MODEL CATEGORIES PRIMER \mathscr{C} complete and cocomplete Three subcategories:

 \mathscr{W} Weak equivalences (WE's)

Cof Cofibrations

 $\mathscr{F}ib$ Fibrations

(1) All closed under retracts of maps

(2) 2 of 3 property for \mathscr{W} $(h = g \circ f)$

(3) Lifting: Consider a diagram with

i a cofibration and p a fibration:

 $i \text{ or } p \text{ acyclic } (\text{in } \mathscr{W}) \Longrightarrow \text{ lift.}$

i has LLP wrt pp has RLP wrt i

(Categorical orthogonality language: Sic)

(4) Factorizations of $f: X \to Y$:

i a cofibration

 $\mathbf{2}$

p an acyclic fibration

j an acyclic cofibration

q a fibration.

Negotiable: factorizations functorial.

<u>Characterizations</u>:

Cofibration \Leftrightarrow LLP wrt acyclic fibrations Fibration \Leftrightarrow RLP wrt acyclic cofibrations Acyclic cofibration \Leftrightarrow LLP wrt fibrations Acyclic fibration \Leftrightarrow RLP wrt cofibrations Obsolete: "closed" model category <u>Cofibrant and fibrant objects</u> Cofibrant: $\emptyset \to X$ a cofibration. Cofibrant approximation factorization

$$\emptyset \longrightarrow QX \xrightarrow{\pi} X$$

 π an acyclic fibration.

Fibrant: $X \rightarrow *$ a fibration Fibrant approximation factorization

 $X \xrightarrow{\iota} RX \longrightarrow *$

 ι an acyclic cofibration.

Sometimes have simplifying feature: All objects cofibrant (sSets) All objects fibrant (Spaces) All objects cofibrant and fibrant (*Cat*)

<u>A model structure on $\mathscr{C}at$ </u>

4

Weak equivalence = equivalence Cofibration = injective on objects Fibration = RLP wrt $* \rightarrow \mathscr{J}$. $* = \text{trivial}, \mathscr{J} = \text{two objects and}$ an isomorphism between them. Acyclic cof = injective equivalence Acyclic fib = surjective equivalence = RLP wrt the three functors

 $\emptyset \to *, \ \partial \mathscr{I} \to \mathscr{I}, \ \mathscr{E} \to \mathscr{I}.$

 \mathscr{I} has two objects $\partial \mathscr{I} = 0 \amalg 1$ and one arrow $0 \to 1$, \mathscr{E} has same objects and two parallel arrows $0 \to 1$.

Factorizations of $F \colon \mathscr{C} \to \mathscr{D}$ through $(\mathscr{C} \times \mathscr{J}) \cup_{\mathscr{C}} \mathscr{D}$ and $\mathscr{D}^{\mathscr{J}} \times_{\mathscr{D}} \mathscr{C}$.

Topological spaces

Spaces compactly generated: weak Hausdorff k-spaces.

<u>*h*-model structure</u>:

h-equivalence = homotopy equivalence

h-cofibration = Hurewicz cofibration HEP = LLP wrt all $p_0: Y^I \to Y$

h-fibration = Hurewicz fibration CHP = RLP wrt all $i_0: X \to X \times I$

General theory of h-model structures on topologically enriched categories.

(Cole, Schwänzl-Vogt, M-Sigurdsson)

q-model structure:

q-equivalence = weak equivalence = π_* -isomorphism

q-cofibration = "I-cell retract" (retract of a relative *I*-cell complex). $I = \{S^n \subset D^{n+1}\}.$

Relative *I*-cell complex: $f: X \to \operatorname{colim} Y_n = Y,$ where $Y_0 = X, Y_{n+1} = Y_n \cup_K L,$ $K \to L$ a coproduct of maps in *I*.

