopical
information is lost by working with N instead of M .

If we have a twisting t : Π −→ Iso(k) ⊂ Aut(k), we can use it to construct
twisted homology and cohomology theories as in the previous section. We cannot
necessarily lift t to a twisting Π −→ Iso(`) or even to a twisting Π −→ Aut(`) when k
is equivalent to `, but we can lift the classifying map of t to a map BΠ −→ BAut(`).

If we consider general maps k −→ k, not necessarily weak equivalences, we
obtain End(k). It is natural to give it the trivial map as basepoint, rather than
the identity map as for Aut(k). The homotopy group πn(End(k)) is the group of
homotopy classes of maps of spectra Σnk −→ k and therefore gives the cohomology
operations of degree −n on the cohomology theory represented by k. This is clearly
invariant with respect to equivalences k ' `.

Now suppose that k is a ring Ω-prespectrum in the classical naive homotopical
sense (as in [121, p. 218]). Thus, using sequential indexing for definiteness, we have
pairings km ∧ kn −→ km+n and unit maps Sn −→ kn that make the appropri-
ate diagrams commute up to homotopy. In particular, k0 is a ring space (in the
homotopical sense).
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Definition 22.2.2. The space GL1(k) of unit components of a ring Ω-prespec-
trum k is the pullback in the diagram

GL1(k)

��

// k0

δ

��
π0(k)× // π0(k),

where δ is the discretization map (which is a fibration). The pairing k0 ∧ k0 −→ k0

restricts to give a product GL1(k) × GL1(k) −→ GL1(k) because, in the ring π0,
the product of units is a unit. The unit S0 −→ k0 restricts to give a basepoint
1 ∈ GL1(k). With this product and unit, GL1(k) is a homotopy associative H-
space. The component SL1(k) of 1 is a sub H-space.

With appropriate rigidification, we can think of GL1(k) as a monoid acting
on k and thus as a submonoid of Aut(k). The actions of groups Π that are used
in practice are thought of as factoring through maps of monoids Π −→ GL1(k).
However, the literature on this topic is quite imprecise. We explain some general
results that allow this intuition to be made rigorous. The following material should
be folklore, but it does not seem to appear in the literature.

We shall recall the definitions of functors with smash product (FSP’s) and
of their associated ring spectra in the first two sections of the next chapter. We
assume here that the reader is familiar with these notions. We can work with either
symmetric or orthogonal ring spectra, with their two variant kinds of associated
FSP’s. For definiteness, we focus on symmetric ring spectra, but orthogonal ring
spectra are better suited to the equivariant context. In either case, we work with
FSP’s with their external products, rather than with the internal products of their
associated ring spectra. In the symmetric case, the product structure on k is given
by pairings µ : km ∧ kn −→ km+n and unit maps η : Sn −→ kn that that make the
appropriate diagrams commute strictly; see Definition 23.1.5.

Proposition 22.2.3. If k is a symmetric or orthogonal ring spectrum and an
Ω-prespectrum, then GL1(k) is a topological monoid and is a submonoid of the
topological monoid Aut(k) of weak self-equivalences of k.

Proof. It is immediate from the commutative diagrams in Definition 23.1.5
that the product on GL1(k) is associative and unital. Fix x ∈ R0. Then y 7→ µ(x, y)
gives a map Rn → Rn for each n. It is again immediate from the given diagrams
that these maps specify a map of symmetric spectra, and this map is a weak self-
equivalence because, on passage to homotopy groups, it gives multiplication by a
unit. Since Aut(k) is topologized as a subspace of the product of the spaces of maps
kn −→ kn, it follows directly that GL1(k) is a topological submonoid of Aut(k). �

The following two remarks are vital to understanding what this result says.

Remark 22.2.4. The categories of symmetric and orthogonal ring spectra are
given Quillen equivalent model structures in [106]. The fibrant objects in these
model structures are precisely those ring spectra which are Ω-prespectra. Thus
Proposition 22.2.3 applies to a fibrant approximation of any ring spectrum. If k
is cofibrant and fibrant as a ring spectrum, then it is cofibrant as a spectrum and
its self-equivalences are therefore homotopy equivalences. Moreover, if k −→ ` is
a weak equivalence of cofibrant and fibrant symmetric or orthogonal ring spectra,
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then its map of zeroth spaces restricts to a map GL1(k) → GL1(`) of monoids
that is a homotopy equivalence in the strong sense that the relevant homotopies
are through maps of monoids.

Remark 22.2.5. The only subtlety is in the commutative case. If k is a commu-
tative symmetric or orthogonal ring spectrum and an Ω-prespectrum, then GL1(k)
is a grouplike commutative monoid and is therefore equivalent to a product of
Eilenberg-Mac Lane spaces. We conclude that there are no interesting examples of
such commutative ring Ω-prespectra. In the previous remark, if we start with a
commutative ring spectrum and take a fibrant approximation as a ring spectrum,
the result is no longer commutative. The categories of commutative symmetric and
orthogonal ring spectra are also given Quillen equivalent model structures in [106],
but in those model structures the fibrant objects k are not Ω-prespectra but only
positive Ω-prespectra, so that the zeroth spaces k0 are no longer well related to the
homotopy groups of k. In fact, if k is both cofibrant and fibrant as a commutative
ring spectrum, then k0 = S0. As we will recall in §23.6, we can construct an infinite
loop space version of GL1(k) when k is commutative, but no known construction
simultaneously gives a submonoid of Aut(k), and it is the latter structure that is
relevant to the theory in this chapter.

Remark 22.2.6. In the context of Lewis–May spectra (considered in §24.3),
the topological monoid F of self-homotopy equivalences of spheres and its identity
component SF play a special role. They are exactly GL1(S) and SL1(S), where
S is the Lewis–May sphere spectrum with zeroth space QS0 = colim ΩnSn. Lewis-
May spectra k are Ω-prespectra in the strong sense that their adjoint structure
maps kn −→ Ωkn+1 are homeomorphisms. The monoids F and SF act from the
right on the zeroth space k0 of any Lewis-May spectrum k and, when k is a ring
spectrum, F acts from the right on the subspace GL1(k) of k0 and SF acts on
SL1(k). This fact plays a central role in relating highly structured ring spectra to
orientation theory; see [98,112].

22.3. Twisted K-theory

There are several reasonable models for the spectrum K that represents com-
plex K-theory. In any model, the unit space GL1(K) is homotopy equivalent to
Z/2×K(Z, 2)×BSU⊗; the third component, and usually the first, are ignored when
defining twisted K-theory. For the moment, we take G = e. There are several quite
different group structures on models for K(Z, 2). For example, as BS1, it is a topo-
logical Abelian group. However, for purposes of twisted K-theory, the relevant
models for K see K(Z, 2) as the projective unitary group, which we denote by Π
in this section. Note that different topological groups whose underlying spaces are
K(Z, 2)′s have bundle theories that look similar homotopically but can be quite
different geometrically. While there are several variants, the usual definition of
twisted K-theory is just our twisted theory represented by the spectrum KΠ over
BΠ for a suitable twisting t : Π −→ Aut(K) that factors (at least homotopically)
through the second component of GL1(K).

The standard foundational reference is Atiyah and Segal [5], and we shall not
repeat their arguments. Rather, we shall say just enough to make it clear that
their definition does indeed fit into our framework. They start with an infinite
dimensional Hilbert space H with the norm topology. The space Fred(H ) of
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Fredholm operators in H is a model for BU × Z, so that

K0(X) = [X+,Fred(H )].

The projective unitary group PU(H ) with the norm topology clearly acts on
Fred(H ). However, it is preferable to take Π to be PU(H ) with the compact-open
topology and to replace Fred(H ) with a homotopy equivalent space Fred′(H ) on
which Π acts, as explained in [5, 3.2]. With either topology, the unitary group
U(H ) is contractible and therefore Π is a K(Z, 2).

Let P be a principal Π-bundle over a space X, say a CW complex. Atiyah and
Segal use the notation P for the associated bundle with fiber the projective space
P(H ), which is more in line with classical K-theory but does not affect the details
to follow. Under either interpretation, P is classified by a map αP : X −→ BΠ,
which can be viewed as an element of H3(X; Z). The principal bundle P has an
associated bundle Fred′(P ) with fiber Fred′(H ). Atiyah and Segal define K0

P (X)
to be the set of homotopy classes of sections of Fred′(P ).

The bundle P can be thought of as a cocycle; with other choices of details,
it is a cocycle, often denoted τ , and then the notations τK∗(X) and τK∗(X) are
often used. Whatever the notation, the idea is that P (or τ) specifies a twisting
that gives rise to a twisted version of K∗(X) and K∗(X). The intuition is to
mimic local systems, and we have seen in our discussion of Poincaré duality that
parametrized homotopy theory makes these homotopical. Therefore parametrized
homotopy theory provides a natural way to make this intuition precise.

Actually, Atiyah and Segal work more generally with bundles P with an involu-
tion, which splits the bundle as P+qP− and induces a double cover ofX. The latter
is classified by an element ξP ∈ H1(X; Z/2). The set of such bundles P with invo-
lution over X is in bijective correspondence with H1(X,Z/2)×H3(X; Z), but the
multiplicative structure is twisted by the Bockstein β : H2(X; Z/2) −→ H3(X; Z)
applied to products of 1-dimensional classes; see [5, 2.3, 3.3].

For this version, they start with a fixed mod 2 graded Hilbert space Ĥ and a
modified representing space that they denote Fred(0)(Ĥ ) and we abbreviate to K0,
since it is the zeroth space of their model for the K-theory spectrum. They also
replace their bundle P (not our principal bundle) by P̂ = P ⊗ P(Ĥ ) before taking
the associated bundle with fiber K0. Redefining K0

P (X) in these terms facilitates
analysis of products and the extension to a periodic Z-graded theory. They explain
how to construct Π-equivariant homotopy equivalences K0 −→ Ω2nK0 in [5, §4].
Defining the K theory spectrum by letting K2n = K0 and K2n−1 = ΩK2n, this
gives K the Π-action needed to define KΠ = EΠ ×Π K, and it is then clear that
their groups Ki

P (X) coincide with those given by our general theory. Their spectral
sequence of [5, 4.1] is the evident specialization of the spectral sequence given in
Proposition 22.1.5. It is studied in considerably more detail in their sequel [6] and
was already introduced in Rosenberg’s early paper [141].

The equivariant generalization is similar, but there are bundle theoretical sub-
tleties. Here we find the alternative treatment of [164] illuminating. We shall not
go into detail but just mention some key points. The class of equivariant bundles
with Hilbert space fibers that Atiyah and Segal consider seems not to have an ob-
vious classifying G-space, but Atiyah and Segal give an ad hoc construction and
prove that it is equivalent to Map(EG,BΠ) [5, 6.3(iv)]. Thus the set of equivalence
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classes of such bundles over a G-space X is in bijective correspondence with the
third Borel cohomology group H3

G(X; Z).
Passage from the bundles they consider to principal (G,Π) bundles is subtle

and cannot work naively with the norm topology on the structural group Π, since
with that topology the associated nonequivariant principal Π-bundles do not have
continuous actions by G. In the relevant specialization of the general theory of [164],
the focus is on principal (G,Π)-bundles rather than on bundles with projective
Hilbert space fibers, and in particular they prove the following result.

Theorem 22.3.1. [164, 2.41] Let G be a Lie group that acts properly on a
smooth manifold M . Then there is a canonically split surjection from the set of
isomorphism classes of principal (G,Π)-bundles over M to the group H3

G(M,Z).

Thus, if we are given a cohomology class α ∈ H3
G(M,Z), we have a canonical

principal (G,Π)-bundle Pα that gives rise to it. We can define

(22.3.2) Ki
α(M) = (Pα ×Π K)∗(M)

as in (22.1.3) and (22.1.4). The discussions in [5, §6] and [164, 3.15–3.17] make
clear that this gives the same answer as the definitions in those sources.

Remark 22.3.3. We note parenthetically that, as explained in [116, Thm 5],
passage from principal (G,Π)-bundles to principal G-bundles via the Borel con-
struction is represented homotopically by a canonical map of classifying G-spaces

BG(Π) ' Map(EG,EΠ)/Π −→ Map(EG,BΠ).

Theorem 22.3.1 suggests that this map has a canonical section when G is a Lie
group and Π is the projective unitary group.

22.4. The simplicial spectral sequence

In this section, we recall the spectral sequences associated to simplicial objects
that were first constructed for simplicial spaces by Segal [147]. It is sensible and
convenient to work in the generality of a well-grounded model category C . We
focus on the based case to fix notations, but the unbased case works the same
way. We write Y ∧ T for the tensor of an object Y of C with a based topological
space T , and we write F (T, Y ) for the cotensor. By a (reduced) homology theory
on C , we mean a sequence of covariant functors Jq from C to the category of
Abelian groups together with natural suspension isomorphisms Jq(X) ∼= Jq+1(ΣX),
ΣX = X ∧ S1, that satisfy the exactness, additivity, and weak equivalence axioms
of Definition 20.1.2. In the context of equivariant parametrized spectra, we could
just as well work with RO(G)-gradings instead of the integer gradings that we use
here.

The Reedy model category structure gives the category sC of simplicial objects
in C a topological model structure. See for example [75, Ch. 5] or [73, Ch. 15];
although the enrichment in such sources is simplicial, the arguments we quote work
equally well with topological enrichment. Using the tensors and cotensors in C , the
geometric realization functor

| − | : sC −→ C

is specified by

|X| =
∫ n∈∆

Xn ∧∆n
+
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and the singular functor
S : C −→ sC

is specified by
(SY )n = F (∆n

+, Y ).

The pair (S, |− |) is a Quillen adjunction with respect to the given model structure
in C and the Reedy model structure in sC .

Remark 22.4.1. It follows directly from the definition of Reedy cofibrations
that any Quillen adjoint pair between well-grounded model categories lifts naturally
to a Quillen adjoint pair on the associated simplicial categories. In particular, in
the context of parametrized spaces or spectra, the base change pair (f!, f∗) gives a
Quillen adjoint pair on the associated simplicial categories.

For a simplicial object X in C , we have latching maps

λn : LnX −→ Xn

for n ≥ 0. These should be thought of intuitively as the inclusion of the union
of the images of all degeneracy operations si : Xn−1 −→ Xn (or the initial map
∗ −→ X0 when n = 0). The formal definition gives the latching object LnX as the
colimit over degeneracy operators of the maps under n in the standard simplicial
category ∆, the colimit taking account of the relations sisj = sj+1si for i ≤ j;
see [75, 5.1.2]. The simplicial object X is Reedy cofibrant exactly when each λn,
n ≥ 0, is a cofibration in the model structure on C . However, in our topological
situation, it is too restrictive to focus only on cofibrant objects in sC when studying
the spectral sequence associated to the skeletal filtration on |X|. In well-grounded
model categories, every model cofibration is a cyl-cofibration between well-grounded
objects in C and is therefore a bicofibration in the sense of Definitions 5.3.2 and
5.3.3. Bicofibrations suffice to give the gluing lemma and its consequences; see
Definitions 5.4.1 and 5.5.4 and Theorem 5.5.1. That is all that is needed to study
the spectral sequence. We use the following language adapted from the case of
simplicial spaces studied in [109, §11].

Definition 22.4.2. An object X of sC is proper if each Xn is well-grounded
and each latching map λn is a cyl-cofibration. It follows that each LnX is well-
grounded and each λn is a bicofibration. All Reedy cofibrant objects are proper.

Remark 22.4.3. If each degeneracy si : Xn−1 −→ Xn is a cyl-cofibration, then
so is λn : LnX −→ Xn. To see that, one uses the description of LnX as a colimit
and verifies directly that λn satisfies the required left lifting property.

Theorem 22.4.4. Let X be a proper simplicial object in C and let J∗ and J∗

be a homology theory and a cohomology theory on C . Then there is a strongly
convergent spectral sequence

E2
p,q = Hp(Jq(X)) =⇒ Jp+q(|X|)

and a conditionally convergent spectral sequence

Ep,q2 = Hp(Jq(X)) =⇒ Jp+q(|X|)

which converges strongly if the derived E∞ terms RE∞ vanish.
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Before giving the proof, we explain the E2 and E2 terms. If we apply Jq for a
fixed q to the objects Xp, we obtain a simplicial Abelian group Jq(X). Taking its
associated chain complex and passing to homology, we obtain the homology groups
Hp(Jq(X)). Similarly, the Jq(Xp) give a cosimplicial Abelian group. Taking its
cochains and passing to cohomology gives the cohomology groups Hp(Jq(X)).

Proof. Our proof is a generalization and clarification of the argument in [109,
11.4], where details are given for simplicial spaces. We filter |X| by Fp|X| = |skpX|.
As we shall explain below, since X is proper, each of the canonical maps

Fp−1|X| −→ Fp|X|

is a cyl-cofibration and therefore a bicofibration. By the gluing lemma, the cofibers
of these maps are therefore equivalent to their quotients

Ep|X| = Fp|X|/Fp−1|X|.

Since geometric realization commutes with colimits, |X| is the colimit of the Fp|X|.
Following Boardman, [13, Thm. 12.6], we obtain spectral sequences starting with

E1
p,q = Jp+q(Ep|X|) and Ep,q1 = Jp+q(Ep|X|)

with the desired convergence properties.
From now on, we focus on the homology case, the cohomological case being

similar. To identify the E2 term, we fix a q and proceed in two steps. First we
define a map of chain complexes

π∗ : Jq(X) −→ E1
q,•,

and then we show that this chain map is passage to quotients from the unnormalized
chains of Jq(X) to the normalized chains and is therefore a homology isomorphism.

