Constraining and Un-constraining Supergravities

What you must know about supergravity but do not want to ask string theory?

- A randomly chosen supergravity theory, as it stands, is inconsistent
\triangleright Restrictions are too few
(notably from anomalies $I_{d}^{(1)}: \quad I_{d+2}=\mathrm{d} I_{d+1}^{(0)}, \quad \delta I_{d+1}^{(0)}=\mathrm{d} I_{d}^{(1)}$)
\triangleright imagination is even sparser (new ingredients?)
\triangleright Global surprises

Part I: Discrete anomalies in $\mathrm{D}=8$

- Work with Bing Xin Lao

Part II: Quick D=6 review

- Work with Peng Cheng and Stefan Theisen

Part III: Exotic backgrounds

- Work with Peng Cheng and Ilarion Melnikov

D=10 Super-Poincaré Representations with 16 supercharges:

B.L.G.	representation	multiplet
$S O(8)$	$8_{v} \times 2^{4}=35+28+1+8_{+}+56_{-}$	gravity - anomalous
	$2^{4}=8_{v}+8_{-}$	Yang-Mills - anomalous

Gravity $+\mathrm{YM} \quad \Leftrightarrow \quad$ Anomaly cancelation possible if
$\star I_{12}=X_{4}(R, F) \wedge X_{8}(R, F)$
\star Gauge group: $E_{8} \times E_{8}, S O(32) \ldots$ but also $U(1)^{496}, E_{8} \times U(1)^{248}$
\triangleright Anomalous BI $\quad \mathrm{d} H=X_{4}(R, F) \sim \operatorname{tr} R \wedge R-\operatorname{tr} F \wedge F$
\triangleright GS couplings $\sim B_{2} \wedge X_{8}(R, F)$
$D=10$ Super-Poincaré Representations with 32 supercharges:

B.L.G.	representation	multiplet
$S O(8)$	$2^{8}=35+28+1+56_{v}+8_{v}+8_{+}+56_{-}+8_{-}+56_{+}$ $S O(8) \times S O(2)$	$2^{8}=35_{0}+28_{-2}+1_{-4}+\left(8_{+}\right)_{-3}+\left(56_{-}\right)_{-1}$
	$\left(35_{-}\right)_{0}+28_{2}+1_{4}+\left(8_{+}\right)_{3}+\left(56_{-}\right)_{1}$	$(0,2)-$ IIB

$\mathrm{D}=8 / 9$ theories (Circle $/ T^{2}$ reductions) with 16 suprecharges
For $\mathcal{L}_{v} g_{10}=0=\mathcal{L}_{v} H$

$$
\begin{aligned}
& S^{1} \longrightarrow X_{10} \\
& \underset{X_{9}}{\downarrow} \quad \mathrm{~d} e=\pi^{*} T \quad\left(\mathcal{L}_{v} e=0\right)
\end{aligned}
$$

Supergravity in $\mathrm{D}=9 / 8$ - theory with $S O(1, N, \mathbb{R}) / S O(2, N+1, \mathbb{R})$ symmetry

* Global anomalies $\Rightarrow N$ - odd
\star Parity acts as an internal symmetry $\quad \Rightarrow \quad N=1,9,17$
\triangleright non-orientable manifolds are consistent backgrounds!
* String constructions known for $N=1,9,17$
* No parity anomalies

Discrete anomalies

- $\mathrm{D}=8$ theory with maximal supersymmetry (32 supercharges)
\triangleright moduli space: $\frac{S L(2, \mathbb{R})}{U(1)} \times \frac{S L(3, \mathbb{R})}{S O(3)}$
- IIB: τ - complex structure of \mathbb{T}^{2}
- M: $\quad \tau=-2 C_{8910}+\operatorname{Vol}\left(\mathbb{T}^{3}\right)$
$\triangleright S^{(8)}$ invariant under diffs, but not under $S L(2, \mathbb{Z})$
- Ungauged theory has composite $U(1)$ anomalies:
$\diamond I_{10}=\frac{F^{Q}}{2 \pi}\left[2 \times \frac{1}{2} I_{3 / 2}^{d=8}-4 \times \frac{1}{2} I_{1 / 2}+2 \times \frac{3}{2} I_{1 / 2}+2 \times I_{\mathrm{SD}}\right]_{8-\text { form }}=\frac{F^{Q}}{2 \pi} \wedge X_{8}$
$\triangleright \delta \psi_{\mu}=\left[\nabla_{\mu}+\frac{i}{4} Q_{\mu} \gamma^{9}+\frac{1}{4} Q_{\mu}^{a b} T^{a b}\right] \epsilon$
\triangleright other fermions are also chiral
\triangleright doublet of chiral three-forms (with +1 and $-1 \mathrm{U}(1)$ charges)
$\triangleright F=\frac{\mathrm{d} \tau \wedge d \bar{\tau}}{4 i \tau_{2}^{2}} \quad$ the curvature of the composite connection $Q=-\mathrm{d} \tau_{1} / 2 \tau_{2}$
- Upon gauge fixing composite $\mathrm{U}(1)$ anomaly becomes $S L(2, \mathbb{Z})$ anomaly!
$\diamond X_{8}=\frac{1}{48}\left(\frac{1}{4} p_{1}(T X)^{2}-p_{2}(T X)\right)-$ present in $\mathrm{D}=10 / 11$

Many lives of X_{8}

Euler density:
$\triangleright \quad \chi=\frac{1}{4!(4 \pi)^{2}} \epsilon^{a_{1} \cdots a_{8}} R_{a_{1} a_{2}} R_{a_{3} a_{4}} R_{a_{5} a_{6}} R_{a_{7} a_{8}}$
\diamond Curvature two-from $\quad R_{a b}=\frac{1}{2} R_{a b c d} e^{c} \wedge e^{d}$
Spinor density:

$$
\begin{aligned}
& \triangleright \quad \hat{\chi}=\frac{1}{4!(4 \pi)^{2}} \cdot \frac{1}{2^{4}} \\
& \epsilon^{i_{1} \cdots i_{8}} R_{a_{1} a_{2}}\left(\Gamma^{a_{1} a_{2}}\right)^{i_{1} i_{2}} R_{a_{3} a_{4}}\left(\Gamma^{a_{3} a_{4}}\right)^{i_{3} i_{4}} R_{a_{5} a_{6}}\left(\Gamma^{a_{5} a_{6}}\right)^{i_{5} i_{6}} R_{a_{7} a_{8}}\left(\Gamma^{a_{7} a_{8}}\right)^{i_{7} i_{8}}
\end{aligned}
$$

