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Differential Topology

J. Milnor

The basic objects studied in differential topology are smooth mani-

folds, sometimes with boundary, and smooth mappings between

such manifolds. Here the word ‘‘smooth” is used to mean ‘‘differ-
R 9y

entiable of class C*.” To give a rough idea of the flavor of this
field, let us list a few of its central problems.

The Diffeomorphism Problem. Given two smooth manifolds M and
M’, how can we decide whether or not there is a diffeomorphism
from M to M’ (i.e., a smooth homeomorphism with smooth inverse) ?

The Cobordism Problem. Given a smooth compact manifold M
without boundary, does there exist a smooth compact manifold W
whose boundary is equal to M? We may refine this problem by
putting extra structures on both M and W. For example, we can
require an orientation, or a weakly complex structure, or we may
require that M and W should be k-connected (compare [10]).

The Imbedding Problem. Given M and M’, does there exist a
smooth imbedding M — M’? If so, can we classify all such
imbeddings? For example, the problem of classifying imbeddings
of the circle in 3-space forms the field of ‘knot theory.”
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CHARACTERIZATIONS OF THE »n-SPHERE

Let us single out one particular case of the diffeomorphism prob-
lem for consideration, namely the problem of characterizing the
n-sphere. The many different tools which can be brought to bear
on this one question will provide a survey of much of the field of
differential topology.

First let us ask what conditions on a smooth manifold guarantee
that it is homeomorphic to S™.

The first such characterization is due to Reeb [16). Let M be a
smooth n-dimensional manifold. By a Morse function f on M will
be meant a smooth real valued function whose critical points are
all nondegenerate. Thus in a neighborhood of each critical point
we can choose local coordinates u;, . . . , u, so that f = constant +
u?+ - - - + u,2 (Morse [12, Lemma 4] or [11, §2.2].)

Theorem 1. If M is compact, without boundary, and possesses a
Morse function with only two critical points, then M is homeomorphic
to S™. '

OUTLINE OF PROOF. (See Figure 1.) Let m,, m;: denote the
minimum and maximum of f. Thus in a neighborhood of its mini-
mum point we have

F=motu+ -+ ug

It follows that the set of points z where f(z) < my + € is diffeo-
morphic to the disk D*. Similarly, the set of x with f(x) > m; — ¢

lml

Figure 1
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is diffeomorphic to D™. But, deforming M into itself along the
gradient lines of the function f [i.e., along the orthogonal trajectories
of the surfaces f~* (constant)] we can slide the disk, f < mo + ¢, up so
that it covers precisely the disk f < m; — e. (Compare [7] or f11,
§§3, 4].) Thus M can be considered as the union of two imbedded
disks which intersect only along their common boundary. But this
implies that M is homeomorphic to 8”. To see this, consider first
the following.

Lemma 1. Any homeomorphism h:S8" ! — 8"} ezxtends to a
homeomorphism H: D" — D™

PROOF. Set H(tu) = th(u) for 0 < ¢ < 1, where u denotes an
arbitrary unit vector.

Now if M is the union of two topologically imbedded disks
go(D"™), ¢1(D™) which intersect precisely along their common
boundary, we can first choose any homeomorphism from go(S"™1) =
91(8™ 1) to the equator of S*, and then extend, using Lemma 1, to a
homeomorphism which maps go(D") to the southern hemisphere and
g1(8"~") to the northern hemisphere. This completes the proof.

Remark. Note that the differentiable structure is destroyed in
the course of this proof. The reason is that there is no differenti-
able analogue of Lemma 1. (Even if A:8* 1 — 8" 1 is a diffeo-
morphism, the extension we have constructed is highly nondifferenti-
able at the origin, unless 4 happens to be orthogonal.) We will
return to this point later, in Section 3.

Following is another partial characterization of §" (compare
(17, 8]).

Theorem 2. Let M be a compact smooth manifold which is the
union of two open sets, each diffeomorphic to a euclidean space.
Then M is homeomorphic to a sphere.

