
HOMOTOPY THEORY FOR BEGINNERS

JESPER M. MØLLER

Abstract. This note contains comments to Chapter 0 in Allan Hatcher’s book [5].
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1. Notation and some standard spaces and constructions

In this section we fix some notation and recollect some standard facts from general topology.

1.1. Standard topological spaces. We will often refer to these standard spaces:

• R is the real line and Rn = R× · · · ×R is the n-dimensional real vector space
• C is the field of complex numbers and Cn = C× · · · ×C is the n-dimensional complex vector space
• H is the (skew-)field of quaternions and Hn = H × · · · ×H is the n-dimensional quaternion vector

space
• Sn = {x ∈ Rn+1 | |x| = 1} is the unit n-sphere in Rn+1

• Dn = {x ∈ Rn | |x| ≤ 1} is the unit n-disc in Rn

• I = [0, 1] ⊂ R is the unit interval
• RPn, CPn, HPn is the topological space of 1-dimensional linear subspaces of Rn+1, Cn+1, Hn+1.
• Mg = (S1 × S1)# · · ·#(S1 × S1) is the orientable and Ng = RP 2# · · ·#RP 2 the nonorientable

compact surface of genus g ≥ 1.

We shall meet these spaces many times later on. How do we define the topology on the projective spaces
(and the surfaces)?
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Figure 1. The 2-sphere S2 = M0 and the punctured S2 (2-disc D2)

1.2. The quotient topology. If X and Y are topological spaces a quotient map (General Topology, 2.76)
is a surjective map p : X → Y such that

∀V ⊂ Y : V is open in Y ⇐⇒ p−1(V ) is open in X

The map p : X → Y is continuous and the topology on Y is the finest topology making p continuous. If
f : X → Z is a continuous map from X into a topological space Z then

f is constant on the fibres of p ⇐⇒ f factors through p

where we say that f factors through p if there exists a continuous map f̄ : Y → Z such that the diagram

X Z

Y

f

p f̄

X =
∐
y∈Y

p−1y

commutes. This means that a map defined on Y is the same thing as a map defined on X and constant on
the fibres of p.

If X is a topological space, Y is a set (with no topology), and p : X → Y a surjective map, the quotient
topology on Y is the topology {V ⊂ Y | p−1V is open in X} that makes p : X → Y a quotient map (General
Topology, 2.74).

Example 1.1. Here are three examples of quotient topologies and quotient maps:
X/ ∼: If ∼ is a relation on X, let X/∼ be the set of equivalence classes for the smallest equivalence

relation containing the relation ∼. We give X/ ∼ the quotient topology for the surjective map
p : X → X/∼ taking points in X to their equivalence classes. This means that a set of equivalence
classes is open in X/ ∼ if and only if their union is an open set in X. The universal property of
quotient maps says that a continuous map g : X/ ∼→ Z is the same thing as a continuous map
f : X → Z that respects the relation in the sense that x1 ∼ x2 =⇒ f(x1) = f(x2) for all x1, x2 ∈ X.

X/A: If A is a closed subspace of X, the quotient space X/A is the set (X−A)∪{A} with the quotient
topology for the map p : X → X/A taking points of X − A to points of X − A and points of A to
{A}. A map X/A→ Z is the same thing as a map X → Z constant on A.

X/G: If G is a group that acts on a topological space X then X/G is the set of G-orbits. A map
X/G→ Z is the same thing as a map X → Z that is constant of all G-orbits.

Example 1.2. (a) The projective spaces have the quotient topology for the surjective maps from the unit
spheres

(1.3) pn : Sn = S(Rn+1)→ RPn, pn : S2n+1 = S(Cn+1)→ CPn, pn : S4n+3 = S(Hn+1)→ HPn

http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
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Figure 2. The torus M1 = S1 × S1 and the punctured torus

given by pn(x) = Fx ⊂ Fn+1, x ∈ S(Fn+1), F = R,C,H. We may also define the projective spaces

RPn = S(Rn+1)/S(R), CPn = S(Cn+1)/S(C), HPn = S(Hn+1)/S(H),

as spaces of orbits for the actions of the unit spheres in R, C, or H on the unit spheres in Rn+1, Cn+1,
Hn+1. A map f : RPn → Y is the same thing as a map f : Sn → Y so that f(−x) = f(x) for all x ∈ Sn.

(b) Sn = Dn/Sn−1 for all n ≥ 1. There is a bijective correspondence between maps Sn → Y and maps
Dn → Y that take Sn−1 to a point in Y .

(c) The 2-sphere S2 is the quotient space of the 2-disc D2 indicated in Figure 1. The punctured 2-sphere is
a 2-disc. Thus S2 = (D2 qD2)/S1 is the union of two 2-discs identified along their boundaries.

(d) The real projectivive plane RP 2 is the quotient space of the 2-disc D2 indicated in Figure 3. The
puntured RP 2 is a Möbius band. (Cut up N1 − int(D2) along a horizontal line and reassamble.) Thus
RP 2 = (D2 qMB)/S1 is the union of a 2-disc and a Möbius band identified along their boundaries.

(e) The circle S1 = [−1,+1]/− 1 ∼ +1 is a quotient of the interval [−1,+1] and the torus M1 = S1 × S1 =
([−1,+1]/ − 1 ∼ +1) × ([−1,+1]/ − 1 ∼ +1) is a quotient of the square [−1, 1] × [−1, 1] as shown
in Figure 2. (Note: The observant reader may wonder if the product space and the quotient space
construction commute.) This description of M1 = S1 × S1 as a quotient of a 4-gon can be used to
describe Mg = D2/a1b1a

−1
1 b−1

1 · · · agbga−1
g b−1

g as a quotient space of a 4g-gon (Example 4.2).
(f) Let D2/a2 denote the quotient space of Figure 3. Let D2 → S2 be the inclusion of the disc D2 as the

digon of the upper hemisphere in S2. Then S2 → D2 → RP 2 respects the equivalence relation a2. The
universal property of quotient space shows that there is a commutative diagram

D2 S2

D2/a2 RP 2

x ∼ −x
'

where the bottom horizontal map is a homeomorphism. This description of N1 = RP 2 as a quotient
space of a 2-gon can be used to describe the genus g nonorientable surface Ng = D2/a1a1 · · · agag as a
quotient space of a 2g-gon (Example 4.2).

1.3. The category of topological spaces and continuous maps. The topological category, Top,
is the category where the objects are topological spaces and the morphisms are continuous maps between
topological spaces. Two spaces are isomorphic in the topological category if they are homeomorphic. Topology
is the study of the category Top.

In the following, space will mean topological space and map will mean continuous map.
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2. Homotopy

Let X and Y be two (topological) spaces and f0, f1 : X → Y two (continuous) maps of X into Y .

Definition 2.1. The maps f0 and f1 are homotopic, f0 ' f1, if there exists a map, a homotopy,
F : X × I → Y such that f0(x) = F (x, 0) and f1(x) = F (x, 1) for all x ∈ X.

Homotopy is an equivalence relation on the set of maps X → Y . We write [X,Y ] for the set of homotopy
classes of maps X → Y . Since homotopy respects composition of maps, in the sense that

f0 ' f1 : X → Y and g0 ' g1 : Y → Z =⇒ g0 ◦ f0 ' g1 ◦ f1 : X → Z,

composition of maps induces composition [X,Y ]× [Y,Z] ◦−→ [X,Z] of homotopy classes of maps.

X Y

Z

f0 ' f1

g0 ' g1g0f0 ' g1f1

Example 2.2. The identity map S1 → S1 and the map S1 → S1 that takes z ∈ S1 ⊂ C to z2 are not
homotopic (as we shall see). Indeed, none of the maps z → zn, n ∈ Z, are homotopic to each other, so that
the set [S1, S1] is infinite.

