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SirMichael Atiyah, a hugely influential figure inmathemat-
ics, died on January 11, 2019. A tribute appeared in the No-
vember 2019 issue of the Notices, but what follows is a col-
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lection of more personal recollections—what it was like to
be his student, to work alongside him, to have avenues of
exploration pointed out, or to be inspired and energized
by his unique personality. The contributions cover a full
fifty years in which his interests moved from mathematics
to incursions into physics. They are arranged in chrono-
logical order.

Michael Atiyah and
Representation Theory

George Lusztig
I was very fortunate to have the opportunity to study with
Michael for two months in Oxford in 1968 and for two
years (1969–71) at the Institute for Advanced Study in
Princeton, where he arranged forme to be invited. Michael
Atiyah is famous for his work in algebraic geometry, alge-
braic topology, index theory, and, later, physics, but on
the side he had important contributions to representation
theory. I will try to explain some of them here.

Michael’s 1967 paper with Bott contains a proof of the
holomorphic Lefschetz fixed point formula that provides
a wonderfully simple explanation for Weyl’s character for-
mula for tr(𝑔,𝑉) (𝑔 is a regular semisimple element, and
𝑉 is an irreducible rational representation of a complex
semisimple group𝐺). The explanation was in terms of the
(finite) fixed point set of the automorphism defined by 𝑔
on the flag manifold of 𝐺. This was a model for me when
I later worked with Deligne on representation theory of
finite reductive groups, where the holomorphic Lefschetz
fixed point formula was replaced by a Lefschetz fixed point
formula in 𝑙-adic cohomology for certain automorphisms
of finite order of a flag manifold and certain subvarieties
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of it.
Michael’s 1968 paper “The index of elliptic operators,

III” with Singer contains an explicit formula (see 4.6) for
tr (𝑔,𝑉) in which 𝑔 ∈ 𝐺 is of finite order but not neces-
sarily regular. While tr(𝑔,𝑉) could in principle be deter-
mined from the analogous traces with 𝑔 regular semisim-
ple, this paper gives for the first time an explicit formula
for tr(𝑔,𝑉) as a sum of contributions of the connected
components of the fixed point set of 𝑔 on the flag mani-
fold of 𝐺. This is a very interesting complement to Weyl’s
character formula.

Michael’s 1977 paper with Schmid provides a new per-
spective on the discrete series of real semisimple groups
based on the 𝐿2-index theorem (a version of the index the-
orem for noncompact manifolds).

When I was Michael’s student I was mainly working on
problems in algebraic topology and index theory, but I
also learned many things in representation theory from
Michael, and eventually representation theory became my
main focus.

Around 1971, I attended a talk by Quillen at the IAS,
where he explained his solution of a conjecture of F. Adams
in algebraic topology, which surprisingly used the modu-
lar and complex representations of the finite group
GL𝑛(𝐅𝑞). After the talk I asked Michael whether the com-
plex irreducible representations of GL𝑛(𝐅𝑞) were known.
He told me that the characters were determined by J. A.
Green, but the representations themselves were not under-
stood. This seemed to be an interesting question, and thus
I became more and more involved in representation the-
ory (probably to the disappointment of Michael). My first
job after Princeton, which I got, I believe, with some help
from Michael, was at the University of Warwick, where J. A.
Green was teaching.

After going to Warwick, I often visited Michael in Ox-
ford, where he returned in 1972. On one of those visits he
toldme about a beautiful formula in which the 𝑘th Adams
operation𝜓𝑘(𝑉) applied to the standard representation𝑉
of GL𝑛(𝐂) is expressed as an explicit alternating sum of ir-
reducible representations of GL𝑛(𝐂). Understanding this
formula became one of the motivations for my work (in
1973) with Roger Carter on the modular representations
of GL𝑛. In our 1974 joint paper we give, among other
things, a refinement of Michael’s formula in which 𝐂 is
replaced by 𝐅𝑝, an algebraic closure of the field with 𝑝 ele-
ments, and 𝑘 = 𝑝. In this case 𝜓𝑘(𝑉) becomes the Frobe-
nius twist of 𝑉, and our refinement gave a resolution of
𝜓𝑘(𝑉) by Weyl modules (predicted by Michael’s formula)
that are linked with each other by an action of the affine
Weyl group. This paper gave me later some support for
stating a conjectural formula for the irreducible modular
representations of a reductive group over 𝐅𝑝 in terms of

Figure 2. Lusztig and Atiyah in Edinburgh, June 2018.

the affine Weyl group.
One of the things that I learned asMichael’s student was

to use topological 𝐾-theory and its equivariant version, a
theory very closely associated with Michael’s work. In the
early 1980s I used this in connection with an affine Hecke
algebra 𝐻 by realizing the principal series representations
of 𝐻 in terms of suitable equivariant 𝐾-theory of a flag
manifold in which the parameter 𝑞 of the Hecke algebra
becomes the standard generator of the representation ring
of the circle group. This ledme to a conjecture inwhich the
representations of 𝐻 are realized in terms of equivariant
𝐾-theory of certain Springer fibers. (This conjecture was
later proved by Kazhdan andme, thus establishing the part
of the local Langlands conjecture which involves 𝐻. Here
Michael’s equivariant 𝐾-homology played a key role.)

I last sawMichael in June 2018when, withmywife, I vis-
ited him at his apartment in Edinburgh. We had a wonder-
ful time. I told him that we were staying in a hotel next to
the statue of Maxwell (the existence of this statue is largely
due to Michael’s efforts). Michael told us about his ad-
miration for Maxwell, whom he put on the same level as
Newton and Einstein. He also explained some of his new
mathematical ideas.

George Lusztig
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Instantons and Monopoles

Nigel Hitchin
Atiyah’s most celebrated contribution to mathematics is
the index theorem. Indeed the papers occupy two whole
volumes of his collected works covering the twenty years
since the Bulletin of the AMS published the initial paper in
1963. Louis Nirenberg recalls one of the seminars Atiyah
gave at NYU at the time, which he began with the words:
“Whenever I come here I seem to talk about the index the-
orem. . . ,” whereupon Nirenberg replied, “. . . and you are
going to do it till you get it right!” (echoing the old story
about the young soprano wondering why she was asked
for so many encores). Yet, however powerful the index
theorem was, it would be wrong to think of him carrying
around this huge weapon and firing it at every opportunity.
In fact, in what was probably his final mathematical paper
[1], he deliberately avoided the more obvious application
of the Atiyah–Patodi–Singer version for a more direct ap-
proach.

His choice of mathematical problems was more a recog-
nition that they resonated with something he was familiar
with. This was apparent in the work on instantons and
monopoles in the 1970s and ’80s when I became less of
a witness to his mathematical output and more of a par-
ticipant. Singer brought the problem of solving the self-
dual Yang–Mills equations toOxford in 1977 fromhis con-
tact with physicists at MIT. The question was one of find-
ing, up to gauge equivalence, all connections on a princi-
pal SU(2)-bundle over 𝐑4 that minimize the 𝐿2 norm of
the curvature. With appropriate decay at infinity (which
was confirmed later by Uhlenbeck’s work) this became by
conformal invariance a problem on the 4-sphere, a com-
pact manifold where both manifold and bundle have non-
trivial characteristic classes.

The index theorem did then provide a starting point,
giving the local structure of themoduli space [2] and show-
ing that there were more solutions than the ones provided
to us by the physicists. But Michael’s real interest was in
using the ideas of Roger Penrose and his student Richard
Ward to find the solutions in concrete form. Here charac-
teristically he saw an opening into the type of geometry
that he had enjoyed since the beginning: both he and Pen-
rose had been exposed as undergraduates in Cambridge
to the classical geometry of describing the lines in com-
plex projective 3-space by the points in a four-dimensional
complex quadric, the Klein quadric. This was the corner-
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stone of Penrose’s twistor theory, trading differential ge-
ometry in four dimensions for algebraic geometry in three.
But everythingwas over the complex numbers, whereas the
Yang–Mills problem concerned the 4-sphere.

So Atiyah first showed how twistor theory could be
adapted to this situation by regarding complex projective
3-space as a real algebraic variety with no real points but
with real lines. With this viewpoint the projective space
fibered over the 4-sphere (and was even part of a more gen-
eral picture for even-dimensional spheres). He then used
themodernwork in algebraic geometry of Horrocks, Barth,
and others to give an explicit construction of the holomor-
phic vector bundles defining instantons. This followed
from studying the structure of amodule over a ring of poly-
nomials generated by some sheaf cohomology groups as-
sociated to the vector bundle. If a certain sheaf cohomol-
ogy group vanished, then the construction followed from
essentially a single matrix of linear forms. But this was
where the twistor theory came into play again, as it trans-
lated back to a simple question about a differential oper-
ator on the sphere. The fertile common ground between
algebraic geometry and differential geometry that was in
evidence here was dear to his own interests, not just clas-
sical algebraic geometry but also going back to his link-
ing of the Riemann–Roch theoremwith elliptic differential
operators—the birth of the index theorem.

Atiyah’s work on the related equations describing mag-
netic monopoles in 𝐑3 was rather different. These gauge-
theoretic equations, the Bogomolny equations, were
close cousins of the instantons but defined on𝐑3. They de-
scribe static configurations, and Atiyah’s engagement came
from discussions with the mathematical physicist Nick
Manton on the conjectural dynamics of slowly moving
monopoles. Arguing that slow motion could be approxi-
mated by geodesic motion on the space of static solutions
presented the question of finding the natural metric on
the moduli space. When I came back to Oxford from an
academic year in Stony Brook in 1984 I explained to him
how both well-known and new hyperkähler metrics could
be obtained by a quotient construction from flat space in-
volving an adaptation of the theory of moment maps, but,
spurred by his recall of the work with Bott on the Yang–
Mills equations on a Riemann surface, he insisted on treat-
ing the moduli space as an infinite-dimensional hyperkäh-
ler quotient and us working out the metric for two
monopoles.

Working extensively that summer, I managed to use
twistor theory to do this, but this was to Michael too com-
plicated, so he derived the formula it gave by essentially
elementary means, carefully marshalling known proper-
ties of the metric involving symmetry, spectral curves, and
Donaldson’s rational maps until the specific solution to
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the differential equation dropped out. We were then able
to analytically describe some geodesics and discuss the scat-
tering in detail, a project he pursued enthusiastically. He
even convinced researchers at IBM’s lab in the UK to test
the power of their processors by producing a video of this
phenomenon.

This ability to fashion proofs in an understandable form
was key to the appeal of many of his papers and also to his
lectures. In fact, the two topics above formed the basis of
his series of Fermi Lectures on Yang–Mills theory [3] and
the Porter Lectures on monopoles [4].
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Nigel Hitchin

Michael Atiyah and Physics

Edward Witten
Michael Atiyah played a major role, starting in the mid-
1970s, in redefining the relationship betweenmathematics
and physics.