To define the map, we first use the suspension isomorphism to identify the
domain term Jq(Xp) with Jp+q(X ∧ (∆p/∂∆p)). Such suspension isomorphisms
for p and p − 1 give the three unlabelled left hand side horizontal arrows in the
following big commutative diagram. We note that

Fm|X| ∼=
∫ n∈∆

Xn ∧ skm∆n+,

so that we have a natural map

Xp ∧ skm∆p+ −→ Fm|X|

for any m. For m = p, p− 1, p− 2 we obtain a map

π : Xp ∧ (∆p, ∂∆p, ∂
2∆p)+ −→ (Fp(|X|), Fp−1(|X|), Fp−2(|X|))

of triples. Here ∆p = skp∆p, ∂∆p = skp−1∆p, and we are writing ∂2∆p for
skp−2∆p. The map π induces the three right hand horizontal arrows in the following
diagram, and its upper right rectangle commutes by the naturality of the boundary
maps ∂ of triples in Jp+q homology. The sums in the diagram run over 0 ≤ i ≤ p.
The map

δi : ∆p−1/∂∆p−1 −→ ∂∆p/Λip
is the i-face homeomorphism, where the horn Λip is the union of all but the ith face
of the standard topological simplex ∆p, and the map

πi : ∂∆p/∂
2∆p −→ ∂∆p/Λip
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is the quotient map induced by the inclusion ∂2∆p ⊂ Λip.

Jq(Xp) //

∑
(−1)i

��

Jp+q(Xp ∧ (∆p/∂∆p))
π∗ //

∂

��

Jp+q(Ep |X|)

∂=d1

��
Jp+q−1(Xp ∧ (∂∆p/∂

2∆p))
π∗ //∑

(id∧πi)∗∼=
��

Jp+q−1(Ep−1|X|)

⊕
Jp+q−1(Xp ∧ (∂∆p/Λip))

⊕
Jq(Xp) //

∇(di)∗

��

⊕
Jp+q−1(Xp ∧ (∆p−1/∂∆p−1))

⊕(id∧δi)∗∼=

OO

∇(di∧id)∗

��
Jq(Xp−1) // Jp+q−1(Xp−1 ∧ (∆p−1/∂∆p−1))

π∗ // Jp+q−1(Ep−1 |X|)

On the left, the top vertical arrow has coordinates (−1)i and the bottom two ver-
tical arrows are the sums of the face maps (di)∗ and (di ∧ id)∗. The left vertical
composite is the differential on Jq(Xp). The lower left rectangle is a naturality
square for the suspension isomorphism. The lower right rectangle commutes by the
face identifications in the coend defining the geometric realization. The commuta-
tivity of the upper left diagram is a check of signs. The point is that if we identify
∆p/∂∆p and ∆p−1/∂∆p−1 with Sp and Sp−1 in the canonical way and inspect faces
in the identifications

∂∆p/∂
2∆p

∼=
∨
∂∆p/Λip ∼=

∨
∆p−1/∂∆p−1

that are giving the isomorphisms in the middle of our diagram, we see that ∂ has
coordinates (−1)i, this being the geometric reason for the signs in the definition
of the differential of simplicial Abelian groups. The commutativity of the diagram
shows that the top horizontal composite, again denoted π∗, gives the pth term of a
map of chain complexes.

To identify this map, we observe that, up to an isomorphism of the target, the
top horizontal composite π∗ coincides with the canonical map

(22.4.5) Jq(Xp) −→ Jq(Xp/LpX).

Indeed, the definition of the latching objects implies that we have a pushout

(22.4.6) Xp ∧ (∂∆p)+ ∪LpX∧(∂∆p)+ LpX ∧∆p+
//

��

Fp−1|X|

��
Xp ∧∆p+

// Fp|X|.

This pushout explains why the assumption that X is proper implies that the in-
clusions of skeleta are bicofibrations. The quotient of the right vertical map is the
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same as the total quotient of the commutative square

LpX ∧ (∂∆p)+ //

��

LpX ∧∆p+

��
Xp ∧ (∂∆p)+ // Xp ∧∆p+.

Taking first the vertical quotient, and then the horizontal quotient of the result (or
vice versa), we therefore get an isomorphism

ΣpXp/LpX −→ Fp|X|/Fp−1|X|.
Using the definition of latching objects and the description of λp in terms of the
si, it follows as claimed that Jq(Xp/LpX) is the pth term of the normalized chain
complex of Jq(X) and that (22.4.5) is the canonical quasi-isomorphism relating
unnormalized to normalized chains. �

22.5. Čech type spectral sequences

We apply the simplicial spectral sequence of the previous section to give a Čech
type local to global descent spectral sequence, starting from a sheaf theoretic point
of view on parametrized homology and cohomology. This approach seems partic-
ularly relevant when our parametrized coefficient spectra come from the bundle
construction, so that they trivialize over the open sets of a fine enough cover. We
described the behavior of parametrized homology and cohomology with respect to
base change in Proposition 20.2.6. Using that result, we see that the counits of
base change adjunctions give rise to the following comparison maps. They will lead
to appropriate restrictions of our theories over open subsets of the base space.

Proposition 22.5.1. Let f : A −→ B be a map and let J and X be spectra
over B. Then the counit f!f∗ −→ id of the adjunction (f!, f∗) induces natural
corestriction and restriction homomorphisms

(f∗J)n(f∗X) ∼= (f!f∗J)∗(X) −→ Jn(X)

and
Jn(X) −→ Jn(f!f∗X) ∼= (f∗J)n(f∗X).

If f is a q-equivalence, then these maps are isomorphisms.

Proof. The last statement holds since (f!, f∗) is a Quillen equivalence when
f is a q-equivalence. �

Definition 22.5.2. For an open subset U of B, let jU : U −→ B be the inclu-
sion. For spectra J and X over B, define

Γ(U ; J∗X) = (j∗UJ)∗(j∗UX) and Γ(U ; J∗X) = (j∗UJ)∗(j∗UX).

For U ⊂ V , let iU,V be the inclusion. Since jU = jV iU,V , the corestriction and
restriction maps give that Γ(−; J∗X) is a covariant functor and Γ(−; J∗X) is a
contravariant functor from the category OB of open subsets of B to graded Abelian
groups. We call these functors the copresheaf of parametrized homology groups
and the presheaf of parametrized cohomology groups. The previous result gives
compatible families of maps

Γ(U ; J∗X) −→ J∗(X) and J∗(X) −→ Γ(U ; J∗X).
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Reverting to spaces over B and unreduced theories, this leads to Čech type
spectral sequences for the calculation of J∗(X) and J∗(X) for a parametrized space
(X, p) over B. Observe that in this situation

j∗UX = (p−1U, p|U ) and jU !j
∗
UX = (p−1U, jU ◦ p|U ).

We first recall the Čech complex. Let B be a base space and let U be an open
cover of B indexed on a totally ordered set I. Define a simplicial set U• by letting
the set Un of n-simplices be the set of ordered (n + 1)-tuples S = (Ui0 , . . . , Uin)
(possibly with repeats) of sets in U that have non-empty intersection, denoted US .
The qth face operator deletes the qth set, and the qth degeneracy operator repeats
the qth set in each S. We obtain a simplicial space Č(U ) over B by setting

Č(U )n =
∐
S∈Un

US .

The face and degeneracy maps are induced by UdiS ⊂ US and UsiS = US . While
it would be unreasonable to introduce cellularity conditions, so that Č(U ) is not
Reedy cofibrant, it is obviously proper since LnČ(U ) is the disjoint union of the
subspaces US that are indexed on ordered sets S with repeated indices in I. The
inclusions jUS

: US ⊂ B give a map

j• : Č(U ) −→ cB

of proper simplicial spaces, where cB is the constant simplicial space at B. It is
standard that this map induces a homotopy equivalence

j = |j•| : |Č(U )| −→ B

on passage to geometric realization; see [45,147].
Now return to our space (X, p) over B. Applying the counit of the adjunctions

(jn!, j
∗
n) on the nth-space levels, we obtain a map

Č(p−1U ) −→ cX

of proper simplicial spaces over B, where properness holds just as in the non-
parametrized situation. On total spaces, reusing the notation j for inclusions of
open sets, this is just the map j• associated to the numerable open cover p−1U of
X given by the sets p−1(Ui). Its geometric realization j is therefore a homotopy
equivalence. We conclude that we have a q-equivalence j : |Č(p−1U )| −→ X of
spaces over B. Applying the simplicial spectral sequence, we obtain the following
Čech type spectral sequences, for which we adopt the notations

Ȟp(U ,Γ(−; JqX)) = Hp(Jq(Č(p−1U )))

and
Ȟp(U ,Γ(−; JqX)) = Hp(Jq(Č(p−1U ))).

Theorem 22.5.3. Let X be a space over B, and let U be a numerable open
cover of B. Let J be a spectrum over B. Then there are spectral sequences

E2
p,q = Ȟp(U ,Γ(−; Jq(X))) =⇒ Jp+q(X)

and
Ep,q2 = Ȟp(U ,Γ(−; Jq(X))) =⇒ Jp+q(X).

Observe that the space of n-simplices of Č(p−1U ) is a disjoint union of open
sets p−1US and thus the E2-terms are computable in terms of local information.
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Remark 22.5.4. If X is an ex-space or spectrum over B, then we can similarly
form the simplicial ex-space or spectrum Č(U ;X) over B by setting Č(U ;X)n =
jn!j

∗
nX. However, it is unclear to us whether or not |Č(U ;X)| is equivalent to X.

22.6. The twisted Rothenberg–Steenrod spectral sequence

We construct a twisted Rothenberg–Steenrod spectral sequence in this section.
A version of it has been used by Douglas [52] to calculate the twisted K-theory of
simply connected simple Lie groups.

We return to the context of §22.1, except that we take G to be the trivial
group. As there, we let Π be any (locally compact and well-based) topological
group, and we let k be a Π-spectrum indexed on a Π-trivial universe. As in §22.2,
we are thinking of a prespectrum k together with a map of topological monoids
Π −→ Aut(k). We again assume that k is an excellent prespectrum, for definiteness
of context. In particular, k is a well-grounded Ω-prespectrum.

Let Λ be a (locally compact and well-based) topological group and α : Λ −→ Π
be a homomorphism of topological groups. Its classifying map Bα : BΛ −→ BΠ
will play the role here that p : X −→ BΠ played in §22.1. We are thinking of
Π as fixed and canonical and Λ as varying. We assume familiarity with the bar
construction B(Y,Λ, X), where Y is a right Λ-space and X is a left Λ-space. It is
defined and studied in [111, §7]. We shall only use the case Y = ∗ in this section,
and we abbreviate notation to B(Λ, X). This space is the geometric realization of
a simplicial space B•(Λ, X) whose space of q-simplices is Λq × X. The last face
operator is determined by the action of Λ on X. We then have

BΛ = B(Λ, ∗), EΛ = B(Λ,Λ) and B(Λ, X) ∼= EΛ×Λ X.

Moreover, by [111, 7.8], we have the following pullback diagram, where X is a left
Π-space regarded by pullback as a left Λ-space.

EΛ×Λ X

��

// EΠ×Π X

��
BΛ

Bα
// BΠ.

Here the vertical arrows are induced by the projection X −→ ∗ and the horizontal
arrows are induced by α.

We may think of k as a Λ-spectrum by pullback along α. We could view Λq×k
as a prespectrum over Λq and build a bar construction using simplicial objects in a
category of prespectra over varying base spaces. We shall take analogous (but more
elementary) ideas seriously in the next chapter. However, here we prefer instead to
consider only a bar construction in the category of prespectra. Applying the bar
construction on spaces levelwise, we can construct a bar construction

B(Λ, k) = |B•(Λ, k)|,

where Bq(Λ, k) is the prespectrum Λq+ ∧ k. The last face is determined by the
action of Λ on k induced by α and the given action of Π on k. The other faces
and the degeneracies are induced by the projection Λ −→ ∗ and the product and
unit of Λ, exactly as on the space level. The discussion of geometric realizations of
simplicial spectra in [61, §X.1] (in which spectra are understood in the Lewis-May
sense) adapts to give similar properties in our category of prespectra.



22.6. THE TWISTED ROTHENBERG–STEENROD SPECTRAL SEQUENCE 387

Proposition 22.6.1. The bar construction B(Λ, k) is isomorphic to the pre-
spectrum r!(Bα)∗(kΠ) ∼= r!kΛ, and the simplicial prespectrum B•(Λ, k) is proper.

Proof. Recall that kΠ = EΠ ×Π k. By the pullback diagram above, the
pullback of EΠ along Bα is the principal Π-bundle EΛ×Λ Π over BΛ, and

(Bα)∗(kΠ) ∼= (EΛ×Λ Π)×Π k ∼= EΛ×Λ k = kΛ.

Applying r! to this, we obtain (EΛ)+ ∧Λ k, which is isomorphic to B(Λ, k). For the
last statement, each Bn(Λ, k) is well grounded since k and Λ are, the degeneracies
are cyl-cofibrations since Λ is well-based, and Remark 22.4.3 applies to give that
the latching maps are cyl-cofibrations. �

Now assume further that k is a ring spectrum (in the naive sense). Then the
products on k and Λ induce a ring structure on the unreduced homology k∗(Λ).
We also then have a map (in the homotopy category)

k ∧ Λ+ ∧ k −→ k ∧ S0 ∧ k −→ k

given by the projection Λ+ −→ S0 and the product on k, and another map

k ∧ Λ+ ∧ k −→ k ∧ k −→ k

given by the action map Λ+ ∧ k −→ k. The first gives a right action of k∗(Λ) on
k∗, and the second gives a left action of k∗(Λ) on k∗. We denote by kα∗ the module
k∗ with the latter action, and we obtain natural maps

(22.6.2) k∗ ⊗k∗ k∗(Λ)⊗n ⊗k∗ kα∗ −→ π∗(Bn(Λ, k)).

These maps are isomorphisms if k has a general enough Künneth isomorphism.

Theorem 22.6.3 (Twisted Rothenberg–Steenrod spectral sequence). If the
maps (22.6.2) are isomorphisms, there is a strongly convergent spectral sequence

E2
p,q = Tork∗(Λ)

p,q (k∗, kα∗ ) =⇒ kp+q(BΛ, Bα).

It is natural with respect to homomorphisms α : Λ −→ Π.

Proof. By definition and Proposition 22.6.1, the desired target is

(kΠ)∗(BΛ, Bα) ∼= ((Bα)∗(kΠ))∗(BΛ) ∼= (kΛ)∗(S0
BΛ) = π∗(r!kΛ) ∼= π∗(B(Λ, k)).

The spectral sequence is obtained by applying the simplicial spectral sequence of
Theorem 22.4.4 to the homotopy groups of the proper simplicial spectrum B•(Λ, k).
That gives

E2
p,q = Hpπq(B•(Λ, k)) =⇒ πp+q(B(Λ, k)).

When (22.6.2) is an isomorphism, the displayed E2-term calculates the desired
torsion product since it is the homology of the algebraic bar construction

B(k∗, k∗(Λ), kα∗ ) ∼= B(k∗, k∗(Λ), k∗(Λ))⊗k∗(Λ) k
α
∗ . �

Observe that the spectral sequence depends on the homomorphism α and not
just on the map Bα.

Remark 22.6.4. Unless k∗(Λ) is k∗-flat, the displayed algebraic bar construc-
tion computes a relative rather than an absolute torsion product, and we understand
Tor in that relative sense; see [59].
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Remark 22.6.5. At least when k is a symmetric or orthogonal ring spectrum,
the spectral sequence is multiplicative, as we see from the commutation of the bar
construction with products; see [111, 7.4] or (23.4.2) below. We omit the details.

Remark 22.6.6. LetG be a simply connected simple Lie group and let Λ = ΩG,
regarded as a topological group with product induced pointwise from the product
on G. Then BΛ is homotopy equivalent to G, and H2(Λ) ∼= Z. When a cohomology
class is represented by a homomorphism

α : Λ −→ PU(H ) ' K(Z, 2)

of topological groups, the resulting spectral sequence for twisted K-theory takes
the form

E2
p,q = TorK∗(ΩG)

p,q (K∗,K
α
∗ ) =⇒ Kp+q(G,Bα).

Thus the target is the K-theory of G twisted by Bα. In that form, the spectral
sequence agrees with the one described and studied calculationally by Douglas [52].
As pointed out to us by Douglas, one approach to representing cohomology classes
by homomorphisms as we require is to view ΩG as a subgroup of the unbased
loop group LG and to use the work of Pressley and Segal [137] to show that LG
has appropriate projective representations and therefore group homomorphisms
LG −→ PU(H ). We have not checked details.

22.7. The parametrized Künneth spectral sequence

We use parametrized spectra to give a quick conceptual construction of Eilen-
berg-Moore type spectral sequences. We only give the basic formal properties
here. Use of parametrized spectra substantially simplifies the geometric (as opposed
to chain level) construction of the spectral sequence. Surprisingly, this also has
the effects of recasting the convergence and “relevance” questions, which appear
in different guises than in some other geometric constructions, and clarifying the
identification of E2. This approach deserves further study since the literature on
the Eilenberg-Moore spectral sequence is still in a quite unsatisfactory state.