Eight-forms:

$$
\begin{aligned}
\triangleright \quad \hat{\chi}=\frac{1}{16}\left(8 \chi+p_{1}(T X)^{2}\right. & \left.-4 p_{2}(T X)\right) \\
X_{8} & =\frac{1}{48}\left(\frac{1}{4} p_{1}(T X)^{2}-p_{2}(T X)\right) \\
& =\frac{1}{(2 \pi)^{4}}\left(-\frac{1}{768}\left(\operatorname{tr} R^{2}\right)^{2}+\frac{1}{192} \operatorname{tr} R^{4}\right)
\end{aligned}
$$

M5 Anomaly \& Inflow mechanism
11D supergravity: $\quad S_{\text {SUGRA }}=\frac{1}{2 \kappa^{2}} \int \mathcal{R} * 1-\frac{1}{2} G_{4} \wedge * G_{4}-\frac{1}{6} C_{3} \wedge G_{4} \wedge G_{4}$
M5:

$$
\mathrm{d} G_{4}=Q \delta_{5}(M 5)
$$

$(2,0)$ tensor multiplet on M5:

- Woldvolume chiral 2-form
$\diamond \quad I_{\beta}=\frac{1}{5760}\left(16 p_{1}(T W)^{2}-112 p_{2}(T W)\right) \sim L(T W)$
- Worldvolume fermions
$\diamond \quad I_{D}=\frac{1}{2} \widehat{A}(T W) \operatorname{ch} S(N)$
$\diamond N$-trivial: $\quad I_{D}=4 \times \frac{1}{2} \widehat{A}(T W)=\frac{1}{5760}\left(14 p_{1}(T W)^{2}-8 p_{2}(T W)\right)$
- Total anomaly: $\quad I_{(2,0)}=\frac{1}{48}\left(\frac{1}{4} p_{1}(T X)^{2}-p_{2}(T X)\right)$
- Cancelled via inflow from a bulk coupling $\sim C_{3} \wedge X_{8}$

$$
G_{4} \delta X_{7}^{(0)} \rightarrow \delta_{5}(M 5) X_{6}^{(1)}(T X) \quad \leftrightarrow \quad \mathrm{d}^{-1} \delta \mathrm{~d}^{-1} I_{(2,0)}
$$

- For nontrivial normal bundle: $\delta(C \wedge G \wedge G)$ is needed

Anomalous variation in the $\mathrm{D}=8$ path integral:

$$
-12 \int \Sigma X_{8}(R)
$$

with

$$
e^{-i \Sigma(M, \tau)}=\left(\frac{c \tau+d}{c \bar{\tau}+d}\right)^{\frac{1}{2}}, \quad M \in\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right), \quad M \in S L(2, \mathbb{R}), \quad \tau \in \mathbb{H}
$$

can be canceled in quantum theory with $S L(2, \mathbb{Z}) \in S L(2, \mathbb{R})$

- Counterterm:

$$
\Delta S^{(8)}=12 i \int \arg \left(\eta^{2}(\tau)\right) X_{8}(R)
$$

\triangleright cancels the $S L(2, \mathbb{Z})$ anomaly
\triangleright non-trivial phase (multiplier system)

- $\quad \int\left[X_{8}+\frac{1}{2} G \wedge G\right] \in \mathbb{Z}$
\triangleright large volume limit: $\quad \lim _{\operatorname{Im} \tau \rightarrow \infty} \mathcal{S}=2 \pi \int \tau_{1}\left[X_{8}+\frac{1}{2} G \wedge G\right]$
\triangleright subtle contribution from the classical action
$D=8$ theories with 16 supercharges
Think of \mathbb{T}^{2} reductions of Heterotic strings
- $\frac{S O(2, l)}{S O(2) \times S O(l)}$ coset
- Composite $\mathrm{U}(1)$ couplings to fermions are chiral
- Anomaly cancellation: $\Delta S^{(8)}=\int f(\mathbf{z}, \overline{\mathbf{z}}) Y_{8}^{G}$
\diamond for $\mathrm{D}=8$ heterotic string with $\mathrm{U}(1)^{2} \times G$ (rank $G=16$)
$\triangleright f(\mathbf{z}, \overline{\mathbf{z}})$ - modular function of T and U - scalars in $U(1)$ multiplets
$\triangleright Y_{8}^{G}=$

$$
\frac{1}{32(2 \pi)^{4}}\left[(248+\operatorname{dim} G)\left[\frac{\operatorname{tr} R^{4}}{360}+\frac{\left(t r R^{2}\right)^{2}}{288}\right]-\left(\operatorname{tr} R^{2}\right)^{2}+\frac{1}{6} \operatorname{tr} R^{2} \operatorname{Tr} F^{2}+\frac{2}{3} \operatorname{Tr} F^{4}\right]
$$

- $\Delta S^{(8)}$ agrees with the string amplitude only for
$\triangleright G=S O(32)$
$\triangleright G=E_{8} \times E_{8}$
$S_{\mathrm{amp}}=\frac{1}{192(2 \pi)^{3}} \int B_{89} X^{\mathrm{Gs}}+\frac{1}{4 \times 192(2 \pi)^{4}} \int\left[\ln \left(\frac{\eta^{24}(U)}{\bar{\eta}^{24}(\bar{U})}\right)+\ln \left(\frac{\eta^{24}(T)}{\bar{\eta}^{24}(\bar{T})}\right)\right] \times Y_{8}^{G}$

For other G :

$$
S_{\mathrm{amp}}=\int\left[N_{1} \mathcal{A}_{\text {trivial }}+N_{2} \mathcal{A}_{\text {deg. }}+N_{3} \mathcal{A}_{\text {non-deg. }}\right]
$$