By that time, theoretical physics had reached a major
turning point with the emergence of the Standard Model
of particle physics, based on nonabelian gauge theory or
Yang–Mills theory. In a sense, theory had caught up with
experiment, though it took a while for that to be clear. The

Edward Witten is a professor in the School of Natural Sciences at the Institute
for Advanced Study, Princeton. His email address is witten@ias.edu.

decades-long process that led to the Standard Model had
been largely driven by experiment and by considerations
of quantum theory that were rather far afield from the van-
tage point of most mathematicians. Conversely, during
this period the ideas of modern mathematics seemed
largely irrelevant to physicists grappling with elementary
particles. A physics graduate student of the period, for ex-
ample, would most probably never hear about a homol-
ogy group, let alone something more contemporary like
the Atiyah–Singer index theorem.

By the mid-1970s, the gauge theory revolution had cre-
ated for physicists a new situation that would call for
greater mathematical sophistication. But this was under-
stood only gradually. Michael Atiyah and other mathe-
maticians who became interested in what physicists were
doing in quantum gauge theory played an important role
in the process.

An early turning point came in 1976. A puzzle about
the Standard Model known as the U(1) problem, iden-
tified by Murray Gell-Mann and Steve Weinberg, among
others, was abruptly solved by Gerard ’t Hooft by studying
the Dirac equation in the field of a gauge theory instanton.
Soon, Albert Schwarz showed that the key facts were best
understood in the context of the Atiyah–Singer index the-
orem. Few physicists at the time knew what to make of
this.

I first met Atiyah when he visited MIT in the spring of
1977, invited by Roman Jackiw. At the time, he was ex-
plaining his work with Richard Ward, solving the instan-
ton equation on ℝ4 by use of the Penrose twistor
transform. His lectures had a big impact in the math and
physics communities in the Cambridge (Massachusetts)
area. Physicists at the time were very interested in solving
the instanton equations because of speculation by Alexan-
der Polyakov about the dynamics of gauge theories. How-
ever, the ingredients in the twistor transform of the instan-
ton equation—complex manifolds, sheaf cohomology,
fiber bundles—were quite unfamiliar tome andmost other
physicists.

By January 1978, when Atiyah invited me to visit Ox-
ford for a fewweeks, he was lecturing at theMaths Institute
about a more precise understanding of instantons—the
Atiyah–Drinfeld–Hitchin–Manin (ADHM) construction. I
can well remember my perplexity in this period. Clearly,
Atiyah and his colleagues were saying interesting and re-
markable things about the nonlinear classical equations
of nonabelian gauge theory. At the same time, it was very
hard to imagine how their results could be applied to the
questions of quantumdynamics thatmost interested physi-
cists. Physical applications of the ADHM construction
seemed far away.

Toward the end of my visit, Atiyah showed me two
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physics papers that I had not seen before. By this time,
it was known that nonabelian gauge theories can describe
magnetic monopoles as well as ordinary elementary parti-
cles. Ordinary particles arise by quantization of fields and
are in representations of the gauge group 𝐺; monopoles
are classified by topology. But Peter Goddard, Jean Nuyts,
and David Olive (GNO) had suggested that magnetic
charge can be interpreted as a weight of a “dual gauge
group” 𝐺∨, and Olive with Claus Montonen had gone on
to suggest a quantum duality between theories with gauge
groups 𝐺 and 𝐺∨. Atiyah told me that the GNO dual
gauge group was the same as the dual group introduced
by Robert Langlands in the Langlands program and that
he thought there was something very deep here. He urged
me to go to London to discuss the matter with Olive.

By the time I got to London, I was skeptical. Like other
physicists of the time, I had never heard of the Langlands
program and I had no idea what to make of Atiyah’s obser-
vation that the Langlands and GNO dual groups were the
same. But I could see that technically theMontonen–Olive
proposal was not correct if taken literally. However, by the
end of the day, Olive and I understood that the technical
objections to Montonen–Olive duality are absent in the
supersymmetric case, and we had formulated a number of
ideas that eventually (in the mid-1990s) were important
in understanding it more fully.

Atiyah’s deeper idea—that the Langlands program
should somehow be tied up with electric-magnetic dual-
ity in four-dimensional gauge theory—remained in limbo
for much longer. A concrete understanding depended on
many intervening developments in both math and physics
and only emerged in the mid-2000s. The full scope of this
relationship is probably still far out of sight.

I will mention just a few highlights of the following
decade. At the 1979 Cargése summer school, Atiyah and
Raoul Bott undertook to educate physicists about Morse
theory. I and most (or all?) of the physicists there had cer-
tainly never been exposed toMorse theory before. Another
highlight was a conference in Texas where Atiyah and Is
Singer began to elucidate the topological meaning of what
physicists know as perturbative anomalies in gauge theory.
This helped introduce physicists to a deeper understand-
ing of fermion path integrals. Two papers by Atiyah and
Bott in these years were ultimately influential for physi-
cists. Their 1983 paper “The Yang–Mills equations over
Riemann surfaces” introduced ideas that were important
later in understanding quantum gauge theories in two di-
mensions. Their 1984 paper “The moment map and equi-
variant cohomology” helped lead to the important tech-
nique of “localization” in supersymmetric quantum field
theory. Starting in the mid-1980s, the emergence of string
theory greatly widened the horizons of physicists and ex-

panded the scope of interaction between physicists and
mathematicians. Amongmany other things, this led to un-
expected applications of the ADHM construction in
physics. Unfortunately, to explain all that here would take
us too far afield.

In 1987, Atiyah twice visited the Institute for Advanced
Study, and he was more excited than I could remember.
What he was excited about was Floer theory (of symplec-
tic manifolds or of flat connections on a three-manifold),
which he thought should be interpreted as the Hamilton-
ian formulation of a quantum field theory. This quantum
field theory was supposed to be, in language that was in-
troduced later, a topological quantum field theory, which
would be related to Gromov invariants of a symplectic
manifold orDonaldson invariants of a four-manifold. The
idea of topological quantum field theory was mostly
Atiyah’s conception. Atiyah set for me the task of trying to
interpret what he was saying in the language of physicists.
At first, this was difficult, for a variety of technical reasons.
For example, the fermionic symmetry used by Floer had
spin 0, as opposed to the half-integral spin of spacetime
supersymmetries as studied by physicists. But eventually
I realized that a simple “twisting” of supersymmetric field
theories could give a theory with the properties that Atiyah
wanted. This gave, at a formal level, a reformulation of the
Gromov and Donaldson invariants in a language that was
natural to physicists.

The other problem that Atiyah recommended for physi-
cists in the years 1987–8 was to understand the Jones poly-
nomial of a knot via quantum field theory. I had never
heard of the Jones polynomial before Atiyah recommend-
ed this problem, and this certainly put me in the majority
among physicists. The challenge about the Jones polyno-
mial that Atiyah posed was specifically to find a descrip-
tion of it with manifest topological invariance. By 1987–8,
a number of constructions of the Jones polynomial were
known, but topological invariance was never manifest a
priori; it was always proved by checking generators and re-
lations.

The following year brought many new clues about the
Jones polynomial in work by, among others, Erik Verlinde,
GregMoore andNathan Seiberg, andAkihiro Tsuchiya and
Yukihiro Kanie. Eventually, at ameeting in Swansea, where
I had the benefit of further discussions with Atiyah and
with Graeme Segal, I had the good fortune to put some of
the pieces together and interpret the Jones polynomial in
terms of a three-dimensional gauge theory with the
Chern–Simons function as its action.

This answered some of the questions, but actually
Atiyah’s vision about the Jones polynomial had two im-
portant aspects that were vindicated only long afterwards.
First, Atiyah predicted that the argument 𝑞 of the Jones
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polynomial should ultimately be understood as a
parameter that counts instantons on a four-manifold. In
1988–9, this idea looked to me like a bridge too far, but
something along these lines was actually understood in
the last decade. Various things were needed first, includ-
ing the invention of a refinement of the Jones polynomial,
known as Khovanov homology, and a greatly enriched
understanding by physicists of the consequences of electric-
magnetic duality. Also, Atiyah advocated that a natural ex-
planation of the three-dimensional invariance of the Jones
polynomial should have an extension to explain the spec-
tral parameter of integrable systems and the associated
Yang–Baxter equation. Something along these lines was
understood only in the last few years in the work of Kevin
Costello.

Actually, one facet of Atiyah’s vision is still unclear as
of 2019. Atiyah was always extremely interested in the
spectral parameter that appears in the twistor transform
of instantons—as in the ADHM construction—and in the
construction of monopoles—as explored in a book that
he wrote with Nigel Hitchin. He often expressed a suspi-
cion that the monopole spectral parameter should be re-
lated to the spectral parameter of integrable spin systems
and integrable models of lattice statistical mechanics. As
of this writing, there is hope that something along these
lines will emerge in further developments from the work
of Costello.

Going back to Donaldson theory, after formulating it
in terms of a twisted version of supersymmetric gauge the-
ory, I thought that this would lead to immediate progress,
but that was not the case. In the period around 1990,
Atiyah probably understood better than I did the follow-
ing essential point: to contribute something new to Don-
aldson theory, physicists would need some sort of strong
coupling methods, since anything that could be said for
weak coupling would involve retracing the steps that math-
ematicians had already taken. Eventually, Seiberg and I
were able to apply strong coupling methods to this prob-
lem, leading to a relationship between Donaldson theory
and an abelian theory with monopoles (Seiberg–Witten
theory).

Michael Atiyah worked with physicists on many occa-
sions. I will describe the background to one of the papers
he wrote with physicists, “AnM-theory flop as a large𝑁 du-
ality,” written in the year 2000 with Juan Maldacena and
Cumrun Vafa. Early in his career, Atiyah had explored the
“small resolutions” of certain complex threefold singular-
ities. By themid-1990s, it was known that these small reso-
lutions are important in the physics of Calabi–Yau
manifolds, and it was also understood that nonperturba-
tive “dualities” can relate string theory on a Calabi–Yau
threefold to M-theory on a manifold of 𝐺2 holonomy.

Putting these two lines of thought together, Atiyah,
Maldacena, and Vafa explored the significance in M-theory
of isolated singularities of 𝐺2 manifolds and their resolu-
tions. This was new at the time but is now regarded as an
important direction. In the spring of 2001, Atiyah spent
several months at Caltech, where I was on sabbatical. We
had a memorable collaboration on this topic, leading to
our paper “M-theory dynamics on a manifold of 𝐺2 holo-
nomy.”

Atiyah, along with colleagues such as Raoul Bott and Is
Singer, played an enormous role in introducing new ideas
and encouraging and teaching physicists to study quan-
tum field theory from new points of view. It took many
twists and turns for these lessons to be really learned and
absorbed in the physics world. Atiyah always believed that
the study of quantum field theory as a tool in geometry
had to be integrated with the study of more “physical” as-
pects of quantum field theory. His vision and clairvoyance
have had a truly far-reaching influence.

