
MORITA EQUIVALENCE IN ALGEBRA AND GEOMETRYRALF MEYERAbstract. We study the notion of Morita equivalence in various categories.We start with Morita equivalence and Morita duality in pure algebra. Thenwe consider strong Morita equivalence for C�-algebras and Morita equivalencefor W�-algebras. Finally, we look at the corresponding notions for groupoids(with structure) and Poisson manifolds.1. Algebraic Morita EquivalenceThe main idea of Morita equivalence in pure algebra can be illustrated by thefollowing example. Let R be any ring with unit, let Mn(R) be the ring of n � n-matrices over R for some n 2 N. If V is a (left) R-module, then V n is a Mn(R)-module in a canonical way (matrix-vector multiplication), and the correspondenceV 7! V n is functorial. Conversely, every Mn(R)-module can be so obtained fromsome R-module. Thus the rings R and Mn (R) have equivalent categories of leftmodules.De�nition 1. We write RM for the category of left R-modules. Two unital ringsare called Morita equivalent if they have equivalent categories of left modules.There is also a useful theory of Morita equivalence for rings with a \set of localunits", i.e. su�ciently many idempotents (cf. [1]), but things become far morecomplicated. Unless we have useful topologies around, as in the case of C�-alge-bras, we assume all our rings to be unital.Let R and S be rings with unit. There is a standard way to get a functor fromRM to SM: If SQR is any (S;R)-bimodule and V is an R-module, then SQR 
RV carries a natural S-module structure. Thus every (S;R)-bimodule induces afunctor from RM to SM. Taking the tensor product of bimodules correspondsto the composition of these functors. Conversely, under some hypotheses, every(covariant) functor must be of this form:Theorem 1 (Watts [21]). Let T be a right-exact covariant functor from RM to SMwhich commutes with direct sums. Then there is an (S;R)-bimodule Q such thatthe functors T and Q
R xy are naturally equivalent. Moreover, Q is unique up toisomorphism of bimodules.This result was discovered simultaneously by Eilenberg, Gabriel, and Wattsaround 1960. As usual in homological algebra, the proof is trivial. Notice thatevery equivalence of categories has to preserve direct sums and exact sequences andthus satis�es the hypotheses of Theorem 1. Hence we obtainThis article has been prepared for the Spring 1997 Math 277 course at the University ofCalifornia at Berkeley, taught by Alan Weinstein.1



2 RALF MEYERCorollary 1.1. Two rings R and S are Morita equivalent if and only if there arebimodules RPS and SQR such that RPS 
S SQR �= RRR and SQR 
R RPS �= SSSas bimodules.This result implies that Morita equivalent rings also have equivalent categories ofright modules and bimodules. It is also easy to see that they have equivalent latticesof ideals, so that the properties of being Noetherian, Artinian, or simple are Moritainvariant (cf. [4]). They have isomorphic categories of projective modules and thusequivalent K-theories. More generally, a decent (co)homology theory should beMorita invariant, and this is indeed true for cyclic homology, Hochschild homology(for k-algebras) (cf. [9]).Moreover, Morita equivalent rings have isomorphic centers. This implies thatMorita equivalent Abelian rings are already isomorphic. Thus Morita equivalenceis essentially a non-commutative phenomenon. This gives another reason why somany homology functors are Morita invariant: Usually, they arise as extensionsof functors de�ned on a category of commutative algebras to a category of non-commutative algebras. But Morita invariance imposes no restrictions whatsoeveron functors de�ned on a category of commutative algebras, so that we can hopefor a Morita invariant extension. Examples show that if a functor can be extended\naturally", then the extension tends to be indeed Morita invariant.An important problem is to �nd conditions when two rings are equivalent. Noticethat we do not have to �nd two bimodules P and Q because one of them determinesthe other. In general, if the bimodules P and Q implement a Morita equivalencebetween R and S, we haveQ �= HomS(P; S) �= HomR(P;R); P �= HomS(Q;S) �= HomR(Q;R):This means that Q and P are in some sense dual to each other. In the purelyalgebraic setting, there is no natural way to turn an (S;R)-bimodule into an (R;S)-bimodule; the nearest we can get is the above relation between P and Q. For C�-algebras or groupoids, we can turn left actions into right actions using the adjointoperation or inversion, which will slightly simplify matters there.We let End(Q) be the ring of endomorphisms of the additive group Q, i.e. Qwithout the (S;R)-bimodule structure. Then the right/left operations of R andS on Q induce injective homomorphisms R ! End(Q) and S ! End(Q). Thebimodule property asserts that the images of R and S in End(Q) commute, and inorder to have a Morita equivalence, they must be the full commutants of each other,i.e. R0 = S, S0 = R. This is clear because Q
R V is an R0-module for all V 2 RM,and if our inducing process gives all S-modules, we need R0 = S. Thus R and theright module structure of Q determine S as the commutant of R in End(Q). Ofcourse, not every module QR induces a Morita equivalence (e.g. the zero moduledoes not work).Theorem 2 (Morita [11], [12]). Let R be a ring with unit and Q a right R-module.Then Q induces a Morita equivalence between R and R0 � End(Q) if and only if QRis a �nitely generated projective generator.1Of course, the idea of \representation equivalence" is older than Morita's work.His main contribution was to make formal de�nitions and to put the various uses of1An object X in an Abelian category is a generator i� every object is a quotient of a directsum of copies of X.