In fact the proof will show that M with a single point deleted is
diffeomorphic to the euclidean space BR*. The proof is based on two
lemmas, both of which are interesting in their own right.

Lemma 2 (Palais and Cerf). Let fi and f5 be smooth, orientation
preserving imbeddings of the disk D™ into the interior of a connected
manifold M™. Then there exists a diffeomorphism h of M™ onto
itself so that h o f; = f,.
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For the proof, which is quite elementary, the reader is referred to
[3] or [14].

Lemma 3 (Brown, Stallings). Let M be a paracompact manifold
such that every compact subset is contained tn an open set diffeomorphic
to euclidean space. Then M itself 1s diffeomorphic to euclidean space.

PROOF. (Compare [2, 21].) It is not difficult to show that M is
a monotone union of disks. That is, we can find submanifolds with

boundary
WiCW, CW3---CM

with union M so that each W, is diffeomorphic to D™, and so that
each W, is contained in the interior of W, ;. We wish to compare
this sequence with the sequence

D;"CD"CDs"C - CR"
where D;* denotes the disk of radius 7 in euclidean space. Start
with any diffeomorphism f,:D;" — W,. Using Lemma 2, this can
be extended to a diffeomorphism f2: Dy — W, and so on. (To see
this, consider the following diagram

W: C Wi
‘\h
~
fi] Wit
g
D;* C D},

where ¢ is an arbitrary orientation preserving diffeomorphism.
Choosing a diffeomorphism % as in Lemma 2, we can now set f;
equal to h o g.) Finally, piecing together all these diffeomorphisms
fi, we obtain the required diffeomorphism B" — M.

Using these lemmas we can prove a sharpened form of Theorem 1.
Let M be compact, without boundary, and let f:M — R be a
smooth function with only two critical points.

Theorem 1’. Even if these critical points are allowed to be degener-
ate, it still follows that M is homeomorphic to S™.

PROOF. (See Figure 2.) Let p and ¢ be the critical points and
let U be a neighborhood of p which is diffeomerphic to R, with
q & U. By deforming M into itself along the gradient lines of f, we
can stretch U so that it covers any compact subset of M — gq.
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Figure 2

Hence it follows from Lemma 3 that M — ¢ is diffeomorphic to R”,
which clearly completes the proof.

The proof of Theorem 2 is similar. Let M be covered by open
sets U and ¥ which are diffeomorphic to R” (Figure 3). Given
g & M — U C V we will show that any compact subset of M — q
can be covered by an open set diffeomorphic to U,

Since V is diffeomorphic to R", it is easy to construct a diffeo-
morphism h:V — V which (1) satisfies h(g) = g, (2) shrinks the

H

Figure 3
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compact set M — U down into an arbitrarily small neighborhood of
g, and (3) coincides with the identity outside of a larger compact
set. It follows from (3) that h extends to a diffeomorphism H of M.
Clearly any compact subset of M — ¢ can be covered by H(U) for
suitable choice of the diffeomorphism H. Therefore it follows from
Lemma 3 that M — ¢ is diffeomorphic to R®. This completes the
proof of Theorem 2.

One of the most striking properties of the sphere S” is that the
complement of each point is contractible.

Problem 1. Given a smooth manifold M such that M — p is contract-
tble, does 1t follow that M is homeomorphic to a sphere?

It follows without too much difficulty from this hypothesis that
M is compact and has the homotopy type of a sphere. Conversely,
if M is compact, without boundary, and has the homotopy type of a
sphere, it can be shown that M — p is contractible.

If the dimension n of M 15 0, 1, or 2, then M must actually be
diffeomorphic to S*. Here is a proof for n = 2. Choose a Rieman-
nian metric and an orientation for /. By a classical theorem (the
existence of “isothermal coordinates’”’) each small neighborhood in
M can be mapped conformally and diffeomorphically onto a region
in the plane. Thus M becomes a Riemann surface. Since M is
simply connected, the classical ‘‘uniformization theorem’ asserts
that M is conformally diffeomorphic to either the complex plane,
the open unit disk, or the Gauss 2-sphere. But only the last possi-
bility satisfies our hypothesis.