Throughout, we fix a map f : B −→ A of base spaces. The only case we
know to be important and useful is that of f = r : B −→ ∗, but the general case
adds no difficulty. We fix a spectrum k over A, using the notation k because we
have the case A = ∗ in mind, and we let J = f∗k be the resulting spectrum
over B. The essential idea is to use a Künneth theorem for the homology or
cohomology theory represented by k on spectra over A to derive a parametrized
Künneth theorem for the homology or cohomology theory represented by J on
spectra over B. To that end, we consider variable spectra X and Y over B. For
homotopical control, we can work with excellent prespectra or with fibrant and
cofibrant spectra. Formally, we are working in one of our two equivalent versions of
the parametrized stable homotopy categories of spectra over A and B. Recall that
this category is triangulated. With these notations, Proposition 20.2.6(ii) and the
projection formula (both originally stated with the roles of A and B reversed) give

(22.7.1) J∗(X ∧B Y ) ∼= k∗(f!(X ∧B Y )) and J∗(X ∧B Y ) ∼= k∗(f!(X ∧B Y ))

(22.7.2) J∗(f∗f!X ∧B Y ) ∼= k∗(f!(f∗f!X ∧A Y )) ∼= k∗(f!X ∧A f!Y )

(22.7.3) J∗(f∗f!X ∧B Y ) ∼= k∗(f!(f∗f!X ∧B Y )) ∼= k∗(f!X ∧A f!Y ).
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In the following construction, we prefer to use increasing negative indices rather
than decreasing positive indices, since that better fits the relevant grading, but the
opposite choice works equally well mathematically.

Construction 22.7.4. For X ∈ SB , construct the tower

. . . // X−3
// X−2

//

η

��

X−1
//

η

��

X

η

��
f∗f!X−2

ddIIIIIIIII
f∗f!X−1

ffLLLLLLLLLL
f∗f!X0

eeKKKKKKKKKK

inductively by lettingXp = X for p ≥ 0 and lettingXp−1 −→ Xp, p ≤ 0, be the fiber
of the unit η : Xp −→ f∗f!Xp of the (f!, f∗) adjunction. The unlabelled diagonal
arrows indicate the maps to suspensions over B that are induced by the canonical
equivalences of the CBη with the ΣB(FBη). Thus each triangle is distinguished
in the triangulated category HoSB . Now smash over B with Y and apply J∗ or
J∗. This gives two “unravelled exact couples”, in the sense of Boardman [13, §0],
the second exactly as in his cohomological notations, with Ep,q1 = Jp+q(f∗f!Xp)
for p ≤ 0 and Ep,q1 = 0 for p > 0. The first unravelled exact couple is indexed
homologically and has E1

p,q = Jp+q(f∗f!Xp) for p ≤ 0 and E1
p,q = 0 for p > 0.

Following Boardman’s details and using (22.7.1)–(22.7.3) to identify terms, there
result spectral sequences

E1
p,q = kp+q(f!Xp ∧A f!Y ) =⇒ kp+q(f!(X ∧B Y ))

and
Ep,q1 = kp+q(f!Xp ∧A f!Y ) =⇒ kp+q(f!(X ∧B Y )).

In Boardman’s language, the homology spectral sequence is a (left) half plane spec-
tral sequence with entering differentials [13, §7], and it converges conditionally if

lim
p
k∗(f!(Xp ∧B Y )) = 0 and lim

p

1k∗(f!(Xp ∧B Y )) = 0.

If in addition its derived E∞ term RE∞ vanishes, then it converges strongly. The
cohomology spectral sequence is a (left) half plane spectral sequence with exiting
differentials [13, §6], and it converges strongly if

colim
p

k∗(f!(Xp ∧B Y )) = 0.

A priori, what these spectral sequences converge to is not the displayed targets
but rather the limits

colim
p

k∗(f!(Xp ∧B Y )) and lim
p
k∗(f!(Xp ∧B Y ))

defined in terms of our unravelled exact couples.
The question of relevance is the question of when the canonical maps

colim
p

k∗(f!(Xp ∧B Y )) −→ k∗(f!(X ∧B Y ))

and
k∗(f!(X ∧B Y )) −→ lim

p
k∗(f!(Xp ∧B Y ))

are isomorphisms. However, this always holds in our context since our limit sys-
tems end with their zeroth terms. A good understanding of when our convergence
conditions hold is desirable, but we will not consider such issues here.
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Remark 22.7.5. In some approaches to the Eilenberg-Moore spectral sequence,
the convergence problem appears more as a problem of relevance than of conver-
gence. That is, even when the spectral sequence converges strongly, it need not
converge to the groups that one wants to compute.

We next identify the E2-term in the cohomological spectral sequence. We focus
on cohomology only because we do not want to assume familiarity with cotensor
products, but it is standard that the identification works more generally in homol-
ogy. For example, this is where finite type hypotheses enter in ordinary cohomology,
although they are not required in ordinary homology. We need a few observations.

Lemma 22.7.6. Let k be a commutative ring spectrum in HoSA. Then k∗(SA)
is a graded ring and k∗ is a lax monoidal functor from HoSA to the category of
k∗(SA)-modules.

Proof. For spectra W and Z over A we have natural pairings

[SnA,W ]A ⊗ [SmA , Z]A −→ [Sn+m
A ,W ∧A Z]A

and

FA(W,k) ∧A FA(Z, k) −→ FA(W ∧A Z, k ∧A k) −→ FA(W ∧A Z, k).
Since kn(W ) = [S−nA , FA(W,k)]A, it follows that k∗ is lax monoidal when considered
as taking values in graded Abelian groups. The statement follows since the objects
of HoSA are SA-modules. �

Returning to spectra over B we have the following observation.

Lemma 22.7.7. For a spectrum X over B, f!X is a comodule over the coalgebra
f!SB. For a commutative ring spectrum k in HoSA, the k∗(SA)-module k∗(f!X)
is a module over the k∗(SA)-algebra k∗(f!SB).

Proof. This follows from the unit equivalencesX ' X∧BSB together with the
facts that f! is op-lax monoidal (since f∗ is monoidal) and k∗ is lax monoidal. �

Definition 22.7.8. Let k be a commutative ring spectrum in HoSA. We say
that (W,Z) is a k-Künneth pair of spectra over A if the natural map

k∗(W )⊗k∗(SA) k
∗(Z) −→ k∗(W ∧A Z)

is an isomorphism.

We can now identity the E2-term.

Theorem 22.7.9 (The parametrized Künneth spectral sequence). In the con-
text of Construction 22.7.4, assume further that k is a commutative ring spectrum
over A and each (f!Xp, f!SB) and (f!Xp, f!Y ) is a k-Künneth pair. Then

Ep,q2 = Torp,qk∗(f!SB)(k
∗(f!X), k∗(f!Y )).

Proof. The initial map η and the “differentials” of the tower give a sequence
(22.7.10)

∗ // X // f∗f!X0
// ΣBf∗f!X−1

// Σ2
Bf

∗f!X−2
// . . . .

This is a resolution of X in the sense that the composite of any two maps is null and
the sequence is exact on all homology and cohomology theories of the form J = f∗k.
To see the latter, note that one of the triangle identities for the (f!, f∗) adjunction
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shows that the map f!η : f!Xp −→ f!f
∗f!Xp (a generalized Thom diagonal) has the

left inverse ε : f!f∗f!Xp −→ f!Xp so that ε ◦ f!η = idXp . Using (22.7.1), it follows
that when we apply J∗ and J∗ to the tower, the maps induced by η split and the
tower breaks up into respective short exact sequences

0 // k∗(f!Xp) // k∗(f!f∗f!Xp) // k∗−1(f!Xp+1) // 0

and

0 k∗(f!Xp)oo k∗(f!f∗f!Xp)oo k∗−1(f!Xp+1)oo 0.oo

The long exact sequence obtained by applying k∗(f!(−)) or k∗(f!(−)) to the reso-
lution above is obtained by splicing these together.

Our k-Künneth pair assumption gives the first of the two isomorphisms

k∗(f!Xp)⊗k∗(SA) k
∗(f!SB) ∼= k∗(f!Xp ∧A f!SB) ∼= k∗(f!f∗f!Xp).

The second holds since the projection formula gives

f!X ∧A f!SB ' f!(f∗f!X ∧B SB) ' f!f∗f!X

for any X. This shows that k∗(f!f∗f!Xp) is (relatively) projective over k∗(f!SB).
Now our k-Künneth pair assumption, together with the above calculation, gives
isomorphisms

Ep,∗1 = k∗(f!Xp ∧A f!Y )
∼= k∗(f!Xp)⊗k∗(SA) k

∗(f!Y )
∼= k∗(f!f∗f!Xp)⊗k∗(f!SB) k

∗(f!Y ).

These are compatible with the differentials, and this shows that the homology of
Ep,∗1 calculates the desired E2-term. �

Remark 22.7.11. The construction we started with is analogous to the canon-
ical resolution used in the construction of the Adams spectral sequence. As in that
context, we can develop a general theory of resolutions. To prove that the spec-
tral sequence is multiplicative, we can form the smash products of resolutions and
prove that they are again resolutions. We omit the details here, but we recommend
Bruner’s treatment of the products in the Adams spectral sequence, [27, IV§4], for
details that can be adapted to our context. The axiomatization of a compatibly
triangulated symmetric monoidal category that we described in §16.7 and §17.5,
especially (TC3) and (TC4), encodes common features of the two situations.

Remark 22.7.12. Taking f to be r : B −→ ∗, k = HF to be the Eilenberg-
Mac Lane spectrum for a field F, and passing to unreduced cohomology, we obtain
a version of the classical Eilenberg-Moore spectral sequence. In detail, let (K, p)
and (L, q) be spaces over B, where q, say, is a fibration. Let (P, π) be the pullback
K ×B L over B. Then

(K, p)+ ∧B (L, q)+ ∼= (P, π)+

as ex-spaces over B. Applying Σ∞B and using Proposition 13.7.5, this gives

Σ∞B (K, p)+ ∧B Σ∞B (L, q)+ ∼= Σ∞B (P, π)+
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as spectra over B. Applying r! to this, we obtain Σ∞P+. Assuming that the
cohomologies of the given spaces are of finite type, so that we have a Künneth
isomorphism in cohomology, our spectral sequence takes the expected form

Ep,q2 = Torp,qH∗(B,F)(H
∗(K,F),H∗(L,F)) =⇒ H∗(P,F).

This may appear too strong to be plausible since we have made no connectivity
or nilpotence assumptions. With this approach, these can only be relevant to
determining when the colimit that enters into our convergence statement is zero.
A similar remark applies when k is a Morava K-theory spectrum.

We close with a few comments on the literature.

Remark 22.7.13. The original chain level construction of Eilenberg and Moore
[59] (see also [71]) gives a spectral sequence that, in the case of ordinary homol-
ogy and cohomology, looks formally the same as the ones later constructed more
geometrically, but there is no proof in the literature that these different construc-
tions give isomorphic spectral sequences. Each type of construction has its advan-
tages. For example, with geometric constructions it is clear how to put Steenrod
operations in the spectral sequence, as was first done by Rector [140]. On the
other hand, the chain level construction is essential to the calculational results
of [71, 126], for example. The proofs of convergence with the various construc-
tions vary considerably. Comparisons among them are needed. Comparison of
Remark 22.7.12 with known convergence results for ordinary cohomology under
nilpotency conditions suggests that there are real differences. The geometric con-
structions in the literature focus on cosimplicial spaces, parametrized spaces, or a
blend of the two, and there is an extensive literature. An incomplete list would
include [53, 54, 74, 85, 140, 149, 151, 153, 154, 163]. For non-nilpotent situations and
non-connective generalized theories, there are a number of partial results and some
illuminating counterexamples, but the complete picture is still quite unclear.



CHAPTER 23

Parametrized FSP’s and generalized Thom spectra

Introduction

Because the passage from spherical fibrations to their Thom complexes is an ap-
plication of the functor r!, Thom spaces and Thom spectra are intrinsically part of
parametrized homotopy theory. In this chapter, we reinterpret standard construc-
tions in a parametrized way and use the new point of view to construct a variety
of new commutative orthogonal ring spectra that are of the same general type as
Thom spectra. We recall from [105] that commutative orthogonal ring spectra are
equivalent to commutative S-algebras in the sense of [61] and therefore to E∞ ring
spectra.

The constructions are simple and conceptual. Commutative orthogonal ring
spectra are equivalent to commutative I -FSP’s, where FSP stands for “functor
with smash product”. We have already used these in the non-commutative case in
§22.2, but in this chapter we focus on the commutative case. The FSP structure is
defined with respect to the external smash product, and its internalization is the
product of the associated orthogonal ring spectrum. There is an analogous notion
of an I -FCP, where FCP stands for “functor with cartesian product”, which is
defined in terms of cartesian products rather than smash products. We shall define
the new notion of a parametrized I -FSP, to be abbreviated I -PFSP.

In fact, as we will carry further elsewhere, these constructions are the specializa-
tion to the domain category I of diagram objects that can be defined starting from
various other domain categories D , notably the domain category Σ for symmetric
sequences (or collections). Since we shall focus primarily on I , we shall gener-
ally omit I from the notation, writing FCP, FSP, and PFSP instead of I -FCP,
I -FSP, or I -PFSP.

Our PFSP’s are functors that take values in the symmetric monoidal category
UU of retracts that we defined in §2.5. Passage to base spaces gives a forgetful func-
tor from PFSP’s to FCP’s, and application of r! gives a “Thom spectrum functor”
from PFSP’s to FSP’s. The definition of a PFSP codifies and generalizes familiar
structure that we see in nature. For example, consider the fiberwise one-point com-
pactification of a good model EO(V )×O(V ) V for the universal vector bundle over
BO(V ), where O(V ) is the orthogonal group of an inner product space V . This
construction gives a functor, RO say, from our category I of finite dimensional
inner product spaces to the cited category of retracts. The direct sum pairing

O(V )×O(W ) −→ O(V ⊕W )

passes to classifying spaces, where it gives the map

BO(V )×BO(W ) −→ BO(V ⊕W )

393
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on base spaces of a pairing

µ : RO(V ) ZRO(W ) −→ RO(V ⊕W )

in the category of retracts. The fibers over the basepoints of the BO(V ) give maps
η : SV −→ RO(V ). The spaces r!RO(V ) are the Thom spaces TO(V ). Together
with the induced external pairing

TO(V ) ∧ TO(W ) −→ TO(V ⊕W )

and unit map SV −→ TO(V ), they specify the Thom spectrum MO as an FSP.
The internalization of the pairing gives the product MO ∧MO −→ MO of the
orthogonal ring spectrum MO. The triple (RO,µ, η) is an example of a PFSP.

Our generalization of this familiar structure leads to the promised new way of
constructing commutative orthogonal ring spectra. In fact, the construction works
more generally to construct commutative algebras over a commutative orthogonal
ring spectrum R. The starting point is then the notion of an R-PFSP. With this
notion, passage to base spaces still gives an FCP, but application of r! now gives
an R-FSP, which is the external equivalent of a commutative R-algebra.

We shall use the two-sided bar construction to show how to construct many ex-
amples of R-PFSP’s. Conceptually, the procedure is analogous to the construction
of twisted theories in the previous chapter. Instead of starting with a group Π, we
start with a group-valued or monoid-valued FCP Π. We replace the bundle con-
struction EΠ ×Π (−) with a parametrized two-sided bar construction B(−,Π,−).
We abbreviate this to B(Π,−) when the first variable is trivial, and we obtain a
family of universal principal bundles EΠ = B(Π,Π). When Π acts on the left on
a FCP Y , we obtain a family B(Π, Y ) = EΠ×Π Y of associated bundles given by
the Borel construction. The analogy should be clear.

In the last two sections, we switch gears. In the theory above, we never pass
to colimits on the base space level but rather focus on a fixed base FCP. We
end the chapter with the bare beginnings of a study of the relationship between
parametrized theory and colimits of base spaces. In particular, we show how Thom
prespectra of maps X −→ BF can be interpreted conceptually as a construction in
parametrized homotopy theory. This too will be carried further elsewhere, in joint
work with Andrew Blumberg.

We work nonequivariantly, for simplicity, but the constructions of this chapter
apply verbatim equivariantly. We describe diagram functors with products in full
categorical generality in §23.1, and we specialize topologically to define FCP’s, R-
FSP’s, and R-PFSP’s in §23.2. We define group, monoid, and module FCP’s in
§23.3. As an interesting example, we observe that an FSP R gives rise to an FCP
of units GL1(R) and an FCP of special units SL1(R).

We define the two-sided bar construction in the category of FCP’s in §23.4 and
show how to construct examples of R-FSP’s by replacing the righthand variable
FCP in B(−,Π,−) by an FSP R. When R is the sphere FSP, the classical Thom
spectra appear as special cases, but now these themselves can sometimes be used in
place of R, as we show in §23.5. In particular, we construct iterated Thom spectra
such as MqU , starting with M0U = S and M1U = MU ; MqU is a commutative
Mq−1U algebra. This is a tantalizing construction, but we have barely begun the
study of these new commutative algebras.

Switching to the consideration of colimits, we recall how I -FCP’s give rise
to spaces with actions by the linear isometries operad L and thus to E∞ spaces
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and therefore spectra in §23.6. We also comment on the analogous infinite loop
space theory starting from Σ-FCP’s. We show in §23.7 that parametrized methods
simplify the construction of Thom prespectra of maps. The point is to construct a
universal spherical fibration prespectrum Sph(F ) over BF . The Thom prespectrum
of a map f : X −→ BF is then just r!f∗Sph(F ). The original definition is due to
Mahowald [101], and such Thom spectra were first studied in detail by Lewis [94,98].
We leave the relationship between this construction of Thom prespectra of maps
and the theory of E∞ ring spectra to work in progress of Blumberg and the authors.

Some of our constructions are spelled out in more detail but under different
names in [112], and a good deal of related work has taken place in the intervening
thirty years. We give a dictionary and some historical background in §23.8.

Aside from basic definitions, this chapter is almost completely independent of
everything that has come before in this book. In particular, we make no mention of
model structures, and parametrized spectra only appear in §23.7. Our focus is on
the use of parametrized methods to construct new non-parametrized objects, and
the passage from the point-set level to homotopy categories is routine.