Here is the homotopy class of the most simple map.

Definition 2.3. A map is nullhomotopic if it is homotopic to a constant map.

More explicitly: A map f : X → Y is nullhomotopic if there exist a point y0 ∈ Y and a homotopy
F : X × I → Y with F (x, 0) = f(x) and F (x, 1) = y0 for all x ∈ X.

Example 2.4. The identity map of the circle S1 is not nullhomotopic (it is essential). The equatorial
inclusion S1 ↪→ S2 is nullhomotopic. Indeed, any map of S1 → S2 is nullhomotopic.

Definition 2.5. The spaces X and Y are homotopy equivalent, X ' Y , if there are maps, homotopy
equivalences, X → Y and Y → X, such that the two compositions, X //Y //X and Y //X //Y ,
are homotopic to the respective identity maps.

More explicitly: X and Y are homotopy equivalent if there exist maps f : X → Y , g : Y → X, and homo-
topies H : X × I → X, G : Y × I → Y , such that H(x, 0) = x, H(x, 1) = gf(x) for all x ∈ X and G(y, 0) = y,
G(y, 1) = fg(y).

If two spaces are homeomorphic, then they are also homotopy equivalent because then there exist maps
f : X → Y , g : Y → X such that the two compositions are equal to the respective identity maps.

If X //Yoo are homotopy equivalences, then the induced maps [T,X] // [T, Y ]oo and [X,T ] // [Y, T ]oo

are bijections for any space T .
Homotopy equivalence is an equivalence relation on spaces. A homotopy type is an equivalence class of

homotopy equivalent spaces.
Here is the homotopy type of the most simple space.

Definition 2.6. A space is contractible if it is homotopy equivalent to a one-point space.

Proposition 2.7. The space X is contractible if and only if one of the following equivalent conditions holds:
(1) The identity map 1X of X is nullhomotopic
(2) There is a point x0 ∈ X and a homotopy C : X × I → X such that C(x, 0) = x and C(x, 1) = x0 for

all x ∈ X.

If X is contractible and T is any space, then [T,X] = [T, ∗] = ∗ and [X,T ] = [∗, T ] is the set of path-
components of T .

Example 2.8. Rn is contractible, Sn is not contractible. The House with Two Rooms [5, p 4] and the House
with One Room are contractible.

Any map X → Rn is nullhomotopic. The standard inclusion Sn → Sn+1 is nullhomotopic since it factors
through the contractible space Sn+1 − {∗} = Rn+1. The infinite dimensional sphere S∞ is contractible
(Example 5.10).

http://www.math.cornell.edu/~hatcher/AT/AT-house.pdf
http://www.math.cornell.edu/~hatcher/AT/AT-house.pdf
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Figure 3. The real projective plane RP 2 = N1 and the punctured RP 2 (Möbius band [5,
Exercise 2.1.1])

The homotopy category of spaces, hoTop, is the category where the objects are topological spaces.
The morphisms between two spaces X and Y is the set, [X,Y ], of homotopy classes of maps of X into Y .
Composition in this category is composition of homotopy classes of maps. Two spaces are isomorphic in
the homotopy category if they are homotopy equivalent. Algebraic topology is the study of the homotopy
category of spaces, hoTop.

2.1. Relative homotopy. Let X be a space and A ⊂ X a subspace. Suppose that f0, f1 : X → Y are maps
that agree on A, ie f0(a) = f1(a) for all a ∈ A.

Definition 2.9. The maps f0 and f1 are homotopic relative to A, f0 ' f1 rel A, if there exists a homotopy
F : X × I → Y from f0 to f1 such that f0(a) = F (a, t) = f1(a) for all a ∈ A and all t ∈ I.

If two maps are homotopic rel A, then they are homotopic.
A pointed space is a pair (X,x0) consisting of space X and one of its points x0 ∈ X. The pointed topo-

logical category, Top∗, is the category where the objects are pointed topological spaces and the morphisms
are base-point preserving maps, based maps. The pointed homotopy category, hoTop∗, is the category where
the objects are pointed topological spaces and the morphisms are based homotopy classes of based maps.

2.2. Retracts and deformation retracts. Let X be a space, A ⊂ X a subspace, and i : A→ X the
inclusion map. A deformation retraction of X onto A deforms X into A while keeping A fixed.

Definition 2.10. A deformation retraction of X onto A is a homotopy R : X × I → X such that R(x, 0) =
x and R(x, 1) ∈ A for all x ∈ X and R(a, t) = a for all a ∈ A, t ∈ A. We say that A is a deformation
retract of X if there exists a deformation retraction of X onto A.

A deformation retraction is a homotopy relative toA betweenR0, the identityX, and a map r = R1 : X → A,
a retraction, that maps X into A and does not move the points of A. Since ri = 1A and ir ' 1A rel A, we
see in particular that A and X are homotopy equivalent spaces.

Definition 2.11. A retraction of X onto A is a map of X onto A such that ri = 1A. We say that A is a
retract of X if there exist a retraction of X onto A.

A retraction of X onto A is a left inverse to the inclusion of A into X. A retraction can also be defined
as an idempotent map, a map such that rj = r for all j ≥ 1.

Proposition 2.12. Let X be a space and A ⊂ X a subspace.

A is a retract of X ⇐⇒ Any map on A extends to X
A is a deformation retract of X ⇐⇒ Any map on A extends uniquely up to homotopy relative to A to X
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Proof. First assertion:
=⇒ : Let r : X → A be a retraction of X onto A. If f : A→ Y is a map defined on A then fr : X → Y is

an extension of f to X.
⇐= : The identity map of A extends to a map r : X → A defined on X.

Second assertion:
=⇒ : Let r : X → A be a retraction of X onto A such that ri = 1A and ir ' 1X rel A. Let f : A→ Y

be a map defined on A. Since A is a retract of X, f extends to X. Suppose that f0, f1 : X → Y are two
extensions of f . Then f0 = f0 ◦ 1X ' f0ir rel A and f1 = f1 ◦ 1X ' f1ir rel A. As f0i = f1i, this says that
f0 ' f1 rel A.
⇐= : The identity map of A extends to a map r : X → A defined on X and ir ' 1X rel A as both ir and

1X are extensions of the inclusion of A into X. �

A A

X

Retract

i

ri = 1A

r

A A

X X

Deformation retract

i

ri = 1A

r i

ir ' 1X rel A

We already noted that if A is a deformation retract of X, then the inclusion of A into X is a homotopy
equivalence. The converse does not hold in general. If the inclusion map is a homotopy equivalence, there
exists a map r : X → A such that ri ' 1A and ir ' 1X but r may not fix the points of A and, even if it does,
the points in A may not be fixed under the homotopy from ri to the identity of A. Surprisingly enough,
however, the converse does hold if the pair (X,A) is sufficiently nice (5.3.(2)).

Example 2.13. We’ll later prove that S1 is not a retract of D2. S1 is a retract, but not a deformation
retract, of the torus S1 × S1. S1 ∨ S1, is a deformation retract of a punctured torus (see Figure 2). S1 is
a deformation retract of a punctured RP 2, , a Möbius band (see Figure 3). If X deformation retracts onto
one of its points then X is contractible, but there are contractible spaces that do not deformation retract to
any of its points.

There are several other good examples of (deformation) retracts in [5].

Proposition 2.14. Any retract A of a Hausdorff space X is closed.

Proof. A = {x ∈ X | r(x) = x} is the equalizer of two continuous maps [7, Ex 31.5]. �

3. Constructions on topological spaces

We mention some standard constructions on topological spaces and maps.

Example 3.1 (Mapping cylinders, mapping cones, and suspensions). Let X be a space. The cylinder on
X is the product

X × I
of X and the unit interval. The cylinder on X contains X = X × {1} as a deformation retract. What is the
cylinder on the n-sphere Sn?

