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Abstract. We study the notion of Morita equivalence in various categories.
We start with Morita equivalence and Morita duality in pure algebra. Then

we consider strong Morita equivalence for C∗-algebras and Morita equivalence

for W∗-algebras. Finally, we look at the corresponding notions for groupoids
(with structure) and Poisson manifolds.

1. Algebraic Morita Equivalence

The main idea of Morita equivalence in pure algebra can be illustrated by the
following example. Let R be any ring with unit, let Mn(R) be the ring of n × n-
matrices over R for some n ∈ N. If V is a (left) R-module, then V n is a Mn(R)-
module in a canonical way (matrix-vector multiplication), and the correspondence
V 7→ V n is functorial. Conversely, every Mn(R)-module can be so obtained from
some R-module. Thus the rings R and Mn(R) have equivalent categories of left
modules.

Definition 1. We write RM for the category of left R-modules. Two unital rings
are called Morita equivalent if they have equivalent categories of left modules.

There is also a useful theory of Morita equivalence for rings with a “set of local
units”, i.e. sufficiently many idempotents (cf. [1]), but things become far more
complicated. Unless we have useful topologies around, as in the case of C∗-alge-
bras, we assume all our rings to be unital.

Let R and S be rings with unit. There is a standard way to get a functor from

RM to SM: If SQR is any (S,R)-bimodule and V is an R-module, then SQR ⊗R

V carries a natural S-module structure. Thus every (S,R)-bimodule induces a
functor from RM to SM. Taking the tensor product of bimodules corresponds
to the composition of these functors. Conversely, under some hypotheses, every
(covariant) functor must be of this form:

Theorem 1 (Watts [21]). Let T be a right-exact covariant functor from RM to SM
which commutes with direct sums. Then there is an (S,R)-bimodule Q such that
the functors T and Q⊗R ⌞⌟ are naturally equivalent. Moreover, Q is unique up to
isomorphism of bimodules.

This result was discovered simultaneously by Eilenberg, Gabriel, and Watts
around 1960. As usual in homological algebra, the proof is trivial. Notice that
every equivalence of categories has to preserve direct sums and exact sequences and
thus satisfies the hypotheses of Theorem 1. Hence we obtain
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Corollary 1.1. Two rings R and S are Morita equivalent if and only if there are
bimodules RPS and SQR such that RPS ⊗S SQR

∼= RRR and SQR ⊗R RPS
∼= SSS

as bimodules.

This result implies that Morita equivalent rings also have equivalent categories of
right modules and bimodules. It is also easy to see that they have equivalent lattices
of ideals, so that the properties of being Noetherian, Artinian, or simple are Morita
invariant (cf. [4]). They have isomorphic categories of projective modules and thus
equivalent K-theories. More generally, a decent (co)homology theory should be
Morita invariant, and this is indeed true for cyclic homology, Hochschild homology
(for k-algebras) (cf. [9]).

Moreover, Morita equivalent rings have isomorphic centers. This implies that
Morita equivalent Abelian rings are already isomorphic. Thus Morita equivalence
is essentially a non-commutative phenomenon. This gives another reason why so
many homology functors are Morita invariant: Usually, they arise as extensions
of functors defined on a category of commutative algebras to a category of non-
commutative algebras. But Morita invariance imposes no restrictions whatsoever
on functors defined on a category of commutative algebras, so that we can hope
for a Morita invariant extension. Examples show that if a functor can be extended
“naturally”, then the extension tends to be indeed Morita invariant.

An important problem is to find conditions when two rings are equivalent. Notice
that we do not have to find two bimodules P and Q because one of them determines
the other. In general, if the bimodules P and Q implement a Morita equivalence
between R and S, we have

Q ∼= HomS(P, S) ∼= HomR(P,R), P ∼= HomS(Q,S) ∼= HomR(Q,R).

This means that Q and P are in some sense dual to each other. In the purely
algebraic setting, there is no natural way to turn an (S,R)-bimodule into an (R,S)-
bimodule; the nearest we can get is the above relation between P and Q. For C∗-
algebras or groupoids, we can turn left actions into right actions using the adjoint
operation or inversion, which will slightly simplify matters there.

