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These are the notes of a mini-course of five lectures given at Sheffield in the
spring of 2025. The purpose of the course was to discuss sheaf cohomology of
topological spaces, starting from the basic definitions and building up to sheaf
cohomology with compact supports and Verdier duality. This amounts to a full
six functor formalism for the derived categories of sufficiently nice topological
spaces as stated in the beginning of Section 4. The notes assume a modest
familiarity with homological algebra, but are otherwise self-contained, and all
the statements are proved in detail. Nothing in the exposition is original work,
original references are easily found on the nLab, for example.

Given the short time frame, many central topics had to be left out. A full
course on the subject would at least have contained the important comparison
theorems relating sheaf and Cech cohomologies, and calculations of explicit
examples.

I am grateful to Jake, Jack, Henry and Pierre-Louis who each typed up a
section of the notes.

1 Basic Definitions for Sheaves on a Space

For a while, X will be a fixed topological space.

1.1. (Pre)sheaves A presheaf on X with values in abelian groups is a functor

A : O(X)op → Ab,

where Ab is the category of abelian groups, and O(X) is the poset of opens in
X ordered by inclusion. These presheaves and natural transformations between
them form a category PSh(X,Ab). Such a presheaf A is called a sheaf if for
each family {Ui} of open sets with union U =

⋃
Ui, the diagram

0 → A(U)
r1−→

∏
i

A(Ui)
r2−→

∏
i,j

A(Ui ∩ Uj) (1)

is exact. Here r1(a)i = a|Ui where a 7→ a|Ui is given by the presheaf structure
A(U) → A(Ui). And for a family {ai} ∈

∏
i A(Ui), r2({ai})i,j = (ai|Ui ∩ Uj)−
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(aj |Ui∩Uj). In other words, A is a sheaf if any family {ai ∈ A(Ui)} which agree
on overlaps Ui ∩ Uj gives a unique a ∈ A(U) with a|Ui = ai.

We write Ab(X) for the category of sheaves of abelian groups on X, as a
full subcategory of that of presheaves. For a sheaf A, one often writes Γ(U,A)
for A(U), and refers to it as the group of sections of A over U .

1.2. Examples Typical examples of sheaves are sections of a vector bundle
E

π−→ X; that is, A(U) = {s : U → E|s continuous, πs = Id}. Similarly, if X is
a manifold, there is a sheaf Ωp of differential p-forms, Ωp(U) = {p-forms on U}.
Notice that if X is discrete, a sheaf on X is really the same as a family
{Ax : x ∈ X} of abelian groups.

1.3. Remark In much the same way, one can define sheaves on X with values
in other categories, as long as the category has products and equalisers to express
the sheaf condition (1) as an equaliser

A(U) ↣
∏

A(Ui) ⇒
∏

A(Uij).

In particular, we will use the category of sheaves of R-modules for a commutative
ring R, and that of bounded below cochain complexes of sheaves. The latter
category will be denoted Ch+(X).

1.4. Stalks For a (pre)sheaf A, the stalk at a point x is defined as

Ax = colim
x∈U

A(U).

Its elements are called germs (of sections of A) at x.

1.5. Associated Sheaf Functor The inclusion Ab(X) ↪→ PSh(X,Ab) of the
category of sheaves into that of presheaves has a left adjoint called the associated
sheaf functor and denoted

a : PSh(X,Ab) → Ab(X).

We will not give the explicit construction here, but just mention that a doesn’t
change the stalks; i.e. for a presheaf A on X,

a(A)x = Ax. (2)

1.6. Exactness The category Ab(X) is an abelian category. A sequence A →
B → C is exact iff for each point x the sequence Ax → Bx → Cx of stalks is an
exact sequence of abelian groups. In particular, the associated sheaf functor is
exact, by (2).
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1.7. Hom and Tensor For presheaves A and B on X, one can define Hom
and tensor by setting for any open U ⊆ X,

Hom(A,B)(U) = Hom(A|U,B|U),

the group of maps of presheaves on U between the restrictions of A and B.
Similarly, for a third presheaf C, one can define a presheaf C ⊗A by

(C ⊗A)(U) = C(U)⊗A(U).

One then has the usual mapping property,

Hom(C ⊗A,B) = Hom(C,Hom(A,B)). (3)

If B is a sheaf then so is Hom(A,B). But even if C and A are sheaves,
C ⊗ A need not be. We can define a tensor product of sheaves by taking the
associated sheaf of the presheaf tensor product,

C ⊗A := a(C ⊗A)

where the left hand ⊗ is in Ab(X) and the right-hand one is in PSh(X,Ab).
With this definition, one again has the usual mapping property (3), now for
sheaves. Notice that by (2), for sheaves C and A,

(C ⊗A)x = Cx ⊗Ax

for stalks. In other words, although C ⊗ A may be a bit hard to describe
explicitly, its stalks are not.

We now turn to the effect of maps between spaces on sheaves.

1.8. Functoriality Let f : Y → X be a map of spaces. It induces a functor
f−1 : O(X) → O(Y ) between posets, by composition with which we get a
functor

f∗ : PSh(Y,Ab) → PSh(X,Ab), f∗(B)(U) = B(f−1U).

By general theory, this functor has a left adjoint given by Kan extension,

Lf−1 : PSh(X,Ab) → PSh(Y,Ab).

The general formula for the Kan extension in this case looks like

Lf−1(A)(V ) = colim
V⊆f−1(U)

A(U), (4)

for open sets V ⊆ Y and U ⊆ X.
The functor f∗ is easily seen to map sheaves to sheaves. So we obtain an

adjoint pair
f∗ : Ab(X) ⇄ Ab(Y ) : f∗
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(left adjoint on the left and on top) by composing Lf−1 with the associated
sheaf functor,

f∗(A) = a(Lf−1(A)).

The explicit formula is not so important. But the formula for the stalks

f∗(A)y = Af(y) (y ∈ Y )

is. This formula follows easily from (2) and (4).

Notice that for a composition Z
g−→ Y

f−→ X, we have f∗g∗ = (fg)∗, and
hence g∗f∗ = (fg)∗.

Examples Some trivial but useful special cases:

• For x : pt → X, x∗(A) = Ax is the stalk. We leave it to you to figure out
what x∗(B) looks like for an abelian group B.

• For γ : X → pt, γ∗(A) = Γ(X,A) = A(X), is the group of global sections
of the sheaf A. For an abelian group B, the sheaf γ∗(B) is called the
constant sheaf on X corresponding to B. (What does it look like?)

• Let Xdis be X with the discrete topology. A sheaf on Xdis is just a family
of abelian groups B = {Bx : x ∈ X} indexed by the points of X. Write
π : Xdis → X for the evident map. Then π∗(A)x = Ax for a sheaf A on X
and any point x in X. So π∗π

∗(A)(U) =
∏

x∈U Ax. Notice that the unit

A → π∗π
∗(A)

of the adjunction is mono (i.e. 0 → A → π∗π
∗A is exact). (It has a

retraction π∗π
∗(A)x → Ax which projects to x.)