q-fibration = Serre fibration RLP wrt all maps in J, $J = \{i_0 \colon D^n \longrightarrow D^n \times I\}.$ $\frac{m \text{-model structure (mixed)}}{m \text{-equivalence}} = q \text{-equivalence}$ m -fibration = h -fibrationm -cofibration = determined by LLPm -cofibrant = CW homotopy type

<u>Theorem</u> (Cole). Let

 $(\mathscr{W}_h,\mathscr{F}\!ib_h,\mathscr{C}\!of_h)$

and

$$(\mathscr{W}_q,\mathscr{F}\!ib_q,\mathscr{C}\!of_q)$$

be model structures on ${\mathscr C}$ such that

 $\mathscr{W}_h \subset \mathscr{W}_q$ and $\mathscr{F}ib_h \subset \mathscr{F}ib_q$.

Then there is also a model structure

 $(\mathscr{W}_q, \mathscr{F}ib_h, \mathscr{C}of_m).$

Compactly generated model categories

A set I of maps in \mathscr{C} is compact if, for domains K and relative I-cell complexes $X \to \operatorname{colim} Y_n = Y$,

$$\operatorname{colim} \mathscr{C}(K,Y_n) \cong \mathscr{C}(K,Y).$$

<u>Theorem</u>. \mathscr{C} bicomplete, \mathscr{W} a subcategory closed under retracts and satisfying 2 out of 3 property, I and J compact sets of maps in \mathscr{C} . If – any J-cell complex is acyclic and – RLP wrt I iff (RLP wrt J) $\cap \mathscr{W}$, then \mathscr{C} is a model category with – Fibration = RLP wrt J, – Acyclic fibration = RLP wrt I, – Cofibration = I-cell retract

-Acyclic cofibration = J-cell retract.

Simplicial sets

f a weak equivalence if |f| is so. $I = \{\partial \Delta_n \to \Delta_n\}$ $J = \{\Lambda_n^i \to \Delta_n\}$ cofibration = monomorphism fibration = Kan fibration = RLP wrt J. $\mathscr{C}at$, Top (with q-model structure),

and sSet are compactly generated.

Cofibrantly generated model categories

Compact = sequentially small. More general notion of smallness leads to more generally applicable notion of a cofibrantly generated model category, based on transfinite relative Icell complexes. Ideas are unchanged. Cylinder: Factorization of ∇

 $X\amalg X \stackrel{i}{\longrightarrow} ``X \times I" \stackrel{p}{\longrightarrow} X$

Basic homotopy theory

with $p \in \mathscr{W}$. Good if $i \in \mathscr{C}of$. Very good if also $p \in \mathscr{F}ib$. Very good cylinders exist. Quillen: cylinder = good cylinder, but then $X \times I$ in Top not allowed.

Cocylinder (= path object): Factorization of Δ

$$X \xrightarrow{i} ``X^{I,,,} \xrightarrow{p} X \times X$$

with $i \in \mathscr{W}$. Good if $p \in \mathscr{F}ib$. Very good if also $i \in \mathscr{C}of$. Very good cocylinders exist. Left homotopy: $X \times I \to Y$ for some cylinder $X \times I$, $f \simeq_{\ell} g$; (good or very good if $X \times I$ is so).

If X is cofibrant, there is a good left homotopy and \simeq_{ℓ} is an equivalence relation between maps $X \to Y$.

If X is cofibrant and Y is fibrant, there is a very good left homotopy.

Right homotopy: $X \to Y^I$ for some cocylinder Y^I , $f \simeq_r g$; (good or very good if Y^I is so).

If X is cofibrant and Y is fibrant, $f \simeq_{\ell} g \Leftrightarrow f \simeq_{r} g,$ then written $f \simeq g.$

 $\pi(X,Y)\equiv \mathscr{C}(X,Y)/(\simeq)$

Can see \simeq with any fixed good $X \times I$ or any fixed good Y^I (as classically).

<u>Whitehead</u>: $f: X \to Y, X$ and Yfibrant and cofibrant. Then $f \in \mathscr{W}$ if and only if there exists $g: Y \to X$ such that $gf \simeq id_X$ and $fg \simeq id_Y$.