We let End(Q) be the ring of endomorphisms of the additive group Q, i.e. Q
without the (S,R)-bimodule structure. Then the right/left operations of R and
S on Q induce injective homomorphisms R → End(Q) and S → End(Q). The
bimodule property asserts that the images of R and S in End(Q) commute, and in
order to have a Morita equivalence, they must be the full commutants of each other,
i.e. R′ = S, S′ = R. This is clear because Q⊗R V is an R′-module for all V ∈ RM,
and if our inducing process gives all S-modules, we need R′ = S. Thus R and the
right module structure of Q determine S as the commutant of R in End(Q). Of
course, not every module QR induces a Morita equivalence (e.g. the zero module
does not work).

Theorem 2 (Morita [11], [12]). Let R be a ring with unit and Q a right R-module.
Then Q induces a Morita equivalence between R and R′ ⊂ End(Q) if and only if QR

is a finitely generated projective generator.1

Of course, the idea of “representation equivalence” is older than Morita’s work.
His main contribution was to make formal definitions and to put the various uses of

1An object X in an Abelian category is a generator iff every object is a quotient of a direct
sum of copies of X.
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this idea into a general theory. Besides the notion of equivalence, Morita also stud-
ied a corresponding duality. Formally, this consists of replacing covariant functors
by contravariant functors. Since we have V ∗∗ ̸= V for an infinite-dimensional vector
space, duality can only hold if one restricts attention to finitely generated modules
and assumes that the underlying ring is Noetherian. Under these assumptions, the
theory goes through smoothly and yields:

Definition 2 (Morita [11]). Let RF be the category of finitely generated left R-
modules. If R and S are unital Noetherian rings, a duality is a pair T : RF → SF,
U : SF → RF of contravariant equivalence functors.

Theorem 3 (Morita [11]). Let R and S be Noetherian rings. If there is a du-
ality (T,U) between RF and SF, then there exists a bimodule SQR such that T ∼=
HomR(⌞⌟, Q), U ∼= HomS(⌞⌟, Q). Moreover, the maps R,S → End(Q) are injective,
and R′ = S, S′ = R.

Morita also has a necessary and sufficient condition for Q to induce a Morita
duality.

2. Morita equivalence for C∗-algebras and W∗-algebras

In these categories, we have considerably more structure and therefore restrict
our categories of modules.

Definition 3 (Rieffel [16]). A Hermitian module over a C∗-algebra A is the Hilbert
space H of a non-degenerate ∗-representation π : A → B(H), together with the action
a · ξ = π(a)ξ for a ∈ A, ξ ∈ H. If A is even a W∗-algebra, we assume in addition
that π is a normal map2and call H a normal A-module. In both cases, morphisms
are the intertwining operators, i.e. A-module homomorphisms in the usual algebraic
sense.

We call two C∗-algebras Morita equivalent if they have equivalent categories
of Hermitian modules and if the equivalence functors T are ∗-functors, i.e. if
f : V1 → V2 is a morphism, then T (f∗) = (Tf)∗. Similarly, we call two W∗-al-
gebras Morita equivalent if they have equivalent categories of normal modules and
if the equivalence is implemented by ∗-functors.

The category of Hermitian modules over a C∗-algebra A is equivalent to the
category of normal modules over the enveloping von Neumann algebra n(A). Hence
Morita equivalence of C∗-algebras is really a von Neumann algebra concept and
too weak for most applications. We will soon define the more restrictive concept
of strong Morita equivalence for C∗-algebras. As in the purely algebraic case, we
need more concrete criteria in terms of bimodules for two algebras to be equivalent.
Since we have to transport the Hilbert space inner products, we need to put more
structure on our bimodules:

Definition 4 (Paschke [14], Rieffel [15]). Let B be a C∗-algebra. A pre-Hilbert
B-module is a right B-module X (with a compatible C-vector space structure),
equipped with a conjugate-bilinear map (linear in the second variable) ⟨⌞⌟, ⌞⌟⟩B : X×
X → B satisfying

2In a W∗-algebra, every bounded increasing net of positive elements has a least upper bound.
A positive map f : A → B between W∗-algebras is called normal if, for any bounded increasing

net (pj) of positive elements of A with least upper bound p∞, f(p∞) is the least upper bound of

the net
(
f(pj)

)
.
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(1) ⟨x, x⟩B ≥ 0 for all x ∈ X;
(2) ⟨x, x⟩B = 0 only if x = 0;
(3) ⟨x, y⟩B = ⟨y, x⟩∗B for all x, y ∈ X;
(4) ⟨x, y · b⟩B = ⟨x, y⟩B · b for all x, y ∈ X, b ∈ B.