1.9. Injectives If f : Y → X, then f∗ : Ab(X) → Ab(Y ) is exact, hence
its right adjoint f∗ : Ab(Y ) → Ab(X) preserves injectives. It follows that
the category Ab(X) has enough injectives. Indeed, the category Ab of abelian
groups does, so if A is a sheaf on X, we can embed each stalk Ax into an
injective, say Ax → Ix. The family Ix forms an injective sheaf I on Xdis, and
we obtain an embedding of the sheaf A into an injective by composing the maps

A ↣ π∗π
∗(A) ↣ π∗(I)

where π∗(A) → I is the family Ax → Ix over Xdis.

1.10. Supports Let A be a sheaf on X, and let a ∈ A(U). The support of a
is the set

supp(a) = {x | ax ̸= 0} ⊆ U

where ax is the stalk of a at x, i.e. the image of a under A(U) → limx∈V A(V ).
Notice that this is a closed subset of U !
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1.11. The Functor f! Again let f : Y → X. Define for a sheaf B on Y , and
an open U ⊆ X

f!(B)(U) = {b ∈ B | supp(b) → U is a proper map} .

(A map between Hausdorff spaces is proper if it is closed with compact fibres.)
Since the property of being proper is local, it follows that f!(B) is a sheaf on X.

Notice that there is a natural inclusion

f!(B) ↣ f∗(B).

If f : Y → X is itself proper, then this inclusion is an identity, i.e. f! = f∗. This
applies in particular to the inclusion F ↪→ X of a closed subspace F of X. If,
on the other hand, i : U ↪→ X is the inclusion of an open subset, then for a
sheaf B on U , and V ⊆ U ,

i!(B)(V ) = {b ∈ B(V ∩ U) | supp(b) is closed in V } .

The latter condition is equivalent to the one that b is the restriction of a section
b̃ on V which is zero outside U . With this description, it is easy to see that i!
is left adjoint to i∗:

i! : Ab(U) ⇄ Ab(X) : i∗ (i : U ↪→ X open).

1.12. Notation One final piece of notation: let A be a sheaf on X, and let
Z ⊆ X be any subspace. Then, writing j : Z ↪→ X for the inclusion, one defines

Γ(Z,A) := Γ(Z, j∗A) = j∗(A)(Z),

and refers to its elements as sections of A over Z.

2 Sheaf Cohomology

We define the cohomology groups Hi(X,A) of a topological space X with co-
effiecients in the sheaf A, and discuss some basic properties. We will use the
expression “by HA” to mean “by general facts and methods in homological
algebra”.

2.1. Definition

• Let A be a sheaf of abelian groups on X. Since Ab has enough injectives,
A has a resolution by injective sheaves; i.e. an exact sequence of sheaves

0 → A → I0 → I1 → · · ·

with each Ip injective. This gives a complex Γ(X, I•) of abelian groups,
and by definition we have

Hp(X,A) = Hp(Γ(X, I•)).
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In other words, in terms of derived functors,

Hp(X,A) = (RpΓ)(A).

• Similarly, for a map f : Y → X and a sheaf B on Y with injective resolu-
tion 0 → B → J•, the derived functors of f∗ give cohomology sheaves on
X via

Rpf∗B = Hp(f∗J
•).

2.2. A Bit of Homological Algebra Let us reformulate things a bit in the
language of derived categories. A morphism A• → B• in Ch+(X) is called a
quasi-isomorphism (q.i.) if A•

x → B•
x is a quasi-ismomorphism for each x ∈ X.

The derived category D+(X) is obtained from Ch+(X) by inverting the q.i’s.
It is equivalent to the category of objects I• in Ch+(X) with each Ip injective,
and (cochain) homotopy classes of morphisms between them. Let Z[p] be the
complex given by the constant sheaf Z concentrated in degree p. Then for
0 → A → I• as above,

Hp(X,A) = [Z[p], I•]
= HomD+(X)(Z[p], A).

Moreover, for f : Y → X and 0 → B → J• as above, Rf∗(B) = f∗(J
•) is

the total right derived functor. Here B is viewed as a complex concentrated in
degree 0, but the same definition applies to a general complex B• in D+(Y ).
Notice that if f∗ is exact, so “doesn’t need to be derived”, and we obtain a
derived adjunction

f∗ : D+(X) D+(Y ) : Rf∗

2.3. First Properties Let us go back to the concrete situation of the coho-
mology H∗(X,A) for a sheaf A on X.

1. Functoriality: A map f : Y → X induces a map

f∗ : Hp(X,A) → Hp(Y, f∗A).

Indeed, write γX : X → pt. Then the commutative triangle

Y X

pt

f

γY γX

induces RγX∗ → RγX∗Rf∗f
∗ = RγY ∗f

∗. Or more hands-on, if 0 → A → I•

and 0 → f∗A → J• are injective resolutions in Ab(X) and Ab(Y ) respectively,
then 0 → f∗A → f∗I• is a resolution so HA gives a map (which is unique up
to homotopy)
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f∗A f∗I•

J•

hence by adjunction we get a map I• → f∗J
• and hence a map of complexes

Γ(X, I•) → Γ(X, f∗J
•) = Γ(Y, J•).

2. The long exact sequence: A short exact sequence

0 → A → B → C → 0

in Ab(X) induces by HA a long exact sequence in cohomology,

· · · → Hi(X,A) → Hi(X,B) → Hi(X,C) → Hi+1(X,A) → · · ·

3. Mayer-Vietoris: For a sheaf A on X and an open subset U ⊆ X, let us
(temporarily) write AU = i∗i

∗A where i : U → X is the inclusion. Then

H∗(X,AU ) = H∗(U, i∗A) (5)

directly from the adjunction (i.e. using the left adjoint i!). Now for two open
sets U and V , the sequence

0 → AU∪V → AU ⊕AV → AU∩V → 0

is exact if A is injective. So by HA and (5) we obtain a long exact sequence in
cohomology

→ Hi(U ∪ V,A) → Hi(U,A)⊕Hi(V,A) → Hi(U ∩ V,A) → Hi+1(U ∪ V,A) →

where we have simply written Hi(U,A) for Hi(U, i∗A) etc.
4. Cohomology of a pair: Let F ⊆ X be closed, and write j : F → X for the

inclusion. Also let U = X \ F be the open complement and write i : U → X.
Then the sequence

0 → i!i
∗A → A → j∗j

∗A → 0

for a sheaf A on X is exact (this can be checked on stalks). More generally,
notice that for any sheaf B on F , the stalk j∗(B)x is zero if x /∈ F and Bx if
x ∈ F . So j∗ is exact and preserves injectives, hence Hi(F,B) = Hi(X, j∗B).
In particular, if for a sheaf A on X we define

Hp(X,F ;A) = Hp(X, i!i
∗A)

we obtain a long exact sequence

· · ·Hi(X,F ;A) → Hi(X,A) → Hi(F, j∗A) → Hi+1(X,F, ;A) → · · ·
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5. Proper base change: Let f : Y → X be a proper map (i.e. a closed map
with compact fibres). Then for any sheaf B on Y and any point x in X, there
is a canonical isomorphism

Hp(f−1(x), B) ∼= Rpf∗(B)x (6)

where on the left we have simply written B for its restriction to f−1(x), so for
j∗B where j : f−1(x) → Y is the inclusion. We will prove this a bit later on.
Let us notice that it follows that for any pullback square

Y ′ Y

X ′ X

q

f ′ f

p

with f (and hence f ′) proper, the canonical map

p∗Rf∗(B) → Rf ′
∗q

∗(B)

is a quasi-isomorphism. Indeed, this follows from (6) by computing stalks at
any point x′ in X.

