MODEL CATEGORIES PRIMER

\mathscr{C} complete and cocomplete
Three subcategories:
\mathscr{W} Weak equivalences (WE's)
\mathscr{C} of Cofibrations
\mathscr{F} ib Fibrations
(1) All closed under retracts of maps
(2) 2 of 3 property for $\mathscr{W}(h=g \circ f)$
(3) Lifting: Consider a diagram with
i a cofibration and p a fibration:

$$
\begin{aligned}
& A \xrightarrow{f} E \\
& i \downarrow,{ }_{l}, \\
& X_{\vec{g}} B
\end{aligned}
$$

i or p acyclic (in $\mathscr{W}) \Longrightarrow$ lift.
i has LLP wrt p
p has RLP wrt i
(Categorical orthogonality language: Sic)

2
(4) Factorizations of $f: X \rightarrow Y$:

i a cofibration
p an acyclic fibration
j an acyclic cofibration
q a fibration.
Negotiable: factorizations functorial.

Characterizations:

Cofibration \Leftrightarrow LLP wrt acyclic fibrations
Fibration \Leftrightarrow RLP wrt acyclic cofibrations
Acyclic cofibration \Leftrightarrow LLP wrt fibrations
Acyclic fibration \Leftrightarrow RLP wrt cofibrations

Obsolete: "closed" model category
Cofibrant and fibrant objects
Cofibrant: $\emptyset \rightarrow X$ a cofibration.
Cofibrant approximation factorization

$$
\emptyset \rightarrow Q X \xrightarrow{\pi} X
$$

π an acyclic fibration.

Fibrant: $X \rightarrow *$ a fibration
Fibrant approximation factorization

$$
X \xrightarrow{\iota} R X \longrightarrow *
$$

ι an acyclic cofibration.

Sometimes have simplifying feature:
All objects cofibrant (sSets)
All objects fibrant (Spaces)
All objects cofibrant and fibrant (\mathscr{C} at)

A model structure on \mathscr{C} at

Weak equivalence $=$ equivalence
Cofibration $=$ injective on objects
Fibration $=$ RLP wrt $* \rightarrow \mathscr{J}$.

* $=$ trivial, $\mathscr{J}=$ two objects and an isomorphism between them. Acyclic cof $=$ injective equivalence Acyclic fib $=$ surjective equivalence
$=$ RLP wrt the three functors $\emptyset \rightarrow *, \partial \mathscr{I} \rightarrow \mathscr{I}, \mathscr{E} \rightarrow \mathscr{I}$.
\mathscr{I} has two objects $\partial \mathscr{I}=0 \amalg 1$ and one arrow $0 \rightarrow 1, \mathscr{E}$ has same objects and two parallel arrows $0 \rightarrow 1$.

Factorizations of $F: \mathscr{C} \rightarrow \mathscr{D}$ through $(\mathscr{C} \times \mathscr{J}) \cup_{\mathscr{C}} \mathscr{D}$ and $\mathscr{D}^{\mathscr{J}} \times \mathscr{D} \mathscr{C}$.

$\underline{\text { Topological spaces }}$

Spaces compactly generated: weak Hausdorff k-spaces.

$\underline{h \text {-model structure: }}$

h-equivalence $=$ homotopy equivalence
h-cofibration $=$ Hurewicz cofibration
$\mathrm{HEP}=\mathrm{LLP}$ wrt all $p_{0}: Y^{I} \rightarrow Y$
h-fibration $=$ Hurewicz fibration
$\mathrm{CHP}=$ RLP wrt all $i_{0}: X \rightarrow X \times I$

General theory of h-model structures on topologically enriched categories.
(Cole, Schwänzl-Vogt, M-Sigurdsson)
$\underline{q \text {-model structure: }}$
q-equivalence $=$ weak equivalence

$$
=\pi_{*} \text {-isomorphism }
$$

q-cofibration $=$ "I-cell retract" (retract of a relative I-cell complex).
$I=\left\{S^{n} \subset D^{n+1}\right\}$.
Relative I-cell complex:
$f: X \rightarrow \operatorname{colim} Y_{n}=Y$, where $Y_{0}=X, Y_{n+1}=Y_{n} \cup_{K} L$,
$K \rightarrow L$ a coproduct of maps in I.
q-fibration $=$ Serre fibration
RLP wrt all maps in J,
$J=\left\{i_{0}: D^{n} \longrightarrow D^{n} \times I\right\}$.
m-model structure (mixed):
m-equivalence $=q$-equivalence
m-fibration $=h$-fibration
m-cofibration $=$ determined by LLP
m-cofibrant $=$ CW homotopy type