The cone on X

CX =
X × I
X × 1

is obtained by collapsing one end of the cylinder on X. The cone is always contractible. What is the cone
on Sn? A map f : X → Y is nullhomotopic if and only if it extends to the cone on X.

The (unreduced) suspension of X

SX =
X × I

(X × 0, X × 1)
is obtained by collapsing both ends of the cylinder on X. The suspension is a union of two cones. What
is the suspension of the n-sphere Sn? (General Topology, 2.147) The cylinder, cone, and suspension are
endofunctors of the topological category.

http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
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Figure 4. An alternative presentation of the projective plane RP 2 (another interpretation
of Figure 3)

Let f : X → Y be a map. The cylinder on f or mapping cylinder of f

Mf =
(X × I)q Y
(x, 0) ∼ f(x)

is obtained by glueing one end of the cylinder on X onto Y by means of the map f . The mapping cylinder
deformation retracts onto its subspace Y . (Set r(x, t) = f(x) for x ∈ X, t ∈ I, and r(y) = y for y ∈ Y .)
What is the mapping cylinder of z → z2 : S1 → S1?

The mapping cone on f

Cf =
CX q Y

(x, 0) ∼ f(x)
is obtained by gluing the cone on X onto Y by means of the map f . What is the mapping cone of
aba−1b−1 : S1 → S1

a ∨ S1
b and a2 : S1 → S1

a?

There is a sequence of maps

X
f // Y // Cf // SX

Sf // SY // CSf // SSX // · · ·

where the map Cf → SX is collapse of Y ⊂ Cf .

Proposition 3.2. Any map factors as an inclusion map followed by a homotopy equivalence.

Proof. For any map f : X → Y there is a commutative diagram using the mapping cylinder

Mf

(x,t)→f(x)'
��

X
. �

x→(x,1)
>>|||||||| f // Y

where the slanted map is an inclusion map and the vertical map is a homotopy equivalence (the target is
deformation retract of the mapping cylinder). �

Example 3.3 (Wedge sum and smash product of pointed spaces). Let (X,x0) and (Y, y0) be pointed spaces.
The wedge sum and the smash product of X and Y are

X ∨ Y = X × {y0} ∪ {x0} × Y ⊂ X × Y, X ∧ Y =
X × Y
X ∨ Y

The (reduced) suspension of the pointed space (X,x0) is the smash product

ΣX = X ∧ S1 = X ∧ I/∂I =
X × I

X × ∂I ∪ {x0} × I
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of X and a pointed circle (S1, 1) = (I/∂I, ∂I/∂I). (The last equality holds when X is a locally compact
Hausdorff space (General Topology, 2.171).) Suspension is an endo-functor of Top∗. How does the reduced
suspension differ from the unreduced suspension?

What is the smash product X ∧ I? What is the smash product Sm ∧ Sn? (General Topology, 2.171)

Example 3.4 (The mapping cylinder for the degree n map on the circle). Let n > 0 and let f : S1 → S1

be the map f(z) = zn where we think of the circle as the complex numbers of modulus 1. Let Cn = 〈t | tn〉
be the cyclic group of order n. The mapping cylinder Mf of f is quotient space of

(∨
Cn
I
)
× I by the

equivalence relation ∼ that identifies (s, x, 0) ∼ (st, x, 1) for all s ∈ Cn, x ∈ I.

Example 3.5 (Adjunction spaces). See (General Topology, 2.85). From the input X ⊃ A
ϕ−→ Y consisting

of a map ϕ defined on a closed subspace A of X, we define the adjunction space Y ∪ϕ X as (Y qX)/ ∼
where A 3 a ∼ f(a) ∈ Y for all a ∈ A. The adjunction space sits in a commutative push-out diagram

A� _

��

ϕ // Y � _

��
X

Φ // Y ∪ϕ X

and it contains Y as a closed subspace with complement X − A. A map Y ∪ϕ X → Z consists a map
h : Y → Z and an extension g : X → Z to X of hϕ : A→ Z.

Example 3.6 (The n-cellular extension of a space). Let X be a space and φ :
∐
Sn−1
α → X a map from a

disjoint union of spheres into X. The adjunction space X ∪ϕ
∐
Dn is the push-out of the diagram

∐
Sn−1
α

ϕ //
� _

��

X� _

��∐
Dn
α

Φ // X ∪ϕ
∐
Dn
α

and it is called the n-cellular extension of X with attaching map ϕ and characteristic map Φ. (Al-
ternatively, X ∪φ

∐
Dn
α is the mapping cone on ϕ.) Thi n-cellular extension of X consists of X as a closed

subspace and the open n-cells enα = Φ(Dn
α − Sn−1

α ). In fact, the complement to X is the disjoint union(
X ∪φ

∐
Dn
α

)
−X =

∐
enα

so that the open n-cells are the path-connected components of the complement to X.

The compact surfaces of genus g ≥ 1 are 2-cellular extensions

Mg =
g∨
i=1

S1
ai ∨ S

1
bi ∪Qg

i=1[ai,bi] D
2, Ng =

g∨
i=1

S1
ai ∪Qg

i=1 a
2
i
D2

of wedges of circles and

RPn = RPn−1 ∪pn−1 D
n

is the n-cellular extension of RPn−1 along the quotient map pn−1 : Sn−1 → RPn−1 for n ≥ 1.

Example 3.7. The join of two spaces X and Y is the homotopy push-out

X × Y Y

X X ∗ Y

prX

prY

http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
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4. CW-complexes

J.H.C. Whitehead [8] decided in 1949 to ‘abandon simplicial complexes in favor of cell complexes’. He
introduced ‘closure finite complexes with weak topology’, abbreivated to ‘CW-complexes’. They are a class
of spaces particularly well suited for the methods of algebraic topology. CW-complexes are built inductively
out of cells.

Definition 4.1. A CW-complex is a space X with an ascending filtration of subspaces (called skeleta)

∅ = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn−1 ⊂ Xn ⊂ · · · ⊂ X =
⋃
Xn

such that

• X0 is a discrete topological space
• Xn is (homeomorphic to) an n-cellular extension of Xn−1 for n ≥ 1
• The topology on X is coherent with the filtration in the sense that

A is closed (open) in X ⇐⇒ A ∩Xn is closed (open) in Xn for all n

for any subset A of X.

The second item of the definition means that for every n ≥ 0 there are attaching maps ϕα : Sn−1 → Xn−1

and characteristic maps Φα : Dn → Xn such that

• the n-skeleton

Xn = Xn−1 ∪‘
α ϕα

∐
α

Dn
α

is the n-cellular extension of the (n− 1)-skeleton by the attaching maps.
• The complement in the n-skeleton of the (n− 1)-skeleton,

Xn −Xn−1 =
∐
α

enα

‘
Φα←−
∐
α

intDn

is the disjoint union of its connected components enα = Φα(intDn), the open n-cells of X. An open
n-cell is open in Xn but maybe not in X.

• A CW-complex is the disjoint union

X =
∞⋃

n=−1

Xn =
∞⋃
n=0

(Xn −Xn−1) =
∞∐
n=0

∐
α

enα

of its open cells. This is a disjoint union of sets (but usually not of topological spaces).
• The quotient of the n-skeleton by the (n− 1)-skeleton,

Xn/Xn−1 =
∨
α

(Dn/Sn−1) =
∨
α

Sn

is a wedge sum of n-spheres.

X1 is a topological space since it is a 1-cellular extension of the topological space X0. In fact, all the skeleta
Xn are topological spaces and Xi is a closed subspace of Xj for i ≤ j. The purpose of the third item of
the definition is to equip the union of all the skeleta with the largest topology making all the inclusions
continuous.