6. Homotopy invariance: Let f, g : Y → X be homotopic maps. If A is a
sheaf on X which is constant along the homotopy, then

f∗ = g∗ : Hp(X,A) → Hp(Y, f∗A) = H∗(Y, g∗A).

More explicitly, the condition on Ameans that for the homotopyH : Y ×[0, 1] →
X between f and g, the sheaf H∗(A) on Y × [0, 1] restricts to the constant sheaf
on each segment {y} × [0, 1]. We will derive this fact as a consequnce of proper
base change.

2.4. Acyclic Resolutions Before we turn to the proofs of the last two prop-
erties listed above, let us do something else. Let A be a sheaf on X and let

0 → A → B0 → B1 → · · ·

be a (not neccesarily injective) resolution. Suppose that Hp(X,Bq) = 0 for each
q ≥ 0 and each p > 0. Then by HA, the resolution is good enough to compute
the cohomology of A, i.e.

Hp(X,A) = HpΓ(X,B•).

One says that the Bq are acyclic (for Γ), and that B• is an acyclic resolution.
Let us list some examples of acyclic sheaves (the proofs of acyclicity are given
in section 2.5 below).

• Any injective sheaf is of course acyclic.
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• A sheaf B on X is called flabby if for any open set U of X the restriction
B(X) → B(U) is surjective; in other words, if every section of B over an open
extends to the whole space. Flabby sheaves are acyclic.

• A sheaf B on X is called soft if for any closed set Z in X, any section of
B over Z extends to the whole space ; i.e. if j : Z → X is the inclusion,
Γ(X,B) → Γ(Z, j∗B) is surjective. On a paracompact space X, any soft
sheaf is acyclic, as we will see.

• A sheaf B on X is called fine if it “admits partitions of unity”. More precisely,
if B is a sheaf of R-modules, for a sheaf R of rings, then if bi ∈ Γ(Ui, B) for a
locally finite cover {Ui} ofX, there are ρi ∈ Γ(Ui, R) with

∑
ρi = 1 so that we

can average the local sections bi to a global b =
∑

ρibi. (Note that any sheaf
B is a sheaf of R-modules for a “largest” sheaf of rings End(B) = Hom(B,B)).
A typical example is the sheaf Ωp of p-forms on a manifold. On a paracompact
space, every fine sheaf is acyclic. In particular for a manifold M , the p-forms
give a fine resolution

0 → R → Ω0 d→ Ω1 d→ · · ·

of the constant sheaf R, showing that the cohomology of this constant sheaf
can be computed as the De Rham cohomology of M .

There are relations between the properties of being injective, flabby, soft and
fine which we now list.

1. Every injective sheaf is flabby. Indeed, if we also write Z for the constant
sheaf on a space X, then Γ(X,A) = HomAb(X)(Z, A). If U is open in X
with inclusion i : U → X then i!i

∗Z → Z is mono, so if A is injective then
the induced map HomAb(X)(Z, A) → HomAb(X)(i1i

∗Z, A) is surjective. The
conclusion follows by the adjunction between i! and i∗.

2. On a paracompact space, every flabby sheaf is soft. This follows from the
fact that for any closed Z in X, any section over Z of a sheaf B on X can be
extended to a neighbourhood U of X. Or more formally, writing i : Z → X
for the inclusion, the map

colim
Z⊆U

Γ(U,B) → Γ(Z, i∗B)

is surjective. Indeed, a section s ∈ Γ(Z, i∗B) is given by a compatible family
of germs sx ∈ Bx for x ∈ Z. Each such sx is the germ of a section sV ∈
Γ(V,B) on a neighbourhood V of x. Now take a locally finite cover {Vi}
of Z and corresponding such sections sVi . Then the set U = {x|(sVi)x =
(sVj

)x wheneverx ∈ Vi ∩ Vj} contains Z by compatibility and is open by
local finiteness.

3. On a paracompact space, every fine sheaf B is soft. Indeed, for a section
s ∈ Γ(j∗Z,B) we can apply partition of unity for the cover by X \Z and the
Vi as above, and the zero-section on X \ Z and sVi on Vi.
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2.5. Proofs of Acyclicity The proofs that flabby and soft sheaves are acyclic
follow the same pattern, and are based on the following two properties for a short
exact sequence

0 → A → B → C → 0

of sheaves on X.

1. If A is flabby (soft) then 0 → ΓA → ΓB → ΓC → 0 is exact.

2. If moreover B is also flabby (soft) then so is C.

To see that the two properties imply acyclicity, take a flabby sheaf B and an
injective resolution

0 → B → I0 → I1 → · · ·

Let C = Im(I0 → I1) = ker(I1 → I2). Then by 1 the sequence 0 → Γ(X,B) →
Γ(X, I0) → Γ(X,C) → 0 is exact, so H1(X,A) = 0. Moreover, I•+1 is an
injective resolution of C, so H2(X,A) = H1(X,C) = 0 also since C is flabby
by 2. Now proceed by induction. (The argument for a soft sheaf B on a
paracompact space is identical).

As for the proofs of 1 and 2 above, first notice that 2 follows from 1. Indeed,
if A and B are, say, soft, then for a closed Z ⊆ X the restrictions to Z are
again soft and so 0 → Γ(Z,A) → Γ(Z,B) → Γ(Z,C) → 0 is exact by 1. So,
any section of C over Z can be lifted to Γ(Z,B), then extended to all of X by
softness of B, and projected back to C to get the required extension to Γ(X,C).

It thus remains to prove 1. Here the arguments for the flabby case and the
soft case are slightly different. For the flabby case, take a section c ∈ Γ(X,C)
and look at pairs (U, b) where U is open in X and b ∈ Γ(U,B) is a lift of c on
U . By Zorn’s lemma, there is a maximal such pair (U0, b0). If U0 ̸= X, take a
point x ∈ X \ U0. By exactness of

0 → Ax → Bx → Cx → 0

we can at least lift c on B to a small neighbourhood of x, say by a section
bx ∈ Γ(Vx, B). Then b0 and bx differ by a section a ∈ Γ(Vx ∩U0, A) on Vx ∩U0,
which can be extended to all of Vx because A is flabby. Now if b − bx = a on
Vx ∩U0 then b0 on U0 and bx + a on Vx agree on the overlap so define a section
on U0 ∪ Vx, contradicting maximality.