MORITA EQUIVALENCE 3this idea into a general theory. Besides the notion of equivalence, Morita also stud-ied a corresponding duality. Formally, this consists of replacing covariant functorsby contravariant functors. Since we have V �� 6= V for an in�nite-dimensional vectorspace, duality can only hold if one restricts attention to �nitely generated modulesand assumes that the underlying ring is Noetherian. Under these assumptions, thetheory goes through smoothly and yields:De�nition 2 (Morita [11]). Let RF be the category of �nitely generated left R-modules. If R and S are unital Noetherian rings, a duality is a pair T : RF ! SF,U : SF! RF of contravariant equivalence functors.Theorem 3 (Morita [11]). Let R and S be Noetherian rings. If there is a du-ality (T; U ) between RF and SF, then there exists a bimodule SQR such that T �=HomR(xy; Q), U �= HomS(xy; Q). Moreover, the maps R;S ! End(Q) are injective,and R0 = S, S0 = R.Morita also has a necessary and su�cient condition for Q to induce a Moritaduality.2. Morita equivalence for C�-algebras and W�-algebrasIn these categories, we have considerably more structure and therefore restrictour categories of modules.De�nition 3 (Rie�el [16]). A Hermitian module over a C�-algebra A is the Hilbertspace H of a non-degenerate �-representation � : A! B(H), together with the actiona � � = �(a)� for a 2 A, � 2 H. If A is even a W�-algebra, we assume in additionthat � is a normal map2and call H a normal A-module. In both cases, morphismsare the intertwining operators, i.e. A-module homomorphisms in the usual algebraicsense.We call two C�-algebras Morita equivalent if they have equivalent categoriesof Hermitian modules and if the equivalence functors T are �-functors, i.e. iff : V1 ! V2 is a morphism, then T (f�) = (Tf)�. Similarly, we call two W�-al-gebras Morita equivalent if they have equivalent categories of normal modules andif the equivalence is implemented by �-functors.The category of Hermitian modules over a C�-algebra A is equivalent to thecategory of normal modules over the enveloping von Neumann algebra n(A). HenceMorita equivalence of C�-algebras is really a von Neumann algebra concept andtoo weak for most applications. We will soon de�ne the more restrictive conceptof strong Morita equivalence for C�-algebras. As in the purely algebraic case, weneed more concrete criteria in terms of bimodules for two algebras to be equivalent.Since we have to transport the Hilbert space inner products, we need to put morestructure on our bimodules:De�nition 4 (Paschke [14], Rie�el [15]). Let B be a C�-algebra. A pre-HilbertB-module is a right B-module X (with a compatible C -vector space structure),equipped with a conjugate-bilinearmap (linear in the second variable) hxy; xyiB : X�X ! B satisfying2In a W�-algebra, every bounded increasing net of positive elements has a least upper bound.A positive map f : A ! B between W�-algebras is called normal if, for any bounded increasingnet (pj) of positive elements of A with least upper bound p1, f(p1) is the least upper bound ofthe net �f(pj)�.