A CW-complex X is finite-dimensional if X = Xn for some n. CW-decompositions are not unique; there
are generally many CW-decompositions of a given space X – consider for instance X = S2.

Example 4.2 (Compact surfaces as CW-complexes). We consider the orientable and nonorientable compact
surfaces.
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< a1
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>
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>
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>
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>
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<a2
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M2 = M1#M1

< a1

<
a1

<

a2

>

a2

>
a3

>a3

N
1
−

in
t(
D

2 )

N1−int(D
2
)

N
1 −

int(D
2)

N3 = N1#N1#N1

The closed orientable surface Mg = (S1 × S1)# · · ·#(S1 × S1) of genus g ≥ 1 is a CW-complex

Mg =
∨

1≤i≤g

S1
ai ∨ S

1
bi ∪

Q
[ai,bi] D

2

with 1 0-cell, 2g 1-cells, and 1 2-cell. (Picture of M2.)
The closed nonorientable surface Nh = RP 2# · · ·#RP 2 of genus h ≥ 1 is a CW-complex

Nh =
∨

1≤i≤h

S1
ai ∪Q

a2
i
D2

with 1 0-cell, h 1-cells, and 1 2-cell.

Example 4.3 (Spheres as CW-complexes). Points on the n-sphere Sn ⊂ Rn+1 = Rn ×R have coordinates
of the form (x, u). Let Dn

± be the images of the embeddings Dn → Sn : x→ (x,±
√

1− |x|2). Then

Sn = Sn−1 ∪Dn
+ ∪Dn

− = Sn−1 ∪idqid (Dn qDn)

is obtained from Sn−1 by attaching two n-cells. The infinite sphere S∞ is an infinite dimensional CW-complex

S0 ⊂ S1 ⊂ · · · ⊂ Sn−1 ⊂ Sn ⊂ · · · ⊂ S∞ =
∞⋃
n=0

Sn

with two cells in each dimension. A subspace A of S∞ is closed iff A ∩ Sn is closed in Sn for all n.

Example 4.4 (Projective spaces as CW-complexes). The projective spaces are RPn = S(Rn+1)/S(R),
CPn = S(Cn+1)/S(C), and HPn = S(Hn+1)/S(H). In each case there are maps

Dn = D(Rn) S(Rn+1) = Sn RPn

D2n = D(Cn) S(Cn+1) = S2n+1 CPn

D4n = D(Hn) S(Hn+1) = S4n+3 HPn

x→ (x,
√

1− |x|2)

x→ (x,
√

1− |x|2)

x→ (x,
√

1− |x|2)

pn

pn

pn

We note that each of the maps D(Fn) ↪→ S(Fn+1) � FPn is
• surjective
• restricts to the projection pn−1 : S(Fn)→ FPn−1 on the boundary S(Fn) of the disc D(Fn)
• is injective on the interior D(Fn)− S(Fn) of the disc

http://www.math.ku.dk/~moller/blok1_05/M2surface.pdf
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Figure 5. Two representations of the Klein bottle N2

where F = R,C,H. To prove the first item observe that any point in projective space is represented by a
point on the sphere with last coordinate ≥ 0. This means that RPn consists of RPn−1 together with the
n-disc D(Rn) with identifications on the boundary. In other words

RPn = RPn−1 ∪pn−1 D
n, CPn = CPn−1 ∪pn−1 D

2n, HPn = HPn−1 ∪pn−1 D
4n,

Consequently, RPn is a CW-complex with one cell in every dimension between 0 and n, CPn is a CW-
complex with one cell in every even dimension between 0 and 2n, HPn is a CW-complex with one cell
in every dimension divisible by 4 between 0 and 4n. In particular, RP 0 = ∗, CP 0 = ∗, HP 0 = ∗, and
RP 1 = S1, CP 1 = S2, HP 1 = S4. The Hopf maps are the projection maps

(4.5) S0 → S1 p1−→ RP 1 = S1, S1 → S3 p1−→ CP 1 = S2, S3 → S7 p1−→ HP 1 = S4,

obtained when n = 1.

Definition 4.6. Let A be any topological space. A relative CW-complex on A is a space X with an ascending
filtration of subspaces (called skeleta)

A = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ Xn−1 ⊂ Xn ⊂ · · · ⊂ X =
⋃
Xn

such that
• X0 is the union of A and a discrete set of points
• Xn is (homeomorphic to) an n-cellular extension of Xn−1 for n ≥ 1
• The topology on X is coherent with the filtration in the sense that

B is closed (open) in X ⇐⇒ B ∩Xn is closed (open) in Xn for all n

for any subset B of X.

4.1. Topological properties of CW-complexes. We shall see that CW-complexes have convenient topo-
logical properties.

Proposition 4.7. Any CW-complex is a Hausdorff, even normal, topological space.
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Proof. See [7, Exercise 35.8] (solution) or [5, Proposition A.3]. �

Lemma 4.8. The closure of the open n-cell enα = Φα(intDn) is enα = Φα(Dn).

Proof. The image Φα(Dn) of the compact space Dn is compact and therefore closed in the Hausdorff space
X. Thus enα ⊂ Φα(Dn). On the other hand, we have Φα(Dn) = Φα(Dn − Sn−1) ⊂ Φα(Dn − Sn−1) = enα
simply because Φα is continuous. �

Proposition 4.9. Any compact subspace of a CW-complex X is contained in a skeleton.

Proof. Let X be a CW-complex and C a compact subspace of X. Choose a point tn in C ∩ (Xn−Xn−1) for
all n where this intersection is nonempty. Let T = {tn} be the subspace of these points. For all n, T ∩Xn

is finite and hence closed in X since points are closed in X (Proposition 4.7). Thus T is closed since X has
the coherent topology. In fact, any subspace of T is closed by the same argument. In other words, T has
the discrete topology. As a closed subspace of the compact space C, T is compact. Thus T is compact and
discrete. Then T is finite. �

4.2. Subcomplexes. We define what we mean by a subcomplex.

Definition 4.10. A subcomplex of a CW-complex is a closed subspace that is a union of open cells.

If A is subcomplex then the closure of any open cell in A is still in A since A is closed.
If A is a subcomplex of the CW-complex X then

• A is a CW-complex with n-skeleton An = A ∩Xn

• (X,A) is a relative CW-complex
• (X,A) has the homotopy extension property
• X/A is a CW-complex and the quotient map X → X/A is cellular

Example 4.11. The n-skeleton of X is always a subcomplex of X.
Consider X = S1 ∨ S2 as a CW-complex with one 0-cell, one 1-cell, and one 2-cell attached at a point

different from the 0-cell. Then closed subspace S1 is subcomplex of X. The closed subspace S2 is not a
subcomplex since it is not the union of open cells.

4.3. Products of CW-complexes. We shall now discuss the product of two CW-complexes. A slight
complication will arise because product topologies and infinite union topologies do not in general commute.
The product of two pairs of spaces, (X,A) and (Y,B), is defined as

(X,A)× (Y,B) = (X × Y,A× Y ∪X ×B)

where (X × Y ) − (A × Y ∪X × B) = (X − A) × (Y − B). For example, if In is the unit cube in Rn then
clearly

(In, ∂In) = (Ii, ∂Ii)× (Ij , ∂Ij)

whenever i, j ≥ 0 and i+ j = n. Since (Dn, Sn−1) and (In, ∂In) are homeomorphic pairs, we have just seen
that

(Dn, Sn−1) = (Di, Si−1)× (Dj , Sj−1)

where the equality sign means that the two sides are homeomorphic. We make this observation because by
convention we build CW-complexes from discs rather than cubes.