Edward Witten

Recollections of Michael Atiyah

Simon Donaldson
My main interaction with Michael Atiyah fits neatly into
the decade of the 1980s, from the time when I arrived in
Oxford in 1980 as a new graduate student until his de-
parture in 1990 to take up the Mastership of Trinity Col-
lege, Cambridge. While we perhaps did not perceive so at
the time, it was an extraordinary decade. There were two
large groups in the Mathematical Institute in Oxford, one
led by Atiyah and the other by Penrose. These had come
together, a few years before, through the Penrose “twistor”
construction that had brought ideas from complex geom-
etry into mathematical physics. Atiyah’s interests centered
on Yang–Mills theory, a theme that he developed in
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many directions. One prominent achievement was the
Atiyah–Drinfeld–Hitchin–Manin (1978) description of all
finite-energy solutions of the Yang–Mills instanton equa-
tion on 𝐑4, built on the twistorial construction that trans-
lates the problem into one about holomorphic vector bun-
dles over CP3, thus connecting Yang–Mills theory to alge-
braic geometry. Another 1978 paper of Atiyah, Hitchin,
and Singer took a more differential geometric direction,
setting up the foundations for the theory of self-dual Rie-
mannian four-manifolds and the Yang–Mills instantons
over them. A third direction brought in topology: this was
represented by the 1982 paper of Atiyah and Bott on the
Yang–Mills equations over Riemann surfaces and a 1978
paper of Atiyah and Jones proposing a stabilization conjec-
ture for the homology of instanton moduli spaces, partly
motivated by an analogy with results of Segal on spaces of
rational maps.

Over that decade, Atiyah’s interests and activity moved
over a variety of other topics. One of his long-standing
interests was in the Bogomolny equation for monopoles
on 𝐑3; others involved moment maps for group actions
in symplectic geometry and equivariant cohomology, de-
veloping in part from the Atiyah–Bott paper mentioned
above. One exciting application of localization techniques
came in the influential proposal of Witten to prove the
Atiyah–Singer index theorem by applying (formally) local-
ization in the loop space of amanifold. Later in the decade
the Jones knot invariant and the general notion of a topo-
logical field theory came into prominence (the latter in-
fluenced particularly by ideas of Segal). The close of the
decade saw the arrival of “mirror symmetry” in geometry.
One of the highlights of each yearwas the June trip to Bonn
for the Arbeitstagung, where by tradition Atiyah gave the
opening lecture. His last lecture in this series (circa 1990)
discussed a paper of Candelas et al. involving mirror sym-
metry for Calabi–Yau hypersurfaces in weighted projective
space.

Some of my most vivid memories from that time come
from the wonderful seminars given by Atiyah, usually lead-
ing off his Monday afternoon seminar series with the first
seminar of the term. The topics moved over many fields.
In one example he discussed classical results on determi-
nantal representations of plane curves (i.e., equations
𝑑𝑒𝑡(𝐴0𝑧0 + 𝐴1𝑧1 + 𝐴2𝑧2) = 0) in connection with
Hitchin’s work from the early 1980s on Nahm’s equation
and spectral curves. In another lecture the topic was a
connection between the Dedekind 𝜂-function and the 𝜂-
invariant of Atiyah, Patodi, and Singer, emerging from
work of Witten, Quillen, Bismut, Freed, and others in the
mid-1980s. Another memorable seminar was based on
Atiyah’s paper “Convexity and commuting Hamiltonians.”
This began at a down-to-level level with Horn’s inequali-

ties for the eigenvalues of a Hermitian matrix, which were
soon embedded in symplectic geometry and a general the-
ory of convexity results for moment maps. The common
feature of all these talks was that they were immensely en-
joyable experiences for the audience, full of Atiyah’s excite-
ment, drawing together old and new mathematics in sur-
prising ways.

Atiyah occupied a large office with a fine view surveying
the area ofOxford around St. Giles church. In his company
one felt that one likewise surveyed with him the mathe-
matical scene, and he would pour out a continual stream
of ideas, suggestions, and observations. The fact that he
travelled widely and talked to everybody meant that he al-
ways had many strands of current thought in his hands,
which he would constantly weave into new patterns, seek-
ing connections between different developments. Just as
one example of a suggestion that was important to me, I
remember him tellingme about a variational point of view
on symplectic quotients that he had heard about during a
visit to Harvard. He suggested that perhaps there was some
similar functional in the problem of the existence of Her-
mitian Yang–Mills connections on stable vector bundles.
With this prompt it was not hard to find the functional,
which, with a number of variants, has been important in
complex differential geometry.

I met Michael regularly after 1990, and he remained an
inspiration and source of wise advice and support in count-
less ways. His 2001 paper with Witten is an important
reference for those of us attempting to understand seven-
dimensional manifolds with exceptional holonomy. I last
saw him in August 2018 at the ICM in Rio. He was frail but
otherwise as ever, overflowing with ideas and enthusiasm
for mathematics.

Simon Donaldson
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Moment Maps and Convexity:
Memories of Michael Atiyah

Frances Kirwan
In the early 1980s, when I was Michael Atiyah’s student,
moment maps, convexity, and their links with each other
and with algebraic and differential geometry and mathe-
matical physics formed an important focus of his interests
[2–5,7–9].

I first met Michael around Christmas 1980 when I was
in my final year as a Cambridge undergraduate wonder-
ing what to do next and whether I should apply for PhD
places. I had summoned up the courage to look up his
home phone number in the Oxford telephone directory
and ring him. I was horribly embarassed when he an-
swered the phone sounding very sleepy, although it was
close to lunch time, and I discovered that he had just re-
turned from the United States and I had woken him up.
Nonetheless he was very friendly and set up ameeting with
me at which he gave me much helpful advice and told me
to mention his name on my application if I decided to ap-
ply to Oxford. I did that and had the huge good fortune
to end up in the Mathematical Institute nine months later,
joining other students in the geometry group, including
Simon Donaldson, John Roe (who very tragically died a
year before his former supervisor), Michael Murray, and
Jacques Hurtubise.

Nobody who ever met Michael Atiyah will be surprised
to be told that he was a wonderful supervisor to have: al-
ways full of an exciting mix of ideas and enthusiasm. He
also had around him at the time a fantastic group of col-
leagues and visitors as well as students. Raoul and Phyl-
lis Bott spent the academic year 1981–2 in Oxford, and
Cliff Taubes (who had recently completed his PhD) also
visited. Michael and Raoul were writing their fundamen-
tal papers on the Yang–Mills equations over a Riemann
surface [7] (submitted March 1982, based on a prelim-
inary account [6] written in 1980) and on the moment
map and equivariant cohomology [8] (submitted Decem-
ber 1982). Michael had just completed his paper “Convex-
ity and commuting Hamiltonians” [2] (submitted March
1981); he had recently learnt that Victor Guillemin and
Shlomo Sternberg had discovered similar results indepen-
dently and essentially simultaneously [14]. He was also in-
trigued by the observation (made to him by Sternberg and
DavidMumford) of a relationship between moment maps

Frances Kirwan is the Savilian Professor of Geometry at the University of Oxford.
Her email address is kirwan@maths.ox.ac.uk.

and Mumford’s geometric invariant theory (GIT). I was
able to hear about all these ideas from Michael as soon as I
started as his student, and he immediately gave me a beau-
tiful problem to work on: to explore whether the same
sorts of results he and Raoul had found for the Yang–Mills
functional in an infinite-dimensional setting also hold for
the normsquare of a moment map in the situation of a
Hamiltonian action of a compact group 𝐾 on a compact
symplectic manifold 𝑀, suggesting that his convexity re-
sults for torus actions might be relevant to this, as indeed
they turned out to be.

A moment map for a Lie group 𝐺 acting on a symplec-
tic manifold (𝑋,𝜔) is a smooth map 𝜇 ∶ 𝑋 → 𝔤∗ that
is 𝐺-equivariant with respect to the coadjoint action of 𝐺
on the dual of its Lie algebra 𝔤 and is such that the compo-
nent 𝜇⋅𝑎 ∶ 𝑋 → ℝ of 𝜇 along any 𝑎 ∈ 𝔤 is a Hamiltonian
function for the infinitesimal action of 𝑎 on𝑋 (that is, the
1-form 𝑑(𝜇 ⋅ 𝑎) corresponds under the duality defined by
𝜔 to the vector field on 𝑋 determined by 𝑎). The restric-
tion of the symplectic form𝜔 to 𝜇−1(0) is degenerate pre-
cisely along the orbits of 𝐺, and the “symplectic quotient”
𝜇−1(0)/𝐺 inherits a (stratified) symplectic structure.

An infinite-dimensional moment map plays a crucial
role in the Atiyah–Bott paper [7] on the Yang–Mills equa-
tions over a Riemann surface, which was motivated by the-
oretical physics and brings together a wide range of dif-
ferent mathematical topics, including algebraic topology
and Morse theory, algebraic geometry and number theory,
gauge theory and analysis. The main object of study is the
moduli space 𝑀Σ(𝑛, 𝑑) of semistable holomorphic vector
bundles of rank 𝑛 and degree 𝑑 over a compact Riemann
surface Σ of genus 𝑔 ⩾ 2 (and more generally moduli
spaces of principal 𝐺-bundles for a compact Lie group 𝐺).
Here a holomorphic vector bundle𝐸 overΣ is (semi)stable
if it has no proper subbundle 𝐹 with slope 𝜇(𝐹) ∶=
degree(𝐹)/rank(𝐹) (strictly) greater than the slope 𝜇(𝐸)
= 𝑑/𝑛 of 𝐸. Any semistable bundle 𝐸 has a Jordan–
Hölder filtration

0 = 𝐸0 ⊂ 𝐸1 ⊂ ⋯ ⊂ 𝐸𝑚 = 𝐸
by subbundles of the same slope such that each subquo-
tient 𝐸𝑗/𝐸𝑗−1 is stable for 1 ⩽ 𝑗 ⩽ 𝑚, and the associated
graded bundle

gr(𝐸) =
𝑚
⨁
𝑗=1

𝐸𝑗/𝐸𝑗−1

is independent up to isomorphism of the choice of filtra-
tion. Two semistable bundles 𝐸 and 𝐸′ over Σ of rank 𝑛
and degree 𝑑 are said to be 𝑆-equivalent (after Seshadri)
and represent the same point in 𝑀Σ(𝑛, 𝑑) if and only if
gr(𝐸) ≅ gr(𝐸′). When 𝑛 and 𝑑 are coprime then semista-
bility is equivalent to stability and𝑀Σ(𝑛, 𝑑) is the moduli
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space of stable rank 𝑛 and degree 𝑑 bundles over Σ up to
isomorphism.