4 RALF MEYER1. hx; xiB � 0 for all x 2 X;2. hx; xiB = 0 only if x = 0;3. hx; yiB = hy; xi�B for all x; y 2 X;4. hx; y � biB = hx; yiB � b for all x; y 2 X, b 2 B.The map hxy; xyiB is called a B-valued inner product on X.It can be shown that kxk = khx; xiBk1=2 de�nes a norm on X. If X is completewith respect to this norm, it is called a Hilbert B-module. If not, all the structurecan be extended to its completion to turn it into a Hilbert B-module. Actually,in Paschke's paper, the inner product is linear in the �rst variable; and in Rie�el'spaper, this object is called a right (pre-)B-rigged space.This contains enough structure to transport Hilbert space inner products: If Vis a Hermitian B-module and X is a Hilbert B-module, we can equip the algebraictensor product X 
B V with an inner producthx
 v; x0 
 v0i = hhx0; xiBv; v0iV ;where hxy; xyiV is the inner product on V . It can be shown that this is non-negativede�nite and thus de�nes a pre-inner product on X 
B V . Thus factoring out thevectors of lenth zero and completing gives a new Hilbert space X 
B V . Thisconstruction is functorial: If f : V1 ! V2 is a morphism of Hermitian B-modules,then id 
 f extends to a bounded map X 
B V1 ! X 
B V2.If e 2 lin(X;X) is a bounded operator commuting with the action of B by rightmultiplication, then e
 idV extends to a bounded operator on X 
B V . However,the commutant of B, in general, is not a C�-algebra because bounded operatorsmay fail to have an adjoint. If T 2 lin(X;X), an operator T � 2 lin(X;X) is calledan adjoint for T if hTx; yi = hx; T �yi for all x; y 2 X. Let E be the algebraof all adjointable operators on X, i.e. operators that have an adjoint. It is easyto see that an adjointable operator is necessarily bounded and commutes withthe action of B. Moreover, E with the natural norm becomes a C�-algebra. Itis easy to see that X 
B V is a Hermitian E-module as expected. Moreover, themappingsX
BV1 ! X
BV2 induced by B-module homomorphisms are E-modulehomomorphisms as desired, so that X induces a functor from B- to E-modules.Let B0 � B be the closed linear span of hX;XiB = fhx; yi; x; y 2 Xg. If B0 actstrivially on V , then X 
B V is the zero module, so that the functor induced by Xfails to be faithful. Similarly, the algebra E may be too big.This can easily be seen from the example B = C , X = H in�nite-dimensional.In this case, E = B(H) is the algebra of all bounded operators on H. But B(H)has the non-trivial ideal K(H) of compact operators. It is well-known that K(H) isMorita equivalent to C : This means that every irreducible representation of K(H)is a (possibly in�nite) direct sum of copies of the standard representation. ButB(H), as a C�-algebra has more complicated representations coming from the Calkinalgebra B(H)=K(H). Here we have to be careful: As a W�-algebra, B(H) is Moritaequivalent to C , but not if we view it as a C�-algebra.This example suggests to look for an analogue of the ideal of compact operatorsfor Hilbert modules. The right approach is to let E0 be the closed linear span ofthe \rank one operators" hx; yiE 2 E given by hx; yiEz = xhy; ziB for x; y; z 2 X.It is easily seen that E0 is an ideal in E. Moreover, now the roles of E0 and B0are symmetric: We have just de�ned an E0-valued inner product on X and X isan E0-module by de�nition, only that we have exchanged left and right.