The soft case proceeds in the same spirit, but involves paracompactness.
Again, take a section c ∈ Γ(X,C) which we attempt to lift to B. We can at
least do so locally, say by sections bi ∈ Γ(Vi, B) on a cover {Vi} of X indexed
by a set I. Let {Ui} be a locally finite refinement with Ui ⊂ Ūi ⊂ Vi. Now
look at pairs (S, b) where S ⊆ I and b is a lift of c on ŪS =

⋃
i∈S Ūi (which is

closed). By Zorn’s lemma, there exists a maximal such pair (S0, b0). If S0 ̸= I,
take some i ∈ I \ S0 and proceed as in the flabby case, now extending b0 − bi
from ŪS ∩ Ūi to Ūi by softness of A.
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2.6. Proof of Proper Base Change Remember we still need to prove proper
base change (Section 2.3, point 5). So, let f : Y → X be a proper map and let
B be a sheaf on Y with injective resolution 0 → B → I•. Take a point x ∈ X
and look at the resolution

0 → j∗B → j∗I0 → j∗I1 → · · ·

on the fiber f−1(x), where j : f−1(x) → Y is the inclusion. Now, first of all, we
claim that this is a resolution by soft sheaves. Indeed, any section of j∗(Ip) over
a closed K ⊆ f−1(x) can be extended to an open neighbourhood U of K by the
argument in Section 2.3, point 2 (now just for a finite cover of K), and next to
all of X since In is flabby. So this resolution j∗(I) calculates H∗(f−1(x), j∗B).
Next, and for the same reason, any section of Ip over f−1(x) extends to an open
neighbourhood V of f−1(x), which by properness contains a neighbourhood of
the form f−1(U) for an open U which contains x. In other words we have

Γ(f−1(x), j∗Ip) = lim
f−1(x)⊆V

Γ(V, Ip)

= lim
x∈U

Γ(f−1(U), Ip)

= f∗(I
p)x.

Taking cohomology then gives us that

Hp(f−1(x), j∗B) ∼= Rpf∗(B)x

as required.

2.7. Proof of Homotopy Invariance Let H : Y × [0, 1] → X be a homotopy
between H0 = f and H1 = g, and let A be a sheaf on X with the property that
H∗(A) is constant on each slice {y} × [0, 1]. Writing π for the projection, this
means that H∗A = π∗B for a sheaf B on Y (one can take B = π∗H

∗A).
By proper base change, we have Rpπ∗π

∗(B)y = Hp([0, 1], By). This is the
cohomology of [0, 1] with constant coefficients, which, not surprisingly, we will
show vanishes for p > 0.

Thus, the unit B → Rπ∗π
∗B is an isomorphism. Homotopy invariance now

follows formally from this. To see this, consider the diagram

Y Y × [0, 1] X

pt Y

i0

i1

γ

H

π

γ

It suffices, of course, to show that i∗0 = i∗1 because f∗ = i∗1H and g∗ = i∗1H
∗.
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Recall that the map i∗0 is constructed from the unit η0 : Id → R(i0)∗i
∗
0 as

R(γπ)∗π
∗B R(γπ)∗R(i0)∗i

∗
0π

∗B

Rγ∗B Rγ∗R(πi0)∗(πi0)
∗B

η0

i∗0 ∼

=

and similarly for i∗1. Thus, taking out the left outer Rγ∗ and the right outer B,
we need to show that the diagram

Rπ∗π
∗ Rπ∗R(i0)∗i

∗
0π

∗

Rπ∗R(i1)∗i
∗
1π

∗ Id

η0

η1 ∼

∼

commutes. But Id → Rπ∗π
∗ is an isomorphism as just mentioned, and pre-

composing the square with this unit evidently(*) gives a commutative diagram.
This finishes the proof modulo the example below.

We briefly expand on the point (*). More explicitly, this means that the
composition of units is the unit. Given adjoint pairs

C D E
F

G

F ′

G′

with units η : Id → GF and η′ : G′F ′, then writing η̄ for the unit Id →
(G′G)(F ′F ), the diagram

Id GF

GG′F ′F

η

η̄
Gη′F

commutes.

2.8. Example Let A be an abelian group. Then Hp([0, 1], A) = 0 for p > 0
where A is viewed as a constant sheaf on [0, 1]. There are many comparison
theorems between sheaf cohomology and other types of cohomology (singular,
Čech, . . . ) from which this follows, but unfortunately we do not have time to
discuss them. Here is a more pedestrian and direct argument.

Firstly, taking a resolution 0 → F1 → F0 → A → 0 by free abelian groups
and notice that the cohomology commutes with sums of abelian groups (more
precisely, it always commutes with finite sums and here with directed colimits
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by compactness of [0, 1]) and so it suffices to consider the case where A = Z.
Consider the exact sequence

0 → Z → R → S1 → 0

where R is the sheaf of continuous real valued functions and similarly for S1.
The sheaf R is soft, and Γ([0, 1],R) → Γ([0, 1], S1) is surjective since S1 is simply
connected so H1([0, 1],Z) = 0. To see that Hp([0, 1],Z) = 0 for p > 1, one shows
that S1 is also soft. A sketch of this argument is that a section of S1 over a
closed set F in [0, 1] can be extended to an open U containing F , which can be
taken to be a union of open intervals with disjoint closures. Lift the section to
R on each of these closed intervals and extend by softness of R. Conclude by
projecting back to S1.

3 Cohomology with Compact Supports

From now on, all spaces are assumed locally compact Hausdorff.

3.1. Cohomology with Compact Support For a sheaf A on X and a
section a ∈ A(U), recall the support

supp(a) = {x | ax ̸= 0}

which is closed in U . Write

Γc(A) = Γc(X, A) = {a ∈ Γ(X, A) | supp(a) is compact}

and
Hn

c (X,A) = RnΓc(X,−)(A), n ≥ 0

These are the cohomology groups with compact support of the sheaf A.

3.2. c -Soft Sheaves This cohomology can be calculated by any Γc-acyclic
resolution of A as before. Call a sheaf B on X c -soft if for any two compact
subsets K ⊂ L of X, any section of B over K extends to L; in other words,
if Γ(L,B) → Γ(K,B) is surjective. For example, any flabby sheaf is c -soft,
because a section in Γ(K,B) can first be extended to an open neighbourhood
of K (as in 2.4) and then to all of X by flabbiness.

The proof that c -soft sheaves are Γc-acyclic follows the same pattern as for
the flabby and soft sheaves in the previous section and is a consequence of the
following two properties for any short exact sequence 0 → A → B → C.