$\triangleright N_{1}, N_{2}, N_{3}$ - normalisations
$\triangleright \mathcal{A}_{\text {trivial }}-\mathbb{T}^{2}$ reduction of $\mathrm{D}=10 \mathrm{GS}$ term
$\triangleright \mathcal{A}_{\text {deg }}$ contains Y_{8}^{G}
$\triangleright \mathcal{A}_{\text {non-deg }}$ contains $Y_{8}^{G}+$ massive VM contributions
$\diamond Y_{8}^{S O(8)^{4}}=\frac{1}{32(2 \pi)^{4}}\left[\left(\operatorname{tr} R^{4}-\frac{1}{4}\left(\operatorname{tr} R^{2}\right)^{2}\right)+\frac{1}{2} \sum_{i=1}^{4}\left(\frac{1}{2} \operatorname{tr} R^{2}+2 \operatorname{tr} F_{i}^{2}\right)^{2}\right]$

- Can be put on spaces with positive $c_{1}(T X)$, but $\ldots \mathbb{T}^{2}$ degenerates and massive states can become massless
- For $X=\mathbb{P}^{1}$ the resulting $\mathrm{D}=6(1,0)$ theories without contribution from $\mathrm{D}=8$ massive states have chiral anomalies
- Supergravity on non-spin, non-orientable, singular spaces

General story:

The compensating $\mathrm{U}(1)$ transformation for $S O(2, l ; \mathbb{R})$ transformation M :

$$
e^{-i \Sigma(M, Z)}=\frac{j(M, Z)}{|j(M, Z)|}
$$

(Z - coordinates on the generalized upper half plane)
Conterterm:

$$
\mathcal{S}=\frac{1}{r} \int \arg \Psi(Z) Y_{8}^{G}
$$

with

$$
\Psi(M\langle Z\rangle)=\chi(M) j(M, Z)^{r} \Psi(Z)
$$

- $\Psi(Z)$ can be constructed as a Borcherds product:

$$
\begin{aligned}
f(\tau) & =\sum_{\gamma \in L^{\prime} / L} \sum_{n \in \mathbb{Z}+q(\gamma)} c(\gamma, n) \mathfrak{e}_{\gamma}(n \tau) \quad \text { hol. modular form of weight } k=1-l / 2 \\
& \Rightarrow \quad \Psi(Z)=\prod_{\beta \in L^{\prime} / L} \prod_{\substack{m \in \mathbb{Z}+q(\beta) \\
m<0}} \Psi_{\beta, m}(Z)^{c(\beta, m) / 2}
\end{aligned}
$$

$\Psi(Z)$ - meromorphic function on \mathbb{H}_{l} of (rational) weight $r=c(0,0) / 2$ for the modular group $\Gamma(L)$ with character χ (if $c(0,0) \in 2 \mathbb{Z}$)

Is the theory well-defined when the counterterm is not?

$$
(\Psi)=\frac{1}{2} \sum_{\beta \in L^{\prime} / L} \sum_{\substack{m \in \mathbb{Z}+q(\beta) \\ m<0}} c(\beta, m) H(\beta, m) .
$$

where rational quadratic divisors (RQD):

$$
H(\beta, m)=\sum_{\substack{\lambda \in \beta+L \\ q(\lambda)=m}} H_{\lambda} \quad \text { whith } \quad H_{\lambda}=\left\{\left[Z_{L}\right] \in \mathcal{K}^{+} \mid\left(Z_{L}, \lambda\right)=0\right\}
$$

Reflective holomorphic modular form for the modular group $\Gamma(L)$ - zeroes are contained in the union of RQDs ℓ^{\perp} associated to roots of L :
The reflection $\quad \sigma_{\ell}: \alpha \longmapsto \alpha-\frac{2(\alpha, \ell)}{(\ell, \ell)} \ell, \quad \alpha \in L \quad$ belongs to $\mathrm{O}^{+}(L)$
Reflection symmetry of $L \Rightarrow$ extra massless states (sym. enhancement)
Reflective lattices (admit reflective modular forms):
$\triangleright \chi=1$
\triangleright finite number with $l \leq 26 \ldots$ mostly classified
\triangleright further constrains (more restricitons? ... 2-reflective, simple?)

D=6 Super-Poincaré Representations with 8 supercharges:

B.L.G.	representation	multiplet
$S O(4) \times S U(2)$	$(2,3 ; 1) \times 2^{2}=(3,3 ; 1)+(1,3 ; 1)+(2,3 ; 1)$	gravity
	$(2,1 ; 1) \times 2^{2}=(3,1 ; 1)+(1,1 ; 1)+(2,1 ; 1)$	tensor
	$(1,2 ; 1) \times 2^{2}=(2,2: 1)+(1,2 ; 1)$	Yang-Mills
	$2^{2}=(2,1 ; 1)+(1,1 ; 2)$	hyper

Chiral bosonis and fermionic fields \Rightarrow Anomalies
Anomaly cancelation possible if
$\star I_{8}=\frac{1}{2} \Omega_{\alpha \beta} X_{4}^{\alpha} X_{4}^{\beta}$
$\triangleright \alpha, \beta=0,1, \ldots n_{T}$
$\triangleright \Omega_{\alpha \beta}$ - symmetric inner product on the space of tensors with $\left(1, n_{T}\right)$ signature
\star GSS couplings $\sim \Omega_{\alpha \beta} B_{2}^{\alpha} X_{4}^{\beta}$
\star Anomalous BI $\mathrm{d} H^{\alpha}=X_{4}^{\alpha}$

Anomaly-free theories:

- Heterotic strings on K3

$$
\left\{\begin{array}{l}
\text { perturbative: } \quad n_{T}=1\left(c_{2}=24\right) \\
\text { non-perturbative: } \quad n_{T}>1\left(c_{2}+N_{\mathrm{NS5}}=24\right)
\end{array}\right.
$$

- Perturbative IIB constructions (K3 orientifolds)
- F-theory
\triangleright Geometrisation of the necessary conditions for the anomaly cancellation
\triangleright Kodaira condition for elliptic CY3's \Rightarrow bound of physical couplings
- Anomaly-free supergravity models (e.g. $n_{T}=9+8 k$ and $G=\left(E_{8}\right)^{k}$)

Questions:

- Extra consistency conditions?
* YES - unitarity of the worldsheet theory of the"supergraity strings" - according to H-C.Kim, G. Shiu and C. Vafa
- A (geometric) bound that all consistent theories should satisfy?
* The subject of this talk

A cartoon of the situation that can be imagined

The plan

- Review the unitarity argument in $\mathrm{D}=6$ and ...
* Explain why we are we look answers to $\mathrm{D}=6$ questions in $\mathrm{D}=5$
- ... re-examine the unitary from $\mathrm{D}=5$ point of view
- Establish a (geometric) bound for consistent theories

Supergravity strings in $D=6$

Consider an anomaly free $\mathrm{D}=6$ theory with 8 spuercharges with

- n_{T} tensor multiplets
- Yang-Mills multiplets with a group $G=\prod_{i} G_{i}$
- hypermultiplets in different representations of the gauge group.