The map ⟨⌞⌟, ⌞⌟⟩B is called a B-valued inner product on X.

It can be shown that ∥x∥ = ∥⟨x, x⟩B∥1/2 defines a norm on X. If X is complete
with respect to this norm, it is called a Hilbert B-module. If not, all the structure
can be extended to its completion to turn it into a Hilbert B-module. Actually,
in Paschke’s paper, the inner product is linear in the first variable; and in Rieffel’s
paper, this object is called a right (pre-)B-rigged space.

This contains enough structure to transport Hilbert space inner products: If V
is a Hermitian B-module and X is a Hilbert B-module, we can equip the algebraic
tensor product X ⊗B V with an inner product

⟨x⊗ v, x′ ⊗ v′⟩ = ⟨⟨x′, x⟩Bv, v′⟩V ,

where ⟨⌞⌟, ⌞⌟⟩V is the inner product on V . It can be shown that this is non-negative
definite and thus defines a pre-inner product on X ⊗B V . Thus factoring out the
vectors of lenth zero and completing gives a new Hilbert space X ⊗B V . This
construction is functorial: If f : V1 → V2 is a morphism of Hermitian B-modules,
then id ⊗ f extends to a bounded map X ⊗B V1 → X ⊗B V2.

If e ∈ lin(X,X) is a bounded operator commuting with the action of B by right
multiplication, then e⊗ idV extends to a bounded operator on X ⊗B V . However,
the commutant of B, in general, is not a C∗-algebra because bounded operators
may fail to have an adjoint. If T ∈ lin(X,X), an operator T ∗ ∈ lin(X,X) is called
an adjoint for T if ⟨Tx, y⟩ = ⟨x, T ∗y⟩ for all x, y ∈ X. Let E be the algebra
of all adjointable operators on X, i.e. operators that have an adjoint. It is easy
to see that an adjointable operator is necessarily bounded and commutes with
the action of B. Moreover, E with the natural norm becomes a C∗-algebra. It
is easy to see that X ⊗B V is a Hermitian E-module as expected. Moreover, the
mappingsX⊗BV1 → X⊗BV2 induced by B-module homomorphisms are E-module
homomorphisms as desired, so that X induces a functor from B- to E-modules.

Let B0 ⊂ B be the closed linear span of ⟨X,X⟩B = {⟨x, y⟩, x, y ∈ X}. If B0 acts
trivially on V , then X ⊗B V is the zero module, so that the functor induced by X
fails to be faithful. Similarly, the algebra E may be too big.

This can easily be seen from the example B = C, X = H infinite-dimensional.
In this case, E = B(H) is the algebra of all bounded operators on H. But B(H)
has the non-trivial ideal K(H) of compact operators. It is well-known that K(H) is
Morita equivalent to C: This means that every irreducible representation of K(H)
is a (possibly infinite) direct sum of copies of the standard representation. But

B(H), as a C∗-algebra has more complicated representations coming from the Calkin
algebra B(H)/K(H). Here we have to be careful: As a W∗-algebra, B(H) is Morita
equivalent to C, but not if we view it as a C∗-algebra.

This example suggests to look for an analogue of the ideal of compact operators
for Hilbert modules. The right approach is to let E0 be the closed linear span of
the “rank one operators” ⟨x, y⟩E ∈ E given by ⟨x, y⟩Ez = x⟨y, z⟩B for x, y, z ∈ X.
It is easily seen that E0 is an ideal in E. Moreover, now the roles of E0 and B0

are symmetric: We have just defined an E0-valued inner product on X and X is
an E0-module by definition, only that we have exchanged left and right.
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Definition 5 (Rieffel [15], [17]). Let E and B be C∗-algebras. By an E-B-equiv-
alence bimodule we mean an E,B-bimodule which is equipped with E- and B-val-
ued inner products with respect to which X is a right Hilbert B-module and a left
Hilbert E-module such that

(1) ⟨x, y⟩Ez = x⟨y, z⟩B for all x, y, z ∈ X;
(2) ⟨X,X⟩B spans a dense subset of B and ⟨X,X⟩E spans a dense subset of E.