There are many different ways to think about the geom-
etry of the moduli space 𝑀Σ(𝑛, 𝑑). It is a complex pro-
jective variety of dimension 𝑛2(𝑔 − 1) + 1, and when
𝑛 and 𝑑 are coprime it is a compact Kähler manifold. It
can be constructed as an infinite-dimensional analogue
of a quotient in the sense of Mumford’s geometric invari-
ant theory of an infinite-dimensional complex affine space
𝒞(𝑛,𝑑) of unitary connections on a fixed 𝐶∞ hermitian
vector bundle ℰ0 of rank 𝑛 and degree 𝑑 by the action
of the complexified gauge group 𝒢ℂ(𝑛, 𝑑) of complex au-
tomorphisms of ℰ0. Atiyah and Bott observed that this
infinite-dimensional affine space 𝒞(𝑛,𝑑) has a natural
Kähler structure that is invariant under the gauge group
𝒢(𝑛,𝑑) of unitary automorphisms of ℰ0 and that asso-
ciating to a connection its curvature can be regarded as a
moment map for the action of 𝒢(𝑛,𝑑) on 𝒞(𝑛,𝑑). They
showed that adding a suitable central constant determined
by the topological invariants 𝑛 and 𝑑 gives a moment map

𝜇 ∶ 𝒞(𝑛,𝑑) → Lie𝒢(𝑛,𝑑)∗

whose corresponding symplectic quotient𝜇−1(0)/𝒢(𝑛,𝑑)
can be identified with the moduli space 𝑀Σ(𝑛, 𝑑) via the
theorem of Narasimhan and Seshadri relating (semi)sta-
bility of bundles to unitary representations of the funda-
mental group 𝜋1(Σ). The normsquare of this moment
map is (up to the addition of a constant) the Yang–Mills
functional for the group 𝐺 = 𝑈(𝑛) over Σ, and its crit-
ical points are the solutions to the Yang–Mills equations
whose analogues over Minkowski space and ℝ4 were well
known to be important in physics. The aim of [7] was to
apply Morse theory to the Yang–Mills functional to show
that it is equivariantly perfect (in the sense that it induces
𝒢(𝑛,𝑑)-equivariant Morse inequalities that are actually
equalities) and to use this to study the cohomology of the
quotient 𝑀Σ(𝑛, 𝑑) of its minimum by the gauge group
𝒢(𝑛,𝑑).

In fact, serious analytic difficulties arise with this pro-
gram, not only because of the infinite-dimensionality of
the picture but also because the Yang–Mills functional is
a long way from being a Morse function in the traditional
sense, or even aMorse–Bott function, as in general the con-
nected components of its critical locus have singularities.
The required analysis showing that Yang–Mills paths of
steepest descent converge appropriately to critical points
was later carried out by Daskalopoulos [12], but Atiyah
and Bott avoided its use by constructing directly the associ-
ated “Morse stratification” of the space 𝒞(𝑛,𝑑).
In complex dimension one the Newlander–Nirenberg
integrability condition for ̄𝜕-operators holds vacuously, so
the space 𝒞(𝑛,𝑑) of unitary connections of ℰ0 can be

identified with the space of holomorphic structures onℰ0,
and thus 𝒞(𝑛,𝑑) can be stratified using the Harder–
Narasimhan type of a holomorphic vector bundle defined
as follows. Any holomorphic vector bundle 𝐸 has a canon-
ical filtration (its Harder–Narasimhan filtration)

0 = 𝐸0 ⊂ 𝐸1 ⊂ ⋯ ⊂ 𝐸𝑠 = 𝐸
such that each subquotient 𝐸𝑗/𝐸𝑗−1 is semistable and
their slopes 𝜇(𝐸𝑗/𝐸𝑗−1) are strictly decreasing for 1 ⩽
𝑗 ⩽ 𝑠. The Harder–Narasimhan type of 𝐸 is then deter-
mined by the ranks and degrees of the semistable bundles
𝐸𝑗/𝐸𝑗−1. In order to describe how bundles of oneHarder–
Narasimhan type can degenerate to another (using work of
Shatz), Atiyah and Bott encode the type 𝜇 of 𝐸 as the vec-
tor (𝜇1,… ,𝜇𝑛) = (𝑑1/𝑛1,… ,𝑑𝑠/𝑛𝑠) in which the slope
𝑑𝑗/𝑛𝑗 of𝐸𝑗/𝐸𝑗−1 appears𝑛𝑗 = dim(𝐸𝑗/𝐸𝑗−1) successive
times or, equivalently, as the convex polygon 𝑃 with ver-
tices (0, 0), (rank𝐸1,degree𝐸1),… , (rank𝐸𝑠,degree𝐸𝑠) =
(𝑛,𝑑). The subset𝒞𝜇(𝑛, 𝑑) of𝒞(𝑛,𝑑) consisting of holo-
morphic structures on ℰ0 of Harder–Narasimhan type 𝜇
is a locally closed complex submanifold of 𝒞(𝑛,𝑑) with
finite codimension

𝑑𝜇 = ∑
𝜇𝑖>𝜇𝑗

(𝜇𝑖 −𝜇𝑗 +𝑔− 1),

and its closure is contained in the union of the strata la-
belled by 𝜇′ with 𝜇′ ⩾ 𝜇 in the sense that the polygon
𝑃′ associated to 𝜇′ lies above the polygon 𝑃. In particular,
when 𝜇 = (𝑑/𝑛,… ,𝑑/𝑛) then 𝒞𝜇(𝑛, 𝑑) = 𝒞𝑠𝑠(𝑛, 𝑑) is
the open subset of semistable holomorphic structures on
ℰ0.

An elegant argument (which has become known as the
Atiyah–Bott lemma) shows that the Thom–Gysin long ex-
act sequence

⋯ → 𝐻∗−2𝑑𝜇
𝒢(𝑛,𝑑) (𝒞𝜇(𝑛, 𝑑);ℚ)

→ 𝐻∗
𝒢(𝑛,𝑑)(𝒞\ ⋃

𝜇′>𝜇
𝒞𝜇′(𝑛, 𝑑);ℚ)

→ 𝐻∗
𝒢(𝑛,𝑑)(𝒞\ ⋃

𝜇′⩾𝜇
𝒞𝜇′(𝑛, 𝑑);ℚ) → ⋯

breaks up into short exact sequences by proving

that the composition of 𝐻∗−2𝑑𝜇
𝒢(𝑛,𝑑) (𝒞𝜇(𝑛, 𝑑);ℚ) →

𝐻∗
𝒢(𝑛,𝑑)(𝒞\⋃𝜇′>𝜇 𝒞𝜇′(𝑛, 𝑑);ℚ) with the restriction map

𝐻∗
𝒢(𝑛,𝑑)(𝒞\ ⋃

𝜇′>𝜇
𝒞𝜇′(𝑛, 𝑑);ℚ) → 𝐻∗

𝒢(𝑛,𝑑)(𝒞𝜇(𝑛, 𝑑);ℚ)

is injective. Indeed this composition is multiplication by
the equivariant Euler class

𝑒𝜇 ∈ 𝐻2𝑑𝜇
𝒢(𝑛,𝑑)(𝒞𝜇(𝑛, 𝑑);ℚ)

of the normal bundle to𝒞𝜇(𝑛, 𝑑) in𝒞(𝑛,𝑑), and so it suf-
fices to show that 𝑒𝜇 is not a zero divisor in

1842 NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY VOLUME 66, NUMBER 11



𝐻∗
𝒢(𝑛,𝑑)(𝒞𝜇(𝑛, 𝑑);ℚ), which is isomorphic to

𝑠
⨂
𝑗=1

𝐻∗
𝒢(𝑛𝑗,𝑑𝑗)(𝒞

𝑠𝑠(𝑛, 𝑑);ℚ),

where 𝜇 = (𝑑1/𝑛1,… ,𝑑𝑠/𝑛𝑠). Since the central sub-
group 𝑆1 of 𝒢(𝑛𝑗, 𝑑𝑗) given by multiplication by scalars
acts trivially on 𝒞𝑠𝑠(𝑛𝑗, 𝑑𝑗), we have

𝐻∗
𝒢(𝑛𝑗,𝑑𝑗)(𝒞

𝑠𝑠(𝑛, 𝑑);ℚ)
≅ 𝐻∗(𝐵𝑆1;ℚ) ⊗𝐻∗

̄𝒢(𝑛𝑗,𝑑𝑗)(𝒞
𝑠𝑠(𝑛, 𝑑);ℚ),

where ̄𝒢(𝑛𝑗, 𝑑𝑗) = 𝒢(𝑛𝑗, 𝑑𝑗)/𝑆1 and the rational coho-
mology 𝐻∗(𝐵𝑆1;ℚ) of the classifying space of the circle
group 𝑆1 is a polynomial ring ℚ[𝑢𝑗] on one variable 𝑢𝑗
in degree 2. Atiyah and Bott show that the component of
the equivariant Euler class 𝑒𝜇 in

𝑠
⨂
𝑗=1

ℚ[𝑢𝑗] ⊗𝐻0
̄𝒢(𝑛𝑗,𝑑𝑗)(𝒞

𝑠𝑠(𝑛, 𝑑);ℚ) ≅ ℚ[𝑢1,… ,𝑢𝑠]

is a nonzero polynomial (the product of the weights of the
torus (𝑆1)𝑠 on the normal bundle to𝒞𝜇(𝑛, 𝑑) in𝒞(𝑛,𝑑))
and therefore that 𝑒𝜇 is not a zero divisor in
𝐻∗

𝒢(𝑛,𝑑)(𝒞𝜇(𝑛, 𝑑);ℚ), as required. Removing each stra-
tum 𝒞𝜇(𝑛, 𝑑) from 𝒞(𝑛,𝑑) one by one, leaving an open
subset of 𝒞(𝑛,𝑑) each time, and using the Atiyah–Bott
lemma give us the equivariant perfection of the stratifica-
tion:

dim𝐻𝑖
𝒢(𝑛,𝑑)(𝒞(𝑛,𝑑);ℚ)

= ∑
𝜇
dim𝐻𝑖−2𝑑𝜇

𝒢(𝑛,𝑑)(𝒞𝜇(𝑛, 𝑑);ℚ),

where

𝐻∗
𝒢(𝑛,𝑑)(𝒞𝜇(𝑛, 𝑑);ℚ) ≅

𝑠
⨂
𝑗=1

𝐻∗
𝒢(𝑛𝑗,𝑑𝑗)(𝒞

𝑠𝑠(𝑛, 𝑑);ℚ).