If the dimension n is 3, we have the classical Poincaré problem.
So far, all attempts to solve this problem have foundered. For
n = 4 the problem is also unsolved.

For n > 5 the problem has been solved affirmatively by Stallings
and Zeeman [20, 24] and by Smale. In particular we have the
following.

Theorem of Smale [19]. If M is a smooth homotopy n-sphere of
dimension n > 5, then M admits a Morse function with only two
critical points.

Hence Theorem 1 implies that M is homeomorphic to the
n-sphere.

"The proof of this theorem is much more difficult than anything we
have encountered so far. The basic idea can be outlined very
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Before After

roughly as follows. It is not difficult to construct a Morse function
f:M — R with many critical points. Furthermore f can be chosen
so that the critical points occur in the proper order, in the following
sense. If

f(ug, . . . ,un) = constant — u® — - - - —wm®+ upy1
+ -+ un2
in terms of local coordinates uy, . . . , u, near a critical point p,

then the integer A = \(p) is called the index of this critical point.
Now f can be chosen so that f(p) = A(p) for each critical point p.
Thus the minimum points, with A = 0, occur in f!(0), the maxi-
mum points occur in f~*(n), and the remaining critical points come
in between.

The difficult part of the proof now consists in showing that a
critical point of index A and a critical point of index A + 1 can
sometimes be mutually cancelled. Thus in Figure 4 the critical
point p of index 1 and the critical point ¢ of index 2 can be mutually
eliminated, by suitably changing the function. Repeating this
procedure over and over, we eventually eliminate all critical points
which are not essential in order to give the manifold M its proper
homology groups. But a homotopy sphere has homology only in
dimensions 0 and n. Hence we are left with only two critical
points, with indices 0 and n respectively.
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2. SOME EXOTIC SPHERES

This section will construct an example of a manifold which is
homeomorphic, but not diffeomorphic, to a sphere. The proof will
be based on the Hirzebruch signature theorem.

Let V be a compact oriented manifold of dimension 4k. The
signature (or index*) o(V) is defined as follows, following Hermann
Weyl [22, p. 41]. Let o, 8 € Hou(V; Z) be homology classes with
integer coefficients. Then the intersection number « - B is a well-
defined integer. This intersection number is symmetric in « and 8
since the dimension 2k is even. Passing to real coefficients, we can
choose a basis @1, . . . , a, for the vector space Hq1(V; R) so that
the matrix of intersection numbers (a; - a;) is diagonal. Now the
number of positive diagonal entries minus the number of negative
diagonal entries is called the signature ¢ of V.

The following fundamental observation is due to Thom. Suppose
that V is the boundary of a compact oriented manifold W4+1. Then
the signature o(V) is zero. Thom’s proof is based on the Poincaré
duality theorem.

We will also need to make use of the Pontrjagin classes of a smooth
manifold M. Without attempting a definition, here are some basic
properties.

1. To each smooth manifold M there are associated cohomology
classes p, € H**(M;Z) fori =1,2,3, . . . .

2. If U is an open subset of M, then p;(U) is equal to p;(M)
restricted to U.

3. If M is parallelizable, then p;(M) = 0.

Now let V be a closed oriented manifold of dimension 4%. If ¢ 1+
t2+ - + 17, =k, then the cohomology class p;,p;, © - - pi, E
H**(V; Z) gives rise to an integer which is denoted by pi o pilV]
These integers are called the Pontriagin numbers of V.

If V is a boundary then these Pontrjagin numbers are all zero.
Conversely, we have the following:

Thom Cobordism Theorem. If the Pontrjagin numbers p; p;, + - -
p:i[V] are all zero, then the m-~fold disjoint sum V4+V 4+ - - - 4+ V
is the boundary of a compact oriented manifold, for some m > (.

* The term “index’’ is preferred by Hirzebruch and others. I have substituted
“‘signature” to avoid confusion with the Morse index, as used in Section 1.
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An important consequence is the following.