1. If A is c -soft then we have a short exact sequence

0 → ΓcA → ΓcB → ΓcC → 0.

2. If moreover B is also c -soft, then so is C.

13



Property 2 follows from 1 as in 2.5. So let us prove 1.
Take a section c ∈ Γc(X,C) with compact support K = supp(c). We can lift

c locally to bi ∈ Γ(Ui, B) for a cover of K by finitely many open sets U1, . . . , Un,
which we may take to be relatively compact (recall that X is assumed to be
locally compact). Choose a finer cover V1, . . . , Vn with Vi ⊂ V̄i ⊂ Ui and define
V̄0 = X −

⋃
Vi (this is just a notation, V̄0 is not neccesarily the closure of an

open set). Let b̃0 ∈ Γ(V̄0, B) be the zero-section. Then b̃0 is a lift of c over V̄0.
We will extend b̃0 to a lift b̃l over V̄0 ∪ · · · ∪ V̄l by induction on l. Suppose a lift
b̃l−1 has been found. Then b̃l−1 and bl both lift c over V̄l ∩ (V̄0 ∪ · · · ∪ V̄l−1), so
differ by a section of A there, say b̃l−1 = bl + a on V̄l ∩ (V̄0 ∪ · · · ∪ V̄l−1). By
c-softness of A, we can now extend a to V̄l. Then b̃l−1 and bl+a together define
a section b̃l over V̄0 ∪ · · · ∪ V̄l. When we reach l = n, this gives a lift of c in
Γc(B).

3.3. Change of Base Consider a map f : Y → X and recall the functor
f! : Ab(Y ) → Ab(X). This is a subfunctor of f∗ (hence preserves monos) and
coincides with f∗ if f is proper. A basic property of f! is the following.

Lemma 3.1. The functor f! preserves c -softness.

Proof. Let B be a c -soft sheaf on Y and let b ∈ Γ(K, f!B) where K is a compact
subset of X. We can extend b to a section (again called) b ∈ Γ(U, f!B) on a
neighbourhood U of K (cf 2.4). So b ∈ Γ(f−1(U), B) with supp(b) → U proper.
Let V be a smaller relatively compact neighbourhood of K with K ⊆ V ⊆
V̄ ⊆ U . Then S = supp(b) ∩ f−1(V̄ ) is compact. Choose a relatively compact
neighbourhood W of S and consider the section of B which is b on W̄ ∩ f−1(V̄ )
and zero on W̄ −W . Since B is c -soft, we can extend this section to a section
b̃ on all of W̄ . This section is zero on the boundary, so extends to a section,
again called b̃ on all of Y which is zero outside W . This last section extends b.
Indeed, it agrees with b on W̄ ∩ f−1(V̄ ), while b and b̃ are both zero outside W̄ .
This proves the lemma.

Next, consider for a sheaf B on Y and a point x in X the canonical map

f!(B)x → Γc(f
−1(x), B) (7)

This map is always injective. Indeed, suppose bx ∈ f!(B)x is represented by
a section b ∈ Γ(f−1(U), B) with supp(b) → U proper. Suppose b|f−1(x) = 0.
Let V be a relatively compact neighbourhood of x with V ⊆ V̄ ⊆ U . Then
supp(b) ∩ f−1(V̄ ) is compact and disjoint from f−1(x). So there is a relatively
compact neighbourhood W ⊇ supp(b) ∩ f−1(V̄ ) with f−1(x) ∩ W̄ = ∅. Then
b = 0 on f−1(V − f(W̄ )), hence represents 0 in f!(B)x.

This map 7 is surjective if B is c -soft. To see this, take b ∈ Γc(f
−1(x), B)

and let V be a relatively compact neighbourhood in Y of supp(b) ⊆ f−1(x).
Then the section of B on the compact set (f−1(x) ∩ V̄ ) ∪ (V̄ − V ) which is b
on f−1(x) ∩ V̄ and zero on V̄ − V extends to all of V̄ by c -softness of B, and
next to all of Y by zero outside V . This gives a global section b̃ ∈ Γ(Y,B) with
support in V̄ and agreeing with b on f−1(x). Let us record this as follows.
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Lemma 3.2. For a map f : Y → X and a c -soft sheaf B on Y , the canonical
map f!(B)x → Γc(f

−1(x), B) is an isomorphism.

It follows from the previous lemma that c -soft sheaves on Y are f! -acyclic,
because their restrictions to f−1(x) are evidently again c -soft. More generally, it
follows that if φ : B• → C• is a quasi-isomorphism between complexes of c -soft
sheaves, then f!(B

•) → f!(C
•) is again a quasi-isomorphism. An elementary

way to see this is to use the mapping cone C(φ) defined by C(φ)n = Bn+1⊕Cn

with differential d(b, c) = (−db, dc − φb). A map φ : B• → C• is a quasi-
isomorphism if and only if C(φ) is acyclic (i.e. C(φ) is quasi-isomorphic to
zero) and f! evidently commutes with the construction of the mapping cone.
We now deduce the following property:

Proposition 3.3. Let f : Y → X and let A be an arbitrary sheaf on Y . Then
the canonical map

Rpf!(A)x → Hp
c (f

−1(x), A), (p ≥ 0)

is an isomorphism.

Proof. If 0 → A → B0 → B1 → · · · is a c -soft resolution, then Rpf!(A)x is the
cohomology of f!(B

•)x, while Hp
c (f

−1(x), A) is that of Γc(f
−1(x), B•). These

two agree by the lemma.

Corollary 3.4. For any pullback square

Y ′ Y

X ′ X

q

f ′ f

p

the canonical map p∗Rnf! → Rnf ′
! q

∗ is an isomorphism.

Proof. This follows from the previous proposition, by inspecting for a sheaf A
on Y the map p∗Rnf!A → Rnf ′

! q
∗A on stalks.

3.4. Functoriality Recall that a map f : Y → X induces for any sheaf A
on X a map f∗ = H∗(X,A) → H∗(Y, f∗A). The construction of this map f∗

depended on the unit Id → Rf∗f
∗, and does not work for compactly supported

cohomology. However, if f is proper, then f! = f∗ and the same construc-
tion now gives a map f∗ : H∗

c (X,A) → H∗
c (Y, f

∗A). So compactly supported
cohomology is contravariant along proper maps.