Let X = A ∪ϕ Di, Y = B ∪ψ Dj , be an i-cellular and a j-cellular extension with characteristic maps
Φ: (Di, Si−1)→ (X,A), Ψ: (Dj , Sj−1)→ (Y,B) and open cells ei = X − A and f j = Y − B. The product
X × Y is an (i+ j)-cellular extension (see below Definition 4.12)

X × Y = (A× Y ∪X ×B) ∪ϕ (Di ×Dj)

with one open cell X×Y −(A×Y ∪X×B) = (X−A)×(Y −B) = ei×f j that is the product of the open cells
in X and Y . The characteristic map of X×Y is the product Φ×Ψ: (Di, Si−1)×(Dj , Sj−1)→ (X,A)×(Y,B)
of the characteristic maps and the attaching map ϕ : Di×Sj−1∪Si−1×Dj → X×B∪A×Y is the restriction
of Φ×Ψ to the sphere Si+j−1 = Di × Sj−1 ∪ Si−1 ×Dj .

http://www.math.ku.dk/~moller/e02/3gt/opg/S35.pdf
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Definition 4.12. Let X and Y be CW-complexes with characteristc maps Φα : (Di, Si−1)→ (Xi, Xi−1) and
Ψβ : (Dj , Sj−1)→ (Y j , Y j−1). The product CW-complex has n-skeleton

(X ×CW Y )n =
⋃

i+j=n

Xi × Y j

The characteristic maps for the n-cells are products of characteristc maps

Φα ×Ψβ : (Di, Si−1)× (Dj , Sj−1)→ (Xi, Xi−1)× (Y j , Y j−1) ⊂ ((X ×CW Y )n, (X ×CW Y )n−1)

for all i, j ≥ 0 and i+ j = n. The attaching maps for the n-cells are the restrictions

Di × Sj−1 ∪ Si−1 ×Dj → Xi × Y j−1 ∪Xi−1 × Y j ⊂ (X × Y )n−1

of the characteristic maps. X ×CW Y ) has the topology coherent with the skeleta.

There is a commutative diagram

(X ×CW Y )n−1 q
∐
i+j=n(Di

α ×D
j
β)

inclq
‘

(Φiα×Ψjβ)
//

��

(X ×CW Y )n

(X ×CW Y )n−1 ∪ρ
∐
i+j=n(Di

α ×D
j
β)

33

The horizontal map is closed and the slanted map, produced by the universal property, is a homeomorphism
(because it is a closed continuous bijection). This shows that (X ×CW Y )n is an n-cellular extension of
(X ×CW Y )n−1. Thus X ×CW Y is a CW-complex as in Definition 4.1. The open n-cells of the product
CW-complex,

(X ×CW Y )n− (X ×CW Y )n−1 =
∐

i+j=n

(Xi−Xi−1)× (Y j −Y j−1) =
∐

i+j=n

(∐
α

eiα×
∐
β

f jβ

)
=

∐
i+j=n
α,β

eiα× f
j
β

are the products of the open cells eiα in X with the open cells f jβ in Y for all i, j ≥ 0 with i+ j = n.

X0 X1 X2 X3 X4 X5

Y 0

Y 1

Y 2

Y 3

Y 4

Y 5

(X ×CW Y )5 − (X ×CW Y )4

X
3
−
X

2

Y 2 − Y 1

Y

X

The topology on X ×CW Y , defined to be the topology coherent with the ascending skeletal filtration, is
finer than the product topology.

Theorem 4.13. [5, Theorem A.6] There is a bijective continuous map X ×CW Y → X × Y . This map is a
homeomorphism if X and Y have countably many cells.

In all cases relevant for us, X ×CW Y and X × Y are homeomorphic.
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5. The Homotopy Extension Property

The Homotopy Extension Property will be very important to us. Let X be a space with a subspace A ⊂ X.

Definition 5.1. [1, VII.1] The pair (X,A) has the Homotopy Extension Property (HEP) if any partial
homotopy A× I → Y of a map X → Y into any space Y can be extended to a (full) homotopy of the map.

Diagrammatically, (X,A) has the HEP if it is always possible to complete the diagram

X × {0} ∪A× I //
� _

incl

��

Y

X × I

88

for any space Y and any partial homotopy of a map X → Y .
The pair (X, ∅) always has the HEP. A nondegenerate base point is a point x0 ∈ X such that (X, {x0})

has the HEP.

Proposition 5.2. [5, p 14, Ex 0.26] Let X a space and A ⊂ X a subspace. The following three conditions
are equivalent

(1) (X,A) has the HEP.
(2) X × {0} ∪A× I is a retract of X × I.
(3) X × {0} ∪A× I is a deformation retract of X × I.

Proof. (1) ⇐⇒ (2): This is a special case of Proposition 2.12.
(3) =⇒ (2): Clear.
(2) =⇒ (3): The problem is to turn a retraction r : X × I → X × {0} ∪A× I into a deformation retraction
H : X × I × I → X × I of the cylinder X × I onto the cylinder on the inclusion X × {0} ∪A× I. Write the
retraction r : X × I → X × {0} ∪A× I ⊂ X × I as r(x, t) = (r1(x, t), r2(x, t)) where r1 is a map into X and
r2 a map into I. Then we can concoct a deformation retraction H : X × I × I → X × I by [2, p 329]

H(x, t, s) = (r1(x, st), (1− s)t+ r2(x, st))

We check that H(x, t, 0) = (r1(x, t), t+r2(x, 0)) = (x, t+0) = (x, t), H(x, t, 1) = (r1(x, t), r2(x, t)) = r(x, t) ∈
X ×{0}∪A× I, H(x, 0, s) = (x, 0), and H(a, t, s) = (r1(a, ts), (1− s)t+ r2(a, st)) = (a, (1− s)t+ st) = (a, t)
for all a ∈ A so that H is indeed a deformation retraction of the cylinder X × I on the identity onto the
cylinder on the inclusion, X × {0} ∪A× I. �

5.1. What is the HEP good for? The next theorem explains what the HEP can do for you.

Theorem 5.3. [5, Proposition 0.17] [5, Proposition 0.18, Ex 0.26] [1, VII.4.5] Suppose that (X,A) has the
HEP.

(1) If the inclusion map has a homotopy left inverse then A is a retract of X.
(2) If the inclusion map is a homotopy equivalence then A is a deformation retract of X.
(3) If A is contractible then the quotient map X → X/A is a homotopy equivalence.
(4) The homotopy type of the adjunction space Y ∪ϕX only depends on the homotopy class of the attaching

map ϕ : A→ Y for any space Y and any map ϕ : A→ Y .

Proof. (1) Assume that r : X → A is a map such that ri ' 1A. We must change r on A so that it actually
fixes points of A. There is a map X × {0} ∪ A× I → A which on X × {0} is r and on A× I is a homotopy
from ri to the identity of A. Using the HEP we may complete the commutative diagram

X × {0} ∪A× I r∪ri'1A //
� _

��

A

X × I
h

55

and get a homotopy h : X × I → A. The end-value of this homotopy is a map h1 : X → A such that h1i = 1A
(a retract).
(2) Let i : A→ X be the inclusion map. The assumption is that there exists a map r : X → A such that
ri ' 1A and ir ' 1X . By point (1) we can assume that ri = 1A, ie that A is a retract of X. Let
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G : X × I → X be a homotopy with start value G0 = 1X and end value G1 = ir. For a ∈ A, G(a, 0) = a
and G(a, 1) = a but we have no control of G(a, t) when 0 < t < 1. We want to modify G into a deformation
retraction, that is a homotopy from 1X to ir relative to A. Since (X,A) has the HEP so does (X,A)×(I, ∂I) =
(X × I,A× I ∪X ×∂I) ((5.8).(3)). Let H : X × I × I → X × I be an extension (a homotopy of homotopies)
of the map X × I × {0} ∪A× I × I ∪X × ∂I × I given by

