CONF1GURATION SPACES

Dusa MacDuff, Massachusetts Institute of Technology

§1. Introduction.

This a a tzalk about configuration spaces and as such is not di=
rectly relevant tc the main theme of the conference. However it
should illustrate the kind of topological reasoning which lies be-
hind some of the results mentioned in Segal's talk on algebraic
E-theory. In particular I will sketch 2 proof of the Barratt-Quillen
=Priddy thecorem that BE; is homology isomorphic to (OQSQ)O, and also
give a simpler frormulation ot the Actiyah-Singer proot of the Bott
periodicity theorem in [1]. 1ncidentally removipng from it all the
analysis.

The configuration space C(M) of a smooth manifold with boundary
M is the set of finite subsets of KN (think of a finite subset of M
as a configuration of particles on M) topologised so that the parti-
cles cannot collide. Thus C(M) is the disjoint union &%0 Ck(M).
where Ck(M) is the configurations with k particles, i.e? the guotient
of the ordered configuration space OCk(M) = F(ml,..,,mk):mi €M,
my # m.j if i # j1 by rhe action of the symmetric group Zk‘ The con-
figuration space Ck(EgH ig an approXimation to the classifying space

k

sz‘ For ock(m“) is just R  wirh certain hyperplanes of codimen=-

sionnn removed, so its homotopy groups vanish ap to dimension n-2.

Thus Lim OCkﬂRn), where the limit is taken with respect to the usyal

n+l

inclusions R? —> | ,is a contractible space on which E% acts

freely., The quotient lim C

n—tm

n, . . -
kGR } ig therefore homotopic to B“k'

Now, any finite subset s E]Rn gives rise to a map

w(s) R —>R" =}, For let {A ] be a eollection of disjoint

XES
open discs with centres at the points x af s and with radias ¢(x)
(choose ¢(s) » O so that it is as large as possible but < 1 say),
Then define @(s) by:

w(Xly = = ir ¥y is not in any b
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ols)ry = (g(x)-ﬂy—xﬂ)'l(y—x) ir y is in .

This p(s) actually has compact support (in the sense that @'1cm“)

has compact closure), =o p maps Ck(EfH to MapkﬂRnJRnu;{a]), the

space of maps R" > R ‘v fe}l with compact support and degree k.
Notice that the spaces Mapkﬁﬂn,nin w{«}) are homotopic for different
k, and, in fact, a e 211 homotople te (QnSn)O. the space of base-
point preserving maps with degree O from the n-sphere Sn to itselr

{identifyirg s" wich R™ s fo}), Alse, we can form lim C (™ by

k
k=
mapping CkﬂRn) to Ck+lﬂﬂn) by adding a particle from infinity in

a standard wzy. Altogether we get a map @:lim CkﬂRn) — (ﬁnsn)o.

K==
and this, hy a theorem of Segal [6], induccs an isomorphism on in-
tegral homology. Takiug lhe limit now over n gives Lhe Barratt-

Quillen-Priddy theorem that lim CkﬂRn) ~ lim BEk —_— (C“Sm)O is a
n, It~ K

homology isomorphism, or equivalently that (Bz;)ab — (rﬁs”)o is a
homotopy ecuivalence, where ab denotes Quillen's construction abeli-
anising the fundamental group.

Segal's theorem is a special case of a more general theorem val-
id for any connecled manifold M. Let Tkﬂﬂ) be the space of possi-
bly infinite, compactly suppotrted vector fields on M, that is, the
space of sections of the fibre bundle over M whose fibre at X € M
is the sphere Tx s {w} obtained by compactifying the tangent sSpace
Tx at x. Then, as before, there is a map m:Ck(M) — Ik(M). Because
it is always possible to move the particles away from the boundary
W of M, ¢ may he defined so0 that it takes valunes in Ik(M,aM}, the

sectiens which equal « on ab.

Theorem 1. @:CR(M) — Ik(M,aM) induces an isomorphism on integral
homology groups up to a dimension tending to = with k.

Taking the limit as k —> » gives the previous result when M =r".
Notice that because homology commutes with direct limits it is enough

to preve this for compact M. Alsco, the result tfor R" follews



o0

immediately from that for Dn, wherve D" is the upit disc 1n:m“‘ since

n, . , n . ) .
C@R Y is homotopic to C{D '}, Therelore from now on we will consider

only compacl manitalds.

§2, Gromov's method, Theorem 1 is proved by a very general method

which was [irst used systematically by Gromov [2]. Let ®7 be the

category of smootlh, compact manifolds or a fixed dimepsion nn with

embeddings as morphisms, and suppose that F is a contravariant

functor from 7 te (spaces). Associated to F there is

EF(H) on each ¥ € Obj (%) which has ribre F(D ) at the

a fibre bundle

point x of M.