We call E and B strongly Morita equivalent if there is an E-B-equivalence bimodule.

If X is an E-B-equivalence bimodule, it is easy to endow the conjugate space X̃,
which isX as a set with the same addition and scalar multiplication λx̃ = (λx)̃, with
the structure of a B-E-equivalence bimodule. For example, x̃e = (e∗x)̃. Moreover,
it is not difficult to see that strong Morita equivalence is an equivalence relation.

Theorem 4 (Rieffel [15]). Let X be an E-B-equivalence bimodule. Then X ⊗B

⌞⌟ induces an equivalence between the category of Hermitian B-modules and the
category of Hermitian E-modules, the inverse being given by X̃⊗E ⌞⌟. This functor
preserves weak containment and direct integrals.

The reason for Rieffel to introduce strong Morita equivalence was to improve
the understanding of induced representations of (locally compact) groups. Let G
be a l.c. group and let H be a closed subgroup. Then unitary representations of H
“induce” representations of G. Moreover, the representations of G obtained by
this process are precisely those that admit a “system of imprimitivity”. In more
modern language, the representations that can be obtained by inducing from H are
the covariant representations of (C∞(G/H), G), where C∞(G/H) are the functions
on G/H vanishing at infinity and the action of G on C∞(G/H) is obtained from
the left translation action of G on G/H. These results are due to Mackey (for the
separable case), but his proofs were based on rather unintuitive measure theoretic
arguments. In [15], Rieffel gave a new proof by showing that the group algebra
C∗(H) is strongly Morita equivalent to the crossed product C∞(G/H)⋊G. Actu-
ally, he worked with the dense subalgebras Cc(⌞⌟) of functions of compact support
and showed that Cc(G) can be given the structure of a pre-Hilbert Cc(H)-module.
Then he identified the algebra of “finite rank operators” on Cc(G) with a dense
subalgebra of the crossed product C∞(G/H)⋊G.

But there are also other, more non-commutative applications. For example, if G
is a compact group acting on a C∗-algebra A by automorphisms, α : G → Aut(A),
we can define a “conditional expectation” p : A → Aα, where Aα is the fixed point
algebra, by averaging p(a) =

∫
G
αx(a) dx with respect to Haar measure dx. Then

⟨a, b⟩Aα = p(a∗b) turns A into a pre-Hilbert Aα-module. It can be shown that
this gives us a strong Morita equivalence of Aα with a certain ideal of the crossed
product algebra A ⋊α G. In the commutative case, this ideal is the whole crossed
product algebra, if and only if the action of G is free. Actually, the case where G
is not compact is very important but also much more subtle (cf. [19]).

Another more elementary example is the following: Let p ∈ A, then the corre-
sponding left ideal Ap can be made into an ApA-pAp-equivalence bimodule with
inner products ⟨x, y⟩ApA = xy∗, ⟨x, y⟩pAp = x∗y. Subalgebras of the form pAp
are the prototype of hereditary subalgebras, and the corresponding hereditary sub-
algebra is called full if ApA = A. This example is of considerable theoretical
importance because every strong Morita equivalence is of this form: If A and B
are strongly Morita equivalent C∗-algebras, there is a C∗-algebra C that contains
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both A and B as full hereditary subalgebras. Together with a result of Brown on
hereditary subalgebras in [2], this gives the following remarkable theorem:

Theorem 5 (Brown-Green-Rieffel [3]). Let A and B be C∗-algebras with a count-
able approximate identity (e.g. separable or unital). Then they are strongly Morita
equivalent if and only if they are stably equivalent, i.e. A⊗K ∼= B ⊗K, where K is
the algebra of compact operators on a separable Hilbert space.

Thus stable equivalence, which is of considerable importance in K-theory, can
be viewed as a separable version of Morita equivalence. Moreover, since the class of
separable or unital algebras is already rather large, one can expect that properties
that are invariant under stable equivalence are also Morita invariant. For example,
Morita equivalent C∗-algebras have isomorphic lattices of ideals and the same K-,
E-, and KK-theory. In [6], it is shown how to induce traces between Morita equiv-
alent C∗-algebras. In [5], Morita equivalence for group actions on C∗-algebras is
defined, and it is shown that equivalent group actions give rise to Morita equivalent
group C∗-algebras and reduced group C∗-algebras.