Since𝒞(𝑛,𝑑) is an affine space and so homotopically triv-
ial, we have

𝐻𝑖
𝒢(𝑛,𝑑)(𝒞(𝑛,𝑑);ℚ) ≅ 𝐻𝑖(𝐵𝒢(𝑛,𝑑);ℚ),

which Atiyah and Bott showed has dimension given by the
coefficient of 𝑡𝑖 in the Poincaré series

𝑃𝑡(𝐵𝒢(𝑛,𝑑))

=
𝑛
∏
𝑘=1

(1 + 𝑡2𝑘−1)2𝑔/(1 − 𝑡2𝑛)
𝑛−1
∏
𝑘=1

(1 − 𝑡2𝑘)2.

This gave them an inductive formula (later made explicit
by Zagier) for calculating the equivariant Betti numbers
dim𝐻𝑖

𝒢(𝑛,𝑑)(𝒞𝑠𝑠(𝑛, 𝑑);ℚ) for the semistable stratum
𝒞𝑠𝑠(𝑛, 𝑑). When 𝑛 and 𝑑 are coprime then 𝒞𝑠𝑠(𝑛, 𝑑) =

𝒞𝑠(𝑛, 𝑑), and the moduli space 𝑀Σ(𝑛, 𝑑) can be identi-
fied with the quotient 𝒞𝑠𝑠(𝑛, 𝑑)/ ̄𝒢ℂ(𝑛, 𝑑) where
̄𝒢ℂ(𝑛, 𝑑) = 𝒢ℂ(𝑛, 𝑑)/ℂ∗ acts freely on 𝒞𝑠𝑠(𝑛, 𝑑). This

means that

𝐻∗
𝒢(𝑛,𝑑)(𝒞𝑠𝑠(𝑛, 𝑑);ℚ)

≅ 𝐻∗(𝐵𝑆1;ℚ) ⊗𝐻∗(𝑀Σ(𝑛, 𝑑);ℚ),
and we obtain a formula for the Betti numbers of the mod-
uli space𝑀Σ(𝑛, 𝑑) of semistable holomorphic vector bun-
dles of rank 𝑛 and degree 𝑑 over Σ. We also obtain mul-
tiplicative generators for its rational cohomology, since by
equivariant perfection of the stratification the restriction
map

𝐻∗
𝒢(𝑛,𝑑)(𝒞(𝑛,𝑑);ℚ) → 𝐻∗

𝒢(𝑛,𝑑)(𝒞𝑠𝑠(𝑛, 𝑑);ℚ)

is surjective, and𝐻∗
𝒢(𝑛,𝑑)(𝒞(𝑛,𝑑);ℚ)≅𝐻∗(𝐵𝒢(𝑛,𝑑);ℚ)

has generators

𝑎𝑟 ∈ 𝐻2𝑟(𝐵𝒢(𝑛,𝑑);ℚ), 𝑏𝑗
𝑟 ∈ 𝐻2𝑟−1(𝐵𝒢(𝑛,𝑑);ℚ)

for 1 ⩽ 𝑗 ⩽ 2𝑔 and 𝑓𝑟 ∈ 𝐻2𝑟−2(𝐵𝒢(𝑛,𝑑);ℚ) (1)

given by decomposing the Chern classes of the universal
bundle over 𝐵𝒢(𝑛,𝑑)×Σ using the Künneth decomposi-
tion of 𝐻∗(𝐵𝒢(𝑛,𝑑) × Σ;ℚ).

Equivalent formulas for the Betti numbers of𝑀Σ(𝑛, 𝑑),
when 𝑛 and 𝑑 are coprime, had already been obtained
by Harder–Narasimhan and Desale–Ramanan using arith-
metic geometry and the Weil conjectures. Although the
methods used looked very different in some ways, Atiyah
and Bott observed that there was a formal correspondence
between them. Both methods are based on the stratifi-
cation by Harder–Narasimhan-type of the moduli stack
ℳΣ(𝑛, 𝑑) = [𝒞(𝑛,𝑑)/𝒢ℂ(𝑛, 𝑑)] of bundles over Σ (cf.
[1, 13, 15]), although Atiyah and Bott did not use the lan-
guage of stacks, together with inductive descriptions of the
unstable strata in terms of moduli of semistable bundles
of smaller rank, and the fact that when 𝑛 and 𝑑 are co-
prime the Betti numbers of the moduli space𝑀Σ(𝑛, 𝑑) are
given by the dimensions of the cohomology groups of the
semistable stratum of this stack. The methods are differ-
ent, however, in how they use the stratification to deduce
a version of the inductive formula

𝑃𝑡([𝒞𝑠𝑠(𝑛, 𝑑)/𝒢ℂ(𝑛, 𝑑)])=𝑃𝑡([𝒞(𝑛,𝑑)/𝒢ℂ(𝑛, 𝑑)])

− ∑
𝜇=(𝑑1/𝑛1,…,𝑑𝑠/𝑛𝑠)

≠(𝑑/𝑛,…𝑑/𝑛)

𝑡2𝑑𝜇
𝑠
∏
𝑗=1

𝑃𝑡([𝒞𝑠𝑠(𝑛𝑗, 𝑑𝑗)/𝒢ℂ(𝑛𝑗, 𝑑𝑗)])

(2)

for the Poincaré series of the moduli stack ℳ𝑠𝑠
Σ (𝑛, 𝑑) =

[𝒞𝑠𝑠(𝑛, 𝑑)/𝒢ℂ(𝑛, 𝑑)] of semistable holomorphic
bundles of rank 𝑛 and degree 𝑑 over Σ and to calculate
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the crucial ingredient given by the Poincaré series
𝑃𝑡([𝒞(𝑛,𝑑)/𝒢ℂ(𝑛, 𝑑)]) of themoduli stackℳΣ(𝑛, 𝑑) =
[𝒞(𝑛,𝑑)/𝒢ℂ(𝑛, 𝑑)] of all holomorphic bundles of rank
𝑛 and degree 𝑑 over Σ.

In the approach motivated by gauge theory, the Atiyah–
Bott lemma gives the equivariant perfection of the Morse
stratification of the Yang–Mills functional and thus
the inductive formula (2), while algebraic topology is
used to calculate the Poincaré series 𝑃𝑡(𝐵𝒢(𝑛,𝑑)) =
𝑃𝑡([𝒞(𝑛,𝑑)/𝒢ℂ(𝑛, 𝑑)]) of the classifying space of the
gauge group. The earlier arithmetic approach was based
on the Weil conjectures, which can be used to calculate
the Betti numbers of nonsingular complex projective vari-
eties (or more generally projective ind-varieties) by count-
ing points in associated varieties defined over finite fields.
From this viewpoint we need to assume (as we may by a
small perturbation) that the compact Riemann surface Σ
is a nonsingular complex projective curve defined over the
rationals, and indeed over ℤ, with good reduction modulo
𝑝 for all but finitely many primes 𝑝. Let 𝐶 be a nonsingu-
lar projective curve over a finite field 𝔽𝑞 of characteristic 𝑝.
Using his theory of matrix divisor classes, Weil constructed
a canonical bijection from the set of isomorphism classes
of vector bundles on 𝐶 defined over 𝔽𝑞 to a double coset
space

𝔎\GL𝑛(𝔸𝐾)/GL𝑛(𝐾),
where 𝐾 = 𝔽𝑞(𝐶) is the function field of 𝐶 and 𝔸𝐾 is
its adèle ring, while 𝔎 is a maximal compact subgroup of
GL𝑛(𝔸𝐾). It is more convenient to fix determinants; re-
placing GL𝑛 with SL𝑛, the double coset space

𝔎Λ\SL𝑛(𝔸𝐾)/SL𝑛(𝐾)
is in bijection with the set BunΛ

SL𝑛(𝔽𝑞) of isomorphism
classes of bundles 𝐸 on 𝐶 equipped with an isomorphism
det𝐸 ≅ Λ defined over 𝔽𝑞, where the maximal compact
subgroup 𝔎Λ of SL𝑛(𝔸𝑘) depends on the line bundle Λ.
Siegel’s mass formula gives us

𝜏(SL𝑛) = vol(𝔎Λ) ∑
ℰ∈BunΛ

SL𝑛 (𝔽𝑞)

1
|Aut(ℰ)| ,

where the Tamagawa number 𝜏(SL𝑛) is the total measure
of SL𝑛(𝔸𝐾)/SL𝑛(𝐾) with respect to a right invariant Haar
measure on SL𝑛(𝔸𝐾) and vol(𝔎Λ) is calculated with re-
spect to the same measure. We have

𝜏(SL𝑛) = 1, (3)

while vol(𝔎Λ) is given in terms of the zeta function 𝑍𝐶 of
𝐶 as

vol(𝔎Λ) = 𝑞−(𝑛2−1)(𝑔−1)/𝑍𝐶(𝑞−2)⋯𝑍𝐶(𝑞−𝑛). (4)

Partitioning BunΛ
SL𝑛(𝔽𝑞) by Harder–Narasimhan type into

subsets BunΛ,𝜇
SL𝑛 (𝔽𝑞) and combining Siegel’s mass formula

with (3) and (4) gives

𝑞(𝑛2−1)(𝑔−1)𝑍𝐶(𝑞−2)⋯𝑍𝐶(𝑞−𝑛)
− ∑

𝜇≠(𝑑/𝑛,…,𝑑/𝑛)
∑

ℰ∈BunΛ,𝜇
SL𝑛 (𝔽𝑞)

1/|Aut(ℰ)|

as the number of isomorphism classes defined over 𝔽𝑞 of
semistable bundles on𝐶with rank𝑛 and degree𝑑. The ob-
servation of Atiyah and Bott that these inductive methods
for obtaining the Betti numbers of 𝑀Σ(𝑛, 𝑑) (when 𝑛 and
𝑑 are coprime) are parallel, with the Siegel mass formula
(derived from the additivity of counting points over finite
fields) playing the role of the equivariant perfection of the
Yang–Mills functional (derived from the Atiyah–Bott
lemma) and (3) playing the role of the contractibility of
the infinite-dimensional affine space𝒞(𝑛,𝑑), has been ex-
plored further in the decades since (see e.g. [1,13] and the
references therein).