MORITA EQUIVALENCE 5De�nition 5 (Rie�el [15], [17]). Let E and B be C�-algebras. By an E-B-equiv-alence bimodule we mean an E;B-bimodule which is equipped with E- and B-val-ued inner products with respect to which X is a right Hilbert B-module and a leftHilbert E-module such that1. hx; yiEz = xhy; ziB for all x; y; z 2 X;2. hX;XiB spans a dense subset of B and hX;XiE spans a dense subset of E.We callE andB strongly Morita equivalent if there is anE-B-equivalence bimodule.If X is an E-B-equivalence bimodule, it is easy to endow the conjugate space ~X ,which isX as a set with the same addition and scalar multiplication�~x = (�x)~, withthe structure of a B-E-equivalence bimodule. For example, ~xe = (e�x)~. Moreover,it is not di�cult to see that strong Morita equivalence is an equivalence relation.Theorem 4 (Rie�el [15]). Let X be an E-B-equivalence bimodule. Then X 
Bxy induces an equivalence between the category of Hermitian B-modules and thecategory of Hermitian E-modules, the inverse being given by ~X
E xy. This functorpreserves weak containment and direct integrals.The reason for Rie�el to introduce strong Morita equivalence was to improvethe understanding of induced representations of (locally compact) groups. Let Gbe a l.c. group and let H be a closed subgroup. Then unitary representations of H\induce" representations of G. Moreover, the representations of G obtained bythis process are precisely those that admit a \system of imprimitivity". In moremodern language, the representations that can be obtained by inducing fromH arethe covariant representations of (C1(G=H); G), where C1(G=H) are the functionson G=H vanishing at in�nity and the action of G on C1(G=H) is obtained fromthe left translation action of G on G=H. These results are due to Mackey (for theseparable case), but his proofs were based on rather unintuitive measure theoreticarguments. In [15], Rie�el gave a new proof by showing that the group algebraC�(H) is strongly Morita equivalent to the crossed product C1(G=H)oG. Actu-ally, he worked with the dense subalgebras Cc(xy) of functions of compact supportand showed that Cc(G) can be given the structure of a pre-Hilbert Cc(H)-module.Then he identi�ed the algebra of \�nite rank operators" on Cc(G) with a densesubalgebra of the crossed product C1(G=H)oG.But there are also other, more non-commutative applications. For example, if Gis a compact group acting on a C�-algebra A by automorphisms, � : G! Aut(A),we can de�ne a \conditional expectation" p : A! A�, where A� is the �xed pointalgebra, by averaging p(a) = RG �x(a) dx with respect to Haar measure dx. Thenha; biA� = p(a�b) turns A into a pre-Hilbert A�-module. It can be shown thatthis gives us a strong Morita equivalence of A� with a certain ideal of the crossedproduct algebra A o� G. In the commutative case, this ideal is the whole crossedproduct algebra, if and only if the action of G is free. Actually, the case where Gis not compact is very important but also much more subtle (cf. [19]).Another more elementary example is the following: Let p 2 A, then the corre-sponding left ideal Ap can be made into an ApA-pAp-equivalence bimodule withinner products hx; yiApA = xy�, hx; yipAp = x�y. Subalgebras of the form pApare the prototype of hereditary subalgebras, and the corresponding hereditary sub-algebra is called full if ApA = A. This example is of considerable theoreticalimportance because every strong Morita equivalence is of this form: If A and Bare strongly Morita equivalent C�-algebras, there is a C�-algebra C that contains



6 RALF MEYERboth A and B as full hereditary subalgebras. Together with a result of Brown onhereditary subalgebras in [2], this gives the following remarkable theorem:Theorem 5 (Brown-Green-Rie�el [3]). Let A and B be C�-algebras with a count-able approximate identity (e.g. separable or unital). Then they are strongly Moritaequivalent if and only if they are stably equivalent, i.e. A
K �= B 
K, where K isthe algebra of compact operators on a separable Hilbert space.Thus stable equivalence, which is of considerable importance in K-theory, canbe viewed as a separable version of Morita equivalence. Moreover, since the class ofseparable or unital algebras is already rather large, one can expect that propertiesthat are invariant under stable equivalence are also Morita invariant. For example,Morita equivalent C�-algebras have isomorphic lattices of ideals and the same K-,E-, and KK-theory. In [6], it is shown how to induce traces between Morita equiv-alent C�-algebras. In [5], Morita equivalence for group actions on C�-algebras isde�ned, and it is shown that equivalent group actions give rise to Morita equivalentgroup C�-algebras and reduced group C�-algebras.Now let us briey discuss the situation for von Neumann algebras. If M is a vonNeumann algebra, a further requirement for (\normal") Hilbert M -N -bimodulesis that the maps m 7! hx;myiN be �-weakly continous for all x; y 2 X. On theother hand, we can weaken the