H(x, t, 0) = G(x, t)

H(a, t, s) = G(a, t(1− s)) for a ∈ A
H(x, 0, s) = x

H(x, 1, s) = G(ir(x), 1− s)

Note that H is well-defined since the first line, H(x, 1, 0) = G(x, 1) = ir(x), and the fourth line, H(x, 1, 0) =
G(ir(x), 1) = irir(x) = ir(x), yield the same result. The end value of H, (x, t) 7→ H(x, t, 1), is a homotopy
rel A of H(x, 0, 1) = x to H(x, 1, 1) = G(ir(x), 0) = ir(x). This is a homotopy rel A since H(a, t, 1) =
G(a, 0) = a for all a ∈ A.
(3) What we need is a homotopy inverse to the projection map q : X → X/A and this is more or less the
same thing as a homotopy X × I → X from the identity to a map that collapses A inside A. How can we
get such a homotopy? Well, precisely from the HEP! (This could be used as the motivation for HEP.) Let
C : A× I → A ⊂ X be a contraction of A, a homotopy of the identity map to a constant map. Use the HEP
to extend the contraction of A and the identity on X

X × {0} ∪A× I� _

��

1X∪C // X

X × I
h

77

to a homotopy h : X × I → X such that h0 is the identity map of X, ht sends A to A for all t ∈ I, and h1

sends A to a point of A. By the universal property of quotient maps (General Topology, 2.81), the homotopy
h induces a homotopy h and the map h1 induces a map h̃1 such that the diagram

X × {0} ∪A× I X

X × I X

X/A× I X/A

C ∪ 1X

h

h̄

qq × 1Iquotient map

h0 = 1X , h1(A) = ∗

h̄0 = 1X/A, h̄1(∗) = ∗

commutes. (The product map q × 1: X × I → X/A× I is quotient since I is locally compact Hausdorff
(General Topology, 2.87).) Since h1 takes A to a point, it factors through the quotient space X/A. The lower
square considered only at time t = 1 can be enlarged to a commutative diagram

X X

X/A X/A

h1

h̄1

h̃1q q h̃1q = h1 ' h0 = 1X
qh̃1 = h̄1 ' h̄0 = 1X/A

with a diagonal map h̃1 – and this is the homotopy inverse to q that we are looking for!
(4) Let ϕ0 : Y → and ϕ1 : Y → be two attaching maps. Suppose that ϕ : A× I → Y is a homotopy from ϕ0

to ϕ1. We want to show that Y ∪ϕ0X and Y ∪ϕ1X are homotopy equivalent. The point is that both Y ∪ϕ0X
and Y ∪ϕ1 X are deformation retracts of Y ∪ϕ (X × I). We get the deformation retractions of Y ∪ϕ (X × I)

http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
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•
Y A× I

X × {1}

Figure 6. A deformation retraction Y ∪ϕ (X × I)× I → Y ∪ϕ (X × I) of Y ∪ϕ (X × I) onto Y ∪ϕ1 X

onto Y ∪ϕ0X or Y ∪ϕ1X from the deformation retractions of Proposition 5.2.(3) of X×I onto A×I∪X×{0}
or A× I ∪X × {1}. The idea behind the proof is indicated in Figure 6.

We intend to show that the inclusions

Y ∪ϕ0 X = Y ∪ϕ (X × {0} ∪A× I) ⊂ Y ∪ϕ (X × I) ⊃ Y ∪ϕ (X × {1} ∪A× I) = Y ∪ϕ1 X

are homotopy equivalences. (The equality signs are there because all points of A × I have been identified
to points in Y .) The left inclusion is a homotopy equivalence because the subspace is a deformation retract
of the big space. The deformation retraction h of Y ∪ϕ (X × I) onto Y ∪ϕ0 X is induced by the universal
property of adjunction spaces (General Topology, 14.17) as in the diagram

A× I� _

incl

��

f // Y

��

A× I × I
π1×π2

ffMMMMMMMMMM
f×1 //

� _

incl

��

Y × I

��

π1

55kkkkkkkkkkkkkkkkk

X × I × I //

h

yysssssssssss
Y ∪ϕ (X × I)× I

h

((
X × I // Y ∪ϕ (X × I)

from a deformation retraction h : X × I × I → X × I of X × I onto X × {0} ∪ A × I (Proposition 5.2.(3)).
Here, the outer square is the push-out diagram for Y ∪ϕ (X × I) and the inner square is just this diagram
crossed with the unit interval. The homotopy h : X × I × I → X × I starts as the identity map, is constant
on the subspace X ×{0}∪A× I ⊂ X × I, and ends as a retraction of X × I onto this subspace. The induced
homotopy h : Y ∪ϕ (X × I)× I → Y ∪ϕ (X × I) starts as the identity map, is constant on the subspace
Y ∪ϕ (X × {0} ∪ A × I) = Y ∪ϕ0 X, and ends as a retraction onto this subspace. We conclude that
Y ∪ϕ (X × I) deformation retracts onto its subspace Y ∪ϕ0 X. Similarly, Y ∪ϕ (X × I) deformation retracts
onto its subspace Y ∪ϕ1 X. Thus Y ∪ϕ0 X and Y ∪ϕ1 X are homotopy equivalent spaces. (Note that we
proved this by construction a zig-zag Y ∪ϕ0 X → Y ∪ϕ (X × I) ← Y ∪ϕ1 X of homotopy equivalences, not
by constructing a direct homotopy equivalence between the two spaces.) �

5.2. Are there any pairs of spaces that have the HEP?. Our work on HEP pairs would be futile
if there weren’t any pairs that enjoying this property. But we shall next see that pairs with the HEP are
uniquitous: It is difficult, but not impossible, to find a pair that does not have the HEP.

Corollary 5.4. The pair (Dn, Sn−1) has the HEP for all n ≥ 1. In fact, (CX,X) has the HEP for all spaces
X.

http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
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Proof. For instance, for n = 1, D1× I ⊂ R× I ⊂ R2 (deformation) retracts onto D1×{0}∪S0× I by radial
projection from (0, 2) as indicated in this picture:

•

_______

In fact, Dn × I ⊂ Rn × I ⊂ Rn+1 (deformation) retracts onto Dn × {0} ∪ Sn−1 × I by a radial projection
from (0, . . . , 0, 2).

More generally, for any space X, the pair (CX,X) has the HEP because CX × {0} ∪X × I is a retract
of CX × I. The below picture indicates a retraction R : I × I → {0} × I ∪ I × {0}, sending all of {1} × I to
the point (1, 0).

•

�
�
�
�
�
�
�_______

The map 1X ×R : X × I × I → X × {0} × I ∪X × I × {0} factors through

X × I × I
1X×R //

��

X × {0} × I ∪X × I × {0}

��
X×I
X×{1} × I // X × {0} × I ∪ X×I

X×{1} × {0}

to give the required retraction CX × I → X × I ∪ CX × {0}. (Remember that the left vertical map is a
quotient map by the Whitehead Theorem from General Topology.) �

Proposition 5.5. If (X,A) has the HEP and X is Hausdorff, then A is a closed subspace of X.

Proof. X × {0} ∪A× I is a closed subspace of X × I since it is a retract (Proposition 2.14). Now look at X
at level 1

2 inside the cylinder X × I. �

See [1, VII.1.5] for a necessary condition for an inclusion to have the HEP.