Hirzebruch Signature Theorem. The signature of any closed, oriented
4k-manifold can be expressed as a linear combination of its Ponirjagin
numbers, where the coefficients are rational numbers which depend only
on the dimension. In particular:

V4
V4 — pl[
a(vY) = Pr
8 2 V8
45
62p3[ V12
12 )
(V%) 945 +
27ps V]
16y _ —</P4l
(V1% 1795 +
(V29 = 14625[1720] n
7 13365
where the dots indicate terms in p1, . . . , Pk~1-

PROOF. Let V and V' be two manifolds with the same Pontrjagin
numbers. Form V — V’ (the disjoint sum in which the orientation
of V' has been reversed). Then all Pontrjagin numbers of V' — V’
are zero. Hence some multiple

(V_V’)+...+(V_V’)
is a boundary. This implies that the signature
d(V—=V)+ -+ V=V =meV)— ma(V')

is zero, and hence that o(V) = o(V’).

Thus (V) is a function of the Pontrjagin numbers of V. Since
both signature and Pontrjagin numbers are integers which behave
additively when we form disjoint sums, it is clear that this function
must be linear with rational coefficients. ~

The explicit formulas for k = 1, 2, 3, 4, 5 can be obtained by
computing the signature and Pontrjagin numbers for suitable
examples, and then solving the resulting linear equations. For
further details the reader is referred to Hirzebruch [4].

For our purposes we will only need the following. A manifold
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will be called almost parallelizable if it becomes parallelizable when a
single point is removed.

Corollary. The signature of a closed, almost parallelizable mani-
fold of dimension 8 is always divisible by 7. Similarly, for a closed,
almost parallelizable manifold of dimension 12, 16 or 20, the signa-
ture is divisible by 62, 127, or 146 respectively.

PROOF. We have p;(V* — z) = 0, hence p,(V*) = 0 for i < k.
Thus the signature theorem reduces to

8
oV = AV _ 5 od 1)
45
62p3[ V7
12y _ =
o(V12) T 0 (mod 62)

and so on.

In higher dimensions we obtain analogous results. (However,
sharper results in this direction can be obtained by a different
method: see [5].)

Lemma 4. For k > 2 there erists a compact parallelizable 4k-
dimensional manifold W with signature +8, such that the boundary of
W is a homotopy sphere.

PROOF. We will construct W in such a way that the matrix of
intersection numbers is as follows:

2 1.0 0000 0
1210000 0
01210000
00121000
0001210 1
00001210
00000120
000010 0 2]

This remarkable matrix was suggested to the author by Hirzebruch,
Note that it is positive definite, with determinant -+ 1, and has only
even entries on the diagonal.

As basic building block for the manifold W we take a tubular
neighborhood 7' of the diagonal in §%* X §%. The homology group
H(T; Z) is infinite cyeclic, and the intersection number of a gener-
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Figure 6

ator with itself is 4+2. [PROOF: if a, 8 € H 2 (8% X S%*) are the
obvious generators, then (e + B8) - (@ + 8) = 2a 8 = 2.]

Proof that T is parallelizable. Note that S* X 8% can be
imbedded in R**1 (as the boundary of a neighborhood of S%).
Hence its tangent bundle is induced from that of the unit sphere by
means of the Gauss map g: 82 X 8% — 84, Since g|T is homo-
topic to a constant, it follows that T is parallelizable.

Next we introduce the operation of ‘“plumbing together” two
copies Ty and T, of T. By this we mean the operation of matching
together a region in 7'; and a region in T’y in such a way that the
central 2k-sphere of T'; will have intersection number +1 with the
central 2k-sphere of T5. We must then ‘“‘round off”’ the corners, so
as to obtain a smooth manifold with boundary. For the 2-dimen-
sional case this operation is illustrated in Figure 5.