For the same reason, the argument from lecture 2 for homotopy invariance
goes through only if the relevant homotopy is itself a proper map. Explicitly,
if f, g : Y ⇒ X are proper maps which are homotopic by a proper homotopy
H : Y × [0, 1] → X, then f∗ = g∗ : H∗

c (X,A) → H∗
c (Y, f

∗A) = H∗(Y, g∗A) for
any sheaf A on X which is constant along H.
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3.5. Some Exact Sequences

(a) As for ordinary cohomology, a short exact sequence of sheaves

0 A B C 0

induces a long exact sequence in compactly supported cohomology:

· · · Hn
c (X,A) Hn

c (X,B) Hn
c (X,C) Hn+1

c (X,A) · · ·

(b) For an open inclusion i : U ↪→ X and its closed complement j : Z ↪→ X,
the sequence

0 i!i
∗A A j∗j

∗A 0

for a sheaf A on X is exact (as in 2.3 above). Since j∗ = j! for a closed
embedding, this gives a long exact sequence

· · · Hn
c (U,A) Hn

c (X,A) Hn
c (Z,A) Hn+1

c (U,A) · · ·

(where we have also just written A for its restriction to U and Z respec-
tively). In particular, A is c -soft if and only if H1

c (U,A) = 0 for each open
U .

Example Consider Rd ⊂ Sd with closed complement the point p at
infinity. We already proved in lecture 2 that cohomology with constant
coefficients is homotopy invariant. So by the usual induction using Mayer-
Vietoris we find that Hn(Sd,Z) = Z for n = 0, d and zero otherwise. The
long exact sequence above (for U = Rd, X = Sd, Z = {p}) now gives that
Hn

c (Rd,Z) = Z for n = d and zero otherwise. We will come back to this
example when discussing cohomological dimension.

(c) Mayer-Vietoris for opens For an open subset U ⊆ X with embedding
i : U → X, let us (temporarily) write

A(U) = i!i
∗A

If A is injective or c -soft, so is i∗A, hence A(U) is c -soft. In particular,
Hn

c (X,A(U)) = Hn
c (U, i

∗A). The stalk of A(U) at a point x is Ax if x ∈ U
and is zero otherwise. If U ⊆ U ′ there is an evident map A(U) → A(U ′).
Now, if V is another open set, we have an exact sequence

0 A(U∩V ) A(U) ⊕A(V ) A(U∪V ) 0

as one easily checks. Thus, again writing A also for its restrictions to open
sets, we obtain a long exact Mayer-Vietoris sequence

· · · → Hn
c (U ∩ V,A) → Hn

c (U,A)⊕Hn
c (V,A) → Hn

c (U ∪ V,A) →
→ Hn+1

c (U ∩ V,A) → · · ·
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(d) Mayer-Vietoris for closed sets Now suppose F ⊆ X is a closed set
with embedding j : F ↪→ X. Then clearly if A is a c -soft sheaf on X, its
restriction j∗(A) on F is again c -soft. Moreover, j∗ = j! and the unit A →
j∗j

∗A induces a restriction map Hc(X,A) → Hc(F, j
∗A) = Hc(X, j!j

∗A).
Let us write AF = j!j

∗A. Now if G is another closed set, the sequence

0 AF∪G AF ⊕AG AF∩G 0

is exact, so we obtain a long exact Mayer-Vietoris sequence

· · · → Hn
c (F ∪G,A) → Hn

c (F,A)⊕Hn
c (G,A) → Hn

c (F ∩G,A) →
→ Hn+1

c (F ∪G,A) → · · ·

(Remark: Note the difference with the one for open sets!)

4 The Derived Category and the Functor f !

4.1. A Review in Terms of Derived Categories Let us summarize what
we have seen so far, and rephrase it in terms of derived categories. LetD+(X) be
the derived category of bounded below cochain complexes of sheaves of abelian
groups. If R is a (commutative) ring, we write D+

R(X) for the analogous derived
category of bounded below complexes of sheaves of R-modules. These categories
are obtained from the categories Ch+(X) and Ch+R(X) by inverting the quasi-
isomorphisms. Recall that a map A• → B• is a quasi-isomorphism if and only
if the map of stalks A•

x → B•
x is so, for every point x in X. If f : Y → X is a

continuous map, there are adjoint functors

f∗ : Ch+(X) ⇄ Ch+(Y ) : f∗

The functor f∗ is exact and preserves quasi-isomorphisms. (Remember f∗(A•)x =
A•

f(x).) The functor f∗ is only left exact and needs to be derived. One obtains a

well-defined functor Rf∗ : D+(Y ) → D+(X) by setting Rf∗(A
•) = f∗(I

•) where
A• → I• is a quasi-isomorphism into a complex consisting of injective sheaves.
(It suffices to take flabby sheaves, or soft ones if the spaces are paracompact.)
Thus, we obtain adjoint functors

f∗ : D+(x) ⇄ D+(X) : f∗ (8)

where we have now written f∗ instead of Rf∗, for exhibiting it as a right adjoint
between derived categories, it is evident that the right derived functor is meant.
This is a customary abuse of notation.

The category D+(X) inherits an internal hom from Ch+(X) sometimes writ-
ten RHom(B•, A•) for emphasis, and explicitly calculated as Hom(B•, I•) for
an injective resolution A• ∼−→ I•. The functor RHom(B•,−) has a left adjoint
given by deriving the tensor product, sometimes written

C• 7→ C• ⊗L B•.
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When working with R-modules, this can be explicitly calculated by taking a
resolution of C• (or of B•) which is flat. Let us work over a field k for simplicity,
so that we can simply take the tensor product as before. This then gives the
usual adjunction formula

HomD+
k (X)(C

• ⊗B•, A•) ≃ HomD+
k (X)(C

•, RHom(B•, A•)).

Next, for a continuous map f : Y → X between locally compact spaces, we
defined a functor

f! : Ch
+(Y ) → Ch+(X).

We have seen that as a consequence of Theorem 3.2 , it preserves quasi-isomorphisms
between complexes of c-soft sheaves. It thus gives a well-defined functor at the
level of derived categories, again denoted

f! : D
+(Y ) → D+(X)

(although some people might prefer to denote it more explicitly as Lf!). It is
calculated by taking c-soft resolutions. As per Theorem 3.4, this functor satisfies
the change-of-base formula stating that for any pullback square

Y ′ Y

X ′ X

q

f ′ f

p

the canonical map p∗f! → f ′
! q

∗ is an isomorphism at the level of derived cate-
gories, as in the diagram

D+(Y ′) D+(Y )

D+(X ′) D+(X)

f ′
!

q∗

f!
≃

p∗

.

When working over a field, one can also check directly that the projection
formula holds, stating that for A• in D+

k (X) and B• in D+
k (Y ) the map

f!(B
• ⊗ f∗A•)

∼−→ f!(B
•)⊗A•

is an isomorphism in D+
k (X). (Look at the stalks at a point x in X, where A•

x is
a complex of vector spaces.) The same formula still holds over a ring R instead
of the field k if one takes the derived tensor. Notice also that f∗ preserves the
tensor, ie is a strong monoidal functor.