When I became Michael Atiyah’s student he told me
about these beautiful ideas and about his suspicion that
a vital ingredient in the Yang–Mills picture was that the
Yang–Mills functional can be regarded as the normsquare
of amomentmap for the action of the gauge group𝒢(𝑛,𝑑)
on the space 𝒞(𝑛,𝑑). His hope (which turned out to be
correct) was that a similar picture should emerge in finite-
dimensional situations when a compact Lie group 𝐾 acts
on a compact symplectic manifold (𝑋,𝜔) with moment
map 𝜇 ∶ 𝑋 → 𝔨∗ where 𝔨 = Lie𝐾. The arithmetic aspects
should apply (and a close link with Mumford’s geometric
invariant theory should exist) when (𝑋,𝜔) is a nonsin-
gular complex projective variety with Fubini–Study Käh-
ler form associated to a very ample vector bundle 𝐿 on 𝑋
and the complexification 𝐺 = 𝐾ℂ of 𝐾 acts linearly on
𝑋 with respect to 𝐿. An important piece of evidence for
this was the appearance of convexity in the Yang–Mills pic-
ture, together with his recent paper on convexity and com-
muting Hamiltonians. In this he studied the case when
𝐾 = 𝑇 ≅ (𝑆1)𝑟 is a compact torus acting on a compact
connected symplectic manifold 𝑋 preserving the symplec-
tic form 𝜔 and with a moment map 𝜇𝑇 ∶ 𝑋 → 𝔱∗ where
𝔱 = Lie𝑇. He showed that 𝜇𝑇(𝑋) is a convex polytope,
the convex hull in 𝔱∗ of the finite set 𝜇𝑇(𝑋𝑇), where 𝑋𝑇

is the set of 𝑇-fixed points in 𝑋. If moreover (𝑋,𝜔) is
Kähler, then the action of𝑇 extends to its complexification
𝑇ℂ ≅ (ℂ∗)𝑟, and for any 𝑥 ∈ 𝑋 the image𝜇𝑇(𝑇ℂ𝑥) of the
closure of the 𝑇ℂ-orbit of 𝑥 is the convex hull of the finite
set 𝜇𝑇(𝑇ℂ𝑥 ∩ 𝑋𝑇), with 𝜇𝑇(𝑇ℂ𝑥) = 𝜇𝑇(𝑋) for generic
𝑥 ∈ 𝑋. The application of this to the maximal torus of
an arbitrary compact Lie group with a Hamiltonian action
on a compact connected symplectic manifold allows us to
describe the Morse stratification of the normsquare of the
moment map and show that it is equivariantly perfect by
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applying the Atiyah–Bott lemma, thus obtaining results
similar to those of the Yang–Mills situation about the co-
homology of the symplectic quotient. Michael Atiyah and
Andrew Pressley also extended the convexity result in an
infinite-dimensional setting involving the loop group of
𝐾 [9].

Moment maps and equivariant cohomology provide
the title of another fundamental paper [8] by Atiyah and
Bott written around the same time as the Yang–Mills paper
[7]. This is closely related to independent work of Berline
and Vergne [10] and was motivated by the Duistermaat–
Heckman formula for the pushforward by a moment
map 𝜇𝑇 ∶ 𝑋 → 𝔱∗ for a torus action on a compact
connected symplectic manifold (𝑋,𝜔) of the symplectic
measure given by 𝜔𝑛/𝑛!. This pushforward is always
piecewise polynomial. Equivalently the stationary phase
approximation for its Fourier transform is exact, so that

∫
𝑋
𝑒−𝑖⟨𝜉,𝜇𝑇⟩𝜔𝑛/𝑛!= ∑

𝐹∈ℱ
𝑒−𝑖⟨𝜉,𝜇𝑇(𝐹)⟩ ∫

𝐹

𝜔dim𝐹

(dim𝐹)! 𝑒𝐹(𝑖𝜉)
(5)

for any 𝜉 ∈ 𝔱, where ⟨ , ⟩ is the canonical pairing between
𝔱 and 𝔱∗, while ℱ is the set of connected components of
the fixed point set 𝑋𝑇 for the 𝑇-action on 𝑋 (so that 𝜇𝑇|𝐹
is constant for each𝐹 ∈ ℱ) and 𝑒𝐹 is the equivariant Euler
class for the normal bundle to 𝐹 in 𝑋. If 𝐹 ∈ ℱ, then
𝑇 ≅ (𝑆1)𝑟 acts trivially on 𝐹, and so there is a canonical
isomorphism

𝐻∗
𝑇 (𝐹;ℂ) ≅ 𝐻∗(𝐹;ℂ) ⊗𝐻∗(𝐵𝑇;ℂ),

where 𝐻∗(𝐵𝑇;ℂ) = Sym(𝔱∗ℂ) ≅ ℂ[𝑢1,… ,𝑢𝑟] is a poly-
nomial ring on 𝑟 generators of degree 2. As in the proof of
the Atiyah–Bott lemma, the component of 𝑒𝐹 ∈ 𝐻∗

𝑇 (𝐹;ℂ)
in

𝐻0(𝐹;ℂ) ⊗𝐻∗(𝐵𝑇;ℂ) ≅ ℂ[𝑢1,… ,𝑢𝑟]
is nonzero, and hence 𝑒𝐹 is not a zero divisor in𝐻∗

𝑇 (𝐹;ℂ),
because terms of positive degree in 𝐻∗(𝐹) are nilpotent.
Thus 𝑒𝐹 is invertible in the localization 𝐻∗(𝐹;ℂ) ⊗
ℂ(𝑢1,… ,𝑢𝑟) of 𝐻∗

𝑇 (𝐹;ℂ). This enables us to interpret
∫𝐹 𝜔dim𝐹/(dim𝐹)! 𝑒𝐹(𝑖𝜉) as a rational function on 𝔱 and
make sense of the identity (5).

Atiyah and Bott observed that the formula (5) can be in-
terpreted as a consequence of well-known localization for-
mulas in equivariant cohomology. For a compact group𝐾
acting on a manifold 𝑋 they describe a de Rham version
of equivariant cohomology as the basic complex Ω∗

𝔨 (𝑋)
of Ω∗(𝑋) ⊗ 𝑊(𝔨), where Ω∗(𝑋) is the usual de Rham
complex, 𝑊(𝔨) = Λ𝔨∗ ⊗ Sym 𝔨∗ is the Weil algebra, and
elements𝜙 ofΩ∗(𝑋)⊗𝑊(𝔨) are basic if 𝜄(𝑎)𝜙 = 0 and
ℒ(𝑎)𝜙 = 0 for all 𝑎 ∈ 𝔨. Here 𝑊(𝔨) is graded by giv-
ing degree 1 to elements 𝜃 ∈ 𝔨∗ in Λ𝔨∗ and degree 2 to

𝑢 ∈ 𝔨∗ regarded as in Sym 𝔨∗. Then 𝑊(𝔨) is freely gener-
ated as a commutative graded algebra by a basis {𝜃𝛼} of
𝔨∗ in degree 1 and the same basis denoted {𝑢𝛼} regarded
as in degree 2. There is a differential operator 𝐷 on 𝑊(𝔨)
defined on the generators {𝜃𝛼} and {𝑢𝛼} in terms of the
structure constants for the Lie algebra 𝔨. When𝑋 is a point,
Ω∗

𝔨 (𝑋) is the basic subcomplex of 𝑊(𝔨), which is given
by polynomials on 𝔨 invariant under the adjoint action. A
symplectic form 𝜔 ∈ Ω2(𝑋) on 𝑋 is closed but is not
in general equivariantly closed for a compatible group ac-
tion on 𝑋. However, when a compact torus 𝑇 = (𝑆1)𝑟
acts on (𝑋,𝜔) with moment map 𝜇𝑇 ∶ 𝑋 → 𝔱∗ then
𝐷(𝜔− 𝜇𝑇) = 0, and so 𝜔− 𝜇𝑇 represents an equivari-
ant cohomology class.

Atiyah and Bott consider 𝐻∗
𝑇 (𝑋;ℂ) as a module over

𝐻∗(𝐵𝑇;ℂ) = ℂ[𝑢1,… ,𝑢𝑟] and show that the kernel and
cokernel of the restriction map

𝑖∗ ∶ 𝐻∗
𝑇 (𝑋;ℂ) → ⨁

𝐹∈ℱ
𝐻∗

𝑇 (𝐹;ℂ)

(with components 𝑖∗𝐹 for 𝐹 ∈ ℱ) and the pushforward
map

𝑖∗ ∶ ⨁
𝐹∈ℱ

𝐻∗
𝑇 (𝐹;ℂ) → 𝐻∗

𝑇 (𝑋;ℂ)

(with components 𝑖𝐹∗ for𝐹 ∈ ℱ) are torsionmodules over
𝐻∗(𝐵𝑇;ℂ), so their composition 𝑖∗𝑖∗ is an isomorphism
modulo torsion. Indeed 𝑖∗𝑖∗ is given on 𝐻∗

𝑇 (𝐹;ℂ) for
𝐹 ∈ ℱ by multiplication by the equivariant Euler class 𝑒𝐹
of the normal bundle to 𝐹 in 𝑋, and the component of 𝑒𝐹
in

𝐻0(𝐹;ℂ) ⊗𝐻∗(𝐵𝑇;ℂ) ≅ ℂ[𝑢1,… ,𝑢𝑟]
is

𝑒𝐹,0 =
codimℝ(𝐹)/2

∏
𝑗=1

(𝑎𝑗1𝑢1 +⋯+𝑎𝑗𝑟𝑢𝑟),

where the representation of 𝑇 = (𝑆1)𝑟 on the normal to
𝐹 in 𝑋 at any point of 𝐹 has weights given by 𝑎𝑗1𝑢1 +
⋯ + 𝑎𝑗𝑟𝑢𝑟 for 1 ⩽ 𝑗 ⩽ codimℝ(𝐹)/2. If we localize
with respect to the nonzero polynomial ∏𝐹∈ℱ 𝑒𝐹,0 in
ℂ[𝑢1,…𝑢𝑟], then it follows that

∑
𝐹∈ℱ

𝑖∗𝐹 /𝑒𝐹

is inverse to 𝑖∗, and that if 𝜙 ∈ 𝐻∗
𝑇 (𝑋;ℂ), then

𝜙 = ∑
𝐹∈ℱ

𝑖𝐹∗𝑖∗𝐹𝜙/𝑒𝐹.

Pushing forward to a point and replacing 𝜙 with 𝜙𝑒�̄�
where �̄� = 𝜔−𝜇𝑇 gives us the integration formula

∫
𝑋
𝜙𝑒�̄� = ∑

𝐹∈ℱ
∫
𝐹
𝑖∗𝐹 (𝜙𝑒�̄�)/𝑒𝐹
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with the Duistermaat–Heckman formula as the special
case when 𝜙 = 1.