Theorem (Cole). Let

$$
\left(\mathscr{W}_{h}, \mathscr{F} i b_{h}, \mathscr{C} o f_{h}\right)
$$

and

$$
\left(\mathscr{W}_{q}, \mathscr{F} i b_{q}, \mathscr{C} o f_{q}\right)
$$

be model structures on \mathscr{C} such that

$$
\mathscr{W}_{h} \subset \mathscr{W}_{q} \text { and } \mathscr{F} i b_{h} \subset \mathscr{F} i b_{q}
$$

Then there is also a model structure

$$
\left(\mathscr{W}_{q}, \mathscr{F} i b_{h}, \mathscr{C} o f_{m}\right)
$$

Compactly generated model categories
A set I of maps in \mathscr{C} is compact if, for domains K and relative I-cell complexes $X \rightarrow$ colim $Y_{n}=Y$,

$$
\operatorname{colim} \mathscr{C}\left(K, Y_{n}\right) \cong \mathscr{C}(K, Y)
$$

Theorem. \mathscr{C} bicomplete, \mathscr{W} a subcategory closed under retracts and satisfying 2 out of 3 property, I and J compact sets of maps in \mathscr{C}. If

- any J-cell complex is acyclic and
- RLP wrt I iff (RLP wrt J) $\cap \mathscr{W}$,
then \mathscr{C} is a model category with
- Fibration $=$ RLP wrt J,
- Acyclic fibration $=$ RLP wrt I,
- Cofibration $=I$-cell retract
- Acyclic cofibration $=J$-cell retract.

Simplicial sets

f a weak equivalence if $|f|$ is so.
$I=\left\{\partial \Delta_{n} \rightarrow \Delta_{n}\right\}$
$J=\left\{\Lambda_{n}^{i} \rightarrow \Delta_{n}\right\}$
cofibration $=$ monomorphism
fibration $=$ Kan fibration

$$
=\text { RLP wrt } J
$$

\mathscr{C} at, Top (with q-model structure), and sSet are compactly generated.

Cofibrantly generated model categories
Compact $=$ sequentially small. More general notion of smallness leads to more generally applicable notion of a cofibrantly generated model category, based on transfinite relative I cell complexes. Ideas are unchanged.

Basic homotopy theory

Cylinder: Factorization of ∇

$$
X \amalg X \xrightarrow{i} " X \times I " \xrightarrow{p} X
$$

with $p \in \mathscr{W}$. Good if $i \in \mathscr{C}$ of.
Very good if also $p \in \mathscr{F} i b$.
Very good cylinders exist.
Quillen: cylinder $=$ good cylinder,
but then $X \times I$ in Top not allowed.

Cocylinder (= path object):
Factorization of Δ

$$
X \xrightarrow{i} " X^{I} " \xrightarrow{p} X \times X
$$

with $i \in \mathscr{W}$. Good if $p \in \mathscr{F} i b$.
Very good if also $i \in \mathscr{C}$ of.
Very good cocylinders exist.

Left homotopy: $X \times I \rightarrow Y$ for some cylinder $X \times I, f \simeq_{\ell} g$;
(good or very good if $X \times I$ is so).
If X is cofibrant, there is a good left homotopy and \simeq_{ℓ} is an equivalence relation between maps $X \rightarrow Y$.

If X is cofibrant and Y is fibrant, there is a very good left homotopy.

Right homotopy: $X \rightarrow Y^{I}$ for some cocylinder $Y^{I}, f \simeq_{r} g$; (good or very good if Y^{I} is so).

If X is cofibrant and Y is fibrant,

$$
f \simeq_{\ell} g \Leftrightarrow f \simeq_{r} g
$$

then written $f \simeq g$.

$$
\pi(X, Y) \equiv \mathscr{C}(X, Y) /(\simeq)
$$

Can see \simeq with any fixed good $X \times I$ or any fixed good Y^{I} (as classically).