The anomaly polynomial:
$\star I_{8}=\frac{1}{2} \Omega_{\alpha \beta} X_{4}^{\alpha} X_{4}^{\beta}$
$\triangleright \alpha, \beta=0,1, \ldots n_{T}$
$\triangleright \Omega_{\alpha \beta}$ - symmetric inner product on the space of tensors with $\left(1, n_{T}\right)$ signature
$\star X_{4}^{\alpha}=\frac{1}{8} a^{\alpha} \operatorname{tr} R^{2}+\sum_{i} b_{i}^{\alpha} \frac{1}{4 h_{i}} \operatorname{Tr}_{\text {Adj }} F_{i}^{2}$
$\triangleright a, b_{i} \in \mathbb{R}^{1, n_{T}}$ - determined by the field content of the theory
Dyonic BPS strings with $(0,4)$ worldsheet supersymmetry:
$\star \mathrm{d} H^{\alpha}=X_{4}^{\alpha}+Q^{\alpha} \prod_{a=1}^{4} \delta\left(x^{a}\right) d x^{a}$
$\triangleright Q^{\alpha}$ - string charges

Anomaly inflow from $\Omega_{\alpha \beta} B_{2}^{\alpha} X_{4}^{\beta}$ to the BPS string $\Rightarrow(0,4)$ anomaly:

$$
\begin{aligned}
I_{4} & =-\Omega_{\alpha \beta} Q^{\alpha}\left(\left.X_{4}^{\beta}\left(M_{6}\right)\right|_{W_{2}}+\frac{1}{2} Q^{\beta} \chi(N)\right) \\
& =-\frac{1}{4} \Omega_{\alpha \beta} Q^{\alpha}\left(a^{\beta} p_{1}\left(T W_{2}\right)-2\left(Q^{\beta}+a^{\beta}\right) c_{2}\left(S U(2)_{1}\right)+2\left(Q^{\beta}-a^{\beta}\right) c_{2}\left(S U(2)_{2}\right)+\ldots\right)
\end{aligned}
$$

Need to use:
$\triangleright \delta\left(x^{a}\right) d x^{a}$ - a particular representation of the Thom class Φ for $i: W_{2} \hookrightarrow M_{6}$

* Thom isomorphism: $\quad i^{*} \Phi=\chi(N)$
$\left.\triangleright \operatorname{tr} R^{2}\right|_{T W_{2}}=-2 p_{1}\left(T W_{2}\right)-2 p_{1}(N)$
$\triangleright \chi(N)=c_{2}\left(S U(2)_{1}\right)-c_{2}\left(S U(2)_{2}\right)$ and $p_{1}(N)=-2\left(c_{2}\left(S U(2)_{1}\right)+c_{2}\left(S U(2)_{2}\right)\right.$
$\triangleright S U(2)_{2}-\mathcal{R}$-symmetry of the interacting part of the SCFT

Central charges (with c.o.m contribution):

$$
\begin{aligned}
c_{L}-c_{R} & =-6 \Omega_{\alpha \beta} a^{\alpha} Q^{\beta} \equiv-6 Q \cdot a \\
c_{R} & =3 \Omega_{\alpha \beta} Q^{\alpha} Q^{\beta}-6 \Omega_{\alpha \beta} a^{\alpha} Q^{\beta}+6 \equiv 3 Q \cdot Q-6 Q \cdot a+6
\end{aligned}
$$

Constraints on charges Q

- Well-defined moduli space:
$\diamond j \cdot j>0, \quad j \cdot b_{i}>0, \quad j \cdot a<0$
$\diamond j \in \mathbb{R}^{1, n_{T}}-\mathrm{a}\left(1, n_{T}\right)$ vector on the tensor branch $\left(S O\left(1, n_{T}\right) / S O\left(n_{T}\right) \mathrm{MS}\right)$
- Non-negative tension:
$\diamond j \cdot Q \geq 0$
- Non-negative levels for $S U(2)_{1}$ and G_{i} affine current algebras
$\diamond k=\frac{1}{2}(Q \cdot Q+Q \cdot a+2) \geq 0 \quad$ and $\quad k_{i}=Q \cdot b_{i} \geq 0$

Unitarity constraint on the worldsheet theory

\triangleright Left-moving current algebra for G is bounded by c_{L}

$$
\sum_{i} \frac{k_{i} \cdot \operatorname{dim}_{i} G_{i}}{k_{i}+h_{i}} \leq c_{L}-4=3 Q \cdot Q-9 Q \cdot a+2
$$

\triangleright Allows to rule out anomaly-free supergravities without string-theoretic realisations
\triangleright Is not directly comparable with geometric bounds

Why is it worthwhile to re-examine the question in $\mathrm{D}=5$?

- Different way of packing the (same) information
\diamond Consider e.g. reduction on a smooth elliptic CY3

$$
\begin{aligned}
& \triangleright \mathrm{D}=6: \quad L_{\mathrm{GS}} \sim b_{\alpha i j} B_{2}^{\alpha} \wedge F_{2}^{i} \wedge F^{j} \Leftarrow \text { part of } \mathrm{CY} \text { intersection form } \\
& \triangleright \mathrm{D}=5:-\quad-\frac{1}{6} C_{I J K} A^{I} \wedge F^{I} \wedge F^{J} \Leftarrow \text { entire } \mathrm{CY} \text { intersection form } \\
& \\
& \left(C_{I J K}=\int \omega_{I} \wedge \omega_{J} \wedge \omega_{K} ; \quad I=1, \ldots, n_{T}+n_{V}+1\right)
\end{aligned}
$$

\diamond In the S^{1} reduction from $\mathrm{D}=6$ to $\mathrm{D}=5$, a one-loop computation should reveal new info and ... "hide" the anomaly

- Different scaling of central charges w.r.t string charge Q
$\diamond \mathrm{D}=6: \quad c_{L}, c_{R} \sim \# Q \cdot Q+\#^{\prime} Q \cdot a+\#^{\prime \prime}$
$\diamond \mathrm{D}=5: \quad c_{L}, c_{R} \sim \tilde{\#} Q \cdot Q \cdot Q+\#^{\prime} Q \cdot a+\tilde{\#}^{\prime \prime}$
- General questions about which theories are liftable
\diamond reductions with Wilson lines
\diamond reductions with discrete holonomies
- Unitarity constraints for generic minimal $\mathrm{D}=5$ theories...