requirements for an equivalence bimodule, replacingdensity by weak density. That this is possible is illustrated by the example C , B(H).With these changes, the analogue of the Eilenberg-Gabriel-Watts theorem is againtrue:Theorem 6 (Rie�el [16]). LetM and N be W�-algebras. Then every normal equiv-alence bimodule implements an equivalence between the categories of normalM - andN -modules by a �-functor. Conversely, every such equivalence is implemented bysome normal equivalence bimodule.It is easy to see that Morita equivalent von Neumann algebras have isomorphiccenters and isomorphic lattices of weakly closed ideals. Moreover, if M and N areMorita equivalent and if M is of type X 2 fI; II; IIIg, then the same holds for N ,i.e. Morita equivalence respects the type of a von Neumann algebra. For types Iand III, the classi�cation up to Morita equivalence is very easy:Theorem 7 (Rie�el [16]). Two W�-algebras of type I are Morita equivalent if andonly if they have isomorphic centers. Two von Neumann algebras of type III onseparable Hilbert spaces are Morita equivalent if and only if they are isomorphic.As pointed out to me by Dimitri Shlyakhtenko, two factors M;N of type II onseparable Hilbert spaces are equivalent if and only if they are stably equivalent asvon Neumann algebras, i.e. M 
 B(H) �= N 
 B(H) (this tensor product is in thecategory of von Neumann algebras and is de�ned to be the weak closure of thespatial tensor product). Thus every type II1-factor is equivalent to a II1-factor,and conversely. The idea of the proof is to turn a M -N -Hilbert bimodule for twoII1-factors into a genuine (pre-)Hilbert space using the trace on one of them. Theactions extend to the completion, and it turns out that M and N are commutantsof one another. Hence we obtain a correspondence in the sense of [20] and canapply the theory for those.It should be remarked that Morita equivalence of von Neumann algebras is notan important technical tool, but at most a convenient way of formulating some of



MORITA EQUIVALENCE 7the known results. For example, a von Neumann algebra is of type I i� it is Moritaequivalent to a commutative von Neumann algebra.3. Morita equivalence for topological and symplectic groupoidsNow we look at geometric analogues of Morita equivalence, �rst for locally com-pact topological groupoids. The bimodule version still makes sense:De�nition 6 (Muhly-Renault-Williams [13]). Let G be a locally compact topolog-ical groupoid with unit space G(0) and source and range maps s and r. A locallycompact space X with a continuous, open map � : X ! G(0), which we call themomentum map and an action � : G �X ! X, where G �X = f(g; x) 2 G �X js(g) = �(x)g, is called a left G-space if1. ���(g; x)� = r(g) for all (g; x) 2 G �X;2. �����(x)�; x� = x for all x 2 X; and3. �(g � h; x) = ��g; �(h; x)� whenever (g; h) 2 G �G and (h; x) 2 G �X.We write g � x = gx = �(g; x). A right G-space is de�ned similarly.The action is called free if (g; x) 2 G �X and g �x = x implies g 2 G(0), i.e. onlyunits have �xed points.The action is called proper if the map (�; id) : G �X ! X �X sending (g; x) to(g � x; x) is proper.If H is another groupoid and if X is at the same time a left G-space and aright H-space with momentum maps � : X ! G(0) and � : X ! H(0), we call it aG-H-bimodule if the actions commute, i.e.1. �(x �h) = �(x) for all (x; h) 2 X �H and similarly �(g �x) = �(x) for all (g; x)in G �X; and2. g � (x � h) = (g � x) � h) for all (g; x) 2 G �X, (x; h) 2 X �H.We say that a G-H-bimodule X is an equivalence bimodule if1. it is free and proper both as a G- and an H-space;2. the momentum map � : X ! G(0) induces a bijection of X=H to G(0); and3. the momentum map � : X ! H(0) induces a bijection of GnX to H(0).We call G and H Morita equivalent if a G-H-equivalence bimodule exists.The orbit space for a proper groupoid action is always locally compact Hausdor�,and the projection onto the orbit space is open. Thus for an equivalence bimodulethe bijections X=H �= G(0), GnX �= H(0) are automatically homeomorphisms.The action of a groupoid on itself by left and right multiplication turns it intoa G-G-equivalence bimodule, so that Morita equivalence is a reexive relation. Itis easy to see that it is also symmetric and transitive. For the latter one usesthe analogue X �H Y of the bimodule tensor product: If X and Y are G-H- andH-K-bimodules respectively, then X � Y = f(x; y) 2 X � Y j �X(x) = �Y (y)g,where �X : X ! H(0) and �Y : Y ! H(0) are the momentum maps. In order toget X �H Y , identify (x � h; y) � (x; h � y) when this is de�ned. It is not di�cult toendow this with the structure of a locally compact G-K-space and to see that thisprocess produces equivalence bimodules if X and Y were equivalence bimodules.Moreover, this tensor product is functorial (for \equivariant" continuous maps asmorphisms).Corollary 7.1. Let G and H be Morita equivalent locally compact groupoids. Thenthe categories of left (right) G- and H-spaces are equivalent.