Now let us briefly discuss the situation for von Neumann algebras. If M is a von
Neumann algebra, a further requirement for (“normal”) Hilbert M -N -bimodules
is that the maps m 7→ ⟨x,my⟩N be σ-weakly continous for all x, y ∈ X. On the
other hand, we can weaken the requirements for an equivalence bimodule, replacing
density by weak density. That this is possible is illustrated by the example C, B(H).
With these changes, the analogue of the Eilenberg-Gabriel-Watts theorem is again
true:

Theorem 6 (Rieffel [16]). Let M and N be W∗-algebras. Then every normal equiv-
alence bimodule implements an equivalence between the categories of normal M - and
N -modules by a ∗-functor. Conversely, every such equivalence is implemented by
some normal equivalence bimodule.

It is easy to see that Morita equivalent von Neumann algebras have isomorphic
centers and isomorphic lattices of weakly closed ideals. Moreover, if M and N are
Morita equivalent and if M is of type X ∈ {I, II, III}, then the same holds for N ,
i.e. Morita equivalence respects the type of a von Neumann algebra. For types I
and III, the classification up to Morita equivalence is very easy:

Theorem 7 (Rieffel [16]). Two W∗-algebras of type I are Morita equivalent if and
only if they have isomorphic centers. Two von Neumann algebras of type III on
separable Hilbert spaces are Morita equivalent if and only if they are isomorphic.

As pointed out to me by Dimitri Shlyakhtenko, two factors M,N of type II on
separable Hilbert spaces are equivalent if and only if they are stably equivalent as
von Neumann algebras, i.e. M ⊗ B(H) ∼= N ⊗ B(H) (this tensor product is in the
category of von Neumann algebras and is defined to be the weak closure of the
spatial tensor product). Thus every type II1-factor is equivalent to a II∞-factor,
and conversely. The idea of the proof is to turn a M -N -Hilbert bimodule for two
II1-factors into a genuine (pre-)Hilbert space using the trace on one of them. The
actions extend to the completion, and it turns out that M and N are commutants
of one another. Hence we obtain a correspondence in the sense of [20] and can
apply the theory for those.

It should be remarked that Morita equivalence of von Neumann algebras is not
an important technical tool, but at most a convenient way of formulating some of
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the known results. For example, a von Neumann algebra is of type I iff it is Morita
equivalent to a commutative von Neumann algebra.

3. Morita equivalence for topological and symplectic groupoids

Now we look at geometric analogues of Morita equivalence, first for locally com-
pact topological groupoids. The bimodule version still makes sense:

Definition 6 (Muhly-Renault-Williams [13]). Let G be a locally compact topologi-
cal groupoid with unit spaceG(0) and source and range maps s and r. A locally com-
pact space X with a continuous, open map ρ : X → G(0), which we call the momen-
tum map and an action µ : G∗X → X, whereG∗X = {(g, x) ∈ G×X | s(g) = ρ(x)},
is called a left G-space if

(1) ρ
(
µ(g, x)

)
= r(g) for all (g, x) ∈ G ∗X;

(2) µ
(
ϵ
(
ρ(x)

)
, x

)
= x for all x ∈ X; and

(3) µ(g · h, x) = µ
(
g, µ(h, x)

)
whenever (g, h) ∈ G ∗G and (h, x) ∈ G ∗X.

We write g · x = gx = µ(g, x). A right G-space is defined similarly.
The action is called free if (g, x) ∈ G ∗X and g ·x = x implies g ∈ G(0), i.e. only

units have fixed points.
The action is called proper if the map (µ, id) : G ∗X → X ×X sending (g, x) to

(g · x, x) is proper.
If H is another groupoid and if X is at the same time a left G-space and a

right H-space with momentum maps ρ : X → G(0) and σ : X → H(0), we call it a
G-H-bimodule if the actions commute, i.e.

(1) ρ(x · h) = ρ(x) for all (x, h) ∈ X ∗H and similarly σ(g · x) = σ(x) for all
(g, x) in G ∗X; and

(2) g · (x · h) = (g · x) · h) for all (g, x) ∈ G ∗X, (x, h) ∈ X ∗H.