Whitehead: $f: X \rightarrow Y, X$ and Y fibrant and cofibrant. Then $f \in \mathscr{W}$ if and only if there exists $g: Y \rightarrow X$ such that $g f \simeq i d_{X}$ and $f g \simeq \operatorname{id}_{Y}$.

Homotopy category: $\mathrm{Ho} \mathscr{C} \equiv \mathscr{C}\left[\mathscr{W}^{-1}\right]$. $\overline{\gamma: \mathscr{C}} \rightarrow$ Ho $\mathscr{C}:$ identity on objects, $f \in \mathscr{W} \Leftrightarrow \gamma(f)$ is an isomorphism. Morphism sets $[X, Y]$.

$$
\begin{aligned}
{[X, Y] } & \cong \pi(Q R X, Q R Y) \\
& \cong \pi(R Q X, R Q Y)
\end{aligned}
$$

X cofibrant, Y fibrant \Rightarrow

$$
[X, Y]=\pi(X, Y)
$$

Derived functors (Dwyer-Spalinski) $T: \mathscr{C} \longrightarrow \mathscr{D}, \mathscr{C}$ model, \mathscr{D} any cat. Left derived functor:

For any other such diagram

$$
\exists!\tilde{s}: S \rightarrow L T \ni t \circ \tilde{s} \gamma=s
$$

Unique up to equivalence if it exists.
Right derived functor:
$R T: ~ Н о \mathscr{C} \rightarrow \mathscr{D}, \quad t: T \rightarrow(R T) \circ \gamma$
For any other such pair (S, s),

$$
\exists!\tilde{s}: R T \rightarrow S \ni \tilde{s} \gamma \circ t=s
$$

$\mathscr{I} s o(\mathscr{D}) \equiv$ isomorphisms in \mathscr{D}.
If $T(\mathscr{W}) \subset \mathscr{I} s o(\mathscr{D})$, then

$$
L T=\tilde{T}: \mathrm{Ho} \mathscr{C}=\mathscr{C}\left[\mathscr{W}^{-1}\right] \longrightarrow \mathscr{D}
$$

is unique such that $L T \circ \gamma=T$.
$\mathscr{C}_{c}=$ full subcat of cofibrant objects $\mathscr{C}_{f}=$ full subcat of fibrant objects $\mathscr{C}_{c f}=$ their intersection.

If $T(\mathscr{W} \cap \mathscr{C} o f) \subset \mathscr{I} s o(\mathscr{D})$, then $T\left(\mathscr{W} \cap \mathscr{C}_{c}\right) \subset \mathscr{I} \operatorname{so}(\mathscr{D})$ and $L T=\widetilde{T Q}, T Q: \mathscr{C} \rightarrow \mathscr{C}_{c} \longrightarrow \mathscr{D}$, with $t=T \pi, \pi: Q \rightarrow \mathrm{Id}$.

If $T(\mathscr{W} \cap \mathscr{F} i b) \subset \mathscr{I} s o(\mathscr{D})$, then $T\left(\mathscr{W} \cap \mathscr{C}_{f}\right) \subset \mathscr{I} \operatorname{so}(\mathscr{D})$ and

$$
R T=\widetilde{T R}, T R: \mathscr{C} \rightarrow \mathscr{C}_{f} \longrightarrow \mathscr{D}
$$

$$
\text { with } t=T \iota, \iota: \operatorname{Id} \rightarrow R .
$$

\mathscr{C} and \mathscr{D} model categories
Quillen adjoint pair (T, U) :

$$
T\left(\mathscr{C} o f_{\mathscr{C}}\right) \subset \mathscr{C}_{o f}
$$

and

$$
U\left(\mathscr{F} i b_{\mathscr{D}}\right) \subset \mathscr{F} i b_{\mathscr{C}}
$$

TFAE for an adjoint pair (T, U).
(T, U) is a Quillen adjoint pair. T preserves \mathscr{C} of and $\mathscr{W} \cap \mathscr{C}$ of. U preserves $\mathscr{F} i b$ and $\mathscr{W} \cap \mathscr{F} i b$.
(T, U) is a Quillen equivalence if, for $X \in \mathscr{C}_{c}$ and $Y \in \mathscr{D}_{f}, f: T X \rightarrow Y$ is a WE iff $\tilde{f}: X \rightarrow U Y$ is a WE.
"Total" left derived functor (from $T Q$)

$$
\mathbb{L} T=L\left(\gamma_{\mathscr{D}} \circ T\right): \mathrm{Ho} \mathscr{C} \longrightarrow \mathrm{Ho} \mathscr{D}
$$

$$
\mathbb{L} T \circ \gamma_{\mathscr{C}} \rightarrow \gamma_{\mathscr{D}} \circ T
$$