23.1. D-functors with products in symmetric monoidal categories

It seems best to start off in complete generality. The material to follow was
first considered categorically by Day [43]. We follow the treatment of [106, §§1,
22], which gives details in the context of topological diagram spectra. We let V be
a cocomplete symmetric monoidal category and let C be a V -enriched cocomplete
symmetric monoidal category, where cocompleteness and the symmetric monoidal
structure are understood in the enriched sense. We write ⊗, I, and τ for the
product, unit object, and commutativity isomorphism in both C and V . In some
cases C = V , but not in the new case that we are most interested in, where V = U
and C = UU . We let D be a skeletally small symmetric monoidal category enriched
over V , and we write ⊕, 0, and τ for its product, unit object, and commutativity
isomorphism.

Definition 23.1.1. A D-object is a V -functor X : D −→ C . A map of D-
objects is a V -natural transformation between them. Let D [C ] be the category of
D-objects in C .

Henceforward, we take the enrichment for granted. When V is U or T , this
just means that we consider only continuous functors and natural transformations.

Definition 23.1.2. A lax monoidal functor D −→ C is called a D-functor
with products, or D-FP. A lax symmetric monoidal functor D −→ C is called a
commutative D-functor with products. A strong symmetric monoidal functor is
said to be a spherical (or idempotent) D-FP.

Thus, for a D-FP R, we are given a unit map λ : I −→ R(0) and product maps
φ : R(d)⊗R(e) −→ R(d⊕ e) such that appropriate diagrams (as in the case A = R
and η = id of Definition 23.1.5 below) commute. If R is spherical, λ and φ are
isomorphisms. Spherical D-FP’s are not unique, but there is usually an obvious
preferred choice, which will be denoted SD and made explicit in the examples.
Implicitly, the definition above uses an external product of diagram objects.
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Definition 23.1.3. The external product of D-objects X and Y is the evident
D ×D-object X⊗̄Y given on objects d and e of D by

(X⊗̄Y )(d, e) = X(d)⊗ Y (e).

This product is unital, associative, and commutative in the sense that the symmetric
monoidal structure of C induces coherent natural isomorphisms

X(d)⊗̄I ∼= X(d) ∼= I⊗̄X(d),

(X⊗̄Y )⊗̄Z ∼= X⊗̄(Y ⊗̄Z),

and
X⊗̄Y ∼= Y ⊗̄X,

where the second and third are isomorphisms of (D×D×D)-objects and (D×D)-
objects, respectively.

Conceptually, this gives part of the stucture of a graded symmetric monoidal
category on

∐
D i[C ]; here D0 is the trivial category, the unit object I lives in

C = D0[C ], and the first isomorphism above is one of D-objects.
Since we have assumed that C is cocomplete, we can use left Kan extension to

internalize the product ⊗̄ to obtain a product ⊗ on D [C ] such that

D(X ⊗ Y, Z) ∼= (D ×D)[V ](X⊗̄Y,Z ◦ ⊕).

The category D [C ] is symmetric monoidal with unit the represented object 0∗

specified by 0∗ = D(0,−), and the concepts in Definition 23.1.2 internalize as
follows.

Proposition 23.1.4. The category of D-FP’s is equivalent to the category of
monoids in D [C ]. The category of commutative D-FP’s is equivalent to the category
of commutative monoids in D [C ].

Thinking of a commutative monoid R in a symmetric monoidal category as
an analogue of a commutative ring, the analogue of an R-algebra is an R-monoid
A, that is, a monoid A together with a central map of monoids η : R −→ A. The
unit of A is then the composite η ◦ λ. We spell out the external equivalent in the
following definition.

Definition 23.1.5. Let R be a commutative D-FP. A D-functor with products
over R, abbreviated R-D-FP, is a D-object A together with a unit map η : R −→ A
of D-objects and a product map µ : A Z A −→ A ◦ ⊕ of D × D-objects such that
the composite

A(d) ∼= A(d) ∧ I id∧λ // A(d) ∧R(0)
id∧η // A(d) ∧A(0)

µ // A(d⊕ 0) ∼= A(d)

is the identity map, and the following unit, associativity, and centrality of unit
diagrams commute:

R(d)⊗R(e)

φ

��

η⊗η // A(d)⊗A(e)

µ

��
R(d⊕ e)

η
// A(d⊕ e),
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A(d)⊗A(e)⊗A(f)

id⊗µ
��

µ⊗id // A(d⊕ e)⊗A(f)

µ

��
A(d)⊗A(e⊕ f)

µ
// A(d⊕ e⊕ f),

and

R(d)⊗A(e)

τ

��

η⊗id // A(d)⊗A(e)
µ // A(d⊕ e)

A(τ)

��
A(e)⊗R(d)

id⊗η
// A(e)⊗A(d)

µ
// A(e⊕ d).

A D-functor with products is commutative if the following diagram commutes, in
which case the centrality of unit diagram just given commutes automatically:

A(d)⊗A(e)
µ //

τ

��

A(d⊕ e)

A(τ)

��
A(e)⊗A(d)

µ
// A(e⊕ d).

Proposition 23.1.6. The category of R-monoids in D [C ] is equivalent to the
category of D-FP’s over R. The category of commutative R-monoids in D [C ] is
equivalent to the category of commutative D-FP’s over R.

For monoids R and for R-monoids A (R commutative) in symmetric monoidal
categories, we have the evident notions of (left or right) R-modules and of A-
modules, and these too have evident external analogues in the case of our diagram
categories D [C ].

23.2. The specialization of D-FP’s to spaces and ex-spaces

We now let V be either U with its cartesian monoidal structure or T with its
monoidal structure under ∧, but otherwise we retain the notations of the previous
section. As usual, when our given D is U -enriched but we are considering functors
into a T -enriched target category C , we implicitly add disjoint basepoints to enrich
D over T .

First we take C = V = U and let ∗ be the terminal D-FP, which of course is
spherical.

Definition 23.2.1. A D-FCP is a D-FP over ∗ (or ∗-D-FP) in U .

Remark 23.2.2. A D-FCP R = (R,ω, λ) necessarily takes values in T . The
basepoint of R(d) is given by the unit map λ : ∗ −→ R, and the unit condition says
that ω(x, ∗) = x in R(d⊕ 0) ∼= R(d) for x in R(d) and ∗ in R(0). In fact, a D-FCP
is exactly the same structure as a D-FP in T . From the latter point of view, the
given basepoints prescribe the unit map λ.

We now take C = V = T and let SD be a chosen sphere D-FP associated to
D . There is usually a standard choice.

Definition 23.2.3. A D-FSP is a D-FP over SD (or SD -D-FP) in T . For a
commutative D-FSP R, a D-FSP over R, or R-D-FSP, is a D-FP over R in T .
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Suitable choices of D for constructing stable categories of spectra are discussed
in detail in [106]. The internalized versions of R-FSP’s are then called R-algebras.
We focus on I , with its standard sphere FP SI ; thus SI (V ) = SV . Another im-
portant choice is Σ, the category with objects the natural numbers and morphisms
the symmetric groups viewed as automorphism groups Σn : n −→ n; its standard
sphere FP SΣ has values the Σn-spaces Sn. In these cases, a D-spectrum is defined
to be a right SD -module. An SD -algebra (R,µ, η) is a right SD -module via the
composite

R ∧ SD
id∧η //R ∧R

µ //R,

and these are the orthogonal and symmetric ring spectra.
We can define analogous parametrized orthogonal ring spectra, but, as noted in

§14.1, we would not have homotopical control over that notion. However, allowing
varying base spaces and using external smash products (in the sense of allowing
products of base spaces), we obtain a useful notion over which we do have homo-
topical control. To specify this notion, we take V = U and we take C to be the
category of retracts UU , viewed as symmetric monoidal with unit S0

∗ under the
external smash product Z. The following definitions work just as well for D = Σ
as for D = I ; we delete D from the notation but allow either choice, continuing
to use the letters d and e for typical objects of D . Recall that, for any B, UB is
embedded in UU . In particular T = U∗ is embedded as a symmetric monoidal
subcategory of UU ; we write Z rather than ∧ for its smash product.

Definition 23.2.4. Let R be a (nonparametrized) commutative FSP. A PFSP
A over R, or R-PFSP, is a D-object A : D −→ UU together with a unit map
η : R −→ A of D-objects, and a product map µ : AZA −→ A◦⊕ of D ×D-objects,
that satisfy the evident analogues of the conditions specified in Definition 23.1.5.
In detail, writing A(d) as a retract B(d) −→ A(d) −→ B(d) and writing ω for the
map µ on base spaces, η and µ are given by maps of retracts

∗ //

��

B(d)

��
R(d)

η //

��

A(d)

��
∗ // B(d)

and B(d)×B(e) ω //

��

B(d⊕ e)

��
A(d) ZA(e)

µ //

��

A(d⊕ e)

��
B(d)×B(e) ω // B(d⊕ e).

With R(d) and A(d) again understood as objects of UU , the composite

A(d) ∼= A(d) Z S0
idZλ // A(d) ZR(0)

idZη // A(d) ZA(0)
µ // A(d⊕ 0) ∼= A(d)

is the identity map, and the following unit, associativity, and centrality of unit
diagrams commute:

R(d) ZR(e)

φ

��

ηZη // A(d) ZA(e)

µ

��
R(d⊕ e)

η
// A(d⊕ e),
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A(d) ZA(e) ZA(f)

idZµ

��

µZid // A(d⊕ e) ZA(f)

µ

��
A(d) ZA(e⊕ f)

µ
// A(d⊕ e⊕ f),

and

R(d) ZA(e)

τ

��

ηZid // A(d) ZA(e)
µ // A(d⊕ e)

A(τ)

��
A(e) ZR(d)

idZη
// A(e) ZA(d)

µ
// A(e⊕ d).

An R-PFSP is commutative if the following diagram commutes, in which case the
centrality of unit diagram just given commutes automatically:

A(d) ZA(e)
µ //

τ

��

A(d⊕ e)

A(τ)

��
A(e) ZA(d)

µ
// A(e⊕ d).

Definition 23.2.5. A parametrized FSP, or PFSP, is an S-PFSP in UU , and
similarly for commutative PFSP’s.

With the evident morphisms, we have categories of all objects that we have
defined, and the following three results are immediate from the definitions.

Proposition 23.2.6. Passage to base spaces defines a forgetful functor from
the category of R-PFSP’s to the category of FCP’s.

Proposition 23.2.7. The fibers A(d)∗ over the unit basepoints ∗ ∈ B(d) inherit
a structure of FSP from A, and A∗ is an R-FSP via η. This gives a fiber functor
from the category of R-PFSP’s to the category of R-FSP’s.

In practice, η : R −→ A∗ is often an isomorphism.

Theorem 23.2.8. Application of r! to all ex-spaces defines a Thom spectrum
functor from the category of R-PFSP’s to the category of R-FSP’s.

Proof. The D-space r!A is given by (r!A)(d) = r!(A(d)) = A(d)/sB(d). The
functoriality on D is evident. The required unit η and product µ are induced from
those of A. For η, notice that A∗ ⊂ r!A. For µ, notice that

r!(A(d)) ∧ r!(A(e)) ∼= (r × r)!(A(d) ZA(e)) = r!(A(d) ZA(e)). �

23.3. Group, monoid, and module FCP’s; examples

Let FCP [U ] denote the category of I -FCP’s. We describe groups, monoids,
and modules in this category and give various examples. In all of our examples,
the underlying FCP is commutative, and we will not reiterate this point. In this
section and the next, the basic definitions apply equally well with I replaced by
Σ, but we focus attention on I for specificity.
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Lemma 23.3.1. The category FCP [U ] has products. The product of FCP’s
(B, ν) and (C,ω) is (B ×C, ν × ω), where (B ×C)(V ) = B(V )×C(V ) and where
(ν × ω)(V,W ) is the composite

B(V )× C(V )×B(W )× C(W )

id×t×id

��
B(V )× C(W )×B(V )× C(W )

ν×ω
��

B(V ⊕W )× C(V ⊕W ).

Definition 23.3.2. A monoid (or group) FCP is a monoid (or group) (Π, ω)
in the cartesian monoidal category FCP [U ]. Thus Π is a monoid-valued functor
such that the following diagrams commute.

(23.3.3) Π(V )×Π(V )×Π(W )×Π(W )
prod×prod //

id×t×id

��

Π(V )×Π(W )

ω

��

Π(V )×Π(W )×Π(V )×Π(W )

ω×ω
��

Π(V ⊕W )×Π(V ⊕W )
prod

// Π(V ⊕W )

A right Π-FCP (D, ν) is a right Π-module in FCP [U ]; this means that there are
right actions D(V ) × Π(V ) −→ D(V ) such that the evident analogue of (23.3.3)
commutes. Left Π-FCP’s are defined similarly.

We recall some examples. For a based space X, let F (X) be the monoid of
based homotopy equivalences X −→ X, let SF (X) be the submonoid of maps ho-
motopic to the identity map of X, let Top(X) be the subgroup of F (X) consisting
of the based homeomorphisms, and let STop(X) be the subgroup of based homeo-
morphisms in SF (X). Letting X run through the spheres SV , we obtain monoid
FCP’s F and SF and group FCP’s Top and STop. On F , the pairing

ω : F (V )× F (W ) −→ F (V ⊕W )

is obtained by identifying SV⊕W with SV ∧ SW and taking the smash product of
homotopy equivalences. It restricts to give ω on SF , Top, and STop. Restricting
further to linear isometries and linear isometries of determinant 1, we obtain group
FCP’s O and SO. Using complex inner product spaces rather than real ones, we
obtain group FCP’s U and SU . In all cases, we must not confuse these monoid-
valued FCP’s, which are functors and have external pairings, with the monoids of
the same names that are obtained by taking colimits over V and have composition
products that make no reference to the external pairings; compare Remark 22.2.6.

Remark 23.3.4. It seems preferable to think in terms of the theory of “unitary
spectra”, the reworking of the theory of orthogonal spectra from the starting point
of complex inner product spaces, rather than to think in terms of functors defined
on real inner product spaces by first complexifying. That is, we think in terms of
realification U(n) −→ SO(2n) rather than complexification O(n) −→ U(n). Using
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their underlying real inner products, the complex inner product spaces embed in
the real ones. Then “change of universe”, as in §14.2, shows that the two choices
give canonically equivalent homotopy categories of spectra.

There are further classical examples Spin and Spinc, and a newer example
String, which can be made as precise as we need using the construction in [7].
As explained in [112, Ch. I], which gives more details, all of the usual classical
homogeneous spaces Π/Π′, defined in terms of right cosets, are right Π-module
FCP’s.

We end this section by showing how a commutative FSP R gives rise to a unit
right F -module GL1(R).

Definition 23.3.5. For an I -space T , let Λ(T ) be the induced I -space such
that Λ(T )(V ) = ΩV T (V ). The evaluation maps of the functor Λ(T ) are the maps

I (V,W )× ΩV T (V ) −→ ΩWT (W )

that send (α, f) to the composite

SW
α−1
//SV

f //T (V )
T (α) //T (W ).

Since F (V ) is the space of homotopy equivalences SV −→ SV and ΩV T (V ) is the
space of maps SV −→ T (V ), composition gives a right action of the monoid F (V )
on the space Λ(T )(V ).

To avoid confusion in the following example, recall Remark 22.2.5.

Proposition 23.3.6. Let R be a commutative FSP whose underlying orthogonal
spectrum is positive fibrant and satisfies R0 = S0. Then Λ(R) restricts to a right
F -module GL1(R) of units and a right SF -module SL1(R) of special units.

Proof. The homotopy group π0(R) is a commutative ring and, since R is
positive fibrant, we may use the adjoint structural equivalences to identify π0(R)
with π0(ΩVR(V )) for all V of positive dimension. We let GL1(R)(0) = 1 and
let GL1(R)(V ) be the subspace of ΩVR(V ) consisting of the components of the
units in π0(R); we let SL1(R)(V ) be the component of the identity element. Since
the points of F (V ) are homotopy equivalences of SV and the points of SF (V ) are
homotopic to the identity, our action map restricts to give a right action of F (V )
on GL1(R)(V ) and a right action of SF (V ) on SL1(R)(V ). Moreover, the product
µ on R gives rise to pairings

ω : ΩVR(V )× ΩWR(W ) −→ ΩV⊕WR(V ⊕W ).

For f : SV −→ R(V ) and g : SW −→ R(W ), ω(f, g) is the composite

SV⊕W ∼= SV ∧ SW
f∧g //R(V ) ∧R(W )

µ //R(V ⊕W ).

Considering homotopy groups, we see that these maps restrict to pairings that give
FCP’s (GL1(R), ω) and (SL1(R), ω). The required commutativity of the module
analogue of the diagram (23.3.3) is clear by inspection. �
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23.4. The two-sided bar construction on FCP’s

The following old observation, which is [112, I.2.2], is central to the new con-
structions in this chapter.

Proposition 23.4.1. If Π is an FCP, D is a right Π-FCP, and E is a left
Π-FCP, then B(D,Π, E) is a FCP. It is commutative if its inputs D, Π, and E are
all commutative (that is, commutative as FCP’s).

The definition and properties of the two-sided bar construction are discussed
in [111, §7], and we are taking

B(D,Π, E)(V ) = B(D(V ),Π(V ), E(V )).

Since the two-sided bar construction preserves products, in the sense that

(23.4.2) B(D,Π, E)×B(D′,Π′, E′) ∼= B(D ×D′,Π×Π′, E × E′)

for monoids Π and Π′ acting from the right on D and D′ and from the left on E
and E′, it is clear that the space B(D,Π, E) inherits a product ω from those of D,
Π, and E.