8 RALF MEYERAs in the algebraic case, under suitable hypotheses a left G-space determines agroupoid H such that it becomes a G-H-equivalence bimodule [13]. To be morespeci�c, let X be a free proper G-space with a surjective momentum map �. LetX �X = f(x; y) 2 X�X j �(x) = �(y)g. Then G acts freely and properly on X �Xby the diagonal action g(x; y) = (gx; gy). The orbit space H = GnX � X can beendowed naturally with a groupoid structure over GnX by putting [x; y] � [y; z] =[x; z], and this multiplication is continuous. There is an obvious right action of Hon X de�ned by x � [x; y] = y. It can be checked that this turns X into a G-H-equivalence bimodule. Moreover, if X was a G-H 0-equivalence bimodule to startwith, then we get H �= H0.There are many examples of Morita equivalent groupoids [13]. If G is a transitivegroupoid, u 2 G(0), then r�1(u) is an equivalence bimodule for G and the isotropygroup r�1(u) \ s�1(u) at u, if r and s are open maps. A similar statement holdsif U � G(0) is a subset meeting every G-orbit. This applies especially to foliations(transverse submanifold meeting every leaf). Moreover, we get that the groupoidassociated to a (Cartan) principal bundle (cf. [8]) is equivalent to the structuregroup of the bundle.Another typical example is the following situation: Let H and K be locallycompact groups acting freely and properly on a locally compact Hausdor� space Psuch that the actions commute. Let H act on the left and K act on the right.The commutativity assumption means that we get an action of K on HnP and anaction of H on P=K. Then the space P is an equivalence for the transformationgroupoids (H;P=K) and (K;HnP ).How is Morita equivalence of groupoids related to the algebraic notion? FixHaar systems � and � for G and H. Then we can form the (full) groupoid C�-alge-bras C�(G; �) and C�(H; �) with respect to these Haar systems. For the groupoidscoming from the last example above, it was already discovered by Green (cf. [18])that the associated groupoid C�-algebras are Morita equivalent. In [13], it is shownthat this remains true in general, with a proof similar to Rie�el's argument in [18]:Theorem 8 (Muhly-Renault-Williams [13]). Let G and H be locally compact, sec-ond countable, Hausdor� groupoids with Haar systems � and �. If there is a (G;H)-equivalence bimodule X, then the (full) groupoid C�-algebras C�(G; �) and C�(H; �)are strongly Morita equivalent.The de�nition of the groupoid C�-algebra depends on the choice of a Haar system.However, the de�nition of a representation of a groupoid does not. In the groupcase, Haar measure is essentially unique, but for groupoids, this is no longer thecase. Due to the correspondence of groupoid representations and representations ofthe groupoid C�-algebra, di�erent choices of Haar system certainly produce Moritaequivalent C�-algebras. This still leaves open whether we actually get isomorphicC�-algebras. At least in the case of transitive groupoids, this is indeed the case:Theorem 9 (Muhly-Renault-Williams [13]). Let G be a second countable, locallycompact, transitive groupoid, let u 2 G(0), and let H be the isotropy group at u.Let � be a Haar system for G. Then there is a positive measure � on G(0) of fullsupport such that C�(G; �) is isomorphic to C�(H)
 K�L2(G(0); �)�.It is easy to see that C�(G; �) must be strongly Morita equivalent to C�(H).But the above re�nement shows that we do not have to tensor C�(G; �) with the



MORITA EQUIVALENCE 9compact operators. This shows that the groupoid algebra is stable and does notdepend on the choice of Haar system.By the way, it probably is not very interesting to look for criteria on groupoidsthat are necessary and su�cient for the groupoid C�-algebras to be Morita equiv-alent. This can already be seen by looking at groups. It is easy to see that twogroups are equivalent in the sense of De�nition 6 i� they are isomorphic as topo-logical groups. However, if K is a compact group, then by the Peter-Weyl theoremits groupoid C�-algebra is a direct sum of copies of full matrix algebras, and thereare in�nitely many such copies if and only if K is has in�nitely many elements.Thus any two in�nite compact groups have strongly Morita equivalent, even stablyequivalent, group C�-algebras. However, there seems to be no natural equivalencebimodule in this situation that can be written down without knowing the full rep-resentation theory of the involved groups.If we drop all continuity assumptions, we get a notion of Morita equivalencefor algebraic groupoids without any further structure. More importantly, if ourgroupoids carry additional di�erentiability structure, we should strengthen our re-quirements on equivalences by asserting that the actions are smooth in order toget an equivalence of the categories of smooth actions. Moreover, the bijections ofthe orbit spaces X=H with G(0) and GnX with H(0) should be di�eomorphic. Thisfollows if the momentum maps