WE on cofibrant objects.
Total right derived functor (from $U R$)

$$
\mathbb{R} U=R\left(\gamma_{\mathscr{C}} \circ U\right): \text { Но } \mathscr{D} \longrightarrow \mathrm{Ho} \mathrm{\mathscr{C}}
$$

$$
\gamma_{\mathscr{C}} \circ U \rightarrow \mathbb{R} U \circ \gamma_{\mathscr{D}} .
$$

WE on fibrant objects.
$(\mathbb{L} T, \mathbb{R} U)$ derived adjoint pair.
For $(T, U),\left(T^{\prime}, U^{\prime}\right), \tau: T \longrightarrow T^{\prime}:$ $\mathbb{L} \tau: \mathbb{L} T \rightarrow \mathbb{L} T^{\prime}$ by $\mathbb{L} \tau_{X}=\tau_{Q X}$.

2-category interpretation (Hovey)

2-category $\mathscr{C} a t_{a d j}$ of categories, adjunctions (T, U), and natural transformations $T \rightarrow T^{\prime}$.

2-category $\mathscr{C} a t_{\text {mod }}$ of model categories, Quillen adjunctions, and natural transformations.

Contravariant duality endo-2-functors
D on $\mathscr{C} a t_{a d j}$ and $\mathscr{C} a t_{m o d}$ that send
\mathscr{C} to $\mathscr{C}{ }^{\mathrm{op}},(T, U)$ to $(U, T), \tau$ to $\tilde{\tau}$,
$\tilde{\tau}: U^{\prime} \longrightarrow U$ the conjugate of τ.
Pseudo-2-functor

$$
\text { Но }: \mathscr{C} a t_{m o d} \rightarrow \mathscr{C} a t_{a d j}
$$

via \mathbb{L} on 1-cells and 2-cells, and

$$
D \circ \mathrm{Ho}=\mathrm{Ho} \circ D .
$$

Characterizations of Quillen equivalences
TFAE for a Quillen adjoint pair (T, U).
(T, U) is a Quillen equivalence.
$(\mathbb{L} T, \mathbb{R} U)$ is an adjoint equivalence.
$X \rightarrow U T X \rightarrow U R T X$ is a WE for
$X \in \mathscr{C}_{c}$ and $T Q U Y \rightarrow T U Y \rightarrow Y$ is a WE for $Y \in \mathscr{D}_{f}$.
T reflects WE's between cofibrant objects and $T Q U Y \rightarrow T U Y \rightarrow Y$ is a WE for $Y \in \mathscr{D}_{f}$.
U reflects WE's between fibrant objects and $X \rightarrow U T X \rightarrow U R T X$ is a WE for $X \in \mathscr{C}_{c}$.

Theorem. $(|-|, S)$ is a Quillen equivalence between sSets and Top.

Homotopy colimits and limits

\mathbb{D} a "very small category":
finitely many objects,
finitely many morphisms, strings of composable non-identity maps have bounded length.

$$
\Delta: \mathscr{C} \longrightarrow \mathscr{C}^{\mathbb{D}}
$$

$(\operatorname{colim}, \Delta)$ or (Δ, \lim)
is a Quillen adjoint pair wrt model structure on $\mathscr{C}^{\mathbb{D}}$ given by levelwise WE's and fibrations or by levelwise WE's and cofibrations.
$\underline{\text { hocolim or holim is the total left or }}$ right derived functor of colim or lim.

Any \mathbb{D} works if \mathscr{C} is sSets or Top.

Proper Model Categories

Consider pushout, i a cofibration:

i acyclic $\Rightarrow j$ acyclic (clear)
Left proper: f acyclic $\Rightarrow g$ acyclic.

Consider pullback, p a fibration:
p acyclic $\Rightarrow q$ acyclic (clear)
Right proper: f acyclic $\Rightarrow g$ acyclic.