In practice we need not two but eight copies of T. These are to
be plumbed together according to the following schema.:

1 2 3 4 5 6 7

L @

8

That is, T; is to be plumbed together with T'; and T'3; T's is to be
plumbed together with T'y, T's, and T's; and so on. In this way we
obtain a smooth manifold W which clearly has the following
properties:

1. The manifold W has the homotopy type of a bouquet consist-
ing of eight copies of S?* which intersect at a single point.
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2. If ay, . . ., a3 € Hyu(W; Z) is the corresponding homology
basis, then the matrix (a; - @;) of intersection numbers is as indi-
cated previously, positive definite with determinant +1.

Thus it follows that the signature of W is +8.
3. The boundary dW is a homology sphere.

For the Poincaré duality theorem implies that

Z4+Z+Z+Z+Z+Z+Z+Z fori = 2k
H,W,0W;2) =4 Z for 7 = 4k
0 otherwise

Furthermore the homomorphism
How(W; Z) —> Hu(W, W ; Z)

corresponds to our intersection matrix, and hence is an isomorphism.
Now the homology exact sequence of the pair (W, dW) shows that
Hy(0W; Z) =~ Hy (8%, 7).

4. W is simply connected.

PROOF. Any circle in dW bounds a disk in W. By a general
position argument, since 2k 4+ 2 < 4k, this disk can be pushed off of
the central 2k-spheres of the tubes T;, and hence can be pushed into
the boundary of W.

It now follows, by standard arguments in homotopy theory, that
oW is a homotopy sphere. Since W is clearly parallelizable, this
completes the proof of Lemma 4.

Theorem 3. The manifold dW s homeomorphic to the sphere
S*%*=1 but is not diffeomorphic to S*1,

PROOF. It follows immediately from Smale or Stallings that the
homotopy sphere W is homeomorphic to S*~1, (Recall that the
dimension 4k — 1is >7.)

We will only prove the second statement for the special cases
k=2, 3, 4, 5. Suppose that dW were diffeomorphic to 4!,
Then by pasting a 4k-disk onto the boundary of W we would obtain
a smooth closed manifold V = WU D*. Clearly V is almost
parallelizable. Thus, according to the corollary given earlier, the
signature of V must be a multiple of 7 or of 62 or 127 or 146 respec-
tively. But o(V) = o(W) = 8. This contradiction completes the
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proof for 2 < k < 5. For higher values of k the reader is referred
to [6].

3. THE GROUP I',,

Since we have seen that exotic spheres exist, it is natural to try to
classify them. For this purpose we introduce an abelian group I',
which can be described in two different ways.

First Description. Let Diff '(D™) be the group of all orientation
preserving diffeomorphisms from a closed n-disk onto itself, and let
Difft(8*"!) be the corresponding group of diffeomorphisms of its
boundary. Consider the restriction homomorphism

r:Diff t(D™) — Diff 7 (S* 1)
We assert that the image of this homomorphism is a normal sub-
group. Hence the quotient group
_ Difft(S"~1)
" r Difft(D?)

is defined.

Second Description. A closed oriented manifold M will be called a
twisted sphere if it admits a Morse function with two critical points.
Let T, denote the set of all oriented-diffeomorphism classes of
twisted n-spheres. To make this into a group we introduce the
connected sum operation.

Given connected oriented n-manifolds M, M 5, choose imbeddings

fl:D"-—>Ml, fz:Dn-—-)Mg

To make the orientations come out right it s important that one of
these two imbeddings should preserve orientation and the other one
should reverse orientation. The connected sum M; # M. is now
formed from

[M; — fi(Int D]V [M2 — fa(Int D™)]
by pasting together the two boundaries under the diffeomorphism
faofi i f1(S™1) — f2(S*7H)

Better still, in order to make the differentiable structure clear,
extend f; and f; to imbeddings F;: R* — M;. Then M; # M, can
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be formed from
[M, — F1(0)]\J [M2 — F2(0)]

by identifying each Fi(z) with Fay(z/||z]|?). (Note that this cor-
respondence preserves orientation.) Applying Lemma 2 to F;
restricted to some large disk, we can prove that M, # M, is well
defined up to orientation preserving diffeomorphism. (Compare
(8, 6].)