Notations 23.4.3. WhenD = ∗ is constant at a point, we abbreviateB(∗,Π, E)
to B(Π, E). Similarly, at the price of a little ambiguity, we abbreviate B(D,Π, ∗)
to B(D,Π) and B(∗,Π, ∗) to BΠ.

We see considerable resemblence between FCP’s and orthogonal spectra. We
now show how to to exploit the comparison. We replace the input Π-FCP E of the
two-sided bar construction B(D,Π, E) with a Π-FSP R and we obtain as output
an R-FSP with base FCP B(D,Π). We need an observation and a definition before
we can implement this idea.

Lemma 23.4.4. Let Λ and Π be topological monoids that act through based maps
on based spaces X and Y . Then the formula

(α, β)(x ∧ y) = (αx) ∧ (βy)

for α ∈ Λ, β ∈ Π, x ∈ X, and y ∈ Y gives an action of Λ×Π on X ∧ Y .

We assume from now on in this section that Π is a monoid FCP together with a
map Π −→ F of monoid FCP’s. We say that Π is a monoid mapping to F . Since F
acts from the left on the sphere FCP S via the evaluation maps F (V )×SV −→ SV ,
this ensures that Π acts on S.

Definition 23.4.5. Let (Π, ω) be a monoid FCP mapping to F . A left action
of Π on an orthogonal spectrum X, is a left action of Π on the underlying I -space
X such that the following diagrams commute.

(23.4.6) Π(V )×Π(W )× (X(V ) ∧ SW ) action //

ω×σ
��

X(V ) ∧ SW

σ

��
Π(V ⊕W )×X(V ⊕W )

action
// X(V ⊕W )
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A left action of Π on an FSP R is a left action of Π on the I -space R such that
the following diagrams commute.

(23.4.7) Π(V )× SV

id×η
��

action // SV

η

��
Π(V )×R(V )

action
// R(V )

(23.4.8) Π(V )×Π(W )× (R(V ) ∧R(W )) action //

ω×µ
��

R(V ) ∧R(W )

µ

��
Π(V ⊕W )×R(V ⊕W )

action
// R(V ⊕W )

Observe that (23.4.7) and (23.4.8) imply (23.4.6), so that R is a Π-spectrum with
additional structure.

Theorem 23.4.9. Let Π be a monoid FCP mapping to F , let D be a right
Π-FCP, and let R be a commutative left Π-FSP. Assume that Π and D are com-
mutative as FCP’s. Then B(D,Π, R) is a commutative R-PFSP with base FCP
B(D,Π). Therefore r!B(D,Π, R) is a commutative R-algebra.

Proof. We define B(D,Π, R)(V ) = B(D(V ),Π(V ), R(V )). As in Propo-
sition 23.4.1, B(D,Π, R) is an I -space. The evident maps of Π-spaces ∗ −→
R(V ) −→ ∗ induce projections and sections

B(D,Π)(V ) −→ B(D,Π, R)(V ) −→ B(D,Π)(V ).

Thus gives a functor I −→ UU . The basepoint of D(V ) gives the basepoint of
B(D(V ),Π(V )), in the simplicial zero skeleton, and the fiber over the basepoint is
R(V ). This gives an identification η of R with the fiber B(D,Π, R)∗. Using the
identification (23.4.2), we see that the products ν on D, ω on Π and µ on R induce
pairings

µ : B(D,Π, R)(V ) ZB(D,Π, R)(W ) −→ B(D,Π, R)(V ⊕W )

over and under the pairing

ω : B(D,Π)(V )×B(D,Π)(W ) −→ B(D,Π)(V ⊕W )

induced by the given ν and ω. The unit, associativity, and commutativity conditions
are all inherited from the input pairings. This proves the result, with the last
statement following from Theorem 23.2.8. �

23.5. Examples: iterated Thom spectra

Examples of base FCP’s B(D,Π) abound. The case D = ∗, written B(Π), is
already of obvious interest. A particularly interesting non-trivial choice for D is to
consider a second FSP Q, generally not R, and take D = GL1(Q) when Π maps to
F and D = SL1(Q) when Π maps to SF ; see Example 23.6.5 below. The obvious
choice of R, which works for any Π mapping to F , is R = S.

Definition 23.5.1. The classical Thom spectra are the commutative ring spec-
tra MΠ = r!B(Π, S). The generalized Thom spectra are the commutative ring
spectra M(D,Π) = r!B(D,Π, S).
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We use analogous notation in the general case, but remembering R.

Notation 23.5.2. For a right Π-I -FSP D and a left Π-I -FSP R, we define

M(D,Π, R) = r!B(D,Π, R).

When D = ∗, we omit it from the notation, writing M(Π, R).

To give examples, we need to construct actions of Π on interesting R. We give
a simple way to do this. Its starting point is the following observation.

Proposition 23.5.3. Let Π be a topological group and X and Y be a right and
a left Π-space. Then B(X,Π, Y ) is naturally a left Π-space.

Proof. B(X,Π, Y ) is the geometric realization of a simplicial space whose
space of q-simplices is X ×Πq × Y [111, p. 31]. Let Π act on this space by

α · (x, β1, . . . , βq, y) = (xα−1, αβ1α
−1, . . . , αβqα

−1, αy).

Inspection shows that the action commutes with faces and degeneracies. Since the
geometric realization of a simplicial Π-space is a Π-space, this proves the result.
More conceptually, we are using that Π acts on itself through conjugation and that
left and right actions are suitably equivariant. �

In the remainder of the section, we assume that Π is a group FCP with a
map to F . It could be O, SO, U , SU , Top or STop, for example. The notions
of commutative R-FSP and commutative R-algebra are interchangeable, and we
prefer to use the latter term for clarity. We assume that all given FCP’s and FSP’s
are commutative in the following results.

Theorem 23.5.4. For a right Π-FCP D and a left Π-FSP R, M(D,Π, R) is
both a Π-FSP and a commutative R-algebra.

Proof. We haveM(D,Π, R)(V ) = r!B(D(V ),Π(V ), R(V )), where r! collapses
the section sB(D(V ),Π(V )) to a point. Since Π(V ) acts trivially on the basepoint
of R(V ), the section is a sub-Π(V )-space of the Π(V )-space B(D(V ),Π(V ), R(V )).
Therefore we have an induced action of Π(V ) on the quotient. Using the diagrams
(23.3.3) for Π, their analogues for D, and diagrams (23.4.7) and (23.4.8) for R, we
see that diagrams (23.4.7) and (23.4.8) for M(D,Π, R) commute. This gives that
M(D,Π, R) is a Π-FSP, and it is a commutative R-algebra by Theorem 23.4.9. �

Corollary 23.5.5. For any two right Π-FCP’s C and D and any left Π-
FSP R, M(C,Π,M(D,Π, R)) is defined and is both a Π-FSP and a commutative
M(D,Π, R)-algebra.

Taking C and D to be trivial and removing them from the notation, we obtain
M(Π, R)-algebras M(Π,M(Π, R)). This allows the following definition of iterated
Thom spectra. The case Π = U should be of particular interest.

Definition 23.5.6. Define M0Π = S and M1Π = MΠ. Assume inductively
that we have constructed a Π-FSP and commutative Mq−1Π-algebra MqΠ. Define
Mq+1Π = M(Π,MqΠ). It is a Π-FSP and a commutative MqΠ-algebra.
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23.6. Ic-FCP’s and L -spaces

Changing focus, we here recall from [112, I§1] the relationship between I -
FCP’s and infinite loop spaces. At the end of the section we briefly describe the
analogous theory that starts with Σ-FCP’s instead of I -FCP’s.

Let Ic be the symmetric monoidal category of finite or countably infinite di-
mensional real inner product spaces and linear isometries, not necessarily isomor-
phisms. We write U = R∞. In the equivariant case, we would take U to be a
complete G-universe, so the notation may serve as a reminder that everything can
be done equivariantly. We can take the domain category D to be Ic in our defini-
tion of an FCP, but it is sensible to add some point-set topological restrictions.

Definition 23.6.1. We define Ic-FCP’s exactly as we defined I -FCP’s, but
with the additional requirement that their underlying Ic-spaces T satisfy the fol-
lowing two properties.

(i) The map T (V ) −→ T (W ) induced by an isometry V −→ W is a homeomor-
phism onto a closed subset.

(ii) Each F (W ) is the colimit of the F (V ), where V runs over the finite dimen-
sional subspaces of W and the colimit system runs over the inclusions V ⊂ V ′.

We emphasize that the colimit runs only over the inclusions, not over all linear
isometries. With this modified definition, we have the following result from [112,
1.9]. Observe that the inclusion I −→ Ic induces a forgetful functor from the
category Ic-FCP[U ] of Ic-FCP’s to the category I -FCP[U ] of I -FCP’s.

Proposition 23.6.2. The forgetful functor Ic-FCP[U ] −→ I -FCP[U ] is an
equivalence of categories that restricts to give equivalences between the respective
subcategories of structured FCP’s (monoids, groups, right Π-modules, etc).

Proof. As explained in detail in [112, 1.9], an I -FCP (T, ω) extends to an
Ic-FCP, uniquely up to isomorphism. For a linear isometry f : V −→W , where V
is finite dimensional, W is the sum of f(V ) and its orthogonal complement f(V )⊥.
When W is also finite dimensional, we define T (f) : T (V ) −→ T (W ) by composing
T (f) : T (V ) −→ T (f(V )) with the map T (f(V )) −→ T (W ) that sends x to ω(x, ∗),
where ∗ is the basepoint in T (f(V )⊥). When W is infinite dimensional, we can and
must define T (W ) to be the colimit of the T (V ) for finite dimensional V ⊂W . The
passage to colimits preserves all structure in sight. �

We have an operad L , called the linear isometries operad, whose jth space is
L (j) = Ic(U j , U). It is an E∞ operad since each L (j) is contractible [112, I.1.3].
The following observation is [112, 1.6].

Proposition 23.6.3. Passage from T to T (U) gives a functor from Ic-FCP[U ]
to the category L [U ] of L -spaces.

Proof. The action maps L (j)× T (U)j −→ T (U) are defined by first using ω
to map T (U)j to T (U j) and then using the evaluation map of the functor T . �

Notation 23.6.4. We sometimes abbreviate T (U) to T , relying on context to
determine whether T is intended to mean an Ic-FCP or an L -space.

The previous two results show how to pass from I -FCP’s to L -spaces and
therefore, by an infinite loop space machine, to spectra. As explained in [114, §5§6]
and [105, I.8.3], the output of May’s machine actually takes values in orthogonal
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spectra. In fact, it gives a functor E from L -spaces X to orthogonal Ω-spectra EX
such that the zeroth space (EX)(0) is a group completion of X. By composition,
we obtain a functor E that starts with I -FCP’s and ends with orthogonal spectra.

Example 23.6.5. Passing to the associated L -spaces from Proposition 23.3.6,
we obtain unit infinite loop spaces GL1(R) and SL1(R) with right actions by the
monoid L -spaces F and SF . Because the right actions come from maps of FCP’s,
the action maps are maps of L -spaces. Taking D = GL1(Q) in Definition 23.5.1,
the associated L -space B(GL1(Q),Π) classifiesQ-oriented spherical fibrations [112,
Ch. 3] and is denoted B(Π;Q); similarly we denote the associated Thom spectrum
by M(Π;Q). Work of Sullivan [161] (see also [100,112]) shows that, when localized
away from 2, B(SF ; ko) is equivalent to BSTop and M(SF ; ko) is equivalent to
MSTop.

For results like this, it seems essential to consider the Lewis-May E∞ ring
spectrum MR that we obtain by passage to colimits from the orthogonal spectrum
R, as explained in detail in [105, § I.7]. With that construction, GL1(R) is exactly
the unit space GL1(MR), as specified in Definition 22.2.2, and there is a general
result that often applies to compute localizations of the infinite loop space SL1(R)
in terms of more directly accessible data [115, 8.7] (or [112, VII§5]). As explained
in Remark 22.2.5, it is intrinsically impossible to have commutative symmetric or
orthogonal Ω-spectra whose actual unit spaces have analogous properties.

Finally, we consider analogues that start from Σ-FCP’s rather than from I -
FCP’s. We shall just sketch the ideas. Some details are just like those in the case
of I -FCP’s, and the rest are given in Schlichtkrull’s paper [142, §2.3 and §5].

Remark 23.6.6. Let T be a commutative Σ-FCP. There are two ways to con-
struct associated infinite loop spaces. We can apply a prolongation functor as in
[106] to construct I -FCP’s from Σ-FCP’s, and we can then use the constructions
that we have already described.

Alternatively, we can use the category I of finite (unbased) sets and injections
as a kind of analogue of the category Ic that we used above. (In [142], our I-
FCP’s are called I-monoids, which is reasonable in a context where monoid-valued
I-FCP’s are not considered). The category I contains Σ, and the forgetful functor
from I-FCP’s to Σ-FCP’s has a left adjoint extension functor, in precise analogy
with Proposition 23.6.2.

For an analogue of Proposition 23.6.3, we consider the homotopy colimit, ex-
pressed in the notations of [111, §12] as the categorical bar construction ThI =
B(∗, I, T ) for an I-FCP T . The identification

B(∗, I, T )×B(∗, I, T ) ∼= B(∗, I × I, T × T )

and the product pairings of T give ThI a structure of topological monoid. Even when
the I-FCP T is commutative, this monoid is non-commutative. Under convergence
hypotheses, its homotopy type is identified by a lemma of Bökstedt ([15] or [142,
2.1]). For example, for a convergent commutative symmetric ring spectrum R, one
might redefine GL1(R) to be the homotopy colimit of the unit I-FCP obtained
from the unit Σ-FCP denoted GL1(R) in Proposition 23.3.6 (taking R there to
be symmetric rather than orthogonal). Note that this monoid is not contained in
Aut(R).

Finally, as explained in [142, §5], if T is a commutative I-FCP, then we can
construct a Γ-space from it and apply Segal’s infinite loop space machine [147]
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to construct an associated infinite loop space. We have not checked details, but
it seems to us that the methods of May and Thomason [127] can be adapted to
compare these two passages from commutative Σ-FCP’s to infinite loop spaces.

23.7. Universal spherical fibration spectra

Let A be an R-PFSP over the FCP B. In Theorem 23.2.8 we defined a Thom
spectrum functor that associates an R-FSP r!A to A by applying r! to the ex-spaces
that comprise A. It would be desirable to perform an equivalent construction in
two steps. The first would associate a parametrized R-spectrum U(A) to A, and
the second would apply r!. The base space of U(A), which we denote B, should be
obtained from B by passing to the associated colimit L -space as in the previous
section. Such a two step approach would allow us to define Thom spectra of maps
f : X −→ B as follows.

Definition 23.7.1. The Thom spectrum associated to the R-PFSP A and the
map f : X −→ B is

r!f
∗U(A) ∼= r!f!f

∗U(A).

The map r on the left maps X to ∗, that on the rightmaps B to ∗. The unit of the
adjunction (f!, f∗) induces a canonical map r!f!f∗U(A) −→ r!U(A).

There are several difficulties in carrying out this idea. First of all, we have not
defined parametrized ring spectra over a fixed base space, for reasons explained in
§14.1. But in fact it is not even clear how to construct U(A) as a parametrized
orthogonal spectrum. This stems from the discrepancy of point of view between
the passage to L -spaces in §23.6 and the use of diagram structures everywhere
else. Looking back at §23.6, one’s first thought is to pass to colimits, starting for
example from the I -indexed diagram of ex-spaces B(Π, S) over the I -space BΠ.
Conceptually, this would be analogous to constructing Ic-spaces from I -spaces
by passage to colimits. Since B(Π, S) is an I -PFSP with base I -FCP BΠ, this
would seem to lead to a highly structured spectrum over the space BΠ. This
idea is very close to the original definition and construction of E∞ ring spectra in
[112]. It seems to lead inexorably to a parametrized version of the kinds of highly
structured spectra developed in [61, 98]. We shall say a little about that approach
to parametrized spectra in the next chapter, but it is not the right approach in our
context of parametrized orthogonal spectra.

We shall not resolve these issues here, but we intend to treat them elsewhere.
We can however give a quick construction of U(A) as a prespectrum.

Construction 23.7.2. Let A be a PFSP over the FCP B. We have a map

A(V ) Z SW
idZη // A(V ) ZA(W )

µ // A(V ⊕W )

in UU whose map on base spaces is

B(V ) ∼= B(V )× ∗
id×η // B(V )×B(W ) ω // B(V ⊕W ).

We denote the map on base spaces by j(V,W ) and obtain a map

(23.7.3) j(V,W )!(A(V ) ∧ SW ) −→ A(V ⊕W )
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over B(V ⊕W ). Let B be the colimit of the B(V ), as in §23.6. There are compatible
maps i(V ) : B(V ) −→ B such that i(V ) = i(V ⊕W ) ◦ j(V,W ). We define

U(A)(V ) = i(V )!A(V ).

The structure maps

i(V )!A(V ) ∧ SW −→ i(V ⊕W )!A(V ⊕W )

are obtained by applying i(V ⊕W )! to (23.7.3). It is not possible to retain functoral-
ity in the indexing spaces V with this construction, so we only obtain a prespectrum.

Observe that B is an L -space, although the definition does not make use of
that structure. These ideas are of particular interest for the R-PFSP’s B(D,Π, R)
constructed in Theorem 23.4.9. Specializing to R = S, we write Sph(D,Π) for
U(B(D,Π, S)) and call it the universal spherical fibration prespectrum overB(D,Π).
We state this case separately for emphasis.

Definition 23.7.4. The Thom spectrum Mf associated to a map f : X −→
B(D,Π) is

r!f
∗Sph(D,Π) ∼= r!f!f

∗Sph(D,Π),
where Sph(D,Π) is the universal spherical fibration spectrum over B(D,Π). With
M(D,Π) defined to be r!Sph(D,Π), the unit ε : f!f∗ −→ Id of the adjunction
(f!, f∗) induces a canonical map Mf −→M(D,Π).