Proper $=$ left and right proper

\mathscr{V}-model categories

\mathscr{V} closed symmetric monoidal.
$\mathscr{C} \mathscr{V}$-enriched, tensored, cotensored. \mathscr{C} and \mathscr{V} model categories.
$i: X \longrightarrow Y$ and $j: V \longrightarrow W$
cofibrations in \mathscr{C} and in \mathscr{V}.

\mathscr{V}-model category: $i \square j$ is a cofibration which is acyclic if i or j is acyclic.

If id $\otimes j$ and k are WE's, so is $i \square j$ (left proper relevant). Similarly with roles of i and j reversed.

Equivalent conditions for \mathscr{V}-model.

 $p: E \rightarrow B$ a fibration in \mathscr{C}.
$\mathscr{C} \square(i, p)$ is a fibration which is acyclic of i or p is.

[Here $H=$ cotensor]. $\mathrm{H}^{\square}(j, p)$ is a fibration which is acyclic if j or p is.

Monoidal model structures

Given $\otimes: \mathscr{C} \times \mathscr{D} \rightarrow \mathscr{E}$ relating three model categories, one has the analog of the \mathscr{V}-model structure condition.

For cofibrations
$i: X \longrightarrow Y$ and and $j: V \longrightarrow W$
in \mathscr{C} and \mathscr{D},
$i \square j:(X \otimes W) \cup_{X \otimes V}(Y \otimes V) \rightarrow Y \otimes W$
is a cofibration in \mathscr{E} which is acyclic if i or j is acyclic.

Defines pairings of model categories.
Given adjoint Hom functors, there result equivalent adjoint analogues.
$\mathscr{C}=\mathscr{D}=\mathscr{E}:$ this defines monoidal model categories, symmetric monoidal model categories, closed symmetric monoidal model categories.

Ho \mathscr{C} then inherits a monoidal, symmetric monoidal, or closed symmetric monoidal structure.

Analogously, the case $\mathscr{E} \otimes \mathscr{C} \rightarrow \mathscr{E}$ gives \mathscr{C}-modules $\mathscr{E} ; \mathscr{V}$-model structure is a special case.

Detail. If the unit S of \mathscr{C} (or \mathscr{V}) is not cofibrant, we must also require $X \otimes Q S \rightarrow X \otimes S \cong X$ to be a WE in the definitions above.
sSet and Top (h, q, m) are proper Cartesian monoidal model categories.

\mathscr{C} at and sSets

\mathscr{C} at (equivalence model structure):

- Cartesian monoidal model category
- Quillen adjoint pair

$$
(\pi, \nu): s \text { Sets } \rightarrow \mathscr{C} a t
$$

$\pi K=$ fundamental groupoid of K
Objects K_{0}, generating isomorphisms
$y: d_{1} y \rightarrow d_{0} y$ for $y \in K_{1}$, relations

$$
\begin{gathered}
s_{0} x=\operatorname{id}_{x} \text { for } x \in K_{0} \\
d_{0} z d_{2} z=d_{1} z \text { for } z \in K_{2} . \\
\nu \mathscr{C}=\operatorname{Nerve}(\mathscr{I} s o \mathscr{C})
\end{gathered}
$$

- \mathscr{C} at is a simplicial model category

Enriched in sSets:

$$
\operatorname{Hom}(\mathscr{C}, \mathscr{D})=\nu\left(\mathscr{D}^{\mathscr{C}}\right)
$$

Tensors and cotensors via π :
$\mathscr{C} \otimes K=\mathscr{C} \times \pi K \quad H(K, C)=\mathscr{C}^{\pi K}$

Realization model structure on \mathscr{C} at

(Thomason): Adjunction (N, C)
$N: \mathscr{C}$ at \rightarrow sSets (nerve functor)
C : sSets $\longrightarrow \mathscr{C}$ at (categorize)
$C K$: Objects K_{0}, generating maps $y: d_{1} y \rightarrow d_{0} y$ for $y \in K_{1}$, relations

$$
\begin{array}{r}
s_{0} x=\mathrm{id}_{x} \text { for } x \in K_{0} \\
d_{0} z d_{2} z=d_{1} z \text { for } z \in K_{2} .
\end{array}
$$

πK by localization to invert y 's.
$\left(s d^{2}, E x^{2}\right)$ endo-adjunction on sSets.
f is WE or fibration if $E x^{2} N f$ is so.
f is a WE iff $N f$ is a WE iff $\pi N f$ is an equivalence of groupoids and f is an H_{*}-isomorphism.
Theorem $\left(C s d^{2}, E x^{2} N\right)$ is a Quillen equivalence between \mathscr{C} at and sSets.