So much for our review. We conclude this minicourse by constructing a right
adjoint f ! to the functor f!, as in

f! : D
+
k (X) ⇄ D+

k (Y ) : f ! (9)

when working over a field, and under the condition that Y has finite cohomo-
logical dimension. Let us begin by reviewing this last condition.
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4.2. Cohomological Dimension A locally compact space Y is said to have
cohomological dimension ≤ d if Hn

c (Y,A) = 0 for any sheaf A and any n > d.
The cohomological dimension dim(Y ) of Y is the smallest such d. We will see
later that this agrees with the usual dimension for manifolds. For now, let us
only record the following lemma.

Lemma 4.1. If Y has cohomological dimension ≤ d, then any sheaf B on Y
has a c-soft resolution of length at most d, denoted

0 → B → C0 → · · · → Cd → 0

Proof. Let 0 → B → C• be any c-soft resolution, and let D = ker(Cd → Cd+1)
then 0 → B → C0 → · · · → Cd−1 → D → 0 is a resolution, and it suffices to
prove that D is c-soft. For this we use the criterion, discussed in 3.5 (c), that
H1

c (U,D) has to vanish for any open U ⊆ Y . It is indeed the case, since by
”general HA” (a long exact sequence argument) Hn

c (U,D) ≃ Hn+d
c (U,B) for

every n. In particular H1
c (U,D) = Hd+1

c (U,B) = Hd+1
c (Y, i!B) for the inclusion

i : U ↪→ Y , which is zero by assumption on Y .

Example. For a manifold M of dimension d and for k = R, the sequence
0 → A → A⊗Ω0 → · · · → A⊗Ωd → 0 is a typical such resolution, where Ωi is
the sheaf of differential i-forms. (The sheaf A⊗ Ωi is fine, hence c-soft.)

Now let us go back to the problem of constructing a right adjoint f ! as above.
It would be enough to have a functor f ! : Ch+k (X) → Ch+k (Y ) at the level of
complexes which satisfied the mapping property

HomCh+
k (X)(f!B

•, A•) ≃ HomCh+
k (Y )(B

•, f !A)

at least for a complex of injective sheaves A• on X, and a complex of c-soft
sheaves B• on Y , or a c-soft resolution of an arbitrary complex B• on Y . Now
for any sheaf C on Y and any open set V ⊆ Y with inclusion i : V ↪→ Y we
have

C(V ) = Hom(k(V ), C)

Where k is the constant sheaf on Y corresponding to the field k and k(V ) =
i!i

∗(k). So this suggests defining

f !(A•)(V ) = Hom(f!B
•
(V ), A

•)

where B•
(V ) is some c-soft resolution of k(V ). There are a few things to check to

see whether this definition works. The first obstacle is that more generally for
any two bounded below complexes M• and N•, the Hom-complex is graded as

Hom(M•, N•)p =
∏
i

Hom(M i, Np+i)

and this is in general bounded below only if M• is bounded above. So we would
need a bounded c-soft resolution of k(V ). This is where the finite cohomological
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dimension of Y comes in. Explicitly, if Y is of dimension d, let us fix a c-soft
resolution

k → Ω0 · · · → Ωd → 0

of the constant sheaf k on Y . (The notation is chosen to suggest the analogy
with differential forms.) Then for any open V ⊆ Y ,

k(V ) → Ω0
(V ) → · · · → Ωd

(V ) → 0

is again a c-soft resolution. So we now define

f !(A•)(V ) = Hom(f!Ω
•
(V ), A

•)

for this specific resolution. Notice that f !(A•) naturally has the structure of
a presheaf on X, because if V ⊆ W then there is an inclusion Ω•

(V ) ↪→ Ω•
(W )

hence we can define f !(A•)(W ) → f !(A•)(V ) by precomposition with f!Ω
•
(V ) →

f!Ω
•
(W ). Let us check that this presheaf is in fact a sheaf. This means that we

have to check for an arbitrary open cover V =
⋃
Vi that

f !(A•)(V ) →
∏
i

f !(A•)(Vi) ⇒
∏
i,j

f !(A•)(Vij)

is an equalizer. Or equivalently that⊕
i,j

f!Ω
•
(Vij)

⇒
⊕
i

f!Ω
•
(Vi)

→ f!Ω
•
(V )

is a coequalizer. This can be checked for the stalks at a point x which look like

⊕
i,j

Γc(f
−1(x),Ω•

(Vij)
) ⇒

⊕
i

Γc(f
−1(x),Ω•

(Vi)
) → Γc(f

−1(x),Ω•
(V )) (10)

Now for a directed cover V =
⋃
Vi, the sheaf Ω• is the colimit of the sheaves

Ω•
(Vi)

, hence

Γc(f
−1(x),Ω(V )) = lim−→Γc(f

−1(x),Ω(Vi))

which is another way of expressing that 10 is a coequalizer. And the case of
a finite cover reduces (by induction) to the case of two opens. So we have to
check for two opens V and W that, writing V x for f−1(x) ∩ V and W x for
f−1(x) ∩W , the sequence

Γc(V
x ∩W x,Ω•) → Γc(V

x,Ω•)⊕ Γc(W
x,Ω•) → Γc(V

x ∪W x,Ω•) → 0

is exact. This follows from the Mayer-Vietoris sequence for opens, as the next
term H1

c (V
x ∩W x,Ω•) vanishes by c-softness of Ω•. So we have proved

Lemma 4.2. For any complex A• on X, the presheaf f !(A) defined by

f !(A•)(V ) = Hom(f!Ω
•
(V ), A

•)

(where V ranges over open subsets of Y ) is a sheaf with values in bounded below
complexes, ie an object of Ch+(Y ).
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We still need to check that this is a well-defined functor on the derived
category, and that it satisfies the adjunction property. The first property is
easily taken care of by restricting the functor to complexes of injective sheaves
A•, because weak equivalences between injectives are homotopy equivalences.
(If you know this for bounded below complexes from HA but are unsure about
sheaves, notice that injective sheaves are also injective as presheaves and check
this for each open V separately.) So now it remains to check that the adjunction
property holds, ie that for any complex of c-soft sheaves B• on Y and any
complex A• of injectives on X, we have a bijective correspondence

HomD+
k (X)(f!B

•, A•) ≃ HomD+
k (Y )(B

•, f !A•) (11)

between maps in the derived categories D+
k (X) and D+

k (Y ). We will prove
something stronger: there is a natural isomorphism of cochain complexes

Hom(f!(B
• ⊗ Ω•), A•)

θ−→
≃

Hom(B•, f !A•) (12)

for any A• in Ch+(X) and any B• in Ch+(Y ).
Let us first construct the map θ. Working degree by degree for notational

convenience, ie for sheaves A and B of vector spaces, suppose we are given a
map ϕ : f!(B ⊗ Ωp) → A of sheaves on X. We want to construct a map

θ(ϕ) : B → f !(A)−p

of sheaves on Y . Let V ⊆ Y be open and b ∈ B(V ). Then θ(ϕ)V (b) is to be a
map

θ(ϕ)V (b) : f!(Ω
p
(V )) → A

of sheaves on X. So let U ⊆ X be open, and let ω ∈ f!(Ω
p
(V ))(U). So ω ∈

Γ(f−1(U),Ωp
(V )) is a section in Γ(f−1(U) ∩ V,Ωp) with two properties :

• supp(ω) → U is a proper map

• ω can be extended to a section ω ∈ Γ(f−1(U),Ωp) which vanishes outside
V .