Thus Mf is obtained by first pulling back the universal spherical fibration
spectrum over BΠ to a spherical fibration spectrum over X and then pushing
forward along r to obtain an ordinary spectrum. With Blumberg, we intend to
study the multiplicative properties of spectra constructed in this fashion and to
relate them to THH in a later paper.

We conclude this section by showing how Sph(D,Π) can be constructed as an
excellent prespectrum. When Π is a monoid FCP, the projections in Sph(D,Π) are
only quasi-fibrations. It is sensible to replace them by (Hurewicz) fibrations, while
preserving sections and structure maps, using the approximation functor P of §13.3.
The prespectrum Sph(Π) over BΠ is well-structured and Σ-cofibrant, in the sense
of Definition 13.2.1, and the level ex-fibrant prespectrum PSph(Π) over BΠ inherits
these properties by Theorem 13.3.8. When Π is a group FCP, the projections in
Sph(Π) are already bundles and we can use it as it stands. It is technically desirable
to go further and apply the functor T = KEP of Theorem 13.5.1, or KE in the
bundle case, to Sph(Π), so as to preserve the cited properties while obtaining an
excellent Ω-prespectrum over BΠ, in the sense of Definition 13.2.2; it can be viewed
as giving a well-behaved fibrant replacement of Sph(Π) in the stable model structure
of spectra over BΠ. The spectrum TSph(Π) is our universal spherical fibration
prespectrum Sph(Π) over BΠ, and r!Sph(Π) gives a model for the classical Thom
spectrum MΠ. In practice, however, to retain algebraic structure, it is sometimes
better to replace f by an equivalent fibration, use Sph(Π) directly, and only then
pass to Ω-prespectra.

23.8. Some historical background

The framework for our construction of iterated Thom spectra is quite close to
the framework developed in [112], where E∞ ring spaces and E∞ ring spectra were
first introduced. The use of the category I and the operad L (under the name
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PROP) goes back to the still earlier work of Boardman and Vogt [14]. Both I -
FCP’s and I -FSP’s were defined in [112], but with different names. Since we have
referred to that source for details, we give a dictionary in Remark 23.8.1 below. The
classical Thom spectra were described as I -FSP’s in [112, IV§2], and the two-sided
bar construction on I -FCP’s was defined in [112, I.2.2].

The notions of I -FCP and I -FSP are obviously related, but it has never been
clear precisely how. Our work explains and exploits the connection, but only by
virtue of recent progress in our understanding of the foundations of stable homotopy
theory. Orthogonal spectra were not defined until the early 1980’s [114, §5], under a
different name, and they were only recognized as a foundation for stable homotopy
theory in the late 1990’s [106]. Their use greatly clarifies the original concepts and
their interrelationships.

The acronym FSP comes from Bökstedt’s well-known but unpublished work
[15] on topological Hochschild homology (THH), and the acronym FCP is a suitable
companion. The understanding of the comparison between internal and external
versions of diagram ring spectra is due to Jeff Smith and was developed by Hovey,
Shipley, and Smith [77] in the context of symmetric spectra. As we have seen, com-
mutative I -FCP’s lead to E∞ spaces and hence to spectra, whereas commutative
I -FSP’s lead to E∞ ring spectra. This is also true with I replaced by Σ, but
the mechanism for passing from Σ-FCP’s to spectra is different, as we observed in
Remark 23.6.6. The noncommutative case leads to A∞ spaces and A∞ ring spectra.

Remark 23.8.1. We give a dictionary of nomenclature.
(i) In [112, I§1], our I was denoted I∗ and our Ic was denoted I . For these D ,

our D-FCP’s were there called D-functors. The new term seems preferable.
(ii) Our FSP’s, or I -FSP’s, were defined in [112, IV.2.1], where they were called

I∗-prefunctors. Bökstedt’s later term FSP is much to be preferred.
(iii) In [112, p. 54], where they were first introduced and proven to be infinite

loop spaces, our GL1(R) and SL1(R) were called FR and SFR (with E used
instead of R). Waldhausen later introduced versions of GLn(R) for n ≥ 1
[167], leading to the currently standard notations.

(iv) In [112], Σ∞ and Ω∞ had different meanings than are now standard; there,
Σ∞ was the suspension prespectrum functor and Ω∞ was the spectrification
functor, now called L; its role will be recalled in Chapter 24.

(v) In [114, §§5,6], our orthogonal spectra were called I∗-prespectra.





CHAPTER 24

Epilogue: cellular philosophy and alternative
approaches

Introduction

So far in this book, CW objects, as opposed to more general cellular objects,
have rarely been mentioned. Even classically, there is a clear distinction between
CW theory and the model theoretic cellular theory that we have focused on. It
is a general feature of model category theory that it does not know about CW
complexes, and the current emphasis on model category theory can obscure the
arguably more basic and certainly more calculationally relevant CW theory. Model
theoretic cell complexes X come with a filtration whose terms bear no relationship
to the dimensions of cells.

For example, in the Quillen model category of spaces, CW complexes are cell
complexes such that cells are attached only to cells of lower dimension. When this
holds, one can superimpose the skeletal filtration, but that is not possible in general.
In the nonparametrized world, one can circumvent the difficulty, up to homotopy,
by using the cellular approximation theorem. That result ensures that any cell
complex is homotopy equivalent to a CW complex. This also works for G-CW
complexes, provided that one works with spheres with trivial G-action. There are
algebraic model categories leading to derived categories in which cell theory works
but the cellular approximation theorem fails hopelessly [90, III§2]. Topologically,
the distinction is far more important in the parametrized setting than in the classical
setting. We say what we can about CW spaces over B in §24.1, where we obtain
partial versions of the Whitehead and cellular approximation theorems.

We discuss the divergence of the theory of CW objects from the theory of cel-
lular objects in stable situations in §24.2, heading towards discussion of alternative
constructions of the stable homotopy category of parametrized spectra. Stably,
the equivariant theory raises new distinctions that are not present unstably. These
highlight philosophical differences between the alternative approaches to model cat-
egories of spectra mentioned in the introduction to Part III. We have focused on
the “diagram spectrum” approach to the stable homotopy category. In the non-
parametrized theory, there is an alternative “structured spectrum” approach that
offers a closer parallel to the calculational world of CW complexes than is obtain-
able from the diagram spectrum approach [61, 98, 105, 108]. A leisurely intuitive
summary of this approach, which focuses on CW theory to the exclusion of model
category theory, is given in [118, Ch. 12]. We describe how this theory fits into the
framework of well-grounded model categories in §24.3. This works startlingly well
in the EKMM [61] context, where the ground structure can be ignored: the EKMM
category of SG-modules is better behaved than any category of spaces.

411
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We return to the parametrized setting in §24.4. As we noted earlier, a model
theoretic approach to parametrized spectra based on structured spectra seems to
present more difficulties than one based on diagram spectra. An approach based
directly on CW spectra is still more problematic. Nevertheless, there would be
advantages to such alternative foundations. In §24.4, we start towards such a theory
by giving a construction of the parametrized equivariant stable homotopy category
based on structured G-spectra. Rather than solve the model categorical or CW
problems, we just build on the work that we have already done with parametrized
G-prespectra. We point out the beginnings of an EKMM type elaboration of this
parametrized theory in §24.5, but we shall not pursue the details here.

24.1. CW spaces over B

It is usual in axiomatic homology and cohomology theory to express the alter-
native cellular axioms in terms of CW objects rather than the more general cellular
objects that we used in Chapter 20. However, as we shall explain here, we have
not yet worked out enough of the theory of CW spaces over B or of CW ex-spaces
over B to allow such an axiomatization. Nevertheless, up to a point, we can mimic
the theory of CW complexes as developed, for example, in [121]. We sketch what is
involved in order to emphasize the fundamental points of difference. It seems likely
that this theory can be developed further by more elaborate techniques.

One point of difference from the classical case is that we have both the kinds of
cells dictated by the q-model structure and the kinds of cells dictated by the more
useful qf -model structure. Recall that a main point of the qf -model structure is
to ensure that cell complexes of ex-spaces are well-grounded. We surely want CW
complexes of ex-spaces to have that property. However, the importance of this
distinction is diminished by the fact that we do not yet know how to prove much
about CW ex-spaces over B, as opposed to CW spaces over B. Moreover, it is
technically and conceptually helpful to realize that much of what we can prove
goes through using the more general q-cells, but specializes to results valid upon
restriction to CW complexes defined in terms of qf -cells. Thus we have both a
q-CW theory and a qf -CW theory. We write CW complex ambiguously for results
that work equally well with either definition, but when we consider homology we
always have qf -CW complexes in mind.

The definition of CW complexes X over B works exactly like the definition of
CW complexes. We take X0 to be a disjoint union of points over B and construct
Xn from Xn−1 by attaching cells Dn over B along attaching maps over B defined
on their boundary spheres Sn−1 over B. For ex-spaces, we take X0 to be a wedge
over B of “ex-points” ∗ q B over B and construct Xn from Xn−1 by attaching
cells Dn q B over B along attaching ex-maps defined on Sn−1 q B. Relative CW
complexes are defined similarly. Some of the treatment in [121, Ch. 10] carries over
verbatim. The treatment there is organized around the Homotopy Extension and
Lifting Property. Unfortunately, we do not know how to prove an ex-space analogue
of this result, hence we focus on spaces over B. Although we are interested in
CW complexes, the notion of dimension makes sense for cell complexes and HELP
applies to them as well.

Theorem 24.1.1 (HELP). Let (X,W ) be a relative q-cell complex over B of
dimension ≤ n and let e : Y −→ Z be a map over B that is an n-equivalence, where
Y and Z are q-fibrant (or just qf -fibrant if (X,W ) is a relative qf -cell complex).
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Then, given maps f : X −→ Z, g : W −→ Y , and h : W × I −→ Z over B such
that f |W = h ◦ i0 and e ◦ g = h ◦ i1 in the following diagram, there are maps g̃ and
h̃ over B that make the entire diagram commute.

W

��

i0 // W × I
h
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xx

xx
xx

x

��
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i1oo

g
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Proof. By the nonparametrized version [121, p. 73], there are maps ḡ and h̄
that make the diagram commute but that may not be maps over B. We use the
assumption that the projections pY and pZ are q-fibrations to homotope ḡ and h̄
to maps g̃ and h̃ that make the diagram commute and are maps over B.

Before proceeding to the proof, recall that for any homotopies h and h′, the
inverse and sum are defined by h−1(x, s) = h(x, 1− s) and

(h+ h′)(x, s) =
{
h(x, 2s) if s ≤ 1/2
h(x, 2s− 1) if s ≥ 1/2.

Recall too that there is a standard homotopy ` from h + h−1 to the constant
homotopy at h0 specified by

`(x, s, t) =

 h(x, 2s) if 0 ≤ s ≤ (1− t)/2
h(x, 1− t) if (1− t)/2 ≤ s ≤ (1 + t)/2
h(x, 2− 2s) if (1 + t)/2 ≤ s ≤ 1.

Observe that the homotopies `(−, 0,−) and `(−, 1,−) are also constant at h0.
Write i for the inclusion W −→ X. To homotope ḡ to a map g̃ over B, we

construct the following diagram.

Mi
j //

��

Y

pY

��
X × I

h̄−1
//

j̃

66mmmmmmm
Z pZ

// B

Here Mi is the mapping cylinder X × {0} ∪W × I ⊂ X × I, and the left vertical
arrow is an acyclic q-cofibration since i is a q-cofibration. Let

j(x, 0) = ḡ(x) for x ∈ X and j(w, t) = g(w) for w ∈W.

The rectangle commutes by inspection. Since pY is a q-fibration, there is a lift j̃.
Define g̃(x) = j̃(x, 1). Then g̃ is a map over B that restricts to g on W .

To homotope h̄ to a homotopy h̃ over B, let ` : X×I×I −→ B be the homotopy
from pZ h̄+pZ h̄−1 to the constant homotopy at pZ h̄0 = pX obtained by specializing
the general construction above. Observe that `(w, s, t) = pW (w) if w ∈ W . We
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construct a diagram as follows.

X × I × {0} ∪M(i, i)× I k //

��

Z

pZ

��
X × I × I

`
//

k̃

44iiiiiiiiii
B.

Here M(i, i) is the double mapping cyclinder M(i, i) = X ×{0}∪W × I ∪X ×{1}.
The canonical inclusion j : M(i, i) −→ X × I is a q-cofibration. The left vertical
arrow in the diagram above is the inclusion of the mapping cylinder of j in X×I×I
and is therefore an acyclic q-cofibration. The map k is defined by

k(x, s, 0) =
{
h̄(x, 2s) if s ≤ 1/2
ej̃(x, 2s− 1) if s ≥ 1/2

k(x, 0, t) = h̄(x, 0)

k(x, 1, t) = ej̃(x, 1)

and, for w ∈W ,

k(w, s, t) =
{
h(w, (2− t)s) if s ≤ 1/(2− t)
eg(w) if s ≥ 1/(2− t).

The rectangle commutes by inspection. Since pZ is a q-fibration, there exists a
lift k̃. Define h̃(x, s) = k̃(x, s, 1). Then h̃ is a map over B such that the required
diagram commutes. �

A second point of difference is that we cannot expect a result such as HELP
to hold without fibrancy conditions. This means, for example, that the usual im-
mediate consequence that an n-equivalence between CW complexes of dimension
less than n is a homotopy equivalence is no longer valid in general. The following
version of the Whitehead theorem, which refers to the homotopy category HoK /B
does follow directly.

Theorem 24.1.2 (Whitehead). If X is a CW complex over B and e : Y −→ Z
is an n-equivalence over B, then e∗ : [X,Y ]B −→ [X,Z]B is a bijection if dim(X) <
n and a surjection if dim(X) = n.

The point is that we can compute morphisms in the homotopy category by
first applying q-fibrant approximation to e : Y −→ Z and then passing to homotopy
classes of maps. The requirement of fibrancy in the Whitehead theorem is a serious
drawback, as the following proposition and question make clear.

Proposition 24.1.3. The following CW approximation statements hold.
(i) For any space X over B, there is a weak equivalence ΓX −→ X over B, where

ΓX is a CW complex over B.
(ii) For any pair (X,W ) of spaces over B, there is a weak equivalence

γ : (ΓX,ΓW ) −→ (X,W ), where (ΓX,ΓW ) is a CW pair over B.
(iii) For any excisive triad (X;W,V ) of spaces over B, there is a CW triad

(ΓX; ΓW,ΓV ) and a map of triads γ : (ΓX; ΓW,ΓV ) −→ (X;W,V ) such that
γ : ΓW ∩ ΓV −→ W ∩ V , γ : ΓW −→ W , γ : ΓV −→ V , and γ : ΓX −→ X
are all weak equivalences.
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On homotopy categories, Γ is the object function of a functor such that γ is natu-
ral, and ΓX, (ΓX,ΓW ), and (ΓX; ΓW,ΓV ) are unique up to isomorphism in the
respective homotopy categories.

Proof. For (i), we build ΓX by successive cell attachment as in [121, §10.5].
The essential point is that we are considering the homotopy groups of the total
spaces and can work in the nonparametrized context. We give the cells that we
attach the projections induced from that of X, and we then use Lemmas 6.3.1 and
6.3.2 to replace the constructed q-cells over B by qf -cells over B. For (ii), we start
from a CW approximation γ : ΓW −→ W and attach cells to ΓW to construct
ΓX together with a weak equivalence γ : ΓX −→ X that extends the given γ on
ΓW , as in [121, §10.6]. For (iii), let M = W ∩ V , construct a weak equivalence
γ : ΓM −→M as in (i), and construct weak equivalences γ : (ΓW,ΓM) −→ (W,M)
and γ : (ΓV,ΓM) −→ (V,M) as in (ii). Then let ΓX = ΓW ∪ΓM ΓV and let
γ : ΓX −→ X be obtained by passage to pushouts; it is a weak equivalence by[121,
§10.7]. In the last sentence, we are just applying the Whitehead theorem formally.

�

One problem with this result is that it too does not go over to ex-spaces. There
is no problem building projections starting from the given ones, but we cannot
also build up sections that way. Another problem is that, due to the fibrancy
condition in HELP, we cannot use the Whitehead theorem to deduce that our
CW approximations are functorial up to homotopy (rather than just functorial on
homotopy categories) and that Γ is unique up to homotopy equivalence, as was
done in [121, §§10.5-10.7]. This raises the following question.

Question 24.1.4. Is every space X over B weakly equivalent to a fibrant CW
complex over B?

Conceptually, a great virtue of cofibrantly generated model categories is that
they allow fibrant approximation by cell complexes. However, since fibrations are
determined by the RLP with respect just to the generating acyclic cofibrations,
fibrancy conditions are blind to the refinement of cell complexes to CW complexes.
Of course, this problem is not significant in the classical examples, where every
object is fibrant. The conclusion is that, in the parametrized context, we can apply
CW approximation to objects but not, in general, to maps. For example, we only
have the following version of the cellular approximation theorem.

Theorem 24.1.5 (Cellular Approximation). Any map f : (X,W ) −→ (Y, V )
between relative CW complexes over B such that Y and its skeleta are fibrant is
homotopic relative to W to a cellular map over B.