We say that a G-H-bimodule X is an equivalence bimodule if

(1) it is free and proper both as a G- and an H-space;
(2) the momentum map ρ : X → G(0) induces a bijection of X/H to G(0); and
(3) the momentum map σ : X → H(0) induces a bijection of G\X to H(0).

We call G and H Morita equivalent if a G-H-equivalence bimodule exists.

The orbit space for a proper groupoid action is always locally compact Hausdorff,
and the projection onto the orbit space is open. Thus for an equivalence bimodule
the bijections X/H ∼= G(0), G\X ∼= H(0) are automatically homeomorphisms.

The action of a groupoid on itself by left and right multiplication turns it into
a G-G-equivalence bimodule, so that Morita equivalence is a reflexive relation. It
is easy to see that it is also symmetric and transitive. For the latter one uses
the analogue X ∗H Y of the bimodule tensor product: If X and Y are G-H- and
H-K-bimodules respectively, then X ∗ Y = {(x, y) ∈ X × Y | σX(x) = ρY (y)},
where σX : X → H(0) and ρY : Y → H(0) are the momentum maps. In order to
get X ∗H Y , identify (x · h, y) ∼ (x, h · y) when this is defined. It is not difficult to
endow this with the structure of a locally compact G-K-space and to see that this
process produces equivalence bimodules if X and Y were equivalence bimodules.
Moreover, this tensor product is functorial (for “equivariant” continuous maps as
morphisms).

Corollary 7.1. Let G and H be Morita equivalent locally compact groupoids. Then
the categories of left (right) G- and H-spaces are equivalent.
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As in the algebraic case, under suitable hypotheses a left G-space determines a
groupoid H such that it becomes a G-H-equivalence bimodule [13]. To be more
specific, let X be a free proper G-space with a surjective momentum map ρ. Let
X ∗X = {(x, y) ∈ X×X | ρ(x) = ρ(y)}. Then G acts freely and properly on X ∗X
by the diagonal action g(x, y) = (gx, gy). The orbit space H = G\X ∗ X can be
endowed naturally with a groupoid structure over G\X by putting [x, y] · [y, z] =
[x, z], and this multiplication is continuous. There is an obvious right action of H
on X defined by x · [x, y] = y. It can be checked that this turns X into a G-H-
equivalence bimodule. Moreover, if X was a G-H ′-equivalence bimodule to start
with, then we get H ∼= H ′.

There are many examples of Morita equivalent groupoids [13]. If G is a transitive
groupoid, u ∈ G(0), then r−1(u) is an equivalence bimodule for G and the isotropy
group r−1(u) ∩ s−1(u) at u, if r and s are open maps. A similar statement holds
if U ⊂ G(0) is a subset meeting every G-orbit. This applies especially to foliations
(transverse submanifold meeting every leaf). Moreover, we get that the groupoid
associated to a (Cartan) principal bundle (cf. [8]) is equivalent to the structure
group of the bundle.

Another typical example is the following situation: Let H and K be locally
compact groups acting freely and properly on a locally compact Hausdorff space P
such that the actions commute. Let H act on the left and K act on the right.
The commutativity assumption means that we get an action of K on H\P and an
action of H on P/K. Then the space P is an equivalence for the transformation
groupoids (H,P/K) and (K,H\P ).

How is Morita equivalence of groupoids related to the algebraic notion? Fix
Haar systems λ and β for G and H. Then we can form the (full) groupoid C∗-alge-
bras C∗(G,λ) and C∗(H,β) with respect to these Haar systems. For the groupoids
coming from the last example above, it was already discovered by Green (cf. [18])
that the associated groupoid C∗-algebras are Morita equivalent. In [13], it is shown
that this remains true in general, with a proof similar to Rieffel’s argument in [18]:

Theorem 8 (Muhly-Renault-Williams [13]). Let G and H be locally compact, sec-
ond countable, Hausdorff groupoids with Haar systems λ and β. If there is a (G,H)-
equivalence bimodule X, then the (full) groupoid C∗-algebras C∗(G,λ) and C∗(H,β)
are strongly Morita equivalent.