Homotopy category: Ho $\mathscr{C} \equiv \mathscr{C}[\mathscr{W}^{-1}]$. $\gamma \colon \mathscr{C} \to \operatorname{Ho}\mathscr{C}$: identity on objects, $f \in \mathscr{W} \Leftrightarrow \gamma(f)$ is an isomorphism. Morphism sets [X, Y].

$$\begin{bmatrix} X, Y \end{bmatrix} \cong \pi(QRX, QRY) \\ \cong \pi(RQX, RQY)$$

X cofibrant, Y fibrant \Rightarrow

$$[X,Y]=\pi(X,Y)$$

<u>Derived functors</u> (Dwyer–Spalinski) $T: \mathscr{C} \longrightarrow \mathscr{D}, \mathscr{C}$ model, \mathscr{D} any cat. Left derived functor:

For any other such diagram

 $\exists ! \ \tilde{s} \colon S \to LT \ \ni \ t \circ \tilde{s}\gamma = s.$

Unique up to equivalence if it exists. Right derived functor:

$$\begin{split} RT \colon \mathrm{Ho}\mathscr{C} &\to \mathscr{D}, \ t \colon T \to (RT) \circ \gamma \\ \text{For any other such pair } (S,s), \end{split}$$

 $\exists ! \ \tilde{s} \colon RT \to S \ \ni \ \tilde{s}\gamma \circ t = s.$

$$\begin{split} \mathscr{I}so(\mathscr{D}) &\equiv \text{isomorphisms in } \mathscr{D}. \\ \text{If } T(\mathscr{W}) \subset \mathscr{I}so(\mathscr{D}), \text{ then} \\ LT &= \tilde{T} \colon \text{Ho}\mathscr{C} = \mathscr{C}[\mathscr{W}^{-1}] \longrightarrow \mathscr{D} \\ \text{is unique such that } LT \circ \gamma = T. \end{split}$$

 $\mathscr{C}_c = \text{full subcat of cofibrant objects}$ $\mathscr{C}_f = \text{full subcat of fibrant objects}$ $\mathscr{C}_{cf} = \text{their intersection.}$

If
$$T(\mathscr{W} \cap \mathscr{C}of) \subset \mathscr{I}so(\mathscr{D})$$
, then
 $T(\mathscr{W} \cap \mathscr{C}_c) \subset \mathscr{I}so(\mathscr{D})$ and
 $LT = \widetilde{TQ}, \ TQ \colon \mathscr{C} \to \mathscr{C}_c \longrightarrow \mathscr{D},$
with $t = T\pi, \pi \colon Q \to \mathrm{Id}.$

If $T(\mathscr{W} \cap \mathscr{F}ib) \subset \mathscr{I}so(\mathscr{D})$, then $T(\mathscr{W} \cap \mathscr{C}_f) \subset \mathscr{I}so(\mathscr{D})$ and $RT = \widetilde{TR}, \ TR \colon \mathscr{C} \to \mathscr{C}_f \longrightarrow \mathscr{D},$ with $t = T\iota, \iota \colon \mathrm{Id} \to R.$ \mathscr{C} and \mathscr{D} model categories Quillen adjoint pair (T, U):

$T(\mathscr{C}of_{\mathscr{C}}) \subset \mathscr{C}of_{\mathscr{D}}$

and

$U(\mathscr{F}ib_{\mathscr{D}})\subset \mathscr{F}ib_{\mathscr{C}}$

TFAE for an adjoint pair (T, U). (T, U) is a Quillen adjoint pair. T preserves $\mathscr{C}of$ and $\mathscr{W} \cap \mathscr{C}of$. U preserves $\mathscr{F}ib$ and $\mathscr{W} \cap \mathscr{F}ib$.