Anomaly cancellation in $\mathrm{D}=6(2 \mathrm{n}) \quad \Leftrightarrow \quad$ gauge/diff invariance in $\mathrm{D}=5(2 \mathrm{n}-1)$
$\diamond S^{1}$ resuction of the GS terms:

$$
\delta\left(\iota_{v} L_{\mathrm{Gs}}\right) \neq 0 \quad!!!
$$

\diamond no $\mathrm{D}=5$ anomaly to cancel it
Consider the simplest situation - $n_{T}=1$ and $M_{6}=M_{5} \times S^{1}$ (no curvature):
$\triangleright I_{8}=X_{4} \wedge \tilde{X}_{4} ; \quad L_{\mathrm{GS}}=\hat{B}_{2} \wedge \tilde{X}_{4} ; \quad \mathrm{d} H=X_{4}\left(H=\mathrm{d} \hat{B}+X_{3}^{(0)}\right)$
\triangleright reduction: $\quad \hat{B}_{2} \mapsto\left(B_{2}, A_{1}\right) ; \quad X_{4} \mapsto\left(x_{4}, x_{3}\right)$
$\diamond\left(\mathrm{d} x_{4}, \mathrm{~d} x_{3}\right)=0 ; \quad\left(x_{4}=\mathrm{d} x_{3}^{(0)}, x_{3}=\mathrm{d} x_{2}^{(0)}\right) ; \quad\left(\delta \mathrm{d} x_{3}^{(0)}=\mathrm{d} x_{2}^{(2)}, \delta x_{2}^{(0)}=0\right)$
$\triangleright L_{\text {GS }} \mapsto A_{1} \wedge x_{4}+B_{2} \wedge x_{3} \longrightarrow \mathrm{~d} B_{2} \wedge x_{2}^{(0)} \longrightarrow \tilde{F}_{2}\left\llcorner x_{2}^{(0)}-x_{3}^{(0)} \wedge x_{2}^{(0)}\right.$
\diamond CS-like terms with field dependent coefficients - not gauge/diff invariant
\diamond Can be cancelled by integrating out massive KK modes from chiral fields
\diamond Conditions for cancellation - the same as for the anomaly cancelation in D=6
\diamond many cases worked out by E. Poppitz, M, Unsal, F. Bonetti, T. Grimm, S. Hohenegger, P. Corvilain, D. Regalado

Another (scheme-independent) way to look at the problem
\triangleright Reduction of the anomaly

$$
\int_{M_{2 n-1} \times S^{1}} I_{2 n}^{1}(\epsilon, \hat{\mathcal{A}}, \hat{\mathcal{F}})=\delta_{\mathcal{M}_{\epsilon}} \int_{M_{2 n-1}} \Phi \cdot X(\mathcal{A}, \mathcal{F})+\ldots
$$

$\diamond \quad \hat{\mathcal{A}} / \mathcal{A}$ and $\hat{\mathcal{F}} / \mathcal{F}$ - fields and curvatures in $\mathrm{D}=2 \mathrm{n} / 2 \mathrm{n}-1$
$\diamond \quad \epsilon-$ the variation (gauge or diffeomorphism) parameter,
$\diamond \quad \Phi-$ Wilson line along the circle (for gravity Φ - graviphoton curvature)
$\diamond \quad . \quad$ trace over group indices
$\triangleright \quad X(\mathcal{A}, \mathcal{F})=\frac{\partial}{\partial \mathcal{F}} I_{2 n+1}^{0}(\hat{\mathcal{A}}, \hat{\mathcal{F}}) \quad$ - Bardeen-Zumino polynomial
$\diamond \ldots$ indicate correction terms when $G \longrightarrow G^{\prime}$ or $\operatorname{Diff}\left(M_{2 n}\right) \longrightarrow \operatorname{Diff}\left(M_{2 n-1}\right)$
$\triangleright \quad$ Local counterterm $-\Phi \cdot X$ is always possible but can never be lifted to $D=2 n$
\triangleright Liftability \Rightarrow different counterterm
Obstruction to liftability

New CS couplings in $\mathrm{D}=5$
\triangleright involve reduced $D=6 \mathrm{YM}$ fields, and the graviphoton

$$
\mathcal{L}_{\mathrm{cs}}=-\frac{k_{0}}{6} A^{\mathrm{\kappa K}} \wedge F^{\mathrm{\kappa K}} \wedge F^{\mathrm{\kappa K}}+\frac{k_{R}}{96} A^{\mathrm{\kappa K}} \wedge \operatorname{tr} R^{2}
$$

$\diamond \quad k_{0}=2\left(9-n_{T}\right) \quad$ and $\quad k_{R}=8\left(12-n_{T}\right)$
\triangleright Anomaly inflow

$$
c_{R}=k_{0} Q_{\mathrm{Kk}}^{3}+\frac{k_{R}}{2} Q_{\mathrm{kK}} \quad \text { and } \quad c_{L}=k_{0} Q_{\mathrm{kK}}^{3}+k_{R} Q_{\mathrm{\kappa k}}
$$

\diamond The string source: $\quad d F=d \rho(r) e_{2} / 2$

- $\mathrm{d} \rho(r) e_{2} / 2$ - smooth representative of Thom class
- e_{2} - global angular form
- $\int_{S^{2}} e_{2} \wedge e_{2} \wedge e_{2}=2 p_{1}(N)$
$\left.\diamond \operatorname{tr} R^{2}\right|_{T W_{2}}=-2 p_{1}\left(T W_{2}\right)-2 p_{1}(N)$
$\triangleright \quad$ In $\mathrm{D}=5$ there are strings with cubic central charges (not quadratic!)
\triangleright All strings with cubic central charges carry some magnetic KK charge