Example 5.6. (A closed subspace that does not have the HEP) (General topology exam, Problem 3). (I, A)
where A = {0} ∪ { 1

n |n = 1, 2, . . .} does not have the HEP since I × {0} ∪ A × I is not a retract of I × I.
Indeed, assume that r : I × I → I × {0} ∪A× I is a retraction. For each n ∈ Z+, the map t → (t × 1),
t ∈ [ 1

n+1 ,
1
n ], is a path in I × I from 1

n+1 × 1 to 1
n × 1 and its image under the retraction, t 7→ r(t × 1),

1
n+1 ≤ t ≤ 1

n , is a path in A connecting the same two points. Such a path must pass through all points of
( 1
n+1 ,

1
n ) × {0} ⊂ I × {0} because π1r([ 1

n+1 ,
1
n ] × {1}) ⊃ [ 1

n+1 ,
1
n ] by connectedness. Thus there is a point

tn ∈ ( 1
n+1 ,

1
n ) such that r(tn × 1) ∈ ( 1

n+1 ,
1
n )× {0}. This contradicts continuity of r for tn × 1 converges to

0× 1 and r(t1 × 1) converges to 0× 0 6= r(0× 1). (A similar, but simpler, argument shows that there is no
retraction r : A× I → A× {0} ∪ {0} × I so that 0 is a degenerate base-point of A.)

Example 5.7 (A closed subspace that does not have the HEP). Let C be the quasi-circle [5, Ex 1.3.7].
Collapsing the interval A = [−1, 1] ⊂ C lying on the vertical axis gives a quotient map C → S1 [6, §28] which
is not a homotopy equivalence (since π1(S1) = Z and π1(C) is trivial) even though A is contractible. Thus
(C,A) does not have the HEP.

http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
http://www.math.ku.dk/~moller/e02/3gt/opg/jan05.pdf
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Proposition 5.8 (Hereditary properties of the HEP). Suppose (X,A) has the HEP.

(1) (Transitivity) If X0 ⊂ X1 ⊂ X2 and both pairs (X2, X1) and (X1, X0) have the HEP, then (X2, X0)
has the HEP. More generally, if X =

⋃
Xk has the coherent topology with respect to its subspaces

X0 ⊂ X1 ⊂ · · · ⊂ Xk−1 ⊂ Xk ⊂ · · · where each pair of consecutive subspaces has the HEP, then
(X,X0) has the HEP.

(2) Y × (X,A) = (Y ×X,Y ×A) has the HEP for all spaces Y .
(3) (X,A)× (I, ∂I) = (X × I,X × ∂I ∪A× I) has the HEP.
(4) (Y ∪ϕX,Y ∪ϕA) has the HEP for all spaces Y and all maps ϕ : B → Y defined on a closed subspace

B of A. In particular, (Y ∪ϕ X,Y ) has the HEP for any attaching map ϕ : A→ Y . (See Figure 7)
(5) The n-cellular extension (Y ∪ϕ

∐
Dn, Y ) of any space Y has the HEP for any attaching map

ϕ :
∐
Sn−1 → Y .

Proof. (1) In the first case, there are retractions r2 : X2×I → X1×I ∪X2×{0} and r1 : X1×I ∪X2×{0} →
X0 × I ∪X2 × {0}. Then r1r2 is a retraction of X2 × I onto X0 × I ∪X2 × {0}.

X0 X1 X2

I

X2 × I retracts onto X0 × I ∪X2 × {0}
r2 : X2 × I → X1 × I ∪X2 × {0}
r1 : X1 × I ∪X2 × {0} → X0 × I ∪X2 × {0}
r2r1 : X2 × I → X0 × I ∪X2 × {0}

In the general case, there are retractions rk : Xk×I∪X×{0} → Xk−1×I∪X×{0}. There is a well-defined
retraction r1r2 · · · rk · · · : X × I → X0 × I ∪X × {0} that on Xk × I ∪X × {0} is

Xk × I ∪X × {0}
rk //Xk−1 × I ∪X × {0}

rk−1 // · · · r2 //X1 × I ∪X × {0}
r1 //X0 × I ∪X × {0}

This retraction X × I → X0 × I ∪X × {0} is continuous because the product topology on X × I is coherent
with the filtration Xk × I, k = 0, 1, . . .. (Verify this claim!)
(2) We use Proposition 5.2. Let r : X × I → X × I be a retraction onto X × {0} ∪A× I. Then the product
map 1Y × r is a retraction of (Y ×X)× I onto (Y ×X)× {0} ∪ (Y ×A)× I.
(3) [2, 7.5 p. 330]
(4) We use Proposition 5.2 again. Let r : X × I → X × I be a retraction onto X×{0}∪A× I. The universal
property of quotient maps provides a factorization, 1Y×I q r, of 1Y×I q r

(Y qX)× I

q×1I

��

1Y×Iqr // (Y qX)× I

q×1I

��
(Y ∪ϕ X)× I

1Y×Iqr
// (Y ∪ϕ X)× I

Y B

X

A

Figure 7. The pair (Y ∪ϕ X,Y ∪ϕ A)
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that is a retraction of Y ∪ϕ X × I onto Y ∪ϕ X × {0} ∪ Y ∪ϕ A × I. To prove continuity, note that the
left vertical map is a quotient map since I is locally compact Hausdorff (General Topology, 2.87). This
shows that (Y ∪ϕ X,Y ∪ϕ A) has the HEP. If the attaching map ϕ is defined on all of A, we have that
(Y ∪ϕ X,Y ∪ϕ A) = (Y ∪ϕ X,Y ) so this pair has the HEP.

Y YDn

I

(Y ∪ϕDn)×I retracts onto
Y × I ∪ (Y ∪ϕ Dn)× {0}

(5) This is a special case of (4) since (
∐
Dn,

∐
Sn−1) has the HEP (Corollary 5.4).

�

Corollary 5.9. [8, Footnote 32] Any relative CW-complex (X,A) (Definition 4.6) has the HEP. In particular,
any CW-pair (X,A) has the HEP.

Proof. There is a filtration of X

A = X−1 ⊂ X0 ⊂ X1 ⊂ · · · ⊂ ∪Xn−1 ⊂ ∪Xn ⊂ · · · ⊂ X
where Xn, n ≥ 0, is obtained from A ∪Xn−1 by attaching n-cells. Since a cellular extension has the HEP,
transitivity (Proposition 5.8.(1)) implies that also (X,A) has the HEP. �

Example 5.10 (S∞ is contractible). Choose ∗ = 1 as the base-point of R ⊃ S0 ⊂ S∞. Let Dn+1
+ denote

the upper half of Sn+1 = Dn+1
− ∪Dn+1

+ . Since the base point {∗} is a deformation retract of the disc Dn+1
+

Dn+1
+

Sn

∗

there is a homotopy Rn : Sn × [ n
n+1 ,

n+1
n+2 ] → Sn+1 from the inclusion map of Sn into Sn+1 to the constant

map Sn → ∗ and this homotopy is relative to the base point {∗}.
Since (S1, S0) has the HEP, the partial homotopy R0 : S0 × [0, 1/2] → S1 extends to a homotopy S1 ×

[0, 1/2] → S1, relative to the base point, from the identity map of S1 to some map f1 : S1 → S1 that sends
S0 to ∗.

Since (S2, S1) has the HEP, the homotopy S1 × [1/2, 2/3] → S2 : (x, t) → R1(f1(x), t), which is constant
on S0 × [1/2, 2/3], combined with the already constructed homotopy S1 × [0, 1/2]→ S1 and the identity on
S2 × {0}, extends to a homotopy S2 × [0, 2/3] → S2, constant on S1 × [1/2, 2/3], from the identity map of
S2 to some map f2 : S2 → S2 that sends S1 to ∗.

Continue like this and get a homotopy S∞ × [0, 1]→ S∞, from the identity to the constant map relative
to the base point.

Figure 8 shows the beginning of a homotopy S∞×I → S∞ rel ∗ between the identity map and the constant
map. It is continuous because the area where it is constant (indicated by the dotted lines) gets larger and
larger as we approach S∞ × {1}.