(T, U) is a <u>Quillen equivalence</u> if, for $X \in \mathscr{C}_c$ and $Y \in \mathscr{D}_f$, $f: TX \to Y$ is a WE iff $\tilde{f}: X \to UY$ is a WE.

"Total" left derived functor (from TQ) $\mathbb{L}T = L(\gamma_{\mathscr{D}} \circ T) \colon \mathrm{Ho}\mathscr{C} \longrightarrow \mathrm{Ho}\mathscr{D}$ $\mathbb{L}T \circ \gamma_{\mathscr{C}} \to \gamma_{\mathscr{D}} \circ T.$ WE on cofibrant objects. Total right derived functor (from UR) $\mathbb{R}U = R(\gamma_{\mathscr{C}} \circ U) \colon \mathrm{Ho}\mathscr{D} \longrightarrow \mathrm{Ho}\mathscr{C}$ $\gamma_{\mathscr{C}} \circ U \to \mathbb{R}U \circ \gamma_{\mathscr{D}}.$ WE on fibrant objects. $(\mathbb{L}T, \mathbb{R}U)$ derived adjoint pair. For $(T, U), (T', U'), \tau \colon T \longrightarrow T'$: $\mathbb{L}\tau : \mathbb{L}T \to \mathbb{L}T'$ by $\mathbb{L}\tau_X = \tau_{OX}$.

16

2-category interpretation (Hovey)

2-category $\mathscr{C}at_{adj}$ of categories, adjunctions (T, U), and natural transformations $T \to T'$.

2-category Cat_{mod} of model categories, Quillen adjunctions, and natural transformations.

Contravariant duality endo-2-functors D on $\mathscr{C}at_{adj}$ and $\mathscr{C}at_{mod}$ that send \mathscr{C} to $\mathscr{C}^{\mathrm{op}}$, (T, U) to (U, T), τ to $\tilde{\tau}$, $\tilde{\tau}: U' \longrightarrow U$ the conjugate of τ .

Pseudo-2-functor

Ho: $\mathscr{C}at_{mod} \to \mathscr{C}at_{adj}$ via \mathbb{L} on 1-cells and 2-cells, and $D \circ \text{Ho} = \text{Ho} \circ D$. Characterizations of Quillen equivalences

TFAE for a Quillen adjoint pair (T, U).

(T, U) is a Quillen equivalence.

 $(\mathbb{L}T, \mathbb{R}U)$ is an adjoint equivalence.

 $X \to UTX \to URTX$ is a WE for $X \in \mathscr{C}_c$ and $TQUY \to TUY \to Y$ is a WE for $Y \in \mathscr{D}_f$.

T reflects WE's between cofibrant objects and $TQUY \rightarrow TUY \rightarrow Y$ is a WE for $Y \in \mathscr{D}_f$.

U reflects WE's between fibrant objects and $X \to UTX \to URTX$ is a WE for $X \in \mathscr{C}_c$.

<u>Theorem</u>. (|-|, S) is a Quillen equivalence between sSets and Top.

Homotopy colimits and limits

D a "very small category": finitely many objects, finitely many morphisms, strings of composable non-identity maps have bounded length.

$(\operatorname{colim}, \Delta)$ or $(\Delta, \operatorname{lim})$

is a Quillen adjoint pair wrt model structure on $\mathscr{C}^{\mathbb{D}}$ given by levelwise WE's and fibrations or by levelwise WE's and cofibrations.

<u>hocolim</u> or <u>holim</u> is the total left or right derived functor of colim or lim.

Any \mathbb{D} works if \mathscr{C} is sSets or Top.