{Here M is supposed to have a Riemannian metric, and Dx is the unit

disci n the tangent space to M at ¥, so thau EF(M) is

associated to

the tangent bundle ou M.) The expoucntial map gives an cmbodding

expx:DX —> W for each x, and one detfines @ F(? —> I‘F(M)(where

I‘F(M) is the space of conlinuous seclions ol EF(M)) by () (x) =

F(expx)f, for f in F{{d}. Then we hkave

Theorem 2, Suppoese that

(i) for all embeddings j:D" —> D"

homotopy equivalence;

. F(3):FOD") —> FOO") is a

{(ii) for any square My M, <—H in %7 the corresponding

1
Mz (——%Hr“Mz

sguare F(Mlujmz) — F(Ml) is homotopy Cartestan.

F(MQ) — F(er\MQ)

Then @:F{M} —> T F(]\-1) is a homotopy equivalence for

M€ ob30 . (4 square W —> X is called Cartesian

t
g

7z &y
fibre product {{x,y);i{(x) = g{z)} of X and Z over Y.
ig called honotopy Cartesian it W is tiomoiopic to the

raetic fibre product of X and Z over Y, that is if W =

a path in Y with Y(0) = t{x), (L) = g(z)}.)

all

it W is the

Similarly it
homotopy -theo-

[{x,2,¥v):v is
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The prootf of this theorem is trivial. For it follows immediate-

ly frem (i) that it holds when M = . The general case follows by

inducticon over the pumber ol disces in a Finite covering of W,
because condifion (ii), which holds alse for the funcior I;,
and Mz it is one for

implies

that it @ is an egquivalence for M, ~M M

L 2 "1

M \JM2 too.,

1

There is another version of this theorem Where ithe square in
{ii) satisfy the ceonditicen that no component of a(Ml rﬂMz) lies
entirely in the interior of Ml‘ In this case one argues by induction
over Lhe number of handles in a handle decomposition of M, where the
handles have index < dim{k), and proves that u is an eguivalence for
all open M, i.e. for M for which M - M has ne compact component,

The interest of this theorem lies in the fact that there are
many functors F matisfying these ceonditions. An example of the kind
considered by Gromov in his thesis [3] ig the functor which assigns
to each manifold the space of all its symplectic struciures, and the
theorem yvields an existence sStatement: and open manitold M of
dimension 2k has a symplectic structure iff the obvious algebraic
condition is satisfied, vamely, if there is some {not necessarily
closed or smocoth) Z2-form p on M sSuch that pk has no zeroes.

To apply Gromov's theorem one needs a criterion ror a sgquare to

be homolopy Cartlesian. A well-known resull is

Lemma, A Cartesian sguarc W —= X is homotopy Cartestian if f is

f
z 2> v

a fibration.

Proof. We must show that the inclusion of W = [(x,2):f{x) = g(z)}
in W' = {(x,z,%):4 is a path in ¥ with ~{(0) = £(x), +{1) = g{=)

is a homotopy equivalence, However, in order to retract W' to W it
ig enough to 1lift the hamatopy W' x I —> Y:{(x,%,y),t) —> #{t)

to X with initial lifting ({(x,z,+),0) —> x, and this may be done

gince £ is a fibration.
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In fact it suffices here that f be a quasifibration, that is a
map such that for all y € Y the inc¢lusion of the actlual Fibre
f_l(y) at y into the homotopy fibre Fiy,I) - {(x,¥}:v¥ is a path in
Y with y(0) =y, (1) = t{x)} is an equivalence. For the purposes
of homotopy theory these maps are just as good as fibrations, and
for instance have a long exact homotopy sequence. They often arise

in the following form. The base space Y is filtered by an increasing

sequence of closed subspaces Yl c Y2 = Y3 -+ =such that, over each
difference Y, - Y, _;, f is the product fibration (Y, -¥, ;}xF —>
(Yk_Yk-l)' (Fotice that this means .hat all the fibres f_l(y) are

hemeomorphic Le F.) Also for each kK lhere is an open neighborhood

" i i . .
Uy of Yk in Yk+1 and a deformation retraction v, of uk to Yk which
may be lifted to a deformation retractich Ek ot f_l(uk) to fal(Yk).

t

Sinee all the fibres may be identified with F the maps ?lzfﬁle) —
f-l(rl(y)) give rise to a collection of maps F —> F, ealled the

attaching maps of £. 1If they are all homoteopy egquivalences f is a
quasifibration (see [2]). If they are all homology equivalences f

can be called a "homology fibration” (see [4,5]).

§3. The application to configuration spaces.

In erder to apply all this Lo conliguration spaces we must in-
troduce a new functor of the correct variance, for M —> C{M) is
obviously covariant. Thus we consider E(M), the configuration space
of particles on M which are annihilated and created on the boundary
of M. More formally, (M) is the quotient of C(M) by the relation
S ~ 8" iff § ~(M-2M) = 8" ~(M-aM}. Clearly any embedding N —> M
gives rise to a restriction map TWM) —> &(N): s —» s ~N, so that
& is a contravariant funcior,

It is not difficult to see that C(D™) is homotopic to S5°. For,
by expanding radially from the centre of Dn, it is possible to push
all but at most one particle in each configuration out to the houn-

dary where it vanishes. This retracts C{Dn) to its subspace
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consisting of configurations of at most one particle, and this is

just Dn/aDn = Sn.