Central charges for $\mathrm{D}=5$ BPS strings

$$
\begin{aligned}
& c_{R}=C_{I J K} Q^{I} Q^{J} Q^{K}+\frac{1}{2} a_{I} Q^{I} \quad \text { and } \quad c_{L}=C_{I J K} Q^{I} Q^{J} Q^{K}+a_{I} Q^{I} \\
& \diamond \quad I=1, \ldots, n_{T}+n_{V}+1
\end{aligned}
$$

$\triangleright \quad$ BPS strings in $\mathrm{D}=6$ with transverse $S^{1} \quad$ (normal bundle $\mathbb{R}^{3} \times S^{1}$)
\diamond Recall

$$
I_{4} \sim \Omega_{\alpha \beta} Q^{\alpha}\left(a^{\beta} p_{1}\left(T W_{2}\right)-2\left(Q^{\beta}+a^{\beta}\right) c_{2}\left(S U(2)_{1}\right)+2\left(Q^{\beta}-a^{\beta}\right) c_{2}\left(S U(2)_{2}\right)+\ldots\right)
$$

\diamond Take $c_{2}\left(S U(2)_{1}\right)=c_{2}\left(S U(2)_{2}\right)=c_{2}(N)$,

$$
c_{L}=2 c_{R}=-12 \Omega_{\alpha \beta} a^{\alpha} Q^{\beta} \equiv-12 Q \cdot a
$$

$\triangleright \quad$ The interacting part of SCFT

$$
c_{R}^{i n t}=-6 Q \cdot a-6 \quad \text { and } \quad c_{L}^{i n t}=-12 Q \cdot a-3
$$

$\triangleright \quad$ The unitarity condition for linear strings

$$
\sum_{i} \frac{\left(Q \cdot b_{i}\right) \cdot \operatorname{dim} G_{i}}{Q \cdot b_{i}+h_{i}^{V}} \leq c_{L}^{i n t}=-12 Q \cdot a-3
$$

Kodaira positivity and F-theory models

\triangleright In all F-theory models the following bound holds:

$$
j \cdot\left(-12 a-\sum_{i} x_{i} b_{i}\right) \geq 0
$$

$\triangleright j \in \mathbb{R}^{1, n_{T}}-\mathrm{a}\left(1, n_{T}\right)$ vector on the tensor branch
$\triangleright a, b_{i} \in \mathbb{R}^{1, n_{T}}$ - determined by the field content of the theory
$\triangleright x_{i}$ - number of D7 needed for G_{i} (multiplicity of respective singularity)
\triangleright Follows from the Kodaira condition - requirement that elliptic fibration over base B with singularities over divisors S_{i} is CY :

$$
-12 K=\sum_{i} x_{i} S_{i}+Y
$$

$\triangleright Y-$ residual divisor which must be effective
\triangleright For any nef divisor D :

$$
D \cdot Y=D \cdot\left(-12 K-\sum_{i} x_{i} S_{i}\right) \geq 0
$$

$\triangleright \quad \operatorname{KPC}\left(j \cdot\left(-12 a-\sum_{i} x_{i} b_{i}\right) \geq 0\right)$ is not expected to be satisfied in any consistent $\mathrm{D}=6$ theory

The unitariry bound should hold in all consistent $D=6$ theories
\triangleright The strongest for of the constraint:

$$
Q \cdot\left(-12 a-\sum_{i} b_{i}\left(\frac{\operatorname{dim} G_{i}}{1+h_{i}^{\vee}}\right)\right) \geq Q \cdot\left(-12 a-\sum_{i} b_{i}\left(\frac{\operatorname{dim} G_{i}}{Q \cdot b_{i}+h_{i}^{\vee}}\right)\right) \geq 3
$$

\diamond If the strong form is satisfied, it will hold also for $Q \cdot b_{1}>1$
\diamond If it fails, need to check if $Q \cdot b_{i}=1$ is possible
\diamond Impose: $\quad Q \cdot Q+Q \cdot a+2 \geq 0, \quad k_{i}=Q \cdot b_{i} \geq 0 \quad$ and $\quad-Q \cdot a>0$
\triangleright (Assuming $\mathrm{D}=6$ theory is F-theoretic) UC can be converted into geometric form:

$$
D \cdot\left(-12 K-\sum_{i} y_{i} S_{i}\right) \geq 3 \quad \text { with } \quad y_{i}=\frac{\operatorname{dim} G^{i}}{1+h_{i}^{\bigvee}}
$$

$\triangleright \quad x$ is always larger than y :

Type of gauge algebra	$x_{i}-y_{i}$	Gauge algebra
K_{1}	<2	$s u(m), s p(1), s p(2), s p(3)$ in Kodaira type I
K_{2}	≥ 2	All other groups

Comparing UC and KPC

$$
D \cdot Y \geq 3-\sum_{i}\left(x_{i}-y_{i}\right) D \cdot S_{i}
$$

- In most of the cases the bound is automatic given KPC (KPC is stronger than UC)
\triangleright At least 3 gauge group factors (gauge divisors $S_{1,2,3}\left(D \cdot S_{1,2,3}>0\right.$ holds))
\triangleright At least 2 gauge groups and at least 1 is type $K_{2}\left(x_{i}-\frac{\operatorname{dim} G_{i}}{D \cdot S_{i}+h_{i}^{V}} \geq x_{i}-y_{i} \geq 2\right)$
- In other cases, KPC may be satisfied while UC is violated if

$$
12 n-3<\sum_{i} \mu_{i} D \cdot S_{i} \leq 12 n-\sum_{i}\left(x_{i}-\mu_{i}\right) D \cdot S_{i}
$$

$\triangleright Y=-12 K-\sum_{i} x_{i} S_{i}-$ NOT numerically 0 (GDs S_{i} do not sweep $-12 K$)