To compare the group T, with T, we will construct a homo-
morphism

Difft(8"~1) — Iy,

Given h € Diff*(8"™!) let M (k) be the twisted sphere which is
obtained from two copies of R" by identifying each x € R" — 0 in
the first with y = h(z/||z|])/||z|| in the second. Then

g el 1
T+ 2l = 1+ ol

is a Morse function with only two critical points. Taking the
orientation of M (h) from the first copy of R™ we obtain a well-
defined twisted sphere.

It is easily verified that this construction defines a homomorphism
from Difft(S*~1) onto I',. (Compare [7, p. 402].) Let us look at
the kernel. Suppose that there is an orientation preserving diffeo-
morphism g from M (h;) to M (hz). According to Lemma 2 we may
assume that g carries the point of M (h;) with coordinate x to the
point of M(hg) with the same coordinate z for all |zl < 1. In
terms of the y coordinates, this means that g carries the point with
coordinate ¥ = th;(u) to the point with coordinate y = tha(u) for
all >.1and all «u € §*" Y. Thus we have a diffeomorphism R* —
R™ which takes 8™ ! into itself by the diffeomorphism Ay o h;™L.
Hence hy o by~ ! belongs to the image

r Difft(D™) C Diff+(S"~1)

Conversely it can be shown that any element hlS"_1 of the image
gives rise to a manifold M (hlS"_l) which is diffeomorphic to S*.
(The proof can be based on Munkres [13, §6.1].) Henceforth we will
drop the prime, and identify T, with T.
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The main properties of these groups can be described as follows.

Theorem 4. The group Ty is finite abelian for all n. For n < 6
we have T'y, = 0, but for n = 7 the group T'y =2 Z 23 15 non-zero.

In fact it follows from Theorem 3 that I'g_y # 0 for all k£ > 2.

The fact that T, = 0 for n < 3 is due to Munkres. Forn = 4
this assertion has recently been announced by J. Cerf. In these
cases the proof is based on the first definition, in terms of diffeo-
morphisms of 8”1, For n > 5 the proof is based rather on the
second definition, in terms of twisted spheres (see [6]). Some
indication of the method, for n > 5, is given in the following section.

4, HOW TO RECOGNIZE AN HONEST SPHERE

Let M be a twisted n-sphere. How can we decide whether or not
M is diffeomorphic to the standard n-sphere?

First choose an imbedding M C R"™** for some large value of k.
This is possible by a well-known theorem of Whitney [23].

Lemma 5. The normal bundle of M istrivial. That is, there exist k
continuous linearly independent normal vector fields.

OUTLINE OF PROOF. Since M — z is contractible, it is certainly
possible to choose such vector fields in the complement of z. Now
the “obstruction” to extending over z is described by an element of
the homotopy group x,_.1S0(k). These groups (for k large) have
been computed by Bott [1].

Case 1. If n=3,5,6,or7 (mod 8), then r,_,80(k) = 0, hence
there is no obstruction.

Case 2. If n = 44 then the group »,—1S0(k) is infinite cyclic.
In this case the obstruction class can be identified with a multiple of
the Pontrjagin number p;[M]. (See [5].) But this number is zero
by the signature theorem.

Case 3. If n=1 or 2 (mod8), then =, _;SO(k) = Z,. The
proof in this case is more delicate: the obstruction class o satisfies
J(0) = 0 according to [5], but J. F. Adams has shown that the J
homomorphism has kernel zero for these values of n. This com-
pletes the proof.

Next we must introduce the concept of framed cobordism. By a
framing ¢ of an imbedded manifold M™ C R"*, k large, will be
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meant a set of k linearly independent normal vector fields. Two
framed manifolds (Mo, ¢o) and (M, ¢1) in R*t* are called framed
cobordant if there exists a compact framed manifold (W, ) of dimen-
sion n 4+ 1 in R"™* X [0, 1] with oW = M, X 0\ M, X 1, where
the framing ¢ restricts to ¢ at one end and to ¢; at the other. Using
the disjoint sum as composition operation, the framed cobordism
classes of n-manifolds form a group, which will be denoted by 11,,.