Proper Model Categories

Consider pushout, i a cofibration:

 $i \text{ acyclic} \Rightarrow j \text{ acyclic (clear)}$ Left proper: $f \text{ acyclic} \Rightarrow g \text{ acyclic.}$

Consider pullback, p a fibration:

$$D \xrightarrow{g} E$$

$$q \downarrow \qquad \downarrow p$$

$$A \xrightarrow{f} B$$

 $p \text{ acyclic} \Rightarrow q \text{ acyclic (clear)}$ <u>Right proper</u>: $f \text{ acyclic} \Rightarrow g \text{ acyclic.}$

Proper = left and right proper

\mathscr{V} -model categories

\$\vee\$ closed symmetric monoidal.
\$\vee\$-enriched, tensored, cotensored.
\$\vee\$ and \$\vee\$ model categories.

 $i \colon X \longrightarrow Y \text{ and } j \colon V \longrightarrow W$

cofibrations in \mathscr{C} and in \mathscr{V} .

 $\frac{\mathscr{V}\text{-model category: }i\Box j \text{ is a cofibra-}}{\text{tion which is acyclic if }i \text{ or }j \text{ is acyclic.}}$

If $id \otimes j$ and k are WE's, so is $i \Box j$ (left proper relevant). Similarly with roles of i and j reversed. Equivalent conditions for \mathscr{V} -model. $p \colon E \to B$ a fibration in \mathscr{C} .

 $\mathscr{C}^{\Box}(i,p)$ is a fibration which is acyclic of i or p is.

[Here H = cotensor]. $H^{\bigsqcup}(j, p)$ is a fibration which is acyclic if j or p is.

22

Monoidal model structures

Given $\otimes : \mathscr{C} \times \mathscr{D} \to \mathscr{E}$ relating three model categories, one has the analog of the \mathscr{V} -model structure condition.

For cofibrations

 $i: X \longrightarrow Y$ and and $j: V \longrightarrow W$

in \mathscr{C} and \mathscr{D} ,

 $i\Box j \colon (X \otimes W) \cup_{X \otimes V} (Y \otimes V) \to Y \otimes W$

is a cofibration in \mathscr{E} which is acyclic if i or j is acyclic.

Defines pairings of model categories.

Given adjoint Hom functors, there result equivalent adjoint analogues.

 $\mathscr{C} = \mathscr{D} = \mathscr{E}$: this defines monoidal model categories, symmetric monoidal model categories, closed symmetric monoidal model categories.

Ho& then inherits a monoidal, symmetric monoidal, or closed symmetric monoidal structure.

Analogously, the case $\mathscr{E} \otimes \mathscr{C} \to \mathscr{E}$ gives \mathscr{C} -modules \mathscr{E} ; \mathscr{V} -model structure is a special case.

Detail. If the unit S of \mathscr{C} (or \mathscr{V}) is not cofibrant, we must also require $X \otimes QS \to X \otimes S \cong X$ to be a WE in the definitions above.

sSet and Top (h, q, m) are proper Cartesian monoidal model categories.

24

\underline{Cat} and sSets

Cat (equivalence model structure):
Cartesian monoidal model category
Quillen adjoint pair

(π,ν) : $sSets \to Cat$

 πK = fundamental groupoid of KObjects K_0 , generating isomorphisms $y: d_1 y \to d_0 y$ for $y \in K_1$, relations

$$s_0 x = \operatorname{id}_x \text{ for } x \in K_0,$$
$$d_0 z d_2 z = d_1 z \text{ for } z \in K_2.$$
$$\nu \mathscr{C} = \operatorname{Nerve}(\mathscr{I} so \mathscr{C})$$

 $-\mathscr{C}at$ is a simplicial model category Enriched in sSets:

 $\operatorname{Hom}(\mathscr{C},\mathscr{D}) = \nu(\mathscr{D}^{\mathscr{C}})$ Tensors and cotensors via π : $\mathscr{C} \otimes K = \mathscr{C} \times \pi K \quad H(K,C) = \mathscr{C}^{\pi K}$ Realization model structure on Cat(Thomason): Adjunction (N, C) $N: Cat \to sSets$ (nerve functor) $C: sSets \longrightarrow Cat$ (categorize) $CK: Objects K_0$, generating maps $y: d_1y \to d_0y$ for $y \in K_1$, relations $s_0x = id_x$ for $x \in K_0$,

 $d_0zd_2z = d_1z$ for $z \in K_2$. πK by localization to invert y's. (sd^2, Ex^2) endo-adjunction on sSets. f is WE or fibration if Ex^2Nf is so. f is a WE iff Nf is a WE iff πNf is an equivalence of groupoids and fis an H_* -isomorphism. <u>Theorem</u> (Csd^2, Ex^2N) is a Quillen

equivalence between Cat and sSets.

