
SPIN STRUCTURES ON MANIFOLDS

by J. Milnor

Let M be an oriented, Riemannian manifold. Then the
tangent bundle of M has the rotation group SO(n) as structural
group. If it is possible to replace SO(ri) by the 2-fold covering
group Spin (n) as structural group, then one says that M can be

given a " spin structure The object of this note will be to
make this concept precise, and to discuss the related concept of
" spin cobordism ".

Let me take this opportunity to point out an error in a
previous paper. The definition of spinor cobordism group which
was proposed in my paper " A survey of cobordism theory "

[7, §2, Example 4] is erroneous. A corrected version of this
definition will be given at the end of the present paper.

Let £ denote a principle fibre bundle with structural group
SO(n). Here n can be any positive integer. The value n =+ oo

is also acceptable. The total space of £ will be denoted by
E(Ç) and the base space by B. We will always assume that B is

a CTF-complex, or a manifold.

Definition: A spin structure on £ is a pair (rjJ) consisting of

(1) A principal bundle rj over B with the spinor group Spin (n)
as structural group ; and

(2) A map /: E(rj) -> E(Ç) such that the following diagram is

commutative.

E(ri) X Spin (n) right transL-, E(rj)\
i fx X 1 )B

E(Ç) X SO(n) Aight transi^E(j;)/

Here X denotes the standard homomorphism from Spin (n) to
SO(n).

This definition must be qualified as follows. A second spin
structure (rj\ f) on £ should be identified with (rjJ) if there exists

an isomorphism g from r\' to rj so that f°g f.
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Note that the definition makes sense even in the special

cases n — 2 and n 1. It is to be understood that Spin (2) is

the 2-fold covering group of the circle SO(2); and that Spin (1)
is a cyclic group of order 2.

As an example, the tangent bundle of the 2-sphere S2 has a

unique spin structure (77, /) where E(rj) is a 3-sphere. The

tangent bundle of the circle S1 has two distinct spin structures.
The above definition is straightforward, but is rather cumbersome.

An elegant variant was suggested to the author by
M. Hirsch:

Alternative definition 1 : A spin structure on £ is a cohomology
class1) a s H1 {E(t) ; J2) whose restriction to each fibre is a generator

of the cyclic group H1 (Fibre; J2). (Note: This last clause

disappears in the special case of an 50(1)-bundle.)
The idea is the following: Any such cohomology class determines

a 2-fold covering of E(Ç). This 2-fold covering space is to
be taken as the total space E(rj). The condition on a | Fibre
guarantees that each fibre is covered by a copy of Spin(tt), the
unique 2-fold covering of SO(n). With this interpretation it is

not difficult to show that the alternative definition is completely
equivalent to the original. Henceforth we will use the two
definitions interchangeably.

It is known that an SO(n)-bundle can be given a spin structure

if and only if its Stiefel-Whitney class w2 is zero. (Compare
Borel and Hirzebruch [2, pg. 350].)

Lemma: If w2 (£) 0 then the number of distinct spin structures

on £ is equal to the number of elements in H1 (5; /2).
Proof : If B is connected, then this follows from the exact

sequence

0 - m (B; J2) - m (E(0; j2) - m (SO(n); J2) - BP (B; J2)

which can be extracted from the spectral sequence of the fibra-
tion Ç. The general case follows easily.

[These facts suggest an analogy between the concept of " spin
structure " for SO(n)-bundles and the concept of " orientation "
for 0(^)-bundles. Thus an 0(^)-bundle can be oriented if and

The notation J2 is used for the integers modulo 2.
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only if w1 0. If — 0 then the number of distinct orientations

is equal to the number of elements in /2).]
Now a word of warning. It may happen that two spin

structures (rj, /) and (rjf, /') on £ are distinct, even though the
corresponding spinor group bundles r\ and r\r are isomorphic.
As an illustration, consider the following.

Example: Let en denote the trivial ^^(^-hundle over the
real projective plane P2. Since H^P2; J2) m J2 this bundle
can be given two distinct spin structures. For n 1 or for
n 2 the two corresponding Spin(^)-bundles are distinct from
each other. However for n> 2 it can be shown that the two
Spin(ft)-bundles are isomorphic: in fact both are trivial.

[This example suggests the conjecture that if (rç, /) and
(rjf f) are two spin structures on the same SO(n)-bundle, with
n> dim B, then rj is necessarily isomorphic to rj'. The anala-

gous statement for orientations of an O(n)-bundle is known to
be true.]

Now we will restrict attention to tangent bundles.