Proof. The inclusion in : Y n −→ Y is an n-equivalence. We apply HELP to
the pair (X0,W ) to start an inductive construction and proceed cell by cell at later
stages, as in [121, §10.4]. �

24.2. CW spectra and stable homotopy categories

Nonequivariantly, CW spectra work more or less in the same way as CW com-
plexes and can be developed in any reasonable model category of spectra. However,
the existing literature of diagram spectra does not consider CW spectra, and there
is a quirk that we shall explain shortly. Equivariantly, the situation is different.
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Whether or not one can restrict model categorical G-cell spectra to obtain a good
theory of G-CW spectra based on spheres G/H+ ∧Sn depends on the choice of the
model category of G-spectra, as we shall explain shortly.

Even nonequivariantly, there is a subtle discrepancy between cell spectra and
CW spectra, quite apart from the obvious dimensional restriction on attaching
maps. In all categories of diagram spectra in the literature, both simplicial and
topological, cell objects are constructed from generating sets FdS

q
+ −→ FdD

q
+,

where Fd is left adjoint to evaluation at d for an object d of the domain category.
This construction of cell spectra has as its underlying space level model the based
spaces that are cell complexes in the unbased sense. On the space level, using the
Sq+ as domains of attaching maps is clearly sensible since the disjoint basepoint
must go to the basepoint and one is only looking at an unbased map defined on Sq.
The corresponding definition of based Serre fibrations is similar: they are maps of
based spaces that satisfy the RLP with respect to the maps i0 : Dq

+ −→ (Dq× I)+;
that is, they are based maps that are Serre fibrations in the unbased sense.

Stably, thinking about CW spectra, that approach does not give the calcula-
tionally right notion of a cell complex. In any stable category, we have

FnS
q
+ ' Σ−1FnΣS

q
+ ' Σ−1Fn(Sq+1 ∨ S1) ' FnSq ∨ FnS0.

Thus, homotopically, the attaching maps of cells are given by a pair of homotopy
classes, not just one. Looking in terms of the adjoints relating spectra, based
spaces, and unbased spaces, the point is that for a loop space X, the set of unbased
homotopy classes of unbased maps Sq −→ X is in bijective correspondence with
πq(X) × π0(X). Clearly, a pair of attaching maps for each cell does not give the
notion of a cell spectrum that a working homotopy theorist has in mind.

This is related to the distinction in Definition 7.5.5 between detecting sets and
generating sets. It would seem more natural in the based context to use the based
spheres Sn as the domains of attaching maps for based CW complexes, but then
the only based CW complexes that we could construct would be the disjoint unions
of a set of points with a connected based CW complex.

With Lewis-May spectra and EKMM S-modules [61,98], this discrepancy does
not appear. The attaching maps of cells are defined on good models of sphere
spectra, with no disjoint basepoints in sight. The relevant space level precursor is
given by based cell complexes, which are defined in terms of the based generating
cofibrations Sq −→ CSq and have based attaching maps. Since the model structure
on Lewis-May spectra does not require these cell complexes to be the cell complexes
of a model structure on based spaces, there is no problem.

One might try to reconcile the diagram spectrum setting by reworking the
diagram category model theory in terms of such cell complexes, and one can cer-
tainly superimpose a treatment of CW-spectra by directly mimicking [98, §I.5], read
nonequivariantly. However, no such approach works in the parametrized setting,
for the simple reason that while spheres can be given basepoints, spheres over a
given base space cannot be given base sections. Moreover, such an approach would
not address the deeper equivariant issues, which we now explain. A leisurely expla-
nation devoid of model category theory is given in [118, Ch. XII]. However, these
issues are interwoven conceptually with the question of whether or not all objects
in one’s model category are fibrant.
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Of course, in a topological model category in which not all objects are fibrant,
cellular objects are not generally fibrant. This is why the most naive cellular ob-
jects may not be sufficient to capture the entire homotopy category. Here we must
carefully distinguish between a minimal set of generating cofibrations for a stable
topological model category C and a minimal set of generating objects (or, equiva-
lently, detecting objects) for its derived triangulated homotopy category HoC . The
cofibers of a minimal set of generating cofibrations for C give a generating set of
objects for HoC , but this generating set of objects need not be not minimal.

A naive approach to a stable cellular theory is to take objects in a well chosen
minimal generating set for HoC as the allowed domains of attaching maps for cells
of the form i : T −→ CT , where CT is the cone on T . Thus a naive cell complex is
the colimit of a sequence Xi, where X0 = ∗ and Xi+1 is the pushout of a coproduct
of cells T −→ CT along attaching maps T −→ Xi. When the objects T have
dimensions, we define the n-skeleton Xn of a cell complex X to be the union of the
cells of dimension at most n, and we define a CW complex to be a cell complex
whose attaching maps with domain of dimension n land in the relevant n-skeleton
(Xi)n. Note that such complexes have two filtrations, the sequential one, {Xi},
and the skeletal one, {Xn}. That is essential to an adequate theory in the presence
of negative dimensions. When the cellular approximation theorem applies to show
that any map T −→ Xi is homotopic to a map with image in the subcomplex (Xi)n,
where n = dim(T ), any cell complex is equivalent to a CW complex.

In the Lewis-May or EKMM equivariant stable categories, this naive theory
gives exactly the right theory of G-CW spectra. The well-chosen objects T are
suitable cofibrant G-spheres SnH = G/H+ ∧ Sn, n ∈ Z. All of the formal properties
work exactly as for G-spaces, the cellular approximation theorem works in exactly
the same way as it does nonequivariantly, and every G-spectrum is weakly equiv-
alent to a G-CW spectrum [98, §I.5]. Model theoretically, the cofibrations are the
retracts of the naive relative cell complexes.

In the nonequivariant stable categories of symmetric or orthogonal spectra, CW
theory can be developed similarly, except that, as we have seen, the basic cells T
should be the cofibers rather than the domains of the generating cofibrations. How-
ever, this fails to work in the equivariant stable categories of symmetric or orthogo-
nal G-spectra. Restricting to orthogonal G-spectra for simplicity, the G-spheres SnH
still detect weak equivalences, but they cannot be the domains (or cofibers) of the
generating cofibrations of an appropriate model structure. Cell spectra constructed
from these spheres give rise only to naive orthogonal G-spectra, not to the genuine
G-spectra that represent RO(G)-graded cohomology theories. Model theoretically,
these spheres only “see” the right homotopy groups after fibrant approximation,
and one cannot use them to construct such approximations.

It is the fact that all objects are fibrant in the Lewis-May and EKMM categories
that makes equivariant G-CW theory work there with integer spheres. The point
is that homotopical information about non-trivial representations of G is packaged
into the sphere spectra that are the domains of attaching maps. Explicitly, the
Lewis-May sphere G-spectrum SG has 0th G-space QS0, which is the colimit over
all representations V of the equivariant loop G-spaces ΩV SV . This allows one to
restrict to “trivial” G-sphere spectra G/H+ ∧ Sn for n ∈ Z, rather than using
G-sphere spectra G/H+ ∧ Sα for α ∈ RO(G), as domains of attaching maps.
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These issues are discussed further in [105, IV§1], where the reader can find a
discussion of the Quillen equivalences that nevertheless relate all of the relevant
model categories. Even nonequivariantly, it is advantageous to have fibrant CW
objects, and of course it is essential to have CW-spectra such that each cell has a
single attaching map. In diagram categories, the cell objects with dimensionally
appropriate attaching maps do not have these properties, and we conclude that the
theory of CW spectra there is more divergent from the model theoretic theory of
cell spectra and less convenient than in the Lewis-May category.

Rather than think about these issues in the context of diagram spectra, we can
exploit the web of Quillen equivalences of model categories that has been developed
in [105,106,145]. It is effortless and automatic to take information developed in the
Lewis-May and EKMM context and apply it in the diagram category context, and
vice versa. Thus, implicitly, we already have a fully developed theory of diagram
G-CW spectra, just by moving back and forth between Quillen equivalent model
categories. It is harder work setting up the Lewis-May and EKMM foundations, but
they package useful information that is difficult or impossible to obtain directly in
the diagram spectrum setting, especially in their relationship to infinite loop spaces
and to equivariant stable homotopy theory.

This discussion applies with comparable force in the parametrized setting, but
here fibrancy is more critical and we have not obtained a satisfactorily complete
theory based on structured (or “genuine”) parametrized spectra.

24.3. Structured spectra and well-grounded model categories

We first compare the definitions of model categories of diagram spectra and
model categories of structured spectra and then describe how the latter theory fits
in with our theory of well-grounded model categories. The discussion will pinpoint
the problems involved in obtaining a parametrized generalization of the theory of
structured spectra.

In the theory of diagram spectra, one bootstraps one’s way up to the appro-
priate model structure, using the level model structure on categories of diagram
spectra as a pivotal intermediary between the model structure on spaces and the
stable model structure on spectra. From the point of view of [61, 98], diagram
spectra are themselves intermediate objects between spaces and spectra. They are
of course diagrams of spaces, and their levelwise constituent spaces are taken more
seriously than are the constituent spaces of the spectra and S-modules of [61, 98].
In either approach, the basic philosophy is that spectra are the objects of intrinsic
interest in their own right, and their underlying families of spaces are generally to
be ignored when doing stable homotopy theory. This philosophy is carried further
in the structured spectrum approach. The key value of the underlying spaces of
structured spectra is that they are infinite loop spaces, on the nose, which is not
true for even the fibrant objects in any category of diagram spectra and is usually
not relevant when focusing only on stable homotopy theory.

This difference in philosophy plays out in major technical differences. In its
naive sequential form, as first defined in [111], a Lewis-May spectrum E is just a
sequence of based spaces Ei and based homeomorphisms Ei −→ ΩEi+1. We recall
and emphasize that this notion of spectrum is incompatible with the structure
incorporated by diagram spectra. If E admits a structure of symmetric spectrum,
for example, then E is the trivial spectrum: Ei cannot be a Σi-space homeomorphic
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as a Σi × Σ2-space to Ω2Ei+2 unless it is a point. In the coordinate-free setting,
the same contradiction applies to orthogonal spectra.

There is an adjoint pair of functors (L, `) relating prespectra, which for the
moment we think of as sequences of based spaces Ti and based maps Ti −→ ΩTi+1,
to spectra. The category P of prespectra is clearly topologically bicomplete, with
colimits and tensors constructed levelwise. The category S of spectra is so as well,
but colimits and tensors are constructed by first applying the forgetful functor
`, then applying the prespectrum level construction, and finally applying L. For
example, E ∧ K = L(`E ∧ K). Homotopies and Cyl-cofibrations are defined in
terms of E ∧ I+. If a map T −→ T ′ of prespectra is a Cyl-cofibration, then it is
obvious that each Ti −→ T ′i is a Cyl-cofibration of based spaces. In sharp contrast,
it is not known that if a map E −→ E′ is a Cyl-cofibration, then each Ei −→ E′i
is a Cyl-cofibration. These maps are closed inclusions [98, A.3.9], but even that is
not at all obvious. Therefore, spacewise h-cofibrations have no useful role to play
in this category of spectra.

In our parametrized setting, the key technical result is Theorem 12.4.2, which
gives the long exact sequences of fiberwise homotopy groups associated to a cofiber
sequence of orthogonal spectra over B. The theory leading to that was based
on implementing a boot strap argument that is based ultimately on the space
level gluing lemma, in its implied levelwise version. For that, it was crucial that
Cyl-cofibrations are bicofibrations, and our axiomatization of the theory of well-
grounded model categories is a careful conceptualization of how such arguments
might go in a variety of contexts. Since spacewise h-cofibrations are no longer
useful in a Lewis-May approach, we need a different way of getting at such long exact
sequences, and the axiomatization is not directly relevant. Cofibers of parametrized
spectra are not nicely related to levelwise cofibers of total spaces, and it is not clear
to us how to set up the parametrized theory this way.

In the nonparametrized setting, there is no distinction between the level and
stable model structures on Lewis-May or EKMM spectra [61, VII§5] since a map
of spectra (or, more generally, of Ω-prespectra) is a π∗-isomorphism if and only if
it is a level weak equivalence. Nonequivariantly, this is true tautologically. Equiv-
ariantly, it is a non-trivial theorem; see [98, I.7.12] or [105, III.3.4]. Because the
level and stable model structures coincide, the acyclicity of relative cell complexes
built up from the generating acyclic cofibrations is straightforward, as is clear from
comparison of Remark 4.5.12 with the proof of [61, VII.5.6]. There is no direct
analogue of this in the parametrized version of the Lewis-May setting. That is
one reason that the over and under Quillen model structure on ex-spaces is an in-
sufficient starting point: we cannot prove the relevant acyclicity starting from the
candidates for generating acyclic cofibrations to which that model structure leads
us. This may work starting from the qf -model structure, but we do not have a
proof.

Despite this discussion, it is reasonable to ask whether or not the non-parame-
trized Lewis-May and EKMM categories of spectra are well-grounded topological
model categories. For the Lewis-May spectra, the answer seems to be no. For the
EKMM L-spectra and S-modules, the answer is yes, and in a surprisingly simple
way, as we will explain shortly. An indication of the difference was pointed out
in [105, IV.2.10]. The Lewis-May category of spectra, which we denote S in this
chapter, is not known to be left proper under its stable model structure, whereas
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the EKMM categories are left proper. Of course, our axioms force well-grounded
model categories to be proper. The theory of “tame” spectra developed in EKMM
gets around this problem in S by giving a large class of spectra for which cofiber
sequences have long exact sequences of homotopy groups [61, I.3.4]. Precisely, a
spectrum is tame if it is homotopy equivalent to one of the form LT , where the
structure maps of T are cofibrations of based spaces.

In contrast, by a kind of technical miracle [61, I.6.4], all cofiber sequences of
L-spectra have long exact sequences of homotopy groups. We have the following
strange result, the gist of which is that EKMM L-spectra, or its even better behaved
Quillen equivalent full subcategory of S-modules, is better behaved than any known
category of based spaces. We focus on S-modules and generalize to the equivariant
context, where the sphere G-spectrum is denoted SG.

Theorem 24.3.1. For any compact Lie group G, the category MG of SG-
modules is a well-grounded G-topological model category with its stable model struc-
ture.

Proof. In the contexts of [98] and [61], all spaces are compactly generated, and
we retain that convention. We then decree that every SG-module is well-grounded
and every map of SG-modules is a ground cofibration. The closure properties
required of subcategories of well-grounded objects and of cofibrations hold trivially,
and the cyl-cofibrations coincide with the bicofibrations. Thus we take our ground
structure to be the obvious one present in any topologically bicomplete category.

We must show that the weak equivalences, which are the π∗-isomorphisms, are
well-grounded in the sense of Definition 5.4.1. We emphasize that the homotopy
groups are defined directly on the spectrum level, without use of prespectra or
colimits. That is, πHn (M) is the set of homotopy classes of maps G/H+ ∧ Sn −→
M of SG-modules,where Sn is the canonical cofibrant n-sphere SG-module; see
[61, p. 33] and [105, p. 63]. Certainly a homotopy equivalence is a π∗-isomorphism.
Any cofiber sequence of SG-modules has a long exact sequence of homotopy groups
for each subgroup H, by the equivariant analogue of [61, I.6.4]. It follows by use of
split cofiber sequences that finite wedges of π∗-isomorphisms are π∗-isomorphisms.
Since sphere SG-modules are compact [61, p. 53], the conclusion for arbitrary wedges
follows by passage to colimits. Pushouts of π∗-isomorphisms along cyl-cofibrations
are π∗-isomorphisms by [61, I.6.5], and the classical mapping cylinder construction
factors any map as the composite of a cyl-cofibration and a homotopy equivalence.
Therefore the gluing lemma holds by Lemma 5.4.3. The homotopy groups of a
colimit of a sequence of cyl-cofibrations are the colimits of the homotopy groups
of the terms, so the colimit lemma holds. Finally, the pushout product condition
of Definition 5.4.1(v), with K and L restricted to be CW complexes, holds by
Lemma 5.4.5 and the proof of [61, I.6.6]. �

24.4. The stable category of parametrized spectra

While an alternative approach to parametrized spectra that is modelled on
[61,98] is desirable, we have not worked one out in detail. We sketch what we know
in the rest of this chapter. A first step in this direction was taken by Po Hu [78],
but from the flawed starting point of the over and under Quillen model structure.

As emphasized at the start of Chapter 12, everything there applies verbatim
to the category GPB of G-prespectra over B, where G is a compact Lie group
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and B is a compactly generated G-space. We modify the discussion there slightly
by restricting attention to indexing inner product spaces contained in a fixed G-
universe U . We ignore orthogonal G-spectra in this section, freeing us to use
notations duplicatively.

Definition 24.4.1. A G-spectrum over B is a G-prespectrum X over B such
that each adjoint structure map σ̃ : X(V ) −→ ΩW−V

B X(W ) is a homeomorphism
(isomorphism in GKB). Let SG,B and GSB denote the full subcategories of G-
spectra over B in PG,B and GPB .

Theorem 24.4.2. Let ` : GSB −→ GPB be the inclusion functor. Then ` has
a left adjoint L.

Proof. This is proven exactly as in [98, App §1]. The functor L factors
through the full subcategory GQB of inclusion spectra, whose adjoint structure
maps σ̃ are inclusions. The left adjoint GPB −→ GQP is obtained by Freyd’s
adjoint functor theorem or an explicit (and fairly unilluminating) transfinite induc-
tion. The left adjoint GQP −→ GSP is obtained by an evident passage to colimits
over inclusions induced by the σ̃, so that (LX)(V ) = colimW⊃V ΩW−VX(W ). �

Proposition 24.4.3. The category GSB is topologically bicomplete.

Proof. This is proven exactly as in the nonparametrized case. Limits and
cotensors are created in the categoryGPB , and colimits and tensors are constructed
by first applying `, then the relevant construction, and finally L. �

For a map f : A −→ B, we have base change functors f∗, f∗, and f∗ as in §2.1.
The pushout used to construct f! must be carried out using the adjunction (L, `),
but f∗ and f∗ are constructed levelwise. Similarly, all of the other formal point-set
level structure developed in Chapter 2 carries over directly to these categories of
equivariant parametrized spectra.