- 3 cases when UC imposes stronger constraints
$\triangleright \exists S_{1} \in\left\{S_{i}\right\}$ and nef $D: D \cdot S_{1}=1, D \cdot S_{i}=0(i \neq 1) \&-D \cdot K \in \mathbb{Z}_{+}$ $\Rightarrow D \cdot Y \geq 1$ for $S U(12 n) \quad$ and $\quad D \cdot Y \geq 2$ for $S U(12 n-1)$
$\triangleright \exists S_{1} \in\left\{S_{i}\right\}$ for $D \cdot Y \geq 1 \Rightarrow S O(24 n-5), S O(24 n-4)$ or $S p(6 n)$ ($I_{12 n}$ type)
$\triangleright \exists S_{1}, S_{2} \in\left\{S_{i}\right\}$ for $D \cdot Y \geq 1 \Rightarrow S U(a) \times S U(12 n-a), S p(1) \times S U(12 n-2)$, $S p(2) \times S U(12 n-4)$ or $S U(12 n-6) \times S p(3)\left(I_{2}, I_{4}\right.$ and I_{6} type $)$

Example: $S U(N) \times S U(N), n_{H}=2$ (bifundamentals) and $n_{T}=9$

$$
\begin{array}{cr}
\Omega=\operatorname{diag}\left(+1,(-1)^{9}\right), & a=\left(-3,(+1)^{9}\right) \\
b_{1}=\left(1,-1,-1,-1,0^{6}\right), & b_{2}=\left(2,0,0,0,(-1)^{6}\right)
\end{array}
$$

$\triangleright \quad Q=(1,0,0,0,-1,0 . ., 0)$
$\triangleright \quad Q \cdot Q=0, Q \cdot a=-2$ and $Q \cdot b_{1}=Q \cdot b_{2}=1$
$\triangleright \quad$ UC: $2(N-1) \leq 24-3 \Rightarrow N \leq 11 \quad$ (stronger bound in D6 UC)
$\triangleright \quad \mathrm{KPC}: \quad 2 N \leq 24 \rightarrow N \leq 12$
\triangleright Assuming F-theoretic realisation: $\quad-12 K=N S_{1}+N S_{2}+Y$
$\triangleright \quad$ For $N \geq 4$, the singular divisors are of type I_{N}
$\diamond S_{1} \cdot K=S_{2} \cdot K=0$
$\diamond 2$ bifundamental hypers: $S_{1} \cdot S_{1}=-2=S_{2} \cdot S_{2}$ and $S_{1} \cdot S_{2}=2$
$\diamond n_{T}=9$ translates into $K \cdot K=0$.
$\triangleright \quad$ Can verify that $Y=-12 K-12 S_{1}-12 S_{2}$ has to be numerically non-trivial $\left(-12 K=12 S_{1}+12 S_{2}\right.$ cannot be realised on the base B of an elliptic Calabi-Yau threefold with the required singularity structure)

A refined cartoon of the space of $D=6$ theories

... and much left to be understood about consistency of quantum gravity

Exotic (sugra) backgrounds

- $\mathrm{D}=6$ anomalies - [AG-W]

$$
I_{3 / 2}-21 I_{1 / 2}-8 I_{\mathrm{SD}}=0
$$

$\diamond 0 \times 2+5 I_{\mathrm{SD}}-5 I_{\mathrm{SD}} \quad \Rightarrow \quad$ anomaly-free $(0,2)$ theory with 21 TM
\triangleright IIB compactified on $K 3$
$\diamond 0 \times 1+I_{\mathrm{SD}}-I_{\mathrm{SD}} \quad \Rightarrow \quad$ anomaly-free $(0,1)$ theory with 9 TM \& 12 HM
\triangleright The origin of this theory?

- $(0,2)$ theory: $\quad \mathcal{M}=O(5,21) / O(5) \times O(21)$
- Freely-acting \mathbb{Z}_{2} involution (Enriques) σ :
$\diamond U S p(4) \longrightarrow U S p(2) \times U S p(2)$
\triangleright gravitini: $\quad 4 \longrightarrow(2,1)^{+}+(1,2)^{-}$
\triangleright tensors in GM: $5 \longrightarrow(1,1)^{+}+(2,2)^{-}$
$\triangleright \sigma$ has -1 eigenvalues acting on $H^{(2,0)}$ and $H^{(0,2)},+1$ on $H^{(1,1)+}$
$\triangleright \sigma$ has $\left[(+1)^{9},(-1)^{10}\right]$ eigenvalues acting on $H^{(1,1)-}$
$\diamond \quad \mathcal{M}_{\mathrm{T}} \times \mathcal{M}_{\mathrm{H}}=\frac{O(1,9)}{O(9)} \times \frac{O(4,12)}{O(4) \times O(12)}$
- Enriques is not a spin manifold!

Duality action on fermions:

- (bosonic) duality symmetry $S L(2, \mathbb{Z}) \quad \Rightarrow \quad \operatorname{pin}^{+} G L(2, \mathbb{Z})$
- Lorentz symmetry $S O(1,9)+$ duality group \Rightarrow faithful action on the fermions by $\operatorname{Spin}_{\mathrm{d}}(1,9)$

$$
1 \longrightarrow \mathbb{Z}_{2} \xrightarrow{f} \operatorname{Spin}_{\mathrm{d}}(1,9) \longrightarrow S O(1,9) \times G L(2, \mathbb{Z}) \longrightarrow 1
$$

- Duality group $\operatorname{pin}^{+} G L(2, \mathbb{Z})$ includes the spacetime fermion number $e^{i \pi \boldsymbol{F}}$
- map f sends the \mathbb{Z}_{2} generator to $\left(-\mathbb{I}_{16}, e^{i \pi \boldsymbol{F}}\right) \in \operatorname{Spin}(1,9) \times \operatorname{pin}^{+} G L(2, \mathbb{Z})$
- Generic $S L(2, \mathbb{Z}) \Rightarrow$ axion-dilaton dependent tranformation of fermions

Perturbative backgrounds (constant axion-dilaton) :

- Perturbative duality symmetries $\mathcal{G}_{\text {per }} \subset \operatorname{pin}^{+} G L(2, \mathbb{Z})$

$$
\mathcal{G}_{\text {per }} \simeq D_{8}=\left\langle r, s \mid r^{4}=s^{2}=(r s)^{2}=1\right\rangle
$$

$\diamond r=e^{i \pi F_{\llcorner }}$and $s=\Pi$ worldsheet parity
$\diamond \mathbb{Z}_{2} \times \mathbb{Z}_{2}$ analogue of bosonic $S L(2, \mathbb{Z})$

$$
1 \longrightarrow \mathbb{Z}_{2} \xrightarrow{f} \operatorname{Spin}_{d}^{\prime}(1,9) \longrightarrow S O(1,9) \times \mathbb{Z}_{2} \times \mathbb{Z}_{2} \longrightarrow 1
$$