This argument also shows that { satisfies condi-
tion (i} of Theorem 2. HNotice, too, that the fibre CTDX) of the
bundle Ex(M) is DX/aDX =T, w{«}, so that the elements of T 60“)
may be considered to be possibly infinite wvector fields on M,

Now consider the restriction map r : C(M) —> &(N) induced by
an inclusion N —> M. Filter T(N) by the sets T consisting of < k
particles. Then r_l(Ck - €, ) is just the product (@ &, ) xF,
where F is the space of configurations in the closure M-N of M-N
which are annihilated on A(=N) ~2zM but not the rest of 3(H-K). We
may choose %, < Ck+l To consist of configurations with at least one
particle near 3N, so that uk retracts to Ck by pushing this particle
out to 3N. The attaching map on the fibre is then just the map
F —> F which adds a particle to each configuration at some point
m on 3(M-F) ~N, Clearly this map will not be an equivalence if
3(M-N} lies entirecly in the interior of M since F is then C(-N), a
configuration space with ne annihilations. However it is an equiva-
lence if each component of 3N meets 3, for then the added particle
may be moved along near sN until it reaches 3M where it disappears,
{Notice that we can assume that all particles except the extra one
have been cleaved away from a neighborhood of 3N ~ (M{-N) so that no
collisions will occur.)

Thus the functor & satisfies the (modified) condition {(ii) in
Theorem 2. It follows that @:0(M) —» T(M) is an equivalence for
all connected manifolds M with non-empty boundary. In order to ob-
tain a theorem about C{M) one adds an annulus 3 % I to M along &M
and considers the commutative diagram

T v oM x 1) ——E T v x 1)

~ EMaM
T x D —2 > Tz D)

The actual fibres of the restriction maps r and R are C(M) =

%
%ép Ck(M} and IE(M,HM). They are not egquivalent because, although
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R is a fibration, as we saw above r is not a quasifibration. How-
ever, by “siablising the Fibre with respect to the attaching maps"

one alters r to a map r':X —» O(ad » I) with fibre Z x lim C Oy,
k ~o

where this limit is formed with respect to the attaching maps, that
iz the maps which add a particle to the configurations in CkCM) at
some point m on ad. The atiaching maps of r° are essentially the
same as those of r, but now they are homology isomorphisms. This
implies that r' is a homology fibratien in the seunse mentioned
above, Thus ¢ induces a homology isomerphism between the fibres of
r' and R. Theorem 1 now follows. The details of this argument may

be found in [4].

§4. Bott periodicity.

I shall conclude by describing a variant of the Atiyah-Singer
proof [1] of the Bott periodicity theorem to show how closely it iz
related to the preceding argument, Let Um be the stable unitary

group rim U_ . We shall construct a quasifibration f:H —> U= with
11—em
H contractible and fibre Z « BU&. This is enough to prove the com-

plex Bott periodicity theorem. The real case can be 1reated similar-

ly.
Let Hn be the n x h Hermitian matrices with all eigenvalues in

[0,1] {so H is linearly contractible) and define f :H, —> U by

£ (k) = exp(2 ih). The fibre £]'(u) of £ at u € U  may be identi-
fied with the grassmannian of all subspaces of ker{u-1) by the map
h —> ker(h-1) < ker(u-1}. The £, are compatible with the usual

inclusions H, —> H and u —u {given by h —> h@0 and

n+1 n+l

u —> u¥l) so that one has f _:H_ ——=> U_ with all fibres homeomorphic

JJ. w == J—L 1 i
to 0 Grn(C ) = 10 BU, . Filtering the base U_ by the U, one sees
that the attaching nmaps come from inclusions BUm —_ Bun+r‘ All one

needs to do now is to stabilise so that the fibres become Z X BUm

and the attaching maps homotopy equivalences. To do this, take the
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standard V = C” with basis {e} Let V. be the subspace

g<ide”
spanned by e; for i < k, Then Z BUGD can be thought of as the
space of all subspaces W aof V such that Vp W V¥, for some
-= < p<qg< e Define kO:V —> ¥ by

ko(ei) =e; (1<0)

=0 (i=0),

and let H be the Hermitian operators V —> ¥ which have eigenvalues
in JO,1)and have the form ko + k, where k 15 represented with re-
spect to the basis {ei} by a matrix with linitely many non-zero
terms. Similarly let U be the unitary operators V —> V of the form
[ + v, where the matrix for v has finitely many non-zero terms,
Define t:H —> U by h —> exp(2 ih). Then for each u ¢ U f_l(u) =
Z ¥« BU@, where the identification is as above but with V replaced
by its subspace ker(u-1). The attaching maps arise from inclusions
ker(u-1) —> ker(u'-1). Thus they are equivalences, and f is a

quasifibration.
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