Atiyah and Bott also related these ideas to (the second
half of) the paper [18] of Witten, who later produced a
nonabelian version of localization using the normsquare
||𝜇||2 of amomentmap for aHamiltonian action of a com-
pact group 𝐾 on 𝑋 to study the integrals

∫
𝜇−1(0)/𝐾

(𝜂𝑒�̄�)0

over a symplectic quotient 𝜇−1(0)/𝐾 by localizing near
the critical points of ||𝜇||2. Here we assume that 0 is a
regular value of 𝜇, and if 𝛼 ∈ 𝐻∗

𝐾(𝑋;ℂ), then 𝛼0 ∈
𝐻∗(𝜇−1(0)/𝐾;ℂ) ≅ 𝐻∗

𝐾(𝜇−1(0);ℂ) is its image under
the restriction map 𝐻∗

𝐾(𝑋;ℂ) → 𝐻∗
𝐾(𝜇−1(0);ℂ). Wit-

ten used these ideas applied to the Yang–Mills functional
to find formulas for the evaluation on the moduli space
𝑀Σ(𝑛, 𝑑) of any product of the generators

𝑎𝑟 ∈ 𝐻2𝑟(𝑀Σ(𝑛, 𝑑);ℂ), 𝑏𝑗
𝑟 ∈ 𝐻2𝑟−1(𝑀Σ(𝑛, 𝑑);ℂ)

for 1 ⩽ 𝑗 ⩽ 2𝑔 and 𝑓𝑟 ∈ 𝐻2𝑟−2(𝑀Σ(𝑛, 𝑑);ℂ)

for 𝐻∗(𝑀Σ(𝑛, 𝑑);ℂ) as at (1) above, and thus to extend
Atiyah and Bott’s description of the cohomology of
𝑀Σ(𝑛, 𝑑) to include a complete set of relations among
these generators (cf. [16,17,19]).
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Frances Kirwan

Recollections of Michael Atiyah

Peter Kronheimer
Somewhere among my files, I still have the short note that
Michael sent me in 1984. I had just completed my under-
graduate degree at Oxford, and he was writing to let me
know that he would be happy to accept me as a student,
beginning in the autumn.

Michael’s handwriting sloped upward across the page.
The speed and energy of those rising lines was a clear re-
flection of his personality, which was mirrored in all sorts
of other ways: a briefly raised brow as he talked; an abrupt
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clearing of the throat as he walked down the corridor at
the Mathematical Institute; or his forward-leaning stance
and searching look, under a slightly asymmetrical frown,
as he asked a question, putting a student or colleague on
the spot.

It was an exciting time to be working in the closely tied
areas of geometry and low-dimensional topology. On the
topological side, the three years during which I was a stu-
dent of Michael’s saw the development of Donaldson’s
polynomial invariants for smooth four-manifolds, Floer’s
instanton homology for three-manifolds, and the Jones
polynomial for knots. On the geometric side, the inter-
actions between Michael Atiyah and Roger Penrose had re-
cently opened up a new area. In particular, the twistor in-
terpretation of “instantons,” discovered by Richard Ward,
had led to the “ADHM” description of instantons on the
four-sphere, named after Atiyah, Drinfeld, Hitchin, and
Manin. By the time I was a student, Nigel Hitchin had
adapted Ward’s work to begin the study of the Bogomolny
equations in three-space, solutions of which are
Bogomolny monopoles.

The first research paper that Michael asked me to read
“in earnest” was Nigel’s earliest paper on monopoles, in
which he showed how to assign to each solution of the Bo-
gomolny equations a complex-algebraic curve lying on a
singular quadric surface. My first-year dissertation was in-
tended to extend part of this story to monopole solutions
having simple singularities at prescribed points in three-
space. This project introduced me to the rich connections
between gauge theory and hyper-Kähler geometry, and it
formed a starting point formy doctoral thesis, which estab-
lished the existence of hyper-Kähler Riemannian metrics
on the complex surfaces obtained as resolutions of the Du
Val singularities. There was no gauge theory visible on the
pages of my thesis, but the ADHM construction lay behind
it. My research interests soon swung more towards low-
dimensional topology, but the Du Val singularities have
never stopped appearing on my blackboard, a constant ref-
erence point.

I was fortunate to maintain a close connection with
Michael after my degree, first as a postdoc at the Institute
for Advanced Study, then as a colleague in Oxford, and
then as a regular visitor to Trinity. Meeting with Michael
always brought something special. If I parked my small
car in the spot marked “Reserved for the Master” and then
spent the morning talking mathematics, I knew that I
would return home with renewed energy for research and
a renewed appreciation for the connectedness of my field.

Peter Kronheimer

Recollections of Michael Atiyah

Ruth Lawrence-Naimark
Over the three years that I was Atiyah’s student, I came
for a one-hour meeting regularly once a week during term-
time (apart from the semester when he took a sabbatical
at IAS and I worked with Nigel Hitchin). To each meeting
I would bring a written summary of what I had achieved
since the last meeting and would explain it along with ob-
stacles to progress. Despite the fact that he didn’t seem to
check the details, he was always quick to spot any error. I
remember in my first year with him, I worked on a prob-
lem that he suggested, a local index theorem. For several
weeks, I would come back each week with essentially the
same calculation, but with different signs! Finally I got it
right, feeling rather embarrassed about the many changes
and resolved never to forget the lesson; he was very posi-
tive and encouraging, recalling the role of signs in his own
work many years earlier.

Atiyah would then usually launch into a private whirl-
wind tour expounding some relevant topic. Sometimes he
would intersperse it with anecdotes from his work with
Singer or Bott or his own supervisor, Hodge. One would
then feel especially privileged to be hearing about history
firsthand. He very rarely directly suggested reading in the
literature (although of course one was expected to do back-
ground reading); much more often he preferred to give
the basics directly and then expect (and recommend) that
you worked it out yourself, even if it was already in the
literature. Rarely, our discussions moved into areas (like
quantum groups) where he didn’t feel as comfortable, and
then he wouldn’t hesitate to suggest talking to an expert in
that area.

His Monday afternoon Geometry and Analysis seminar
functioned like a departmental colloquium, being the
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highlight of the week with often around one hundred at-
tending, some coming from far afield. It was a lecture in
this seminar in my second year, by Vaughan Jones, that
caught my interest and launched me away from index the-
ory and into knot theory, quantum groups, etc. The fol-
lowing semester Sir Michael was on sabbatical at the In-
stitute in Princeton, which was where Jones–Witten the-
ory was conceived. What is now called Witten–Chern–
Simons theory had its birth at a dinner at an International
Congress inMathematical Physics in Swansea in July 1988,
where Atiyah was pushing the idea of the Jones polyno-
mial arising from a topological quantum field theory, and
finally Witten realized that the action needed was precisely
Chern–Simons and how it all fit together. (I attended the
conference but not that dinner and heard about the event
the next day.) Atiyah devoted a whole eight-week term to
Jones–Witten theory in the Geometry and Analysis semi-
nar at the start of the following year, with lectures by Segal,
Hitchin, and him.

Anyone who has attended a lecture of his can attest to
hismastery of subject and audience and his ability to trans-
port you on a beautiful and magical tour of mathemat-
ics that would leave you walking out of the lecture feeling
that you now understood precisely the interrelations of all
these ideas, only to find half an hour later, upon trying to
reconstruct the same picture alone, that without his con-
tinuing magic touch, the pieces didn’t continue to fit so
neatly without a lot of extra work!

However, this elusive quality was not there in the per-
sonal lectures I had as a student. Sir Michael Atiyah was
very practical and down-to-earth, whether about mathe-
matics or logistics, and never left one feeling completely
at a loose end. Sure, there was work to be done and un-
known factors, but he was a masterful teacher and under-
stood exactly where you were and what you were capable
of doing. I remember once visiting Cambridge for a con-
ference, and despite havingmany demands on his time, he
checked that everything was fine with my accommodation
and even gaveme a private tour of Trinity College (this was
a short time before he became Master). He was especially
proud showing me the original manuscripts of Sir Isaac
Newton in the library.

For him, mathematics had to be unifying and beautiful.
I feel very privileged to have been his student and to have
had a peek into the view of the glory ofmathematics, some
fractional part of which I have carried ever since.

Ruth Lawrence-
Naimark

Memories of Professor
Michael Atiyah

Lisa Jeffrey
I was the last research student who completed the doctor-
ate under Professor Michael Atiyah’s supervision. One of
the earliest such students was Graeme Segal, who finished
in the sixties and retired more than fifteen years ago from
his position as an Oxford mathematics professor. In be-
tween, Professor Atiyah supervised more than twenty doc-
toral students to completion. Mostmembers of theOxford
mathematical community would agree with my belief that
if Professor Atiyah had chosen a different profession, many
parts of modern mathematics might not have developed.

In the late eighties, Professor Atiyah had encouraged Ed-
ward Witten to find an interpretation of the Jones polyno-
mial (an invariant of knots) in terms of quantum field the-
ory. In September 1988, Witten’s paper “Quantum field
theory and the Jones polynomial” appeared as an IAS pre-
print. It was published in Communications in Mathematical
Physics the following year. The Jones polynomial is associ-
ated to a knot in three-space, or in the three-dimensional
sphere or a three-dimensional manifold. Witten consid-
ered the Chern–Simons functional, which associates a real
number to a connection on a three-manifold. He used the
Chern–Simons functional as the Lagrangian in a quantum
field theory. When a knot in the manifold was specified,
one could define the “Wilson loop” (the integral of the
connection around the knot) and use this to define a path
integral over all connections on the three-manifold. This
construction provided the quantum field theory interpre-
tation of the Jones polynomial.

In autumn 1988 the Oxford geometry seminar was de-
voted to theOxford seminar on Jones–Witten theory. Ruth
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Lawrence (at the time a student of Professor Atiyah, com-
pleting the final year of her doctorate) wrote notes of the
seminar. These were typed (by his extremely efficient secre-
tary, Jane Cox, using an electric typewriter) andmade avail-
able to participants. The first seminar was given by Pro-
fessor Atiyah, “An introduction to Jones–Witten theory.”
Seminar 3 (“Moduli spaces of vector bundles”) and Sem-
inar 6 (“The path integral formulation”) were also given
by Professor Atiyah. Two of the remaining seminars were
given by Graeme Segal (“The abelian theory” and “Fusion
rules and the Verlinde algebra”) and one by Nigel Hitchin
(“Reduction to the Abelian case”). Ruth Lawrence gave the
final seminar (“Computing the invariants”).

In his preface, Professor Atiyah wrote: “No serious at-
tempt has been made to integrate [the notes of the semi-
nars] or produce a coherent polished account. These notes
therefore have limited value and are mainly designed for
the audience who attended.” He is not doing himself jus-
tice here. All participants in this seminar felt that the sem-
inar was covering groundbreaking material. The Oxford
seminar notes roughly formed the basis for Professor
Atiyah’s book The Geometry and Physics of Knots (Lezioni
Lincee), which was published in 1990. The subject of
Jones–Witten theory has had spectacular importance over
the more than thirty intervening years, and Professor
Atiyah’s account has been particularly influential.

I beganmy doctorate inOxford in 1988 under Professor
Atiyah’s supervision. My generation of students was greatly
influenced by Professor Atiyah’s survey article “New invari-
ants of three- and four-dimensional manifolds,” which
was published in the proceedings of the 1987Durham con-
ference TheMathematicalHeritage ofHermannWeyl. This
article outlined the axioms for topological field theories,
which had been formulated by Professors Atiyah and Se-
gal.