Over and under model structures \mathscr{C} a proper model category, $B \in \mathscr{C}$. $\mathscr{C}/B, B \setminus \mathscr{C}, \mathscr{C}_B$

Over, under, over and under cats. Proper model categories whose weak equivalences, cofibrations, fibrations are those maps which are weak equivalences, cofibrations, fibrations in \mathscr{C} (on underlying total objects).

Base change functors

Assume $\mathscr{C}, \mathscr{C}/B$ Cartesian closed. $f: A \longrightarrow B$

$$f_{!} \colon \mathscr{C}_{A} \longrightarrow \mathscr{C}_{B}$$
$$f^{*} \colon \mathscr{C}_{B} \longrightarrow \mathscr{C}_{A}$$
$$f_{*} \colon \mathscr{C}_{A} \longrightarrow \mathscr{C}_{B},$$

Adjunctions $(f_!, f^*), (f^*, f_*)$. With generic notations

 $A \xrightarrow{s} X \xrightarrow{p} A$ and $B \xrightarrow{t} Y \xrightarrow{q} B$

for objects in \mathscr{C}_A and \mathscr{C}_B ,

$$B \xrightarrow{\iota} \operatorname{Map}_{B}(A, A)$$

$$t \downarrow \qquad \qquad \downarrow \operatorname{Map}(\operatorname{id}, s)$$

$$f_{*}X \longrightarrow \operatorname{Map}_{B}(A, X)$$

$$q \downarrow \qquad \qquad \downarrow \operatorname{Map}(\operatorname{id}, p)$$

$$B \xrightarrow{\iota} \operatorname{Map}_{B}(A, A).$$

First: top square a pushout. Others: bottom square a pullback.

28

Formal from proper model axioms: $(f_!, f^*)$ is a Quillen adjoint pair and a Quillen equivalence if f is a WE.

For a pullback diagram

$$\begin{array}{c} C \xrightarrow{g} D \\ i | & | j \\ A \xrightarrow{f} B \end{array}$$

$$j^*f_! \cong g_!i^* \quad f^*j_* \cong i_*g^*$$

 $f^*j_! \cong i_!g^* \ j^*f_* \cong g_*i^*.$

If (f^*, f_*) is a Quillen adjoint pair, all homotopy categories are trivial!! Pullback

$$\begin{array}{c} \emptyset \xrightarrow{\phi} B \\ \phi \downarrow & \downarrow i_0 \\ B \xrightarrow{} i_1 B \times I \end{array}$$

 $\phi_{!}$ and ϕ_{*} take $*_{\emptyset}$ to $*_{B}$ (initial objs). $(\phi_{!}, \phi^{*})$ and (ϕ^{*}, ϕ_{*}) are Quillen pairs. $(i_{0})^{*} \circ (i_{1})_{!} \cong \phi_{!} \circ \phi^{*}$

(Both take any X over B to $*_B$.) If $(i_1)_!$ and $(i_0)^*$ were both Quillen left adjoints, we would get

$$\mathbb{L}(i_0)^* \circ \mathbb{L}(i_1)_! \cong \mathbb{L}\phi_! \circ \mathbb{L}\phi^*.$$

Since $\mathbb{L}(i_1)_!$ and $\mathbb{L}(i_0)^*$ are equivalences, this would imply that $\operatorname{Ho}\mathscr{C}_B$ is trivial.

No theory of composites $\mathbb{R}U' \circ \mathbb{L}T!$

30