Definition: A spin manifold will mean an oriented Rieman-
nian manifold AT, together with a spin structure on the tangent
bundle of M.

To be more explicit let FM denote the space of oriented
orthonormal ^-frames on M. Then we will think of the spin
structure as being a cohomology class o s H^FM; J2) whose
restriction to each fibre is non-trivial (if n> I).

The notation (iff, a) will be used for such a spin manifold.
However if M happens to be simply connected, so that a is

uniquely determined, then we will simply say thàt M is a spin
manifold.

Suppose that F is a ^-dimensional submanifold of M with
a specified field of normal (n - k)-frames. Then FV<^FM;
hence any spin structure a on M determines a spin structure
o I FV on F. In particular this is true if F is the boundary ÔM.

Definition: A closed spin manifold (F, of) will be called a

spin boundary if there exists a compact spin manifold (M, o)
with ôM V and o | FV ov

As an illustration consider the following.
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' Example: The 2-dimensional disk D2 has a unique spin
structure a. Restricting to the boundary dD2 S1 we obtain
the non-zero cohomology class

^ e m (FSi; J2) m 4,

Thus (S1, oq) is a spin boundary. On the other hand if we take
the zero cohomology class in H^FS1; /2) (this is permissible
since n 1) we obtain a different spin manifold (S1, 0). It can
be shown that (S11 0) is not a spin boundary.

Similarly one can define the relation of cobordism between
closed 72-dimensional spin manifolds. The corresponding
cobordism group will be denoted by Qnspm. Here is a list of the
first eight spin cobordism groups.

ß0spm ^ J (infinite cyclic) by definition.
ß1spin — /2 generated by (S1, 0).
ß2spm J2 generated by the torus with a suitable spin

structure.
03spin 0.

ß4spm J generated by a Kummer surface if4. (Compare
[5 pg. 127J.)

Q5spin =» 0.

^spin
ß7spin 0.

'

Q8spm / © J generated by the quaternion projective
plane and by a manifold L8 such that L8-fL8-fL8-)-L8 is spin
cobordant to if4 x if4. Alternatively, as second generator,
one could take the almost parallelizable manifold M® of
reference [4].

It follows that in dimensions 4 and 8 the spin cobordism class
of a manifold (V, a) is completely determined by the Pontrjagin
numbers of F. In dimension 4 the Pontrjagin number p1 [F4]
is subject only to Rohlnf s relation

Pi [V*] O (mod 48).

i) Compare Wall [8} p. 428].
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In dimension 8 the two Pontrjagin numbers are subject only to
the Borel-Hirzebruch relation

7ft2 [F8] EE 4p2 [F8] (mod 5760).

(Compare references [1, Corollary 2], [3, §3.1] and [4].)
The computation of these eight groups is similar to the usual

computations in cobordism theory. Thus one first shows that
Qnspm is isomorphic to the stable homotopy group nn+k iff(Spin
(k) of a suitable Thorn complex; and then determines these

homotopy groups by a formidable computation. No details
will be given.

For ft ^6 the spin cobordism group can also be interpreted as

the cobordism group for the class of 2-connected oriented Rie-
mannian manifolds. In fact if ft ^ 6 then:

Assertion 1 : Any closed ft-dimensional spin manifold is spin
cobordant to a 2-connected manifold.

Assertion 2: If a 2-connected ft-manifold is a spin boundary,
then it bounds a 2-connected manifold. Proofs are easily given
using the technique of surgery spherical modification) which
is described in references [6], [9].

In conclusion let me mention two other variant definitions
for the concept of spin structure, which may prove useful for
special purposes. We will assume that ft ^ 2.

Let £ be an NO(ft)-bundle over a CIF-complex B. The
A-skeleton of B will be denoted by Bk.

Alternative definitions 2 : A spin structure on Ç is a homotopy
class of cross-sections of Ç | B1 which can be extended to cross-
sections of £ I B2.

It can be shown that every " spin structure " in this sense

determines a spin structure in the original sense, and conversely.
No details will be given.

Now let the group Spin(ft) act on a high dimensional sphere
SN in such a way that the cyclic subgroup /2c=Spin(ft) acts

freely on SN. [Such an action can be obtained by using a spinor
representation of the group Spin(ft).] We will assume that
iV>dim.B.
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Then the quotient group SO(ri) — Spin(ft)//2 acts on the

quotient space PN SNjJ2. Hence to every ^^(^-bundle £

over B there corresponds an associated bundle having the
projective space PN as fibre.

Alternative definition 3: A spin structure on ^ is a homotopy
class of cross-sections of the associated bundle

Again it can be seen that this definition is equivalent to the

original definition.
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