are full, i.e. surjective submersions.4. Morita equivalence for symplectic groupoids and PoissonmanifoldsDe�nition 7 (Xu [23], [25]). Two symplectic groupoids G and H with unit spacesG(0) and H(0) are called Morita equivalent if there are a symplectic manifold Xand surjective submersions � : X ! G(0) and � : X ! H(0) such that1. G has a free, proper, symplectic [10] left action on X with momentummap �;2. H has a free, proper, symplectic right action on X with momentum map �;3. the two actions commute with each other;4. � induces a di�eomorphism X=H ! G(0);5. � induces a di�eomorphism GnX ! H(0);(X; �;�) is called an equivalence bimodule between G and H.As expected, Morita equivalence is an equivalence relation among symplecticgroupoids. Since the notion is stronger than equivalence for topological groupoids,Morita equivalent symplectic groupoids still have Morita equivalent groupoid C�-algebras. Equivalence bimodules for symplectic groupoids were also studied from aslightly di�erent viewpoint and under the name of an a�noid structure byWeinsteinin [22].The point of introducing the stronger relation above is that we now get resultsabout the category of symplectic actions of our groupoids that are completely anal-ogous to the results for locally compact groupoids. In the proofs, it only has tobe checked that the symplectic structure can be transported. On the other hand,topological problems almost disappear in this category. It is easy to see that Moritaequivalence of symplectic groupoids is an equivalence relation.Theorem 10 (Xu [23], [25]). Let G be a symplectic groupoid over G(0) and let� : X ! G(0) be a full, symplectic, free, and proper left G-module. Then GnXis a Poisson manifold, and H = Gn(X� �GX) is a symplectic groupoid over GnX�



10 RALF MEYERin a natural way. Moreover, � : X ! GnX� naturally becomes a symplectic rightH-module such that (X; �;�) is an equivalence bimodule between G and H.Conversely, if (X; �;�) is any equivalence bimodule between symplectic groupoidsG and H, then H �= Gn(X� �G X) as symplectic groupoids.As usual, if P is a Poisson manifold with bracket [; ], then P� denotes the samemanifold with bracket �[; ].Let G be a symplectic groupoid. We can consider the \category" of symplecticleft modules over G, in which morphisms between symplectic modules F1 and F2are Lagrangian submanifolds of F1 �G F2 invariant under the diagonal action of G,and the composition of morphisms is the set theoretic composition of relations.(This is not a true category since the composition of two morphisms need not be asubmanifold.) Then we obtainTheorem 11 (Xu [23], [25]). Morita equivalent symplectic groupoids have equiva-lent \categories" of symplectic left modules.One motivation for introducing Morita equivalence of symplectic groupoids isthe correspondence between integrable Poisson manifolds and r-simply connected3symplectic groupoids. It is possible to pull back the groupoid equivalence to thebase Poisson manifolds:De�nition 8 (Xu [23], [24]). Two Poisson manifolds P1 and P2 are Morita equiv-alent if there exists a symplectic manifoldX together with complete Poisson mor-phisms � : X ! P1 and � : X ! P�2 that form a full dual pair with connected andsimply connected �bers. Then X is called an equivalence bimodule.The reason for requiring connected simply connected �bers is to exclude certaincases that we do not want to be Morita equivalences. For example, with thisde�nition two connected symplectic manifolds are Morita equivalent i� they havethe same fundamental group. This somewhat complicated de�nition is borne tomake true the following theorem:Theorem 12 (Xu [23] [24]). Let P1 and P2 be integrable Poisson manifolds. ThenP1 and P2 are Morita equivalent if and only if their r-simply connected symplecticgroupoids are Morita equivalent.Let G be an r-simply connected groupoid over P . The main step in the proof ofTheorem 12 is to show that if X is a symplectic left G-module, then its momentummap � : X ! P is a complete symplectic realization and that, conversely, everycomplete symplectic realization of P carries a natural left G-action. This alsoproves the following theorem:Theorem 13 (Xu [23], [24]). Equivalent integrable Poisson manifolds have equiv-alent \categories" of complete symplectic realizations.Furthermore, Theorem 12 immediately implies that Morita equivalence is anequivalence relation among integrable Poisson manifolds. This is not true for arbi-trary Poisson manifolds: Already reexivity fails. Currently, it is not even knownwhether every Poisson manifold has a complete symplectic realization.It is not di�cult to see that an equivalence bimodule between two Poisson man-ifolds induces a bijection between their leaf spaces. Moreover, Morita equivalence3A groupoid is called r- : : : if all r-�bers have the property : : : . Many authors call the rangeand source map, somewhat unintuitively, � and � and thus write �- : : : instead.