The definition of the groupoid C∗-algebra depends on the choice of a Haar system.
However, the definition of a representation of a groupoid does not. In the group
case, Haar measure is essentially unique, but for groupoids, this is no longer the
case. Due to the correspondence of groupoid representations and representations of
the groupoid C∗-algebra, different choices of Haar system certainly produce Morita
equivalent C∗-algebras. This still leaves open whether we actually get isomorphic
C∗-algebras. At least in the case of transitive groupoids, this is indeed the case:

Theorem 9 (Muhly-Renault-Williams [13]). Let G be a second countable, locally
compact, transitive groupoid, let u ∈ G(0), and let H be the isotropy group at u.
Let λ be a Haar system for G. Then there is a positive measure µ on G(0) of full
support such that C∗(G,λ) is isomorphic to C∗(H)⊗K

(
L2(G(0), µ)

)
.

It is easy to see that C∗(G,λ) must be strongly Morita equivalent to C∗(H).
But the above refinement shows that we do not have to tensor C∗(G,λ) with the
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compact operators. This shows that the groupoid algebra is stable and does not
depend on the choice of Haar system.

By the way, it probably is not very interesting to look for criteria on groupoids
that are necessary and sufficient for the groupoid C∗-algebras to be Morita equiv-
alent. This can already be seen by looking at groups. It is easy to see that two
groups are equivalent in the sense of Definition 6 iff they are isomorphic as topo-
logical groups. However, if K is a compact group, then by the Peter-Weyl theorem
its groupoid C∗-algebra is a direct sum of copies of full matrix algebras, and there
are infinitely many such copies if and only if K is has infinitely many elements.
Thus any two infinite compact groups have strongly Morita equivalent, even stably
equivalent, group C∗-algebras. However, there seems to be no natural equivalence
bimodule in this situation that can be written down without knowing the full rep-
resentation theory of the involved groups.

If we drop all continuity assumptions, we get a notion of Morita equivalence
for algebraic groupoids without any further structure. More importantly, if our
groupoids carry additional differentiability structure, we should strengthen our re-
quirements on equivalences by asserting that the actions are smooth in order to
get an equivalence of the categories of smooth actions. Moreover, the bijections of
the orbit spaces X/H with G(0) and G\X with H(0) should be diffeomorphic. This
follows if the momentum maps are full, i.e. surjective submersions.

4. Morita equivalence for symplectic groupoids and Poisson
manifolds

Definition 7 (Xu [23], [25]). Two symplectic groupoids G and H with unit spaces
G(0) and H(0) are called Morita equivalent if there are a symplectic manifold X
and surjective submersions ρ : X → G(0) and σ : X → H(0) such that

(1) G has a free, proper, symplectic [10] left action on X with momentum
map ρ;

(2) H has a free, proper, symplectic right action on X with momentum map σ;
(3) the two actions commute with each other;
(4) ρ induces a diffeomorphism X/H → G(0);
(5) σ induces a diffeomorphism G\X → H(0);

(X; ρ;σ) is called an equivalence bimodule between G and H.

As expected, Morita equivalence is an equivalence relation among symplectic
groupoids. Since the notion is stronger than equivalence for topological groupoids,
Morita equivalent symplectic groupoids still have Morita equivalent groupoid C∗-
algebras. Equivalence bimodules for symplectic groupoids were also studied from a
slightly different viewpoint and under the name of an affinoid structure byWeinstein
in [22].

The point of introducing the stronger relation above is that we now get results
about the category of symplectic actions of our groupoids that are completely anal-
ogous to the results for locally compact groupoids. In the proofs, it only has to
be checked that the symplectic structure can be transported. On the other hand,
topological problems almost disappear in this category. It is easy to see that Morita
equivalence of symplectic groupoids is an equivalence relation.

Theorem 10 (Xu [23], [25]). Let G be a symplectic groupoid over G(0) and let
ρ : X → G(0) be a full, symplectic, free, and proper left G-module. Then G\X is
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a Poisson manifold, and H = G\(X− ∗G X) is a symplectic groupoid over G\X−

in a natural way. Moreover, σ : X → G\X− naturally becomes a symplectic right
H-module such that (X; ρ;σ) is an equivalence bimodule between G and H.

Conversely, if (X; ρ;σ) is any equivalence bimodule between symplectic groupoids
G and H, then H ∼= G\(X− ∗G X) as symplectic groupoids.

As usual, if P is a Poisson manifold with bracket [, ], then P− denotes the same
manifold with bracket −[, ].