There are two fundamental theorems concerning these groups.

Theorem of Pontrjagin [15]. The framed cobordism group I, is
canonzcally isomorphic to the stable homotopy group w,4ix(SF), n <
k— 1.

Theorem of Serre [18]. The stable homotopy groups m.yi(S¥),
0 <n <k — 1, are all finite abelian groups.

Thus II, is finite.

Consider the class of all framed twisted n-spheres in R***,
Using a suitably defined connected sum operation, and defining an
appropriate concept of ‘“isomorphism,” we see that the set of all
1somorphism classes of framed twisted n-spheres forms an abelian
group, which will be denoted by FT,. There is an exact sequence

S0(k) > FI,, - T, — 0

PROOF. Every twisted sphere can be framed. The kernel of the
homomorphism FI', — I', is obtained by looking at standard
spheres with exotic framings. But a framing of the standard
8" C R™** is clearly described by an element of ,SO(k).

On the other hand, there is clearly a homomorphism

JiFTy > 10, 22 70y 1 (S%)

Kervaire has shown that this homomorphism j is onto, except
possibly when n = 2 (mod 4). Thus every framed cobordism class
contains a twisted sphere, except in dimensions 2, 6, 10, . . . .

Consider the kernel of this homomorphism Jj. Suppose, for
example, that n = 3 (mod 4). Then we claim that kernel (j) is
infinite cyclic. Let (M, ¢) be a framed twisted n-sphere belonging
to the kernel of ;. Then (M, o) = a(W, ¢) where W C R"*t* x
[0,1) is a compact framed manifold of dimension #n + 1 = 4.
Hence the signature o(W) is defined.

This integer o(W) is an invariant of the framed manifold (M, ¢).
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For if (M, ¢) is also the boundary of (W, y/), then by placing Win
R™t* % [0, 1) and W' in R*** X (—1, 0], we can construct a closed
framed manifold

WUW CR"“XR

Giving W \U W’ the orientation which is compatible with that of W,
we see that
oW W) =o(W) — a(W)

But this signature must be zero: the fact that W \U W’ is framed
implies that its Pontrjagin classes are all zero and hence, by the
signature theorem, that its signature is zero.
Thus ¢(W) is an invariant & of (M, ¢). In this way we define a
homomorphism
&:kernel (j) > Z

The construction of Section 2 shows that this homomorphism ¢ is
nontrivial. *

Finally we claim that the kernel of # is zero. That is, if (M, ¢)
bounds (W, ¢) with o(W) = 0, then M is diffeomorphic to S™, and
¢ corresponds to the standard framing of 8. The proof, which is
fairly formidable, is divided into two parts. First, using the
method of “surgery’’ [9], we show that all of the homotopy groups of
W can be killed. In other words W can be replaced by a contract-
ible manifold W’. Second, a theorem of Smale [19] asserts that
such a manifold W’ must be diffeomorphic to the (n + 1)-disk.
No further details are given here.

Thus kernel (5) is infinite cyclic. In other words there is an
exact sequence

0— Z— Flyy 514y —0

It follows that FT'y;_; is an infinite abelian group of rank 1. But
74i—150(k) = Z is also a group of rank 1. Using the sequence

74;—180(k) — Fly;_1— Ty 1— 0

we finally see that the group I'y;_; is finite.

* It is curious that 7 behaves somewhat differently in dimension 3 than in
higher dimensions. Thus the image of  is generated by 8if n = 4¢ — 1 > 7,
but is generated by 16 if n = 3.
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Similar constructions work for other values of n. Thus

0—Fly > 7,438 >0 forn=0(4)

Zy,—> Fry, > 8 >0 forn=1(4)
0> FIy > 71 x8* > Z, forn=2(@4)

0—>Z;— FT, > 7,48 >0 forn =3 (4)

For further information on these groups, the reader is referred to [6).
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