MORITA EQUIVALENCE 11takes into account the variation of the symplectic structures on the leaves, whichis measured by the fundamental class (cf. [23], theorem 1.2.5). This idea allowsvery precise statements about Morita equivalence of regular Poisson manifolds. ForexampleTheorem 14 (Xu [23], [24]). Let P be a regular Poisson manifold with symplectic�bration � : P ! Q. Then P is Morita equivalent to Q with the zero Poissonstructure if and only if all the symplectic leaves of P are connected and simplyconnected and the fundamental class vanishes.Theorem 15 (Xu [23], [26]). Let � : P ! M be a locally trivial bundle of con-nected, simply connected symplectic manifolds. Then P is Morita equivalent to Mwith zero Poisson structure.Another interesting result is that Morita equivalent Poisson manifolds have thesame zeroth and �rst cohomology groups [7]. The example of symplectic manifoldsshows that no results about higher cohomologies can be expected.Theorem 13 is an important tool for computing symplectic realizations of Poissonmanifolds, by reducing the problem to an (apparently) simpler Morita equivalentmanifold (see [23], [26]). For example, Theorem 15 reduces the study of a lo-cally trivial bundle of symplectic manifolds to that of symplectic realizations ofthe base manifold with zero Poisson structure. Thus in order to classify the com-plete symplectic realizations of a simply connected, connected, symplectic manifold,we have to classify symplectic realizations of a single point, which is rather easy.Careful bookkeeping shows that every symplectic realization of S is of the formprS : S�X ! S for a symplectic manifoldX, where prS is the canonical projection.Another case that can be treated in this way is the orbit space of a Hamiltonianaction of a Lie group on a symplectic manifold, and the crossed product of anintegrable Poisson manifold with a Lie group acting on it [23], [26].References[1] Gene D. Abrams, Morita equivalence for rings with local units, Communications in Algebra11 (1983), 801{837.[2] Lawrence G. Brown, Stable isomorphism of hereditary subalgebras of C�-algebras, Paci�cJournal of Mathematics 71 (1977), 335{348.[3] Lawrence G. Brown, Philip Green, and Marc A. Rie�el, Stable isomorphism and strongMorita equivalence of C�-algebras, Paci�c Journal of Mathematics 71 (1977), 349{363.[4] Paul Moritz Cohn, Morita equivalence and duality, Queen Mary College Mathematics Notes,Dillon's Q.M.C. Bookshop, London, 1968.[5] Fran�cois Combes,Crossed products and Morita equivalence, Proceedings of the LondonMath-ematical Society 49 (1984), 289{306.[6] Fran�cois Combes and Heinrich Zettl, Order structures, traces, and weights on Morita equiv-alent C�-algebras, Mathematische Annalen 265 (1983), 67{81.[7] Viktor L. Ginzburg and Jiang-Hua Lu, Poisson cohomology of Morita-equivalent Poissonmanifolds, International Mathematics Research Notices (1992), 199{205.[8] K. Mackenzie, Lie groupoids and Lie algebroids in di�erential geometry, London Mathemati-cal Society Lecture Note Series, vol. 124, Cambridge University Press, Cambridge, New York,1987.[9] Randy McCarthy, Morita equivalence and cyclic homology, Les Comptes Rendus del'Acad�emie des Sciences. S�erie 1 307 (1988), 211{215.[10] KentaroMikami and AlanWeinstein,Moments and reduction for symplectic groupoids, KyotoUniversity, Research Institute for Mathematical Sciences Publications 24 (1988), 121{140.
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