Over and under model structures

\mathscr{C} a proper model category, $B \in \mathscr{C}$.

$$
\mathscr{C} / B, \quad B \backslash \mathscr{C}, \quad \mathscr{C}_{B}
$$

Over, under, over and under cats.
Proper model categories whose weak equivalences, cofibrations, fibrations are those maps which are weak equivalences, cofibrations, fibrations in \mathscr{C} (on underlying total objects).

Base change functors
Assume $\mathscr{C}, \mathscr{C} / B$ Cartesian closed. $f: A \longrightarrow B$

$$
\begin{aligned}
& f_{!}: \mathscr{C}_{A} \longrightarrow \mathscr{C}_{B} \\
& f^{*}: \mathscr{C}_{B} \longrightarrow \mathscr{C}_{A} \\
& f_{*}: \mathscr{C}_{A} \longrightarrow \mathscr{C}_{B}
\end{aligned}
$$

Adjunctions $\left(f_{!}, f^{*}\right),\left(f^{*}, f_{*}\right)$.
With generic notations

$$
A \xrightarrow{s} X \xrightarrow{p} A \quad \text { and } B \xrightarrow{t} Y \xrightarrow{q} B
$$

for objects in \mathscr{C}_{A} and \mathscr{C}_{B},

$$
\begin{aligned}
& B \xrightarrow{\iota} \operatorname{Map}_{B}(A, A) \\
& t \downarrow \quad \downarrow \operatorname{Map}(\mathrm{id}, s) \\
& f_{*} X \rightarrow \operatorname{Map}_{B}(A, X) \\
& q \downarrow \quad \text { Map(id, } p \text {) } \\
& B \longrightarrow \operatorname{Map}_{B}(A, A) \text {. }
\end{aligned}
$$

First: top square a pushout.
Others: bottom square a pullback.

Formal from proper model axioms:
$\left(f_{!}, f^{*}\right)$ is a Quillen adjoint pair and a Quillen equivalence if f is a WE.

For a pullback diagram

$$
\begin{gathered}
C \stackrel{g}{\rightarrow} D \\
A \stackrel{\downarrow}{A} \\
j^{*} f_{!} \cong g!i^{*} \quad f^{*} j_{*} \cong i_{*} g^{*}
\end{gathered}
$$

$$
f^{*} j_{!} \cong i_{!} g^{*} \quad j^{*} f_{*} \cong g_{*} i^{*}
$$

If $\left(f^{*}, f_{*}\right)$ is a Quillen adjoint pair, all homotopy categories are trivial!!

Pullback

$$
\begin{gathered}
\emptyset \xrightarrow{\phi} B \\
\phi \mid \\
B \underset{i_{1}}{ } B \stackrel{\mid i_{0}}{\times} I
\end{gathered}
$$

$\phi!$ and ϕ_{*} take $*_{\emptyset}$ to $*_{B}$ (initial objs).
$\left(\phi_{!}, \phi^{*}\right)$ and $\left(\phi^{*}, \phi_{*}\right)$ are Quillen pairs.

$$
\left(i_{0}\right)^{*} \circ\left(i_{1}\right)!\cong \phi_{!} \circ \phi^{*}
$$

(Both take any X over B to $*_{B}$.)
If $\left(i_{1}\right)$! and $\left(i_{0}\right)^{*}$ were both Quillen left adjoints, we would get

$$
\mathbb{L}\left(i_{0}\right)^{*} \circ \mathbb{L}\left(i_{1}\right)!\cong \mathbb{L} \phi_{!} \circ \mathbb{L} \phi^{*}
$$

Since $\mathbb{L}\left(i_{1}\right)$! and $\mathbb{L}\left(i_{0}\right)^{*}$ are equivalences, this would imply that $\operatorname{Ho}^{\mathscr{C}_{B}}$ is trivial.
No theory of composites $\mathbb{R} U^{\prime} \circ \mathbb{L} T$!