It was natural for me to choose a doctoral thesis topic
about Jones–Witten theory and its asymptotics (as a per-
turbative theory with an asymptotic expansion as a sum
over contributions coming from flat connections on three-
manifolds). However, I was not the only student greatly in-
fluenced by the Jones–Witten theory seminar. Joergen An-
dersen, Andrew Dancer, Oscar Garcia-Prada, Ruth
Lawrence, and Michael Thaddeus had the directions of
their thesis work altered by this seminar. The research stu-
dents also spent time on the “junior geometry seminar” (a
learning seminar where research students were the speak-
ers) on topics related to the Jones–Witten seminar.

Inmynotes from an earlymeetingwith Professor Atiyah
in early October 1988, the topics covered included flag
manifolds, the Peter–Weyl theorem, the Bott–Borel–Weil
theorem, and Jones–Witten theory. A subsequent meeting
three weeks later covered complex polarization of a sym-

plectic manifold, the Grothendieck–Riemann–Roch theo-
rem, the Hirzebruch–Riemann–Roch theorem, derived
functors, anomalies, determinant line bundles, Ray–Singer
torsion, zeta function regularization, and stationary phase
approximation. All of this material was background for
the geometry seminar on Jones–Witten theory. My notes
for this last meeting filled about ten pages. Professor
Atiyah not only listed these topics, he explicated them.

After my first year, Professor Atiyah encouraged me to
attend conferences. He told me it might be easier for his
students to find an opportunity to talk with him at con-
ferences than back in Oxford, where he had so many re-
sponsibilities and preoccupations. I remember the Bonn
Arbeitstagung, where Professor Atiyah was always the first
speaker. I have a vivid memory of finding a gentian on a
German hillside with other mathematicians such as Nigel
Hitchin and Graeme Segal.

At one point in my first year I had told Professor Atiyah
that I was waiting for an idea to strike. He looked at me
rather sternly and told me that ideas do not strike. Per-
haps he was referring to Pasteur’s statement that chance
favors only the well-prepared mind. In any case, it was an
immense privilege to work under Professor Atiyah’s super-
vision. I cannot possibly repay the debt of gratitude that I
owe him.

Lisa Jeffrey

Michael Atiyah and Physics:
The Later Years

Bernd Schroers
The inadvertent and the intentional physicist. Michael
Atiyah frequently expressed surprise at the extent to which
his work on index theory and his early work in gauge the-
ory turned out to be important in physics. At the end of his
commentary in Volume 5 of his collected works he writes:
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“...I am really struck by the way most of the work which
Singer and I did in the 60s and 70s has become relevant
to physics.” Reading this work with hindsight one can
indeed only marvel at the contrast between the absence
of any physical motivation and the ultimate importance
in theoretical physics. It seems that, at least during the
first half of his mathematical career, Michael’s impact on
physics was entirely inadvertent. This is also borne out by
a remark in his 1998 lecture “The Dirac equation and ge-
ometry,” where he writes: “When Singer and I were inves-
tigating these questions we ‘rediscovered’ for ourselves the
Dirac operator. Had we been better educated in physics, or
had there been the kind of dialogue with physicists which
is now so common, wewould have got theremuch sooner.”

When Michael moved to Edinburgh in 1997, his own
physics education had benefited hugely from the dialogue
between mathematicians and physicists that he had done
so much to initiate and develop. He was now interested in
tackling fundamental questions in physics head-on, fully
aware of their importance and with the actual intention of
revolutionizing the foundations of physics. The inadver-
tent physicist had become an intentional physicist.

In this brief contribution I will collect some memories
and impressions from Michael’s second decade in Edin-
burgh, from about 2009 until his death in 2019. During
this time we met regularly, sometimes weekly, for discus-
sions related to the three main projects in physics that
Michael pursued: namely, his conjecture regarding the con-
figurations of points in three-dimensional Euclidean space,
the role of difference-differential equations in physics, and
geometric models of matter.

Our discussions had started because the difference-
differential equations that Michael had introduced in the
paper [1] with Greg Moore arise naturally in three-dimen-
sional quantum gravity, which I was working on at the
time. However, our focus soon shifted to geometric mod-
els of matter, which became the topic of two joint papers
[2,3] and a jointly held EPSRC research grant.1 I will focus
on the geometric models here, but my goal is to identify
general themes in Michael’s thinking about physics.
The inadequacy of conventional quantum mechanics.
Michael expressed his dislike of conventional quantum
mechanics on several occasions. He did not believe that
any linear theory could be truly fundamental, and he
shared Einstein’s dislike of the collapse of the wave func-
tion induced by observation. He felt that in their efforts
to go beyond quantum theory, physicists had tried many
avenues but had not critically questioned the paradigm of
initial value problems, i.e., the assumption that the future

1I believe this is Michael’s only EPSRC grant for personal research, i.e., not
counting the ones he held as director of the Isaac Newton Institute.

fields or wave functions can be computed from values on a
particular time slice. The difference-differential equation
in [1] abandons that assumption and introduces an ele-
ment of nonlocality. In his lectures on the subject, Michael
highlighted these features as important motivations.
The central role of the Dirac operator. The paper [1] pro-
vides an elegant solution to the problem of defining a fi-
nite time-shift operator that is also relativistic by exponen-
tiating the Dirac operator. The use of the Dirac operator
is no accident. As we already saw, Michael had “rediscov-
ered” this operator in a purely mathematical context, but
in his later thinking about physics it always played a cen-
tral role, often as a possible bridge between the nonlinear
world of geometry and the linear world of quantum me-
chanics. This was also true in the work on geometric mod-
els of matter that I discuss next.
The inadequacy of gauge theory and the importance of
four-dimensional geometry. Michael’s ideas for purely
geometric model of particles can be traced back to a 1989
paper with Nick Manton on the Skyrme model in nuclear
physics. The paper is based on the observation that one
can obtain three-dimensional Skyrme fields by comput-
ing the holonomy of instantons in four dimensions, i.e.,
by integrating along the fourth dimension. Fifteen years
later, work by Sakai and Sugimoto suggested that this ho-
lonomy can in fact be viewed as the constant term in a
Fourier series expansion of an instanton and that the other
terms in this expansion can be attributed to further three-
dimensional meson fields. The message was that three-
dimensional physics could be described by an SU(2)
gauge theory in four (Euclidean) dimensions.

Michael took this result as an invitation to go one step
further. He always felt that gauge theory, the mathemati-
cal language in which the standard model of elementary
particles is written, required too many arbitrary choices:
of a gauge group, of an associated vector bundle, of cou-
plings, and so on. His instinct was therefore to treat the
appearance of a fourth dimension as an indication that
static, three-dimensional particles could be modelled in
terms of the geometry of four-manifolds. Formulating this
in detail and studying examples took several years and led
to several publications, including [2–4]. The basic chal-
lenge, only partly met, was to interpret the (integer) quan-
tum numbers of particle and nuclear physics—like baryon
number, lepton number, and electric charge—in terms of
topological invariants of four-manifolds. The Dirac opera-
tor featured too, its kernel providing the linear space that
encodes a particle’s spin degrees of freedom.

There is no room here to discuss the geometric mod-
els of matter in any detail, but a few general observations
about Michael’s style of working during the collaboration
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on this topic may be of interest. Even when he was well
into his eighties, he worked hard, coming to his office in
the School of Mathematics at the University of Edinburgh
almost every day that he was not travelling and putting in
additional shifts at home. He generated new ideas at a
prodigious rate, announcing them with infectious enthu-
siasm, but abandoning them casually if a new and more
promising avenue presented itself. These ideas were es-
sentially mathematical even though the questions we dis-
cussed came fromphysics. Michael needed discussion part-
ners, or at least listeners, to develop his ideas, and he was
usually juggling several projects and associated conversa-
tions at any point in time. Remarkably, he always took a
personal interest in his discussion partners and created ad-
ditional connections where he could. For example, I was
travelling to Africa regularly during our collaboration to
teach at one of the African Institutes for Mathematical Sci-
ences (AIMS). Michael immediately offered his help and
joined the international advisory board for the AIMS cen-
ter in Ghana.
Division algebras and Bohmian mechanics. In our dis-
cussions, Michael frequently mentioned two other themes
that he wanted to incorporate in his description of matter,
namely, division algebras and Bohmian mechanics. They
never entered his published work on physics in any detail,
but I think they are worth recording. Michael felt that the
four division algebras—real and complex numbers, quater-
nions, and octonions—provided essentially the onlymath-
ematically natural way to account for the number of funda-
mental forces (four) or the number of generations (three)
in the Standard Model. However, he never settled on a
definite proposal of how this matching could work.

Michael liked David Bohm’s formulation of quantum
mechanics in terms of nonlocal classical variables that fol-
low trajectories determined by the wave function. He felt
they clarified some of the foundational issues in quantum
mechanics by making the nonlocality explicit, and he han-
kered after a role for them in his ideas about particles. We
discussed a possible use related to his configuration space
conjecture but never came up with a convincing proposal.
Passion and beauty. Anybody who interacted with
Michael soon noticed that he had a strong personal taste
in life and in science and that his instincts were not eas-
ily discouraged. Sometimes I felt Michael did not take
on board the painstaking work required to match a the-
oretical model in physics to the experimental data, and
occasionally our discussions would turn into arguments.
On one such occasion, having listened to Michael’s latest
ideas, I asked, “But this is just a gut feeling, right?” to
which Michael shot back, “Yes, but it is my gut!” Presum-
ably his awareness that his early work, motivated by strictly

mathematical considerations, had been so unexpectedly
and powerfully relevant to physics boosted his confidence,
but I should stress that I never discussed this with Michael.

Michael trusted his own instincts, but he also trusted
great minds. He had his heroes, and in physics these were,
above all, Maxwell, Einstein, and Dirac. He thought that
all their ideas would ultimately prove right in some sense.
With Einstein and Dirac he was aware that the work they
had done as youngmen was celebrated, whereas aspects of
their later work (e.g., Einstein on unified field theory and
Dirac on large numbers) were viewed critically. He felt this
was not justified and saw parallels in his own biography.

In an interview for the Newsletter of the European Math-
ematical Society in November 2018, the last one he gave,
Michael offered the following advice to young mathemati-
cians: “What you need is passion, persistence and risking
things for searching for the beauty.” He certainly lived that
advice. Michael’s courage to address fundamental ques-
tions in science head-on, to follow his own instincts and
dreams in seeking answers, and to use beauty as a guide
meant that discussions with him transcended the
humdrum of scientific activity. Michael sought and en-
couraged a similar ambition and independence of mind
in others, too. In doing so, he took a risk and sometimes
attracted criticism, particularly in later years. However, he
also created a space for both deep and lateral thinking that
is rare and that many treasured.
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