There is also a shift desuspension functor Σ∞V from ex-G-spaces over B to G-
spectra over B that is left adjoint to the V th ex-G-space over B functor. It is
constructed from our prespectrum level analogue by use of the adjunction (L, `).

Remark 24.4.4. Let LFIfB and LFJfB be the sets of maps of G-spectra over
B obtained by applying the functor L to the sets specified in Definition 12.1.6. A
standard argument [73, 11.3.2] shows that if ` takes relative LFJfB-cell complexes
to weak equivalences, then these sets give the generating cofibrations and generat-
ing acyclic cofibrations for a compactly generated level model structure on GSB

such that (L, `) is a Quillen adjunction. Here a map f in GSB would be a weak
equivalence or level qf -fibration if and only if `f were a level weak equivalence or
level qf -fibration. Since the weak equivalences between fibrant objects would be the
fiberwise weak equivalences and since ` would take level fibrations to s-fibrations,
by Proposition 12.5.6, it would follow that (L, `) induces an equivalence between the
resulting homotopy category HoGSB and the stable homotopy category HoGPB .
However, we have not been able to prove the required levelwise acyclicity of total
spaces of relative LFJfB-cell complexes. Of course, since the level total spaces of a
spectrum over B do not form an nonparametrized spectrum, we cannot just reduce
to the spectrum level analogue.

Nevertheless, we can use G-spectra over B to obtain a model for the parame-
trized stable homotopy category.
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Definition 24.4.5. A G-spectrum X is h-fibrant if each X(V ) is an h-fibrant
ex-G-space; q-fibrant, qf -fibrant, and quasi-fibrant G-spectra are defined similarly.
A map f : X −→ X ′ of quasi-fibrantG-spectra is a weak equivalence if its restriction
fb : Xb −→ X ′

b is a weak equivalence of Gb-spectra for each b ∈ B. Let GS f
B

denote the category of h-fibrant G-spectra over B and let HoGS f
B be the homotopy

category obtained by formally inverting the weak equivalences.

The definition works equally well if we replace h-fibrant by q or qf -fibrant in
our definition of the objects of HoGS f

B . With any choice, we have the following
result. As indicated at the end of the proof, we skimp on a few easily filled in
details.

Theorem 24.4.6. The category HoGS f
B is equivalent to the category HoGPB.

Proof. A map f : X −→ X ′ is a weak equivalence if and only if `f is a weak
equivalence, and ` takes qf -fibrant G-spectra to fibrant G-prespectra. Using that
the functor L preserves homotopy equivalences because it preserves cylinders and
that homotopy equivalences are weak equivalences, it is easy to see that any mor-
phism X −→ Y in HoGS f

B(X,Y ) is represented by a diagram X ←− LQ`X −→ Y
of G-spectra, where Q is s-cofibrant approximation in GPB . In particular, we have
a well-defined hom set HoGS f

B(X,Y ) between any pair of h (or q, or qf)-fibrant
G-spectra X and Y . Either using that L is homotopy preserving or arguing for-
mally from the adjunction, we find that ` induces a bijection of hom sets between
any pair of objects. Thus ` induces a full and faithful functor on homotopy cate-
gories, and it suffices to show that it is essentially surjective, meaning that every
G-prespectrum Y is isomorphic in HoGPG to `X for some h-fibrant G-spectrum
X. Certainly, using the excellent approximation functor T , Y is isomorphic in
HoGPG to an excellent G-prespectrum and so may be assumed to be excellent.
Recall from Proposition 8.2.7 that each ΩW−V

B Y (W ) is an ex-fibration over B.
Since the structure maps σ are f -cofibrations, their adjoints are closed inclusions,
as in the proof of [94, A.8.3]. In fact, with a minor additional condition in our
definition of excellent G-prespectra, these adjoints are f -cofibrations. Precisely,
we must require that B and all total spaces Y (V ) of excellent G-prespectra Y be
G-LEC (locally equiconnected), which just means that their diagonal maps are
h-cofibrations. Then the proofs given by Lewis in [95] apply to prove the claim;
compare [61, §X.4]. This additional requirement causes no difficulty in the theory
of Chapter 13. Now (LY )(V ) is the colimit of a sequence of f -cofibrations that are
fp-equivalences, by Lemma 13.2.3, and Proposition 8.2.1(iv) gives that each LY (V )
is an ex-fibration. Therefore LY is an h-fibrant G-spectrum and the natural map
Y −→ `LY is a weak equivalence, giving the conclusion. �

Remark 24.4.7. Returning to the discussion of CW-spectra in §24.2, one is
tempted to consider the naive approach sketched there, starting from the spectrum
over B version of the detecting set DB = {Sn,bH } specified in Definition 13.1.1. As
explained in Theorem 13.1.14 and Remark 13.1.16, the localizing subcategory of the
triangulated category HoGSB generated by DB is all of HoGSB . However, on the
level of spectra over B, the resulting cell spectra all consist of fibers glued together
trivially, just as in Remark 13.1.16, and these cannot satisfy any reasonable levelwise
fibrancy condition. In particular, one cannot hope to prove the factorization axioms
by use of the small object argument.
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24.5. Towards parametrized SG-modules

The construction of smash products and the theory of SG-modules of [61] de-
pends on the twisted half-smash product functor. This construction is used to
internalize external smash products and is thus the analogue in [61,98] of internal-
ization via left Kan extension in the theory of diagram spectra. It is considerably
more useful calculationally, but is less categorically conceptual. The treatment
of twisted half-smash product functors developed by Michael Cole, nonequivari-
antly in [61, App] and equivariantly in [118, Ch. XXII], carries over directly to the
parametrized setting, as was noted by Po Hu [78, pp 12–19]. We give a brief sketch.

Let U and U ′ be G-universes and let I (U,U ′) be the G-space of linear isome-
tries U −→ U ′, with G acting by conjugation. Working with G-spaces and ex-G-
spaces over B where Cole uses unbased and based G-spaces and with G-spectra
over B where Cole uses G-spectra, there are no substantive changes in the parallel
nonequivariant and equivariant constructions of [61, App] and [118, Ch. XXII].

Following Cole, we define a category GSB(U ′;U) whose objects E consist of
families of G-spectra EV ∈ GSBU

′ over B indexed on U ′, one for each indexing
G-space V ⊂ U , together with isomorphisms ΣW−V

B EW −→ EV whenever V ⊂ W .
For each ex-G-space K over B, we define an object E (K) ∈ GSB(U ;U) such that
E (K)V = Σ∞V (K). More generally, for a G-linear isometry f : U −→ U ′ we define
an object Ef (K) ∈ GSB(U ′;U) such that Ef (K)V = Σ∞f(V )(K). There are smash
product and function spectrum functors

∧ : GSB(U ′;U)×GSBU −→ GSBU
′ and F : GSB(U ′;U)op×GSBU

′ −→ GSBU

such that

(24.5.1) GSBU
′(E ∧X,X ′) ∼= GSBU(X,F (E , X ′)),

where X and X ′ are G-spectra over B indexed on U and U ′. The smash product
is constructed in such a fashion that

E ∧ Σ∞V (K) ∼= EV ∧B K.
Now let A be a G-space over B together with a G-map α : A −→ B×I (U,U ′)

over B; note that α is determined by its second coordinate A −→ I (U,U ′), and
let αb : Ab −→ I (U,U ′) be the restriction of α to the fiber over b; it is a Gb-map.
One uses Thom spaces defined as in the original construction of twisted half-smash
products in [98] to construct a Thom object M (α) in GSB(U ′;U). Its zeroth
spectrum over B, (Mα)0, is isomorphic to Σ∞B (AqB), where the disjoint copy of
B gives the section. If V ′ ⊂ U ′ is G-isomorphic to V ⊂ U , there is an untwisting
isomorphism M (α)V ∼= Σ∞V ′(AqB).

With these preliminaries, the twisted half smash product and twisted function
spectra functors over B are defined by

(24.5.2) αnX = M (α) ∧X and F [α,X ′) = F (α,X ′).

Here X ∈ GSBU and X ′ ∈ GSBU
′. The adjunction (24.5.1) specializes to

(24.5.3) GSBU
′(α ∧X,X ′) ∼= GSBU(X,F (α,X ′)).

The crucial property of the parametrized construction is that, on fibers,

(24.5.4) (αnX)b ∼= αb nXb and F [α,X ′)b ∼= F [αb, X ′
b).

When A = B and α is constant at a G-linear isometry f : U −→ U ′, we write
α n X = f∗X. For f : U2 −→ U , such change of universe functors can be used
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to internalize the external smash product which takes G-spectra X and X ′ over
B and B′, both indexed on U , to a G-spectrum X Z X ′ over B × B′ indexed on
U2 = U ⊕U . When B = B′, pulling back along the diagonal of B gives the internal
smash product X∧BX ′ in this context. Since the problems with base change along
the diagonal are intrinsic, the limitations of the internal smash product and the use
of Brown representability to construct internal function spectra would remain as in
the approach using orthogonal spectra.

Using the linear isometries operad L , we can operadically parametrize the
internalization (over cartesian products) of external smash products. This leads to
parametrized versions of the basic definitions of EKMM [61], but we leave further
development along these lines to the interested reader.
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Topologie Géom. Différentielle Catég. 41 (2000), no. 3, 162–206 (English, with French sum-

mary).
[21] P. I. Booth and R. Brown, Spaces of partial maps, fibred mapping spaces and the compact-

open topology, General Topology and Appl. 8 (1978), no. 2, 181–195.

[22] , On the application of fibred mapping spaces to exponential laws for bundles, ex-
spaces and other categories of maps, General Topology and Appl. 8 (1978), no. 2, 165–179.

[23] F. Borceux, Handbook of categorical algebra. 2, Encyclopedia of Mathematics and its Appli-
cations, vol. 51, Cambridge University Press, Cambridge, 1994. Categories and structures.

425



426 BIBLIOGRAPHY
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spectrification functor, 421

spectrum

R-module —, 216

base change —a, 273

category of parametrized —a, 164

compact —, 196

Costenoble-Waner dual —, 287

duality of base change —a, 277

dualizable —, 235

EKMM —a, 416

excellent pre—, 200

excellent pre— approximation, 207

homotopy groups of —a, 181

invertible —, 235

level type of —, 176

Lewis-May —a, 416

Ω- —, 182

Ω-pre— approximation, 205

over B, 163

Π-free —, 243

pre— over B, 165

Σ-cofibrant pre—, 200

sphere —, 163

suspension —, 163

Thom — of a map, 407

universal spherical fibration —, 407

weak map of pre—a, 203

well-grounded —, 176

well-sectioned —, 176

well-structured pre—, 200

spherical fibration, 347

k-oriented —, 348, 364

spherical G-fibration, 365

V - —, 364

stable

equivalence, 183

model structure, 183

strict functor, 248

structure group, 47

symmetric

bicategory, 250

telescope, 94

tensor

for ex-spaces, 20

for spaces over B, 20

of IG-spaces over B, 161

with based spaces, 17

with spaces, 16

theorem

cellular approximation —, 415

Costenoble-Waner duality —, 295
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fiberwise Costenoble-Waner duality —,

320

fiberwise duality —, 234
fiberwise parametrized Poincaré duality,

369

homotopical Poincaré duality, 313
for bundles, 325

of Brown, 123, 125, 197

of Dold, 53
of Milnor, Waner, 52

of Palais, 46

of Stasheff, Schön, 53
of Steinberger-West, Cauty, 54

of Strøm, 70
of Whitehead, 414

pairing — of Schwänzl and Vogt, 67

parametrized Atiyah duality —, 296, 300
Poincaré duality, 347, 364

relative Poincaré duality, 350

Thom isomrophism —, 349
triangulation — of Illman, 51

Wirthmüller isomorphism, 312

Thom
complex, 31

diagonal, 31

isomorphism, 349
object, 423

spectrum
classical —a, 403

generalized —a, 403

of a map, 407
topologically bicomplete category, 16

trace, 236

additivity of —s, 237
transfer

fiberwise — for bundles, 244

map, 236
of fibrations, 239

triangle

distinguished —, 261
triangulated category, 261

tube, 44

twisted
function spectrum functor, 423

half smash product, 423
twisted K-theory, 378

twisted Rothenberg–Steenrod spectral
sequence, 387

unital stable homotopy category, 267

weak
compatibility, 263

Hausdorff space, 16

Hausdorffication functor, 16
map of spectra, 203

weak equivalence

mixed —, 63
subcategory of —s, 73

well-grounded —s, 87
in GK , 90

in GK /B and GKB , 90

wedge lemma, 93
well-fibered

ex-space, 128

well-grounded
ex-space, 86

level q-equivalences, 176
model structure, 91

object, 85

R-modules, 216
S-modules, 420

space, 85

space over B, 86
spectrum, 176

stable equivalences, 185

weak equivalences, 87
well-sectioned

approximation, 132

ex-space, 83, 128
spectrum, 176

well-structured

prespectrum, 200
whiskering functor, 131

Wirthmüller
isomorphism, 312

Wirthmüller

context, 32
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/, 351

\, 351

∪, 351

/, 253, 270

�, 248, 270

., 253, 270

∧, 351

∗B , 80

A×c B, 25

Aut(k), 376

Aut(X), 376

α n X, 423

b̃, 31

B(D, Π, E), 402

B(Π; Γ), 243

BR, 250

CB , 18, 78, 153

CB, 40, 81

C /B, 17, 78

Cf , 262

C(f, g), 262

χ(f), 236

C �(i, p), 66

Cocyl(X), 64

C (X, Y ), 16

Cyl(X), 64

D [C ], 395

DB , 124, 196

DCW
B X, 287

Dl(X), 258

Dn, 100

Dr(X), 258

E, 205

End(k), 376

E(Π; Γ), 243

ε∗, 37

η#, 256

ε#, 256

EvV , 167

E x, 270

E xB , 315

F , 378

SF , 378

F (X), 400

F [α, X), 423

FB(K, X), 20, 152

FB(X, Y ), 21

F̄B(Y, Z), 162

FCP [U ], 399

FIf
B , 177

F (I+, X), 63

FJf
B , 177

F (K, X), 17

f!X, 30, 168

f∗Y , 30, 168

f∗X, 30, 168

Fred(H ), 378

FRFIf
B , 217

FRFJf
B , 217

FRFKf
B , 217

FR(N, L), 218

FV , 167

F (X, Y ), 16

F̄ (Y, Z), 40

G , 110

Γ(U ; J∗X), 384

GC , 153

GEB , 200

GK , 22

GKB , 22

GL1(R), 401, 406

GL1(k), 377, 378

GPB , 165

GRMB , 216

GSB , 163

GSB(U ′; U), 423

GVB , 138

GWB , 138

hC , 62

hGWB , 138

Ho C , 63

hocolim Xi, 262

HX, 376

I, 111

IB , 98, 111
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If
B , 101

i�Bj, 156

Ic, 405

Ic-FCP[U ], 405

If
B(C ), 112

(IG, GI ), 159

(IGKB , GI KB), 161

ι∗, 35, 170

ι!, 35

ι∗, 35

Iso(k), 375

J , 111

JB , 98, 111

Jf
B , 101

Jf
B(C ), 113

JG,B , 166

J
(K,p)
V (X), 368

JV
(K,p)

(X), 368

J∗, 338

J∗, 338

J∗G, 359

JG
∗ , 358

J̃∗, 339

J̃∗, 339

K, 205

K , 16

K /B, 19

KB , 19

kB
∗ , 341

Kb, 31, 36
bK, 31, 36

k∗B , 341

KG, 22

KG,B(X, Y ), 22

k∗P (X), 374

kP
∗ (X), 374

kΠ, 374

K∗, 16

k∗(X, p), 374

k∗(X, p), 374

L, 421

L , 405

L∗(J), 344

Λ(T ), 401

L∗(X, J), 344

L ∗(X, J), 344

L [U ], 405

λV,W
B , 187

Λ(R), 401

ΛB, 131

LX, 132

M (α), 423

MapB(K, X), 20

MapB(X, Y ), 21

Map(I, X), 63

Map(K, X), 16

Map(X, Y ), 16

Mf , 64

M ∧R N , 218

Nf , 64

(−)N , 37, 226

(−)/N , 37, 226

O∗(B), 24

O(B), 24

OG, 112

Ω∞B , 163

Orb(P ), 38

ΩV
BX, 163

P , 133

P, 319

P, 179

P �
B (i, p), 155

PB(X, Y ), 161

PB(X, Y ), 152

PF , 48

PF , 240

PG,B , 165

π(X, Y ), 92

PU(H ), 379

P ×Π F , 47

QS0, 378

Rn
±, 100

RO(G), 358

SB , 163

Sec, 31

Sf , 273

SF (X), 400

SG,B , 163

SGL1(R), 401

Sn,b
H , 124

Σ∞B , 163

SL1(R), 406

SL1(k), 377, 378

Sn−1
± , 100

Sn
H , 196

STop(X), 400

ΣV
BX, 163

T , 207

T , 16

t, 249, 272

τ(f), 236

Tel X, 94

T op, 16

Top(X), 400

tSf , 273

U , 78
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U , 16

U /B, 19

UB , 19
U, 179

U∗, 16

V , 78

V ∗, 167

WX, 131

X ∧B K, 20, 152

Xb, 31, 36
X ZB Y , 162

X ∧B Y , 20

X × I, 63
X ∧ I+, 63

X ×K, 16

X ∧K, 17
X⊗̄Y , 396

X ×B K, 20
X ×B Y , 20

[X, Y ], 92

X Z Y , 40

Ỹ , 20