Let G be a symplectic groupoid. We can consider the “category” of symplectic
left modules over G, in which morphisms between symplectic modules F1 and F2

are Lagrangian submanifolds of F1 ∗G F2 invariant under the diagonal action of G,
and the composition of morphisms is the set theoretic composition of relations.
(This is not a true category since the composition of two morphisms need not be a
submanifold.) Then we obtain

Theorem 11 (Xu [23], [25]). Morita equivalent symplectic groupoids have equiva-
lent “categories” of symplectic left modules.

One motivation for introducing Morita equivalence of symplectic groupoids is
the correspondence between integrable Poisson manifolds and r-simply connected3

symplectic groupoids. It is possible to pull back the groupoid equivalence to the
base Poisson manifolds:

Definition 8 (Xu [23], [24]). Two Poisson manifolds P1 and P2 are Morita equiv-
alent if there exists a symplectic manifold X together with complete Poisson mor-
phisms ρ : X → P1 and σ : X → P−

2 that form a full dual pair with connected and
simply connected fibers. Then X is called an equivalence bimodule.

The reason for requiring connected simply connected fibers is to exclude certain
cases that we do not want to be Morita equivalences. For example, with this
definition two connected symplectic manifolds are Morita equivalent iff they have
the same fundamental group. This somewhat complicated definition is borne to
make true the following theorem:

Theorem 12 (Xu [23] [24]). Let P1 and P2 be integrable Poisson manifolds. Then
P1 and P2 are Morita equivalent if and only if their r-simply connected symplectic
groupoids are Morita equivalent.

Let G be an r-simply connected groupoid over P . The main step in the proof of
Theorem 12 is to show that if X is a symplectic left G-module, then its momentum
map ρ : X → P is a complete symplectic realization and that, conversely, every
complete symplectic realization of P carries a natural left G-action. This also
proves the following theorem:

Theorem 13 (Xu [23], [24]). Equivalent integrable Poisson manifolds have equiv-
alent “categories” of complete symplectic realizations.

Furthermore, Theorem 12 immediately implies that Morita equivalence is an
equivalence relation among integrable Poisson manifolds. This is not true for arbi-
trary Poisson manifolds: Already reflexivity fails. Currently, it is not even known
whether every Poisson manifold has a complete symplectic realization.

3A groupoid is called r-. . . if all r-fibers have the property . . . . Many authors call the range
and source map, somewhat unintuitively, α and β and thus write α-. . . instead.
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It is not difficult to see that an equivalence bimodule between two Poisson man-
ifolds induces a bijection between their leaf spaces. Moreover, Morita equivalence
takes into account the variation of the symplectic structures on the leaves, which
is measured by the fundamental class (cf. [23], theorem 1.2.5). This idea allows
very precise statements about Morita equivalence of regular Poisson manifolds. For
example

Theorem 14 (Xu [23], [24]). Let P be a regular Poisson manifold with symplectic
fibration π : P → Q. Then P is Morita equivalent to Q with the zero Poisson
structure if and only if all the symplectic leaves of P are connected and simply
connected and the fundamental class vanishes.

Theorem 15 (Xu [23], [26]). Let π : P → M be a locally trivial bundle of connected,
simply connected symplectic manifolds. Then P is Morita equivalent to M with zero
Poisson structure.

Another interesting result is that Morita equivalent Poisson manifolds have the
same zeroth and first cohomology groups [7]. The example of symplectic manifolds
shows that no results about higher cohomologies can be expected.

Theorem 13 is an important tool for computing symplectic realizations of Poisson
manifolds, by reducing the problem to an (apparently) simpler Morita equivalent
manifold (see [23], [26]). For example, Theorem 15 reduces the study of a lo-
cally trivial bundle of symplectic manifolds to that of symplectic realizations of
the base manifold with zero Poisson structure. Thus in order to classify the com-
plete symplectic realizations of a simply connected, connected, symplectic manifold,
we have to classify symplectic realizations of a single point, which is rather easy.
Careful bookkeeping shows that every symplectic realization of S is of the form
prS : S×X → S for a symplectic manifold X, where prS is the canonical projection.
Another case that can be treated in this way is the orbit space of a Hamiltonian
action of a Lie group on a symplectic manifold, and the crossed product of an
integrable Poisson manifold with a Lie group acting on it [23], [26].
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Email address: rmeyer@math.berkeley.edu