In the above example we actually proved the following:

Proposition 5.11. Let X be a CW-complex with skeleta Xn, n ≥ 0, and base point ∗ ∈ X0. If all the
inclusions Xn ↪→ Xn+1 are homotopic rel ∗ to the constant map ∗, then the identity map of X is homotopic
rel ∗ to the constant map ∗ and X is contractible.

Exercise 5.12. The Dunce cap [3] is the quotient of the of the 2-simplex by the identifications indicated in
Fig 9. Show that the Dunce cap is contractible, in fact, homotopy equivalent to D2.

http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
http://en.wikipedia.org/wiki/Dunce_cap
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∗

1/2

2/3

3/4

S0 S1 S2

R0(x, t) HEP

R1(f1(x), t)

HEP

R2(f2(x), t)

∗

∗

∗

∗

∗ ∗

∗ ∗
∗

∗ ∗

Figure 8. S∞ is contractible

Example 5.13. The unreduced suspension SX and the reduced suspension ΣX = SX/{x0}×I are homotopy
equivalent for all CW-complexes X based at a 0-cell {x0}.

Example 5.14. [4, 21.21] (Homotopic maps have homotopy equivalent mapping cones). Let f : X → Y be
any map. Consider the mapping cone Cf = Y ∪f CX of f . Since the pair (CX,X) has the HEP (5.4) we
know that

• (Cf , Y ) has the HEP (Proposition 5.8.(4))
• The homotopy type of Cf only depends on the homotopy class of f (Theorem 5.3.(4))

In Example 2.8 we claimed that the squaring map 2: S1 → S1 is not homotopic to the constant map
0: S1 → S1. To prove this it suffices to show that the mapping cones C2 = S1 ∪2 D

2 = RP 2 and C0 =
S1 ∪0 D

2 = S1 ∨ S2 are not homotopy equivalent.
The complex projective plane CP 2 = S2 ∪ϕ D4 is obtained by attaching a 4-cell to the 2-sphere along

the Hopf map S3 → S2 (4.5). If the attaching map is nullhomotopic then CP 2 is homotopy equivalent to
S2 ∪∗ D4 = S2 ∨ S4.

We shall later develop methods to show that RP 2, S1∨S2 and CP 2, S2∨S4 are not homotopy equivalent.
This will show that the squaring map 2: S1 → S1 and the Hopf map S3 → S2 are not nullhomotopic.

Example 5.15 (The homotopy type of the quotient space X/A). If (X,A) has the HEP so does the pair
(X ∪CA,CA) obtained by attaching X to CA (Proposition 5.8.(4)). Since the cone CA on A is contractible,

X ∪ CA→ X ∪ CA/CA = X/A

is a homotopy equivalence (Proposition 5.3.(3)) between the cone on the iclusion of A into X and the quotient
space X/A.

Suppose in addition that the inclusion map A ↪→ X is homotopic to the constant map 0: A→ X, ie. A is
contractible in X. Then there are homotopy equivalences

X/A ' X ∪ CA = X ∪i CA = Ci ' C0 = X ∨ SA

@
@

@
@

@

@
@
@I
a

�
�
�
�
�

�
�
��
a

-
a

Figure 9. The dunce cap
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as the inclusion map and the contanst map have homotopy equivalent mapping cones by Example 5.14. For
instance, Sn/Si ' Sn ∨ Si+1 for all i ≤ 0 < n. (The inclusion Si → Sn, 0 < i < n, is nullhomotopic
since it factors through the contractible space Sn − ∗ = Rn.) See [5, Exmp 0.8] for an illustration of
S2/S0 ' S2 ∪ CS0 ' S2 ∨ S1.

Example 5.16. (HEP for mapping cylinders.) Let f : X → Y be a map. We apply 5.8 in connection with
the mapping cylinder Mf = Y ∪f (X × I).

(I, ∂I) has the HEP
5.8.(2)
=⇒ (X × I,X × ∂I) has the HEP

5.8.(4)
=⇒ (Mf , X ∪ Y ) has the HEP

(I, {0}) has the HEP
5.8.(2)
=⇒ (X × I,X × {0}) has the HEP

5.8.(4)
=⇒ (Mf , Y ) has the HEP

The fact that (Mf , X ∪ Y ) has the HEP implies that also (Mf , X) has the HEP (simply take a constant
homotopy on Y ). See 5.17 below for another application.

Example 5.17. (HEP for subspaces with mapping cylinder neighborhoods [5, Example 0.15]) For another
application of 5.8, suppose that the subspace A ⊆ X has a mapping cylinder neighborhood. This means that
A has a closed neighborhood N containing a subspace B (thought of as the boundary of N) such that N −B
is an open neighborhood of A and (N,A ∪ B) is homeomorphic to (Mf , A ∪ B) for some map f : B → A.
Then (X,A) has the HEP. To see this, let h : X × {0} ∪A× I → Y by a partial homotopy of a map X → Y .
Extend it to a partial homotopy on X × {0} ∪ (A ∪B)× I by using the constant homotopy on B × I. Since
(N,A ∪B) has the HEP, we can extend further to a partial homotopy defined on X × {0} ∪N × I. Finally,
extend to X × I by using a constant homotopy on X − (N −B)× I. In this way we get extensions

X × {0} ∪A× I h //
� _

��

Y

X × {0} ∪ (A ∪B)× I

55jjjjjjjjjjjjjjjjjj

� _

��
X × {0} ∪N × I� _

��

>>

X × I

CC

The final map is continuous since it restricts to continuous maps on the closed subspaces X − (N − B) × I
and N × I with union X × I.

For instance, the subspace ABC ⊆ R2 consisting of the three thin letters in the figure on [5, p. 1] is a
subspace with a mapping cylinder neighborhood, namely the three thick letters. Thus (R2,ABC) has the
HEP.

References

[1] Glen E. Bredon, Topology and geometry, Graduate Texts in Mathematics, vol. 139, Springer-Verlag, New York, 1993.

MR 94d:55001
[2] James Dugundji, Topology, Allyn and Bacon Inc., Boston, Mass., 1966. MR 33 #1824

[3] George K. Francis, A topological picturebook, Springer-Verlag, New York, 1987. MR 88a:57002
[4] Marvin J. Greenberg and John R. Harper, Algebraic topology, Benjamin/Cummings Publishing Co. Inc. Advanced Book

Program, Reading, Mass., 1981, A first course. MR 83b:55001
[5] Allen Hatcher, Algebraic topology, Cambridge University Press, Cambridge, 2002. MR 2002k:55001

[6] Jesper M. Møller, General topology, http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf.
[7] James R. Munkres, Topology. Second edition, Prentice-Hall Inc., Englewood Cliffs, N.J., 2000. MR 57 #4063

[8] J. H. C. Whitehead, Combinatorial homotopy. I, Bull. Amer. Math. Soc. 55 (1949), 213–245. MR 0030759 (11,48b)

Matematisk Institut, Universitetsparken 5, DK–2100 København
E-mail address: moller@math.ku.dk

URL: http://www.math.ku.dk/~moller

http://www.math.ku.dk/~moller/e03/3gt/notes/gtnotes.pdf
http://www.math.ku.dk/~moller

	1. Notation and some standard spaces and constructions
	1.1. Standard topological spaces
	1.2. The quotient topology
	1.3. The category of topological spaces and continuous maps

	2. Homotopy
	2.1. Relative homotopy
	2.2. Retracts and deformation retracts

	3. Constructions on topological spaces
	4. CW-complexes
	4.1. Topological properties of CW-complexes
	4.2. Subcomplexes
	4.3. Products of CW-complexes

	5. The Homotopy Extension Property
	5.1. What is the HEP good for?
	5.2. Are there any pairs of spaces that have the HEP?

	References