We can now define

θ(ϕ)V (b)U (ω) = ϕU (b⊗ ω) ∈ A(U) (13)

(This makes sense as b⊗ ω ∈ Γ(U, f!(B ⊗ Ωp)) because ω ∈ Γ(f−1(U),Ωp) has
support inside V so b⊗ω is defined on all of f−1(U) although b is only defined on
V .) It is now straightforward (but a bit laborious) to check that this definition
13 gives a well-defined map 12 of complexes, natural in A• and B•.

Next, let us notice that if we can prove that θ is a quasi-isomorphism for
A• injective and B• c-soft then the desired isomorphism 11 follows, because
B• ∼−→ B• ⊗ Ω• hence f!(B

•)
∼−→ f!(B

• ⊗ Ω•) because these sheaves B• and
B• ⊗ Ω• are c-soft. For the latter, we in fact have more generally
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Lemma 4.3. Let B and C be sheaves on the space Y . If one of them is c-soft
then so if B ⊗ C.

Proof. Let us say C is c-soft. For the proof of the Lemma, we will use a resolu-
tion of B that will again be of use later on. Recall that for an open V ⊆ Y there
is a bijective correspondence between maps k(V ) → B and sections b ∈ B(V ).
So there is an epimorphism of sheaves (and even of presheaves)⊕

b,V

k(V ) ↠ B

where the sum ranges over all such V ⊆ Y and b ∈ B(V ). The kernel of this
map is a sheaf of the same type, namely a sum of sheaves k(U) ranging over
pairs of sections b ∈ B(V ) and b′ ∈ B(V ′) and agreeing on U ⊆ V ∩ V ′. So we
have an exact sequence

0 → P1 → P0 → B → 0

Where P0 and P1 are of the form
⊕

k(Vj)
for a family of opens Vj . Tensoring

with C gives an exact sequence

0 → P1 ⊗ C → P0 ⊗ C → B ⊗ C → 0

and by property 2 in 3.2 it suffices to observe that P1⊗C and P0⊗C are c-soft.
This is indeed the case since each k(V ) ⊗ C = i!i

∗(k)⊗ C = i!(i
∗(k)⊗ i∗(C)) =

i!i
∗(C) is c-soft (where i : V ↪→ X denotes the inclusion). This proves the

lemma.

Using the same resolution 0 → P1 → P0 → B → 0, we can now easily deduce
the fact that 12 is an isomorphism. Consider for single sheaves A on X and B
on Y the diagram

0 Hom(f!(B ⊗ Ω), A) Hom(f!(P0 ⊗ Ω), A) Hom(f!(P1 ⊗ Ω), A)

0 Hom(B, f !A) Hom(P0, f
!A) Hom(P1, f

!A)

θ θ θ

Where the rows are exact (the top row is because f! preserves exact se-
quences of c-soft sheaves). The two right-hand instances of θ in the diagram are
isomorphisms as indicated because for a single open set V , the map

Hom(f!(k(V ) ⊗ Ω), A) → Hom(k(V ), f
!A)

is an isomorphism by definition of f !(A). It follows that the left-hand map θ is
an isomorphism as well. The case of complexes B• and A• follows by naturality.

Remark. Notice that is follows from the isomorphism 12 (for single sheaves)
that f !(A) is injective whenever A is.

22



Let us summarize what we have proved

Theorem 4.4. Let f : Y → X be a map between locally compact Hausdorff
spaces, and assume that Y is of finite cohomological dimension. Then the func-
tor f! has a right adjoint f ! as in

f! : D
+
k (Y ) ⇄ D+

k (X) : f !

explicitly defined for an injective complex A• on X by

f !(A•)(V ) = Hom(f!Ω
•
(V ), A

•)

where 0 → k → Ω0 → · · · → Ωd → 0 is a c-soft resolution of the constant sheaf
k on Y .

We conclude this section by considering the special case where X is a single
point, so f! = Γc(Y,−). Then D+

k (X) is simply the derived category of bounded
below cochain complexes of vector spaces (over the field k), and every vector
space is injective. Moreover every vector space is a sum of copies of k itself, so
f ! is determined by the sheaf f !(k) given by

f !(k)p(V ) = Hom(Γc(Y,Ω
−p
(V )), k)

= Γc(V,Ω
−p)∨,

the linear dual of Γc(V,Ω
−p). This complex of sheaves

f !(k)−d → f !(k)−d+1 → · · · → f !(k)0 → 0 (14)

is a complex of sheaves on Y (where d = dim(Y )) called the dualizing complex.
Let

OY = ker(f !(k)−d → f !(k)−d+1)

This defines a sheaf on Y called the orientation sheaf (cf. the case where Y is
a manifold below).

Corollary 4.5 (Poincaré duality). Let Y be a locally compact space of coho-
mological dimension d, and suppose the complex 14 is exact. Then there is a
natural isomorphism

Hp(Y,OY ) = Hd−p(Y, k)∨

Proof. The complex 14 shifted to the right by d is an injective resolution of OY ,
by hypothesis. Recall the shift convention A•[p]i = Ai−p and writing Hom for
the group of morphisms in the relevant derived category, D+

k (Y ) and D+
k (pt),

respectively. We have

Hp(Y,OY ) = Hom(k[p], f !(k)[d])

= Hom(k[p− d], f !(k))

= Hom(f!k[p− d], k)

= Hom(Γc(Y,Ω
•)[p− d], k)

= Hd−p
c (Y, k)∨.
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Example. Let Y be a manifold of (usual) dimension d. Let us first check
that it is also of cohomological dimension d. We already saw in 3.5 (b) that
Hp

c (Rd, k) = 0 unless p = d for which it is k, so for an open chart i : U ↪→ Y we
have k = Hd

c (U, k) = Hd
c (Y, k(U)), showing that the cohomological dimension

of Y is at least d. On the other hand, the cohomological dimension of Y is
local in the sense that if a space Y is covered by open sets U of cohomological
dimension ≤ d, then Y also has dimension ≤ d. Indeed for a sheaf B on Y take
a resolution

0 → P1 → P0 → B → 0

as in the proof of Theorem 4.3, where Pi is a sum of sheaves of the form
k(U). Then the long exact sequence gives that Hp(Y,B) = 0 for p > d since
Hp(Y, k(U)) = Hp(U, k) = 0 for p > d by assumption.

This shows in particular that the dualizing complex has no cohomology in
degrees other than −d. (The cohomology in degree −p of the stalk f !(k)x
is lim−→x∈U

Hp
c (U, k)

∨, which is zero unless p = d.) So the assumption of the

corollary is satisfied.
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