- Fermions on 10D oriented spacetime X - sections of $\mathcal{F} \otimes T_{X}$ transition functions - in Spin' ${ }_{\mathrm{d}}(1,9)$.
- For $X=\mathbb{R}^{1,5} \times Y, \quad \mathcal{F} \Rightarrow \mathcal{F}_{+} \oplus \mathcal{F}_{-} \quad\left(16 \Rightarrow(4,1,2) \oplus\left(4^{\prime}, 2,1\right)\right)$
- Existence of fermions in $\mathcal{F}_{+} \quad \Rightarrow \quad$ chiral Spin' $_{p}(4)$ structure on Y
- $Y / G_{E} \Rightarrow$ Enriques surface no spinors (on sections of $\mathcal{F}_{+}: U_{E} \cdot \mathcal{S}=i \sigma_{3} \mathcal{S}$)
- \mathbb{Z}_{2} symmetry, with generator

$$
\tilde{U}_{E}=\left(g, e^{\left.i \pi F_{\llcorner } \Pi\right) \in S O(4) \times \mathcal{G}_{\mathrm{p}} .}\right.
$$

- lift to $\operatorname{Spin}^{\prime}{ }_{\mathrm{p}}(4): \quad \tilde{U}_{E} \cdot \mathcal{S}=-\sigma_{3} \mathcal{S} \sigma_{2}$
- Inv. fermions solving $\mathcal{S}=-\sigma_{s} \mathcal{S} \sigma_{2} \quad \Rightarrow \quad(1 / 2)$ susy on non-spin background

Flat F-theory

- FHSV CY (holonomy $\left.S U(2) \rtimes \mathbb{Z}_{2} \subset S U(3)\right)$
- Other examples:
$\diamond O_{2}^{3} \times S^{1}-\quad U_{E} \cdot\left(x_{1}, x_{2}, x_{3}, x_{4}\right)=\left(x_{1}+1 / 2,-x_{2},-x_{3}, x_{4}\right)$
\diamond Non-pertutrbative relatives O_{k}^{3} for $\mathbb{Z}_{3}, \mathbb{Z}_{4}$ and \mathbb{Z}_{6}
\diamond Smooth non-spin 7 manifolds as Seifert bundles over singular $C Y_{3} / \Gamma$

Non-orientable IIA backgrounds

- Circle T-duality on Enr $\times S^{1}$
\diamond no orientifold by WS parity
\diamond additional circle action on NS fields: $T_{\mathrm{L}}\left(T_{\mathrm{L}}^{2}=\mathrm{id}\right)$:

$$
X_{\mathrm{L}}^{5} \mapsto-X_{\mathrm{L}}^{5} \quad \& \quad \mathcal{X}_{\mathrm{L}}^{5} \mapsto-\mathcal{X}_{\mathrm{L}}^{5}
$$

- IIA symmetry: $\quad \tilde{U}_{\mathrm{IIA}}=T_{\mathrm{L}}^{-1} \tilde{U}_{E} T_{\mathrm{L}}=T_{\mathrm{L}}^{-1} U_{E} e^{i \pi F_{\mathrm{L}}} \Pi T_{\mathrm{L}}$
$\diamond \quad \Pi T_{\mathrm{L}}=T_{\mathrm{R}} \Pi$
$\diamond \quad R_{5}=T_{\mathrm{L}} T_{\mathrm{R}} \quad$ - spacetime reflection
- IIA symmetry: $\tilde{U}_{\| \mathrm{IA}}=R_{5} U_{E} e^{i \pi F_{\llcorner }} \Pi$
$\diamond R_{5} U_{E}$ is free on Enr $\times S^{1}$
\diamond Volume projected out! $\quad \tilde{X}=\left(Y \times S^{1}\right) / \mathbb{Z}_{2} \quad$ with $\mathbb{Z}_{2}=(\sigma, \rho)$
- Perturbative string description of nonoreinted background with a sugra limit
- massless spectrum agrees with IIB on Enr $\times S^{1}$
$\diamond 11$ vectors, 58 scalars
\diamond can be obtained from M-theory

M-theory lift, pinors \& spacetime supersymmetry

- IIA on Enr $\times S^{1}$ lifts to M-theory on FHSV CY $Z=\left(Y \times S^{1} \times S^{1}\right) / \mathbb{Z}_{2}$
$\diamond e^{i \pi F_{\llcorner } \text {in IIA }} \Leftrightarrow$ Reflection on M-theory circle
\diamond IIA GSO - 10D spacetime reflection + WS parity
- IIA geometry:
$\diamond \tilde{X}=\left(Y \times S^{1}\right) / \mathbb{Z}_{2}$ - a circle bundle over Enr.
- projection $p_{1}: \tilde{X} \rightarrow X$ forgets the circle direction
- section $i_{1}: X \rightarrow \tilde{X}$ given by $i_{1}(x)=(x, 0) \quad\left(i_{1} p_{1}=\operatorname{id}_{\tilde{X}}\right.$ and $\left.p_{1} i_{1}=\operatorname{id}_{X}\right)$
$\diamond Z$ - circle bundle over \tilde{X}
- projection $p_{2}: Z \rightarrow \tilde{X} \quad$ \& section $i_{2}: \tilde{X} \rightarrow Z$
- Stiefel-Whitney classes:
- $\quad w_{2}\left(T_{\tilde{X}}\right)+w_{1}\left(T_{\tilde{X}}\right) \cup w_{1}\left(T_{\tilde{X}}\right)=0$
- Pin^{-}structure
- lift to the pinor bundle of $\operatorname{Hol}(\tilde{X})\left(S U(2) \rtimes \mathbb{Z}_{2} \in O(5)(\right.$ not $\left.S O(5)!)\right)$
\Rightarrow non-zero covariantly constant sections
\Rightarrow spacetime susy

Global future

- dual descriptions (e.g. heterotic strings)
- M-theory on non-spin manifolds (cf. m_{c} structure based on sugra description)
- situation when the WS description is not possible
- (lower-dimensional) spacetime physics with discrete (gauge) symmetries
- ...

